

UNIVERSIDAD POLITÉCNICA SALESIANA SEDE GUAYAQUIL

FACULTAD DE INGENIERÍA

CARRERA: INGENIERÍA ELÉCTRICA

PROYECTO DE TITULACIÓN PREVIO A LA OBTENCIÓN DEL TITULO DE: INGENIERO ELÉCTRICO

TEMA: ANÁLISIS Y SIMULACIÓN DE SISTEMAS TRIFÁSICOS CON TRANSFORMADORES CONEXIÓN D-Y

AUTORES: NESTOR SANTIAGO RODRÍGUEZ MANCERA IGNACIO WILSON CHIRIBOGA VELÁSQUEZ

DIRECTOR: DAVID HUMBERTO CÁRDENAS VILLACRÉS

AGOSTO 2019

GUAYAQUIL – ECUADOR

CERTIFICADO DE RESPONSABILIDAD Y AUTORÍA DEL TRABAJO DE TITULACIÓN

Nosotros, NESTOR SANTIAGO RODRÍGUEZ MANCERA e IGNACIO WILSON

CHIRIBOGA VELASQUEZ, autorizamos a la UNIVERSIDAD POLITÉCNICA

SALESIANA, la publicación total o parcial de este proyecto de titulación y su reproducción sin fines de lucro.

Además, declaramos que los conceptos, análisis desarrollados y las conclusiones del presente proyecto son de exclusiva responsabilidad de los autores.

Guayaquil, agosto, 2019

Firma:

Firma: ______

Autor: Nestor Santiago Rodríguez Mancera

Cédula: 091500276-0

Autor: Ignacio Wilson Chiriboga Velásquez

Cédula: 091532373-7

CERTIFICADO DE SESIÓN DE DERECHOS DE AUTOR DEL TRABAJO DE TITULACIÓN A LA UPS

Nosotros, NESTOR SANTIAGO RODRÍGUEZ MANCERA, con documento de identificación N° 091500276-0, e IGNACIO WILSON CHIRIBOGA VELASQUEZ, con documento de identificación N° 091532373-7, manifestamos nuestra voluntad y cedemos a la UNIVERSIDAD POLITÉCNICA SALESIANA, la titularidad sobre los derechos patrimoniales en virtud de que somos los autores del proyecto de grado titulado "ANÁLISIS Y SIMULACIÓN DE SISTEMAS TRIFÁSICOS CON TRANSFORMADORES CONEXIÓN D-Y" mismo que ha sido desarrollado para optar por el título de INGENIERO ELÉCTRICO, en la Universidad Politécnica Salesiana, quedando la Universidad facultada para ejercer plenamente los derechos antes cedidos.

En aplicación a lo determinado en la Ley de Propiedad Intelectual, en nuestra condición de autores, nos reservamos los derechos morales de la obra antes citada. En concordancia, suscrito este documento en el momento que hacemos entrega del proyecto final en formato impreso y digital a la biblioteca de la Universidad Politécnica Salesiana.

Guayaquil, agosto, 2019

Firma:	Firma:
Autor: Nestor Santiago Rodríguez Mancera	Autor: Ignacio Wilson Chiriboga Velásquez
Cédula: 0915002760	Cédula: 091532373-7

CERTIFICADO DE DIRECCIÓN DEL TRABAJO DE TITULACIÓN SUSCRITO POR EL TUTOR

Yo, DAVID HUMBERTO CÁRDENAS VILLACRÉS, director del proyecto de titulación con el tema "ANÁLISIS Y SIMULACIÓN DE SISTEMAS TRIFÁSICOS CON TRANSFORMADORES CONEXIÓN D-Y" realizado por los estudiantes NESTOR SANTIAGO RODRÍGUEZ MANCERA e IGNACIO WILSON CHIRIBOGA VELÁSQUEZ, certifico que ha sido orientado y revisado durante su desarrollo, por cuanto se aprueba la presentación del mismo ante las autoridades pertinentes.

Guayaquil, agosto, 2019

Firma: _____

DAVID HUMBERTO CÁRDENAS VILLACRÉS

DEDICATORIA

Quisiera dedicar este proyecto a mi papá, José Rodríguez, y a mi mamá, Cecilia Mancera, que, con su apoyo incondicional, sus sabios consejos y mucha paciencia, me inspiran a ser mejor persona día a día y perseverar siempre para alcanzar mis metas. A mis hermanos, Danilo, Myrna y Fabián, que siempre han sido mi ejemplo a seguir. A mi familia de Ecuador y Colombia, en especial a mi Padrino Juan Carlos y a mi Madrina Dora, cuyo cariño y afecto traspasa fronteras. A mis abuelos, que sé que desde el cielo están presentes. Y a mi enamorada, Shayna Benítez, gracias por estar a mi lado en esta etapa tan importante de mi vida.

RODRÍGUEZ MANCERA NESTOR SANTIAGO

Quiero dedicar el presente trabajo a mi padre, por ser mi inspiración y ejemplo de tenacidad, esfuerzo, y constancia. A mi madre por su amor incondicional que ha sido para mí, refugio y motivación, aun en momentos difíciles. Un agradecimiento especial a mis hijos por su comprensión. Y principalmente a nuestro santo padre celestial por haber permitido que todas las circunstancias se den favorablemente para la culminación de este trabajo.

CHIRIBOGA VELÁSQUEZ IGNACIO WILSON

AGRADECIMIENTOS

Luego de haber concluido este proyecto de grado, queremos agradecer primero a Dios, por tantas bendiciones y permitirnos cumplir una etapa más de nuestras vidas; a nuestros padres y familiares, que siempre estuvieron para brindarnos su apoyo incondicional; a nuestros profesores, que con su paciencia y vocación supieron compartir sus conocimientos; a nuestro tutor; el Ing. David Cárdenas, por guiarnos en la culminación de la tesis; y a la Institución en general, la Universidad Politécnica Salesiana, que año a año se caracteriza por la formación de profesionales de calidad, buenos cristianos y honrados ciudadanos.

RODRÍGUEZ MANCERA NESTOR SANTIAGO CHIRIBOGA VELÁSQUEZ IGNACIO WILSON

ÍNDICE DE CONTENIDOS

DEDICATORIA v
AGRADECIMIENTOS vi
ÍNDICE DE CONTENIDOS vii
ÍNDICE DE ILUSTRACIONESxiii
ÍNDICE DE TABLASxxiii
ÍNDICE DE ECUACIONES xxv
ÍNDICE DE ANEXOS xxvi
ABREVIATURAS
VARIABLES Y SIMBOLOGÍAxxviii
RESUMENxxix
ABSTRACTxxx
INTRODUCCIÓN1
CAPÍTULO I
1. PLANTEAMIENTO DEL PROBLEMA
1.1. DESCRIPCIÓN DEL PROBLEMA
1.2. JUSTIFICACIÓN
1.3. IMPORTANCIA Y ALCANCE
1.4. BENEFICIARIOS
1.5. OBJETIVOS
1.5.1. OBJETIVOS GENERALES
1.5.2. OBJETIVOS ESPECÍFICOS
1.6. MARCO METODOLÓGICO 4
CAPÍTULO II
2. MARCO TEÓRICO
2.1. EL TRANSFORMADOR
2.1.1. PRINCIPALES ASPECTOS CONSTRUCTIVOS

2.1.1.1.	NÚCLEO (CIRCUITO MAGNÉTICO)	6
2.1.1.2.	DEVANADOS (CIRCUITO ELÉCTRICO)	7
2.1.1.3.	SISTEMAS DE REFRIGERACIÓN	8
2.1.2. LEY	DE FARADAY: PRINCIPIO DE FUNCIONAMIENTO DE LOS	
TRANSFORM	IADORES	8
2.1.3. EL 7	FRANSFORMADOR IDEAL	9
2.1.3.1.	RELACIÓN DE TRANSFORMACIÓN	10
2.1.3.2.	POLARIDAD DEL TRANSFORMADOR	11
2.1.3.3.	DIAGRAMA FASORIAL TRANSFORMADOR IDEAL BAJO CARO	βA
	11	
2.1.3.4.	POTENCIA DEL TRANSFORMADOR IDEAL	13
2.1.4. EL 7	TRANSFORMADOR REAL	13
2.1.4.1.	CIRCUITO EQUIVALENTE DE UN TRANSFORMADOR	14
2.1.4.2.	RESISTENCIA DEL DEVANADO	14
2.1.4.3.	FLUJO DE DISPERCIÓN	15
2.1.4.4.	PERMEABILIDAD FINITA	15
2.1.4.5.	PRUEBA DE POLARIDAD	16
2.1.4.6.	PRUEBA DE CIRCUITO ABIERTO Y DE CORTOCIRCUITO	17
2.1.4.7.	CONEXIÓN EN SERIE Y EN PARALELO DE DEVANADOS DE	
TRANSFO	RMADOR	19
2.1.5. EL 7	TRANSFORMADOR TRIFÁSICO	20
2.1.5.1.	SECUENCIA DE FASES	21
2.1.5.2.	CONEXIÓN ESTRELLA – ESTRELLA (Y-y)	21
2.1.5.3.	CONEXIÓN ESTRELLA – DELTA (Y-d)	23
2.1.5.4.	CONEXIÓN DELTA – ESTRELLA (D-y)	24
2.1.5.5.	CONEXIÓN DELTA – DELTA (D-d)	26

2.2. IMPEDANCIAS Y TIPOS DE CARGAS ELECTRICAS	
2.2.1. CARGA RESISTIVA	
2.2.2. CARGA INDUCTIVA	
2.2.3. CARGA CAPACITIVA	
2.3. CONTROLADOR LÓGICO PROGRAMABLE	30
2.4. PROTOCOLOS DE COMUNICACIÓN	
2.5. LABVIEW	
CAPÍTULO III	
3. IMPLEMENTACIÓN DE SISTEMA PARA ADQUISICIÓN DE DATOS	
3.1. CONSTRUCCION MÓDULO DEL PLC	
3.1.1. ELEMENTOS	
3.1.2. CABLEADO	
3.2. SOMACHINE BASIC: CONFIGURACIÓN	
3.2.1. CONEXIÓN ETHERNET: PLC – LAPTOP	
3.2.2. CONEXIÓN SERIAL: PLC – MEDIDOR DE PARÁMETROS	
3.3. SOMACHINE BASIC: PROGRAMACIÓN	
3.3.1. PROGRAMACIÓN DE ENTRADAS DIGITALES	
3.3.2. PROGRAMACIÓN DE SALIDAS DIGITALES	
3.3.3. PROGRAMACIÓN DE ENTRADAS ANALÓGICAS	
3.3.4. PROGRAMACIÓN PUERTO SERIAL (MEDIDOR DE PARÁMETRO	DS) 44
3.4. SOMACHINE BASIC: PUESTA EN FUNCIONAMIENTO	
3.5. OPC SERVER: CONFIGURACIÓN	
3.6. LABVIEW: PROGRAMACIÓN	58
3.7. MEDIDOR DE PARÁMETROS: CONFIGURACIÓN	64
3.7.1. CONEXIÓN MODBUS: MEDIDOR DE PARAMETROS - PLC	65
CAPÍTULO IV	

4. SIMULACIÓN Y ANÁLISIS	. 66
4.1. PRUEBA N°1: ANÁLISIS DE LA CONEXIÓN D-Y AL CONECTAR UNA	
CARGA RESISTIVA VARIABLE EN ESTRELLA	. 66
4.1.1. DIAGRAMA	. 66
4.1.2. RECURSOS	. 66
4.1.3. PROCEDIMIENTO	. 67
4.1.4. VENTANA GRÁFICA: DIAGRAMAS FASORIALES VOLTAJE Y	
CORRIENTE	. 67
4.1.5. VENTANA GRÁFICA: TRIÁNGULOS DE POTENCIA	. 71
4.1.6. CÁLCULOS TEÓRICOS	. 75
4.1.7. CUADROS COMPARATIVOS	. 78
4.1.8. ANÁLISIS DE RESULTADOS	. 81
4.2. PRUEBA N°2: ANÁLISIS DE LA CONEXIÓN D-Y AL CONECTAR UNA	
CARGA INDUCTIVA-RESISTIVA TRIFÁSICA Y UNA CARGA RESISTIVA	
MONOFÁSICA.	. 82
4.2.1. DIAGRAMA	. 82
4.2.2. RECURSOS	. 82
4.2.3. PROCEDIMIENTO	. 83
4.2.4. VENTANA GRÁFICA: DIAGRAMAS FASORIALES VOLTAJE Y	
CORRIENTE	. 83
4.2.5. VENTANA GRÁFICA: TRIÁNGULOS DE POTENCIA	. 85
4.2.6. CÁLCULOS TEÓRICOS	. 87
4.2.7. CUADROS COMPARATIVOS	. 88
4.2.8. ANÁLISIS DE RESULTADOS	. 89
4.3. PRUEBA N°3: ANÁLISIS DE LA CONEXIÓN D-Y AL CONECTAR UNA	
CARGA INDUCTIVA-RESISTIVA TRIFÁSICA, SIMULANDO LA PÉRDIDA DE UNA	4
LÍNEA. 90	

4.3.1.	DIAGRAMA	90
4.3.2.	RECURSOS	90
4.3.3.	PROCEDIMIENTO	91
4.3.4.	VENTANA GRÁFICA: DIAGRAMAS FASORIALES VOLTAJE Y	
CORRIE	NTE	91
4.3.5.	VENTANA GRÁFICA: TRIÁNGULOS DE POTENCIA	96
4.3.6.	CÁLCULOS TEÓRICOS	100
4.3.7.	CUADROS COMPARATIVOS	101
4.3.8.	ANÁLISIS DE RESULTADOS	102
4.4. P	RUEBA N°4: ANÁLISIS DE LA CONEXIÓN D-Y AL CONECTAR UNA	
CARGA CA	APACITIVA TRIFÁSICA	103
4.4.1.	DIAGRAMA	103
4.4.2.	RECURSOS	103
4.4.3.	PROCEDIMIENTO	104
4.4.4.	VENTANA GRÁFICA: DIAGRAMAS FASORIALES VOLTAJE Y	
CORRIE	NTE	104
4.4.5.	VENTANA GRÁFICA: TRIÁNGULOS DE POTENCIA	106
4.4.6.	CÁLCULOS TEÓRICOS	108
4.4.7.	CUADROS COMPARATÍVOS	109
4.4.8.	ANÁLISIS DE RESULTADOS	110
4.5. P	RUEBA N°5: ANÁLISIS DE LA CONEXIÓN D-Y AL CONECTAR UNA	
CARGA TR	RIFÁSICA CONFORMADA POR CAPACITORES Y RESISTENCIAS EN	
SERIE CON	VECTADOS EN ENTRELLA	111
4.5.1.	DIAGRAMA	111
4.5.2.	RECURSOS	111
4.5.3.	PROCEDIMIENTO	112

4.5.4. VENTANA GRÁFICA: DIAGRAMAS FASORIALES VOLTAJE Y
CORRIENTE112
4.5.5. VENTANA GRÁFICA: TRIÁNGULOS DE POTENCIA 114
4.5.6. CÁLCULOS TEÓRICOS116
4.5.7. CUADROS COMPARATIVOS 117
4.5.8. ANÁLISIS DE RESULTADOS118
4.6. PRUEBA N°6: ANÁLISIS DE LA CONEXIÓN D-Y AL CONECTAR UNA
CARGA INDUCTIVA-RESISTIVA TRIFÁSICA EN ESTRELLA Y EN PARALELO UNA
CARGA CAPACITIVA TRIFASICA EN ESTRELLA 119
4.6.1. DIAGRAMA
4.6.2. RECURSOS
4.6.3. PROCEDIMIENTO
4.6.4. VENTANA GRÁFICA: DIAGRAMAS FASORIALES VOLTAJE Y
CORRIENTE
4.6.5. VENTANA GRÁFICA: TRIÁNGULOS DE POTENCIA 122
4.6.6. CÁLCULOS TEÓRICOS 124
4.6.7. CUADROS COMPARATIVOS 125
4.6.8. ANÁLISIS DE RESULTADOS126
CAPÍTULO V
5. CONCLUSIONES
CAPÍTULO VI
6. RECOMENDACIONES 128
CAPÍTULO VII
7. BIBLIOGRAFÍA
ANEXOS
ANEXO 1: LISTA DE REGISTROS PM5110132

ÍNDICE DE ILUSTRACIONES

Ilustración 1: Clasificación de transformadores por su núcleo	7
Ilustración 2: Clasificación de los transformadores por su devanado	7
Ilustración 3: Ley de Faraday	9
Ilustración 4: Transformador ideal sin carga	10
Ilustración 5: Transformador ideal con carga	12
Ilustración 6: Circuito equivalente de un transformador real	14
Ilustración 7: Prueba de polaridad de un transformador	17
Ilustración 8: Esquema eléctrico del ensayo en vacío	18
Ilustración 9: Esquema eléctrico del ensayo de cortocircuito	19
Ilustración 10: Conexión serie y paralelo de devanados de transformadores de igual voltaje	е
	20
Ilustración 11: Secuencias de fases	21
Ilustración 12: Esquema de transformador trifásico conexión Y-y	22
Ilustración 13: Diagrama fasorial de transformador trifásico conexión Y-y	23
Ilustración 14: Esquema de transformador trifásico conexión Y-d	24
Ilustración 15: Diagrama fasorial de transformador trifásico conexión Y-d	24
Ilustración 16: Esquema de transformador trifásico conexión D-y	25
Ilustración 17: Diagrama fasorial de transformador trifásico conexión D-y	26
Ilustración 18: Esquema de transformador trifásico conexión D-d	27
Ilustración 19: Diagrama fasorial de transformador trifásico conexión D-d	27
Ilustración 20: Diagramas circuito resistivo puro	28
Ilustración 21: Diagramas circuito inductivo puro	. 29

Ilustración 22: Diagramas circuito capacitivo puro	29
Ilustración 23: PLC Schneider TM221CE16R	30
Ilustración 24: Módulo del PLC	33
Ilustración 25: Alimentación del PLC	34
Ilustración 26: Salidas digitales	35
Ilustración 27: Entradas digitales	35
Ilustración 28: Entradas analógicas	36
Ilustración 29: Crear un nuevo proyecto	37
Ilustración 30: Seleccionar modelo del PLC	37
Ilustración 31: Conexión ethernet – Cambiar configuración del adaptador	38
Ilustración 32: Conexión ethernet – Cambiar configuración del adaptador	38
Ilustración 33: Conexión ethernet – Propiedades de la red Ethernet	39
Ilustración 34: Conexión ethernet – Protocolo de Internet versión 4 (TCP/IPv4)	39
Ilustración 35: Conexión ethernet – Dirección IP y Máscara de subred	40
Ilustración 36: Conexión ethernet – Dirección IP y Máscara de subred SoMachine	40
Ilustración 37: Configuración de conexión Serial	41
Ilustración 38: Configuración Modbus	41
Ilustración 39: Programación - POUs	42
Ilustración 40: Programación – Entradas digitales	42
Ilustración 41: Programación – Salidas digitales	43
Ilustración 42: Programación – Entradas analógicas	44
Ilustración 43: Programación – Lista de registros PM5110	45
Ilustración 44: Programación – Puerto serial (medidor de parámetros)	45

Ilustración 45: Programación – Puesta en funcionamiento	46
Ilustración 46: OPC Servers – Configuración	46
Ilustración 47: OPC Servers – New Channel	47
Ilustración 48: OPC Servers – New Channel - Identification	47
Ilustración 49: OPC Servers – New Channel – Device Driver	47
Ilustración 50: OPC Servers – New Channel – Communication Serialization	48
Ilustración 51: OPC Servers – New Channel – Network Interface	48
Ilustración 52: OPC Servers – New Channel – Write Optimization	48
Ilustración 53: OPC Servers – New Channel – Non-Normalized Float Handling	49
Ilustración 54: OPC Servers – New Channel – Ethernet	49
Ilustración 55: OPC Servers – New Channel – Summary	49
Ilustración 56: OPC Servers – New Device	50
Ilustración 57: OPC Servers – New Device - Name	50
Ilustración 58: OPC Servers – New Device - Model	50
Ilustración 59: OPC Servers – New Device - ID	51
Ilustración 60: OPC Servers – New Device – Scan Mode	51
Ilustración 61: OPC Servers – New Device – Timing	51
Ilustración 62: OPC Servers – New Device – Auto-Demotion	52
Ilustración 63: OPC Servers – New Device – Database Creation	52
Ilustración 64: OPC Servers – New Device – Ethernet	52
Ilustración 65: OPC Servers – New Device – Data Access Settings	53
Ilustración 66: OPC Servers – New Device – Data Encoding Settings	53
Ilustración 67: OPC Servers – New Device – Block Sizes	53

Ilustración 68: OPC Servers – New Device – Variable Import Settings	54
Ilustración 69: OPC Servers – New Device – Error Handling	54
Ilustración 70: OPC Servers – New Device – Summary	54
Ilustración 71: OPC Servers – New Tag Group	55
Ilustración 72: OPC Servers – Crear Tag Groups	55
Ilustración 73: OPC Servers – Tag Groups	55
Ilustración 74: OPC Servers – Tag Properties	56
Ilustración 75: OPC Servers – Tags entradas digitales	56
Ilustración 76: OPC Servers – Tags salidas digitales	56
Ilustración 77: OPC Servers – Tags entradas analógicas	56
Ilustración 78: OPC Servers – Tags medidor de parámetros	57
Ilustración 79: OPC Servers – Launch OPC Quick Client	57
Ilustración 80: OPC Servers – OPC Quick Client	57
Ilustración 81: LabVIEW – Create Project	58
Ilustración 82: LabVIEW – Blank Project	58
Ilustración 83: LabVIEW – I/O Server	58
Ilustración 84: LabVIEW – OPC Client	59
Ilustración 85: LabVIEW – National Instruments.NIOPCServers.V5	59
Ilustración 86: LabVIEW – DCOM Configuration Recommendation	59
Ilustración 87: LabVIEW – Create Bound Variables	60
Ilustración 88: LabVIEW – Add variables	60
Ilustración 89: LabVIEW – Multiple Variable Editor	60
Ilustración 90: LabVIEW – New VI	61

Ilustración 91: LabVIEW – Show Block Diagram	1
Ilustración 92: LabVIEW – Arrastrar variables de entrada a Front Panel6	1
Ilustración 93: LabVIEW – Arrastrar variables de salida a Diagrama de Bloques62	2
Ilustración 94: LabVIEW – Seleccionar Access Mode Write de cada variable de salida 62	2
Ilustración 95: LabVIEW – Insertar push button en Panel Frontal por cada variable de salida	ı
	2
Ilustración 96: LabVIEW – Conectar elementos diagrama de bloques63	3
Ilustración 97: LabVIEW – Ejecutar Programa – Run Continuosly63	3
Ilustración 98: LabVIEW – Ejecutar Programa – Deployment Progress63	3
Ilustración 99: Medidor de parámetros PM510064	1
Ilustración 100: Disposición de pines Puerto RJ4565	5
Ilustración 101: Prueba N°1 – Conexión D-y de transformadores trifásicos con carga	
resistiva variable	5
Ilustración 102: Prueba N°1 – Diagrama fasorial voltajes lado primario. Carga resistiva	
trifásica 80 Ω	7
Ilustración 103: Prueba Nº1 – Diagrama fasorial corrientes lado primario. Carga resistiva	
trifásica 80 Ω	3
Ilustración 104: Prueba N°1 – Diagrama fasorial voltajes lado primario. Carga resistiva	
trifásica 90 Ω	3
Ilustración 105: Prueba Nº1 – Diagrama fasorial corrientes lado primario. Carga resistiva	
trifásica 90 Ω	3
Ilustración 106: Prueba Nº1 – Diagrama fasorial voltajes lado primario. Carga resistiva	
trifásica 100 Ω	9

Ilustración 107: Prueba Nº1 – Diagrama fasorial corrientes lado primario. Carga resistiva
<i>trifásica 100</i> Ω
Ilustración 108: Prueba Nº1 – Diagrama fasorial voltajes lado secundario. Carga resistiva
trifásica 80 Ω
Ilustración 109: Prueba N°1 – Diagrama fasorial corrientes lado secundario. Carga resistiva
trifásica 80 Ω
Ilustración 110: Prueba Nº1 – Diagrama fasorial voltajes lado secundario. Carga resistiva
trifásica 90 Ω
Ilustración 111: Prueba Nº1 – Diagrama fasorial corrientes lado secundario. Carga resistiva
trifásica 90 Ω
Ilustración 112: Prueba N°1 – Diagrama fasorial voltajes lado secundario. Carga resistiva
<i>trifásica 100</i> Ω
Ilustración 113: Prueba Nº1 – Diagrama fasorial corrientes lado secundario. Carga resistiva
<i>trifásica 100</i> Ω
Ilustración 114: Prueba Nº1 – Triángulos de potencia lado primario. Carga resistiva
trifásica 80 Ω
Ilustración 115: Prueba Nº1 – Triángulos de potencia lado primario. Carga resistiva
trifásica 90 Ω
Ilustración 116: Prueba Nº1 – Triángulos de potencia lado primario. Carga resistiva
<i>trifásica 100</i> Ω
Ilustración 117: Prueba N°1 – Triángulos de potencia lado secundario. Carga resistiva
trifásica 80 Ω

Ilustración 118: Prueba N°1 – Triángulos de potencia lado secundario. Carga resistiva
trifásica 90 Ω74
Ilustración 119: Prueba Nº1 – Triángulos de potencia lado secundario. Carga resistiva
trifásica 100 Ω
Ilustración 120: Prueba N°2 – Conexión D-y de transformadores trifásicos con carga
inductiva-resistiva trifásica (motor) y carga resistiva monofásica (foco incandescente)
Ilustración 121: Prueba N°2 – Diagrama fasorial voltajes lado primario. Carga inductiva-
resistiva trifásica (motor) y carga resistiva monofásica (foco incandescente)
Ilustración 122: Prueba N°2 – Diagrama fasorial corrientes lado primario. Carga inductiva
trifásica (motor) y carga resistiva monofásica (foco incandescente)
Ilustración 123: Prueba N°2 – Diagrama fasorial voltajes lado secundario. Carga inductiva
trifásica (motor) y carga resistiva monofásica (foco incandescente)
Ilustración 124: Prueba N°2 – Diagrama fasorial corrientes lado secundario. Carga
inductiva trifásica (motor) y carga resistiva monofásica (foco incandescente)
Ilustración 125: Prueba N°2 – Triángulos de potencia lado primario. Carga inductiva
trifásica (motor) y carga resistiva monofásica (foco incandescente)
Ilustración 126: Prueba N°2 – Triángulos de potencia lado secundario. Carga inductiva
trifásica (motor) y carga resistiva monofásica (foco incandescente)
Ilustración 127: Prueba N°3 – Conexión D-y de transformadores trifásicos con carga
inductiva trifásica (motor) y simulación de pérdidas de fase90
Ilustración 128: Prueba N°3 – Diagrama fasorial voltajes lado primario. Carga inductiva
trifásica (motor)

Ilustración 129: Prueba N°3 – Diagrama fasorial corrientes lado primario. Carga inductiva
trifásica (motor)
Ilustración 130: Prueba N°3 – Diagrama fasorial voltajes lado primario. Carga inductiva
trifásica (motor) con pérdida de fase del lado primario92
Ilustración 131: Prueba N°3 – Diagrama fasorial corrientes lado primario. Carga inductiva
trifásica (motor) con pérdida de fase del lado primario
Ilustración 132: Prueba N°3 – Diagrama fasorial voltajes lado primario. Carga inductiva
trifásica (motor) con pérdida de fase del lado secundario
Ilustración 133: Prueba N°3 – Diagrama fasorial corrientes lado primario. Carga inductiva
trifásica (motor) con pérdida de fase del lado secundario
Ilustración 134: Prueba N°3 – Diagrama fasorial voltajes lado secundario. Carga inductiva
trifásica (motor)
Ilustración 135: Prueba N°3 – Diagrama fasorial corrientes lado secundario. Carga
inductiva trifásica (motor)
Ilustración 136: Prueba N°3 – Diagrama fasorial voltajes lado secundario. Carga inductiva
trifásica (motor) con pérdida de fase del lado primario95
Ilustración 137: Prueba N°3 – Diagrama fasorial corrientes lado secundario. Carga
inductiva trifásica (motor) con pérdida de fase del lado primario95
Ilustración 138: Prueba N°3 – Diagrama fasorial voltajes lado secundario. Carga inductiva
trifásica (motor) con pérdida de fase del lado secundario95
Ilustración 139: Prueba N°3 – Diagrama fasorial corrientes lado secundario. Carga
inductiva trifásica (motor) con pérdida de fase del lado secundario

Ilustración 140: Prueba N°3 – Triángulos de potencia lado primario. Carga inductiva
trifásica (motor)
Ilustración 141: Prueba N°3 – Triángulos de potencia lado primario. Carga inductiva
trifásica (motor) con pérdida de fase del lado primario97
Ilustración 142: Prueba N°3 – Triángulos de potencia lado primario. Carga inductiva
trifásica (motor) con pérdida de fase del lado secundario97
Ilustración 143: Prueba N°3 – Triángulos de potencia lado secundario. Carga inductiva
trifásica (motor)
Ilustración 144: Prueba N°3 – Triángulos de potencia lado secundario. Carga inductiva
trifásica (motor) con pérdida de fase del lado primario
Ilustración 145: Prueba N°3 – Triángulos de potencia lado secundario. Carga inductiva
trifásica (motor) con pérdida de fase del lado secundario99
Ilustración 146: Prueba N°4 – Conexión D-y de transformadores trifásicos con carga
capacitiva trifásica
Ilustración 147: Prueba Nº4 – Diagrama fasorial voltajes lado primario. Carga capacitiva
trifásica
Ilustración 148: Prueba Nº4 – Diagrama fasorial corrientes lado primario. Carga capacitiva
trifásica
Ilustración 149: Prueba Nº4 – Diagrama fasorial voltajes lado secundario. Carga capacitiva
trifásica
Ilustración 150: Prueba Nº4 – Diagrama fasorial corrientes lado secundario. Carga
capacitiva trifásica

Ilustración 151: Prueba Nº4 – Triángulos de potencia lado primario. Carga capacitiva
trifásica
Ilustración 152: Prueba N°4 – Triángulos de potencia lado secundario. Carga capacitiva
trifásica
Ilustración 153: Prueba N°5 – Conexión D-y de transformadores trifásicos con carga
trifásica conformada por capacitores y resistencias en serie conectados en estrella 111
Ilustración 154: Prueba N°5 – Diagrama fasorial voltajes lado primario. Carga resistiva-
capacitiva trifásica
Ilustración 155: Prueba N°5 – Diagrama fasorial corriente lado primario. Carga resistiva-
capacitiva trifásica
Ilustración 156: Prueba N°5 – Diagrama fasorial voltajes lado secundario. Carga resistiva-
capacitiva trifásica
Ilustración 157: Prueba N°5 – Diagrama fasorial corrientes lado secundario. Carga
resistiva-capacitiva trifásica114
Ilustración 158: Prueba N°5 – Triángulos de potencia lado primario. Carga resistiva-
capacitiva trifásica
Ilustración 159: Prueba N°5 – Triángulos de potencia lado secundario. Carga resistiva-
capacitiva trifásica
Ilustración 160: Prueba N°6 – Conexión D-y de transformadores trifásicos con carga
inductiva-resistiva trifásica y en paralelo una carga capacitiva trifásica
Ilustración 161: Prueba N°6 – Diagrama fasorial voltajes lado primario. Carga inductiva-
resistiva trifásica (motor) y en paralelo carga capacitiva trifásica

Ilustración 162: Prueba N°6 – Diagrama fasorial corrientes lado primario. Carga inductivo	а-
resistiva trifásica (motor) y en paralelo carga capacitiva trifásica1	21
Ilustración 163: Prueba N°6 – Diagrama fasorial voltajes lado secundario. Carga inductiva	<i>a</i> -
resistiva trifásica (motor) y en paralelo carga capacitiva trifásica1	22
Ilustración 164: Prueba N°6 – Diagrama fasorial corrientes lado secundario. Carga	
inductiva-resistiva trifásica (motor) y en paralelo carga capacitiva trifásica1	22
Ilustración 165: Prueba N°6 – Triángulos de potencia lado primario. Carga inductiva	
trifásica (motor) y en paralelo carga capacitiva trifásica1	23
Ilustración 166: Prueba N°6 – Triángulos de potencia lado secundario. Carga inductiva	
trifásica (motor) y en paralelo carga capacitiva trifásica1	23

ÍNDICE DE TABLAS

Tabla 1: Caracteristicas principales PLC marca Schneider TM221CE16R	. 30
Tabla 2: Programación – Entradas digitales	. 43
Tabla 3: Programación – Salidas digitales	. 43
Tabla 4: Programación – Entradas analógicas	. 44
Tabla 5: Programación – Puerto serial	. 44
Tabla 6: Conexión Puerto Serial – RS485	. 65
Tabla 7: Cálculos teóricos transformadores trifásicos D-Y con carga resistiva trifásica de	
30Ω	. 75
Tabla 8: Cálculos teóricos transformadores trifásicos D-Y con carga resistiva trifásica de	
$\mathcal{P}O\mathcal{Q}$. 76

Tabla 9: Cálculos teóricos transformadores trifásicos D-Y con carga resistiva trifásica de
<i>100Ω</i>
Tabla 10: Cuadro comparativo de transformadores trifásicos D-Y con carga resistiva
trifásica de 80Ω
Tabla 11: Cuadro comparativo de transformadores trifásicos D-Y con carga resistiva
trifásica de 90 Ω
Tabla 12: Cuadro comparativo de transformadores trifásicos D-Y con carga resistiva
trifásica de 100Ω
Tabla 13: Cálculos teóricos transformadores trifasicos D-Y con carga resistiva-inductiva
trifásica
Tabla 14: Cuadro comparativo de transformadores trifásicos D-Y con carga resistiva-
inductiva trifásica
Tabla 15: Cálculos teóricos transformadores trifasicos D-Y con carga resistiva-inductiva
trifásica (motor)
Tabla 16: Cuadro comparativo de transformadores trifásicos D-Y con carga resistiva-
inductiva trifásica
Tabla 17: Cálculos teóricos transformadores trifasicos D-Y con carga capacitiva trifásica 108
Tabla 18: Cuadro comparativo de transformadores trifasicos D-Y con carga capacitiva
trifásica
Tabla 19: Cálculos teóricos transformadores trifásicos D-Y con carga resistiva-capacitiva
trifásica
Tabla 20: Cuadro comparativo de transformadores trifasicos D-Y con carga resistiva-
capacitiva trifásica

Tabla 21: Cálculos teóricos transformadores trifásicos D-Y con carga resistiva-inductiva	
trifásica (motor) y en paralelo carga capacitiva trifásica	124
Tabla 22: Cuadro comparativo de transformadores trifasicos D-Y con carga resistiva-	
inductiva trifásica (motor) y en paralelo carga capacitiva trifásica	125

ÍNDICE DE ECUACIONES

Ecuación 1: Ley de Faraday	8
Ecuación 2: Relación de transformación en transformadores	
Ecuación 3: Ley de Ohm	11
Ecuación 4: Potencia activa del transformador ideal	13
Ecuación 5: Potencia reactiva y aparente del transformador ideal	13
Ecuación 6: Corriente de excitación de un transformador real	15
Ecuación 7: Corriente de pérdida en el núcleo de un transformador real	16
Ecuación 8: Reactancia de magnetización de un transformador real	16
Ecuación 9: Relación de vueltas de transformador conexión Y-y	
Ecuación 10: Relación de vueltas de transformador conexión Y-d	
Ecuación 11: Relación de vueltas de transformador conexión D-y	
Ecuación 12: Relación de vueltas de transformador conexión D-d	
Ecuación 13: Impedancia resistiva pura	
Ecuación 14: Impedancia inductiva pura	
Ecuación 15: Impedancia capacitiva pura	

ÍNDICE DE ANEXOS

ANEXO 1: LISTA DE REGISTROS PM5110 132
--

ABREVIATURAS

PLC	Programmable Logic Controller
DSC	Datalogging and Supervisory Control
OPC	Ole for Process Control
OLE	Object Linking and Embedding
RTU	Remote Terminal Unit
ТСР	Transmission Control Protocol
IP	Internet Protocol
fmm	Fuerza Magnetomotriz
NEMA	National Electrical Manufacturers Association
POU	Program Organization Unit

VARIABLES Y SIMBOLOGÍA

V	Voltaje
Ι	Corriente
Р	Potencia Activa
Q	Potencia Reactiva
S	Potencia Aparente
Ε	Energía
f	Frecuencia
Fp	Factor de Potencia

RESUMEN

Tema: ANÁLISIS Y SIMULACIÓN DE SISTEMAS TRIFÁSICOS CON TRANSFORMADORES CONEXIÓN D-Y

Palabras clave: TRANSFORMADOR TRIFÁSICO, CONEXIÓN DELTA – ESTRELLA, PLC, LABVIEW, SIMULACIÓN, MODBUS

El presente proyecto se enfoca en proveer un análisis a fondo de un sistema de transformadores trifásicos conectados en Delta – Estrella, sus características, aplicaciones, ventajas y desventajas, además de su comportamiento frente a diferentes tipos de cargas.

Para realizar esta simulación y posterior análisis se utilizó algunos elementos para formar parte del sistema de adquisición de datos, tales como un módulo que contiene un PLC, un medidor de parámetros del que se va a extraer la información del sistema trifásico que se va a analizar, y los diferentes softwares que se necesitaron para realizar la configuración y programación de la comunicación de dichos elementos y una aplicación software que nos proporcionará una ventana gráfica con los datos en tiempo real del sistema.

Con la conexión de diferentes tipos de cargas tales como resistivas, inductivas y capacitivas, además de que se podrá simular situaciones de falla tales como pérdidas de fase, este proyecto podrá ayudar a comprender el comportamiento del sistema en estudio y poder prevenir eventos no deseados en situaciones reales.

ABSTRACT

Theme: ANALYSIS AND SIMULATION OF THREE-PHASE SYSTEMS WITH TRANSFORMERS D-Y CONNECTION

Key words: THREE-PHASE TRANSFORMER, DELTA-STAR CONNECTION, PLC, LABVIEW, SIMULATION, MODBUS

The present project focuses on providing an in-depth analysis of a system of three-phase transformers connected in Delta-Star, its characteristics, applications, advantages and disadvantages, besides its behavior in front of different types of loads.

To carry out this simulation and subsequent analysis, some elements were used to be part of the system for the data acquisition, such as a module that contains a PLC, a parameter meter from which the information of the three-phase system that is going to be analyzed, will be extracted, and the software that were needed to carry out the configuration and programming of the communication of those elements and a software application that will provide us with a graphic window with the real-time data of the system.

With the connection of different types of loads such as resistive, inductive and capacitive, besides that it will be possible to simulate failure situations such as phase losses, this project can help to understand the behavior of the system under study and prevent unwanted events in real situations.

INTRODUCCIÓN

Para la formación de profesionales altamente capacitados en los temas relacionados a la electricidad, resulta un requisito indispensable el estudio de los transformadores, por este motivo la Universidad Politécnica Salesiana tiene varios tableros con bancos de transformadores donde se pueden realizar diferentes pruebas y análisis. Este proyecto en general es un complemento de dichos tableros, en el cual se profundizará el análisis de la conexión Delta – Estrella en particular, la que se usa normalmente en Subestaciones de distribución.

En el capítulo 1 de este documento se planteará el problema, donde se establecerá su importancia y alcance, así como sus objetivos generales y específicos. Para el capítulo 2 se recopilará la información teórica más relevante al tema, en especial sobre los transformadores trifásicos y sus conexiones, para darle al lector una base apropiada para el análisis. En el capítulo 3 se detallará como se construyó el módulo de adquisición de datos que contiene al PLC, así como la programación para la comunicación de los diferentes elementos del sistema. Y, por último, en el capítulo 4 se realizará el análisis de un sistema trifásico de transformadores conectados en Delta-Estrella simulando diferentes pruebas mediante la aplicación software.

Una vez hecha la simulación, no solamente se podrá analizar y realizar pruebas sobre el comportamiento y características de un sistema de trasformadores conectados en Delta – Estrella, sino también se podrá conocer cómo realizar la adquisición de datos por medio de un PLC para cualquier tipo de aplicación que se requiera.

CAPÍTULO I

1. PLANTEAMIENTO DEL PROBLEMA

1.1. DESCRIPCIÓN DEL PROBLEMA

En la actualidad, la Universidad Politécnica Salesiana consta de un banco de transformadores trifásicos que permiten a los estudiantes realizar diferentes tipos de conexiones, entre estas, la conexión denominada Delta – Estrella, y analizar su funcionamiento y como se comporta mediante algunas pruebas.

Para adquirir y analizar los datos de dicha conexión en tiempo real y simularlas en una aplicación software, se requiere de un módulo capaz de recibir y procesar las señales, para luego mostrarlas mediante gráficas que faciliten el entendimiento del sistema a estudiar, al analizar su comportamiento al conectar diferentes tipos de cargas y realizando posibles fallas de pérdida de fase.

1.2. JUSTIFICACIÓN

Mediante este proyecto el personal estudiantil de la Universidad Politécnica Salesiana, en particular los de la carrera de ingeniería eléctrica, adquirirán las herramientas necesarias para profundizarse en el estudio y análisis de cómo se comporta un sistema de transformadores trifásicos con conexión en Delta – Estrella, además de familiarizarse con el funcionamiento de los PLC y la adquisición de datos en tiempo real, realizando pruebas y verificando datos mediante una aplicación software.

1.3. IMPORTANCIA Y ALCANCE

Se construirá un módulo que permita adquirir los datos del tablero de transformadores trifásicos de la Universidad Politécnica Salesiana, utilizando un PLC marca Schneider modelo TM221CE16R, al cual le ingresarán las señales de voltaje, corriente y potencia necesarias para su análisis, provenientes de un medidor de parámetros marca Schneider modelo PM5110, conectado al bando de transformadores.

Posteriormente se realizará la comunicación entre el módulo de adquisición de datos y un ordenador en el cual se diseñará una aplicación software en LabVIEW que permita visualizar y simular gráficamente los parámetros del sistema. Se realizarán pruebas para el análisis y estudio del comportamiento ante diferentes tipos de eventos tales como fallas de fase.

1.4. BENEFICIARIOS

Este proyecto tiene como beneficiarios a la Universidad Politécnica Salesiana y los estudiantes que optaron por seguir la carrera de ingeniería eléctrica, los cuales podrán realizar pruebas y analizar la conexión Delta – Estrella del banco de transformadores.

1.5. OBJETIVOS

1.5.1. OBJETIVOS GENERALES

Adquirir y analizar los diferentes datos que se pueden obtener de un banco de transformadores conectados en Delta – Estrella, y simular su funcionamiento, comportamiento y los fenómenos que se producen mediante una aplicación software.

1.5.2. OBJETIVOS ESPECÍFICOS

- Construir un módulo que permita la adquisición de datos de un banco de transformadores trifásicos conectados en Delta – Estrella.
- Analizar el funcionamiento de un sistema de transformadores trifásicos conectados en Delta – Estrella.
- Experimentar sobre su comportamiento en periodo estable y ante fallas de pérdidas de fase.
- Realizar una aplicación que muestre los parámetros y simule el funcionamiento del banco de transformadores mediante los datos adquiridos.

1.6. MARCO METODOLÓGICO

La finalidad de este proyecto de titulación es analizar cómo se comporta un banco de transformadores trifásicos conectados en Delta-Estrella, a partir de la recolección y análisis de datos en tiempo real, para esto se desarrollarán los siguientes puntos:

- Diseño de la investigación: para esto se implementará la investigación experimental como modelo metodológico para este proyecto, ya que se requiere realizar pruebas reales con los equipos y corroborar los resultados teóricos con los obtenidos de manera práctica.
- Definición de las variables: las variables a utilizarse serán las señales de voltaje, corriente y potencia que se pueden obtener del banco de transformadores.
- Población y muestra: la población serán los transformadores trifásicos conectados en Delta-Estrella y como muestra se utilizará el banco de transformadores que se encuentra en la Universidad Politécnica Salesiana

- Instrumentos: los instrumentos que se van a utilizar serán un PLC marca Schneider modelo TM221CE16R para adquirir los datos y posteriormente una aplicación software en LabVIEW para la representación gráfica
- Procedimientos: inicialmente se analizarán las ecuaciones matemáticas correspondientes, luego se conectarán 2 transformadores trifásicos en Delta-Estrella y se adquirirán los datos por medio de un módulo que contendrá al PLC antes mencionado, que se comunicará con un ordenador en el cual se ejecutará una aplicación software creada en LabVIEW, que presentará gráficamente dichos datos en tiempo real.
- Análisis de los datos: una vez obtenidos los valores teóricos y los valores prácticos, se podrán comparar, analizar y sacar conclusiones sobre el funcionamiento y como se comportan los transformadores trifásicos con conexión Delta-Estrella.

CAPÍTULO II

2. MARCO TEÓRICO

2.1. EL TRANSFORMADOR

Podríamos describir al transformador como una máquina estacionaria que funciona con corriente alterna, la cual está conformada por dos o más bobinas eléctricamente aisladas y acopladas magnéticamente, devanadas sobre un mismo núcleo. Su finalidad es la de transformar la energía eléctrica, de determinados niveles de voltaje y corriente, a magnitudes generalmente diferentes mediante la acción de un campo magnético. (Chapman, 2000, pág. 61)

El transformador en general es uno de los dispositivos eléctricos más utilizados, capaz de transmitir la energía eléctrica enormes distancias, debido a que cuanto mayor es el nivel de voltaje, menor es la corriente y, por lo tanto, se reduce significativamente la sección de los alimentadores, haciendo dicha transmisión económicamente factible. Además de poder distribuirla de manera segura, ya que se reduce los niveles de voltaje a valores adecuados para las cargas.

La bobina primaria o, de entrada, es la que se conecta a la fuente de energía eléctrica alterna, y las bobinas de salida o secundarias, son las que se conectan a la carga.

2.1.1. PRINCIPALES ASPECTOS CONSTRUCTIVOS

2.1.1.1. NÚCLEO (CIRCUITO MAGNÉTICO)

El núcleo de un transformador corresponde a un sistema el cual conforma su circuito magnético, conformado por láminas de acero ferromagnéticas, eléctricamente aisladas para lograr disminuir las pérdidas en el hierro. El núcleo consta de las columnas que conforman la parte donde se colocan las bobinas y las culatas que unen magnéticamente las columnas.
Según la ubicación relativa de los devanados y el núcleo, los transformadores se pueden clasificar en acorazados (Ilustración 1.a) y de columna (Ilustración 1.b). (Mora, 2003, pág. 162)

Ilustración 1: Clasificación de transformadores por su núcleo Fuente: (Mora, 2003) Elaborado por: Los autores

2.1.1.2. DEVANADOS (CIRCUITO ELÉCTRICO)

Los bobinados del transformador conforman el circuito eléctrico, constituidos por alambres de cobre bañados por una capa aislante usualmente barniz en pequeños transformadores, o varias capas de papel o algodón en el caso de alambres de secciones mayores. Según la ubicación relativa de los bobinados de Alta Tensión y Baja Tensión se clasifican en concéntricos o alternados. (Mora, 2003, pág. 165)

Ilustración 2: Clasificación de los transformadores por su devanado Fuente: (Mora, 2003) Elaborado por: Los autores

2.1.1.3. SISTEMAS DE REFRIGERACIÓN

En los transformadores existen diferentes pérdidas que se convierten en calor y afectan la vida útil de la máquina y su rendimiento. Para evitar esto un sistema de refrigeración resulta indispensable. En pequeñas potencias es suficiente la superficie externa del transformador, como por ejemplo en los transformadores secos. En potencias mayores, se emplea el aceite como medio para refrigerar además que también cumple la función de aislante, como por ejemplo los transformadores en baño de aceite. (Mora, 2003, pág. 166)

2.1.2. LEY DE FARADAY: PRINCIPIO DE FUNCIONAMIENTO DE LOS TRANSFORMADORES

La ley de Faraday indica que, si una espira de alambre conductor es atravesada por un flujo magnético, será inducido en esta un voltaje directamente proporcional a la tasa de cambio del flujo con respecto al tiempo. Una bobina de N espiras en la cual el mismo flujo magnético circula en todas las espiras, el voltaje inducido en la bobina estará dado por

$$e_{ind} = -N \frac{d\phi}{dt}$$

Ecuación 1: Ley de Faraday Fuente: (Chapman, 2000)

donde e_{ind} es el voltaje que se induce en la espira y ϕ es el flujo magnético que atraviesa la espira.

La ley de Lenz expresa que la dirección del voltaje inducido es opuesta al cambio que lo causa, es decir que, si se cortocircuitaran los extremos de la bobina, produciría una corriente que provocaría un flujo opuesto al cambio del flujo inicial, debido a esto se incluye el signo negativo (-) en la ecuación. (Chapman, 2000, pág. 29)

Ilustración 3: Ley de Faraday Fuente: (Chapman, 2000) Elaborado por: Los autores

2.1.3. EL TRANSFORMADOR IDEAL

Definiremos el transformador ideal, como un dispositivo eléctrico que no tiene pérdidas, con un bobinado de entrada y uno de salida con las siguientes propiedades:

- Tiene un coeficiente de acoplamiento (k) igual a la unidad.
- Sus bobinados primario y secundario tienen inductancia infinita.
- No contienen reactancia ni resistencia.
- Su flujo de fuga e inductancia de fuga son cero.
- No tiene pérdidas debidas a resistencia, histéresis o corrientes parásitas, su eficiencia en la transferencia de potencia es 100%.
- La relación de vueltas de transformación (α) es la misma relación de sus voltajes entre sus terminales del primario y secundario, y la misma relación de su corriente del secundario y primario.
- La permeabilidad del núcleo (µ) es infinita.

(Kosow, 1993, pág. 548)

Ilustración 4: Transformador ideal sin carga Fuente: (Guru & Hiziroglu, 2003) Elaborado por: Los autores

2.1.3.1. RELACIÓN DE TRANSFORMACIÓN

La relación entre los voltajes y corrientes de entrada y salida del transformador están dadas por las siguientes ecuaciones:

$$a = \frac{Np}{Ns} ; a = \frac{Vp}{Vs} ; \frac{1}{a} = \frac{Ip}{Is}$$

Ecuación 2: Relación de transformación en transformadores
Fuente: (Chapman, 2000)

donde, a es la relación de vueltas del transformador, Np son las vueltas de cable conductor del primario y Ns las vueltas de cable conductor del secundario, Vp es el voltaje aplicado al lado del primario y Vs el voltaje producido en el lado del secundario, Ip es la corriente que ingresa al lado primario del transformador e Is la corriente que fluye hacia afuera del transformador por el secundario.

El ángulo de fase de Vp es igual que el de Vs, así mismo el ángulo de fase de Ip es el mismo que el de Is. La relación de vueltas del transformador (*a*) afecta a las magnitudes, pero no a sus ángulos. (Chapman, 2000, pág. 64)

2.1.3.2. POLARIDAD DEL TRANSFORMADOR

La corriente magnetizante del primario produce un flujo que induce en el secundario una diferencia de potencial que llegará a su máximo al mismo momento que el voltaje aplicado del lado del primario. Es decir, en un instante de tiempo el borne 1 del primario 1 y el borne 3 del secundario tendrán la misma polaridad, así como el borne 2 del primario y el borne 4 del secundario. Para indicar esto los transformadores usan la convención de puntos, se colocan puntos grandes a lado del par de terminales que tienen la misma polaridad, 1 y 3 o 2 y 4 (ilustración 4) y se aplican las siguientes reglas:

- 1. Una corriente que entra a la terminal del lado primario que tiene marca de polaridad produce una fuerza magnetomotriz (fmm) "positiva" y un flujo "positivo", la corriente secundaria fluirá hacia afuera de la terminal con marca de polaridad y la dirección de la fmm y el flujo será "negativa". Es decir, las 2 corrientes producen fmm que se contrarrestan entre sí.
- Las terminales con marca de polaridad tendrán el mismo signo en función del tiempo, cada una con respecto a su otra terminal del lado primario o secundario correspondiente.
 (Wildi, 2007, pág. 186)

2.1.3.3. DIAGRAMA FASORIAL TRANSFORMADOR IDEAL BAJO CARGA

Si conectamos una carga al devanado secundario del transformador que consideramos ideal, inmediatamente una corriente I_2 fluirá, dada por la ecuación:

$$I_2 = \frac{E_2}{Z}$$

Ecuación 3: Ley de Ohm Fuente: (Wildi, 2007) Suponiendo que se conecta una carga resistiva, la corriente I_2 se atrasará un ángulo θ con respecto a E_2 . El flujo Φ_m se atrasará 90° con respecto a E_g , pero para esto no es requisito una corriente magnetizante I_m para crear este flujo debido a que el transformador es ideal (ilustración 5). Como ya sabemos las corrientes están en fase, por lo que aumentarán o disminuirán al mismo tiempo y se mantienen las relaciones de transformación vistas anteriormente, lo que perdemos en voltaje se gana en corriente y viceversa. Esto coincide con el requisito de que la entrada de potencia aparente E_1I_1 al devanado primario debe ser la misma que a la salida de potencia aparente E_2I_2 del devanado secundario. (Wildi, 2007, pág. 189)

Ilustración 5: Transformador ideal con carga Fuente: (Wildi, 2007) Elaborado por: Los autores

2.1.3.4. POTENCIA DEL TRANSFORMADOR IDEAL

La potencias de un transformador, tanto de entrada como de salida, y considerando que el transformador es ideal, deben ser la misma, y esta dada por la ecuación:

$$P_{in} = P_{out}$$

$$P_{in} = V_p I_p \cos \theta_p$$

$$P_{out} = V_s I_s \cos \theta_s$$
Ecuación 4: Potencia activa del transformador ideal
Fuente: (Chapman, 2000)

donde θ_p es el ángulo entre la corriente y el voltaje del primario y θ_s es el ángulo entre la corriente y el voltaje del secundario. En un transformador ideal, los ángulos de la corriente y voltaje no se afectan y los devanados primario y secundario tienen el mismo factor de potencia. Esta relación también aplica a las potencias reactiva Q y aparente S:

$$Q_{in} = V_p I_p \sin \theta = V_s I_s \sin \theta = Q_{out}$$
$$S_{in} = V_p I_p = V_s I_s = S_{out}$$

Ecuación 5: Potencia reactiva y aparente del transformador ideal Fuente: (Chapman, 2000)

2.1.4. EL TRANSFORMADOR REAL

Un transformador real tiene diferentes características que se aproximan a las de un transformador ideal hasta cierto punto. En el mundo real, los núcleos no son infinitamente permeables y los devanados tienen resistencia. No todo el flujo producido por el devanado primario es captado por el secundario, por lo tanto, debemos considerar el flujo de dispersión. También los núcleos de hierro producen pérdidas por histéresis y corrientes parasitas, que producen que se eleve la temperatura del transformador. (Wildi, 2007, pág. 197)

2.1.4.1. CIRCUITO EQUIVALENTE DE UN TRANSFORMADOR

Las principales pérdidas que suceden en un transformador real, y que deben considerarse para la construcción de un modelo aproximado son:

- Las pérdidas en el cobre (l²R) que son pérdidas causadas por calentamiento resistivo en los bobinados.
- Pérdidas por calentamiento resistivo en el núcleo o corrientes parásitas.
- Pérdidas relacionadas con los reordenamientos de los dominios magnéticos en el núcleo durante cada semiciclo o también llamadas por histéresis.
- Flujo disperso. Los flujos Ø_{LP} y Ø_{LS} que se dispersan del núcleo y que únicamente pasan por uno de los bobinados son flujos dispersos y la fuga de estos crea una autoinductancia en los devanados primario y secundario.

(Chapman, 2000, pág. 82)

Ilustración 6: Circuito equivalente de un transformador real Fuente: (Guru & Hiziroglu, 2003) Elaborado por: Los autores

2.1.4.2. RESISTENCIA DEL DEVANADO

Todo devanado presenta resistencia por más pequeña que pueda ser. Esto se puede representar agregando una resistencia $R_1 y R_2$ en serie a cada devanado igual a la resistencia del mismo (ver ilustración 6). La inclusión de estas resistencias define lo siguiente:

- a) La potencia de salida debe ser menor que la potencia de entrada.
- b) La fem inducida no es igual a la diferencia de potencial en los terminales.
- c) La eficiencia de un transformador real es menor que %100.

(Guru & Hiziroglu, 2003, pág. 213)

2.1.4.3. FLUJO DE DISPERCIÓN

Cada devanado crea su propio flujo, pero no todo se confina al núcleo magnético, una parte sigue su camino a través del aire y es conocido como flujo de dispersión, el flujo que llega a ambos devanados y que circula en el núcleo se denomina flujo mutuo. Esto es posible de modelar como si fueran dos devanados, uno responsable del flujo de dispersión hacia el aire y el otro de circundar el núcleo. El flujo de dispersión afecta el rendimiento del transformador y es responsable de la caída de voltaje a través de él, por lo que se puede representar con una reactancia de dispersión $X_1 y X_2$ (ver ilustración 6). (Guru & Hiziroglu, 2003, pág. 214)

2.1.4.4. PERMEABILIDAD FINITA

En un transformador real, el núcleo tiene pérdidas en el núcleo y su permeabilidad es finita. El devanado primario absorbe una corriente conocida como corriente de excitación \tilde{I}_{ϕ} proveniente de la fuente, que es la suma de dos corrientes: la corriente de pérdida en el núcleo \tilde{I}_{c} y la corriente de magnetización \tilde{I}_{m} .

$$\tilde{\mathbf{I}}_{\phi} = \tilde{\mathbf{I}}_{c} + \tilde{\mathbf{I}}_{m}$$

Ecuación 6: Corriente de excitación de un transformador real Fuente: (Guru & Hiziroglu, 2003) La corriente de pérdida en el núcleo explica la perdida magnética (perdida por corrientes parásitas y por histéresis) en el núcleo del transformador. La corriente de magnetización es la responsable de mantener en el núcleo el flujo mutuo.

$$\tilde{\mathbf{I}}_c = \frac{\tilde{\mathbf{E}}_1}{R_{c1}}$$

Ecuación 7: Corriente de pérdida en el núcleo de un transformador real Fuente: (Guru & Hiziroglu, 2003)

$$X_{m1} = \frac{\tilde{E}_1}{j\tilde{I}_m}$$

Ecuación 8: Reactancia de magnetización de un transformador real Fuente: (Guru & Hiziroglu, 2003)

Al incrementar la carga en el transformador sucede lo siguiente:

- Aumenta la corriente en el devanado secundario.
- Incrementa la corriente suministrada por la fuente.
- Aumenta la caída de voltaje a través de la impedancia del devanado primario \hat{Z}_1 .
- Se reduce La fem inducida \tilde{E}_1 .
- Debido al decremento en la corriente de magnetización el flujo mutuo se reduce.

(Guru & Hiziroglu, 2003, pág. 218)

2.1.4.5. PRUEBA DE POLARIDAD

Las terminales en los transformadores de instrumento indican su polaridad por medio de puntos, mientras que en los transformadores de potencia para el devanado de alto voltaje (AV) están designados por los símbolos H_1 y H_2 y para el devanado de bajo voltaje (BV) por X_1 y X_2 . Por convención, H_1 tiene la misma polaridad que X_1 . (Wildi, 2007, pág. 204)

Un transformador puede tener polaridad aditiva o sustractiva, y para determinar esto procedemos de la siguiente forma (ver ilustración 7):

Ilustración 7: Prueba de polaridad de un transformador Fuente: (Wildi, 2007) Elaborado por: Los autores

- El devanado de alto voltaje se conecta a una fuente de ca E_q de bajo voltaje (120 V).
- Se Conecta un puente J entre 2 terminales AV y BV que estén juntas cualesquiera.
- Se conecta un voltímetro E_x entre las otras 2 terminales AV y BV que estén juntas.
- Se conecta otro voltímetro E_p a través del devanado AV.

Si E_x da una lectura más menor que E_p , la polaridad es sustractiva. Esto quiere decir que H_1 y X_1 están adyacentes. Por otra parte, si E_x da una lectura más alta que E_p , la polaridad es aditiva y las terminales H_1 y X_1 están opuestas. (Wildi, 2007, pág. 204)

2.1.4.6. PRUEBA DE CIRCUITO ABIERTO Y DE CORTOCIRCUITO

Para conocer los valores reales de las R_m , X_m , R_p y X_p (resistencias y reactancias magnetizantes y del devanado referido al primario) de un transformador, se realiza una prueba de circuito abierto y cortocircuito.

Para la prueba de circuito abierto o también conocida como ensayo en vacío, se aplica un voltaje nominal al devanado primario y se mide la corriente I_0 , el voltaje E_p y la potencia activa

 P_m . Además, se mide el voltaje E_s de circuito abierto en el secundario (ver ilustración 8). Estos valores nos proporcionan la siguiente información:

Potencia activa absorbida por el núcleo = P_m

Potencia aparente absorbida por el núcleo = $S_m = E_p I_0$

Potencia reactiva absorbida por el núcleo = Q_m . Donde $Q_m = \sqrt{S_m^2 - P_m^2}$

Resistencia R_m corresponde a la perdida en el núcleo es $R_m = E_p^2 / P_m$

La reactancia magnetizante $X_m = E_p^2 / Q_m$

La relación de vueltas $a = N_1 / N_2 = E_p / E_s$

(Wildi, 2007, pág. 212)

Ilustración 8: Esquema eléctrico del ensayo en vacío Fuente: (Mora, 2003) Elaborado por: Los autores

Para la prueba de cortocircuito, el bobinado secundario se cortocircuita y se conecta un voltaje E_g mucho menor que el nominal en el primario. Se mide el voltaje E_{sc} , la corriente I_{sc} y la potencia P_{sc} y se realizan los siguientes cálculos:

La impedancia total del transformador desplazada al primario es $Z_p = E_{sc} / I_{sc}$

La resistencia total del transformador desplazada al primario es $R_p = P_{sc} / I_{sc}^2$

La reactancia de dispersión total del transformador desplazada al primario es $X_p = \sqrt{Z_p^2 - R_p^2}$

(Wildi, 2007, pág. 213)

Ilustración 9: Esquema eléctrico del ensayo de cortocircuito Fuente: (Mora, 2003) Elaborado por: Los autores

2.1.4.7. CONEXIÓN EN SERIE Y EN PARALELO DE DEVANADOS DE

TRANSFORMADOR

Un transformador de varios devanados o diversos transformadores individuales se pueden conectar ya sea en serie o en paralelo para obtener diversos voltajes (ver ilustración 10). Tomando de ejemplo un transformador con dos devanados de alto voltaje a 115V y dos devanados de bajo voltaje de 10V cada uno, cuando se conectan bobinas en paralelo, se conectan los terminales que tienen el mismo voltaje y polaridad. Cuando las bobinas se conectan en serie, las terminales de polaridad opuesta se conectan en la unión de modo que los voltajes se sumen. Si se conectan al contrario los voltajes inducidos se opondrían entre sí, dando voltaje de salida cero. (Kosow, 1993, pág. 609)

Ilustración 10: Conexión serie y paralelo de devanados de transformadores de igual voltaje Fuente: (Kosow, 1993) Elaborado por: Los autores

2.1.5. EL TRANSFORMADOR TRIFÁSICO

Los transformadores trifásicos son alimentados por un sistema trifásico que consta de tres voltajes de igual magnitud, pero desfasados 120° entre sí. Usualmente se construyen de dos maneras, una de estas es por medio de tres transformadores monofásicos y conectarlos en un banco trifásico, cuya ventaja es que se puede reemplazar cada unidad individualmente en caso de falla. La otra manera es construiyendo un transformador trifásico que consta de tres conjuntos de devanados sobre un núcleo común que también puede ser del tipo núcleo o acorazado. Este último es preferible ya que es más barato, pequeño, liviano y un poco más eficiente. (Chapman, 2000, pág. 117)

2.1.5.1. SECUENCIA DE FASES

Esto es, en que orden los tres voltajes de línea se vuelven positivos sucesivamente. Suponga que los vectores a, b, c están a intervalos de 120° girando lentamente (ver ilustración 11). Si los vectores giran en sentido contrario a las manecillas del reloj, las letras aparecen en la siguiente secuencia a-b-c-a llamada secuencia positiva. En el caso contrario, la secuencia se vuelve a-c-b-a llamada secuencia negativa. Además, podemos cambiar la secuencia solo con intercambiar dos letras cualesquiera. (Wildi, 2007, pág. 175)

Ilustración 11: Secuencias de fases Fuente: (Wildi, 2007) Elaborado por: Los autores

2.1.5.2. CONEXIÓN ESTRELLA – ESTRELLA (Y-y)

La principal ventaja de la conexión Y-y es que se tiene acceso a una terminal neutra en cada lado del transformador y el aislamiento eléctrico se esfuerza únicamente alrededor de 58% del voltaje de línea, así el devanado de un transformador que esté conectado en estrella tendrá menos espiras, un conductor de mayor sección proporcionando devanados mecánicamente fuertes y su construcción menos costosa en comparación a su equivalente conectado en delta, por tales razones esta conexión se considera beneficiosa cuando han de conectarse dos sistemas de

tensiones altas y en determinados casos es ventajoso que no existe desplazamiento de fase entre las tensiones de las bobinas primaria y secundaria, pero tiene dos problemas graves:

- Si el circuito del transformador tiene cargas desbalanceadas, los voltajes de las fases pueden desbalancearse de manera severa.
- Pueden ser grandes los voltajes de terceras armónicas.

Ambos problemas, se pueden solucionar mediante las siguientes técnicas:

- 1. Los neutros de los transformadores deben aterrizarse sólidamente.
- 2. Adicionando un tercer devanado (terciario), conectado en Delta, al bando de transformadores.

(Chapman, 2000, pág. 120)

$$\frac{V_{LP}}{V_{LS}} = \frac{\sqrt{3}V_{\phi P}}{\sqrt{3}V_{\phi S}} = a$$

Ecuación 9: Relación de vueltas de transformador conexión Y-y Fuente: (Chapman, 2000)

Ilustración 12: Esquema de transformador trifásico conexión Y-y Fuente: (Chapman, 2000) Elaborado por: Los autores

Ilustración 13: Diagrama fasorial de transformador trifásico conexión Y-y Fuente: (Hayt, Kemmerly, & Durbin, 2007) Elaborado por: Los autores

2.1.5.3. CONEXIÓN ESTRELLA – DELTA (Y-d)

Esta conexión es muy adaptable para transformadores en sistemas de alta tensión en el extremo reductor de tensión de la línea y no tiene problemas por componente de tercera armónica en sus voltajes debido a que son consumidos en una corriente que circula en el devanado Delta y es más estable frente a cargas desbalanceadas puesto que la Delta redistribuye de forma parcial cualquier desbalance. Sin embargo, también presenta un problema, el voltaje y la corriente en el primario están fuera de fase con el voltaje y la corriente en el secundario, el voltaje secundario está desfasado 30° con relación al voltaje primario del transformador que en la puesta en paralelo de los secundarios de dos bancos de transformadores puede causar problemas. (Chapman, 2000, pág. 123)

$$\frac{V_{LP}}{V_{LS}} = \frac{\sqrt{3}V_{\phi P}}{V_{\phi S}} = \sqrt{3}a$$

Ecuación 10: Relación de vueltas de transformador conexión Y-d Fuente: (Chapman, 2000)

Ilustración 14: Esquema de transformador trifásico conexión Y-d Fuente: (Chapman, 2000) Elaborado por: Los autores

Ilustración 15: Diagrama fasorial de transformador trifásico conexión Y-d Fuente: (Hayt, Kemmerly, & Durbin, 2007) Elaborado por: Los autores

2.1.5.4. CONEXIÓN DELTA – ESTRELLA (D-y)

Esta conexión es apropiada para transformadores elevadores en redes de alta tensión, el empleo de la conexión en estrella en la parte de alta tensión permite poner a tierra el punto

neutro, que permite limitar el potencial sobre cualquiera de las fases a la tensión simple del sistema reduciendo el coste de los devanados de Alta Tensión. Tiene las mismas ventajas y desventajas que el caso del transformador Y-d, es decir que presenta el mismo desfase entre primario y secundario. Actualmente se aprovecha también en los transformadores de distribución, correspondiendo la estrella del lado de baja tensión, para satisfacer los requerimientos tanto de cargas monofásicas como trifásicas, para esto se utiliza un secundario de cuatro conductores y las cargas monofásicas son alimentadas por los tres circuitos línea a neutro, intentando distribuir equitativamente entre las tres fases. (Guru & Hiziroglu, 2003, pág. 257)

$$\frac{V_{LP}}{V_{LS}} = \frac{V_{\phi P}}{\sqrt{3}V_{\phi S}} = \frac{\sqrt{3}}{a}$$

Ecuación 11: Relación de vueltas de transformador conexión D-y Fuente: (Chapman, 2000)

Ilustración 16: Esquema de transformador trifásico conexión D-y Fuente: (Chapman, 2000) Elaborado por: Los autores

Ilustración 17: Diagrama fasorial de transformador trifásico conexión D-y Fuente: (Hayt, Kemmerly, & Durbin, 2007) Elaborado por: Los autores

2.1.5.5. CONEXIÓN DELTA – DELTA (D-d)

Este transformador no presenta desfases asociados a él, o problemas por las cargas desbalanceadas o las armónicas y es útil cuando los voltajes no son altos, ya que se necesitan más espiras/fase de menor sección se utiliza en transformadores de baja tensión, aunque su desventaja es la ausencia de una terminal neutra de cada lado y su aislamiento eléctrico se esfuerza al voltaje de línea, por lo que requerirá un aislamiento más caro que para uno en Y para la misma especificación de potencia. (Mora, 2003, pág. 217)

$$\frac{V_{LP}}{V_{LS}} = \frac{V_{\phi P}}{V_{\phi S}} = a$$

Ecuación 12: Relación de vueltas de transformador conexión D-d Fuente: (Chapman, 2000)

Ilustración 18: Esquema de transformador trifásico conexión D-d Fuente: (Chapman, 2000) Elaborado por: Los autores

Ilustración 19: Diagrama fasorial de transformador trifásico conexión D-d Fuente: (Hayt, Kemmerly, & Durbin, 2007) Elaborado por: Los autores

2.2. IMPEDANCIAS Y TIPOS DE CARGAS ELECTRICAS

Impedancia es la propiedad de un elemento eléctrico para oponerse a la corriente en el dominio de los fasores. Estos elementos pueden ser Resistivos (R), Inductivo (L) y Capacitivo (C) los cuales tienen propiedades eléctricas diferentes. (Robbins & Miller, 2007, pág. 523)

2.2.1. CARGA RESISTIVA

Una carga resistiva se opone a la corriente, y el voltaje y la corriente son directamente proporcionales y están en fase debido a que las formas de onda coinciden. (Hayt, Kemmerly, & Durbin, 2007, pág. 523)

$$Z_R = \frac{V_R}{I} = \frac{V_R \angle \theta}{I \angle \theta} = \frac{V_R}{I} \angle 0^\circ = R \angle 0^\circ = R$$

Ecuación 13: Impedancia resistiva pura Fuente: (Hayt, Kemmerly, & Durbin, 2007)

Ilustración 20: Diagramas circuito resistivo puro Fuente: (Hayt, Kemmerly, & Durbin, 2007) Elaborado por: Los autores

2.2.2. CARGA INDUCTIVA

Una carga inductiva se opone a cambios en la corriente, debido a esto la corriente se atrasa al voltaje 90° o dicho de otra manera el voltaje se adelanta a la corriente 90°. (Hayt, Kemmerly, & Durbin, 2007, pág. 524)

$$Z_L = \frac{V_L}{I} = \frac{V_L \angle 0^\circ}{I \angle -90^\circ} = \frac{V_L}{I} \angle 90^\circ = wL \angle 90^\circ = jwL$$

Ecuación 14: Impedancia inductiva pura Fuente: (Hayt, Kemmerly, & Durbin, 2007)

Ilustración 21: Diagramas circuito inductivo puro Fuente: (Hayt, Kemmerly, & Durbin, 2007) Elaborado por: Los autores

2.2.3. CARGA CAPACITIVA

Una carga capacitiva se opone a cambios en el voltaje, y la corriente adelanta al voltaje 90° o, dicho de otra manera, el voltaje está en atraso con la corriente en 90°. (Hayt, Kemmerly, & Durbin, 2007, pág. 527)

$$Z_C = \frac{V_C}{I} = \frac{V_C \angle 0^\circ}{I \angle 90^\circ} = \frac{V_C}{I} \angle -90^\circ = \frac{1}{wC} \angle -90^\circ = -j\frac{1}{wC}$$

Ecuación 15: Impedancia capacitiva pura Fuente: (Hayt, Kemmerly, & Durbin, 2007)

Ilustración 22: Diagramas circuito capacitivo puro Fuente: (Hayt, Kemmerly, & Durbin, 2007) Elaborado por: Los autores

2.3. CONTROLADOR LÓGICO PROGRAMABLE

Un Controlador Lógico Programable o PLC según la NEMA se puede definir como "Instrumento electrónico, que utiliza memoria programable para guardar instrucciones sobre la implementación de determinadas funciones, como operaciones lógicas, secuencia de acciones, especificaciones temporales, contadores y cálculos para el control mediante módulos de E/S analógicos o digitales sobre diferentes tipos de máquinas y procesos" y nos ayudara para poder realizar la comunicación de la información del banco de transformadores con la aplicación software.

Ilustración 23: PLC Schneider TM221CE16R Fuente: Schneider – Datasheet PLC TM221CE16R

Main		
Range of product	Modicon M221	
Product or component type	Logic controller	
[Us] rated supply voltage	100240 V AC	
Discrete input number	9 discrete input conforming to IEC 61131-2 Type 1	
Analogue input number	2 at input range: 0 10 V	
Discrete output type	Relay normally open	
Discrete output number	7 relay	
Discrete output voltage	5 125 V DC	
	5 250 V AC	
Discrete output current	2 A	

Tabla 1: Caracteristicas principales PLC marca Schneider TM221CE16RFuente: Schneider – Datasheet PLC TM221CE16R

2.4. PROTOCOLOS DE COMUNICACIÓN

Para poder realizar la comunicación entre el banco de transformadores y la aplicación software se utilizarán diferentes protocolos de comunicación que permitan una correcta transferencia de información. Un protocolo establece un conjunto de algoritmos, mensajes, reglas y otros mecanismos que permiten a los elementos de una red a comunicarse eficientemente. Establecimiento un formato para la precisión de las reglas que regirán en el intercambio de los mensajes y la elección de esta debe ser previa a la comunicación y conocida por todas las partes involucradas en la misma. Se pueden mencionar tres aspectos independientes de la implementación, que puede ser en hardware o software:

- el aspecto sintáctico que se refiere a la especificación de formatos para los mensajes
- semántico relacionado con la funcionalidad de control para la cual se ha diseñado
- y el sincronismo que define la sintonía de velocidades y secuencias particularmente usadas en la comunicación

(Liberatori, 2018, pág. 34)

2.5. LABVIEW

LabVIEW es un lenguaje de programación grafico desarrollado para facilitar la recopilación de datos de instrumentos de laboratorio utilizando un sistema de adquisición de datos, haciendo esta tarea definitivamente más fácil usando conectores de cableado para escribir sus programas. LabVIEW se puede utilizar para lo siguiente:

- Adquirir datos de instrumentos
- Procesar datos
- Analizar datos
- Controlar instrumentos y equipos

Para los ingenieros, LabVIEW hace posible traer información del mundo exterior en una computadora, tomar decisiones en base a los datos adquiridos y enviar los resultados computados al mundo para controlar la forma en que una pieza de un equipo funcione. Es decir que este programa nos permitirá primero adquirir los datos del banco de transformadores y posteriormente analizar y simular dichos datos para poder comprobarlos de manera teórica y práctica. (Larsen, 2011, pág. 1)

CAPÍTULO III

3. IMPLEMENTACIÓN DE SISTEMA PARA ADQUISICIÓN DE DATOS

Para implementar el sistema de adquisición de datos del banco de transformadores se necesitarán los siguientes elementos tanto de hardware y software:

- Hardware
 - Modulo del PLC
 - Medidor de parámetros
- Software
 - SoMachine Basic
 - LabVIEW + DSC Module
 - OPC Server

3.1. CONSTRUCCION MÓDULO DEL PLC

Se construirá un módulo que permita interactuar didácticamente con las entradas y salidas digitales y analógicas del PLC, así como de sus puertos de comunicación.

Ilustración 24: Módulo del PLC Elaborado por: Los autores

3.1.1. ELEMENTOS

El módulo del PLC contiene los siguientes elementos:

- 1 PLC marca Schneider modelo TM221CE16R
- 7 salidas digitales
 - 7 luces piloto color rojo
- 9 entradas digitales
 - 4 botoneras color verde
 - 5 selectores de 3 posiciones
- 2 entradas analógicas
 - o 2 perillas reguladoras de voltaje y 2 pantallas LED

3.1.2. CABLEADO

A continuación, detallaremos las conexiones de los elementos en el módulo del PLC.

• Alimentación 120v del PLC con interruptor.

Ilustración 25: Alimentación del PLC Elaborado por: Los autores

• Salidas digitales: 7 luces piloto color rojo.

Ilustración 26: Salidas digitales Elaborado por: Los autores

• Entradas digitales: 4 botoneras color verde y 5 selectores de 3 posiciones.

Ilustración 27: Entradas digitales Elaborado por: Los autores

• Entradas analógicas: 2 pantallas led y 2 circuitos reguladores de voltaje de 0 a 10V.

Ilustración 28: Entradas analógicas Elaborado por: Los autores

3.2. SOMACHINE BASIC: CONFIGURACIÓN

Para empezar, necesitamos instalar el programa SoMachine Basic que podemos descargar de la página de Schneider Electric, en este análisis utilizaremos la versión 1.6. Al ejecutar el programa se abrirá una ventana donde elegiremos *Crear un nuevo proyecto*.

Por què registrar	160?	کل	Registrarse aho
Proyectos	Proyectos recientes		
Conectar			
Plantillas			
Ayuda			
Acerca de	V		_
× Salir	C2		
	Crear un nuevo proyecto	Abrir un proyecto existente.	

Ilustración 29: Crear un nuevo proyecto Fuente: SoMachine Basic

En el lado derecho de la pantalla, seleccionar el menú desplegable *M221 Logic Controllers* y en la opción *TM221CE16R* arrastrar hasta la imagen del PLC.

Ilustración 30: Seleccionar modelo del PLC Fuente: SoMachine Basic

3.2.1. CONEXIÓN ETHERNET: PLC – LAPTOP

Encender el Módulo de adquisición de datos y mediante un cable de red con conectores RJ45, conectar el ordenador con el puerto Ethernet del PLC. En la pestaña de *Puesta en funcionamiento* podemos verificar la dirección IP del PLC.

ropiedades	Configuración	Programación	Visualización	Puesta en funcionamiento
Puesta en funcionamiento	Dispositivos locales 😰 🕓	Dispositivos Ethernet 💿 🕓 💿	Opciones	
Conectar Actualización del controlador		10.10.241.10	Inicio de sesión	
Gestión de la memoria			Cerrar sesión	
Información del controlador		4 6		
Gestión de RTC				
	Guardar los parámetros del controlador Modbus	Búsqueda remota		
	ID de unidad 1	Introduzza una URL o una dirección IP	hadir	
			PC a controlador (descarga)	
			De controlador a PC (carga)	
			Detener controlador	
			Iniciar controlador	
			Iniciar simulador	

Posteriormente ir a la siguiente ubicación: *Panel de Control / Redes e Internet / Centro de Redes y Recursos Compartidos /* y seleccionar la opción en la parte izquierda *Cambiar configuración del adaptador*.

- 🔿 👻 🛧 🛂 > Panel de co	ntrol > Redes e Internet > Centro de rec	des y recursos compartidos
Ventana principal del Panel de control	Ver información básica de la re Ver las redes activas	ed y configurar conexiones
Cambiar configuración del adaptador Cambiar configuración de uso compartido avanzado	Red privada	Tipo de acceso: Internet Conexiones: MWi-Fi (RODRIGUEZ CNT
	Cambiar la configuración de red	
	tonfigurar una nueva conexi	ón o red
	Configurar una conexión de l enrutador o punto de acceso.	banda ancha, de acceso telefónico o VPN; o bien configurar un
	Solucionar problemas	
	Diagnosticar y reparar proble	mas de red u obtener información de solución de problemas.

Ilustración 32: Conexión ethernet – Cambiar configuración del adaptador Fuente: Los autores

Dar clic derecho sobre la red *Ethernet* y seleccionar *Propiedades*.

Ilustración 33: Conexión ethernet – Propiedades de la red Ethernet Fuente: Los autores

Luego dar doble clic sobre la opción Protocolo de Internet versión 4 (TCP/IPv4).

	Uso compartido	
Conectar con:		
🚅 Realtek P	Cle GbE Family Controller	
		Configurar
Esta conexión us	sa los siguientes ele <u>m</u> entos:	
Cliente	para redes Microsoft	^
V 🖳 Uso cor	mpartido de archivos e impres	oras para redes M
Program	nador de paquetes QoS	
Protoco	lo de Internet versión 4 (TCP	/IPv4)
Protoco	lo de multiple r de adaptado	r de red de Micros
Controla	ador de pro ocolo LLDP de M	(ID. C)
	io de internit version 6 (ICP)	(IPV6)
		-
Inst <u>a</u> lar	<u>D</u> esinstalar	Propiedades
Inst <u>a</u> lar Descripción	<u>D</u> esinstalar	<u>P</u> ropiedades
Inst <u>a</u> lar Descripción Protocolo TCF	Desinstalar 2/IP. El protocolo de red de á	Propiedades rea extensa
Inst <u>a</u> lar Descripción Protocolo TCF predeterminad	Desinstalar 2/IP. El protocolo de red de á lo que permite la comunicació	Propiedades rea extensa in entre varias

Ilustración 34: Conexión ethernet – Protocolo de Internet versión 4 (TCP/IPv4) Fuente: Los autores

Seleccionar la opción *Usar la siguiente dirección IP*, colocar la dirección IP del PLC modificando el último campo y colocar como mascara de subred 255.255.255.0.

Propiedades: Protocolo de Internet versión 4 (TCP/IPv4)					
General					
Puede hacer que la configuración IP se asigne automáticamente si la red es compatible con esta funcionalidad. De lo contrario, deberá consultar con el administrador de red cuál es la configuración IP apropiada.					
O Obtener una dirección IP automáticamente					
• Usar la siguiente dirección IP:					
Dirección IP:	10 . 10 . 241 . 221				
Máscara de subred:	255 . 255 . 255 . 0				
Puerta de enlace predeterminada:					
Obtener la dirección del servidor DN	Obtener la dirección del servidor DNS automáticamente				
• Usar las <u>s</u> iguientes direcciones de se	rvidor DNS:				
Servidor DNS preferido:					
Servidor DNS al <u>t</u> ernativo:					
<u>V</u> alidar configuración al salir	Opciones avanzadas				
	Aceptar Cancel	ar			

Ilustración 35: Conexión ethernet – Dirección IP y Máscara de subred Fuente: Los autores

Dar clic en *Aceptar* en las 2 ventanas abiertas. Luego en la pestaña de configuración del programa SoMachine Basic, seleccionar la opción *ETH1* en la parte izquierda y colocar la dirección IP del PLC y la Marcara de Subred configurada previamente y clic en *Aplicar*.

Nuevo proyecto	∞•∞•\$?• ▷□∞ √	Scineider Electric Somachi 10.10.241.221	Errores detectados en el programa	Sin conedon
Propiedades	Configuración	Programación	8 Visualización	Puesta
Mensajes MyController (IM221CE16R) MyController (IM221CE16R) Status digitales Contradas analógicas MyContadores muy rápidos MyContadores muy rápidos MyController (IM221CE16R) MyController (Q: Q	M321 10 10 255 255 0 0 Autom Bisse bilitado to sutomilico habilitado	241 - 10 229 - 0 0 0	
				(Aplicar) (Cancelar)

Ilustración 36: Conexión ethernet – Dirección IP y Máscara de subred SoMachine Fuente: SoMachine Basic

3.2.2. CONEXIÓN SERIAL: PLC – MEDIDOR DE PARÁMETROS

Luego en la opción SL1 (línea serie) y Modbus, realizar la siguiente configuración.

Propiedades	Configuración	Programación
Mensajes MyController (TM221CE16R) MyController (TM221CE16R) Carlindas digitales Carlindas gnalógicas au27 Contadores muy rápidos al Bus de E/S Carlindas digitales Carlindas de C/S Carlindas CP Carli		
SL1 (línea serie) Modbus	Configuración de linea serie Ajustes de protocolo	
	Configuración de línea serie Velocidad de transmisión 19200	•
	Paridad Ninguna Bits de datos ⁸	•
	Bits de parada 1 Medio físico	*
	RS-485 Polarización No	

Ilustración 37: Configuración de conexión Serial Fuente: SoMachine Basic

Propiedades	Configuración	Programación
 Mensajes MyController (TM221CE16R) Entradas digitales Salidas digitales Entradas analógicas Contadores muy rápidos El Bus de E/S ETH1 Modbus TCP Adaptador Ethernet/IP S L1 (únca serie) Modbus 	Image: Configuración del dispositivo Dispositivo Dispositivo Configuración del dispositivo Dispositivo Ninguno Comando Init	•
	Ajustes de protocolo Modo de transmisión Direccionamiento Timeout de respuesta (× 100 me Tiempo entre tramas (ms)	RTU ASCII Ascin [de 1 a 247] Maestra 10

Ilustración 38: Configuración Modbus Fuente: SoMachine Basic

3.3. SOMACHINE BASIC: PROGRAMACIÓN

En la pestaña de *Programación*, en la sección de *Tareas* del lado izquierdo, añadir 4 POUs (Program Organization Unit):

- 1. Digital Inputs
- 2. Digital Outputs
- 3. Analog Inputs
- 4. PM5110

Ilustración 39: Programación - POUs Fuente: SoMachine Basic

3.3.1. PROGRAMACIÓN DE ENTRADAS DIGITALES

En el primer POU (digital inputs) agregar 9 escalones, desde I0 a I8. En cada uno agregar un contacto con los valores de las entradas (%I0.0 a %I0.8) y una bobina donde se almacenarán los valores en las palabras de memoria (%MW0:X0 a %MW0:X8).

Entradas digitales	Palabras de memoria
%10.0	%MW0:X0
%10.1	%MW0:X1
%10.2	%MW0:X2
%10.3	%MW0:X3
%10.4	%MW0:X4
%10.5	%MW0:X5
%10.6	%MW0:X6
%10.7	%MW0:X7
%10.8	%MW0:X8

Tabla 2: Programación – Entradas digitales Fuente: Los autores

3.3.2. PROGRAMACIÓN DE SALIDAS DIGITALES

En el segundo POU (digital outputs) agregar 7 escalones, desde Q0 a Q6. En cada uno

agregar un contacto con los valores de las palabras de memoria (%MW2:X0 a %MW2:X6) y una

bobina donde se registrarán los valores en las salidas digitales (%Q0.0 a %Q0.6).

🔮 LD 👻 Rung0	Q0 Comentario	-	-	-	-	-	-	-	·
	Símbolo								Símbolo
Cuerpo del escal *	%MW2:X0								%Q0.0
									()
					~ _	~ _	~	 ~	~ /

Palabras de memoria	Salidas digitales
%MW2:X0	%Q0.0
%MW2:X1	%Q0.1
%MW2:X2	%Q0.2
%MW2:X3	%Q0.3
%MW2:X4	%Q0.4
%MW2:X5	%Q0.5
%MW2:X6	%Q0.6

Ilustración 41: Programación – Salidas digitales Fuente: SoMachine Basic

Tabla 3: Programación – Salidas digitales Fuente: Los autores

3.3.3. PROGRAMACIÓN DE ENTRADAS ANALÓGICAS

En el tercer POU (analog inputs) agregar 2 escalones, desde AIO a AI1. En cada uno agregar un bloque de operación que agregue los valores de las entradas analógicas (%IW0.0 y %IW0.1) a las palabras de memoria (%MW4 y %MW6).

V LD - Rung0	nombre Comentario		 		 		
Cuerpo del escal 🔻							 %MW4 := %IW0.0 %MW4 := %IW0.0
		~	 ~ _	~	 ~	~	

Ilustración 42: Programación – Entradas analógicas Fuente: SoMachine Basic

Entradas analógicas	Palabras de memoria
%IW0.0	%MW4
%IW0.1	%MW6

Tabla 4: Programación – Entradas analógicasFuente: Los autores

3.3.4. PROGRAMACIÓN PUERTO SERIAL (MEDIDOR DE PARÁMETROS)

En el cuarto POU (PM5110) se realizará la lectura de las variables del medidor de parámetros por medio del puerto serial, para este ejemplo utilizaremos la función %READ_VAR0 y el bit de sistema %S6 que generará un pulso para que ejecute la función con una frecuencia de 1 segundo. Esta función se configurará de la siguiente forma:

%READ_VAR0					
Link 1 - SL1 Selección del puerto serial del PLC		Selección del puerto serial del PLC			
Id	1	Identificador de dispositivo. Previamente configurar PM5110 con el mismo Id			
Timeout	100	Tiempo máximo de espera de recepción de una respuesta			
ObjType	0 - Read Multiple Words - Modbus 0x03	Tipo de objeto que se va a leer (palabra)			
FirstObj	2999	Primer objeto que se leerá de la lista de registro (restar 1 porque empieza en 1)			
Quantity	112	Cantidad de objetos que se leerán de la lista de registro (desde 3000 hasta 3111)			
IndexData	1000	Inicio del registro en palabra de memoria %MW1000			

Tabla 5: Programación – Puerto serial Fuente: Schneider – Datasheet PLC TM221CE16R Elaborado por: Los autores Para utilizar los diferentes parámetros que vamos a necesitar en este análisis, utilizaremos la Lista de registros del PM5110 como se muestra en la ilustración 41.

	Category			Description	PM5110/1	Register	Units	Size (INT16)	<u>Data Type</u>	Access
1	-		Y		T		_	_	*	
182	Meter Data	(Basic)			Y	3000				
183		1s Metering (50/60 Cyc	des)		Y	3000				
184			Current		Y	3000				
185				Current A	Y	3000	A	2	FLOAT32	R
186	i			Current B	Y	3002	A	2	FLOAT32	R
187				Current C	Y	3004	A	2	FLOAT32	R .
188				Current N	Y	3006	A	2	FLOAT32	R
189				Current G	Y	3008	A	2	FLOAT32	R
190	1			Current Avg	Y	3010	Α	2	FLOAT32	R
191			Current Unit	palance	Y	3012				
192	2			Current Unbalance A	Y	3012	%	2	FLOAT32	R
193				Current Unbalance B	Y	3014	%	2	FLOAT32	R
194				Current Unbalance C	Y	3016	%	2	FLOAT32	R
195	1			Current Unbalance Worst	Y	3018	%	2	FLOAT32	R
196	1		Voltage		Y	3020				
197	1		-	Voltage A-B	Y	3020	V	2	FLOAT32	R
198	1			Voltage B-C	Y	3022	V	2	FLOAT32	R
199	1			Voltage C-A	Y	3024	V	2	FLOAT32	R
200				Voltage L-L Avg	Y	3026	V	2	FLOAT32	R
201				Voltage A-N	Y	3028	V	2	FLOAT32	R
202	1			Voltage B-N	Ý	3030	V	2	FLOAT32	R
203	1			Voltage C-N	Y	3032	V	2	FLOAT32	R
						3034	V	2	FLOAT32	R

Ilustración 43: Programación – Lista de registros PM5110 Fuente: PM5110 Register List 2017

Ilustración 44: Programación – Puerto serial (medidor de parámetros) Fuente: SoMachine Basic

3.4. SOMACHINE BASIC: PUESTA EN FUNCIONAMIENTO

Para la puesta en funcionamiento, luego de conectar el cable ethernet seleccionar la dirección IP del equipo. Posteriormente dar clic en *Iniciar Sesión*. Una vez establecida la conexión se debe cargar la programación en el PLC, por lo que daremos clic en *PC a*

controlador (descarga). Y por último para iniciar el programa hacemos clic en *Iniciar controlador*.

Modulo* □ ☆ 및 - ☆ - X ☜ @	₩ • ₩ • * * ? • ▷ □ ≪ √	Schneider Electric SoMachine Basic - V1.6 10.10.241.221	Online	Tiempo de exploración 151 µs	Motivo de pa
Propiedades	Configuración	Programación Visualiz	ación	Puesta en funcionamiento	
Puesta en funcionamiento Conestar Actualización del controlador Gestión de la memoria Información del controlador Gestión de RTC	Dispositivos locales Guardar los parámetros del controlador Mototus ID de unida 1	Dispositivos Ethernet 💿 🔌 🔘 10.10.241.223 Búsqueda remota Refradences una URL o una dirección IP	Opciones Inico de sesión Cerrar sesión		
	Resultado de la búsqueda Nuevo proyecto: Referencia Firmware Controlador TM221CE16R 1.6.0.1	Las aplicaciones del PC y el controlador son idéntica: Se ha establecido la conexión	PC a controlador (descarga) De controlador a PC (carga) Detener controlador Iniciar controlador Iniciar controlador Iniciar simulador Detener simulador		

Ilustración 45: Programación – Puesta en funcionamiento Fuente: SoMachine Basic

3.5. OPC SERVER: CONFIGURACIÓN

A continuación, se detallará paso a paso la configuración del Servidor OPC.

NI OPC Serve	rs - Runtime					×
File Edit View		time Help 資源語 (アメ)				
(문화 Channell (문화 Data Type (문화 Simulation E	Examples	Cha දො වෙ වෙ වෙ වෙ වෙ වෙ වෙ වෙ වෙ වෙ වෙ වෙ වෙ	Driver Connec Sharing Virtual Driver N/A N/A ta Simulator Other N/A N/A ul., Simulator Other N/A N/A			
9 / V						
Date () 6/6/2019 () 6/6/2019 () 6/6/2019 () 6/6/2019 () 6/6/2019 () 6/6/2019 () 6/6/2019 () 6/6/2019 () 6/6/2019 () 6/6/2019	Time 3:53:39 3:53:39 3:53:39 3:53:39 3:53:39 3:53:39 3:53:44 3:53:48	Source NI OPC Servers NI OPC Servers Simulator NI OPC Servers NI OPC Servers NI OPC Servers	Event Stopping Simulator device driver: Simulator device driver loaded successfully. Starting Simulator Device Driver VS 19.492.0 Runtime reinitialization completed Configuration session assigned to usuario as Default User h Configuration session started by usuario as Default User (R			[°]
leady			1	Default User Clients: 0 Activ	e tags: 0	of 0

Ilustración 46: OPC Servers – Configuración Fuente: OPC Servers Configuration

Ilustración 47: OPC Servers – New Channel Fuente: OPC Servers Configuration

New Channel - Identificatio	n A channel name can be from 1 to 256 characters in length. Names can not contain periods, double quotations or start with an underscore.	×
	Qhannel name: PLC_SCHNEIDER	
	< Atrás Siguiențe > Cancelar	Ayuda

Ilustración 48: OPC Servers – New Channel - Identification Fuente: OPC Servers Configuration

Ilustración 49: OPC Servers – New Channel – Device Driver Fuente: OPC Servers Configuration

Virtual Network	None	
Transactions per cycle	1	
Global Settings		
Network Mode	Load Balanced	
channel at a time. To enable Virtual Network.	e, assign this channel to a	

Ilustración 50: OPC Servers – New Channel – Communication Serialization Fuente: OPC Servers Configuration

	This channel is configured to communica a network. You can select the network that the driver should use from the list be Select 'Default' if you want the operating to choose the network adapter for you.	ate over adapter low. system
/	Network Adapter:	
	Default	~

Ilustración 51: OPC Servers – New Channel – Network Interface Fuente: OPC Servers Configuration

Ilustración 52: OPC Servers – New Channel – Write Optimization Fuente: OPC Servers Configuration

Ilustración 53: OPC Servers – New Channel – Non-Normalized Float Handling Fuente: OPC Servers Configuration

New Channel - Ethernet		×
	Select whether all devices on this channel share a single socket (MBE to RTU Gateway) or if each device has 1 or more of their own sockets. Select the Port and Protocol to use when acting as a slave device.	
	Socket Usage Share a single socket across all devices on this channel Use one or more sockets per device on this channel Max sockets per device: 1	
	Unsolicited Settings Port Number: IP Protocol: 502 TCP/IP V	
	< Atrás Siguiente > Cancelar Ayuda	

Ilustración 54: OPC Servers – New Channel – Ethernet Fuente: OPC Servers Configuration

Ilustración 55: OPC Servers – New Channel – Summary Fuente: OPC Servers Configuration

Luego, se procedió a la configuración del dispositivo a utilizar haciendo clic en add a device.

Ilustración 56: OPC Servers – New Device Fuente: OPC Servers Configuration

Ilustración 57: OPC Servers – New Device - Name Fuente: OPC Servers Configuration

Ilustración 58: OPC Servers – New Device - Model Fuente: OPC Servers Configuration

Ilustración 59: OPC Servers – New Device - ID Fuente: OPC Servers Configuration

Ilustración 60: OPC Servers – New Device – Scan Mode Fuente: OPC Servers Configuration

	The device you are defining has communications timing parameters that you can configure.
	Connect timeout:
0	Request timeout: 1000 🛉 milliseconds
	Fail after: 3 successive timeouts
	Inter-request delay: 0 👘 milliseconds

Ilustración 61: OPC Servers – New Device – Timing Fuente: OPC Servers Configuration

	You can demote a device for a specific period upon communications failures. During this time no read request (writes if applicable) will be sent to the device. Demoting a failed device will prevent stalling communications with othe devices on the channel.
0	Enable auto device demotion on communication failure Demote after 3
	Demote for 10000 🔹 milliseconds.
	Discard write requests during the demotion period

Ilustración 62: OPC Servers – New Device – Auto-Demotion Fuente: OPC Servers Configuration

Ilustración 63: OPC Servers – New Device – Database Creation Fuente: OPC Servers Configuration

Ilustración 64: OPC Servers – New Device – Ethernet Fuente: OPC Servers Configuration

Ilustración 65: OPC Servers – New Device – Data Access Settings Fuente: OPC Servers Configuration

Ilustración 66: OPC Servers – New Device – Data Encoding Settings Fuente: OPC Servers Configuration

Ilustración 67: OPC Servers – New Device – Block Sizes Fuente: OPC Servers Configuration

Set the location of the variable import file to be used in tag database creation. Select whether descriptions should be displayed if provided.
Variable import file:
Include descriptions?

Ilustración 68: OPC Servers – New Device – Variable Import Settings Fuente: OPC Servers Configuration

Ilustración 69: OPC Servers – New Device – Error Handling Fuente: OPC Servers Configuration

Ilustración 70: OPC Servers – New Device – Summary Fuente: OPC Servers Configuration

Luego procederemos a crear las etiquetas para las variables de memoria haciendo clic derecho sobre el dispositivo. Estas etiquetas son para cada espacio de memoria del PLC donde se almacenan las variables que extrajimos. Para esto utilizaremos la dirección modbus que le corresponde, por ejemplo, el espacio de memoria %MW0 corresponde a la dirección 400001.

Ilustración 71: OPC Servers – New Tag Group Fuente: OPC Servers Configuration

		OK
Name:	Entradas digitales	Cancel
		Help

Ilustración 72: OPC Servers – Crear Tag Groups Fuente: OPC Servers Configuration

Ilustración 73: OPC Servers – Tag Groups Fuente: OPC Servers Configuration

General	Scaling						
Identi	fication						
	Name:	10			6		4
	Address:	400001.0				\[\] \[\[\] \[\] \[\[\] \[\] \[\] \[\[\] \[\[\] \[\[\] \[\[\[\[
De	escription:						X
Data	properties						1
	[Data type:	Boolean	~			
	Clien	nt access:	Read Only	×			
	Ş	Scan rate:	100	milliseconds			
Note OPC spec	: This scar clients wh ified rate .	n rate is app en the devi	blied for non-(ice scan rate	DPC clients. It o mode is set to	nly applies to Respect tag	0	
						2 8	V GR SA

Ilustración 74: OPC Servers – Tag Properties Fuente: OPC Servers Configuration

Tag Name	Address	Data Type	Scan Rate	Scaling	Description
0	400001.0	Boolean	100	None	
I 1	400001.1	Boolean	100	None	
12	400001.2	Boolean	100	None	
I 3	400001.3	Boolean	100	None	
I 4	400001.4	Boolean	100	None	
CI 15	400001.5	Boolean	100	None	
I 6	400001.6	Boolean	100	None	
1 7	400001.7	Boolean	100	None	
I 8	400001.8	Boolean	100	None	

Ilustración 75: OPC Servers – Tags entradas digitales Fuente: OPC Servers Configuration

Tag Name	Address	Data Type	Scan Rate	Scaling	Description
📿 Q0	400003.0	Boolean	100	None	
Q 1	400003.1	Boolean	100	None	
📿 Q2	400003.2	Boolean	100	None	
Q3	400003.3	Boolean	100	None	
📿 Q4	400003.4	Boolean	100	None	
@Q5	400003.5	Boolean	100	None	
Q 6	400003.6	Boolean	100	None	

Ilustración 76: OPC Servers – Tags salidas digitales Fuente: OPC Servers Configuration

Tag Name	Address	Data Type	Scan Rate	Scaling	Description
💶 AI0	400005	Word	100	None	
Al1	400007	Word	100	None	

Ilustración 77: OPC Servers – Tags entradas analógicas Fuente: OPC Servers Configuration

Tag Name	Address /	Data Type	Scan Rate	Scaling	Description
🚾 I A	401000	Float	100	None	
🚾 I B	401002	Float	100	None	
IC	401004	Float	100	None	
<pre> • • • • • • • • • • • • • • • • • • •</pre>	401006	Float	100	None	
<pre>G</pre>	401008	Float	100	None	
🐼 l Avg	401010	Float	100	None	
🐼 I Unb A	401012	Float	100	None	
🐼 I Unb B	401014	Float	100	None	
🐼 I Unb C	401016	Float	100	None	
🐼 I Unb Worst	401018	Float	100	None	
🐼 V A-B	401020	Float	100	None	
🐼 V B-C	401022	Float	100	None	
VC-A	401024	Float	100	None	
😡 V L-L Avg	401026	Float	100	None	
🚾 V A-N	401028	Float	100	None	
🚾 V B-N	401030	Float	100	None	
🚾 V C-N	401032	Float	100	None	
🐼 V N-G	401034	Float	100	None	

Ilustración 78: OPC Servers – Tags medidor de parámetros Fuente: OPC Servers Configuration

Posteriormente procederemos a abrir el OPC Quick Client donde podremos comprobar

que existe la comunicación entre el software y el PLC.

ile Edit View <mark>Tools</mark> Runtime He	lp	-				
🗋 📸 🗟 Event Log	>					
Channel1 _ 🛄 Launch OPC Qui	ck Client	Address	Data Type	Scan Rate	Scaling	Description
		400001.0	Boolean	100	None	
M221CE		400001.1	Boolean	100	None	
Entradas analogicas	I2	400001.2	Boolean	100	None	
Entradas digitales	💽 I3	400001.3	Boolean	100	None	
PM5110	I 4	400001.4	Boolean	100	None	
Salidas digitales	I5	400001.5	Boolean	100	None	
Simulation Examples	💽 IG	400001.6	Boolean	100	None	
De casa Presenta Interna de Casa en Casa en Casa de Cas	17	400001.7	Boolean	100	None	
	18	400001.8	Boolean	100	None	

Ilustración 79: OPC Servers – Launch OPC Quick Client Fuente: OPC Servers Configuration

Generation of the second secon	OPC Quick Client - Sin titulo * ile Edit View Tools Help										
□ 🖆 🔛 💒 💣 💣 🖁 🕹 🖻 💼 🗙	^	Item ID 🗸	Data Type	Value	Timestamp	Quality	Update Count				
PLC_SCHNEIDERStatistics PLC_SCHNEIDERSystem PLC_SCHNEIDER.M221CE16RStatistics PLC_SCHNEIDER.M221CE16R_System PLC_SCHNEIDER.M221CE16R.Entradas analogicas PLC_SCHNEIDER.M221CE16R.Entradas digitales PLC_SCHNEIDER.M221CE16R.Salidas digitales Simulation Examples_Statistics Simulation Examples_System Simulation Examples_System Simulation Examples_System		PLC_SCHNEIDER.M221CE16R.Entradas digitales.18 PLC_SCHNEIDER.M221CE16R.Entradas digitales.17 PLC_SCHNEIDER.M221CE16R.Entradas digitales.16 PLC_SCHNEIDER.M221CE16R.Entradas digitales.14 PLC_SCHNEIDER.M221CE16R.Entradas digitales.13 PLC_SCHNEIDER.M221CE16R.Entradas digitales.13 PLC_SCHNEIDER.M221CE16R.Entradas digitales.12 PLC_SCHNEIDER.M221CE16R.Entradas digitales.11 PLC_SCHNEIDER.M221CE16R.Entradas digitales.11 PLC_SCHNEIDER.M221CE16R.Entradas digitales.10	Boolean Boolean Boolean Boolean Boolean Boolean Boolean Boolean	0 0 0 0 0 0 0 0 0	03:14:00.255 03:14:00.255 03:14:00.255 03:14:00.255 03:14:00.255 03:14:00.255 03:14:00.255 03:14:00.255 03:14:00.255 03:14:00.255 03:14:09.253	Good Good Good Good Good Good Good Good	1 1 1 1 1 1 1 3				

Ilustración 80: OPC Servers – OPC Quick Client Fuente: OPC Servers Configuration

3.6. LABVIEW: PROGRAMACIÓN

Una vez realizada la configuración del OPC Server y ejecutar el OPC Quick Cliente, procederemos a hacer la programación en LabVIEW detallada a continuación.

Ilustración 81: LabVIEW – Create Project Fuente: LabVIEW

Ilustración 82: LabVIEW – Blank Project Fuente: LabVIEW

Ilustración 83: LabVIEW – I/O Server Fuente: LabVIEW

/O Server Type		
Alarm Printer		^
Custom VI - O	n Input Change	2
Custom VI - Pe	eriodic	
Data Set Marki	ng	
EPICS Client		
EPICS Server		
Modbus		
Modbus Slave		
OPC Client		
		~
Description		
Communicate Control) Serve	with OPC (OLE rs.	for Process

Ilustración 84: LabVIEW – OPC Client Fuente: LabVIEW

settings	Advanced	Diagnostics		
Province	Machine			Update rate (ms)
browse	widenine			1000
Machine				Deadband (%)
localhost	t		Browse	0
Registere	d OPC servers	8		Reconnect poll rate (
Registere Nationa Nationa	d OPC servers I Instruments. I Instruments.	Variable Engine. NIOPCServers.V5	1	Reconnect poll rate (
Registere Nationa Nationa	d OPC servers I Instruments. I Instruments.	Variable Engine. NIOPCServers.VS	^	Reconnect poll rate (
Registere Nationa Nationa	d OPC servers I Instruments.	Variable Engine. NIOPCServers.VS	· ·	Reconnect poll rate (
Registere Nationa Nationa Prog ID National	l OPC servers I Instruments.	Variable Engine. NIOPCServers.V5	~	Reconnect poll rate (

Ilustración 85: LabVIEW – National Instruments.NIOPCServers.V5 Fuente: LabVIEW

DCOM Configuration Recommendation					
National Instruments recommends that you co identity of interactive user. Otherwise, you mig connecting to a OPC server.	nfigure the OPC server ht have problem brow	r to run with an sing and			
Do not show this dialog again.	ОК	Help			

Ilustración 86: LabVIEW – DCOM Configuration Recommendation Fuente: LabVIEW

Ilustración 87: LabVIEW – Create Bound Variables Fuente: LabVIEW

Ilustración 88: LabVIEW – Add variables Fuente: LabVIEW

	Path	Path Name		Data Type	Network-Published: Buffering	Network-Publishe Buffer Size	
AIO	/My Computer/Untitled Library 1/	AIO	Network-Publis	UInt16		50	
AI1	/My Computer/Untitled Library 1/	Al1	Network-Publis	UInt16	V	50	
10	/My Computer/Untitled Library 1/	10	Network-Publis	Boolean	V	50	
11	/My Computer/Untitled Library 1/	11	Network-Publis	Boolean	V	50	
12	/My Computer/Untitled Library 1/	12	Network-Publis	Boolean	V	50	
13	/My Computer/Untitled Library 1/	13	Network-Publis	Boolean	V	50	
14	/My Computer/Untitled Library 1/	14	Network-Publis	Boolean		50	
15	/My Computer/Untitled Library 1/	15	Network-Publis	Boolean	V	50	
16	/My Computer/Untitled Library 1/	16	Network-Publis	Boolean	2	50	
17	/My Computer/Untitled Library 1/	17	Network-Publis	Boolean	2	50	
18	/My Computer/Untitled Library 1/	18	Network-Publis	Boolean	V	50	
Q0	/My Computer/Untitled Library 1/	Q0	Network-Publis	Boolean	V	50	
Q1	/My Computer/Untitled Library 1/	Q1	Network-Publis	Boolean	V	50	
Q2	/My Computer/Untitled Library 1/	Q2	Network-Publis	Boolean	V	50	
Q3	/My Computer/Untitled Library 1/	Q3	Network-Publis	Boolean	V	50	
Q4	/My Computer/Untitled Library 1/	Q4	Network-Publis	Boolean	V	50	
Q5	/My Computer/Untitled Library 1/	Q5	Network-Publis	Boolean		50	
Q6	/My Computer/Untitled Library 1/	Q6	Network-Publis	Boolean	✓	50	

Ilustración 89: LabVIEW – Multiple Variable Editor Fuente: LabVIEW

Ilustración 90: LabVIEW – New VI Fuente: LabVIEW

e Edit View Projec	t Operate Tools	Window Help	
수 🕹 🥚 🛙	15pt Application Fo	Show Block Diagram	Ctrl+E
		Show Project	
		Tile Left and Right	Ctrl+T
		Tile Up and Down	
		Full Size	Ctrl+/
		1 Untitled 1.vi Front Panel on Untitled Project 1.lvproj/My Computer *	
		2 Untitled 1.vi Block Diagram on Untitled Project 1.lvproj/My Computer *	
		3 Untitled Project 1.lvproj * - Project Explorer	
		All Windows	Ctrl+Shift+V

Ilustración 91: LabVIEW – Show Block Diagram Fuente: LabVIEW

Ilustración 92: LabVIEW – Arrastrar variables de entrada a Front Panel Fuente: LabVIEW

Ilustración 93: LabVIEW – Arrastrar variables de salida a Diagrama de Bloques Fuente: LabVIEW

Q0	Visible Items		1
	Help		
01	Examples		
QI	Description and Tip		
	Breakpoint	۲	
Q2	Structures Palette	•	
	Boolean Palette	•	
Q3	Create	۲	
	Replace	٠	
Q4	Change To	٠	1
	Show Variable In Project		
Q	Replace with Programmatic Access		
	Access Mode	•	✓ Read
	Timestamp	•	Writ
14	Timeout	•	
	Reference Mode		
	Select Variable	٠	
	Remove and Rewire		
	Properties		

Ilustración 94: LabVIEW – Seleccionar Access Mode Write de cada variable de salida Fuente: LabVIEW

Untitled 1.v	i Front Panel on Un	titled Project 1.lvp	roj/My Computer *		- 0	>
le Edit Vie	// Project Opera	te Tools Wind	low Help			
als. (E)	Портар	plication Pont •	*** •0* ***	• Search	4 8 LL	
	-(=) Controls		Q Searc	:h		
10	Vlodern			► I6 I7	18	
<	1	8	ate			
	123	80	-🖂 Boolean			1
	Numeric	Boolean		Push Button		
	नगर	EB	0	0	0	
	[:]	⁹ Fc	Push Button	Rocker	Vert Rocker	
	Array, Matrix &	List, Table &				
	(Ster)	(m)	•		8	
	(from)	-0-	Pauled LED	Herizontal	Vertical Tennels	
	Ring & Enum	Containers	Round LED	Toggle Switch	Switch	
				3	0	
	Ĩ	84	C	60 4 6 A 4	W. C. LETT	
	Variant & Class	Decorations	Square LED	Slide Switch	Switch	
	Silver		OK (CARCIL	5100	
	bystem		OK Rutton	Cancel Button	Stop Putton	
	Classic		OK DOLLON	Cancer buttom	stop button	
1	xpress		2			
	NET & ActiveX					
1	DSC Module		Radio Buttons			
		¥				1

Ilustración 95: LabVIEW – Insertar push button en Panel Frontal por cada variable de salida Fuente: LabVIEW

Ilustración 96: LabVIEW – Conectar elementos diagrama de bloques Fuente: LabVIEW

Dutitled 1.vi Front Pa	<u>442</u> 9			
File Edit View Proje	ct Operate Tools Wind	ow Help		HTHM
\$ ֎ ■ ■	15pt Application Font 🔫] ‱▾ ☜▾ 尊▾	🔸 Search	
Run Continuously				^

Ilustración 97: LabVIEW – Ejecutar Programa – Run Continuosly Fuente: LabVIEW

Deployment Progress —		X
Deployment Status		
Deploying Untitled Library 1.lvlib:I1\\10.10.241.221\Untitled Libra deployed.	ı r y 1∖l1	^
Deploying Untitled Library 1.lvlib:I0\\10.10.241.221\Untitled Libra deployed.	iry 1\10	
Deploying Untitled Library 1.kvlib:Al1\\10.10.241.221\Untitled Lib deployed.	rary 1\Al1	
Deploying Untitled Library 1.Ivlib:AI0\\10.10.241.221\Untitled Lib deployed.	rary 1\Al0	
Deployment completed successfully		~
Deployment Progress		

Ilustración 98: LabVIEW – Ejecutar Programa – Deployment Progress Fuente: LabVIEW

Una vez realizado el último paso, estará completa la comunicación entre el módulo del PLC y el proyecto en LabVIEW la cual podremos verificar mediante sus entradas y salidas.

3.7. MEDIDOR DE PARÁMETROS: CONFIGURACIÓN

Ilustración 99: Medidor de parámetros PM5100 Fuente: Schneider – User guide PM5100

Para implementar el sistema de adquisición de datos se usarán los medidores de parámetros marca Schneider modelo PM5100, instalados en los tableros de los transformadores. Estos elementos cuentan con un puerto de comunicación RS-485 que permitirá conectarse con en puerto serial del PLC mediante un cable de red para obtener diferentes tipos de datos de los transformadores tales como voltajes, corrientes, potencias, etc. que posteriormente utilizaremos para realizar los análisis y simulaciones de las diferentes pruebas. Para esto primero realizaremos la siguiente configuración en el medidor de parámetros:

Menú Mantenimiento > Configuración > Contraseña (0000) OK > Comunicación

- Protocol: Modbus
- Address: 1
- Baud rate: 19200
- Parity: None

3.7.1. CONEXIÓN MODBUS: MEDIDOR DE PARAMETROS - PLC

Para realizar la conexión entre el PLC y el medidor de parámetros utilizaremos un cable de red con un terminal RJ45 para el puerto Serial del PLC y el puerto RS485 del otro extremo con la siguiente configuración en sus pines:

Ilustración 100: Disposición de pines Puerto RJ45 Fuente: Schneider – Datasheet PLC TM221CE16R

	PUERTO SERIAL - CONEXIÓN SL1						
N° PIN	RS485	OBSERVACIÓN					
1	No conectado						
2	No conectado						
3	No conectado						
4	D1						
5	D0						
6	No conectado						
7	5 V CC	Entregados por el controlador. No conectar.					
8	Común						

Tabla 6: Conexión Puerto Serial – RS485 Fuente: Schneider – Datasheet PLC TM221CE16R Elaborado por: Los autores

CAPÍTULO IV

4. SIMULACIÓN Y ANÁLISIS

4.1. PRUEBA N°1: ANÁLISIS DE LA CONEXIÓN D-Y AL CONECTAR UNA CARGA RESISTIVA VARIABLE EN ESTRELLA.

Esta prueba consiste en analizar el comportamiento y los ángulos de desfasamiento de los fasores de voltaje y corriente, además de las potencias activas, reactivas y aparentes de un sistema de transformadores trifásicos conectados en Delta – Estrella con una carga resistiva variable conectada en estrella.

4.1.1. DIAGRAMA

Ilustración 101: Prueba Nº1 – Conexión D-y de transformadores trifásicos con carga resistiva variable Fuente: (Chapman, 2000) Elaborado por: Los autores

4.1.2. RECURSOS

Para la realización de esta prueba se utilizaron los siguientes recursos

- Tablero de pruebas de transformadores trifásicos
- Alimentación trifásica 120/240 Vac
- Cargas resistiva trifásica variable
- Cables de conexión

- Módulo de adquisición de datos (PLC)
- Laptop
- Multímetro

4.1.3. PROCEDIMIENTO

El procedimiento a seguir en esta prueba es la siguiente:

- Realizar la conexión Delta Estrella en el tablero de pruebas de transformadores
- Se conectará al sistema una carga resistiva variable en estrella con un valor no menor a 80 ohm para evitar daño en los transformadores
- Conectar los cables de comunicación entre el medidor de parámetros, el PLC y la laptop
- Realizar la simulación en LabVIEW y posterior análisis de los datos y diagramas fasoriales adquiridos

4.1.4. VENTANA GRÁFICA: DIAGRAMAS FASORIALES VOLTAJE Y CORRIENTE

 Diagramas fasoriales de voltaje y corriente del lado primario del transformador trifásico con carga resistiva trifásica de 80 Ω, 90 Ω y 100 Ω.

Ilustración 102: Prueba N•1 – Diagrama fasorial voltajes lado primario. Carga resistiva trifásica 80 Ω Fuente: LabVIEW Elaborado por: Los autores

Ilustración 103: Prueba N•1 – Diagrama fasorial corrientes lado primario. Carga resistiva trifásica 80 Ω Fuente: LabVIEW Elaborado por: Los autores

Ilustración 104: Prueba N[•]1 – Diagrama fasorial voltajes lado primario. Carga resistiva trifásica 90 Ω Fuente: LabVIEW Elaborado por: Los autores

Ilustración 105: Prueba N•1 – Diagrama fasorial corrientes lado primario. Carga resistiva trifásica 90 Ω Fuente: LabVIEW Elaborado por: Los autores

Ilustración 106: Prueba N[•]1 – Diagrama fasorial voltajes lado primario. Carga resistiva trifásica 100 Ω Fuente: LabVIEW Elaborado por: Los autores

Ilustración 107: Prueba N•1 – Diagrama fasorial corrientes lado primario. Carga resistiva trifásica 100 Ω Fuente: LabVIEW Elaborado por: Los autores

 Diagramas fasoriales de voltaje y corriente del lado secundario del transformador trifásico con carga resistiva trifásica de 80 Ω, 90 Ω y 100 Ω.

Ilustración 108: Prueba N[•]1 – Diagrama fasorial voltajes lado secundario. Carga resistiva trifásica 80 Ω Fuente: LabVIEW Elaborado por: Los autores

Ilustración 109: Prueba N•1 – Diagrama fasorial corrientes lado secundario. Carga resistiva trifásica 80 Ω Fuente: LabVIEW Elaborado por: Los autores

Ilustración 110: Prueba N•1 – Diagrama fasorial voltajes lado secundario. Carga resistiva trifásica 90 Ω Fuente: LabVIEW Elaborado por: Los autores

Ilustración 111: Prueba N•1 – Diagrama fasorial corrientes lado secundario. Carga resistiva trifásica 90 Ω Fuente: LabVIEW Elaborado por: Los autores

Ilustración 112: Prueba N°1 – Diagrama fasorial voltajes lado secundario. Carga resistiva trifásica 100 Ω Fuente: LabVIEW Elaborado por: Los autores

Ilustración 113: Prueba N•1 – Diagrama fasorial corrientes lado secundario. Carga resistiva trifásica 100 Ω Fuente: LabVIEW Elaborado por: Los autores

4.1.5. VENTANA GRÁFICA: TRIÁNGULOS DE POTENCIA

• Triángulos de potencia de cada fase y total del lado primario del transformador trifásico con

carga resistiva trifásica de 80 Ω , 90 Ω y 100 Ω .

Ilustración 114: Prueba N[•]1 – Triángulos de potencia lado primario. Carga resistiva trifásica 80 Ω Fuente: LabVIEW Elaborado por: Los autores

Ilustración 115: Prueba N•1 – Triángulos de potencia lado primario. Carga resistiva trifásica 90 Ω Fuente: LabVIEW Elaborado por: Los autores

Ilustración 116: Prueba N•1 – Triángulos de potencia lado primario. Carga resistiva trifásica 100 Ω Fuente: LabVIEW Elaborado por: Los autores

• Triángulos de potencia de cada fase y total del lado secundario del transformador trifásico

con carga resistiva trifásica de 80 Ω , 90 Ω y 100 Ω .

Ilustración 117: Prueba N•1 – Triángulos de potencia lado secundario. Carga resistiva trifásica 80 Ω Fuente: LabVIEW Elaborado por: Los autores

Ilustración 118: Prueba N[•]1 – Triángulos de potencia lado secundario. Carga resistiva trifásica 90 Ω Fuente: LabVIEW Elaborado por: Los autores

Ilustración 119: Prueba N[•]1 – Triángulos de potencia lado secundario. Carga resistiva trifásica 100 Ω Fuente: LabVIEW Elaborado por: Los autores

4.1.6. CÁLCULOS TEÓRICOS

• Cálculos teóricos con carga resistiva trifásica de 80 Ω .

	Transformado	Trifásico co	Cálculos t	eóricos prueba 1 elta-Estrella con carga resist	iva trifásica 800			
Relación de transformación [a]:	1.2	eleva	dor	Tino de carga:		Resistiva		
Frecuencia [Hz]:	1.4	60		Velocidad angular [w]:		2*π*f		
Potencia c/transformador:		160		Conexión de la carga:		Estrella		
rotenera ej transformador.		1.074	Cálc	ulo de la carga		Latend		
Datos de la prueba	R	L	с	$X_L = jwL$	$X_C = -j\frac{1}{wC}$	$ Z = \sqrt{R^2 + X^2}$	$\emptyset = \tan^{-1}\left(\frac{X}{R}\right)$	
Z1	80,00	0,00	0,00	0,00	0,00	80,00	0,00	
Z2	80,00	0,00	0,00	0,00	0,00	80,00	0,00	
Z3	80,00	0,00	0,00	0,00	0,00	80,00	0,00	
Voltaje Lado	o primario (Conexión	Delta)		Voltaje Lado secundario (Conexión Estrella)				
v	oltaje primario L-L		,		Voltaje secundario L-L			
Fórmula	Parámetros	Magnitud [v]	Angulo [\oplus]	Fórmula	Parámetros	Magnitud [v]	Angulo [\phi]	
Datos de la prueba	Voltaje R-S (V1-2)	40,00	0,00	$V_{S_{1}} = V_{S_{1}} + \sqrt{3} < +30^{\circ}$	Voltaje r-s (V1-2)	138,56	30,00	
Dutos ut tu pi utbu	Voltaje S-T (V2-3)	40,00	-120,00	· · · · · · · · · · · · · · · · · · ·	Voltaje s-t (V2-3)	138,56	-90,00	
	Voltaje I-R (V3-1)	40,00	120,00		Voltaje t-r (V3-1)	138,56	150,00	
Eórmula	Darámetros	Magnitud [v]	Ángulo [4]	Fórmula	Parámetros	Magnitud [v]	Ángulo (4)	
Formula	Voltaje R (V1)	23.09	-30.00	Formula	Voltaie r (V1)	80.00	Δ 00	
$V_{n}, u = \frac{V_{L-L}}{1} < -30^{\circ}$	Voltaje S (V2)	23,05	-150.00	$Vs_{L-N} = Vp_{L-L} * a$	Voltaje s (V2)	80.00	-120.00	
$V P_{L-N} = \sqrt{3}$	Voltaje T (V3)	23,05	90.00		Voltaje t (V3)	80.00	120,00	
Corriente Lad	lo Primario (Conexió	n Delta)		Corriente La	do secundario (Cone	xión Estrella)		
Corriente primario L [A]				C	orriente secundario L	Al		
Fórmula	Parámetros	Magnitud [A]	Ángulo [@]	Fórmula	Parámetros	Magnitud [A]	Ángulo [@]	
	Corriente R (I1)	3.46	-30.00		Corriente r (I1)	1.00	0.00	
	Corriente S (12)	3.46	-150.00	$I_{S_{L}} = \frac{V_{S_{L-N}}}{V_{S_{L-N}}}$	Corriente s (12)	1.00	-120.00	
$Ip_L = Ip_F * \sqrt{3} < -30^\circ$	Corriente T (13)	3.46	90.00	Z Z	Corriente t (13)	1.00	120.00	
	Corriente N (IN)	0,00	0,00		Corriente n (In)			
Cor	riente primario F [A]							
Fórmula	Parámetros	Magnitud [A]	Ángulo [@]					
	Corriente R-S (I1-2)	2.00	0.00					
ln = lc + a	Corriente S-T (12-3)	2.00	-120.00					
$Ip_F = IS_L * u$	Corriente T-R (I3-1)	2.00	120.00					
Cálculo de potenci	as lado primario (Co	nexión Delta)		Cálculo de potencias lado secundario (Conexión Estrella)				
Po	otencia activa [W]				Potencia activa [W]			
Fórmula	Parámetros	Magnitud [w]	Ángulo [\otigen]	Fórmula	Parámetros	Magnitud [w]	Ángulo [φ]	
	Potencia activa P1	80,00	0,00		Potencia activa P1	80,00	0,00	
$P = V p_{L-L} * I p_F * \cos(\emptyset_Z)$	Potencia activa P2	80,00	0,00	$P = V s_{L-N} * I s_L * \cos(\phi_Z)$	Potencia activa P2	80,00	0,00	
	Potencia activa P3	80,00	0,00		Potencia activa P3	80,00	0,00	
Potencia activa PT (P	1+P2+P3)	240,00	0,00	Potencia activa PT (P1	L+P2+P3)	240,00	0,00	
Pote	encia Reactiva [VAR]			Potencia Reactiva [VAR]				
Fórmula	Parámetros	Magnitud [var]	Ángulo [\otigen]	Fórmula	Parámetros	Magnitud [var]	Ángulo [φ]	
0 11 1 (7)	Potencia reactiva Q1	0,00	90,00		Potencia reactiva Q1	0,00	90,00	
$Q = V p_{L-L} * I p_F * \sin(\phi_Z)$	Potencia reactiva Q2	0,00	90,00	$Q = V S_{L-N} * I S_L * \sin(\emptyset_Z)$	Potencia reactiva Q2	0,00	90,00	
	Potencia reactiva Q3	0,00	90,00		Potencia reactiva Q3	0,00	90,00	
Potencia activa QT (Q	1+Q2+Q3)	0,00	90,00	Potencia activa QT (Q1	l+Q2+Q3)	0,00	90,00	
Pote	encia aparente [VA]				Potencia aparente [VA]		
Fórmula	Parámetros	Magnitud [w]	Ángulo [φz]	Fórmula	Parámetros	Magnitud [w]	Ángulo [\dot z]	
$S = V p_{I,-I} * I p_F$	Potencia aparente S1	80,00	0,00	$S = V S_{I-I} * I S_{I}$	Potencia aparente S1	80,00	0,00	
$\phi_c = \phi_a$	Potencia aparente S2	80,00	0,00	$\phi_{n} = \phi_{-}$	Potencia aparente S2	80,00	0,00	
	Potencia aparente S3	80,00	0,00	$\psi_S = \psi_Z$	Potencia aparente S3	80,00	0,00	
$ST = \sqrt{PT^2 + QT^2}$				$ST = \sqrt{PT^2 + QT^2}$				
$\phi_S = \tan^{-1}\left(\frac{QT}{PT}\right)$	Potencia aparente ST	240,00	0,00	$\phi_S = \tan^{-1} \left(\frac{QT}{PT} \right)$	Potencia aparente ST	240,00	0,00	
Cálculo de Factor de po	otencia lado primario	(Conexión De	elta)	Cálculo de Factor de p	otencia lado secunda	ario (Conexión Est	trella)	
F	actor de Potencia			-/ .	Factor de Potencia			
Fórmula	Parámetros	Magnitud [w]		Fórmula	Parámetros	Magnitud [w]	ļ	
	Fp1	1,00			Fp1	1,00		
$Fp = \cos(\phi_S)$	Fp2	1,00		$Fp = \cos(\phi_S)$	Fp2	1,00		
-	Fp3	1,00		~	Fp3	1,00	ļ	
	FpT	1,00			FpT	1,00		

Tabla 7: Cálculos teóricos transformadores trifásicos D-Y con carga resistiva trifásica de 80Ω Fuente: Los autores

	Transformado	r Trifásico co	Cálculos t onexión De	eóricos prueba 1 Ita-Estrella con carga resist	iva trifásica 90Ω		
Relación de transformación [a]:	1:2	eleva	ldor	Tipo de carga:		Resistiva	
Frecuencia [Hz]:		60		Velocidad angular [w]:		2*π*f	
Potencia c/transformador:		1KVA		Conexión de la carga:		Estrella	
			Cálc	ulo de la carga			
Datos de la prueba	R	L	с	$X_L = jwL$	$X_C = -j\frac{1}{wC}$	$ Z = \sqrt{R^2 + X^2}$	$\emptyset = \tan^{-1}\left(\frac{X}{R}\right)$
Z1	90,00	0,00	0,00	0,00	0,00	90,00	0,00
Z2	90,00	0,00	0,00	0,00	0,00	90,00	0,00
Z3	90,00	0,00	0,00	0,00	0,00 90,00 0,0		
Voltaje Lad	o primario (Conexión	Delta)		Voltaje Lado secundario (Conexión Estrella)			
V	oltaje primario L-L				Voltaje secundario L-L		
Fórmula	Parametros	Magnitud [v]	Angulo [¢]	Formula	Parametros	Magnitud [v]	Angulo [ø]
Datos de la prueba	Voltaje R-S (V1-2)	40,00	0,00	$V_{S_{I-I}} = V_{S_{I-N}} * \sqrt{3} < +30^{\circ}$	Voltaje r-s (V1-2)	138,56	30,00
	Voltaje S-I (V2-3)	40,00	-120,00	L-L L-N	Voltaje s-t (V2-3)	138,56	-90,00
V	oltaje primario L-N	40,00	120,00		Voltaje t-r (V3-1)	138,30	150,00
Eórmula	Darámetros	Magnitud [v]	Ángulo [4]	Fórmula	Parámetros	Magnitud [v]	Ángulo [4]
roilluia	Voltaje R (V1)	23 09	- 30 00	ronnula	Voltaje r (V1)	80 00	0.00
V_{n} , $v = \frac{V_{L-L}}{C} < -30^{\circ}$	Voltaje S (V2)	23,09	-150.00	$Vs_{L-N} = Vp_{L-L} * a$	Voltaje s (V2)	80,00	-120.00
$P_{L-N} = \sqrt{3}$	Voltaje T (V3)	23,05	90.00		Voltaje t (V3)	80.00	120,00
Corriente Lac	lo Primario (Conexió	n Delta)	50,00	Corriente La	do secundario (Cone	xión Estrella)	120,00
Cor	Corriente primerio [A]				orriente secundario I [۵1	
Fórmula	Parámetros	Magnitud [A]	Ángulo [4]	Fórmula	Parámetros	Ω Magnitud [Δ]	Ángulo [d-]
Tomaia	Corriente R (I1)	3.08	-30.00	Tormana	Corriente r (11)	0.89	0.00
	Corriente S (12)	3,08	-150,00	$I_{S} = \frac{V S_{L-N}}{V}$	Corrientes (12)	0,89	-120.00
$Ip_L = Ip_F * \sqrt{3} < -30^{\circ}$	Corriente T (13)	3,00	90.00	$I_{3L} = Z$	Corriente t (13)	0,89	120,00
	Corriente N (IN)	0.00	0.00		Corriente n (In)	0,85	120,00
Cor	riente primario E [A]	0,00	0,00				
Fórmula	Parámetros	Magnitud [A]	Ángulo [d]				
Tomaia	Corriente P-S (I1-2)	1 79	Λιι <u>β</u> αιο [ψ]				
	Corriente S-T (12-2)	1,78	-120.00				
$Ip_F = Is_L * a$	Corriente T-P (I2-1)	1,78	120,00				
	comente I-I(13-1)	1,78	120,00				
Cálculo de potenci	as lado primario (Co	nexión Delta)		Cálculo de potenc	ias lado secundario	(Conexión Estrella	ı)
P	otencia activa [W]				Potencia activa [W]		
Fórmula	Parámetros	Magnitud [w]	Ángulo [@]	Fórmula	Parámetros	Magnitud [w]	Ángulo [@]
	Potencia activa P1	71.11	0.00		Potencia activa P1	71.11	0.00
$P = V p_{L-L} * I p_F * \cos(\phi_Z)$	Potencia activa P2	71,11	0,00	$P = V s_{L-N} * I s_L * \cos(\phi_Z)$	Potencia activa P2	71,11	0,00
	Potencia activa P3	71,11	0,00		Potencia activa P3	71,11	0,00
Potencia activa PT (P	1+P2+P3)	213.33	0.00	Potencia activa PT (P1	+P2+P3)	213.33	0.00
Pote	encia Reactiva [VAR]	-,	.,		otencia Reactiva [VAR	1	-,
Fórmula	Parámetros	Magnitud (var)	Ángulo [6]	Fórmula	Parámetros	Magnitud [var]	Ángulo [@]
	Potencia reactiva O1	0.00	90.00		Potencia reactiva O1	0.00	90.00
$Q = V p_{L-L} * I p_F * \sin(\phi_7)$	Potencia reactiva O2	0,00	90.00	$Q = V s_{L-N} * I s_L * \sin(\phi_{\tau})$	Potencia reactiva O2	0,00	90.00
	Potencia reactiva O3	0,00	90.00		Potencia reactiva O3	0,00	90.00
Potencia activa OT (C	1+02+03)	0.00	90.00	Potencia activa OT (O1	+02+03)	0.00	90.00
Dot	ancia anarente [VA]	0,00	30,00		Potencia anarente [\/A	1	50,00
Fórmula	Parámetros	Magnitud [w]	Ángulo (dar)	Fórmula	Parámetros	Magnitud [w]	Ángulo [dz]
	Potencia anarente 61	71 11			Potencia anaronte 61	71 11	Λιισμίο [ψε]
$S = v p_{L-L} * I p_F$	Potencia anarente \$7	71 11	0.00	$S = V S_{L-L} * I S_L$	Potencia anarente \$7	71 11	0.00
$\phi_S = \phi_Z$	Potencia anarente S2	71 11	0.00	$\phi_S = \phi_Z$	Potencia anarente S2	71 11	0.00
$cT = \sqrt{pT^2 + oT^2}$	rement apprente 33	,	0,00	$cT = \sqrt{pT^2 + oT^2}$	tenera aparente 33	· -,	0,00
$\delta T = \sqrt{PT} + QT^{2}$ $\phi_{S} = \tan^{-1} \left(\frac{QT}{PT} \right)$	Potencia aparente ST	213,33	0,00	$\delta I = \sqrt{PI^2 + QI^2}$ $\phi_S = \tan^{-1} \left(\frac{QT}{PT}\right)$	Potencia aparente ST	213,33	0,00
Cálculo de Factor de po	otencia lado primario	(Conexión De	elta)	Cálculo de Factor de p	otencia lado secund	ario (Conexión Es	trella)
F	actor de Potencia				Factor de Potencia		0
Fórmula	Parámetros	Magnitud [w]	ļ	Fórmula	Parámetros	Magnitud [w]	ļ
	Fp1	1,00	ļ		Fp1	1,00	ļ
$Fp = \cos(\phi_S)$	Fp2	1,00	ļ	$Fp = \cos(\phi_S)$	Fp2	1,00	
	Fp3	1,00	ļ		Fp3	1,00	ļ
L	FpT	1,00	1		FpT	1,00	1

• Cálculos teóricos con carga resistiva trifásica de 90 Ω .

Tabla 8: Cálculos teóricos transformadores trifásicos D-Y con carga resistiva trifásica de 90 Ω Fuente: Los autores

Cálculos teóricos prueba 1 Transformador Trifásico conexión Delta-Estrella con carga resistiva trifásica 100Ω									
Relación de transformación [a]:	1:2	eleva	dor	Tipo de carga:		Resistiva			
Frecuencia [Hz]:	60		Velocidad angular [w]:	2*π*f					
Potencia c/transformador:	dor: 1KVA			Conexión de la carga:	Estrella				
Cálculo de la carga									
Datos de la prueba	R	L	с	$X_L = jwL$	$X_C = -j\frac{1}{wC}$	$ Z = \sqrt{R^2 + X^2}$	$\emptyset = \tan^{-1}\left(\frac{X}{R}\right)$		
Z1	100,00	0,00	0,00	0,00	0,00	100,00	0,00		
Z2	100,00	0,00	0,00	0,00	0,00	100,00	0,00		
Z3	100,00	0,00	0,00	0,00	0,00	100,00	0,00		
Voltaje Lado primario (Conexión Delta)				Voltaje Lado secundario (Conexión Estrella)					
V	oltaje primario L-L		6		Voltaje secundario L-I				
Fórmula	Parámetros	Magnitud [v]	Angulo [\ophi]	Fórmula	Parámetros	Magnitud [v]	Angulo [\oplus]		
Datos de la prueba	Voltaje R-S (V1-2)	40,00	0,00	$Vs_{L-L} = Vs_{L-N} * \sqrt{3} < +30^{\circ}$	Voltaje r-s (V1-2)	138,56	30,00		
Datos do tapi doba	Voltaje S-1 (V2-3)	40,00	-120,00		Voltaje s-t (V2-3)	138,56	-90,00		
	Voltaje I-R (V3-1)	40,00	120,00		Voltaje t-r (V3-1)	138,56	150,00		
V Férmula	Ditaje primario L-N	Magnitud [u]	Ángula [4]	Férmende	Voltaje secundario L-r	Magnitud [u]	Ángula [4]		
Formula	Valtaia D (V(1)	and the second	Angulo [φ]	Formula	Valtaia # (V1)	Naghitud [V]	Angulo [φ]		
V_{2} $-\frac{V_{L-L}}{2} < -20^{\circ}$	Voltaje R (VI)	23,09	-30,00	$V_{S_{I-N}} = V_{P_{I-I}} * a$	Voltaje r (V1)	80,00	120.00		
$v p_{L-N} = \frac{1}{\sqrt{3}} < -30$	Voltaje S (V2)	23,09	-150,00	· · · · · · · · · · · · · · · · · · ·	Voltaje S (V2)	80,00	-120,00		
Corriente Lac	Voitaje I (V3) 23,09 90,00 Voitaje I (V3) 80,00 Corriente Lado Primario (Conexión Delta) Corriente Lado secundario (Conexión Estrella)				xión Estrella)	120,00			
	viente aviacatie L [A]				antianta accumularia I F	A1			
Cor	nente primario L [A]	Magnitud [A]	Ángula [4]	C. C.	Derémente secundario L		Ángula [4]		
Formula	Parametros	Magnitud [A]	Angulo [φ]	Formula	Parametros	Magnitud [A]	Angulo [φ]		
_	Corriente R (I1)	2,77	-30,00	Vs _{L-N}	Corriente r (11)	0,80	0,00		
$Ip_L = Ip_F * \sqrt{3} < -30^\circ$	Corriente S (12)	2,77	-150,00	$Is_L = -\frac{Z}{Z}$	Corriente s (12)	0,80	-120,00		
	Corriente I (I3)	2,77	90,00		Corriente t (13)	0,80	120,00		
	Corriente N (IN)	0,00	0,00		Corriente n (in)				
Cor	riente primario F [A]		ć				1		
Fórmula	Parametros	Magnitud [A]	Angulo [¢]						
	Corriente R-S (I1-2)	1,60	0,00						
$Ip_F = Is_L * a$	Corriente S-T (I2-3)	1,60	-120,00						
	Corriente T-R (I3-1)	1,60	120,00						
Cálculo de notencias lado primario (Conevión Delta)			Cálculo de notencias lado secundario (Conexión Estrella)						
		,							
Po	otencia activa [W]		<	-/ .	Potencia activa [W]		<i>(</i>		
Formula	Parametros	Magnitud [w]	Angulo [¢]	Formula	Parametros	Magnitud [w]	Angulo [ø]		
$\mathbf{D} = \mathbf{V}_{\mathbf{T}}$ $\mathbf{U}_{\mathbf{T}} = \mathbf{U}_{\mathbf{T}}$	Potencia activa P1	64,00	0,00	$\mathbf{D} = \mathbf{V}_{\mathbf{a}}$	Potencia activa P1	64,00	0,00		
$P = v p_{L-L} * I p_F * \cos(\psi_Z)$	Potencia activa P2	64,00	0,00	$P = VS_{L-N} * IS_L * \cos(\psi_Z)$	Potencia activa P2	64,00	0,00		
	Potencia activa P3	64,00	0,00		Potencia activa P3	64,00	0,00		
Potencia activa PT (P	P1+P2+P3)	192,00	0,00	Potencia activa PT (P1+P2+P3) 192,00 0,00					
Pote	encia Reactiva [VAR]	-		Potencia Reactiva [VAR]					
Fórmula	Parámetros	Magnitud [var]	Ángulo [φ]	Fórmula	Parámetros	Magnitud [var]	Ángulo [φ]		
0 4 4 4 4 4 1	Potencia reactiva Q1	0,00	90,00		Potencia reactiva Q1	0,00	90,00		
$Q = V p_{L-L} * l p_F * \sin(\phi_Z)$	Potencia reactiva Q2	0,00	90,00	$Q = V S_{L-N} * I S_L * \sin(\emptyset_Z)$	Potencia reactiva Q2	0,00	90,00		
	Potencia reactiva Q3	0,00	90,00		Potencia reactiva Q3	0,00	90,00		
Potencia activa QT (Q1+Q2+Q3) 0,00 90,00		90,00	Potencia activa QT (Q	L+Q2+Q3)	0,00	90,00			
Pot	encia aparente [VA]			Potencia aparente [VA]					
Fórmula	Parámetros	Magnitud [w]	Ángulo [ϕz]	Fórmula	Parámetros	Magnitud [w]	Ángulo [\u00f6z]		
$S = V p_{r-1} * I p_{r}$	Potencia aparente S1	64,00	0,00	S = VS, $* IS$.	Potencia aparente S1	64,00	0,00		
$\phi = \phi$	Potencia aparente S2	64,00	0,00		Potencia aparente S2	64,00	0,00		
$\psi_S - \psi_Z$	Potencia aparente S3	64,00	0,00	$\psi_S = \psi_Z$	Potencia aparente S3	64,00	0,00		
$ST = \sqrt{PT^2 + QT^2}$				$ST = \sqrt{PT^2 + OT^2}$					
$\phi_S = \tan^{-1}\left(\frac{QT}{PT}\right)$	Potencia aparente ST	192,00	0,00	$\phi_S = \tan^{-1} \left(\frac{QT}{PT} \right)$	Potencia aparente ST	192,00	0,00		
Cálculo de Factor de potencia lado primario (Conexión Delta)			Cálculo de Factor de potencia lado secundario (Conexión Estrella)						
F	actor de Potencia	r			Factor de Potencia		1		
Fórmula	Parámetros	Magnitud [w]		Fórmula	Parámetros	Magnitud [w]	ļ		
$Fp = \cos(\phi_S)$	Fp1	1,00			Fp1	1,00	ļ		
	Fp2	1,00		$Fp = \cos(\phi_c)$	Fp2	1,00	ļ		
	Fp3	1,00		1	Fp3	1,00	ļ		
	FpT	1,00			FpT	1,00	1		

• Cálculos teóricos con carga resistiva trifásica de 100 Ω .

Tabla 9: Cálculos teóricos transformadores trifásicos D-Y con carga resistiva trifásica de 100 Ω Fuente: Los autores

4.1.7. CUADROS COMPARATIVOS

• Cuadro comparativo del sistema con carga resistiva trifásica de 80 Ω .

Cuadro comparativo prueba 1 Transformador Trifásico conexión Delta-Estrella con carga resistiva trifásica 80Ω									
	Parámetros	UNIDADES	Cálculos teóricos	Mediciones prácticas	% Error				
MARIO DEL TRANSFORMADOR	Voltaje R-S (V1-2)	V	40,00	40,55	1,38%				
	Voltaje S-T (V2-3)	V	40,00	40,90	2,24%				
	Voltaje T-R (V3-1)	V	40,00	39,40	1,50%				
	Voltaje R (V1)	V	23,09	22,65	1,94%				
	Voltaje S (V2)	V	23,09	24,21	4,83%				
	Voltaje T (V3)	V	23,09	22,86	1,00%				
	Corriente R (I1)	А	3,46	3,33	3,93%				
	Corriente S (I2)	А	3,46	3,42	1,22%				
	Corriente T (I3)	A	3,46	3,31	4,33%				
	Corriente N (IN)	А	0,00	0,02					
	Potencia activa P1	W	80,00	75,36	5,81%				
	Potencia activa P2	W	80,00	82,85	3,56%				
	Potencia activa P3	W	80,00	76,01	4,99%				
	Potencia activa PT	W	240,00	233,60	2,67%				
	Potencia reactiva Q1	VAR	0,00	4,54					
	Potencia reactiva Q2	VAR	0,00	6,29					
PRI	Potencia reactiva Q3	VAR	0,00	6,11					
LADO	Potencia reactiva QT	VAR	0,00	16,90					
	Potencia aparente S1	VA	80,00	75,52	5,60%				
	Potencia aparente S2	VA	80,00	83,47	4,34%				
	Potencia aparente S3	VA	80,00	75,76	5,30%				
	Potencia aparente ST	VA	240,00	235,07	2,05%				
	Factor de potencia Fp1	-	1,00	1,00	0,30%				
	Factor de potencia Fp2	-	1,00	1,00	0,20%				
	Factor de potencia Fp3	-	1,00	1,00	0,30%				
	Factor de potencia FpT	-	1,00	1,00	0,40%				
	Voltaje r-s (V1-2)	V	138,56	130,93	5,51%				
	Voltaje s-t (V2-3)	V	138,56	124,70	10,01%				
	Voltaje t-r (V3-1)	V	138,56	125,34	9,54%				
	Voltaje r (V1)	V	80,00	74,81	6,49%				
LADO SECUNDARIO DEL TRANSFORMADOR	Voltaje s (V2)	V	80,00	74,04	7,45%				
	Voltaje t (V3)	V	80,00	71,06	11,17%				
	Corriente r (I1)	A	1,00	0,94	6,30%				
	Corriente s (I2)	A	1,00	0,93	6,60%				
	Corriente t (I3)	A	1,00	0,90	10,10%				
	Corriente n (In)	A	0,00	0,01					
	Potencia activa P1	W	80,00	70,17	12,28%				
	Potencia activa P2	W	80,00	69,20	13,50%				
	Potencia activa P3	W	80,00	64,40	19,50%				
	Potencia activa PI	W	240,00	203,57	15,18%				
	Potencia reactiva Q1	VAR	0,00	0,96					
	Potencia reactiva Q2	VAR	0,00	0,90					
	Potencia reactiva Q3	VAR	0,00	U, /b					
	Potencia reactiva QT	VAR	0,00	2,62	12 6101				
	Potencia aparente S1	VA	80,00	69,91	12,61%				
	Potencia aparente S2	VA	80,00	69,21	13,49%				
	Potencia aparente S3	VA	80,00	64,40	19,50%				
	Potencia aparente ST	VA	240,00	203,57	15,18%				
	Factor de potencia Fp1	-	1,00	1,00	0,20%				
	Factor de potencia Fp2	-	1,00	1,00	0,10%				
	Factor de potencia Fp3	-	1,00	1,00	0,10%				
	Factor de potencia FpT	-	1,00	1,00	0,10%				

Tabla 10: Cuadro comparativo de transformadores trifásicos D-Y con carga resistiva trifásica de 80Ω Fuente: Los autores
	Cuadro comparativo prueba 1 Transformador Trifásico conexión Delta-Estrella con carga resistiva trifásica 90Ω								
	Parámetros	UNIDADES	Cálculos teóricos	Mediciones prácticas	% Error				
	Voltaje R-S (V1-2)	V	40,00	40,80	2,01%				
	Voltaje S-T (V2-3)	V	40,00	41,09	2,73%				
	Voltaje T-R (V3-1)	V	40,00	39,60	1,01%				
	Voltaje R (V1)	V	23,09	22,87	0,99%				
	Voltaje S (V2)	V	23,09	24,32	5,32%				
	Voltaje T (V3)	V	23,09	22,98	0,48%				
~	Corriente R (I1)	A	3,08	2,95	4,10%				
Ī	Corriente S (I2)	A	3,08	3,05	0,82%				
A	Corriente T (I3)	A	3,08	2,95	4,26%				
B	Corriente N (IN)	A	0,00	0,02					
1SF	Potencia activa P1	W	71,11	67,16	5,56%				
RA	Potencia activa P2	W	71,11	74,63	4,95%				
E	Potencia activa P3	W	71,11	67,65	4,86%				
Ö	Potencia activa PT	W	213,33	209,54	1,78%				
RIC	Potencia reactiva Q1	VAR	0,00	4,10					
MA	Potencia reactiva Q2	VAR	0,00	5,88					
PRI	Potencia reactiva Q3	VAR	0,00	5,98					
8	Potencia reactiva QT	VAR	0,00	15,88					
R	Potencia aparente S1	VA	71,11	67,70	4,80%				
	Potencia aparente S2	VA	71,11	74,76	5,13%				
	Potencia aparente S3	VA	71,11	67,89	4,54%				
	Potencia aparente ST	VA	213,33	210,06	1,53%				
	Factor de potencia Fp1	-	1,00	1,00	0,40%				
	Factor de potencia Fp2	-	1,00	1,00	0,20%				
	Factor de potencia Fp3	-	1,00	1,00	0,40%				
	Factor de potencia FpT	-	1,00	1,00	0,40%				
	Voltaje r-s (V1-2)	V	138,56	131,75	4,92%				
	Voltaje s-t (V2-3)	V	138,56	126,48	8,72%				
	Voltaje t-r (V3-1)	V	138,56	127,30	8,13%				
	Voltaje r (V1)	V	80,00	75,77	5,28%				
	Voltaje s (V2)	V	80,00	74,63	6,71%				
	Voltaje t (V3)	V	80,00	72,40	9,50%				
Ж	Corriente r (I1)	A	0,89	0,83	6,40%				
AD	Corriente s (I2)	A	0,89	0,83	7,19%				
Ž	Corriente t (I3)	A	0,89	0,80	10,11%				
6	Corriente n (In)	A	0,00	0,01					
ANS NS	Potencia activa P1	W	71,11	62,64	11,92%				
TR/	Potencia activa P2	W	71,11	61,72	13,21%				
E	Potencia activa P3	W	71,11	57,20	19,56%				
ē	Potencia activa PT	W	213,33	181,76	14,80%				
AR	Potencia reactiva Q1	VAR	0,00	0,76					
	Potencia reactiva Q2	VAR	0,00	0,88					
ECL	Potencia reactiva Q3	VAR	0,00	0,71					
0 SI	Potencia reactiva QT	VAR	0,00	2,36					
Ā	Potencia aparente S1	VA	71,11	62,64	11,92%				
	Potencia aparente S2	VA	71,11	61,72	13,20%				
	Potencia aparente S3	VA	71,11	57,21	19,55%				
	Potencia aparente ST	VA	213,33	181,77	14,79%				
	Factor de potencia Fp1	-	1,00	1,00	0,40%				
	Factor de potencia Fp2	-	1,00	1,00	0,10%				
	Factor de potencia Fp3	-	1,00	1,00	0,10%				
	Factor de potencia FpT	-	1,00	1,00	0,10%				

• Cuadro comparativo del sistema con carga resistiva trifásica de 90 Ω .

Tabla 11: Cuadro comparativo de transformadores trifásicos D-Y con carga resistiva trifásica de 90Ω Fuente: Los autores

	Cuadro comparativo prueba 1 Transformador Trifásico conexión Delta-Estrella con carga resistiva trifásica 100Ω								
	Parámetros	UNIDADES	Cálculos teóricos	Mediciones prácticas	% Error				
	Voltaje R-S (V1-2)	V	40,00	40,96	2,40%				
	Voltaje S-T (V2-3)	V	40,00	41,14	2,86%				
	Voltaje T-R (V3-1)	V	40,00	39,64	0,90%				
	Voltaje R (V1)	V	23,09	22,91	0,81%				
	Voltaje S (V2)	V	23,09	24,44	5,81%				
	Voltaje T (V3)	V	23,09	22,90	0,83%				
~	Corriente R (I1)	А	2,77	2,72	1,92%				
õ	Corriente S (I2)	A	2,77	2,78	0,39%				
MAI	Corriente T (I3)	А	2,77	2,70	2,61%				
N	Corriente N (IN)	А	0,00	0,02					
1SF	Potencia activa P1	W	64,00	62,06	3,03%				
RAN	Potencia activa P2	W	64,00	68,29	6,70%				
E	Potencia activa P3	W	64,00	61,58	3,78%				
ä	Potencia activa PT	W	192,00	191,78	0,11%				
RIC	Potencia reactiva Q1	VAR	0,00	3,73					
MA	Potencia reactiva Q2	VAR	0,00	6,00					
PRI	Potencia reactiva Q3	VAR	0,00	5,49					
8	Potencia reactiva QT	VAR	0,00	15,24					
R	Potencia aparente S1	VA	64,00	62,36	2,57%				
	Potencia aparente S2	VA	64,00	68,03	6,29%				
	Potencia aparente S3	VA	64,00	61,96	3,19%				
	Potencia aparente ST	VA	192,00	192,76	0,40%				
	Factor de potencia Fp1	-	1,00	1,00	0,40%				
	Factor de potencia Fp2	-	1,00	1,00	0,20%				
	Factor de potencia Fp3	-	1,00	0,99	0,80%				
	Factor de potencia FpT	-	1,00	1,00	0,10%				
	Voltaje r-s (V1-2)	V	138,56	133,90	3,37%				
	Voltaje s-t (V2-3)	V	138,56	128,81	7,04%				
	Voltaje t-r (V3-1)	V	138,56	129,10	6,83%				
	Voltaje r (V1)	V	80,00	76,65	4,18%				
	Voltaje s (V2)	V	80,00	75,64	5,46%				
	Voltaje t (V3)	V	80,00	73,47	8,16%				
Ж	Corriente r (I1)	A	0,80	0,77	4,38%				
AD	Corriente s (I2)	A	0,80	0,76	5,13%				
R	Corriente t (I3)	A	0,80	0,74	8,00%				
6	Corriente n (In)	A	0,00	0,01					
ANS	Potencia activa P1	W	64,00	58,54	8,54%				
Ę	Potencia activa P2	W	64,00	57,51	10,15%				
Ē	Potencia activa P3	W	64,00	53,69	16,12%				
ō	Potencia activa PT	W	192,00	169,29	11,83%				
AR	Potencia reactiva Q1	VAR	0,00	0,78					
ž	Potencia reactiva Q2	VAR	0,00	0,75					
ECL	Potencia reactiva Q3	VAR	0,00	0,66					
0 S	Potencia reactiva QT	VAR	0,00	2,19	0.50%				
AD	Potencia aparente S1	VA	64,00	58,51	8,59%				
1	Potencia aparente S2	VA	64,00	57,51	10,14%				
	Potencia aparente S3	VA	64,00	53,69	16,11%				
	Potencia aparente ST	VA	192,00	169,30	11,82%				
	Factor de potencia Fp1	-	1,00	1,00	0,20%				
	Factor de potencia Fp2	-	1,00	1,00	0,10%				
	Factor de potencia Fp3	-	1,00	1,00	0,10%				
	Factor de potencia FpT	-	1,00	1,00	0,10%				

• Cuadro comparativo del sistema con carga resistiva trifásica de 100 Ω .

Tabla 12: Cuadro comparativo de transformadores trifásicos D-Y con carga resistiva trifásica de 100Ω Fuente: Los autores

4.1.8. ANÁLISIS DE RESULTADOS

- Voltajes del lado primario (delta): V_{L-N} atrasados 30° con respecto a los V_{L-L} .
- Corrientes del lado primario (delta): Corrientes de línea en fase con V_{L-N} debido a que la carga es mayormente resistiva. Su magnitud disminuye linealmente a medida que se aumenta la resistencia de la carga.
- Voltajes del lado secundario (estrella): V_{L-N} en fase con V_{L-L} del primario. V_{L-L} adelantados 30° con respecto a los V_{L-N} .
- Corrientes del lado secundario (estrella): Corrientes de línea en fase con V_{L-N} debido a que la carga es mayormente resistiva. Su magnitud disminuye linealmente a medida que se aumenta la resistencia de la carga.
- Triángulo de potencias lado primario: Potencia mayormente activa y Fp cercano a la unidad debido a que la carga es mayormente resistiva. Presencia de potencia reactiva debido a la inductancia de los transformadores. Potencias disminuyen a medida que la resistencia de la carga aumenta.
- Triángulo de potencias lado secundario: Potencia mayormente activa y Fp cercano a la unidad debido a que la carga es mayormente resistiva. Menor presencia de potencia reactiva debido a que la inductancia de los transformadores ya no forma parte de la carga. Potencias disminuyen a medida que la resistencia de la carga aumenta.

4.2. PRUEBA N°2: ANÁLISIS DE LA CONEXIÓN D-Y AL CONECTAR UNA CARGA INDUCTIVA-RESISTIVA TRIFÁSICA Y UNA CARGA RESISTIVA MONOFÁSICA.

Esta prueba consiste en analizar el comportamiento y los ángulos de desfasamiento de los fasores de voltaje y corriente, además de las potencias activas, reactivas y aparentes de un sistema de transformadores trifásicos conectados en Delta – Estrella con una carga inductiva-resistiva trifásica conectada en estrella por medio de un motor y una carga resistiva monofásica por medio de un foco incandescente.

4.2.1. DIAGRAMA

Ilustración 120: Prueba N[•]2 – Conexión D-y de transformadores trifásicos con carga inductiva-resistiva trifásica (motor) y carga resistiva monofásica (foco incandescente) Fuente: (Chapman, 2000) Elaborado por: Los autores

4.2.2. RECURSOS

Para la realización de esta prueba se utilizaron los siguientes recursos

- Tablero de pruebas de transformadores trifásicos
- Alimentación trifásica 120/240 Vac
- Carga inductiva-resistiva trifásica (motor trifásico)
- Carga resistiva monofásica (foco incandescente)

- Cables de conexión
- Módulo de adquisición de datos (PLC)
- Laptop
- Multímetro

4.2.3. PROCEDIMIENTO

El procedimiento a seguir en esta prueba es la siguiente:

- Realizar la conexión Delta Estrella en el tablero de pruebas de transformadores
- Se conectará al sistema una carga inductiva-resistiva trifásica en estrella (motor trifásico) y una carga resistiva monofásica (foco incandescente)
- Conectar los cables de comunicación entre el medidor de parámetros, el PLC y la laptop
- Realizar la simulación en LabVIEW y posterior análisis de los datos y diagramas fasoriales adquiridos

4.2.4. VENTANA GRÁFICA: DIAGRAMAS FASORIALES VOLTAJE Y CORRIENTE

 Diagramas fasoriales de voltaje y corriente del lado primario del transformador trifásico con carga inductiva-resistiva trifásica por medio de un motor y una carga resistiva monofásica por medio de un foco incandescente conectado a una de las fases.

Ilustración 121: Prueba N[•]2 – Diagrama fasorial voltajes lado primario. Carga inductiva-resistiva trifásica (motor) y carga resistiva monofásica (foco incandescente) Fuente: LabVIEW

Ilustración 122: Prueba Nº2 – Diagrama fasorial corrientes lado primario. Carga inductiva trifásica (motor) y carga resistiva monofásica (foco incandescente) Fuente: LabVIEW Elaborado por: Los autores

Diagramas fasoriales de voltaje y corriente del lado secundario del transformador trifásico • con carga inductiva-resistiva trifásica por medio de un motor y una carga resistiva monofásica por medio de un foco incandescente conectado a una de las fases.

Ilustración 123: Prueba N[•]2 – Diagrama fasorial voltajes lado secundario. Carga inductiva trifásica (motor) y carga resistiva monofásica (foco incandescente) Fuente: LabVIEW Elaborado por: Los autores

Ilustración 124: Prueba N*2 – Diagrama fasorial corrientes lado secundario. Carga inductiva trifásica (motor) y carga resistiva monofásica (foco incandescente) Fuente: LabVIEW Elaborado por: Los autores

4.2.5. VENTANA GRÁFICA: TRIÁNGULOS DE POTENCIA

 Triángulos de potencia de cada fase y total del lado primario del transformador trifásico con carga inductiva-resistiva trifásica por medio de un motor y una carga resistiva monofásica por medio de un foco incandescente conectado a una de las fases.

Ilustración 125: Prueba N°2 – Triángulos de potencia lado primario. Carga inductiva trifásica (motor) y carga resistiva monofásica (foco incandescente) Fuente: LabVIEW Elaborado por: Los autores

 Triángulos de potencia de cada fase y total del lado secundario del transformador trifásico con carga inductiva-resistiva trifásica por medio de un motor y una carga resistiva monofásica por medio de un foco incandescente conectado a una de las fases.

Ilustración 126: Prueba N[•]2 – Triángulos de potencia lado secundario. Carga inductiva trifásica (motor) y carga resistiva monofásica (foco incandescente) Fuente: LabVIEW Elaborado por: Los autores

4.2.6. CÁLCULOS TEÓRICOS

• Cálculos teóricos con carga resistiva-inductiva trifásica (motor más foco).

Cálculos teóricos prueba 2 Transformador Trifácico conovián Dolta Estralla con carao registiva inductiva trifácico (motor mos foco incondecento)							
			ti cha con carga		(11000) 11/23 1000	incanaescence)	
Relación de transformación [a]:	1:2	elev	ador	Tipo de carga:		Resistiva	
Frecuencia [Hz]:		60		Velocidad angular [w]:		2*π*f	
Potencia c/transformador:		1KVA		Conexión de la carga:		Estrella	
			Cálculo	de la carga			
						Impedancia	$R_1 * R_2$
Datos del motor	Fp	$\emptyset = \cos^{-1}(Fp)$	Impedancia Z		Impedancia Z	resultante de fase	$\frac{1}{R_1 + R_2}$
trabajando a 90V				Datos del foco incandescente		del motor con foco	M 1 + M 2
trabajando a obv	0,37	68,28	350		260	an naralala	149,18
						en parateto	
Datos de la prueba	R	L	с	$X_I = iwL$	$X_c = -i \frac{1}{2}$	$ Z = \sqrt{R^2 + X^2}$	$\emptyset = \tan^{-1}\left(\frac{X}{-1}\right)$
			-		° wC		(R)
Z1	0,00	0,00	0,00	0,00	0,00	350,00	68,28
Z2	0,00	0,00	0,00	0,00	0,00	149,18	21,56
Z3	0,00	0,00	0,00	0,00	0,00	350,00	68,28
Valtaia	Lada nuimania (Can	wián Dalta)		Valtaia I	ada assundaria (Can	ovián Estuella)	
voitaje	Lado primario (Cone	exion Delta)		Voltaje L	ado secundario (con	exion Estrella)	
	Voltaje primario L-	L			Voltaje secundario	L-L	
Fórmula	Parámetros	Magnitud [v]	Ángulo (þ)	Fórmula	Parámetros	Magnitud [v]	Ángulo (þ)
	Voltaie R-S (V1-2)	40.00	0.00	l	Voltaie r-s (V1-2)	138.56	30.00
Datos de la prueba	Voltaie S-T (V2-3)	40.00	-120.00	$Vs_{L-L} = Vs_{L-N} * \sqrt{3} < +30^{\circ}$	Voltaie s-t (V2-3)	138.56	-90.00
	Voltaie T-R (V3-1)	40.00	120.00		Voltaie t-r (V3-1)	138 56	150.00
	Voltaie primario L-	N	,00		Voltaie secundario I	N	
Fórmula	Parámetros	Magnitud [v]	Ángulo [4]	Fórmula	Parámetros	Magnitud [v]	Ángulo [4]
	Voltaie P (V1)	22.00	_30.00	i viiliula	Voltaie r (V1)	80.00	0.00
$V_{m} = \frac{V_{L-L}}{200}$	Voltaje R (V1)	23,03	-50,00	$V_{S_{I}} = V_{n_{I}} + a$	Voltaje I (VI)	00,00	120.00
$v p_{L-N} = \frac{1}{\sqrt{3}} < -30$	voltaje S (v2)	23,09	-150,00	· · · L=N · PL=L ··	voltaje s (v2)	80,00	-120,00
	Voltaje T (V3)	23,09	90,00		Voltaje t (V3)	80,00	120,00
Corrient	e Lado Primario (Con	exión Delta)		Corriente	Lado secundario (Co	nexión Estrella)	
	Corriente primario L	[A]			Corriente secundario	L[A]	
Fórmula	Parámetros	Magnitud (A)	Ángulo [φ]	Fórmula	Parámetros	Magnitud [A]	Ángulo (ϕ)
	Corriente R (I1)	0.79	-98.28		Corriente r (I1)	0.23	-68.28
_	Corriente S (12)	1.96	-171 56	$I_{C} = \frac{V S_{L-N}}{V}$	Corriente (12)	0,25	-141 56
$Ip_L = Ip_F * \sqrt{3} < -30^{\circ}$	Corriente 3 (12)	1,80	-1/1,50	$IS_L = \frac{Z}{Z}$	Corriente 5 (12)	0,34	-141,50
	Corriente I (I3)	0,79	21,72		Corriente t (IS)	0,23	51,72
	Corriente N (IN)	0,00	0,00		Corriente n (in)		
	Corriente primario F		6				
Formula	Parametros	Magnitud [A]	Angulo [φ]				
	Corriente R-S (I1-2)	0,46	-68,28				
$Ip_F = Is_L * a$	Corriente S-T (I2-3)	1,07	-141,56				
	Corriente T-R (I3-1)	0,46	51,72				
Cálculo de por	tencias lado primario	(Conexión Delta)	Cálculo de pote	ncias lado secundari	o (Conexión Estrella)
	Potencia activa [W]			Potencia activa [W	1]	
Fórmula	Parámetros	Magnitud [w]	Ángulo (ϕ)	Fórmula	Parámetros	Magnitud [w]	Ángulo [\u03c6]
	Potencia activa P1	6,77	0,00		Potencia activa P1	6,77	0,00
$P = V p_{L-L} * I p_F * \cos(\phi_Z)$	Potencia activa P2	39,90	0,00	$P = Vs_{L-N} * Is_L * \cos(\phi_Z)$	Potencia activa P2	39,90	0,00
	Potencia activa P3	6.77	0.00		Potencia activa P3	6.77	0.00
Potencia active PT (P	1+P7+P3)	52 43	0.00	Potencia activa PT / Pt	+P2+P3)	52 42	0.00
Fotencia activa PT (P	Detensis D	35,43	0,00	FOLEIILIA ALIIVA PI (P)	Deterrale Deterral	33,43	0,00
	Potencia Reactiva [VA	4K j	£		rotencia Reactiva [V	AKj	4
Formula	Parametros	iviagnitud [var]	Angulo [φ]	Formula	Parametros	iviagnitud [var]	Angulo [φ]
$0 = V_{m} + I_{m} + \sin(\alpha)$	Potencia reactiva Q1	16,99	90,00	$0 = V_0 + I_0 + \sin(\theta)$	Potencia reactiva Q1	16,99	90,00
$Q = v p_{L-L} * I p_F * \sin(Q_Z)$	Potencia reactiva Q2	15,77	90,00	$Q = V S_{L-N} * IS_L * \sin(\varphi_Z)$	Potencia reactiva Q2	15,77	90,00
	Potencia reactiva Q3	16,99	90,00		Potencia reactiva Q3	16,99	90,00
Potencia activa QT (C	(1+Q2+Q3)	49,74	90,00	Potencia activa QT (Q	+Q2+Q3)	49,74	90,00
	Potencia aparente í V	A]			Potencia aparente (\	/A]	
Fórmula	Parámetros	Magnitud [w]	Ángulo [øz]	Fórmula	Parámetros	Magnitud (w)	Ángulo [@z]
S = Vn + In	Potencia aparente S1	18.29	68.28	$s = V_{c} + I_{c}$	Potencia aparente S1	18,29	68,28
$J = v p_{L-L} * I p_F$	Potencia anarente \$2	42 90	21 56	$S = v S_{L-L} * I S_L$	Potencia anarente \$2	42.90	21.56
$\phi_S = \phi_Z$	Potencia anarente co	18 29	68.28	$\phi_S = \phi_Z$	Potencia anarente C2	18.79	68 28
$p_{\pi} = \sqrt{p_{\pi}^2 + q_{\pi}^2}$	- stende aparente 33	10,25	00,20	$c\pi = \sqrt{p\pi^2 + o\pi^2}$		10,23	30,20
$SI = \sqrt{PT^2 + QT^2}$				$SI = \sqrt{PI^2 + QI^2}$			
$\phi_{-} = tar^{-1} \left(\frac{QT}{T} \right)$	Potencia aparente ST	73,00	42,95	$\phi = \tan^{-1}(QT)$	Potencia aparente ST	73,00	42,95
$\psi_S = \operatorname{tail}(\overline{PT})$				$\psi_S = \tan^2\left(\frac{1}{PT}\right)$			
Cálculo do Easter a	le notencia lado criz	nario (Conovián I) Delta)	Cálculo do Eastar da	notoncia lado com	dario (Conovión Est	rella)
	Eactor de Potencia	nano (conexión i	Jeitaj		Eactor do Dotorsio	a conexion Est	i ciid)
Eórmula	Darámetros	Magnitud []		Eórmula	Darámetros	Magnitud []	
roimula	Farametros En1	wiaginitud [w]		ronnula	Farantetros		
	L L L L	0,37			LhT	0,37	
$Fp = \cos(\phi_S)$	rpz	0,93		$Fp = \cos(\phi_S)$	rpz	0,93	
	нр3 	0,37			+p3	0,37	
	⊦pT	0,73			⊦pT	0,73	

Tabla 13: Cálculos teóricos transformadores trifasicos D-Y con carga resistiva-inductiva trifásica Fuente: Los autores

4.2.7. CUADROS COMPARATIVOS

• Cuadro comparativo del sistema con carga resistiva-inductiva trifásica (motor más foco).

Tra	Cuadro comparativo prueba 2 Transformador Trifásico conexión Delta-Estrella con carga resistiva-inductiva trifásica (motor mas foco incandescente)								
	Parámetros	UNIDADES	Cálculos teóricos	Mediciones prácticas	% Error				
	Voltaje R-S (V1-2)	V	40,00	40,48	1,20%				
	Voltaje S-T (V2-3)	V	40,00	40,41	1,02%				
	Voltaje T-R (V3-1)	V	40,00	40,41	1,02%				
	Voltaje R (V1)	V	23,09	23,45	1,54%				
	Voltaje S (V2)	V	23,09	23,16	0,29%				
	Voltaje T (V3)	V	23,09	23,40	1,32%				
DOR	Corriente R (I1)	A	0,79	1,08	36,40%				
	Corriente S (I2)	A	1,86	1,18	36,48%				
MA	Corriente T (I3)	A	0,79	1,66	109,65%				
ORI	Corriente N (IN)	A	0,00	0,02					
NSF	Potencia activa P1	W	6,77	12,40	83,28%				
RA	Potencia activa P2	W	39,90	24,73	38,02%				
	Potencia activa P3	W	6,77	27,94	312,96%				
ä	Potencia activa PT	W	53,43	65,01	21,67%				
RIC	Potencia reactiva Q1	VAR	16,99	21,39	25,91%				
Ā	Potencia reactiva Q2	VAR	15,77	10,97	30,42%				
PRI	Potencia reactiva Q3	VAR	16,99	26,92	58,46%				
8	Potencia reactiva QT	VAR	49,74	59,48	19,58%				
LAI	Potencia aparente S1	VA	18,29	24,79	35,57%				
	Potencia aparente S2	VA	42,90	26,99	37,09%				
	Potencia aparente S3	VA	18,29	38,78	112,08%				
	Potencia aparente ST	VA	73,00	90,67	24,21%				
	Factor de potencia Fp1	-	0,37	0,50	35,14%				
	Factor de potencia Fp2	-	0,93	0,92	1,08%				
	Factor de potencia Fp3	-	0,37	0,72	94,59%				
	Factor de potencia FpT	-	0,73	0,71	3,00%				
	Voltaje r-s (V1-2)	V	138,56	135,23	2,41%				
	Voltaje s-t (V2-3)	V	138,56	134,50	2,93%				
	Voltaje t-r (V3-1)	V	138,56	137,44	0,81%				
	Voltaje r (V1)	V	80,00	79,43	0,71%				
	Voltaje s (V2)	V	80,00	77,33	3,34%				
	Voltaje t (V3)	V	80,00	78,61	1,74%				
Я	Corriente r (I1)	A	0,23	0,25	9,38%				
AD	Corriente s (I2)	A	0,54	0,50	6,76%				
R	Corriente t (I3)	A	0,23	0,24	5,00%				
FO	Corriente n (In)	A	0,00	0,37					
NS NS	Potencia activa P1	W	6,77	7,71	13,96%				
Ŗ	Potencia activa P2	W	39,90	35,13	11,95%				
E	Potencia activa P3	W	6,77	8,64	27,70%				
ō	Potencia activa PT	W	53,43	51,34	3,91%				
AR	Potencia reactiva Q1	VAR	16,99	18,25	7,43%				
N	Potencia reactiva Q2	VAR	15,77	13,94	11,58%				
ECL	Potencia reactiva Q3	VAR	16,99	16,60	2,28%				
0 S	Potencia reactiva QT	VAR	49,74	49,05	1,39%				
Ā	Potencia aparente S1	VA	18,29	19,79	8,23%				
-	Potencia aparente S2	VA	42,90	37,64	12,26%				
	Potencia aparente S3	VA	18,29	18,85	3,09%				
	Potencia aparente ST	VA	73,00	76,20	4,38%				
	Factor de potencia Fp1	-	0,37	0,39	5,41%				
	Factor de potencia Fp2	-	0,93	0,93	0,00%				
	Factor de potencia Fp3	-	0,37	0,46	24,32%				
	Factor de potencia FpT	-	0,73	0,68	7,09%				

Tabla 14: Cuadro comparativo de transformadores trifásicos D-Y con carga resistiva-inductiva trifásica Fuente: Los autores

4.2.8. ANÁLISIS DE RESULTADOS

- Voltajes del lado primario (delta): V_{L-N} atrasados 30° con respecto a los V_{L-L} .
- Corrientes del lado primario (delta): Corrientes de línea en atraso con respecto a los V_{L-N} debido a que la carga es resistiva-inductiva. Mayor magnitud de corriente en una de las fases debido al desbalance provocado por la carga monofásica.
- Voltajes del lado secundario (estrella): V_{L-N} en fase con V_{L-L} del primario. V_{L-L} adelantados 30° con respecto a los V_{L-N} .
- Corrientes del lado secundario (estrella): Corrientes de línea en atraso con respecto a los V_{L-N} debido a que la carga es resistiva-inductiva. Mayor magnitud de corriente en una de las fases y presencia de corriente en el neutro debido al desbalance provocado por la carga monofásica.
- Triángulo de potencias lado primario: Presencia de potencia activa y reactiva y Fp en atraso debido a que la carga es resistiva-inductiva. Incremento de la potencia activa en una de las fases debido al desbalance provocado por la carga monofásica.
- Triángulo de potencias lado secundario: Presencia de potencia activa y reactiva y Fp en atraso debido a que la carga es resistiva-inductiva. Incremento de la potencia activa en una de las fases debido al desbalance provocado por la carga monofásica. Menor presencia de potencia reactiva debido a que la inductancia de los transformadores ya no forma parte de la carga.

4.3. PRUEBA N°3: ANÁLISIS DE LA CONEXIÓN D-Y AL CONECTAR UNA CARGA INDUCTIVA-RESISTIVA TRIFÁSICA, SIMULANDO LA PÉRDIDA DE UNA LÍNEA.

Esta prueba consiste en analizar el comportamiento y los ángulos de desfasamiento de los fasores de voltaje y corriente, además de las potencias activas, reactivas y aparentes de un sistema de transformadores trifásicos conectados en Delta – Estrella con una carga inductiva-resistiva trifásica conectada en estrella por medio de un motor, al cual se simulará en el sistema la perdida de una fase del lado del primario del transformador y posteriormente del lado secundario.

4.3.1. DIAGRAMA

Ilustración 127: Prueba N•3 – Conexión D-y de transformadores trifásicos con carga inductiva trifásica (motor) y simulación de pérdidas de fase Fuente: (Chapman, 2000) Elaborado por: Los autores

4.3.2. RECURSOS

Para la realización de esta prueba se utilizaron los siguientes recursos

- Tablero de pruebas de transformadores trifásicos
- Alimentación trifásica 120/240 Vac

- Carga inductiva-resistiva trifásica (motor trifásico)
- Cables de conexión
- Módulo de adquisición de datos (PLC)
- Laptop
- Multímetro

4.3.3. PROCEDIMIENTO

El procedimiento a seguir en esta prueba es la siguiente:

- Realizar la conexión Delta Estrella en el tablero de pruebas de transformadores
- Se conectará al sistema una carga inductiva-resistiva trifásica (motor trifásico)
- Conectar los cables de comunicación entre el medidor de parámetros, el PLC y la laptop
- Realizar la simulación en LabVIEW y posterior análisis de los datos y diagramas fasoriales adquiridos
- Simular la perdida de una fase del lado primario del transformador y posteriormente del lado secundario, y realizar la respectiva simulación y análisis en cada caso.

4.3.4. VENTANA GRÁFICA: DIAGRAMAS FASORIALES VOLTAJE Y CORRIENTE

 Diagramas fasoriales de voltaje y corriente del lado primario del transformador trifásico con carga inductiva-resistiva trifásica por medio de un motor y posterior pérdida de una fase del lado primario y luego del lado secundario.

Ilustración 128: Prueba N[•]3 – Diagrama fasorial voltajes lado primario. Carga inductiva trifásica (motor) Fuente: LabVIEW Elaborado por: Los autores

Ilustración 129: Prueba N[•]3 – Diagrama fasorial corrientes lado primario. Carga inductiva trifásica (motor) Fuente: LabVIEW Elaborado por: Los autores

Ilustración 130: Prueba N°3 – Diagrama fasorial voltajes lado primario. Carga inductiva trifásica (motor) con pérdida de fase del lado primario Fuente: LabVIEW Elaborado por: Los autores

Ilustración 131: Prueba N•3 – Diagrama fasorial corrientes lado primario. Carga inductiva trifásica (motor) con pérdida de fase del lado primario Fuente: LabVIEW Elaborado por: Los autores

Ilustración 132: Prueba N•3 – Diagrama fasorial voltajes lado primario. Carga inductiva trifásica (motor) con pérdida de fase del lado secundario Fuente: LabVIEW

Elaborado por: Los autores

Ilustración 133: Prueba N°3 – Diagrama fasorial corrientes lado primario. Carga inductiva trifásica (motor) con pérdida de fase del lado secundario Fuente: LabVIEW Elaborado por: Los autores

 Diagramas fasoriales de voltaje y corriente del lado secundario del transformador trifásico con carga inductiva-resistiva trifásica por medio de un motor y posterior pérdida de una fase del lado primario y luego del lado secundario.

Ilustración 134: Prueba N°3 – Diagrama fasorial voltajes lado secundario. Carga inductiva trifásica (motor) Fuente: LabVIEW Elaborado por: Los autores

Ilustración 135: Prueba N•3 – Diagrama fasorial corrientes lado secundario. Carga inductiva trifásica (motor) Fuente: LabVIEW Elaborado por: Los autores

Ilustración 136: Prueba N•3 – Diagrama fasorial voltajes lado secundario. Carga inductiva trifásica (motor) con pérdida de fase del lado primario Fuente: LabVIEW Elaborado por: Los autores

Ilustración 137: Prueba N[•]3 – Diagrama fasorial corrientes lado secundario. Carga inductiva trifásica (motor) con pérdida de fase del lado primario Fuente: LabVIEW Elaborado por: Los autores

Ilustración 138: Prueba N•3 – Diagrama fasorial voltajes lado secundario. Carga inductiva trifásica (motor) con pérdida de fase del lado secundario Fuente: LabVIEW Elaborado por: Los autores

Ilustración 139: Prueba N[•]3 – Diagrama fasorial corrientes lado secundario. Carga inductiva trifásica (motor) con pérdida de fase del lado secundario Fuente: LabVIEW Elaborado por: Los autores

4.3.5. VENTANA GRÁFICA: TRIÁNGULOS DE POTENCIA

 Triángulos de potencia de cada fase y total del lado primario del transformador trifásico con carga inductiva-resistiva trifásica por medio de un motor y posterior pérdida de una fase del lado primario y luego del lado secundario.

Ilustración 140: Prueba N[•]3 – Triángulos de potencia lado primario. Carga inductiva trifásica (motor) Fuente: LabVIEW Elaborado por: Los autores

Ilustración 141: Prueba N•3 – Triángulos de potencia lado primario. Carga inductiva trifásica (motor) con pérdida de fase del lado primario Fuente: LabVIEW Elaborado por: Los autores

Ilustración 142: Prueba N•3 – Triángulos de potencia lado primario. Carga inductiva trifásica (motor) con pérdida de fase del lado secundario Fuente: LabVIEW Elaborado por: Los autores

 Triángulos de potencia de cada fase y total del lado secundario del transformador trifásico con carga inductiva-resistiva trifásica por medio de un motor y posterior pérdida de una fase del lado primario y luego del lado secundario.

Ilustración 143: Prueba N•3 – Triángulos de potencia lado secundario. Carga inductiva trifásica (motor) Fuente: LabVIEW Elaborado por: Los autores

Ilustración 144: Prueba N•3 – Triángulos de potencia lado secundario. Carga inductiva trifásica (motor) con pérdida de fase del lado primario Fuente: LabVIEW Elaborado por: Los autores

Ilustración 145: Prueba N*3 – Triángulos de potencia lado secundario. Carga inductiva trifásica (motor) con pérdida de fase del lado secundario Fuente: LabVIEW Elaborado por: Los autores

4.3.6. CÁLCULOS TEÓRICOS

• Cálculos teóricos con carga resistiva-inductiva trifásica (motor).

Cálculos teóricos prueba 3 Transformador Trifásico conexión Delta-Estrella con carga resistiva-inductiva trifásica (motor)							
Relación de transformación [a]:	1:2	elev	vador	Tipo de carga:		Resistiva	
Frecuencia [Hz]:		60		Velocidad angular [w]:		2*π*f	
Potencia c/transformador:		1KVA		Conexión de la carga:		Estrella	
			Cálculo	de la carga			
Datos del motor	Fp	$\emptyset = \cos^{-1}(Fp)$	Impedancia Z				
trabajando a 80V	0,37	68,28	350				
Datos de la prueba	R	L	с	$X_L = jwL$	$X_C = -j\frac{1}{wC}$	$ Z = \sqrt{R^2 + X^2}$	$\emptyset = \tan^{-1}\left(\frac{X}{R}\right)$
Z1	0,00	0,00	0,00	0,00	0,00	350,00	68,28
22	0,00	0,00	0,00	0,00	0,00	350,00	68,28
23	0,00	0,00	0,00	0,00	0,00	350,00	68,28
Voltaje	Lado primario (Cone	exión Delta)		Voltaje L	ado secundario (Con	exión Estrella)	
	Voltaje primario L-				Voltaje secundario	L-L	
Fórmula	Parámetros	Magnitud [v]	Angulo [\oplus]	Fórmula	Parámetros	Magnitud [v]	Angulo [\oplus]
Datos de la prueba	Voltaje R-S (V1-2)	40,00	0,00	$V_{S_{I-I}} = V_{S_{I-N}} * \sqrt{3} < +30^{\circ}$	Voltaje r-s (V1-2)	138,56	30,00
	Voltaje 5-1 (V2-3)	40,00	-120,00	5-5 ·· 5-14 · 5 · 100	Voltaje S-T (V2-3)	138,50	-90,00
	Voltaje 1-K (V3-1)	40,00	120,00		Voltaje (-r (V3-1)	-N	130,00
Fórmula	Parámetros	Magnitud [v]	Ángulo [4]	Fórmula	Parámetros	Magnitud [v]	Ángulo [4]
ronilula	Voltaje R (V1)	23.09	-30 00	runnuld	Voltaje r (V1)	80.00	0,00
$Vn_{L-L} \leq -30^\circ$	Voltaje S (V2)	23,09	-150.00	$Vs_{L-N} = Vp_{L-L} * a$	Voltaje s (V2)	80.00	-120.00
$V_{PL-N} = \sqrt{3}$	Voltaje T (V3)	23,09	90.00		Voltaje t (V3)	80.00	120,00
Corrient	e Lado Primario (Con	exión Delta)	56,00	Corriente	Lado secundario (Co	nexión Estrella)	120,00
	Corriente primario I	A1		Corriente socundario L [A]			
Fórmula	Darámetros	Magnitud [A]	Ángulo (4)	Fórmula	Darámetros		Ángulo (4)
Formula	Corrigate R (11)	0 70		Formula	Corrigente r (11)	0.22	Angulo [ψ]
_	Corriente S (12)	0,79	-218 28	$I_{S} = \frac{V S_{L-N}}{V}$	Corriente s (12)	0,23	-188 28
$Ip_L = Ip_F * \sqrt{3} < -30^{\circ}$	Corriente T (13)	0,79	210,20		Corriente t (13)	0.23	51 72
	Corriente N (IN)	0.00	0.00		Corriente n (In)	0,20	51,72
	Corriente primario F	[A]					
Fórmula	Parámetros	Magnitud [A]	Ángulo [φ]				
	Corriente R-S (I1-2)	0,46	-68,28				
$In_{\rm F} = Is_{\rm I} * a$	Corriente S-T (I2-3)	0,46	-188,28				
PF CL	Corriente T-R (I3-1)	0,46	51,72				
Cálculo de pot	tencias lado primario	(Conexión Delta)	Cálculo de pote	ncias lado secundari	o (Conexión Estrella)
	Potencia activa [W]			Potencia activa [W	[]	
Fórmula	Parámetros	Magnitud [w]	Ángulo [φ]	Fórmula	Parámetros	Magnitud [w]	Ángulo [φ]
	Potencia activa P1	6,77	0,00	\mathbf{P} $\mathbf{U}_{\mathbf{r}}$ $\mathbf{U}_{\mathbf{r}}$ $\mathbf{U}_{\mathbf{r}}$ $\mathbf{U}_{\mathbf{r}}$	Potencia activa P1	6,77	0,00
$P = V p_{L-L} * I p_F * \cos(\psi_Z)$	Potencia activa P2	6,77	0,00	$P = V S_{L-N} * I S_L * \cos(\psi_Z)$	Potencia activa P2	6,77	0,00
	Potencia activa P3	6,77	0,00		Potencia activa P3	6,77	0,00
Potencia activa PT (P	1+P2+P3)	20,30	0,00	Potencia activa PT (P	L+P2+P3)	20,30	0,00
	Potencia Reactiva [VA	AR j	4		Potencia Reactiva [V	ARj	4
Fórmula	Parámetros	Magnitud [var]	Angulo [\ophi]	Fórmula	Parámetros	Magnitud [var]	Angulo [¢]
$0 = Vn_{1} + In_{2} + \sin(\alpha)$	Potencia reactiva Q1	16,99	90,00	$0 = V_{S_1} + I_{S_2} + \sin(\theta_1)$	Potencia reactiva Q1	16,99	90,00
$Q = V p_{L-L} + I p_F + \sin(\phi_Z)$	Potencia reactiva Q2	16,99	90,00	$Q = V S_L = N + IS_L + SIII(\Phi_Z)$	Potencia reactiva Q2	16,99	90,00
Determine entire OT/O	Potencia reactiva QS	10,99	90,00	Determine active OT/O	Potencia reactiva QS	10,99	90,00
Potencia activa QI (Q	1+(12+(13)	50,96	90,00	Potencia activa QI (Q.		50,90	90,00
	Potencia aparente [V	A]		- /	Potencia aparente [\		<u> </u>
Formula	Parametros	iviagnitud [w]	Anguio [φz]	Formula	Parametros	Iviagnitud [w]	Anguio [¢z]
$S = V p_{L-L} * I p_F$	Potoncia aparente S1	10,29	00,28 69.20	$S = V S_{L-L} * I S_L$	Potencia aparente S1	10,29	00,28 68 20
$\phi_S = \phi_Z$	Potencia aparente 52	10,29	00,28 68.79	$\phi_S = \phi_Z$	Potencia aparente S2	10,29	68.20
Cm / pm2 · cm2	i otencia aparente 53	10,23	00,20	$cm \sqrt{pm^2 + cm^2}$	i otencia aparente 53	10,29	00,20
$\delta T = \sqrt{PT^2 + QT^2}$ $\phi_S = \tan^{-1}\left(\frac{QT}{PT}\right)$	Potencia aparente ST	54,86	68,28	$ST = \sqrt{PT^2 + QT^2}$ $\phi_S = \tan^{-1} \left(\frac{QT}{PT}\right)$	Potencia aparente ST	54,86	68,28
Cálculo de Factor o	le potencia lado prin	nario (Conexión I	Delta)	Cálculo de Factor de	potencia lado secun	idario (Conexión Est	rella)
Eármula	Parámetros	Magnitud [w]		Eórmula	Parámetros	Magnitud []	
Formula	Fr 1	iviagnitud [w]		Formula	Frit	niagnitud [w]	
E. (a)	Fp2	0.37		P (-1)	Fn2	0.37	
$Fp = \cos(\varphi_S)$	Fp3	0.37		$Fp = \cos(\phi_S)$	Fp3	0.37	
	FpT	0.37			FnT	0.37	
L	וקי	0,01			ואי	0,57	

Tabla 15: Cálculos teóricos transformadores trifasicos D-Y con carga resistiva-inductiva trifásica (motor) Fuente: Los autores

4.3.7. CUADROS COMPARATIVOS

• Cuadro comparativo del sistema con carga resistiva-inductiva trifásica (motor).

	Cuadro comparativo prueba 3 Transformador Trifásico conexión Delta-Estrella con carga resistiva-inductiva trifásica (motor)								
	Parámetros	UNIDADES	Cálculos teóricos	Mediciones prácticas	% Error				
	Voltaje R-S (V1-2)	V	40,00	40,00	0,00%				
	Voltaje S-T (V2-3)	V	40,00	40,75	1,88%				
	Voltaje T-R (V3-1)	V	40,00	40,42	1,05%				
	Voltaje R (V1)	V	23,09	23,23	0,59%				
	Voltaje S (V2)	V	23,09	23,49	1,71%				
	Voltaje T (V3)	V	23,09	23,49	1,71%				
~	Corriente R (I1)	A	0,79	1,00	26,30%				
8	Corriente S (I2)	A	0,79	0,98	23,77%				
MA	Corriente T (I3)	A	0,79	1,02	28,82%				
ORI	Corriente N (IN)	A	0,00	0,02					
ISF	Potencia activa P1	W	6,77	11,14	64,65%				
RAI	Potencia activa P2	W	6,77	11,36	67,91%				
ПΤ	Potencia activa P3	W	6,77	11,82	74,70%				
D	Potencia activa PT	W	20,30	34,41	69,53%				
RIC	Potencia reactiva Q1	VAR	16,99	20,47	20,50%				
Ň	Potencia reactiva Q2	VAR	16,99	20,24	19,14%				
PRI	Potencia reactiva Q3	VAR	16,99	20,73	22,03%				
8	Potencia reactiva QT	VAR	50,96	61,41	20,50%				
ΓA	Potencia aparente S1	VA	18,29	23,26	27,20%				
	Potencia aparente S2	VA	18,29	23,30	27,42%				
	Potencia aparente S3	VA	18,29	23,84	30,38%				
	Potencia aparente ST	VA	54,86	70,46	28,44%				
	Factor de potencia Fp1	-	0,37	0,48	29,73%				
	Factor de potencia Fp2	-	0,37	0,49	32,43%				
	Factor de potencia Fp3	-	0,37	0,50	35,14%				
	Factor de potencia FpT	-	0,37	0,49	32,43%				
	Voltaje r-s (V1-2)	V	138,56	142,32	2,71%				
	Voltaje s-t (V2-3)	V	138,56	143,38	3,48%				
	Voltaje t-r (V3-1)	V	138,56	142,69	2,98%				
	Voltaje r (V1)	V	80,00	81,8/	2,34%				
	Voltaje s (V2)	V	80,00	82,84	3,55%				
	Voltaje t (V3)	V	80,00	82,83	3,54%				
0 B O B	Corriente r (11)	A	0,23	0,22	3,75%				
1AD	Corriente s (12)	A	0,23	0,24	5,00%				
RN	Corriente r (Is)	A	0,25	0,24	5,00%				
SFC	Comente II (III)	A	6,00	0,01	2.459/				
AN	Potencia activa P1	VV \\/	6,77	0,00	2,43%				
ЦЦ	Potencia activa D2	<u>۷۷</u> ۱۸/	6 77	0,40 7 25	24,03% 7 16%				
DE	Potencia activa PT	\//	20.20	7,25	9.62%				
ß	Potencia reactiva O1	VAR	16.99	17.05	0.36%				
DA	Potencia reactiva Q2	VAR	16,99	18,03	7 31%				
N N	Potencia reactiva O3	VAR	16.99	18,58	9.37%				
SEC	Potencia reactiva OT	VAR	50.96	53.95	5.86%				
8	Potencia anarente S1	VA	18.29	18,28	0.03%				
Ā	Potencia aparente S2	VA	18.29	20.08	9.81%				
	Potencia aparente S3	VA	18.29	20.08	9.81%				
	Potencia aparente ST	VA	54.86	58,37	6.40%				
	Factor de potencia Fp1	-	0.37	0.36	2.70%				
	Factor de potencia Fp2	-	0.37	0.42	13.51%				
	Factor de potencia Fp3	-	0.37	0,36	2,70%				
	Factor de potencia FpT	-	0,37	0,38	2,70%				

Tabla 16: Cuadro comparativo de transformadores trifásicos D-Y con carga resistiva-inductiva trifásica Fuente: Los autores

4.3.8. ANÁLISIS DE RESULTADOS

- Voltajes del lado primario (delta): V_{L-N} atrasados 30° con respecto a los V_{L-L} .
- Corrientes del lado primario (delta): Corrientes de línea en atraso con respecto a los V_{L-N} debido a que la carga es resistiva-inductiva.
- Voltajes del lado secundario (estrella): V_{L-N} en fase con V_{L-L} del primario. V_{L-L} adelantados 30° con respecto a los V_{L-N} .
- Corrientes del lado secundario (estrella): Corrientes de línea en atraso con respecto a los V_{L-N} debido a que la carga es resistiva-inductiva.
- Triángulo de potencias lado primario: Presencia de potencia activa y reactiva y Fp en atraso debido a que la carga es resistiva-inductiva.
- Triángulo de potencias lado secundario: Presencia de potencia activa y reactiva y Fp en atraso debido a que la carga es resistiva-inductiva. Menor presencia de potencia reactiva debido a que la inductancia de los transformadores ya no forma parte de la carga.

4.4. PRUEBA N°4: ANÁLISIS DE LA CONEXIÓN D-Y AL CONECTAR UNA CARGA CAPACITIVA TRIFÁSICA.

Esta prueba consiste en analizar el comportamiento y los ángulos de desfasamiento de los fasores de voltaje y corriente, además de las potencias activas, reactivas y aparentes de un sistema de transformadores trifásicos conectados en Delta – Estrella con una carga capacitiva trifásica conectada en estrella.

4.4.1. DIAGRAMA

Ilustración 146: Prueba N•4 – Conexión D-y de transformadores trifásicos con carga capacitiva trifásica Fuente: (Chapman, 2000) Elaborado por: Los autores

4.4.2. RECURSOS

Para la realización de esta prueba se utilizaron los siguientes recursos

- Tablero de pruebas de transformadores trifásicos
- Alimentación trifásica 120/240 Vac
- Carga capacitiva trifásica
- Cables de conexión
- Módulo de adquisición de datos (PLC)
- Laptop

• Multímetro

4.4.3. PROCEDIMIENTO

El procedimiento a seguir en esta prueba es la siguiente:

- Realizar la conexión Delta Estrella en el tablero de pruebas de transformadores
- Se conectará al sistema una carga capacitiva trifásica en estrella
- Conectar los cables de comunicación entre el medidor de parámetros, el PLC y la laptop
- Realizar la simulación en LabVIEW y posterior análisis de los datos y diagramas fasoriales adquiridos

4.4.4. VENTANA GRÁFICA: DIAGRAMAS FASORIALES VOLTAJE Y CORRIENTE

 Diagramas fasoriales de voltaje y corriente del lado primario del transformador trifásico con carga capacitiva trifásica.

Ilustración 147: Prueba N[•]4 – Diagrama fasorial voltajes lado primario. Carga capacitiva trifásica Fuente: LabVIEW Elaborado por: Los autores

Ilustración 148: Prueba N[•]4 – Diagrama fasorial corrientes lado primario. Carga capacitiva trifásica Fuente: LabVIEW Elaborado por: Los autores

• Diagramas fasoriales de voltaje y corriente del lado secundario del transformador trifásico

con carga capacitiva trifásica.

Ilustración 149: Prueba N•4 – Diagrama fasorial voltajes lado secundario. Carga capacitiva trifásica Fuente: LabVIEW Elaborado por: Los autores

Ilustración 150: Prueba N•4 – Diagrama fasorial corrientes lado secundario. Carga capacitiva trifásica Fuente: LabVIEW Elaborado por: Los autores

4.4.5. VENTANA GRÁFICA: TRIÁNGULOS DE POTENCIA

• Triángulos de potencia de cada fase y total del lado primario del transformador trifásico con

carga capacitiva trifásica.

Ilustración 151: Prueba N[•]4 – Triángulos de potencia lado primario. Carga capacitiva trifásica Fuente: LabVIEW Elaborado por: Los autores

• Triángulos de potencia de cada fase y total del lado secundario del transformador trifásico

con carga capacitiva trifásica.

Ilustración 152: Prueba N[•]4 – Triángulos de potencia lado secundario. Carga capacitiva trifásica Fuente: LabVIEW Elaborado por: Los autores

4.4.6. CÁLCULOS TEÓRICOS

• Cálculos teóricos con carga capacitiva trifásica.

Calculos teóricos prueba 4							
Balasián da transformacián [a]:	1.2	olova	dor	Tine de serres		Posistivo	
Relación de transformación [a]:	1:2	eieva	001	lipo de carga:		2*=*f	
Frecuencia [Hz]:		11/1/0		Velocidad angular [w]:		Ectrolla	
Potencia c/transformador:		IKVA		Conexion de la carga:		Estrella	
			Cálc	ulo de la carga	1		(¥)
Datos de la prueba	R	L	с	$X_L = jwL$	$X_C = -j\frac{1}{wC}$	$ Z = \sqrt{R^2 + X^2}$	$\emptyset = \tan^{-1}\left(\frac{\Lambda}{R}\right)$
Z1	0,00	0,00	1,00E-05	0,00	-265,26	265,26	-90,00
Z2	0,00	0,00	1,00E-05	0,00	-265,26	265,26	-90,00
Z3	0,00	0,00	1,00E-05	0,00	-265,26	265,26	-90,00
Voltaje Lado	o primario (Conexión	Delta)		Voltaje Lado secundario (Conexión Estrella)			
V	oltaje primario L-L				Voltaje secundario L-L		
Fórmula	Parámetros	Magnitud [v]	Ángulo [\ophi]	Fórmula	Parámetros	Magnitud [v]	Ángulo [\approx]
Datas de la museba	Voltaje R-S (V1-2)	40,00	0,00	$V_{\rm S} = V_{\rm S} + \sqrt{3} < \pm 30^{\circ}$	Voltaje r-s (V1-2)	138,56	30,00
Datos de la prueba	Voltaje S-T (V2-3)	40,00	-120,00	$v_{L-L} = v_{L-N} + v_{J} < + 30$	Voltaje s-t (V2-3)	138,56	-90,00
	Voltaje T-R (V3-1)	40,00	120,00		Voltaje t-r (V3-1)	138,56	150,00
V	oltaje primario L-N		,		Voltaje secundario L-N		
Fórmula	Parámetros	Magnitud [v]	Angulo [\oplus]	Fórmula	Parámetros	Magnitud [v]	Angulo [\u00f3]
V_{I-I}	Voltaje R (V1)	23,09	-30,00	Va – V	Voltaje r (V1)	80,00	0,00
$V p_{L-N} = \frac{L-L}{\sqrt{2}} < -30^{\circ}$	Voltaje S (V2)	23,09	-150,00	$v s_{L-N} = v p_{L-L} * a$	Voltaje s (V2)	80,00	-120,00
٧٥	Voltaje T (V3)	23,09	90,00		Voltaje t (V3)	80,00	120,00
Corriente Lac	lo Primario (Conexió	n Delta)		Corriente La	do secundario (Cone	xión Estrella)	
Cor	riente primario L [A]			Ci	orriente secundario L [/	A]	
Fórmula	Parámetros	Magnitud [A]	Ángulo [\otigen]	Fórmula	Parámetros	Magnitud [A]	Ángulo [φ]
	Corriente R (I1)	1,04	60,00		Corriente r (I1)	0,30	90,00
L L 1/2 - 200	Corriente S (I2)	1,04	-60,00	$Is_{L} = \frac{Vs_{L-N}}{Vs_{L-N}}$	Corriente s (I2)	0,30	-30,00
$1p_L = 1p_F * \sqrt{3} < -30^\circ$	Corriente T (I3)	1.04	180.00	- <u>L</u> Z	Corriente t (I3)	0.30	210.00
	Corriente N (IN)	0.00	0.00		Corriente n (In)		
Cor	riente primario F [A]						
Fórmula	Parámetros	Magnitud [A]	Ángulo [\u03c6]				
	Corriente B-S (I1-2)	0.60	90.00				
	Corriente S-T (12-2)	0,00	-30.00				
$Ip_F = Is_L * a$	Corriente J-T (12-3)	0,60	210.00				
	comente 1-1(13-1)	0,00	210,00				
Cálculo de potenci	as lado primario (Co	nexión Delta)		Cálculo de potenc	ias lado secundario (Conexión Estrella)
Dr	otencia activa [W]				Potencia activa [W]		
Eórmula	Darámetros	Magnitud [w]	Ángulo [4]	Fórmula	Potencia activa [W]	Magnitud [w]	Ángulo (41
Formula	Parametros	Magnitud [w]	Angulo [ψ]	Formula	Parametros	Magnitud [w]	Angulo [ψ]
$P = Vn_{1} + In_{2} * \cos(\phi_{1})$	Potencia activa P1	0,00	0,00	$P = V_{S_1} \dots * I_{S_n} * \cos(\phi_n)$	Potencia activa P1	0,00	0,00
$p_{L-L} + p_F + \cos(p_Z)$	Potencia activa P2	0,00	0,00	1 1 0 L = N 1 0 L 0 0 0 0 0 0 0 0	Potencia activa P2	0,00	0,00
D -4 · · · · -= /-		0,00	0,00	D _1 1= /	Potencia activa P3	0,00	0,00
Potencia activa PT (P	1++2+23)	0,00	0,00	FOLENCIA ACLIVA FI (FITF2TF3) U,UU U,UU Potencia Reactiva [VAP]			
Pote	encia Reactiva [VAR]		£	P	otencia Reactiva [VAR		£
Fórmula	Parámetros	Magnitud [var]	Angulo [\u03c6]	Fórmula	Parámetros	Magnitud [var]	Angulo [\u03c6]
$0 = V_{m} + I_{m} + \sin(\phi)$	Potencia reactiva Q1	-24,13	-90,00	$0 = V_{0} + I_{0} + \sin(\theta)$	Potencia reactiva Q1	-24,13	-90,00
$Q = v p_{L-L} * I p_F * \operatorname{Sin}(\mathcal{O}_Z)$	Potencia reactiva Q2	-24,13	-90,00	$Q = V S_{L-N} * IS_L * SIII(\Psi_Z)$	Potencia reactiva Q2	-24,13	-90,00
	Potencia reactiva Q3	-24,13	-90,00		Potencia reactiva Q3	-24,13	-90,00
Potencia activa QT (Q	(1+Q2+Q3)	-72,38	-90,00	Potencia activa QT (Q1	+Q2+Q3)	-72,38	-90,00
Pote	encia aparente [VA]			I	Potencia aparente [VA]	
Fórmula	Parámetros	Magnitud [w]	Ángulo [ϕz]	Fórmula	Parámetros	Magnitud [w]	Ángulo [øz]
$S = V p_{L-L} * I p_F$	Potencia aparente S1	24,13	-90,00	$S = V S_{I-I} * I S_{I}$	Potencia aparente S1	24,13	-90,00
$\phi_c = \phi_a$	Potencia aparente S2	24,13	-90,00	$\phi_{\alpha} = \phi_{-}$	Potencia aparente S2	24,13	-90,00
P3 - PZ	Potencia aparente S3	24,13	-90,00	$\psi_S - \psi_Z$	Potencia aparente S3	24,13	-90,00
$ST = \sqrt{PT^2 + QT^2}$				$ST = \sqrt{PT^2 + QT^2}$			
$\phi_S = \tan^{-1}\left(\frac{QT}{PT}\right)$	Potencia aparente ST	72,38	-90,00	$\phi_S = \tan^{-1} \left(\frac{QT}{PT} \right)$	Potencia aparente ST	72,38	-90,00
Cálculo de Factor de po	otencia lado primario	(Conexión De	elta)	Cálculo de Factor de p	otencia lado secunda	ario (Conexión Est	rella)
F	actor de Potencia				Factor de Potencia	-	
Fórmula	Parámetros	Magnitud [w]		Fórmula	Parámetros	Magnitud [w]	
	Fp1	0,00			Fp1	0,00	
$Fp = \cos(\phi_s)$	Fp2	0,00		$Fp = \cos(\phi_s)$	Fp2	0,00	
	Fp3	0,00			Fp3	0,00	
	FpT	0,00			FpT	0,00	

Tabla 17: Cálculos teóricos transformadores trifasicos D-Y con carga capacitiva trifásica Fuente: Los autores

4.4.7. CUADROS COMPARATÍVOS

• Cuadro comparativo del sistema con carga capacitiva trifásica.

	Cuadro comparativo prueba 4 Transformador Trifásico conexión Delta-Estrella con carga capacitiva trifásica								
	Parámetros	UNIDADES	Cálculos teóricos	Mediciones prácticas	% Error				
	Voltaje R-S (V1-2)	V	40,00	40,35	0,87%				
	Voltaje S-T (V2-3)	V	40,00	41,38	3,45%				
	Voltaje T-R (V3-1)	V	40,00	40,57	1,43%				
	Voltaje R (V1)	V	23,09	23,39	1,28%				
	Voltaje S (V2)	V	23,09	23,52	1,84%				
	Voltaje T (V3)	V	23,09	23,78	2,97%				
~	Corriente R (I1)	А	1,04	0,95	9,07%				
DO	Corriente S (I2)	A	1,04	0,95	9,07%				
ИAI	Corriente T (I3)	А	1,04	0,97	7,15%				
ORI	Corriente N (IN)	А	0,00	0,01					
ISF	Potencia activa P1	W	0,00	4,27					
AN	Potencia activa P2	W	0,00	4,23					
LT	Potencia activa P3	W	0,00	3,95					
DE	Potencia activa PT	W	0,00	12,51					
RIO	Potencia reactiva Q1	VAR	-24,13	-21,54	10,72%				
MA	Potencia reactiva Q2	VAR	-24,13	-21,96	8,98%				
PRI	Potencia reactiva Q3	VAR	-24,13	-22,61	6,29%				
õ	Potencia reactiva QT	VAR	-72,38	-65,92	8,93%				
LAC	Potencia aparente S1	VA	24,13	22,01	8,78%				
	Potencia aparente S2	VA	24,13	22,26	7,74%				
	Potencia aparente S3	VA	24,13	22,90	5,09%				
	Potencia aparente ST	VA	72,38	67,30	7,02%				
	Factor de potencia Fp1	-	0,00	0,19					
	Factor de potencia Fp2	-	0,00	0,19					
	Factor de potencia Fp3	-	0,00	0,17					
	Factor de potencia FpT	-	0,00	0,18					
	Voltaje r-s (V1-2)	V	138,56	140,95	1,72%				
	Voltaje s-t (V2-3)	V	138,56	143,44	3,52%				
	Voltaje t-r (V3-1)	V	138,56	139,03	0,34%				
	Voltaje r (V1)	V	80,00	80,44	0,55%				
	Voltaje s (V2)	V	80,00	82,00	2,50%				
	Voltaje t (V3)	V	80,00	81,89	2,36%				
ЛR	Corriente r (I1)	A	0,30	0,31	2,79%				
ADO	Corriente s (I2)	A	0,30	0,32	6,10%				
RM	Corriente t (I3)	A	0,30	0,32	6,10%				
FO	Corriente n (In)	A	0,00	0,01					
ANS	Potencia activa P1	W	0,00	0,18					
TR/	Potencia activa P2	W	0,00	0,18					
ЭEL	Potencia activa P3	W	0,00	0,21					
0	Potencia activa PT	W	0,00	0,57					
AR	Potencia reactiva Q1	VAR	-24,13	-24,79	2,75%				
IND	Potencia reactiva Q2	VAR	-24,13	-26,21	8,63%				
ECL	Potencia reactiva Q3	VAR	-24,13	-25,90	7,35%				
0.5	Potencia reactiva QT	VAR	-72,38	-76,93	6,28%				
AD	Potencia aparente S1	VA	24,13	24,85	2,99%				
	Potencia aparente S2	VA	24,13	26,21	8,63%				
	Potencia aparente S3	VA	24,13	25,90	7,35%				
	Potencia aparente ST	VA	72,38	76,94	6,30%				
	Factor de potencia Fp1	-	0,00	0,00					
	Factor de potencia Fp2	-	0,00	0,01					
	Factor de potencia Fp3	-	0,00	0,01					
	Factor de potencia FpT	-	0,00	0,00					

Tabla 18: Cuadro comparativo de transformadores trifasicos D-Y con carga capacitiva trifásica Fuente: Los autores

4.4.8. ANÁLISIS DE RESULTADOS

- Voltajes del lado primario (delta): V_{L-N} atrasados 30° con respecto a los V_{L-L} .
- Corrientes del lado primario (delta): Corrientes de línea en adelanto con respecto a los V_{L-N} debido a que la carga es mayormente capacitiva.
- Voltajes del lado secundario (estrella): V_{L-N} en fase con V_{L-L} del primario. V_{L-L} adelantados 30° con respecto a los V_{L-N} .
- Corrientes del lado secundario (estrella): Corrientes de línea en adelanto con respecto a los V_{L-N} debido a que la carga es mayormente capacitiva.
- Triángulo de potencias lado primario: Presencia de potencia reactiva negativa y Fp en adelanto debido a que la carga es mayormente capacitiva. La presencia de potencia activa es debido a las perdidas en los transformadores.
- Triángulo de potencias lado secundario: Presencia de potencia reactiva negativa y Fp en adelanto debido a que la carga es mayormente capacitiva. Mayor presencia de potencia reactiva negativa y menor potencia activa debido a que los transformadores ya no forman parte de la carga.

4.5. PRUEBA N°5: ANÁLISIS DE LA CONEXIÓN D-Y AL CONECTAR UNA CARGA TRIFÁSICA CONFORMADA POR CAPACITORES Y RESISTENCIAS EN SERIE CONECTADOS EN ENTRELLA.

Esta prueba consiste en analizar el comportamiento y los ángulos de desfasamiento de los fasores de voltaje y corriente, además de las potencias activas, reactivas y aparentes de un sistema de transformadores trifásicos conectados en Delta – Estrella con una carga trifásica conformada por capacitores y resistencias en serie conectados en estrella.

4.5.1. DIAGRAMA

Ilustración 153: Prueba N*5 – Conexión D-y de transformadores trifásicos con carga trifásica conformada por capacitores y resistencias en serie conectados en estrella Fuente: (Chapman, 2000) Elaborado por: Los autores

4.5.2. RECURSOS

Para la realización de esta prueba se utilizaron los siguientes recursos

- Tablero de pruebas de transformadores trifásicos
- Alimentación trifásica 120/240 Vac
- Carga capacitiva trifásica
- Carga resistiva trifásica

- Cables de conexión
- Módulo de adquisición de datos (PLC)
- Laptop
- Multímetro

4.5.3. PROCEDIMIENTO

El procedimiento a seguir en esta prueba es la siguiente:

- Realizar la conexión Delta Estrella en el tablero de pruebas de transformadores
- Se conectará al sistema una carga trifásica conformada por capacitores y resistencias en serie conectados en estrella
- Conectar los cables de comunicación entre el medidor de parámetros, el PLC y la laptop
- Realizar la simulación en LabVIEW y posterior análisis de los datos y diagramas fasoriales adquiridos
- Simular la perdida de una fase del lado primario del transformador y posteriormente del lado secundario, y realizar la respectiva simulación y análisis en cada caso.

4.5.4. VENTANA GRÁFICA: DIAGRAMAS FASORIALES VOLTAJE Y CORRIENTE

• Diagramas fasoriales de voltaje y corriente del lado primario del transformador trifásico con carga resistiva-capacitiva trifásica.

Ilustración 154: Prueba N•5 – Diagrama fasorial voltajes lado primario. Carga resistiva-capacitiva trifásica Fuente: LabVIEW Elaborado por: Los autores

Ilustración 155: Prueba N•5 – Diagrama fasorial corriente lado primario. Carga resistiva-capacitiva trifásica Fuente: LabVIEW Elaborado por: Los autores

 Diagramas fasoriales de voltaje y corriente del lado secundario del transformador trifásico con carga resistiva-capacitiva trifásica.

Ilustración 156: Prueba N•5 – Diagrama fasorial voltajes lado secundario. Carga resistiva-capacitiva trifásica Fuente: LabVIEW Elaborado por: Los autores

Ilustración 157: Prueba N•5 – Diagrama fasorial corrientes lado secundario. Carga resistiva-capacitiva trifásica Fuente: LabVIEW Elaborado por: Los autores

4.5.5. VENTANA GRÁFICA: TRIÁNGULOS DE POTENCIA

• Triángulos de potencia de cada fase y total del lado primario del transformador trifásico con

carga resistiva-capacitiva trifásica.

Ilustración 158: Prueba N•5 – Triángulos de potencia lado primario. Carga resistiva-capacitiva trifásica Fuente: LabVIEW Elaborado por: Los autores

• Triángulos de potencia de cada fase y total del lado secundario del transformador trifásico con carga resistiva-capacitiva trifásica.

Ilustración 159: Prueba N•5 – Triángulos de potencia lado secundario. Carga resistiva-capacitiva trifásica Fuente: LabVIEW Elaborado por: Los autores

4.5.6. CÁLCULOS TEÓRICOS

• Cálculos teóricos con carga resistiva-capacitiva trifásica.

Calculos teóricos prueba 5 Transformador Trifásico conexión Delta-Estrella con carea resistiva-canacitiva trifásica								
Relación de transformación [a]:				Tipo de carga:	Perietiva			
Frequencia [Hz]:	1:2 elevador			Velocidad angular [w]:				
Potoncia c/transformador:	60			Conovión do la carga:	∠ ~ π * † Estrella			
Potencia c/ transformador.		IKVA		Conexion de la carga: Estrella				
	[[Cálc	ulo de la carga				
Datos de la prueba	R	L	С	$X_L = jwL$	$X_C = -j\frac{1}{wC}$	$ Z = \sqrt{R^2 + X^2}$	$\emptyset = \tan^{-1}\left(\frac{\Lambda}{R}\right)$	
Z1	100,00	0,00	1,00E-05	0,00	-265,26	283,48	-69,34	
Z2	100,00	0,00	1,00E-05	0,00	-265,26	283,48	-69,34	
Z3	100,00	0,00	1,00E-05	0,00	-265,26	283,48	-69,34	
Voltaje Lad	o primario (Conexión	Delta)		Voltaje Lad	o secundario (Conex	ión Estrella)		
v	oltaje primario L-L				Voltaje secundario L-L		-	
Fórmula	Parámetros	Magnitud [v]	Ángulo [ϕ]	Fórmula	Parámetros	Magnitud [v]	Ángulo [φ]	
Datos de la proveha	Voltaje R-S (V1-2)	40,00	0,00	$V_{\rm S} = V_{\rm S} + \sqrt{3} < \pm 30^{\circ}$	Voltaje r-s (V1-2)	138,56	30,00	
Datos de la prueba	Voltaje S-T (V2-3)	40,00	-120,00	$v_{L-L} = v_{L-N} + v_{J} < + 30$	Voltaje s-t (V2-3)	138,56	-90,00	
	Voltaje T-R (V3-1)	40,00	120,00		Voltaje t-r (V3-1)	138,56	150,00	
v	oltaje primario L-N				Voltaje secundario L-N		-	
Fórmula	Parámetros	Magnitud [v]	Angulo [ϕ]	Fórmula	Parámetros	Magnitud [v]	Angulo [\u00c6]	
V1 _1	Voltaje R (V1)	23,09	-30,00	V- V	Voltaje r (V1)	80,00	0,00	
$Vp_{L-N} = \frac{1}{\sqrt{2}} < -30^{\circ}$	Voltaje S (V2)	23,09	-150,00	$v s_{L-N} = v p_{L-L} * a$	Voltaje s (V2)	80,00	-120,00	
γ3	Voltaje T (V3)	23,09	90,00		Voltaje t (V3)	80,00	120,00	
Corriente Lac	do Primario (Conexió	n Delta)		Corriente La	do secundario (Cone	xión Estrella)		
Cor	riente primario L [A]			C	orriente secundario L [A]		
Fórmula	Parámetros	Magnitud [A]	Ángulo [\ophi]	Fórmula	Parámetros	Magnitud [A]	Ángulo [φ]	
	Corriente R (I1)	0.98	39.34		Corriente r (I1)	0.28	69.34	
	Corriente S (12)	0.98	-80.66	$I_{S_{L}} = \frac{V S_{L-N}}{V}$	Corriente s (I2)	0.28	-50.66	
$Ip_L = Ip_F * \sqrt{3} < -30^\circ$	Corriente T (13)	0.98	159.34	Z Z	Corriente t (13)	0.28	189.34	
	Corriente N (IN)	0.00	0.00		Corriente n (In)	-,		
Cor	riente primario E [A]	0,00	0,00		contente in (in)			
Eórmula	Parámetros	Magnitud [A]	Ángulo [4]					
Formula	Corriganto B S (11.2)		41igui0 [ψ]					
	Corriente C T (12.2)	0,30	50.66					
$lp_F = ls_L * a$	Corriente S-1 (12-3)	0,56	-50,66					
	Comente 1-R (13-1)	0,50	189,34					
Cálculo de potenci	ias lado primario (Co	nexión Delta)		Cálculo de potenc	ias lado secundario ((Conexión Estrella)	
	otoncia active [14/]				Dotoncia estive [111]			
P	otencia activa [W]		<i>4</i>	-4 -1	Potencia activa [w]		<i>4</i>	
Fórmula	Parametros	Magnitud [w]	Angulo [¢]	Formula Parámetros		Magnitud [w]	Angulo [φ]	
$D = V_{m} + I_{m} + coc(\Phi)$	Potencia activa P1	7,96	0,00	$R = V_{\alpha} + I_{\alpha} + c_{\alpha}(\phi)$	Potencia activa P1	7,96	0,00	
$P = V p_{L-L} * I p_F * \cos(\phi_Z)$	Potencia activa P2	7,96	0,00	$F = VS_{L-N} * IS_L * \cos(\psi_Z)$	Potencia activa P2	7,96	0,00	
	Potencia activa P3	7,96	0,00		Potencia activa P3	7,96	0,00	
Potencia activa PT (P	P1+P2+P3)	23,89	0,00	Potencia activa PT (P1+P2+P3)		23,89	0,00	
Pote	encia Reactiva [VAR]			P	otencia Reactiva [VAR	2]		
Fórmula	Parámetros	Magnitud [var]	Ángulo [φ]	Fórmula	Parámetros	Magnitud [var]	Ángulo [φ]	
	Potencia reactiva Q1	-21,13	-90,00		Potencia reactiva Q1	-21,13	-90,00	
$Q = V p_{L-L} * I p_F * \sin(\phi_Z)$	Potencia reactiva Q2	-21,13	-90,00	$Q = Vs_{L-N} * Is_L * \sin(\phi_Z)$	Potencia reactiva Q2	-21,13	-90,00	
	Potencia reactiva Q3	-21,13	-90,00		Potencia reactiva Q3	-21,13	-90,00	
Potencia activa QT (C	(1+Q2+Q3)	-63,38	-90,00	Potencia activa QT (Q1	+Q2+Q3)	-63,38	-90,00	
Pot	encia aparente (VA 1		,		Potencia aparente í VA	1		
Fórmula	Parámetros	Magnitud [w]	Ángulo [drz]	Fórmula	Parámetros	Magnitud [w]	Ángulo [dz]	
C - Va - V	Potencia anaronte C1	22 25			Potencia anaronte C1	22 22	_60.2/	
$S = V p_{L-L} * I p_F$	Potencia aparente 51	22,30	-60.34	$S = V S_{L-L} * I S_L$	Potencia aparente SI	22,30	-69.34	
$\phi_S = \phi_Z$	Potencia aparente 52	22,30	-03,34	$\phi_S = \phi_Z$	Potencia aparente 52	22,30	-03,34	
0m / pm2	i otencia aparente 55	22,30	-03,34	07 1072 072	i otencia aparente 33	22,30	-03,34	
$ST = \sqrt{PT^2 + QT^2}$				$ST = \sqrt{PT^2 + QT^2}$			-69,34	
$\phi_S = \tan^{-1} \left(\frac{QT}{PT} \right)$	Potencia aparente ST	67,73	-69,34	$\phi_S = \tan^{-1} \left(\frac{QT}{PT} \right)$	Potencia aparente ST	67,73		
Cálculo de Factor de potencia lado primario (Conexión Delta)			Cálculo de Factor de potencia lado secundario (Conexión Estrella)					
F	actor de Potencia				Factor de Potencia			
Fórmula	Parámetros	Magnitud [w]		Fórmula	Parámetros	Magnitud [w]		
	Fp1	0,35			Fp1	0,35		
$Fn = cos(\phi)$	Fp2	0,35		$En = cos(\phi)$	Fp2	0,35	[
$I p = \cos(\varphi_S)$	Fp3	0,35		$rp = \cos(\varphi_S)$	Fp3	0,35		
1	FpT	0,35	[FpT	0,35		

Tabla 19: Cálculos teóricos transformadores trifásicos D-Y con carga resistiva-capacitiva trifásica Fuente: Los autores

4.5.7. CUADROS COMPARATIVOS

• Cuadro comparativo del sistema con carga resistiva-capacitiva trifásica.

	Cuadro comparativo prueba 5 Transformador Trifásico conexión Delta-Estrella con carga resistiva-capacitiva trifásica							
	Parámetros	UNIDADES	Cálculos teóricos	Mediciones prácticas	% Error			
	Voltaje R-S (V1-2)	V	40,00	40,50	1,25%			
	Voltaje S-T (V2-3)	V	40,00	41,12	2,80%			
	Voltaje T-R (V3-1)	V	40,00	40,39	0,98%			
	Voltaje R (V1)	V	23,09	23,46	1,58%			
	Voltaje S (V2)	V	23,09	23,79	3,01%			
	Voltaje T (V3)	V	23,09	23,31	0,94%			
~	Corriente R (I1)	А	0,98	0,91	6,91%			
DO	Corriente S (I2)	А	0,98	0,93	4,87%			
MA	Corriente T (I3)	A	0,98	0,94	3,84%			
ORI	Corriente N (IN)	А	0,00	0,01				
ISF	Potencia activa P1	W	7,96	12,09	51,81%			
RA	Potencia activa P2	W	7,96	12,58	57,96%			
ΕT	Potencia activa P3	W	7,96	12,11	52,06%			
DE	Potencia activa PT	W	23,89	36,63	53,32%			
RIC	Potencia reactiva Q1	VAR	-21,13	-17,78	15,83%			
MA	Potencia reactiva Q2	VAR	-21,13	-18,25	13,61%			
PRI	Potencia reactiva Q3	VAR	-21,13	-18,10	14,32%			
Q	Potencia reactiva QT	VAR	-63,38	-53,97	14,84%			
P	Potencia aparente S1	VA	22,58	21,53	4,63%			
	Potencia aparente S2	VA	22,58	22,10	2,11%			
	Potencia aparente S3	VA	22,58	21,78	3,53%			
	Potencia aparente ST	VA	67,73	65,01	4,01%			
	Factor de potencia Fp1	-	0,35	0,56	58,75%			
	Factor de potencia Fp2	-	0,35	0,56	58,75%			
	Factor de potencia Fp3	-	0,35	0,56	58,75%			
	Factor de potencia FpT	-	0,35	0,56	58,75%			
	Voltaje r-s (V1-2)	V	138,56	140,07	1,09%			
	Voltaje s-t (V2-3)	V	138,56	140,48	1,38%			
	Voltaje t-r (V3-1)	V	138,56	138,10	0,33%			
	Voltaje r (V1)	V	80,00	80,27	0,34%			
	Voltaje s (V2)	V	80,00	81,13	1,41%			
	Voltaje t (V3)	V	80,00	80,50	0,63%			
OR	Corriente r (11)	A	0,28	0,28	0,78%			
1AD	Corriente s (12)	A	0,28	0,29	2,76%			
RN	Corriente t (13)	A	0,28	0,29	2,76%			
SFC	Corriente n (in)	A	0,00	0,01	0.05%			
AN	Potencia activa P1	VV \A/	7,90	0,04 8 3 C	0,95%			
LTR	Potencia activa P2	VV \\\/	7,90	0,50	4,37%			
DEI		VV \\\(7,90	24.62	2,71%			
RIO	Potencia reactiva O1		23,09	24,02	3,03%			
DA	Potencia reactiva Q1	VAR	-21,15	-22,20	0,73% A 71%			
N	Potencia reactiva Q2	VAR	-21,15	-21 21	4,71%			
DO SECI	Potencia reactiva Q3	VAR	-63.38	-64 68	2.06%			
	Potencia anarente S1	VAN	22 58	22,77	0.86%			
PI	Potencia anarente S2	VA	22,50	23,59	4,49%			
	Potencia anarente S3	٧A	22,50	23,33	1.61%			
	Potencia anarente ST	VA	67 73	68.85	1 65%			
	Factor de potencia En1	-	0.35	0.35	0.78%			
	Factor de potencia Fp1		0.35	0.35	0.78%			
	Factor de potencia Fp3	-	0.35	0.37	4.89%			
	Factor de potencia EnT		0 35	0.35	0.78%			
			3,35	3,35	0,.070			

Tabla 20: Cuadro comparativo de transformadores trifasicos D-Y con carga resistiva-capacitiva trifásica Fuente: Los autores

4.5.8. ANÁLISIS DE RESULTADOS

- Voltajes del lado primario (delta): V_{L-N} atrasados 30° con respecto a los V_{L-L} .
- Corrientes del lado primario (delta): Corrientes de línea en adelanto con respecto a los V_{L-N} debido a que la carga es resistiva-capacitiva.
- Voltajes del lado secundario (estrella): V_{L-N} en fase con V_{L-L} del primario. V_{L-L} adelantados 30° con respecto a los V_{L-N} .
- Corrientes del lado secundario (estrella): Corrientes de línea en adelanto con respecto a los V_{L-N} debido a que la carga es resistiva-capacitiva.
- Triángulo de potencias lado primario: Presencia de potencia reactiva negativa y Fp en adelanto debido a que la carga es resistiva-capacitiva. La presencia de potencia activa es debido a las perdidas en los transformadores.
- Triángulo de potencias lado secundario: Presencia de potencia reactiva negativa y Fp en adelanto debido a que la carga es mayormente capacitiva. Mayor presencia de potencia reactiva negativa y menor potencia activa debido a que los transformadores ya no forman parte de la carga.

4.6. PRUEBA N°6: ANÁLISIS DE LA CONEXIÓN D-Y AL CONECTAR UNA CARGA INDUCTIVA-RESISTIVA TRIFÁSICA EN ESTRELLA Y EN PARALELO UNA CARGA CAPACITIVA TRIFASICA EN ESTRELLA.

Esta prueba consiste en analizar el comportamiento y los ángulos de desfasamiento de los fasores de voltaje y corriente, además de las potencias activas, reactivas y aparentes de un sistema de transformadores trifásicos conectados en Delta – Estrella con una carga inductiva resistiva trifásica por medio de un motor trifásico conectado en estrella al que se le conectara en paralelo una carga capacitiva trifásica conectada en estrella.

4.6.1. DIAGRAMA

Ilustración 160: Prueba N[•]6 – Conexión D-y de transformadores trifásicos con carga inductiva-resistiva trifásica y en paralelo una carga capacitiva trifásica Fuente: (Chapman, 2000) Elaborado por: Los autores

4.6.2. RECURSOS

Para la realización de esta prueba se utilizaron los siguientes recursos

- Tablero de pruebas de transformadores trifásicos
- Alimentación trifásica 120/240 Vac
- Carga inductiva-resistiva trifásica
- Carga capacitiva trifásica
- Cables de conexión

- Módulo de adquisición de datos (PLC)
- Laptop
- Multímetro

4.6.3. PROCEDIMIENTO

El procedimiento a seguir en esta prueba es la siguiente:

- Realizar la conexión Delta Estrella en el tablero de pruebas de transformadores
- Se conectará al sistema una carga inductiva-resistiva trifásica en estrella por medio de un motor trifásico al que se le conectará en paralelo una carga capacitiva trifásica en estrella
- Conectar los cables de comunicación entre el medidor de parámetros, el PLC y la laptop
- Realizar la simulación en LabVIEW y posterior análisis de los datos y diagramas fasoriales adquiridos
- Simular la perdida de una fase del lado primario del transformador y posteriormente del lado secundario, y realizar la respectiva simulación y análisis en cada caso.

4.6.4. VENTANA GRÁFICA: DIAGRAMAS FASORIALES VOLTAJE Y CORRIENTE

 Diagramas fasoriales de voltaje y corriente del lado primario del transformador trifásico con carga inductiva-resistiva trifásica por medio de un motor y conectado en paralelo una carga capacitiva trifásica en estrella.

Ilustración 161: Prueba N[•]6 – Diagrama fasorial voltajes lado primario. Carga inductiva-resistiva trifásica (motor) y en paralelo carga capacitiva trifásica Fuente: LabVIEW

Ilustración 162: Prueba N[•]6 – Diagrama fasorial corrientes lado primario. Carga inductiva-resistiva trifásica (motor) y en paralelo carga capacitiva trifásica Fuente: LabVIEW Elaborado por: Los autores

 Diagramas fasoriales de voltaje y corriente del lado secundario del transformador trifásico con carga inductiva-resistiva trifásica por medio de un motor y conectado en paralelo una carga capacitiva trifásica en estrella.

Ilustración 163: Prueba N[•]6 – Diagrama fasorial voltajes lado secundario. Carga inductiva-resistiva trifásica (motor) y en paralelo carga capacitiva trifásica Fuente: LabVIEW

Ilustración 164: Prueba Nº6 – Diagrama fasorial corrientes lado secundario. Carga inductiva-resistiva trifásica (motor) y en paralelo carga capacitiva trifásica Fuente: LabVIEW Elaborado por: Los autores

4.6.5. VENTANA GRÁFICA: TRIÁNGULOS DE POTENCIA

 Triángulos de potencia de cada fase y total del lado primario del transformador trifásico con carga inductiva-resistiva trifásica por medio de un motor y conectado en paralelo una carga capacitiva trifásica en estrella.

Ilustración 165: Prueba N[•]6 – Triángulos de potencia lado primario. Carga inductiva trifásica (motor) y en paralelo carga capacitiva trifásica Fuente: LabVIEW Elaborado por: Los autores

 Triángulos de potencia de cada fase y total del lado secundario del transformador trifásico con carga inductiva-resistiva trifásica por medio de un motor y conectado en paralelo una carga capacitiva trifásica en estrella.

Ilustración 166: Prueba N[•]6 – Triángulos de potencia lado secundario. Carga inductiva trifásica (motor) y en paralelo carga capacitiva trifásica Fuente: LabVIEW Elaborado por: Los autores

4.6.6. CÁLCULOS TEÓRICOS

• Cálculos teóricos con carga resistiva-inductiva trifásica (motor) y en paralelo carga

capacitiva trifásica.

Cálculos teóricos prueba 6								
Transformador Ti	rifasico conexion L	elta-Estrella c	on carga resisti	va-inductiva trifasica (moto	r) y en paralelo ca	rga capacitiva tri	asica	
Relación de transformación [a]:	1:2	elev	/ador	Tipo de carga:	Resistiva			
Frecuencia [Hz]:	60			Velocidad angular [w]:	2*π*f			
Potencia c/transformador:	1KVA			Conexion de la carga:	Latiella			
	-		Cálculo	de la carga				
Datos del motor	Fp	$\emptyset = \cos^{-1}(Fp)$	Impedancia Z					
capacitiva en paralelo	0,64	-50,21	500					
Datos de la prueba	R	L	с	$X_L = jwL$	$X_C = -j\frac{1}{wC}$	$ Z = \sqrt{R^2 + X^2}$	$\emptyset = \tan^{-1}\left(\frac{X}{R}\right)$	
Z1	0,00	0,00	0,00	0,00	0,00	500,00	-50,21	
Z2	0,00	0,00	0,00	0,00	0,00	500,00	-50,21	
Z3	0,00	0,00	0,00	0,00	0,00	500,00	-50,21	
Voltaje	Lado primario (Cone	exión Delta)		Voltaje Lado secundario (Conexión Estrella)				
	Voltaje primario L-I				Voltaje secundario	ы		
Fórmula	Parámetros	Magnitud [v]	Ángulo [φ]	Fórmula	Parámetros	Magnitud [v]	Ángulo [φ]	
	Voltaje R-S (V1-2)	40,00	0,00	$V_{2} = V_{2} \Rightarrow \sqrt{2} < 120^{\circ}$	Voltaje r-s (V1-2)	138,56	30,00	
Datos ae la prueba	Voltaje S-T (V2-3)	40,00	-120,00	$s_{L-L} = s_{L-N} * v_0 \leq \pm 30^{\circ}$	Voltaje s-t (V2-3)	138,56	-90,00	
	Voltaje T-R (V3-1)	40,00	120,00		Voltaje t-r (V3-1)	150,00		
F.4	voltaje primario L-N	Magnitud ful	6 marst - 1 + 1	Fáno1-	voltaje secundario	-IN	Ángul - [1]	
Formula	Parametros	wiagnitud [v]	Angul0 [φ]	Formula	Parametros	iviagnitud [v]	Angulo [φ]	
$V_{n} = \frac{V_{L-L}}{V_{L-L}} < -20^{\circ}$	Voltaje R (V1)	23,09	-30,00	$V_{S_{L-N}} = V_{D_{L-1}} * a$	Voltaje r (V1)	80,00	0,00	
$V p_{L-N} = \frac{1}{\sqrt{3}} \leq -30$	Voltaje S (V2)	23,09	-150,00	· · · L · · · · · · · · · · · · ·	Voltaje s (V2)	80,00	-120,00	
	voltaje i (vs)	25,09	90,00		voltaje t (vs)	80,00	120,00	
Corrient	e Lado Primario (Con	exión Delta)		Corriente	Lado secundario (Co	nexión Estrella)		
	Corriente primario L	A]			Corriente secundario	L [A]		
Fórmula	Parámetros	Magnitud [A]	Ángulo [φ]	Fórmula	Parámetros	Magnitud [A]	Ángulo [φ]	
	Corriente R (I1)	0,55	20,21	Vsi_N	Corriente r (I1)	0,16	50,21	
$Ip_{I} = Ip_{F} * \sqrt{3} < -30^{\circ}$	Corriente S (I2)	0,55	-99,79	$Is_L = \frac{-L - N}{Z}$	Corriente s (I2)	0,16	-69,79	
- 2 - 1	Corriente T (I3)	0,55	140,21	2	Corriente t (I3)	0,16	170,21	
	Corriente N (IN)	0,00	0,00		Corriente n (In)			
-/ .	Corriente primario F	[A]	4					
Fórmula	Parametros	Magnitud [A]	Angulo [ø]					
	Corriente R-S (11-2)	0,32	50,21					
$Ip_F = Is_L * a$	Corriente S-1 (12-3)	0,32	-69,79					
	Comence 1-R (15-1)	0,52	170,21					
Cálculo de po	tencias lado primario	(Conexión Delta)	Cálculo de pote	ncias lado secundari	o (Conexión Estrella)	
	Potencia activa (W	1			Potencia activa (M	1		
Fórmula	Potencia activa į w	Magnitud [w]	Ángulo (ტ)	Fórmula	Potencia activa [W	J Magnitud [w]	Ángulo (4)	
Fornidia	Potencia activa P1	8 19		Formula	Potencia activa P1	8 10	Λiigui0 [ψ]	
$P = V p_{I-I} * I p_{F} * \cos(\phi_{T})$	Potencia activa P2	8 19	0,00	$P = V s_{I-N} * I s_{I} * \cos(\phi_{T})$	Potencia activa P2	8 19	0,00	
1 L-L 11 L	Potencia activa P3	8,19	0.00	L-W L L	Potencia activa P3	8,19	0.00	
Potencia activa PT (P	21+P2+P3)	24 58	0.00	Potencia activa PT (P	1+P2+P3)	24 58	0.00	
	Potencia Reactiva I VA	,50	2,00		Potencia Reactiva I V	AR1	2,00	
Fórmula	Parámetros	Magnitud (var)	Ángulo [6]	Fórmula	Parámetros	Magnitud (var)	Ángulo (ሐ)	
	Potencia reactiva O1	-9,84	90.00		Potencia reactiva O1	-9,84	90.00	
$Q = V p_{L-L} * I p_F * \sin(\phi_Z)$	Potencia reactiva O2	-9,84	90,00	$Q = V s_{L-N} * I s_L * \sin(\phi_Z)$	Potencia reactiva Q2	-9,84	90,00	
	Potencia reactiva Q3	-9,84	-90,00		Potencia reactiva Q3	-9,84	-90,00	
Potencia activa QT (C	(1+Q2+Q3)	-29,51	-90,00	Potencia activa QT (Q	1+Q2+Q3)	-29,51	-90,00	
	Potencia aparente I V	A]			Potencia aparente [VA]		
Fórmula	Parámetros	Magnitud [w]	Ángulo [ϕz]	Fórmula	Parámetros	Magnitud [w]	Ángulo (ϕz)	
$S = V n_{r} + m_{r}$	Potencia aparente S1	12,80	-50,21	$S = V_S$, $*I_S$	Potencia aparente S1	12,80	-50,21	
0 0 0	Potencia aparente S2	12,80	-50,21	5- + 5 _{L-L} + 15 _L	Potencia aparente S2	12,80	-50,21	
$\psi_S = \psi_Z$	Potencia aparente S3	12,80	-50,21	$\varphi_S = \varphi_Z$	Potencia aparente S3	12,80	-50,21	
$ST = \sqrt{PT^2 + QT^2}$				$ST = \sqrt{PT^2 + QT^2}$				
$\phi_S = \tan^{-1}\left(\frac{QT}{PT}\right)$	Potencia aparente ST	38,40	-50,21	$ \phi_S = \tan^{-1}\left(\frac{QT}{PT}\right) $	Potencia aparente ST	38,40	-50,21	
Cálculo de Factor de potencia lado primario (Conexión Delta)				Cálculo de Factor de potencia lado secundario (Conexión Estrella)				
Factor de Potencia				Eactor de Datancia				
Fórmula	Parámetros	Magnitud (w)		Fórmula	Parámetros	Magnitud (w)		
	Fp1	0,64			Fp1	0,64		
$E_n = \cos(\phi)$	Fp2	0,64		$E_{\rm T} = \cos(\phi_{\rm c})$	Fp2	0,64		
$rp = \cos(\psi_S)$	Fp3	0,64		$rp = \cos(\varphi_S)$	Fp3	0,64		
	FpT	0,64			FpT	0,64		

Tabla 21: Cálculos teóricos transformadores trifásicos D-Y con carga resistiva-inductiva trifásica (motor) y en paralelo carga capacitiva trifásica Fuente: Los autores

4.6.7. CUADROS COMPARATIVOS

• Cuadro comparativo del sistema con carga resistiva-inductiva trifásica (motor) y en paralelo

carga capacitiva trifásica.

	Cuadro comparativo prueba 6 Transformador Trifásico conexión Delta-Estrella con carga resistiva-inductiva trifásica (motor)								
	Parámetros UNIDADES Cálculos teóricos Mediciones prácticas % Error								
	Voltaje R-S (V1-2)	V	40,00	40,58	1,45%				
	Voltaje S-T (V2-3)	V	40,00	40,81	2,03%				
	Voltaje T-R (V3-1)	V	40,00	40,02	0,05%				
	Voltaje R (V1)	V	23,09	23,25	0,68%				
	Voltaje S (V2)	V	23,09	23,85	3,27%				
	Voltaje T (V3)	V	23,09	23,09	0,02%				
	Corriente R (I1)	Α	0,55	0,53	4,38%				
ő	Corriente S (I2)	Α	0,55	0,56	1,04%				
A	Corriente T (I3)	Α	0,55	0,51	7,98%				
1 M	Corriente N (IN)	A	0,00	0,01					
E SE	Potencia activa P1	W	8,19	10,47	27,81%				
AN	Potencia activa P2	W	8,19	11,68	42,58%				
15	Potencia activa P3	W	8,19	9,96	21,58%				
B	Potencia activa PT	W	24,58	32,10	30,62%				
18	Potencia reactiva Q1	VAR	-9,84	-6,52	-33,71%				
A	Potencia reactiva Q2	VAR	-9,84	-6,01	-38,89%				
	Potencia reactiva Q3	VAR	-9,84	-6,04	-38,59%				
l ö	Potencia reactiva QT	VAR	-29,51	-18,44	-37,50%				
١¥	Potencia aparente S1	VA	12,80	12,33	3,67%				
	Potencia aparente S2	VA	12,80	13,17	2,89%				
	Potencia aparente S3	VA	12,80	11,61	9,30%				
	Potencia aparente ST	VA	38,40	37,08	3,44%				
	Factor de potencia Fp1	-	0,64	0,84	31,25%				
	Factor de potencia Fp2	-	0,64	0,89	39,06%				
	Factor de potencia Fp3	-	0,64	0,86	34,38%				
	Factor de potencia FpT	-	0,64	0,86	34,38%				
	Voltaje r-s (V1-2)	V	138,56	139,73	0,84%				
	Voltaje s-t (V2-3)	V	138,56	138,08	0,35%				
	Voltaje t-r (V3-1)	V	138,56	137,30	0,91%				
	Voltaje r (V1)	V	80,00	79,59	0,51%				
	Voltaje s (V2)	V	80,00	80,10	0,12%				
	Voltaje t (V3)	V	80,00	79,42	0,72%				
1 K	Corriente r (I1)	Α	0,16	0,15	6,25%				
ĮĂ	Corriente s (I2)	A	0,16	0,14	12,50%				
ž	Corriente t (I3)	A	0,16	0,13	18,75%				
Ē	Corriente n (In)	A	0,00	0,03					
NS I	Potencia activa P1	W	8,19	7,95	2,95%				
TR	Potencia activa P2	W	8,19	7,55	7,84%				
	Potencia activa P3	W	8,19	6,93	15,41%				
l o	Potencia activa PT	W	24,58	22,37	8,98%				
ARI	Potencia reactiva Q1	VAR	-9,84	-9,45	-3,92%				
2	Potencia reactiva Q2	VAR	-9,84	-8,19	-16,73%				
1 S	Potencia reactiva Q3	VAR	-9,84	-8,24	-16,22%				
0 SI	Potencia reactiva QT	VAR	-29,51	-25,82	-12,49%				
ĮĂ	Potencia aparente S1	VA	12,80	12,38	3,28%				
1	Potencia aparente S2	VA	12,80	11,11	13,20%				
	Potencia aparente S3	VA	12,80	10,78	15,78%				
	Potencia aparente ST	VA	38,40	34,30	10,68%				
	Factor de potencia Fp1	-	0,64	0,65	1,56%				
	Factor de potencia Fp2	-	0,64	0,68	6,25%				
	Factor de potencia Fp3	-	0,64	0,65	1,56%				
	Factor de potencia FpT	-	0,64	0,65	1,56%				

Tabla 22: Cuadro comparativo de transformadores trifasicos D-Y con carga resistiva-inductiva trifásica (motor) y en paralelo carga capacitiva trifásica Fuente: Los autores

4.6.8. ANÁLISIS DE RESULTADOS

- Voltajes del lado primario (delta): V_{L-N} atrasados 30° con respecto a los V_{L-L} .
- Corrientes del lado primario (delta): Corrientes de línea en adelanto con respecto a los V_{L-N} debido a que la carga resultante es resistiva-capacitiva.
- Voltajes del lado secundario (estrella): V_{L-N} en fase con V_{L-L} del primario. V_{L-L} adelantados 30° con respecto a los V_{L-N} .
- Corrientes del lado secundario (estrella): Corrientes de línea en adelanto con respecto a los V_{L-N} debido a que la carga resultante es resistiva-capacitiva.
- Triángulo de potencias lado primario: Presencia de potencia reactiva negativa y Fp en adelanto debido a que la carga resultante es resistiva-capacitiva. La presencia de potencia activa es debido a las perdidas en los transformadores. La potencia reactiva de los capacitores adelanta la corriente lo que reduce el ángulo de la impedancia y mejora el Fp acercándolo a la unidad.
- Triángulo de potencias lado secundario: Presencia de potencia reactiva negativa y Fp en adelanto debido a que la carga es mayormente capacitiva. Mayor presencia de potencia reactiva negativa y menor potencia activa debido a que los transformadores ya no forman parte de la carga. La potencia reactiva de los capacitores adelanta la corriente lo que reduce el ángulo de la impedancia y mejora el Fp acercándolo a la unidad.

CAPÍTULO V

5. CONCLUSIONES

- Mediante este proyecto se consiguió adquirir y analizar los diferentes datos que se pueden obtener de un banco de transformadores conectados en Delta – Estrella, y además se simuló su funcionamiento, comportamiento y los fenómenos que se producen mediante una aplicación software.
- La construcción del módulo del PLC nos permitió realizar la adquisición de datos del banco de transformadores trifásicos conectados en Delta – Estrella.
- Por medio de diferentes pruebas, se consiguió analizar el funcionamiento de un sistema de transformadores trifásicos conectados en Delta – Estrella con diferentes tipos de cargas y se comparó versus los cálculos teóricos.
- El banco de transformadores trifásicos nos permitió experimentar el comportamiento de esta conexión en periodo estable y ante fallas de pérdidas de fase.
- Mediante el software LabVIEW, se desarrolló una aplicación que mostró los parámetros y simuló el funcionamiento del banco de transformadores mediante los datos adquiridos.

CAPÍTULO VI

6. RECOMENDACIONES

- Todas las medidas de seguridad necesarias deben ser tomadas para precautelar la seguridad tanto de las personas que realicen estas pruebas, como también de los equipos a utilizar.
- Antes de conectar cualquier tipo de carga verificar mediante cálculos teóricos que la corriente no vaya a exceder la capacidad de los elementos, ya que estos podrían sufrir daños.
- Verificar la polaridad de los transformadores, si son aditivos o sustractivos, para poder realizar las conexiones necesarias adecuadamente. El no tomar en cuenta este punto podría provocar un corto-circuito entre las fases.
- Aterrizar el neutro del lado secundario del transformador, ya que si se conectan cargas desbalanceadas los voltajes sufrirían variaciones indeseadas.
- Para poder realizar estas pruebas se utilizó fusibles de 4 Amperios en los medidores de parámetros y los diferentes bornes del tablero.

CAPÍTULO VII

7. BIBLIOGRAFÍA

Aboytes García, F. (1990). Análisis de sistemas de potencia. Monterrey.

- Bruzón Hernández, J. M., Hernández Areu, O., & Ramos Guardarrama, J. (2018). Reducción de pérdidas en el núcleo del transformador al reconfigurar la zona de entrehierros. *Ingeniería Energética*, 21-30.
- Chapman, S. J. (2000). Maquinas eléctricas (Tercera ed.). Santa Fe de Bogotá: McGraw-Hill.
- Crespo Sánchez, G. (2015). Análisis de gases disueltos para monitoreo y diagnóstico de transformadores de fuerza en servicio. *Ingeniería Energética*, 180-189.
- Del Vecchio, R. M., Poulin, B., Feghali, P. T., Shad, D. M., & Ahuja, R. (2010). *Transformer design principles*. Florida: CRC Press.
- García Gómez, D. F., Navas, D. F., & Rivas, E. (2016). Enfoque técnico-económico para el dimensionamiento de transformadores de distribución. *Ingeniería y Desarrollo*, 267-285.
- Grainger, J. J., & Stevenson, W. D. (1996). *Análisis de sistemas de potencia*. Mexico D.F.: McGraw-Hill.
- Guru, B. S., & Hiziroglu, H. R. (2003). Máquinas eléctricas y transformadores (Tercera ed.). México D.F.: Oxford University Press México.
- Harper, E. (2004). El libro práctico de los generadores, transformadores y motores eléctricos(Primera ed.). México D.F.: Limusa Noriega Editores.
- Harper, G. E. (1989). El ABC de las máquinas eléctricas 1. Transformadores (Primera ed.).México D.F.: Limusa Noriega Editores.

- Hayt, W. H., Kemmerly, J. E., & Durbin, S. M. (2007). Análisis de circuitos en ingeniería (Septima ed.). Mexico D.F.: McGraw-Hill.
- Hernández Suárez, C. A., Gómez Saavedra, V. A., & Peña Lote, R. A. (2014). Sistema de adquisición de datos para determinar el grupo de conexión en el transformador trifásico DL1080. *Tecnura*, 65-77.
- Kosow, I. L. (1993). *Máquinas eléctricas y transformadores* (Segunda ed.). México D.F.: Prentice-Hall Hispanoamericana.
- Kothari, D. P., & Nagrath, I. J. (2010). *Electric machines*. New Delhi: McGraw-Hill.
- Larsen, R. W. (2011). LabVIEW for Engineers. New Jersey: Pearson.
- Liberatori, M. C. (2018). Redes de Datos y sus Protocolos. Mar del Plata, Argentina: EUDEM.
- Mago, M. G., Vallés Defendine, L., Olaya Flores, J. J., & Subero, D. (2014). Determinación de la confiabilidad o tiempo promedio entre fallas (TPEF) en transformadores de distribución. *Ingeniería UC*, 33-37.
- Mago, M. G., Vallés, L., Olaya, J. J., & Escudero, N. (2016). Métodos no convencionales para el diagnóstico de fallas en transformadores de distribución. *Ingeniería UC*, 49-57.
- Manzano Orrego, J. J. (2010). Máquinas eléctricas. Madrir: Paraninfo.
- Mayuza López, J. S., Mariscal Lozano, I., & Quinteros Salazar, E. A. (2015). Sistema para el monitoreo remoto de la temperatura en transformadores de distribución. *Scientia Et Technica*, 315-322.
- Mora, J. F. (2003). Máquinas eléctricas (Quinta ed.). Madrid: McGraw-Hill.
- Muñoz-Galeano, N., López-Lezama, J. M., & Villada-Duque, F. (2017). Metodología para la determinación del desplazamiento angular en transformadores trifásicos. *Tecno Lógicas*, 41-53.

Ramos Guardarrama, J., Hernández Areu, O. N., & Bruzón Hernández, J. M. (2016). Ensayos de pérdidas en vacío y con carga en transformadores mediante la adquisición de datos. *Ingeniería Energética*, 73-80.

Ras, E. (1994). Transformadores de potencia, de medida y de protección. Barcelona: Marcombo.

- Robbins, A. H., & Miller, W. C. (2007). Análisis de circuitos. Teoría y practica. Mexico, D.F.: Cengage Learning.
- Sen, P. C. (2014). Principles of electric machines and power electronics. Ontario: Wiley.
- Sierra-Gil, E., Basulto-Espinoza, A., & Planos-Reyes, J. M. (2016). Estimación temprana de la pérdida de vida útil de transformadores de distribución. *Energética*, 1-9.
- Stevenson, W. D. (1985). Análisis de sistemas electricos de potencia. México D.F.: McGraw-Hill.
- T., E. E.-M. (s.f.). Circuitos magnéticos y transformadores. Buenos Aires: Reverté.
- Wildi, T. (2007). Máquinas eléctricas y sistemas de potencia (Sexta ed.). México D.F.: Pearson education.

ANEXOS

ANEXO 1: LISTA DE REGISTROS PM5110

				PM5					
Category			Description	110/11	Register	Units	Size (INT16)	Data Type	Access
-	-	*			-	*		*	¥
Meter Data	(Basic)			Y	3000				
	1s Metering (50/60 Cyc	cles)		Y	3000				
		Current		Y	3000				
			Current A	Y	3000	A	2	FLOAT32	R
			Current B	Y	3002	A	2	FLOAT32	R
			Current C	Y	3004	A	2	FLOAT32	R
			Current N	· ·	3006	A	2	FLUATS2	ĸ
			Current G	Y	3008	A	2	FLOAT32	R
			Current Avg	Y	3010	A	2	FLOAT32	R
		Current Unba	alance	Y	3012				
			Current Unbalance A	Y	3012	%	2	FLOAT32	R
			Current Unbalance B	Y	3014	%	2	FLOAT32	R
			Current Unbalance C	Y	3016	%	2	FLOAT32	R
			Current Unbalance Worst	Y	3018	%	2	FLOAT32	R
		Voltage	Vellere A.D.	Y	3020		0		
			Voltage A-B	Ť	3020	V	2	FLOAT32	R
			Voltage C.A.	T	3022	V	2	FLOAT32	R
			Voltage L L Avg	T V	3024	V	2	FLOAT32	R D
			Voltage A-N	Y	3020	V	2	FLOAT32	R
			Voltage B-N	Y	3030	v	2	FLOAT32	R
			Voltage C-N	Ý	3032	v	2	FLOAT32	R
					3034	V	2	FLOAT32	R
			Voltage IN-G	v	2026	V	2	EL OAT22	P
		Voltago Linh	voltage L-N Avg	T V	2020	V	2	FLUAT52	ĸ
		voltage Unb	Voltage Linhalance A-B	T V	3038		2	FLOAT32	 P
			Voltage Unbalance A-B	I V	2040	/0	2	FLOAT32	D D
			Voltage Unbalance C-A	T V	3040	70	2	FLOAT32	P
			Voltage Unbalance C-A	I V	3042	/0 9/	2	FLOAT32	P
			Voltage Unbalance A-N	Y	3046	%	2	FLOAT32	R
			Voltage Unbalance B-N	Ý	3048	%	2	FLOAT32	R
			Voltage Unbalance C-N	Ý	3050	%	2	FLOAT32	R
			Voltage Unbalance L-N Worst	Y	3052	%	2	FLOAT32	R
		Power	Ŭ.	Y	3054				
			Active Power A	Y	3054	kW	2	FLOAT32	R
			Active Power B	Y	3056	kW	2	FLOAT32	R
			Active Power C	Y	3058	kW	2	FLOAT32	R
			Active Power Total	Y	3060	kW	2	FLOAT32	R
			Reactive Power A	Y	3062	kVAR	2	FLOAT32	R
			Reactive Power B	Y	3064	kVAR	2	FLOAT32	R
			Reactive Power C	Y	3066	kVAR	2	FLOAT32	R
			Reactive Power Total	Y	3068	kVAR	2	FLOAT32	R
			Apparent Power A	Y	3070	kVA	2	FLOAT32	R
			Apparent Power B	Y	3072	kVA	2	FLOAT32	R
		-	Apparent Power C	Y	3074	KVA	2	FLOAT32	ĸ
		Bower Facto	Apparent Power Total	Y	3076	кVА	2	FLUAT32	к
		Power Facto	n Rower Factor A	Ý	3078		2		
			Power Factor P	Y	3078		2		R
				Ý	3082		2		P
			Power Factor Total	T V	3084		2		R
			Displacement Power Factor A		3086		2	40 FP PF	R
			Displacement Power Factor B	y Y	3088		2	4Q FP PF	R
			Displacement Power Factor C	Y	3090		2	4Q FP PF	R
			Displacement Power Factor Total	Y	3092		2	4Q FP PF	R
		Frequency	Frequency	Ý	3110	Hz	2	FLOAT32	R