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Abstract Three different approaches for robust fuzzy clusterwise regression
are reviewed. They are all based on the simultaneous application of trimming
and constraints. The first one follows from the joint modeling of the response
and explanatory variables through a normal component fitted in each clus-
ter. The second one assumes normally distributed error terms conditional
on the explanatory variables while the third approach is an extension of the
Cluster Weighted Model. A fixed proportion of “most outlying” observations
are trimmed. The use of appropriate constraints turns these problem into
mathematically well-defined ones and, additionally, serves to avoid the de-
tection of non-interesting or “spurious” linear clusters. The third proposal
is specially appealing because it is able to protect us against outliers in the
explanatory variables which may act as “bad leverage” points. Feasible and
practical algorithms are outlined. Their performances, in terms of robustness,
are illustrated in some simple simulated examples.

1 Introduction

The detection of clusters around linear subspaces, instead of just around
points or centroids, is often needed in Cluster Analysis. This problem is
meaningful not only because clusters are frequently arranged this way but
also because sometimes it is interesting to discover different relations be-
tween a response variable and some other explanatory variables within each
cluster. These problems are commonly known as clusterwise linear regres-
sion or switching regression models. Some others seminal references are [19],
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[21], [26] and [4]. All those “hard” or 0-1 clustering procedures partition the
data into G completely disjoint clusters. Alternatively, fuzzy clustering meth-
ods provide nonnegative membership values of observations to clusters and
overlapping clusters are so generated [25, 2, 17]. This fuzzy approach can
be certainly useful in clusterwise regression applications. There already exist
many proposals addressing clustering around linear subspaces problem from
a fuzzy clustering point of view. For instance, [17] provides an adaptation of
the fuzzy c-means in [2] by minimizing a weighted sum of distances of each
observation from the estimated regression line and where these weights de-
pend on the fuzzy membership values. See also [18] and [29] and references
therein.

Robustness is also a desirable property for (fuzzy) clustering techniques
due to the well-know harmful effect that (even a small fraction) outlying
observations may have in them. Several methods have been recently proposed
to improve clustering techniques robustness performance. For instances, many
proposals can be found in [10, 6, 22] (hard) and in [3, 1] (fuzzy).

In this work, we are going to review three recent approaches for robust
fuzzy clusterwise regression derived from considering a maximum likelihood
approach with trimming and constraints. These methods can see as exten-
sions of that introduced in [7]. Trimming is probably the simpler and easier to
understand way to achieve robustness. Particularly, we consider an impartial
trimming approach where “impartial” means that the data set itself tell us
which are observations that should be trimmed as in [9]. When an observa-
tion with index i is detected as an outlier, we set membership values uig = 0
for every g = 1, ..., G. This is in contrast with [29] which sets uig = 1/G for
outlying observations. A fuzzy Classification Maximum Likelihood approach
is applied in the three considered approaches. The maximization of fuzzified
likelihoods is not a new idea in fuzzy clustering [15, 28, 23, 27]. It is impor-
tant to fix some type of constraint on the scatters parameters because that
maximization is a mathematically ill-defined problem otherwise. Therefore,
appropriate constraints on the scatter parameters must be added. These con-
straints are also useful to avoid the detection of non-interesting (“spurious”)
local maxima.

In the three reviewed methods, the third one is particularly appealing be-
cause it simultaneously protects us against “vertical outliers” and even “bad
leverage” points. This approach, recently introduced in [13], is a trimmed
and fuzzified version of the Cluster Weighted Model (CWM) in [14].

2 Three different approaches

Let X̃ = (X′, Y )′ be a random vector in IRd×IR, where the first d components
X are the values taken by the explanatory variables or covariates, and Y
is the value taken by a response variable. Let us assume that {x̃i}ni=1 =
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{(x′
i, yi)

′}ni=1 is a random sample of size n, drawn from X̃. We use the notation
ϕd(·;m,S) for the density of the d-variate Gaussian distribution with mean
vector m and covariance matrix S and {λl(S)}dl=1 are the set of eigenvalues
of the d× d matrix S.

2.1 FTCLUST-based approach

The simplest approach follows from the application of the FTCLUSTmethod-
ology introduced in [7] in dimension d+ 1. We propose maximizing

n∑
i=1

G∑
g=1

um
ig log

(
πgϕd+1(x̃i; µ̃g, Σ̃g)

)
, (1)

where the uig ∈ [0, 1] membership values are required to satisfy

G∑
g=1

uig = 1 if i ∈ I and

G∑
g=1

uig = 0 if i /∈ I, (2)

for a subset I ⊂ {1, 2, ..., n} with #I = [n(1− α)]. The parameter α ∈ [0, 1)
is the fixed trimming level and m ≥ 1 is the fuzzifier parameter. Note that
observations with indexes outside I do not contribute to the summation in
(1). This target function (1) is unbounded as we can easily seen just by

taking |Σ̃g| → 0. Thus, as done in [7], we introduce an additional constraint
when maximizing (1) that forces the set eigenvalues of the scatter matrices
to satisfy

λl1(Σ̃g1) ≤ cλl2(Σ̃g2) for 1 ≤ l1 ̸= l2 ≤ d+ 1 and 1 ≤ g1 ̸= g2 ≤ G. (3)

This type of constraints are an extension of those in [20, 9]. The use of
constraints on the scatter parameters goes back to the seminal work by [16].

Let µ̃g and Σ̃g be the vectors and matrices obtained from the previous
constrained optimization problems with

µ̃g =

(
µg

1

µg
2

)
and Σ̃g =

(
Σg

11 Σg
12

Σg
21 Σg

22

)
. (4)

From these (optimal) vectors and matrices, we obtain G linear structures as

y = µg
2 +Σg

21(Σ
g
11)

−1(x− µg
1) for g = 1, ..., G. (5)

The constant 1 ≤ c < ∞ guarantees that the constrained maximization of (1)
is a mathematically well-defined problem and serves to avoid the detection
of “spurious” local maximizers. This type of constraints are an extension
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of those in [20, 9]. Some weights πg are also included in (8). We are thus
considering a fuzzy classification EM-type approach as in [28]. These weights
are interesting when the number of clusters is misspecified because weights
can be set close to 0 whenever G is larger than needed [9, 7].

The problem with that approach is that linear clusters are generally, by
definition, elongated clusters. Therefore, eigenvalues close to 0 on the Σ̃g

matrices often appear in most of clusterwise regression problems. This fact
implies that large c values for the eigenvalues ratio constraint are required.
Unfortunately, those large c values do not protect us correctly against “spuri-
ous” local maximizers. Moreover, the FTCLUST’s good robustness properties
are lost with such large c values.

2.2 Robust fuzzy clusterwise regression

A different approach, which directly takes into account the underlying lin-
ear relations within each group is reviewed in this section. In clusterwise
regression, it is frequently assumed that the conditional relation between Y
given X = x in the g-th group can be written as Y = b′

gx + b0g + εg with
εg ∼ N1(0, σ

2
g). In that case, a robust fuzzy clusterwise regression approach

can be derived through the maximization of

n∑
i=1

G∑
g=1

um
ig log

(
πgϕ1(yi;b

′
gxi + b0g, σ

2
g)
)
, (6)

where the uig membership values and the πg weights satisfy the same require-
ments as those in Section 2.1. Vector bg and constant b0g are, respectively,
the regression slopes vector and the intercept for the g-th cluster. Again,
constraints on the residual variances can be set as

σ2
g1 ≤ cεσ

2
g2 for every 1 ≤ g1 ̸= g2 ≤ G, (7)

for a fixed 1 ≤ cε < ∞ constant. These constraints again convert the maxi-
mization of (6) into a mathematically well-defined problem (see what happens
when σ2

g → 0). This approach has been introduced in [11].
We have applied this methodology, for a simulated data set, with α = 0

and cε = 10 in Figure 1,(a) and with α = 0.05 and cε = 10 in Figure 1,(b).
The simulated data set includes a small 5% fraction of background scattered
noise. As seen in Figure 1,(a), the detected linear structures when α = 0 are
not the correct ones and many misclassified observations are found.

This approach provides improved robustness performance by applying
trimming that certainly protect us against “vertical outliers” (outliers only in
y). However, as will be seen in Section 2.3, it does not provide great protec-
tion against “leverage points” (outliers in x). It is well known that leverage
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Fig. 1 (a) Fuzzy clusterwise regression with α = 0 (b) Fuzzy clusterwise regression with

α = 0.05 (c) Fuzzy robust CWM with α = 0.05 Fuzzy membership values are represented

by using a mixture of red and green colors.

points can be extremely harmful in Regression Analysis. Additional protec-
tion, in that case, can be obtained by applying a “second trimming” stage
as described in [10], which can be straightforwardly adapted to the fuzzy
clustering framework.

2.3 Robust fuzzy cluster-weighted model (CWM)

Finally, a third approach is obtained throughout the “fuzzification” and “ro-
bustification” of the Cluster Weighted Model (CWM in the sequel) introduced
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in [14]. This approach has been recently proposed in [13] as a fuzzification of
the “hard” robust CWM in [12]. We just focus on the the linear CWM with
Gaussian components where the conditional relationship between Y given
X = x in the g-th group is Y = b′

gx + b0g + εg with εg ∼ N1(0, σ
2
g) but we

also assume that X ∼ Nd(µg,Σg).
Under these assumptions, we now consider the maximization of

n∑
i=1

G∑
g=1

um
ig log

(
πgϕ1(y;b

′
gxi + b0g, σ

2
g)ϕd(xi;µg,Σg))

)
, (8)

with the same notation as in the statements of the two previous problems.
We have that (8) is unbounded, and consequently, we introduce two further
constraints as done in [12]. The first one has to do with the eigenvalues of
the Σg matrices throughout

λl1(Σg1) ≤ cXλl2(Σg2) for every 1 ≤ l1 ̸= l2 ≤ d and 1 ≤ g1 ̸= g2 ≤ G.
(9)

A second constraint is added on the regression error terms as

σ2
g1 ≤ cεσ

2
g2 for every 1 ≤ g1 ̸= g2 ≤ G.. (10)

Notice that the two (not necessarily equal) constants 1 ≤ cX < ∞ and 1 ≤
cε < ∞ serve to avoid “spurious” solutions whenever they are not excessively
high ones. Moreover, a very flexible methodology is obtained because of the
asymmetric treatment given to the marginal and conditional distributions.

Figure 1,(c) shows the results of applying the fuzzy robust CWM with
α = 0.05 and cX = cε = 10 for the same simulated data set as above. The
methodology in Section 2.2 was perfectly able to recover the two underlying
linear structures (recall Figure 1,(b)). However, the cluster assignments are
not so satisfactory because some observations which clearly belong to the
cluster in the left have higher membership values to the cluster in the right.
This issue is due to the fact that they are very close to the regression line
fitted by using mainly the observations in the cluster in the right when this
line is being elongated. On the other hand, the fuzzy robust CWM take
advantage of the information conveyed in the marginal X distribution and so
it is able to obtain more sensible membership values.

A second interesting feature of this fuzzy robust CWM is that it addresses
the previously commented problems with “bad leverage” points in a very
natural way because these observations take anomalous values on the ex-
planatory variables. Therefore, their contribution to (8) is not very large and
they are trimmed. For instance, we see in Figure 2,(a) how a 5% fraction of
concentrated observations (y ≃ 4) are acting as bad leverage points when
using the fuzzy clusterwise regression even though we had chosen a trimming
level α = 0.05 (equal to true contamination level) for it. The robust fuzzy
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CWM, with the same trimming level, succesfully trim bad leverage observa-
tions.
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Fig. 2 (a) Robust fuzzy clusterwise regression with α = 0.05 and cε = 10 for a data set

with a 5% fraction of concentrated noise (y ≃ 4) (b) Robust fuzzy CWM with α = 0.05

and cX = cε = 10 for the same data set.

3 Algorithms and tuning parameters

In this section, we briefly outline the proposed algorithms to implement the
previously reviewed approaches. Note that the target function in all of them
can be written as

n∑
i=1

G∑
g=1

um
ig log(πgφ(x̃i; θg)), (11)

where function φ(·) and the set of θg parameters change depending on the
method applied.

1. Initialization: Initial θg and πg parameters are randomly generated. Small
random subsamples from our original data set are used to obtain these
initial parameters.

2. Iterative steps: Repeat the following steps until convergence or reaching a
maximal number of iterations:

2.1. Membership values: If maxg=1,...,G πgφ(x̃i; θ) ≥ 1, then

uig = I
{
πgφ(x̃i; θg) = max

q=1,...,k
πqφ(x̃i; θq)

}
, (12)



8 Authors Suppressed Due to Excessive Length

where I{·} is the 0-1 indicator function. If maxg=1,...,G πgφ(x̃i; θg) < 1,
we set

uig =

( G∑
q=1

(
log(πgφ(x̃i; θg))

log(πqφ(x̃i; θq))

) 1
m−1

)−1

. (13)

2.2. Trimmed observations: Compute

ri =

G∑
g=1

um
ig log(pgφg(xi, yi; θ)) (14)

and sort them as r(1) ≤ r(2) ≤ ... ≤ r(n). Set membership values uig = 0,
g = 1, ..., G, for all the indexes i such that ri < r([nα]).

2.3. Update parameters: Use previous uig to update weights as

πg =

n∑
i=1

um
ig

/ n∑
i=1

G∑
g=1

um
ig . (15)

and µg (analogously, µ̃g) as

µg =

∑n
i=1 u

m
igxi∑n

i=1 u
m
ig

. (16)

Update intercepts and slope vectors by computing

bg =

(∑n
i=1 u

m
igxix

′
i∑n

i=1 u
m
ig

−
∑n

i=1 u
m
igxi∑n

i=1 u
m
ig

·
∑n

i=1 u
m
igx

′
i∑n

i=1 u
m
ig

)−1

·

(∑n
i=1 u

m
igyixi∑n

i=1 u
m
ig

−
∑n

i=1 u
m
igyi∑n

i=1 u
m
ig

·
∑n

i=1 u
m
igxi∑n

i=1 u
m
ig

)
,

and

b0g =

∑n
i=1 u

m
igyi∑n

i=1 u
m
ig

− b′
g

∑n
i=1 u

m
igxi∑n

i=1 u
m
ig

. (17)

All previous formulae are typical in fuzzy clustering. The most difficult
part is how to update the constrained scatter parameters. To update
σ2
g and Σ2

g , we start from the weighted sample covariance matrices

Tg =

∑n
i=1 u

m
ig(xi − µg)(xi − µg)

′∑n
i=1 u

m
ig

, (18)

and the weighted residual variances

d2g =

∑n
i=1 u

m
ig(yi − b0g − x′

ibg)
2∑n

i=1 u
m
ig

. (19)
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Then, to update Σg (analogously, Σ̃g), the singular-value decomposi-
tion Tg = U ′

gEgUg is considered, with Ug being an orthogonal matrix
and Eg = diag(eg1, eg2, ..., egd) a diagonal matrix. As done in [8, 7],
these eigenvalues must be optimally truncated. The optimal truncation
value is obtained by minimizing a real valued function. Analogously,
in case that the d2j error residual variances do not satisfy the required

constraint, the d2j must be optimally truncated too [11].

3. Return the set of θg of parameters yielding the highest value of (11) ob-
tained after all the random initializations and iterative steps.

Note that trimming is done through “concentration steps” [24] and im-
posing the required constraint on the scatter parameters is an important
ingredient of this algorithm.

As can be seen, several parameters have to be chosen when applying the
proposed methods in real data problems. The estimated θg parameters do not
necessarily dependent critically on all the tuning parameters. For instance,
a trimming level slightly greater than the one needed to remove contami-
nation is not necessarily problematic. However, monitoring the sizes of the
sorted ri values in (14) is useful to set sensible α values. Regarding the
constraints on the scatter parameters, our suggestion is not choosing exces-
sively high values for both cX and cε (at least in the approaches described
in Section 2.2 and 2.3). The choice of the fuzzifier parameter m depends on
the desired degree of fuzziness in the clustering solution. Unfortunately, as
happens with other likelihood-based fuzzy clustering approaches, the effect
of m is affected by the scale of the measured variables (see [7, 11]). The
joint monitoring of the proportions of “hard assignments” and “relative en-
tropies” (

∑G
g=1

∑n
i=1 uig log uig/[n(1 − α)] log(G)) provide useful heuristical

tools aimed at addressing this issue.
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12. Garćıa-Escudero, L.A., Gordaliza, A., Greselin, F., Ingrassia, S. and Mayo-Iscar, A.
(2016) The joint role of trimming and constraints in robust estimation for mixtures of
Gaussian factor analyzers, Computational Statistics & Data Analysis, 99, 131–147.
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