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Abstract—An ionogram is a graph that shows the  distance that 
a vertically transmitted wave, of a given frequency, travels before 
returning to the earth. The ionogram is shaped by making a trace 
of this distance, which is called virtual height, against the 
frequency of the transmitted wave. Along with the echoes of the 
ionosphere, ionograms usually contain a large amount of noise   of 
different nature, that must be removed in order to extract useful 
information. In the present work, we propose to use a 
convolutional neural network model to improve the quality of  the 
information obtained from digital ionograms, compared to that 
using image processing and machine learning techniques, in the 
generation of electronic density profiles. A data set of more than 
900,000 ionograms from 5 ionospheric observation stations is 
available to use. 

 
I. INTRODUCTION 

The ionosondes are a type of radar that sends vertical pulses 
of high frequency radio waves to the ionosphere. The echoes of 
these pulses are recorded on the earth and are used to generate 
a type of representative traces of the ionosphere, called 
ionograms. There is a direct relation between the frequency of 
the transmitted pulses and the ionization densities of the 
ionospheric layers that reflect them[1]. 

Echoes form characteristic patterns, which conform an 
ionogram. The speed of the pulses traveling in the ionosphere 
is lower than the speed of the pulses traveling in free space, 
therefore, after a complete trip, it is possible to obtain informa- 
tion about the apparent height or virtual height of the layers. 
The virtual height of the pulses which frequencies approximate 
to the maximum plasma frequency of a given layer tends to 
infinity, because the pulses must travel a finite distance at a 
close to zero effective velocity. The frequencies at which this 
phenomenon occurs are called critical frequencies[2]. From the 
ionograms it is possible to scale manually or by computational 
methods characteristic values of virtual heights h’E, h’F, h’F2, 
etc and critical frequencies foE, foF1, foF2, etc of each layer of 
the ionosphere[3]. 

Interest in scaling and interpreting ionograms is increasing 
among the scientific community, the difficulty of these pro- 
cesses is that extracting ionospheric parameters through man- 
ual scaling is a very demanding task in both effort and time. 
With the development of image processing techniques, ad- 
vances have been made in automatically scaling ionograms[4] 
[5], in which emphasis is mainly on the recognition of the 
ionogram traces, then obtaining density profiles applying iono- 
spheric inversion techniques. In situations of high complexity, 
as in the case of incomplete ionograms or with the presence 

 
of ionospheric phenomena such as spread F, automatic scaling 
becomes more difficult and tends to fail[6]. 

In the present work we propose the use of a convolutional 
neuronal network model for the detection of ionosphere echoes 
in digital ionograms, which can serve as a tool for automatic 
scaling. 

The work is structured as follows: Section 2 gives a brief 
introduction to the operation  mode  of  ionosondes,  as  well as 
characteristics of the ionosphere. Section 3 describes the 
characteristics of the data set used, how it was obtained and 
what pre processing was done. Section 4 describes the perfor- 
mance metric to be used. Section 5 describes and evaluates  the 
performance of the baseline models. Section 6 describes the use 
of convolutional neural networks for profile detection. 

II. THE IONOSPHERE 

Ionograms are diagrams generated by ionosondes, which 
show the time it takes for a wave of a certain frequency to be 
reflected by the ionosphere. An ionogram is a representation of 
the state of the ionosphere at a given time. 

 

Fig. 1. Ionogram of Jicamarca ionosonde showing the virtual ionospheric 
height (vertical) versus frequency of transmitted pulses (horizontal). The traces 
show F1 and F2 layers as well as multihop. 

 
Figure 1 shows an example of a typical ionogram. Hori- 

zontal axis represents the frequencies of the transmitted radio 
signals and the vertical axis the virtual heights of ionospheric 
layers. The color of the trace is proportional to the intensity  of 
the received signal, more intense echoes will have colors closer 
to red, while weaker echoes to blue. In this image it  can also 
be clearly distinguished F1 layers over a height of 200 km and 
F2 over 300 km. 

The ionosphere is a part of the earth’s upper atmosphere, 
extending in height from 60 to about 1000 km. This region is 
composed of ionized gas, called plasma. The upper limit of the 
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ionosphere is defined as the height at which the concentration 
of charged particles of plasma, ions  and  electrons,  exceed the 
concentration of neutral atoms and molecules, at  this  point the 
ionosphere begins to continuously  transform  into the 
magnetosphere, which it  is  a  medium  consisting  only  of 
strongly ionized plasma and intense electric and magnetic 
fields. 

The ionosphere is formed when incident solar radiation re- 
moves electrons from gases of the upper atmosphere, creating 
electrically charged ions and free electrons. The ionization 
becomes greater when  high  energy  radiation  interacts  with a 
greater density of air, and decreases when radiation loses  
intensity as it travels down the atmosphere. 

Usually the ionosphere is divided into five independent 
regions, called layers. The lower layer, which ranges from     70 
to 90 km in height, is called layer D; from 95 to 140 km     is 
layer E, and above 140 km layer F. The latter is usually divided 
into two regions, F1, ranging from 140 to 200 km,  and layer 
F2, which is above 200 km[2]. 

III. DATA SET DESCRIPTION 

The data used for the training of the convolutional networks 
and the evaluation of the baseline models were obtained from 
the database of the distributed observatory LISN, which is       a 
multi institution, multi instrument project in which a set       of 
geophysical observation instruments have been deployed   in 
different locations in South  America  in  order  to  study  the 
electrodynamics of the ionosphere, with emphasis on the 
dynamic energy transport and photo chemical processes, and 
also to develop the ability of predicting spread F occurrence and 
measurement of plasma densities, drifts and neutral winds in a 
large geographic area [7]. 

 

Fig. 2.  The dots represent the geographic distribution of the ionosondes of the 
LISN distributed observatory, nearly aligned with the magnetic flux tube 
intersecting the magnetic equator at 70 deg West 

 
Among the instruments used in the project there are 4 

ionosondes, in the cities of Lima and Puerto Maldonado in Peru, 
Tupiza in Bolivia and Tucuman in Argentina, whose ionograms 
will make up the data set. The data generated by these 
instruments have two objectives: education and scientific 

research, they are freely available [8] and can be downloaded 
from the project website. 

The data output of the ionosondes is a Raw In-phase and 
Quadrature (RIQ) file that contains a number of range gate 
samples of the output of the Digital Down Converter for each 
of the 8 radar receive channels. There is an in-phase and 
quadrature sample for each range gate and receiver. In addition 
to the raw data blocks, each RIQ file contains meta data records 
Sounding Control Table (SCT) and a Pulse Control Table (PCT) 
for each transmitted pulse. These define the instrument mode of 
operation and the site specific information such as station 
location and antenna configuration. The RIQ file is a binary file 
with a specific, custom format [9]. 

RIQ FILES are converted and stored in NetCDF (ngi) format 
[10]. The ngi files store the required information to decode and 
plot the ionograms, such as the radar configuration, the pulse 
configuration table and IQ data blocks, these ngi files are used 
in this work in the form of numpy matrices. 

The LISN database contains more than 900,000 ionograms. 
Depending on the geographical location and the type of experi- 
ment performed, the configuration of the ionosondes may vary, 
so the number of frequency and height points is not constant 
throughout the database. A group of 50,780 ionograms from the 
Jicamarca station was chosen to train the model, this ionograms 
were taken between 15:00 and 22:00 hours GMT from years 
2016 to 2018. All of the ionograms chosen have 512 height and 
408 frequency points. From this set, 817 were randomly 
selected to manually extract ionosphere profiles using a free 
image manipulation software, we call this manual extraction, 
these files made up the labeled data set. 

The data set is available in 
https://www.kaggle.com/cdelajara/ionograms 

Figure 3 shows an ionogram before and after being man- 
ually converted to a binary image, in which the ionosphere 
profile has been extracted. 

 

 
Fig. 3. Ionogram before and after been converted to a binary image 

 
The entire data set was decimated by a factor of 2, to reduce 

its size so we were able to publish and build models in a web 
service that offers virtual machines with parallel computational 
capabilities. The final size of the data set was 9 GB, with 
matrices of 512 by 408. 

Md5 hash values were generated from ionograms file names 
to divide the data into training, validation and test sets. Hash 
values ending in hexadecimal digits 4-B, E and F belong to 
training set, digits 0-2 belong to validation set and digits 3, C 
and D to test set. 

http://www.kaggle.com/cdelajara/ionograms
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IV. PERFORMANCE METRICS 

In this work we propose a method to extract ionospheric 
layers from digital ionograms using image segmentation with 
convolutional neural networks, where the main goal is to label 
every pixel of the image as belonging to the ionosphere trace or 
belonging to the background. 

The most common performance metrics used for object 
segmentation problems is an index called intersection over 
union (IoU)[11]. IoU gives a ratio between the number of pixels 
common in two images and the total number of pixels  in both 
images. If the images are exactly the same the result of this ratio 
would be 1, if there were few coincidences between the images 
(very different images) the result would be close   to 0. 
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Fig. 5. Comparison between the original ionogram (a), the result of the 

Since we are working with binary matrices the area is 
obtained by making a sum of all the cells in the matrix. The 
intersection will be obtained by performing a logical AND 
operation between the bits of the matrices and the union will be 
obtained by performing a logical OR. 

 
 

 
Fig. 4. (a) Original ionogram, (b) Manual segmentation, (c) Automatic 
segmentation, (d) Comparison between manual and automatic segmentation 

 
Figure 4 shows the comparison of a manual segmentation 

(red) with automatic segmentation (black). In this case, at the 
bit level, the intersection matrix will have only a few cells in 1, 
resulting in an IoU close to zero. 

V. IMPLEMENTATION AND EVALUATION OF BASELINE 
MODELS 

A. Profile detection using image processing and thresholding 

In this approach, ionograms are considered as images, in 
which the noise must be filtered out to isolate ionospheric 
echoes. For this  purpose,  three  types  of  filtering  are used, a 
median filter, the filter defined by the Ker matrix (2) and 
thresholding. 

cascade application of the Ker filter, median filter and thresholding (b) and a 
manually segmented ionogram (c) 

 
As shown in figure 5 it is possible to accurately eliminate the 

background noise, but neither the interference, nor the 
calibration signal nor multihop could be eliminated. Average 
IoU between test set ionograms where the three filters were 
applied and manually segmented ionograms is 0.163. 

B. Profile detection using unsupervised machine learning 

models 

The other method is based on the representation of the 
ionograms in 3-dimensional matrices x, y, V where x and y 
represent spatial coordinates and V the intensity of the point. 
With this representation 2 unsupervised clustering techniques 
are applied, K-Means and Mean Shift. 

Clustering is a grouping technique to find, within a set of 
samples, groups that have similar characteristics, so samples 
that share comparable features will belong to the same group, 
and will be separated from other groups. The goal is to maxi- 
mize variations between groups and minimize variations inside 
groups[12]. K-means is a non supervised learning clustering 
technique that searches patterns in the data without having       a 
specific prediction as a goal. K-means needs as input the 
number of groups (k) in which the samples will be segmented. 
Knowing this the algorithm places k random points as center of 
clusters, then assigns to this points the samples with the shortest 
distances, then the point shifts in the direction of the closest 
average distance, this process is repeated iteratively  and the 
groups are adjusted until the centroid does not change further 
by moving the points. One of the K-means algorithm 
drawbacks is that it requires the number of clusters to be 
specified before the algorithm is applied. In this work we 
consider that a number of clusters equal to 2 reflects a specific 
characteristics of the data set, since we want to cluster the 
ionogram points into 2 main classes, ionospheric echoes and 
background noise. Figure 6 shows a comparison between an 
original ionogram, an ionogram segmented using the K-means 
algorithm and a manually segmented ionogram. 



 

 

Fig. 6. Kmeans ionogram segmentation 

TABLE I 
BASELINE MODELS AVERAGE IOU 

 
 Filtered K-Means Mean Shift 

IoU 0.163 0.157 0.105 
 
 

Average IoU between ionograms segmented using K-means 
algorithm and manually segmented ionograms for the test set is 
0.157. 

Mean shift is also a non supervised learning clustering 
technique that assigns the samples to the clusters by moving the 
center of these towards the direction of highest density of 
samples [13]. Giving a data set, mean shift is the displacement 
of a point from an initial location in the space, to another that 
results from the average of the weights of the data within a 
neighborhood determined by a region centered in x. Unlike K-
Means algorithm, mean shift does not require a previous  
knowledge of the number of clusters, they are determined by 
the algorithm with respect to the data. 

Figure 7 shows a comparison between an original ionogram, 
a segmented ionogram using mean shift and a manually scaled 
ionogram. 

 

 
Fig. 7. Mean shift ionogram segmentation 

 
Average IoU between ionograms segmented using mean shift 

algorithm and manually segmented ionograms for the test set is 
0.105 

 
Table I summarizes the results of the IoU for the baseline 

models. 

VI. PROFILES DETECTION USING CONVOLUTIONAL 
NEURAL NETWORKS 

As mentioned before, a large amount of unlabeled data is 
available from the LISN data base, on the other hand, labeled 
data can only be obtained by performing manual segmentation 
of ionograms, which is not only a time consuming process but 

also requires a high level of knowledge and experience. Given 
this scenario, with the goal of building a semi-supervised 
learning model, both types of data have been used, the large 
amount of unlabeled data and the small number of labeled 
(manually segmented) ionograms. 

We used a model based on a multilayer convolutional 
encoder decoder neural network, with multiple layers of con- 
volutions. The first part of the network is an encoder that maps 
raw inputs to a rich representation of feature vectors, the second 
part is a decoder that takes these feature representation as input, 
process it, produces an output and maps the output back into 
the raw format. The network goal is to learn an efficient 
representation of the data. 

 

 
Fig. 8. Neural network model 

 
Figure 8 shows a description of the network model. We     use 

six convolutional layers with ReLU activation, 3 max poolings 
with zero padding and 3 up samplings. Binary cross entropy is 
used as loss function and adadelta as optimizer. 

 
 

 
Fig. 9. Layers Neural network model 

 
Figure 9 shows details of the different layers of the neural 

network model. 



In the first stage of the learning process  we  feed  the  neural 
network with original ionograms (X) from the train- 
ing/validation sets, and use as output variables (y) ionograms 
that have been segmented using the three baseline techniques 
(filters, k-means and mean shift). We end up with three neural 
network models that learned to reconstruct ionograms the same 
way baseline models do it, as shown in figure 10. A comparison 
between the application of these models in the test set with 
manually segmented ionograms is shown in figure  11 

 
 

Fig. 10.  X = original ionograms, y = ionograms segmented with k-means 
 
 
 

 
Fig. 11. Baseline model learning. Left column is the reconstruction of an 
ionogram using a neural network model trained to reconstruct an ionogram 
segmented with a base line model, and the right column is the manual 
segmentation of the ionogram. (a)Kmeans, (b)Mean shift (c)filters 

TABLE II 
CONVOLUTIONAL NETWORK AVERAGE IOU 

 
 Filtered K-Means Mean Shift 

IoU 0.174 0.173 0.077 
 
 

TABLE III 
FINE TUNED CONVOLUTIONAL NETWORK AVERAGE IOU 

 
 Filtered K-Means Mean Shift 

IoU 0.589 0.602 0.593 
 
 

The training set used to train  the  neural  network model has 
31,699 ionograms, the validation set 9,577 and the test  set 
9,505. 816 ionograms were manually scaled, from them 474 are 
used as training set, 151 as validation set and 191 as test set. 
Average IoU between test set ionograms segmented with the 
three models  and  manually  segmented  ionograms is 
summarized in table II. A small improvement is observed 
compared to IoU of baseline models. 

In the second stage of the learning process, we fine tune the 
previously trained models. The 3 models are fed again with 
original ionograms from the training/validation sets, but the 
output variables are this time manually segmented ionograms 
from the training/validation sets. 

 

Fig. 12. Fine tuning and final prediction. (a)Kmeans, (b)Mean shift (c)filters 
 

Figure 12 shows results of the different stages of the training 
process. From left to right: the original ionogram, ionogram 
segmented using baseline models, manually scaled ionogram, 
segmentation after fine tuning. In the  latter  it  is  observed that 
interference, background noise, calibration signal from the 
radar and E layer have been completely removed. 

Average IoU between test set ionograms segmented with fine 
tuned models and manually segmented ionograms 



is summarized in table III. A significant improvement is 
observed compared with the IoU of ionograms segmented 
before applying fine tuning 

 

As a final stage, the CNN model was trained using only 
manually segmented ionograms as output data, which gave an 
average IoU of 0.569. 

 

 
Fig. 13. Accurate predictions of unseen data 

 
Figure 13 shows examples of accurate predictions of unseen 

data (ionograms that do not belong to any of the sets used in the 
learning phase of the model development), showing good 
generalization performance. 

Figure 14 shows inaccurate predictions on unseen data.  This 
happens with ionograms that have weak traces, also with 
ionograms whose shapes have not been seen frequently during 
the training process. More manually scaled ionograms on a 
more diverse set of shapes should be created to reduce the 
number of inaccurate predictions. 

VII. CONCLUSIONS 

1) In terms of IoU, segmentation of ionograms when using 
a neural network trained using labeled data is 5.6 times 
better than segmentation performed by baseline models. 

2) The use of large amounts of unlabeled data to generate a 
pre-trained model slightly improves (<6%) the accuracy 
of the final model, so we can say that performance of the 
model is based mainly on the use of a convolutional 
neural network and not on a pre-training process with 
unlabeled data. 

 

 
 

Fig. 14. Inaccurate predictions of unseen data 
 
 

3) The neural network model trained using ionograms seg- 
mented with mean shift algorithm as output (y) achieves 
a better representation of the data, but it is the least 
efficient in eliminating interference signals, this is no 
more a problem after fine tune the network with labeled 
data. 
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