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Abstract

This research presents the implementation of optimization algorithms to build auxiliary signals
that can be injected as inputs into a pipeline in order to estimate —by using state observers—
physical parameters such as the friction or the velocity of sound in the fluid. For the state
estimator design, the parameters to be estimated are incorporated into the state vector of a
Liénard-type model of a pipeline such that the observer is constructed from the augmented
model. A prescribed observability degree of the augmented model is guaranteed by optimization
algorithms by building an optimal input for the identification. The minimization of the input
energy is used to define the optimality of the input, whereas the observability Gramian is used
to verify the observability.

Besides optimization algorithms, a novel method, based on a Liénard-type model, to
diagnose single and sequential leaks in pipelines is proposed. In this case, the Liénard-type
model that describes the fluid behavior in a pipeline is given only in terms of the flow rate. This
method was conceived to be applied in pipelines solely instrumented with flowmeters or in
conjunction with pressure sensors that are temporarily out of service. The design approach
starts with the discretization of the Liénard-type model spatial domain into a prescribed number
of sections. Such discretization is performed to obtain a lumped model capable of providing a
solution (an internal flow rate) for every section. From this lumped model, a set of algebraic
equations (known as residuals) are deduced as the difference between the internal discrete flows
and the nominal flow (the mean of the flow rate calculated prior to the leak). The residual
closest to zero will indicate the section where a leak is occurring. The main contribution of
our method is that it only requires flow measurements at the pipeline ends, which leads to
cost reductions. Some simulation-based tests in PipelineStudio and, even more importantly,
experimental tests illustrating the suitability of the proposed method are shown.

Finally, given the increasing importance of water use efficiency, the above mentioned
pipeline leaks diagnosis method is extended to water distribution networks. Water distribu-
tion networks around the world are infested with leaks which cause significant losses and



x

a subsequent suboptimal performance, which in turn aggravates the worldwide imbalance
between demand for treated water and available water resources. Some simulation-based tests
in PipelineStudio that show the suitability of the proposed method are presented.
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Chapter 1

Introduction

Transport of commodities through pipelines is one of the most used transport mechanisms
worldwide, mainly because it allows to transport large volumes in relatively short periods of
time. It is estimated that there are more that 3.500.000 [km] of pipelines in about 120 countries
of the world [49]. Pipeline and Gas Journal’s worldwide survey shows that 134.866 [km] of
pipelines are planned and under construction worldwide. Of these, 61.782 [km] include projects
in the engineering and design phase and 73.083 [km] in various stages of construction [165]. In
South/Central America and Caribbean there are about 2930 [km] of pipeline under construction
and 4601 [km] of new and planned pipelines.

Pipeline networks go through neighborhoods and cities, stretch across mountains, deserts,
forests, and everywhere in between. They collect crude oil from many remote areas to deliver
it to refineries where it is converted into products such as diesel oil, high-octane gasoline,
kerosene, heating fuel oils, lubricating oils and liquefied petroleum gas (LPG). However,
not only products that come from petroleum are transported through pipelines but also other
commodities including water, slurry, sewage, hydrogen and beverages (see Table 1.1).

On the other hand, despite a good maintenance plan for fault prevention, leaks in pipelines
are unfortunately very common events that must be early diagnosed to avoid irreparable losses.
Leaks in pipelines are mainly caused by aging of the pipes (corrosion), faults in the installation
(particularly at construction joints and valves), natural events (earthquakes, hurricanes and
tsunamis), pipe segments with imperfections, low points where moisture collects, construction
excavations, illegal tapping and terrorist sabotage. Only in the United States during period
comprised between 1997 and 2016, 832 serious incidents took place in gas distribution networks,
causing 310 fatalities and 1299 injured and causing the loss of millions of dollars in property
damage [166].
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Table 1.1 Commodities moved in pipelines, [129]

For Commodities

Refiners
Gasoline, home heating oil,

diesel, jet fuel, crude oil

Manufacturers
Natural gas, ethane,
ethylene, propylene

Agriculture
Diesel fuel,

propane, fertilizer

Transportation
Kerosene, gasoline,

diesel fuel, natural gas,
aviation gasoline, jet fuel

Table 1.1 shows a list of the most significant leaks in pipelines that have occurred throughout
the world. Total losses are around 10000 tons of product (1 ton ≈ 1165 liters).

Table 1.2 Pipeline worldwide accidents

Spill Location Date Tons Reference

Belle Fourche
United States,

North Dakota, Billings County 05/05/2016 571 [165]

Fox Creek Canada, Alberta, Fox Creek 06/10/2016 240 [148]

Colonial
United States, Shelby County,

Alabama 12/09/2016 1092 [144]

ConocoPhillips
Canada, Alberta,

Grande Cache 09/06/2016 323 [109]

Black Sea Russia, Tuapse 24/12/2014 unknown [121]
Trans-Israel Israel, Eilat 06/12/2014 4300 [11]

Mid-Valley
United States, Louisiana,

Mooringsport 13/10/2014 546 [107]

North Dakota
United States,

North Dakota, Hiland 21/03/2014 110 [55]

North Dakota
United States,

North Dakota, Tioga 25/09/2013 2810 [55]

Thus, how to maintain the integrity of pipelines is an ongoing concern for operators around
the world. Aerial surveillance (by helicopters, satellites and drones) are traditional pipeline
security measures. There are also on-the-ground actions such as awareness campaigns to
educate those alongside pipeline routes, installation of pipeline warning boards and markers
and security personnel. Furthermore, although control rooms constantly monitor pipelines
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through leak-detection systems, these detected only 19.5% of the 251 spills in the United States
between 2010 and 2013 [123]. In fact, most alarms were raised by on-site employees and
residents (Table 1.3). Therefore, since protection of pipeline networks is an ongoing concern,

Table 1.3 A review of how hazardous pipeline spill were detected, [123]

How Number of spills (percentage)
By on-site workers 73 (29.1%)

Local residents 66 (26.3%)
Remote detection 49 (19.5%)

Air and ground patrols 28 (11.2%)
Emergency responders 16 (6.4%)

Others and out-of-service tests 19 (7.6%)

investigations directed to develop reliable early leak detection systems are completely relevant
and even more, necessary.

1.1 Leak Detection Systems

Leak detection systems (LDS) are based on a number of different detection principles and
cover a wide spectrum of technologies. Many countries formally regulate pipeline operation
through official requirements to guaranty a safe operation, especially for pipelines transporting
hazardous fluids. Table 1.4 shows some international regulatory standards on pipeline networks
operation. These standars not only provide tools that assist pipeline operators in detecting

Table 1.4 International Regulations

Standard Country Requirements Reference
API 1130 USA Computational pipeline monitoring for liquids [5]

API 1149 USA
Variable uncertainties in pipelines
and their effects on leak detection [140]

API 1155 USA
Performance criteria for leak detection systems

(replaced by API 1130) [4]

49 CFR 195 USA Transport of hazardous liquids via pipeline [43]
CSA Z662 Canada Oil and gas pipelines [149]

TRFL Germany Technical rule for pipelines [46]

commodity leaks wich are within the sensitivity of the algorithms but also encourage pipeline
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controllers to “go beyond", that is to strive for better utilization of LDS in hazardous products
pipelines.

Leak detection systems can be categorized into two major types: internal leak detection
systems and external leak detection systems. In external LDS the monitoring of external
pipeline parameters is carried out by using field instrumentation (such as acoustic microphones,
thermal cameras, fiber-optic cables, infrared radiometers or vapor sensors), while in internal
LDS internal pipeline parameters are monitored by using typical pipeline instrumentation
(such as pressure, flow or temperature sensors). Fig. 1.1 shows the leak detection approach
classification. Notice that LDS can be also classified into two major categories: continuous and
non-continuous methods. In practice continuous and non-continuous methods are often used in
conjunction.

 

Leak Detection Systems 
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Visual 
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Analysis Methods 
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Fig. 1.1 Leak Detection Methods Categorization

1.1.1 External Methods

External methods seek to detect the presence of fluid outside of pipeline. They can in turn
be divided into non-continuous and continuous methods. Non-continuous methods can be
classified according to the physical principle involved in the leak detection. They include:

• Visual Inspection Methods: as part of a periodic pipeline right-of-way patrolling and
monitoring program, simple visual inspection becomes a reliable alternative. Inspection
can be carried out by walking, driving, flying or by other means. Pipeline surface
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conditions on or adjacent to each pipeline must be inspected looking for evidence of
leaks and conditions that could lead to a pipeline failure. Clearly, the capability of leak
detection dependen on factors such as inspection frequency, inspectors’ ability and leak
size.

• Acoustic Leak Detection: when a leak occurs it produces an acoustic noise, thus,
acoustic sensors can be used to track and detect internal noise level and create a baseline
with specific characteristic [52, 53, 116]. If the characteristics of the low frequency
acoustic signal produced by a leak differs from the baseline, an alarm will be activated.
Leak localization is possible thanks to the fact that, near the leak, the received signal is
stronger.

• Magnetic and Ultrasonic Methods: magnetic and ultrasonic methods are two of the
most common leak detection techniques that use smart pigs. In the case of magnetic flux
leak detection systems, the pipeline is magnetized through a strong permanent magnet. If
a leak happens the magnetic flux lines will change, and these changes are recorded by
sensing probes attached to the pig [153, 48]. On the other hand, when the leak detection
is based on ultrasonic principles, a ultrasonic pulse is transmitted by the pig into the
pipeline wall and it receives the reflected signals. Again, once a leak happens the reflected
signals are affected and, based on the running speed of the pig, the leak can be located
[169].

Otherwise, due to the cost associated with installing additional sensors along the pipeline,
external continuous methods are better suited for shorter pipeline segments. Within this leak
detection systems are included:

• Liquid Sensing Cables: conductive fluid sensing cable techniques rely on specialized
cables buried adjacent to the pipeline. The cables can be electrochemical or fiber optics.
Electrochemical cables are designed to reflect changes in their impedance when in contact
with hydrocarbons [181, 135].

• Fiber Optics Cables: in the fiber optic cables cases, when a leak occurs the substance
inside the pipeline gets in touch with fiber cable and this contact affects the temperature
of the cable. The leak can be detected by measuring the changes in the temperature of the
fiber cable [147, 87, 124, 71]. In many pipelines it has been installed distributed acoustic
sensing systems, which are networks of fiber optic-linked sensors placed along a pipeline



6 Introduction

that monitor not only the state of the pipeline, but also detect potential threats from tiny
cracks, corrosion or metal loss [123].

• Vapor Sensing Tubes: vapor sensing tubes based leak detection methods involves the
installation of a tube along the entire length of the pipeline. The tube is full of air at
atmospheric pressure. When a leak happen the substance inside the pipeline penetrates
into the tube. Gas sensors located at the ends of tube shall detect any increase in gas
concentration. Moreover, the magnitude of the concentration increase is an indication of
the size of the leak [56].

1.1.2 Internal Methods

Internal leak detection systems are the most practical methods for diagnose pipeline leaks from
a remote location. Internal methods use instruments to continuously monitor the hydraulic
conditions of the system. When measurements deviate from normal operations conditions an
alarm will be activated. Measured data quality can affects ability of this methods to detect a
leak. Internal leak detection methods include:

• Rate of Pressure/Flow Change Method: for this methods the principle is that rapid
increase of the input flow, rapid decrease of the output flow, a rapid increase of the
difference between them and rapid pressure drops are associated with a leak occurrence
[103]. To avoid false alarms, these must be disable for time periods corresponding to
operation pipeline transients (such as a pump startup or a change in pressure/flow set
point).

• Model-based Methods: in this case the leak detection problem is tackled with the aid
of mathematical models of the process and its signals. Thus, typically this methods
use nonmeasurable quantities which can be obtained by process models and estimation
methods. Parameter estimation, state observers and artificial neural networks are some
techniques used in model-based leak detection methods.

– Parameter Estimation: parameters of a model are constants or time-varying co-
efficients in the process which appears in the process model. The process model
parameters are mostly related to physical process coefficients. Thus, since a leak can
make itself noticeable in some physical process constants, e.g. friction coefficient,
is therefore also expressed in the process model parameters. If the physical process
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coefficients which can indicate leaks occurrence are not directly measurable, an
attempt can be made to determine their changes via the changes in the process model
parameters [73].

– State Observer: since leaks can be indicated by internal, nonmeasurable process
state variables, e.g. pressure head, flow rate, state estimator can be used to recon-
struct these state variables from the measurable signals. Observer-based methods
require a relatively exact knowledge of the process parameters and the input signals
[73, 56].

– Artificial Neural Networks (ANNs): ANNs have attributes that make them ideal
for processing routine measurements made in pipelines, thus ANNS are used in
leak-detection systems, without requiring very high sampling frequencies. Ideally,
data measured when there are actual leaks should be used for ANN training. Since
such data are rarely available from the field in a comprehensive form, in works as
in [10] the data for network training were generated by a computer code expressly
developed for simulating flow in pipelines with and without leaks.

On the other hand, among the first principles used to build up the models stand out:

– Mass Balance Based Method: it is based on the principle of conservation of mass,
which states that mass in a closed system remains constant and is not changed by
processes within the system. Thus, if a pipeline is considered to be a closed system,
the difference between inlet and outlet mass flows in a leak-free pipeline should be
equal zero. In practice, by measuring input and output flow rates a leak is detected if
the difference between inflow and outflow measurement exceed predefined threshold.
The main two weakness of the mass balance method are: 1) the long detection times
(several tens of minutes) necessaries to avoid false alarms, which are due to the
assumption of steady state and 2) the leak location is unknown [91].

– Continuity, Momentum and Energy Equations Based Method: this leak de-
tection technique is based on pipeline hydraulic model constructed by using the
principles conservation of mass, conservation of momentum, and conservation of
energy [16]. The occurrence of a leak is detected by comparing measured and
estimated values. To implement these leak detection systems flow rate and pressure
measurements at both ends of the pipeline are necessary. Leak detection and location
are possible in this cases [157, 172, 159]. Moreover, a literature review revealed
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an investigative trends on leak detection system based on state observer algorithms
designed from fluid mathematical models (continuity, momentum and energy equa-
tions) expressed in state-space representation [156–158, 160, 15, 172, 174]. In next
section a brief literature review related to state observers in leak detection systems
is presented.

Model-based methods are popular among the researchers due to the cost effectiveness
and advances in microcomputer technology and computational techniques, which permit
the effective implementation of this methods.

Several approach can be used to analyze the data collected/generated by any of the leak
detection methods presented above. Some of them are threshold analysis [73], correlation
analysis [68, 79], spectral analysis [146], principal component analysis [132], among others.

1.2 State-observer-based Leak Detection Systems: Litera-
ture Review 2010–2017

To improve the security in pipeline systems operations several model-based methodologies for
leak diagnose have been developed in the last few years, many of which use state estimators.
Several kinds of state estimators such as, among others, Kalman filters, Luenberger-type
observers, high gain observers and sliding mode observers have been used for leak detection.
This review is intended to summarize the current research and development about state-observer-
based leak detection systems for liquid pipelines during the seven-year period from January
2010 to September 2017. For comparison of some methodologies for leak detection based on
state observers, published prior to January 2010, see, e.g., [173, 7]. For a comprehensive review
of leak diagnose methods in oil and gas pipelines in recent years, see [90].

1.2.1 Extended Luenberger Observer

In [8, 130] a lumped parameter (discretized) version of momentum and continuity equations are
used to design a nonlinear Luenberger-type observer, which is used in detection and isolation
algorithms. In both cases friction factor is estimated by using an adaptive scheme proposed
in [86]. In [8] a single leak detection and isolation algorithm implemented on a digital signal
processor system is presented. While in [130] an algorithm to achieve the isolation of two
non-concurrent water leaks is presented. Moreover, in [44] various friction models for the leak
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detection system based on nonlinear observer are analyzed. The results strongly recommended
do not use a constant friction model. In [18] the effect of the instrumentation used at the ends
of the pipeline is considered in the finite-difference modeling for pipelines dynamics. The
proposed model is used to design a fault detection and isolation system based on a high gain
observer [54], and it enables the detection of possible faults in the instrumentation in addition
to leaks.

1.2.2 Adaptive State Observer

Meanwhile, mass and momentum conservation principles are used tor formulate a adaptive
observer in [1]. This adaptive observer is the core of a leak detection system in which are only
necessary measurements at both end of the pipeline (inlet flow rate and outlet pressure). The
proposed approach carries out leak detection, leak location and leak size estimation.

1.2.3 Sliding Mode Method

Furthermore, sliding mode methods have been widely used in control and observation systems
design of dynamic systems basically due to their finite time convergence and robustness [89].
In sliding mode observers a sliding operator (e.g. a sign function) depending on the output error
provides the sliding motion [35], and in turn guarantees insensitiveness to some forms of noise
[180]. In [120] an observer based on robust sliding mode differentiators is proposed as the core
of a leak detection and isolation algorithm. In the proposed methodology it is necessary to
transform the system in a special case of triangular form based on the Lie derivatives of the
system output to estimate the states. Finite time convergence of the observer is guaranteed.
In [122] a multi-leak diagnose system based on sliding mode observer scheme is presented.
The key of the proposed approach is the estimation of pressures at the leak points through
successive estimations of internal states, which is necessary because fluid model of a pipeline
with only pressures and flows measurements at the ends does not satisfy the sliding mode
observer conditions for leak diagnose. Besides, authors in [47] compare two leak diagnose
approach, one is based on a sliding mode observer and the other is an algebraic method obtained
from the pipeline model in steady state. Two algorithms were tested in real time scenarios and
better results were obtained with the algebraic algorithm. In [26] two algorithm are proposed,
the fist one is based on a first order sliding mode observer and the second one is a super-twisting
algorithm. Both algorithm look for estimating the position and pressure of a leak in a water
plastic pipeline. Proposed algorithm only use measures of flow and pressure at the ends of
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a pipeline and they were validated in a pipeline prototype. Meanwhile, [36] an algorithm to
diagnose a leak in a plastic water pipeline taking under consideration temperature variations is
presented. The proposed algorithm is based on a model that includes temperature dependence in
some parameters (e.g. equivalent length and friction factor), as well as an exact differentiation
method which is based on so-called higher-order sliding modes.

1.2.4 Nonlinear Recursive Observer

Moreover, in [104] a diagnosis approach that carries out detection of leaks, partially closed
in-line valves and partial blockages by means of pressure head measurements is presented.
The proposed method is based on the stochastic successive linear estimator (SLE) algorithm
developed in [170], which considers the estimation improvement through the iterative solution
of the governing flow equations and updating the covariance and cross-covariance matrices of
transmissivity and hydraulic head fields. In [105] the SLE algorithm is extended to enable the
leak and faults location. The SLE algorithm is also used to estimate diameter distribution of par-
tial blocked pipelines in [106]. The proposed methodology exploits the diameter measurements
along the pipe and the pressure measurements to provide 1) the diameter distribution associated
to a partial blockage and 2) the error of that estimation.

1.2.5 Kalman Filter, Extended Kalman Filter and Adaptive Kalman Fil-
ter

The Kalman filter and its the nonlinear version the so-called Extended Kalman Filter (EKF)
have been used in leak diagnose systems to estimate parameters as friction factor in addition to
leak coefficients. In such as methods, a estimation error (difference between measured output
and the observer output) is used to detect a leak occurrences. In [118] a leak detection and
isolation algorithm based on a EKF is proposed and tested on a plastic pipeline prototype. The
friction factor is calculated through the so-called Swamee-Jain equation, [151]. In [126] a burst
detection methodology is presented. Proposed approach is based on a Kalman filter to detect
pipe bursts with distributed noisy flow data. The performance of various burst detection metrics
is evaluated under different conditions by using artificial generated burst events. Meanwhile,
in [31] an adaptive Kalman filter is used for detecting bursts and leaks in water distribution
systems. The effect of sampling interval is analyzed and an algorithm that calculate sampling
interval depending on the normalized residuals of flow after filtering is presented. In [131, 37]
an EKF is used as state estimator in a leak detection and isolation system. In these work
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variations associated to temperature in parameters as friction factor, density and kinematic
viscosity are compensated through temperature measurement. In [119] a two-stages leak
isolation methodology is proposed. First, a EKF is used to estimate the equivalent straight
length (ESL) of the pipeline. Once the leak is detected, an algebraic observer (with the ESL
value fixed by the previous observer) is used to estimate the leak position. The Swamee-Jain
equation, [151], is used to calculate the friction factor.

1.2.6 High Gain Observer

In [162] nonlinear observers are presented as tools for the diagnose of pipelines. Two different
scenarios are considered: a single-leak diagnose scenario and a similar situation but with friction
estimation in addition. In the first case a classical high gain observer is used, while in the
second case an Extended Kalman Filter is proposed. While in [163] scheme based on high-gain
observers is proposed to detect and locate leaks in subterranean pipelines of liquefied petroleum
gas (LPG).

1.2.7 Exponential Observer

In [161] the fluid flow in a pipeline is represented as a nonlinear model of so-called Liénard-type
[61]. Besides in [155] in a more complete derivation of spatio-temporal Liénard-type models
for expressing the dynamical behavior of a fluid transmission line is presented. The benefits
of Liénard-type models is their suitable structure for the design of state observers, which can
be used leak diagnosis systems. In both works Liénard model-based exponential observers are
used to estimate parameters of a pipeline such as the friction factor, the equivalent length and
the wave speed. On the other hand and unlike the other cases mentioned so far in [142] the
problem of observability of the pipeline system is faced. In this work a algorithm to build an
optimal input for a state affine system which guarantees a pre-specified degree of observability
is proposed. Optimality is defined with respect to the minimization of the input energy, and
observability through a lower bound for the observability Gramian. The proposed method is
illustrated through simulation by an application example corresponding to a problem of leak
detection in pipelines. It is worth address that a constant friction factor is assumed in all cases.
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1.3 Scope and Emphasis

The scope for this thesis will be the design of a liquid pipeline monitoring system that incorpo-
rates state estimators for iteratively identifying physical parameters as well as early detection
and tracing of leaks. Since space-time nonlinear partial differential equations (the momentum
and continuity equations) governs the dynamics of the flow of a slightly compressible fluid
in a horizontal pipeline, it is necessary to build auxiliary input signals to excite the system
that guarantee observability (it is important to address that for nonlinear systems observability
is in general determined locally around a given point and may depend on the applied input).
The methodologies proposed for parameters identification and leak diagnose are model-based
approaches that relies on Liénard-type representation of pipelines, varying friction factor and
flow and/or pressure measurements at both ends of pipeline.

1.4 Outline of the Thesis

Chapter 2 first will be dedicated to the mathematical modeling of the dynamics of the fluid in
a pipeline. Chapter 3 will be dedicated to a recall on state space models and state estimation.
Chapter 4 will present an algorithm to build an auxiliary signal that guarantees the identification
of the parameters of a pipeline by using state observers based on Liénard-type models. Chapter
5 will be dedicated to a novel method, based on a Liénard-type model, to diagnose single and
sequential leaks in pipelines. The Liénard-type model describes the fluid behavior in a pipeline
and is given only in terms of the flow rate. Chapter 6 will extend the method presented in
Chapter 5 to leak diagnose in water distribution networks. Conclusion and discussion of the
results and suggestions for further work are found in Chapter 7.



Chapter 2

Pipeline Modeling

2.1 Introduction

The transient flow in closed conduits is described by continuity and momentum equations
(some authors use a simplified form of the momentum equations, the equation of motion or
the dynamic equation). These equations are the mathematical statements of two fundamental
physical principles upon which all of fluid dynamics is based: 1) mass conservation and 2)
Newton’s second law. Since the velocity and pressure during transient flow are functions of
time as well as distance these equations are a set of partial differential equations. Since no
analytical solution of these equations is known yet numerical approaches must be used instead.

In this chapter, the continuity and momentum equations are used to derived a mathematical
model that describes the dynamics of the fluid in a horizontal pipeline. The proposed models
can be used for different purposes, however in this work they will be used in observer-based
leak diagnosis schemes.

The chapter is organized as follows: in Section 2.2 continuity and momentum equations
are used to develop a nonlinear model with distributed parameters for a pipeline, a simplified
version of this model is then presented and various models used to calculate the friction factor
are listed. In Section 2.3, Liénard-type models for a pipeline are introduced.
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2.2 Fluid Dynamics Equations

2.2.1 Nonlinear Pipeline Model with Distributed Parameters

Let us now consider a pipeline of length L [m], constant inside diameter φ [m] and inclined
an angle α [rad] with respect to a horizontal plane as that showed in Fig. 2.1. To facilitate

a

L
z

a
g

f

Fig. 2.1 Diagram of a Pipeline Section

understanding the following assumptions for the derivation of a mathematical model of the flow
through pipelines are made, [183]:

1. Compressible Fluid. Resulting in an unsteady flow. This yields the finite velocity of
sound

b2 =
∂ p
∂ρ

(2.1)

2. Viscous flow. Viscosity causes shear stresses in a moving fluid.

3. Isothermal flow. Temperature changes due to pressure changes and friction effects can be
neglected. Furthermore, the temperature T along the pipeline is considered constant.

4. One-dimensional flow. Pipeline characteristics (as velocity v and pressure p) depend only
on the z-axis laid along the pipeline.

The equation of continuity in cylindrical coordinates can be written as follows [19]:

∂ρ

∂ t
+

1
r

∂ (ρrvr)

∂ r
+

1
r

∂ (ρvθ )

∂θ
+

∂ (ρvz)

∂ z
= 0, (2.2)
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where for simplicity of notation we drop the temporal and spatial dependence of mass density
ρ(t,r,θ ,z) [kg/m3] and velocity components vr(t,r,θ ,z), vθ (t,r,θ ,z) and vz(t,r,θ ,z) [m/s]. For
the one-dimensional case, that is assumption 4, (2.2) which yields

∂ρ(t,z)
∂ t

+
∂ (ρ(t,z)vz(t,r,z))

∂ z
= 0. (2.3)

Substituting (2.1) into (2.3) gives

∂ p(t,z)
∂ t

+ρ(t,z)b2 ∂vz(t,r,z)
∂ z

+ vz(t,r,z)
∂ p(t,z)

∂ z
= 0 (2.4)

with pressure p(t,z) [Pa] and speed of sound in the fluid b [m/s].
In an actual pipeline the flow shows different nonuniform velocity profiles, therefore the

mean velocity will be used for vz(t,r,z) in (2.4). Mean velocity is calculated as follows

v(t,z) =
1
Ar

∫
A

vz(t,r,z)dA =
2

R2

∫ R

0
vz(t,r,z)dr (2.5)

with cross-sectional area of the pipeline Ar [m2] and pipeline radius R = φ/2 [m]. Taking into
account the volumetric flow rate Q(t,z) = Arv(t,z) [m3/s] together with (2.4) lead to

∂ p(t,z)
∂ t

+
ρ(t,z)b2

Ar

∂Q(t,z)
∂ z

+
Q(t,z)

Ar

∂ p(t,z)
∂ z

= 0. (2.6)

Let us now consider the z-component of the equation of motion in cylindrical coordinates
given by, [19]:

ρ

(
∂vz

∂ t
+ vr

∂vz

∂ r
+

vθ

r
∂vz

∂θ
+ vz

∂vz

∂ z

)
=−∂ p

∂ z
+

[
1
r

∂ (rτrz)

∂ r
+

1
r

∂τθz

∂θ
+

∂τzz

∂ z

]
+ρgz (2.7)

with gravitational force per unit volume along z-axis gz [N/m3] and shear stresses τrz(t,r,θ ,z),
τθz(t,r,θ ,z) and τzz(t,r,θ ,z). Notice that τi j is the force in the j direction on a unit area
perpendicular to the i direction. For the one-dimensional case, assumption 4, (2.7) yields

ρ

(
∂v(t,z)

∂ t
+ v(t,z)

∂v(t,z)
∂ z

)
=−∂ p(t,z)

∂ z
+

∂τzz(t,z)
∂ z

−ρ(t,z)gsin(α), (2.8)
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where mean velocity v(t,z) has been used for vz(t,r,z) and the Newton’s Law of Viscosity in
(2.9) has been considered [19]

τrθ = τθr =−µ

[
r ∂

∂ r

(vθ

r

)
+ 1

r
∂vr
∂ r

]
τθz = τθz =−µ

[
1
r

∂vz
∂θ

+ ∂vθ

∂ z

]
τzr = τrz =−µ

[
∂vr
∂ z + ∂vz

∂ r

] , (2.9)

with dynamic viscosity µ [Pa·s].
Pressure loss due to friction rely on the shear stress term ∂τzz(t,z)/z in (2.8). Thus, the

Darcy-Weisbach friction equation, which relates the friction losses along a given length of pipe
to the average velocity of the fluid flow [27, 183], can be used for computing wall shear stress
term as follows

∂τzz(t,z)
∂ z

=−ρ(t,z)
f (v)v(t,z) |v(t,z)|

2φ
, (2.10)

where f (v) is the dimensionless Darcy-Weisbach friction factor which depends on the Raynolds
number which in turn depends on the flow rate. Notice that it has been written v2(t,z) as
v(t,z) |v(t,z)| to allow for the reverse flow. Considering the volumetric flow rate together with
(2.8) lead to

∂Q(t,z)
∂ t

+
Q(t,z)

A
∂Q(t,z)

∂ z
+

Ar

ρ(t,z)
∂ p(t,z)

∂ z
+

f (Q)Q(t,z) |Q(t,z)|
2φAr

+gArsin(α) = 0, (2.11)

Therefore, the set of hyperbolic partial differential equations (2.6) and (2.11) describe
unsteady, nonuniform flow of a slightly compressible fluid in an elastic conduit. In these
equations the independent variables are distance z and time t, while the dependent variables are
pressure p and flow rate Q.

2.2.2 Simplified Equations

In most of the engineering applications, the convective terms, Q(∂ p/∂ z) and Q(∂Q/∂ z) are
small as compared to the other terms and may be neglected [27]. This considerably simplifies
the analysis without significantly affecting the accuracy of the computed results. Thus, dropping
these terms from equations (2.6) and (2.11), we obtain

∂ p(t,z)
∂ t

+
ρ(t,z)b2

Ar

∂Q(t,z)
∂ z

= 0 (2.12)
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∂Q(t,z)
∂ t

+
Ar

ρ(t,z)
∂ p(t,z)

∂ z
+

f (Q)Q(t,z) |Q(t,z)|
2φAr

+gArsin(α) = 0, (2.13)

It is common in hydraulic engineering to compute pressures in the pipeline in terms of the
piezometric head, H. The gauge pressure may be written as

p = ρg(H −h0) (2.14)

where h0 is elevation of the pipe centerline above the specified datum. Notice that for a
horizontal pipeline ∂ p/∂ t = ρg(∂H/∂ t) and ∂ p/∂ z = ρg(∂H/∂ z). By substituting these
relationships into (2.12) and (2.13), we obtain

∂H(t,z)
∂ t

+
b2

gAr

∂Q(t,z)
∂ z

= 0 (2.15)

∂Q(t,z)
∂ t

+gAr
∂H(t,z)

∂ z
+

f (Q)

2φAr
Q(t,z) |Q(t,z)|= 0, (2.16)

2.2.3 Friction Loss Models

Pressure drop estimation due to the flow friction in pipelines can be considered as a crucial task
in the solution of turbulent flow problems. In a fully developed steady flow in a straight pipe
with uniform inner diameter φ and flowing full, the Darcy-Weisbach equation is considered
appropriate to determine head loss due to viscous effects in closed pipelines. Darcy-Weisbach
equation has been defined as follows [184]:

h f = f
Lv2

2gφ
(2.17)

where h f is the frictional pressure loss [m], f is the Darcy-Weisbach friction factor and v is the
mean flow velocity [m/s], which can be experimentally measured as the volumetric flow rate Q
per unit cross-sectional area Ar.

The friction factor is a function of the Reynolds number of the flow Re and the relative
roughness ε/φ , which is the ratio of the mean height of roughness ε of the pipe to the pipe
diameter φ . The relation among f , the Reynolds number and the relative roughness is exper-
imentally determined and plotted in Fig. 2.2, which is called the Moody diagram or Moody
chart. It is one of the most widely accepted and used charts in engineering. Although it is
developed for circular pipes, it can also be used for non-circular pipes by replacing the diameter
by the hydraulic diameter.
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Fig. 2.2 Moody Diagram

The Moody chart can be divided into three regimes of flow: laminar, transition and turbulent.
For the laminar flow regime (Re <∼ 2040), roughness has no discernible effect, and the
Darcy–Weisbach friction factor f can be calculated as f = 64/Re. On the transition zone,
where the flow varies between laminar and complete turbulent, as well as for the turbulent flow
regime the relationship between the friction factor f , the Reynolds number Re, and the relative
roughness ε/φ is more complex. However, notice that at large values of Reynolds number and
for a fixed value of relative roughness the friction factor becomes independent of the Reynolds
number (complete turbulence zone in Fig. 2.2). An expression for calculating the friction factor
for transition and complete turbulent flow, in smooth as well as rough pipes, which agree well
with Fig. 2.2 is the relation known as the Colebrook equation given by

1√
f
=−2log10

(
ε

3.71φ
+

2.51
Re

√
f

)
, (2.18)

where Re(z, t) = Q(z, t)φ/νAr is the Reynolds number, ν is the kinematic viscosity [m2/s] and
ε is the pipe’s effective roughness height [m]. However, since the Colebrook equation Eq. (2.18)
is implicit with respect to f it has to be solved by using iterative methods which causes serious
difficulties in repetitive calculations of the friction factor such as those encountered in leak
diagnostic algorithms. Because of this reason, over the time a large number of studies developed
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several explicit approximations to the implicit Colebrook equation, for a comprehensive review
in recent years see [20, 57, 67].

2.3 Liénard-Type Models

Among dynamical systems and differential equations, Liénard system is a second order differ-
ential equation, named after the French physicist Alfred-Marie Liénard [161]. Due to Liénard
equations can be used to model oscillating circuits they were intensely studied during the
development of radio and vacuum tube technology [186]. In 1920 a Dutch engineer working
for Philips Company, Balthasar Van der Pol, studied a differential equation which describes
the circuit of a vacuum tube, the Van der Pol oscillator, one of the most widely used models of
nonlinear self-oscillation, is named after him. In 2928 Van del Pol modeled the electric activity
of the heart rate, [167]. In the early sixties authors in [51, 117] used the Van der Pol equation to
model action potentials of neurons. In seismology, the Van der Pol equation has been used to
model the interaction of two plates in a geological fault [25].

2.3.1 Liénard Equation

The French physicist and engineer, Liénard proposed the following generalization of the Van
der Pol equation

ẍ(t)+F0 (x(t)) ẋ(t)+G0 (x(t)) = 0 (2.19)

where ẋ(t) = dx(t)/dt, ẍ(t) = d2x(t)/dt2 for given functions F0, G0 and a scalar (unknown)
variable x(t). By considering the state variables

x1(t) = x(t)
x2(t) = ẋ(t),

(2.20)

the Liénard equation can be rewritten as a set of two first-order differential equations in terms
of the state variables x1 and x2 as follows:

ẋ1 (t) = x2 (t)
ẋ2 (t) = −F0 (x1 (t))x2 (t)−G0 (x1 (t))
y(t) = x1(t),

(2.21)
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Table 2.1 Approximation to the Colebrook’s Equation, [57]

Equation Range
Authors

Year Ref.

f = 0.0055
[

1+
(

20000
(

ε

φ

)
+ 106

Re

) 1
3
]

Re = 4000−5×108

ε = 0−0.01
Moody
1947 [114]

f = 0.11
[(

ε

φ

)
+ 68

Re

] 1
4 Re = 104 −106

ε = not specified
Altshuler

1952 [101]

f = 0.53
(

ε

φ

)
+0.094

(
ε

φ

)0.225
+V

V = 88
(

ε

φ

)0.44
Re−1.62

(
ε

φ

)0.134
Re = 4000−5×107

ε = 0.00001−0.04
Wood
1966 [178]

f =
[
−2log

(
ε

3.7φ
+ 7

Re0.9

)]−2
Not specified

Churchill
1973 [32]

f =
[
1.14−2log

(
ε

φ
+ 21.25

Re0.9

)]−2 Re = 5000−107

ε = 0.00004−0.05
Jain
1976 [76]

f =
[
−2log

(
ε

3.7φ
+ 5.74

Re0.9

)]−2 Re = 5000−108

ε = 0.000001−0.05

Swamee,
Jain
1976

[152]

f =
{
−2log

[
ε

37.065φ
− 5.0452

Re V
]}−2

V = log
(

1
2.8257

(
ε

φ

)1.1098
+ 5.8506

Re0.891

) Re = 4000−4×108

ε =not specified
Chen
1979 [28]

f =
[
−1.8log

(
0.135ε

φ
+ 6.5

Re

)]−2 Re = 4000−4×108

ε = 0−0.05
Round
1980 [139]

f =
{
−2log

[
ε

3.7φ
− 5.02

Re V
]}−2

V = log
(

ε

φ
− 5.02

Re log
(

ε

3.7φ
+ 13

Re

)) Re = 4000−108

ε = 0.00004−0.05

Zigrang,
Sylvester

1982
[189]

f =
[
−1.8log

((
ε

3.7φ

)1.11
+ 6.9

Re

)]−2 Re = 4000−108

ε = 0.000001−0.05
Haaland

1983 [63]

A = 0.11
(

ε

φ
+ 68

Re

) 1
4

If A ≥ 0.018 then f = A and
if A < 0.018 then f = 0.0028+0.85A

Re = 4000−108

ε = 0−0.05
Tsal
1989 [164]

f =
[
−2log

(
ε

3.7φ
+ 95

Re0.983 − 96.82
Re

)]−2 Re = 4000−108

ε = 0−0.05
Manadili

1997 [102]

f =
{
−2log

[
ε

37.065φ
− 5.0272

Re log
(

ε

3.827φ
−V

)]}−2

V = 4.567
Re log

((
ε

φ

)0.9924
+
( 5.3326

208.82+Re

)0.9345
) Re = 3000−1.5×108

ε = 0−0.05

Romeo,
Royo,

Monzon
2002

[138]

f =
[
−2log

(
ε

3.71φ
+ 2.18V

Re

)]−2

V = ln Re
1.816ln

(
1.1Re

ln(1+1.1Re)

) Not specified
Brkić
2011 [20]

f =
[
−2log

(
ε

3.71φ
+10−0.4343V

)]−2

V = ln Re
1.816ln

(
1.1Re

ln(1+1.1Re)

) Not specified
Brkić
2011 [20]
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Since in the case in which the model (2.21) is going to be used in an observer-based
algorithm it is necessary to define the measured output, the output equation y(t) = x1(t) has
been added in (2.21). This means that only the first state is measured, however notice that the
function F0(x1(t)) is affine to the unmeasured state x2(t), which makes it difficult the design of
a estimator. In this case a more appropriate state variables definition is

ζ1(t) = x(t)
ζ2(t) = ẋ(t)+F(x(t))

(2.22)

with F (x) =
∫ x

0 F0 (σ)dσ . By considering this we can rewrite (2.19) in a state-space form as
follows:

ζ̇1 (t) = ζ2 (t)−F (ζ1 (t))
ζ̇2 (t) = −G0 (ζ1 (t))
y(t) = ζ1(t),

(2.23)

Representation (2.23) is called the Liénard form, and since now nonlinear functions are decou-
pled from the unmeasured state ζ2 (t), it facilitates the estimation.

Let us now assume that the functions F and G0 can be linearly parameterized with respect
to some parameter vectors θ1 and θ2 respectively, that is

ζ̇1(t) = ζ2(t)− F̃T (ζ1(t))θ1

ζ̇2(t) = −G̃T
0 (ζ1(t))θ2

y(t) = ζ1(t),
(2.24)

where F̃T (ζ1(t)) and G̃T
0 (ζ1(t)) are nonlinear function vectors. The Liénard system in (2.24)

can be rewritten in matrix form as follows [14]:

ζ̇ (t) = Aoζ (t)+Φ(u(t) ,y(t))θ +ϕ (u(t) ,y(t))

y(t) =Co (t)
(2.25)

with Ao =

[
0 1
0 0

]
, C0 = [ 1 0 ], Φ(y(t)) =

[
F̃T (y(t))
G̃T

0 (y(t))

]
, θ = [θ1θ2] and a non-

parametrized function ϕ((u(t),y(t)) which depend exclusively on the inputs and outputs of
the system. In consideration of the augmented state vector ξ (t) = [ ζ (t) θ ]T , (2.25) can be
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rewritten as follows:

ξ̇ (t) =

[
Ao Φ(u(t) ,y(t))
0 0

]
︸ ︷︷ ︸

A(u(t),y(t))

ξ (t)+

[
ϕ (u(t) ,y(t))

0

]
︸ ︷︷ ︸

B(u(t),y(t))

y(t) =
[

Co 0
]

︸ ︷︷ ︸
C

ξ (t) .

(2.26)

2.3.2 Liénard-Type Models for Pipelines

As we showed in section 2.2, by assuming that convective changes in velocity are negligible
and that the cross section area is constant, the momentum and continuity equations governing
the dynamics of the fluid in a horizontal pipeline can be expressed as in (2.15) and (2.16), and
written here again

∂H(t,z)
∂ t

+
b2

gAr

∂Q(t,z)
∂ z

= 0, (2.27)

∂Q(t,z)
∂ t

+gAr
∂H(t,z)

∂ z
+

f (Q)

2φAr
Q(t,z) |Q(t,z)|= 0. (2.28)

where (z, t) ∈ (0,L)× (0,∞) gathers the space [m] and time [s] coordinates respectively, L is
the length of the pipe [m], H(z, t) is the pressure head [m], Q(z, t) is the flow rate [m3/s], b
is the velocity of sound in the fluid [m/s], g is the gravitational acceleration [m/s2], Ar is the
cross-sectional area of the pipe [m2], φ is the inside diameter of the pipe [m] and f (Q(z, t))
is the Darcy-Weisbach friction factor which depends on the Raynolds number which in turn
depends on the flow rate.

Notice that to fully define solutions of (2.27) and (2.28), two of the following Dirichlet
conditions must be imposed at the boundaries of the pipeline: (i) upstream pressure head,
H(0, t) = Hin(t), (ii) downstream pressure head, H(L, t) = Hout(t), (iii) upstream flow rate,
Q(0, t) = Qin(t) and (iv) downstream flow rate, Q(L, t) = Qout(t).

Flow-based Liénard Form

A representation only in terms of the flow rate can be obtained from (2.28) and (2.27), first, by
differentiating (2.27) with respect to z as follows

∂ 2H(t,z)
∂ z∂ t

=− b2

gAr

∂ 2Q(t,z)
∂ z2 = 0. (2.29)
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Then, by differentiating (2.28) with respect to t, we get

∂ 2Q(t,z)
∂ t2 +gAr

∂ 2H(t,z)
∂ t∂ z + ∂

∂ t

(
f (Q)
2φAr

Q(t,z) |Q(t,z)|
)
= 0

∂ 2Q(t,z)
∂ t2 +gAr

∂ 2H(t,z)
∂ t∂ z + f (Q)

2φAr
∂

∂ t (Q(t,z) |Q(t,z)|)+Q(t,z) |Q(t,z)| ∂

∂ t

(
f (Q)
2φAr

)
= 0.

(2.30)

Let us now evaluate ∂

∂ t (Q(t,z) |Q(t,z)|) as follows:

∂

∂ t (Q(t,z) |Q(t,z)|) = |Q(t,z)| ∂Q(t,z)
∂ t +Q(t,z)∂ |Q(t,z)|

∂ t

= |Q(t,z)| ∂Q(t,z)
∂ t +Q(t,z) Q(t,z)

|Q(t,z)|
∂Q(t,z)

∂ t

= |Q(t,z)| ∂Q(t,z)
∂ t +Q(t,z)sgn(Q(t,z)) ∂Q(t,z)

∂ t

= |Q(t,z)| ∂Q(t,z)
∂ t + |Q(t,z)| ∂Q(t,z)

∂ t = 2 |Q(t,z)| ∂Q(t,z)
∂ t .

(2.31)

Substituting (2.31) in (2.30)

∂ 2Q(t,z)
∂ t2 +gAr

∂ 2H(t,z)
∂ t∂ z + f (Q)

φAr
|Q(t,z)| ∂Q(t,z)

∂ t + Q(t,z)|Q(t,z)|
2φAr

∂ f (Q)
∂Q

∂Q(t,z)
∂ t = 0

∂ 2Q(t,z)
∂ t2 +gAr

∂ 2H(t,z)
∂ t∂ z +

|Q(t,z)|
φAr

[
f (Q)+ Q(t,z)

2
∂ f (Q)

∂Q

]
∂Q(t,z)

∂ t = 0.
(2.32)

By combining (2.32) and (2.29), we finally obtain:

∂ 2Q(t,z)
∂ t2 +

|Q(t,z)|
φAr

[
f (Q)+

Q(t,z)
2

∂ f (Q)

∂Q

]
∂Q(t,z)

∂ t
−b2 ∂ 2Q(t,z)

∂ z2 = 0, (2.33)

which has the form of (2.19) with

F0(Q(t,z)) =
|Q(t,z)|

φAr

[
f (Q)+ Q(t,z)

2
∂ f (Q)

∂Q

]
G0(Q(t,z)) =−b2 ∂ 2Q(t,z)

∂ z2 .
(2.34)

Therefore, by considering the state variables definition in (2.22), that is Qa(t,z) = Q(t,z) and
Qb(t,z) = ∂Q(t,z)/∂ t +F(x(t)), (2.33) can be rewrite in a state-space form as follows:

∂Qa(z,t)
∂ t = Qb(z, t)−F(Qa(z, t))

∂Qb(z,t)
∂ t = b2 ∂ 2Qa(z,t)

∂ 2z

(2.35)

where F (Qa(z, t)) =
∫ Qa(z,t)

0 F0 (σ)dσ and F0(σ) is given by the first equation in (2.34).
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Hybrid Liénard Form (flow rate and pressure head)

Let us now assume that the flow rate is driven by pressure heads at the ends of the pipeline.
Notice that by differentiating the continuity equation (2.27) with respect to z we have

∂ 2Q(t,z)
∂ z2 =−gAr

b2
∂ Ḣ(t,z)

∂ z
(2.36)

with Ḣ(t,z) = ∂ Ḣ(t,z)/∂ t. Combining (2.36) and (2.35) subsequently yields:

∂Qa(z,t)
∂ t = Qb(z, t)−F(Qa(z, t))

∂Qb(z,t)
∂ t =−gAr

∂ Ḣ(t,z)
∂ z

, (2.37)

which is given in terms of the flow rate and pressure derivatives.

Spatial Discrete Models

By using the finite difference method, a spatial discrete version of (2.35) can be expressed by

Q̇a
i (t) = Qb

i (t)−F (Qa
i (t)) , i = 1, ...,nℓ

Q̇i
b
(t) = b2

[
Qa

i−1(t)−2Qa
i (t)+Qa

i+1(t)

(∆zi)
2

] , (2.38)

where ∆zi is the spatial step, nℓ is the total number of discretization levels. Furthermore, if Eq.
(2.37) is discretized in space, we get the following ODE system:

Q̇a
i (t) = Qb

i (z, t)−F(Qa
i (t)), i = 1, ...,nℓ

Q̇i
b
(t) = gAr

[
Ḣi−1(t)−Ḣi+1(t)

2∆zi

] , (2.39)

It is important to state that the finite-difference schemes (2.38) and (2.39) are stable if
△zi > b△t, this condition is called the Courant-Friedrich-Lewy (CFL) stability condition [27].
Additionally notice that if the flow rate is measured at three positions corresponding to indexes
i−1, i, i+1 (see Fig. 2.3), model (2.38) is of the form (2.25), which is suitable for an observer-
based estimation of the parameter b2. If instead derivatives of pressure heads can be available
at two positions of indexes i+1, i, model (2.39) can be used for estimating 1/∆z.
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L  = 2D z

i-1 i i+1

Fig. 2.3 Spatial Discretization of a Pipeline Section

Friction Model Selected

Notice that Liénard-type models (2.38) and (2.39) involve the calculation of F (Qa(z, t)), which
depending on the model used to calculate the friction factor can results in a pipeline model
mathematically unmanageable. Thus, the selection of the friction model to be used implies to
face a trade-off between math complexity and accuracy. Among the explicit approximations
to the Colebrook equation available, in the present work it was chosen to compute the friction
factor by the power-law type equation proposed by Wood in [178] as follows:

f (Re) = f (Q(z, t)) = 0.53
(

ε

φ

)
+0.094

(
ε

φ

)0.225

+88
(

ε

φ

)0.44

Re−V , (2.40)

where V = 1.62
(

ε

φ

)0.134
. It is important to address that the estimated error of Wood approxi-

mation can reach a 49.51% in the range 104 < Re < 108 and 1×10−7 < ε

φ
< 0.05 (see Fig. 2.4

(a)). To improve the approximation performance new coefficients for the Wood model were
calculated by using nlinfit iterative reweighted least squares algorithm in MATLABr. The
improved Wood approximation is shown in Fig. (2.41).

f (Re) = f (Q(z, t)) = 0.4133
(

ε

φ

)
+0.1110

(
ε

φ

)0.2598

+42.6463
(

ε

φ

)0.3273

Re−V , (2.41)

where V = 1.3624
(

ε

φ

)0.1124
. The maximum error is reduced to 11.67% as can be see in Fig.

2.4 (b). Although this error is greater than that obtained with other approximation [20], the
convenience of using Wood equation will be understood soon.

Therefore, if the Darcy-Weisbach friction factor is assumed to be constant, F (Qa(z, t)) in
(2.38) and (2.39) is given by

F (Qa(z, t)) =
f

2φAr
Qa(z, t)|Qa(z, t)|, (2.42)
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Fig. 2.4 Estimated Error of Wood Approximations

and if a varying friction factor calculated through (2.41) is considered, F (Qa(z, t)) is given by

F (Qa(z, t)) =
Qa(z, t)|Qa(z, t)|

(
410( ε

φ
)+111

(
ε

φ

) 13
50
)

2000Arφ
+

43Qa(z, t)|Qa(z, t)|
(

ε

φ

) 33
100

2Arφ (1+κ)
(

Qa(z,t)
Aυ

)κ ,

(2.43)

with κ =
34
(

ε

φ

) 14
125

25 .
It is worth to state that to the best of the our knowledge, this is the first work in which a

varying friction factor is taken into account in the formulation of a Liénard-type model for
pipelines.



Chapter 3

State Estimation

3.1 Introduction

A state-space representation of a physical system is a mathematical model expressed by first-
order differential equations that relates a set of input, output and state variables. The most
general state-space representation is written in the following form [15]:

ẋ(t) = f (x(t),u(t), t)
y(t) = h(x(t),u(t), t)

. (3.1)

where x(t) ∈ X ⊂ Rn denotes the state vector, u(t) ∈ U ⊂ Rp the control input vector and
y(t) ∈ Y ⊂ Rq the measured output. The input function u(·) is assumed to be bounded and
measurable in a set U , and functions f and h to be C∞ with respect to their arguments.

"State variables" refers to the smallest possible subset of system variables, that together with
the input signals and the equations describing the dynamics, will provide the future state and
output of the system [125, 42]. By "state space" it should be understood an Euclidean space in
which the state variables are the variables on the axes. Within that space the state of the system
can be represented as a vector. Also known as the "time-domain approach", the state-space
representation provides a compact way to model and analyze systems with multiple inputs and
outputs. The transfer function representation for a system with p inputs and q outputs would be
a q× p matrix of Laplace transforms. Unlike the frequency domain approach, the use of the
state-space representation is not limited to linear systems with zero initial conditions.

State Space Model is used in many different areas, however, in many real-world systems
not all states are available for online measurement due to the high price of sensors [41, 77, 45].
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Therefore, measuring the missing states or variables can result expensive and time consuming
due the high cost of installation of these devices and the significant technical standard require-
ments [59, 72]. Consequently, devices called observers or state estimators have been developed
to estimate the missing variables and to reduce the usage of high-priced sensors [41, 42]. Thus,
the state estimation problem can be interpreted as estimating the states x of a dynamical system
described by the system of first-order differential equation in (3.1), given the inputs u and the
measurements y.

The solution for this problem was first given by Weiner, Kalman and Luenberger [177, 82,
97, 98], and over the years many authors have worked on the development of state estimators
for linear and nonlinear systems looking for guarantee the requirements of high accuracy, low
cost and good prediction performances. In fact, many observers today are simply modifications
and extended versions of the classical Luenberger observer and Kalman filter. Although the
main field of application of observers has been for the operation of control system in which the
full information of the system’s states is not available, researchers have also developed state
estimators to tackle problems such as disturbances, faults and leaks diagnosis [3, 16].

This chapter is organized as follows. Section 3.2 presents state estimators classification,
whereas Section 3.3 is dedicated to a review on the observability condition and observer
formulation.

3.2 State Estimators Classification

Based on an extensive literature review of the recent observers applications authors in [3]
differentiate six major classes in which state estimators can be classified (Table 3.1): Luenberger-
based observers, finite-dimensional system observers, Bayesian estimators, disturbances and
fault detection observers, artificial intelligence-based observers and hybrid observers.

• Luenberger-based Observers: this class groups together all of the observers designed
based on the Luenberger observer methodology. Extended versions of the classical
Luenberger observer [187], adaptive state observer [17] and sliding mode observer [59]
are examples of observers falling into this class. These types of observers are suitable for
less complex linear systems [9].

• Finite-dimensional System Observers: observers grouped in this class are designed
for systems whose dynamics are described by ordinary differential equations (ODEs).
Reduced order [34], high gain [12, 163], exponential [85] and interval observers [108]
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Table 3.1 State Estimator Classification, [3]

Class Specific observer

Luenberger-based
observers

1. Extended Luenberger observer
2. Sliding mode observer (SMO)
3. Adaptive state observer
4. High-gain observer
5. Zeitz nonlinear observer
6. Discrete-time nonlinear recursive observer
7. Geometric observer
8. Backstepping observer

Finite-dimensional
system observers

1. Reduced-order observer
2. Low-order observer
3. High gain observer
4. Asymptotic observer
5. Exponential observer
6. Integral observer
7. Interval observer

Bayesian estimators

1. Particle filter
2. Extended Kalman filter (EKF)
3. Unscented Kalman filter
4. Ensemble Kalman filter
5. Steady state Kalman filter
6. Adaptive fading Kalman filtering
7. Moving horizon estimator
8. Generic observer
9. Specific observer

Disturbance and fault
detection observers

1. Disturbance observer
2. Modified disturbance observer
3. Fractional-order disturbance observer
4. Bode-ideal cut-off observer
5. Unknown input observer
6. Nonlinear unknown input observer
7. Extended unknown input observer
8. Modified proportional observer

Artificial
intelligence-based
observers

1. Fuzzy Kalman filter
2. Augmented fuzzy Kalman filter
3. Differential neural network observer
4. EKF with neural network model

Hybrid observers

1. Extended Luenberger-asymptotic observer
2. Proportional-integral observer
3. Proportional-SMO
4. Continuous-discrete observer
5. Continuous-discreteinterval observer
6. Continuous-discrete-EKF
7. High-gain continuous-discrete
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are included in this class. These state estimators suit systems with less kinetic infor-
mation. Asymptotic/exponential and interval observers can also be extended to infinite
dimensional systems [40].

• Bayesian Estimators: observers within this class are characterized by a probability
distribution estimation of state variables [30]. Extended Kalman filter [69], moving
horizon estimators [134] and adaptive fading Kalman filter [179] are examples of Bayesian
estimators. These consistent and versatile estimators are highly appropriate for fast
estimation [127].

• Disturbance and Fault Detection Observers: since both disturbance and fault detection
observers are mostly used to estimate irregularities in the system, they are included in
the same category. Unknown input observer [29], Bode’s ideal cut-off filter [100] and
fractional-order disturbances observer [99] fall into this class. Observers belonging to
this class are mostly appropriated for estimating faults and disturbances, which allows for
early warning.

• Artificial Intelligence-based Observers: these observers are based on artificial intelli-
gence techniques as fuzzy logic, artificial neural networks and genetic algorithms. These
widely utilized estimators are suitable for systems with incomplete model structure and
information. Fuzzy Kalman filter [6] and differential neural network observer [95] are
some examples of artificial intelligence-based observers.

• Hybrid Observers: these observers result from the combination of more than one
observer to improve the estimation in certain systems. The combination allow to overcome
the limitations of a particular single observer, however the selection of an appropriate
combination may be time consuming [58]. Examples Hybrid observers types are the
high-gain continuous-discrete observer [2], proportional sliding modes observer [94] and
extended Luenberger-asymptotic observer [72].

3.3 Observability and Observer Formulation

3.3.1 State-space Representations

Although the general form of the state-space representation is the shown in 3.1, others more
specific forms are typically used for state estimator design. Among which we have:
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• State-affine Systems:

f (x,u) = A(u)x+B(u), h(x) =C(u)x+D(u) (3.2)

• Control-affine Systems:
f (x,u) = f0(x)+g(x)u (3.3)

• Linear Time-Varying (LTV) Systems:

f (t,x,u) = A(t)x+B(t)u, h(t,x,u) =C(t)x+D(t)u (3.4)

• Linear Time-Invariant (LTI) Systems:

f (x,u) = Ax+Bu, h(x,u) =Cx+Du (3.5)

3.3.2 Observer, Observability and Regularly Persistent Input

State Observer

Given a system described by equations (3.1), the role of an observer consists of estimating the
current state x(t) of the system from the knowledge of its inputs u(t) and its outputs y(t). Such
a system can be defined as follows [15]:

Definition 3.3.1 (State Observer). An observer for (3.1) is therefore an auxiliary dynamic
system whose inputs are the inputs/outputs of (3.1), and the outputs the estimated states x̂(t).
Such a system can be represented generally as follows

Ẋ(t) = F(X(t),u(t),y(t), t)

x̂(t) = H(X(t),u(t),y(t), t)

such that:

(i) x̂(0) = x(0) =⇒ x̂(t) = x(t), ∀t ≥ 0

(ii) ∥x̂(t)− x(t)∥→ 0 as t → ∞;

If (ii) holds for any x(0), x̂(0), the observer is global.
If (ii) holds with exponential convergence, the observer is exponential.
If (ii) holds with a convergence rate which can be tuned, the observer is tunable.
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Geometric Conditions of Observability

Before designing a observer it is important to consider the observability condition of the system
because observers can only be designed for observable systems. For stationary linear systems,
observability depends exclusively on of the mathematical description of the system and it is also
sufficient for guarantee the existence of an observer with global convergence, exponential and
arbitrarily fast. For nonlinear systems, the problem is complicated by fact that the observability
also depends on the input applied. Relying on the work of ([15]), we define the observability
from the notion of indistinguishability.

Definition 3.3.2 (Indistinguishability). The (x0,x′0) ∈ Rn ×Rn is indistinguishable for u if

∀u ∈ U ,∀t ≥ 0,h(Xu(t,x0)) = h(Xu(t,x′0)).

A state x is indistinguishable from x0 if the pair (x,x0) is indistinguishable.

From this definition, we can define the observability.

Definition 3.3.3 (Observability). The system (3.1) is said to be observable if it does not admit
an indistinguishable pair.

This definition is quite global, and even too general for practical use. This brings us to
consider a weaker notion of observability:

Definition 3.3.4 (Weak observability). The system (3.1) is said to be weakly observable if there
exists a neighborhood W of any x such that there is no indistinguishable state from x in W .

This definition does not take into account the cases where the trajectories have go to far
from W before one can distinguish between two states of W . In order to prevent this situation, a
more local definition can be given:

Definition 3.3.5 (Local Weak Observability). The system (3.1) is said to be locally weakly
observable if there exists a neighborhood W of any x such that for any neighborhood V of x
contained in W , there is no indistinguishable state from x in V when considering time intervals
for which trajectories remain in V .

This means in others words that we can distinguish every state from its neighbors without
”going too far”. This notion is more interesting in practice, and also since it presents the
advantage of admitting some some ’rank condition’ characterization. Such condition is based
on the notion of observation space which corresponds to the space of all observable states:
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Definition 3.3.6 (Observation Space). The observation space for a system (3.1) is defined as
the smallest real vector space (denoted by O(h)) of C∞ functions containing the components of
h and closed under Lie derivation along fu := f (.,u) for any constant u ∈Rm (namely such that
for any ϕ ∈ O(h), where L fuϕ(x) = ∂ϕ

∂x f (x,u)).

Definition 3.3.7 (Observability Rank Condition). The system (3.1) is said to satisfy the observ-
ability rank condition if:

∀x,dimdO(h)|x = n

where dimdO(h)|x is the set of dϕ with ϕ ∈ O(h).

From this we have [65]:

Theorem 1. The system (3.1) satisfying the observability rank condition at x0 is locally weakly
observable at x0.
More generally the system (3.1) satisfying the observability rank condition is locally weakly
observable.
Conversely, a system (3.1) locally weakly observable satisfies the observability rank condition
in an open dense subset of X .

Moreover, there is an equivalence between the rank condition for observability and the
Kalman rank condition used for linear time-invariant systems.

Theorem 2. For a system of the form (3.5):

• The observability rank condition is equivalent to rankOm = n, with Om the so-called
observability matrix defined by

Om =
[

C CA CA2 . . . CAn−1
]T

• The observability rank condition is equivalent to the observability of the system.

Notice that this condition is sufficient for the design of an observer for (3.5) (even necessary
and sufficient for the design of an tunable observer). However, in general, the observability rank
condition is not enough for a possible observer design: this is due to the fact that in general,
observability depends on the inputs. This means that the purpose of observer design requires a
look at the inputs [15].
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Analytic Conditions for Observability

Since the conditions presented above are not sufficient for an observer’s synthesis, additional
input conditions must be provided.

Definition 3.3.8 (Universal Inputs). An input u : [0,T ]→U is said to be universal for system
(3.1) on [0,T ] if ∀x0 ̸= x′0,∃τ ≥ 0 such that h(Xu(τ,x0)) ̸= h(Xu(τ,x′0)). An input u is a
singular input if it is not universal.

When there is no singular entry among the set of allowable inputs U , then any pair of initial
states are distinguishable. This property is called U-uniform observability.

Definition 3.3.9 (Uniformly Observable Systems). A system is uniformly observable (UO) if
every input is universal.

This property means that observability is independent of the inputs, as in the case of
LTI systems, and thus can allow an observer design also independent of the inputs. For not
uniformly observable systems, possible observers will depend on the inputs, and not all inputs
will be admissible. It is not enough to restrict the set of inputs to universal ones, as in the case
of uniformly observable systems (for which all inputs are universal). Universality must be
guaranteed over the time, namely must be persistent. In order to characterize this persistency,
notice first the following property [15]:

Proposition 1. An input u is a universal input on [0, t] for system (3.1) if and only if∫ t
0 ∥h(Xu(τ,x0))−h(Xu(τ,x′0))∥2dτ > 0 for all x0 ̸= x′0.

This can be easily checked from definition 3.3.8. Then we can define persistency as follows:

Definition 3.3.10 (Persistent Inputs). An input u is a persistent input for a system (3.1) if

∃t0,T : ∀t ≥ t0,∀xt ̸= x′t ,∫ t+T

t
∥h(Xu(τ,x0))−h(Xu(τ,x′0))∥2dτ > 0

This definition guarantees observability over a given time interval. However this does not
prevent observability from possibly vanishing as time goes to infinity. To avoid this, we must
guarantee the observability with a regular persistence:
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Definition 3.3.11 (Regularly Persistent Inputs). An input u is a regularly persistent input for a
system (3.1) if:

∃t0,T : ∀t ≥ t0,∀xt−T ̸= x′t−T ,∫ t

t−T
∥h(Xu(τ,xt−T ))−h(Xu(τ,x′t−T ))∥2dτ ≥ β (∥xt−T − x′t−T∥)

for some class K function β .

From these definitions of persistency and regular persistency, we can recover the usual
definitions already available for state affine systems [65].

Proposition 2. For state affine systems, regularly persistent inputs are inputs u such that:∫ t

t−T
Φ

T
u (τ, t −T )CTCΦu(τ, t −T )dτ ≥ αId > 0 ∀t ≥ t0 (3.6)

with Φu(τ, t) the transition matrix classically defined by:

dΦu(τ, t)
dτ

= A(u(τ))Φu(τ), Φu(t, t) = Id,

The term to the left of (3.6) corresponds to the observability Gramian, classically defined
for LTV systems.

Now we know that regular persistence is the property we need for state reconstruction, but it
depends on the time needed to obtain sufficient information. If one is interested in a short-time
estimate, one will need a stronger property of observability. This can be stated as follows:

Definition 3.3.12 (Locally Regular Inputs). An input u is a locally regular input for a system
(3.1) if:

∃T0,α : ∀T ≤ T0,∀t ≥ T,∀xt−T ̸= x′t−T ,∫ t

t−T
∥h(Xu(τ,xt−T ))−h(Xu(τ,x′t−T ))∥2dτ ≥ β (∥xt−T − x′t−T∥,

1
T
)

for some class K function β .
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3.3.3 Model Under Consideration

This section presents a brief description of the observability characterization of a class of state
affine controlled systems (3.2), of interest in this work, which can be rewritten as follows:

ẋ(t) = Ac (u(t) ,y(t))x(t)+Bc (u(t) ,y(t)) ,

y(t) =Ccx(t) (3.7)

where x(t) ∈ Rn denotes the state vector, u(t) ∈ Rp the control input vector and y(t) ∈ Rq

the measured output. The nonlinear system (3.7) can be discretized through a single matrix
exponential as follows [168]:[

Ak Bk

0 I

]
= exp

(
Ts

[
Ac (uk,yk) Bc (uk,yk)

0 0

])
,

where k is any sampling instant, uk ≡ u(kTs), yk ≡ y(kTs), Ts is the sampling time and 0 and I
stand for null and identity matrices of appropriate dimensions.

According to Ţiclea and Besançon [154], given the initial condition x(0) and the input
function, the observation problem of (3.7) can be reduced to the observation of the linear
time-varying system

xk+1 = Akxk +Bk

yk =Ckxk
(3.8)

where xk denotes the state vector, uk the control input vector and yk the measured output at
time k. It is worth noting that in general system (3.8) is not uniformly observable (definition
3.3.9), i.e. it may admit inputs for which observability is lost. Its observability property can yet
be characterized through a discrete version of the observability Gramian (3.6), the so called
discrete observability Gramian, defined for system (3.8) by

Γ (k,σ) =
k

∑
l=k−σ

Φ(l,k)T CT
l ClΦ(l,k) (3.9)

where σ is the length of the Gramian window and

Φ(k,k0) = AkAk−1 · · ·Ak0 =
k

∏
p=k0

Ap
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is the state transition matrix. System (3.8) is said to be observable if Γ (k,σ) is a positive
definite matrix, therefore the lowest eigenvalue of Γ can then be used to define a degree of
observability.

As a result, a regularly persistent input for the observability of (3.8) can be defined as done
in [154]:

Definition 3.3.13. An input sequence uk is a regularly persistent input for (3.8) if, for any
initial condition x0, the induced linear time-varying representation (3.8) is completely uniformly
observable, that is, it satisfies the following property.

There exists a fixed natural number σ such that at any sampling instant k we have

Γ (k,σ)−αI > 0, (3.10)

where I stands for the identity matrix.

3.3.4 Observer Formulation

For a dynamical system described by (3.8), and assuming that the input sequence uk is regu-
larly persistent and makes Ak invertible, an appropriate observer is a globally exponentially
convergent observer that is given by [16]

x̂k|k = x̂k|k−1 −Kk
(
Cx̂k|k−1 − yk

)
x̂k+1|k = Akx̂k|k +Bk

Pk+1|k = γ
−1Ak

(
Pk|k−1 −KkCPk|k−1

)
Ak

(3.11)

with
Kk = Pk|k−1CT (CPk|k−1CT +R

)−1

P0|−1 = PT
0|−1 > 0, R = RT > 0 and 0 < γ < 1.

Notice that the convergence rate can here be tuned via parameter γ , with the property that
the smaller it is, the faster the observer will converge [154].





Chapter 4

Input Synthesis for Observer-Based
Parameter Identification in Pipelines

4.1 Introduction

Pipelines give an efficient way to transport fluids and are widely used in various industries
for that reason. As in many other processes, parameters driving their dynamics can change
significantly from their design values because of the aging deterioration, the installation process
or the manufacturing execution. Hence, in order to design algorithms based on first principles
model of the pipeline such as leak detection and isolation systems (as in [38, 64, 172, 174, 188,
150] for a few examples), monitoring systems (as in [160, 64]), control laws for the optimal
transmission and distribution of the products (as in [128, 190, 62, 60, 66] for instance); it is
necessary to develop techniques for the continuous updating of the pipeline parameters.

The updating of parameters in a process model is a task known as parameter identification,
and many methodologies for such a task have been developed over time; see [74, 145], among
many. For the particular case of parameter identification in pipelines, some approaches can be
found in [182, 185], each one with advantages and disadvantages according to the characteristics
of the problem.

In the recent work of [161], a parameter identification methodology based on state observers
and Liénard-type models was introduced, and a validation of such a methodology with experi-
mental data was proposed in [155]. In the present chapter, we reconsider this approach, with
significant improvement for its implementation, as summarized hereafter.



40 Input Synthesis for Observer-Based Parameter Identification in Pipelines

The methodology is based on the conversion of hyperbolic partial differential equations
that represent the fluid dynamics in a pipeline to Liénard-type equations by considering a
varying friction factor as it was presented in Section (2.3). To the best of the our knowledge,
this is the first work in which a varying friction factor is takes into account in the formulation
of a Liénard-type model for pipelines. The benefits of Liénard-type models is their suitable
structure for the design of state observers, which can also be used for parameter estimation. The
convergence of such observers is guaranteed under a specific excitation condition in the inputs,
which means that appropriate signals should be applied (see Definition 3.3.13). Even though
in some (simple) cases such inputs can be found analytically, in general their selection is an
open problem, and a commonly used alternative is to heuristically look for a solution. In fact,
the design of an adequate input is known to be crucial in the field of identification, and there is
extensive literature on optimal input design from the 1960s [93, 88, 110]: see for instance [111]
for linear systems, [133] for distributed systems, [81] for nonlinear systems, [143, 78, 96] for
specific applications, or [23] for fault detection.

In the present chapter, the constructive approach recently presented in [142], and more
specifically dedicated to observability guarantee by input optimization, is adopted and updated.
In other words, we here propose to build an auxiliary signal that guarantees the identification
of the parameters of a pipeline by using state observers based on Liénard-type models. Ob-
servability is characterized through the so-called observability Gramian (3.9), which is in short
a measure of the energy in the output signal, [142]. The lowest eigenvalue of this Gramian
defines a degree of observability .

The organization of the chapter is as follows. Section 4.2 recalls the optimization algorithm
proposed in [142] for the design of optimal inputs and presents a new algorithm based on it.
Section 4.3 presents some simulation and experimental tests to show the input design procedure
as well as the estimation of some parameters by using the synthesized inputs. Finally, Section
4.4 concludes this chapter.

4.2 Input Optimization Algorithms

In this work the pipeline dynamics are modeled through the flow-based and hybrid Liénard
models given in (2.38) and (2.39), and reproduced here in (4.1) and (4.2)

Q̇a
i (t) = Qb

i (t)−F (Qa
i (t)) , i = 1, ...,nℓ

Q̇i
b
(t) = b2

[
Qa

i−1(t)−2Qa
i (t)+Qa

i+1(t)

(∆zi)
2

] , (4.1)
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Q̇a
i (t) = Qb

i (z, t)−F(Qa
i (t)), i = 1, ...,nℓ

Q̇i
b
(t) = gAr

[
Ḣi−1(t)−Ḣi+1(t)

2∆zi

] . (4.2)

To guarantee the convergence of observers of the form (3.11) for estimation problems in
(4.1) or (4.2), finding an appropriate regularly persistent input is a general and open problem,
but in [142] an off-line optimization algorithm was proposed to obtain a periodic persistent
input sequence for a given system over a time window of N steps. The optimization problem
under consideration can be summarized as follows:

min
uk

∑
N−1
k=0

(
ure f −uk

)2

Γ (Uk+i,N)−αI >, 0 ≤ i ≤ N −1

Uk =
[

u0 u1 · · · uN−2 uN−1

]
umin < uk < umax, 0 ≤ k ≤ N −1

∆umin < |uk+1 −uk|< ∆umax, 0 ≤ k ≤ N −2
∆umin < |u0 −uk+1|< ∆umax,

(4.3)

where Γ (Uk+i,N) represents the observability Gramian over the time window [0,N −1] with
input sequence uk. Since the input sequence is periodic

Uk+N−1 =
[

uN−1 u0 · · · uN−3 uN−2

]
,

N should be larger than or equal to the system dimension, ure f is a reference signal, umin and
umax are admissible minimum and maximum values for each element of the input sequence uk,
and ∆umin and ∆umax are admissible minimum and maximum values for the difference between
two consecutive elements of the sequence. Notice that as compared with the original algorithm
of [142], a minimum absolute difference ∆umin is here included to guarantee that the actuator
resolution limitation is respected. In other words, there is a limitation in the smallest increment
or step that can be taken or seen by the device that generates the physical input.

The algorithm looks for the persistent input with minimal energy by considering the energy
of the difference between the reference signal ure f and the additional persistent input uk. It
was illustrated in [142] in a problem of leak estimation. In the present chapter, examples of
applications for parameters’ identification in models (4.1) and (4.2) will be given.

Notice that in the case of model (4.2) the inputs are the time derivatives of pressure heads
which can reduce to u1 (t) = Ḣin (t) and u2 (t) = Ḣout (t) when considering △z = L. Because of
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this, some additional modifications of the algorithm given by (4.3) are needed as follows:

min
uk

∑
N−1
k=0

(
ure f −u1

k

)2

Γ
(
dU1

k+i,N
)
−αI > 0, 0 ≤ i ≤ N −1

dU1
k =

[
u1

1−u1
0

∆t
u1

2−u1
1

∆t · · · u1
N−1−u1

N−2
∆t

u1
0−u1

N−1
∆t

]
U2 (k) = f

(
U1 (k)

)
, 0 ≤ k ≤ N −1

umin < u1
k < umax, 0 ≤ k ≤ N −1

∆umin <
∣∣u1

k+1 −u1
k

∣∣< ∆umax, 0 ≤ k ≤ N −2
∆umin <

∣∣u1
N−1 −u1

0

∣∣< ∆umax,

(4.4)

where Γ
(
dU1

k+i,N
)

stands for the observability Gramian over the time window [0,N −1] with
input sequence derivative dU1

k . Since the input sequence dU1
k is periodic

dU1
k+N−1 =

[
u1

0 −u1
N−1

∆t
u1

1 −u1
0

∆t
· · ·

u1
N−3 −u1

N−2

∆t

]
,

N should be larger than the system dimension, ure f is a reference signal for the input sequence
U1

k , umin and umax are the minimum and maximum values for each element of the sequence U1
k ,

and ∆umin and ∆umax are the minimum and maximum values for the difference between two
consecutive elements of the sequence U1

k .
The proposed algorithm works on the input sequence U1

k , but at each iteration the derivative
of that sequence is approximated by using forward finite differences to calculate the observability
Gramians Γ . Additionally, by considering that the two inputs, u1

k and u2
k , are not independent, it

was necessary to find an expression for relating them: u2
k = f

(
u1

k

)
. Since in pipeline systems

the flow is usually forced by upstream pumping, Hin(t) was considered the independent variable.
For simplicity, a steady-state gain was employed, thereby u2

k = f
(
u1

k

)
= K21u1

k .
Since in algorithm (4.3), the input needs to be defined at any time (for the observer ap-

plication purposes [142]), the sequence u1
k calculated through the algorithm must be repeated

as many times as necessary. The N −1 Gramian constraints guarantee that the observability
condition (3.10) holds at any shifted time.

4.3 Application Results

Let us present here two examples of the application of the above input optimization for observer-
based parameter identification in pipelines: the first in simulation, which considers model (4.1)
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and algorithm (4.3), and the second, with real experiments, which considers model (4.2) and
algorithm (4.4). In both examples results obtained by considering constant friction factor (2.42)
and varying (2.43) friction factors are presented. We highlight the fact that in all the cases it was
verified that the regularly persistent inputs calculated were independent of the initial conditions
x̂0. Additionally, in this section the exponential forgetting factor observer (3.11) was used for
the corresponding nonlinear estimation problem. In both examples, the discretization sampling
time was Ts = 0.002 [s].

4.3.1 Simulation Tests

In the system under consideration, the pipeline is assumed to be connected to a pump that
provides the upstream pressure head Hin (t), while the downstream pressure head is considered
to be constant Hout (t) =Hout (see Fig. 4.1). In addition, Table 4.1 provides the list of parameters

TK1

P
H in (t) H out

TK2

LT

LC

Fig. 4.1 Pipeline System P&ID

considered here for the pipeline model. In order to compare results, those data were taken from
[161], but here the friction is assumed not constant and is calculated through (2.18) by using an
iterative solution scheme.

Constant Friction Factor: Estimation of the Friction Factor and the Wave Speed

In this case Liénard form (4.1) and (2.42) are considered, with the simplest discretization
(nℓ = 1) corresponding to △z = L, Qa

i−1 (t) = Q(0, t), Qa
i+1 (t) = Q(L, t) and Qa

i (t) being some
intermediate measured flow rate. When parameters f ,b are unknown, an augmented system (as
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Table 4.1 Physical parameters

Symbol Value Units Description
g 9.81 m/s2 Gravitational acceleration
L 200.16 m Pipeline length
φ 0.1016 m Pipeline diameter
b 1284 m/s Wave speed in the fluid
υ 8.94×10−7 m2/s Kinematic viscosity
ε 0.5×10−3 m Roughness height

in (2.26)) from (4.1) would be

ẋ(t) =


0 1 −y(t)|y(t)|

2φAr
0

0 0 0 ρ (t)
0 0 0 0
0 0 0 0

x(t) (4.5)

where ρ (t) = Q(L,t)−2y(t)+Q(0,t)
(∆z)2 and x(t) =

[
Qa

i (t) Qb
i (t) f b2

]T
.

The followings settings were considered for the simulation [161].

• The downstream pressure head was set to Hout (t) = 5.7 [m]

• The observer was set with R = 1, λ = 0.998, P0|−1 = I , and initial condition

x̂0 =
[

0.01913 0.01913 0.02 112871
]T

It is important to state that the parameters with which the observer was set, as well as the
parameters employed for the optimal persistent input calculation (see Table 4.2) were defined
by applying a sequential quadratic programming optimization technique using the fmincon
function of MATLABr.

Table 4.2 Parameter for Hin sequence calculation for f and b estimation

Symbol Value Units Symbol Value Units
umin 17 m Tin 1.5 s
umax 20 m α 0.018
∆umin 0.8 m N 10
∆umax 1.2 m ure f 18 m
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Fig. 4.2 illustrates the optimal persistent Hin (t) sequence obtained and used in the simulation,
which is repeated over time. Each step of this sequence corresponds to a time period of
Tin = 1.5 (s).

H
in

 [m
]

17,60

17,80

18,00

18,20

18,40

Time [s]
0 2,5 5 10 12,5 15

Fig. 4.2 Optimal Regularly Persistent Hin (t) Sequence for f and b Estimation

In Fig. 4.3, estimation results obtained with the optimal persistent input calculated here
are compared with results obtained by using an additional sine-like input signal. This sine-
like signal is labeled as "sin" and it corresponds to the input signal proposed in [161], i.e.
Hin (t) = 18+ 0.9sin(t) [m]. Reported results present the simultaneous estimation of the
friction factor and wave speed, both without and with measurement noise.
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Fig. 4.3 Friction Coefficient and Wave Speed Estimation
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From Fig. 4.3, one can see how the estimation indeed performed well in all the cases. The
mean value, standard deviation and percentage estimation error of the estimations at steady
state are used as performance indexes. Table 4.3 summarizes the energy of each input signal
considered as well as the values of the performance indexes obtained. Results show that
higher energy inputs show better estimation accuracy; however, the performance of the optimal
persistent input is good enough (maximum estimation error less that 3%). The performance is
even better if we consider the fact that a pulse signal, as shown in Fig. 4.2, is generated more
easily in a control unit i.e., a PLC, than a sinusoidal one.

Table 4.3 Performance indexes in f and b estimation

Signal E ¯̂f σ f̂ e f̂
¯̂b σb̂ eb̂

uopt 16 0.0438 6.9×10−4 1.478 1287.1 6.43 0.244
uopt + wn 16 0.0444 6.5×10−3 2.856 1283.9 28.075 4.8×10−3

sin 40.68 0.0431 7.4×10−5 0.25 1274.4 1.509 0.744
sin + wn 40.68 0.043 1.5×10−3 0.479 1270.8 12.641 1.0288

Varying Friction Factor: Estimation of the Wave Speed

Now Liénard form (4.2) and (2.43) are considered, with the simplest discretization (nℓ =
1) corresponding to △z = L, Qa

i−1 (t) = Q(0, t), Qa
i+1 (t) = Q(L, t) and Qa

i (t) being some
intermediate measured flow rate. When the parameter b is unknown, an augmented system (as
in (2.26)) from (4.2) would be

ẋ(t) =

 0 1 0
0 0 ρ (t)
0 0 0

x(t)+

 −F(y(t))
0
0

 (4.6)

where ρ (t) = Q(L,t)−2y(t)+Q(0,t)
(∆z)2 , y(t) = Qa

i (t) is some intermediate measured flow rate and

x(t) =
[

Qa
i (t) Qb

i (t) b2
]T

.
The followings settings were considered for the simulation [161].

• The downstream pressure head was set to Hout (t) = 5.7 [m]

• The observer was set with R = 1, λ = 0.998, P0|−1 = I , and initial condition

x̂0 =
[

0.01913 0.01913 112871
]T
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It is important to state that the parameters with which the observer was set, as well as the
parameters employed for the optimal persistent input calculation (see Table 4.4) were defined
by applying optimization techniques using fmincon function of MATLABr.

Table 4.4 Parameter for Hin sequence calculation for b estimation

Symbol Value Units Symbol Value Units
umin 17 m Tin 1.5 s
umax 20 m α 0.018
∆umin 0.8 m N 3
∆umax 1.2 m ure f 18 m

Fig. 4.4 illustrates the optimal persistent Hin (t) sequence obtained and used in the simulation,
which is repeated over time. Each step of this sequence corresponds to a time period of Tin = 1.5
[s].
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Fig. 4.4 Optimal Regularly Persistent Hin (t) Sequence for b Estimation

In Fig. 4.5, estimation results obtained with the optimal persistent input calculated here
are compared with results obtained by using the sine-like input signals proposed in [161], i.e.
Hin (t) = 18+0.9sin(t) [m]. Reported results present the wave speed estimation, both without
and with measurement noise.

From Fig. 4.5, one can see how the estimation indeed performed well in all the cases. The
mean value, standard deviation and percentage estimation error of the estimations at steady
state are used as performance indexes. Table 4.5 summarizes the energy of each input signal
considered as well as the values of the performance indexes obtained. Results show that a better
performance is obtained with the optimal persistent input although this has a lower energy.
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Fig. 4.5 Wave Speed Estimation

Table 4.5 Performance indexes in b estimation

Signal E ¯̂b σb̂ eb̂
uopt 24.12 1283.7 17.162 0.025

uopt + wn 24.12 1270 66.48 1.091
sin 40.68 1248 29.614 2.803

sin + wn 40.68 1237.7 42.188 3.607

4.3.2 Experimental Tests

In this section, the estimation of parameters as friction factor and equivalent length1 of a
pipeline is performed by using only one boundary flow measurement (Q(0, t)) in addition to the
knowledge of boundary pressure heads Hin,Hout . This is similar to a case considered in [155],
but here by using an optimal regularly persistent input calculated through algorithm (4.4).

A prototype built in the Hydrodynamic Laboratory of the UNAM Engineering Institute is
considered here (see Fig. 4.6). The prototype is equipped, among other, with

1Equivalent length is defined as the pressure drop due to the duct or pipe fittings, or other obstruction to the
flow, expressed in number of length units (meter or feet) of a straight pipeline of the same diameter that would
cause the same pressure drop.
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• A 7.5 HP centrifugal pump (P1), which provides the energy needed to recirculate the
water from a reservoir (TK1) through a galvanized steel pipeline of 0.1016 [m] of diameter
and 169.43 [m] of length.

• A Mitsubishi variable-frequency drive (VFD) which controls the rotational speed of the
pump motor by a variation of the AC frequency in a range from 0 to 60 [Hz].

• Six taps (V1 to V6) to simulate leaks.

• Eight intermediate pressure measurement points (PT2 to PT9).

• Flow and pressure sensors installed at both ends of the pipeline (FT1, PT1, FT3 and
PT10), as well as a flow sensor to measure the flow through tap 4 (FT2).

• A recycling system for leak water composed of a tank (TK2) and a centrifugal pump (P2).
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Fig. 4.6 Pipeline Prototype P&ID

In addition, Table 4.6 provides the list of parameters considered here for the pipeline model.
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Table 4.6 Pipeline Prototype Physical Parameters

Symbol Value Units Description
g 9.81 m/s2 Gravitational acceleration
L 169.43 m Pipeline length
φ 0.1016 m Pipeline diameter
υ 8.94×10−7 m2/s Kinematic viscosity
ε 0.7×10−3 m Roughness height

Constant Friction Factor: Estimation of the Friction Factor and the Equivalent Length

In this case, model (4.2) and (2.42) are considered, with Hi = Hin and Hi+1 = Hout . When
parameters f and Leq are unknown system (4.2) can be extended into:

ẋ(t) =


0 1 −ξ1(t)|ξ1(t)|

2φAr
0

0 0 0 ρ (t)
0 0 0 0
0 0 0 0

x(t) (4.7)

where ρ (t) = a1
(
Ḣin (t)− Ḣout (t)

)
, y(t) = Qa

in (t) and ξ (t) =
[

Qa
in (t) Qb

in (t) f 1
Leq

]T
.

Here the spatial step ∆z in (4.2) has been replaced by equivalent length Leq. The
observer is here tuned with R = 0.98, λ = 0.25, P0|−1 = I and initial condition

x̂0 =
[

0.01913 0.01913 0.07 1/300
]T

. The parameters involved in the input calcula-
tion are listed in Table 4.7.

Table 4.7 Parameter for Hin sequence calculation for Leq estimation

Symbol Value Units Symbol Value Units
umin 17 m Tin 6 s
umax 20 m α 0.00018
∆umin 1 m N 6
∆umax 0.5 m K21 0.19426

ure f 18 m

The sequence obtained by using the algorithm (4.4) was

u1
k = Huopt

in = [18.0309 18.6251 18.0157 18.6233 18.6309 18.0251] [m] (4.8)
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where the time period is Tin = 6(s). To experimentally generate this pressure sequence, the
pump controller was set up with the sequence

V FDuopt
k = [56.7191 57.7095 56.6937 57.7064 57.7191 56.7095] [Hz]. (4.9)

In Fig. 4.7 (a) through (c), the resulting pressure heads (Huopt
in (t) ,Huopt

out (t)) and the correspond-
ing flow rate (Quopt

in (t)) measurements are displayed, respectively.
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Fig. 4.7 Optimal Regularly Persistent Hin (t) (a)-(d), Hout (t) (b)-(c) for f and Leq Estimation,
Together with Corresponding Input Flows (c)-(f)

In addition, simply to compare results, the estimation was also carried out by using a sine-
like pressure signal. It was experimentally determined that sinusoids with frequencies greater
than 0.01 [Hz] cannot be generated by the pump because of bandwidth limitation. Thus, for a
given frequency of 0.01 [Hz], the lowest energy signal with which the estimation performed
well is the following:

V FDsin4 (t) = 57.5+0.75sin(0.0628t) [Hz], (4.10)

and the corresponding upstream and downstream pressure heads (Hsin4
in (t) ,Hsin4

out (t)) and
input flow rates (Qsin4

in (t)) are illustrated in Fig. 4.7 (d) - (f) respectively.
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Fig. 4.8 shows the related friction coefficient and equivalent length estimation results by
using both the optimal regularly persistent input and the sine-like input. The mean value,
standard deviation and percentage estimation error of the estimations at steady state are used
as performance indexes. Table 4.8 summarizes the energy of each input signal considered as
well as the values of the performance indexes obtained. Results show that higher energy inputs
show better estimation accuracy; however, the performance of the optimal persistent input
(uRα=3×10−5

opt ) is good enough (maximum estimation error less that 8% for friction factor and
around 2%) for equivalent length.
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Fig. 4.8 Friction Coefficient and Equivalent Length Estimation

Table 4.8 Performance indexes in f and Leq estimation

Signal E ¯̂f σ f̂ e f̂
¯̂Leq σL̂eq

eL̂eq

uRα=3×10−5

opt 21.64 0.0376 5.3×10−3 7.406 165.85 15.084 2.111
sin 24.03 0.0371 5.3×10−3 6.070 170.72 13.693 0.764

uRα=3
opt 332.7 0.0354 7.5×10−4 1.1687 167.06 2.862 1.401

The effect of the algorithm parameters, the observability degree α and the Gramian window
N on the observer performance is presented in Fig. 4.9. The ratio Rα = α

N was increased from
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3×10−5 to 3. Performance indexes for the input signal uRα=3
opt (last row of Table 4.8) clearly

reveal how increasing Rα produces an improvement of the estimation accuracy; however, the
price to be paid is an increment in the input energy.
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Fig. 4.9 Friction Coefficient and Equivalent Length Estimation for Rα = 3 and Rα = 3×10−5

Varying Friction Factor: Estimation of the Equivalent Length

In this case, model (4.2) is considered, with Hi = Hin and Hi+1 = Hout . When the parameter
Leq is unknown system (4.2) can be extended into [155]:

ẋ(t) =

 0 1 0
0 0 ρ (t)
0 0 0

x(t)+

 −F (y(t))
0
0

 (4.11)

where ρ (t) = a1
(
Ḣin (t)− Ḣout (t)

)
, y(t) = Qa

in (t) and x(t) =
[

Qa
in (t) Qb

in (t)
1

Leq

]T
. Here

the spatial step ∆z in (4.2) has been replaced by equivalent length Leq. The observer is here tuned

with R = 1, λ = 0.9997, P0|−1 = I and initial condition x̂0 =
[

0.01913 0.01913 1/300
]T

.
The parameters involved in the input calculation are listed in Table 4.7.
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The sequence obtained by using the algorithm (4.4) was that showed in (4.8). And to
compare results, the estimation was also carried out by using the sine-like pressure signal in
(4.10).

Fig. 4.10 shows the related equivalent length estimation results by using both the optimal
regularly persistent input and the sine-like input. The mean value, standard deviation and
percentage estimation error of the estimations at steady state are used as performance indexes.
Table 4.9 shows that a better performance is obtained with the optimal persistent input, and one
must remark that the energy of the sine-like input is higher than the energy of the calculated
optimal regularly persistent input (uRα=3×10−5

opt ).
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Fig. 4.10 Equivalent Length Estimation

Table 4.9 Performance indexes in Leq estimation

Signal E L̂eq σL̂eq
eL̂eq

uRα=3×10−5

opt 21.64 175.31 3.624 3.473
sin 24.03 176.56 5.162 4.210

uRα=3
opt 332.7 169.89 1.468 0.272

The effect of the algorithm parameters, the observability degree α and the Gramian window
N on the observer performance is presented in Fig. 4.11. Performance indexes for the input
signal uRα=3

opt (last row of Table 4.9) clearly reveal how increasing Rα produces an improvement
of the estimation accuracy; however, the price to be paid is an increment in the input energy.



4.4 Conclusions 55

uopt (Rα = 3e-5)
uopt (Rα = 3)
Lactual

eq  = 169.43 m

L e
q [

m]

100

150

200

250

300

350

Time [s]
0 50 100 150 200

Fig. 4.11 Equivalent Length Estimation for Rα = 3 and Rα = 3×10−5

4.4 Conclusions

In this chapter, optimization algorithms for calculating regularly persistent inputs for state
affine systems have been considered and illustrated in a parameter identification issue. Two
representations of pipeline dynamics under the form of Liénard-like systems and by considering
of a varying friction factor have been used in formulating identification problems as observers.
Such observers have been used to estimate the wave speed and the equivalent length of a
pipeline. The approach both for input constraints and parameters’ estimation has been validated
through simulation results as well as experimental tests.





Chapter 5

Leaks Diagnosis in Pipelines by Using
Only Flow Rate Measurements

5.1 Introduction

Pipeline networks are the most efficient mode of transportation for fluid products as gasoline,
diesel, jet fuel, home heating oil, raw natural gas liquids, among others. As a long-distance
transport mean, pipelines have to fulfill high demands of safety and reliability. However, despite
a good maintenance plan for fault prevention, leaks in pipelines are unfortunately very common
events that must be early diagnosed to avoid irretrievable losses. In this regard, the main
objective of leak diagnosis systems (LDS) is to detect and localize leaks with a small error and
minimum instrumentation.

According to the American Petroleum Institute [5], LDS can be externally based LDS or
internally based LDS. The first ones use a specific set of field instrumentation (e.g. sensing
cables [141, 113, 137], acoustic sensors [112], laser sensors [24], vapor sensors [136], fiber-
optic cables [147], infrared radiometers or thermal cameras [83]) to monitor external pipeline
parameters. While the latter use field instrumentation (e.g. flow or pressure sensors [171, 157])
to monitor internal pipeline parameters.

Because of the high costs associated to installing and maintaining sensors and communica-
tion equipment for the entire length of the pipeline, external methods are typically used only
in very especial cases. On the other hand, internal methods are constituted as most practical
to early and reliably diagnose significant leaks from a remote location. Among the internal
methods, one finds the methods based on mathematical models ([13, 175, 80]) and the methods
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based on the analysis of a pressure wave traveling along the pipeline ([21, 50, 33]). While
model-based methods typically use pressure and flow rate measurements, the methods based
on the analysis of a pressure wave only use pressure measurements to perform the diagnosis.
Nevertheless, the main drawback of methods that analyze the pressure is the need of disturbing
the fluid in order to generate a pressure transient (wave). This procedure is usually done by
opening or closing a valve.

Despite of this disadvantage, methods based on pressure wave result attractive because it is
always preferable to use the fewest number of sensors for performing the diagnosis. Bearing
this in mind, in this chapter it is proposed a method to diagnose (i.e. to detect and locate)
pipeline leaks by only using flow rate sensors, which does not require generating disturbances
in the fluid transportation process. To the best of the our knowledge, this is the first work that
proposes a diagnosis approaches with these characteristics to detect and locate leaks. Usually,
flow rates have only been employed to compute a mass balance that allows the leak detection
but not the leak location ([91, 92]).

The proposed method is based on a lumped version of a Liénard-type model given in terms
of the flow rate, the so-called flow-based Liénard form presented in (2.38). This model is
implemented in Matlabr by considering as boundary conditions the inlet and oulet flow rates
of the supervised pipeline. To be more specific, since in (2.38) the pipeline is space discretized
into space steps (sections), the lumped model will provide a numerical solution: an internal
discrete flow for each section. If the pipeline is free of leaks, the discrete flow rates provided
by the model will be equal, otherwise the leak flow rate (the outflow) will be distributed along
the discrete space of the pipeline. If the discrete flow rates, calculated by the model after the
leak, are subtracted from the nominal flow (the pipeline flow rate without leaks), residuals
corresponding to each section will be then obtained. The residual close to zero will indicate the
section where the leak is occurring. Indispensable requirements for the operation of the method
are both the knowledge of the nominal flow as well as fixed pressures at the pipeline ends.

For online implementation the proposed method incorporates a principal component analysis
PCA stage to detect a leak occurrence. PCA is a dimensionality reduction technique commonly
used for fault detection that uses a linear orthogonal transformation to produces a set of values
of linearly uncorrelated variables called principal components, from a given set of observations
of possibly correlated variables [132].

The main contribution of our method is that requires only flow measurements at the
pipeline ends and that a varying friction factor is considered. Some simulation-based tests
in PipeluineStudior and experimental tests in a lab pipeline illustrating the suitability of our



5.2 System Model 59

method are shown at the end of this chapter. This chapter is organized as follows. Section 5.2
presents the core of the diagnosis methodology which comprises the elements of the considered
model. Section 5.3 describes the proposed diagnostic method. Section 5.4 presents some
simulation and experimental test results and Section 5.5 presents the corresponding conclusions.

5.2 System Model

The pipeline model considered here is mainly based on the flow-based form given in (2.38) and
reproduced here in (5.1)

Q̇a
i (t) = Qb

i (t)−F (Qa
i (t)) , i = 1, ...,nℓ

Q̇i
b
(t) = b2

[
Qa

i−1(t)−2Qa
i (t)+Qa

i+1(t)

(∆zi)
2

] , (5.1)

where ∆zi is the spatial step, nℓ is the total number of internal discrete flows and F(Qa
i (t)) is

given in (2.43), that is

F (Qa(z, t)) =
Qa(z, t)|Qa(z, t)|

(
410( ε

φ
)+111

(
ε

φ

) 13
50
)

2000Arφ
+

43Q(z, t)|Qa(z, t)|
(

ε

φ

) 33
100

2Arφ (1+κ)
(

Q
Aυ

)κ , (5.2)

with κ =
34
(

ε

φ

) 14
125

25 .
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To find a numerical solution for (5.1), Qin(t) and Qout(t) are used as boundary conditions.
Thereby, one can rewrite system (5.1) as follows.

Q̇a
1(t) = Qb

1(t)−F (Qa
1(t))

Q̇1
b
(t) = b2

[
Qin (t)−2Qa

1 (t)+Qa
2 (t)

(∆z1)
2

]
Q̇a

2(t) = Qb
2(t)−F (Qa

2(t))

Q̇2
b
(t) = b2

[
Q1 (t)−2Qa

2 (t)+Qa
3 (t)

(∆z2)
2

]
(5.3)

...

Q̇a
nℓ(t) = Qb

nℓ(t)−F
(
Qa

nℓ(t)
)

Q̇b
nℓ(t) = b2

[
Qnℓ−1 (t)−2Qa

nℓ (t)+Qout (t)

(∆znℓ)
2

]

where the spatial step can be computed as ∆zi = L/Nℓ with Nℓ = nℓ+1 as the total number of
space steps (sections). For example, if the total number of discrete flows is fixed as nℓ = 4 for a
pipeline with length L = 500 [m], then the total number of sections (space steps) is Nℓ = 5 and
∆zi = 100 [m]. Check Fig. 5.1 for a better conceptualization. Notice that Qa

i (t) is the internal
discrete flow of section i.
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Fig. 5.1 Space Discretization Scheme

5.3 Methodology

The strategy of our methodology incorporates a principal component analysis PCA stage to
detect a leak occurrence. PCA is a dimensionality reduction technique commonly used for fault
detection that uses a linear orthogonal transformation to produces a set of values of linearly
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uncorrelated variables called principal components, from a given set of observations of possibly
correlated variables [132]. Conventional PCA is shortly presented below.

5.3.1 Principal Component Analysis

Data corresponding to process normal operation are arranged in a matrix Xρ ∈ Rn×m, where
each of the m columns represent a process variable being measured and each of the n rows
represents a different sample. It is important to address that variables with missing signal
problems or with null variance must be excluded from matrix Xρ .

Since the range of values of raw data may vary widely, it is very important to perform a
data normalization (scaling) to standardize the range of the variables considered. Scaling is
performed as follows:

X = (Xρ − Inµ)Σ
−1 (5.4)

where µ = 1
n (X

ρ)T In is a vector containing the means of the m variables in Xρ ,

In =
[

1 1 · · · 1
]
∈ Rn and Σ = diag(σ1,σ2, · · · ,σm) is a diagonal matrix containing the

standard deviations of the m variables in Xρ .
Once the data are normalized spectral decomposition of the covariance matrix S = 1

n−1XT X
is calculated as follows:

S =V ΛV T (5.5)

where ΛT is a m×m diagonal matrix containing the non-negative real eigenvalues arranged in
descending order along its main diagonal, and V is a m×m matrix containing the corresponding
eigenvectors. After that the statistics T 2 and Q are calculated as follows [75, 70]:

T 2 = χ
T PΓ

−2
a PT

χ (5.6)

Q = χ
T (1−PPT )χ, χ ∈ R1×m (5.7)

where a is the number of principal components selected by using parallel analysis as dimen-
sional reduction technique [191, 132], P ∈ Rm×a is the so called loading matrix which contain
the first a column of V , the matrix Γa ∈ Ra×a is composed of the first a rows ans columns of Γ,
which in turn is a m×m matrix such that Λ = ΓT Γ.

For a better understanding a block diagram of the PCA algorithm is showed in Fig. 5.2.
Notice that principal component analysis cab be divided in two stages: an offline stage and an
online stage.
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Fig. 5.2 Principal Components Analysis Diagram

5.3.2 Methodology Description

For a better conceptualization Fig. 5.3 shows a flow diagram of the proposed methodology. The
proposed approach relies on model (5.3), which is implemented in Matlabr and has as inputs
the flow rates measured at the ends of the supervised pipeline, Qin(t) and Qout(t), which in
fact, as mentioned before, are the boundary conditions required for the solution of model (5.3).
Since the unidimensional space is discretized into space steps (sections) of equal size, model
(5.3) shall compute internal discrete flow rates corresponding to each section. If the pipeline is
free of leaks, the discrete flow rates provided by the model will be equal, otherwise the leak
outflow will be distributed along the discrete space of the pipeline.

If the internal discrete flows, calculated by the model after the leak, are subtracted from the
mean nominal flow Q0 (the mean flow rate of the pipeline without leaks), residuals correspond-
ing to each section will be then obtained as follows:

ri(t) = Q0 −Qa
ῑ (t),∀i = 1,2, ...,nℓ, ∀ῑ = nℓ,nℓ−1, ...,2,1. (5.8)

where i is the index to enumerate the residuals, ῑ is the index for the countdown of the flows
and nℓ is the total number of residuals that matches with the total number of discrete flow rates
calculated by the Liénard-type model (5.3).

Residual are used to feed a principal component analysis algorithm to detect a leak occur-
rence. Whenever a leak is detected, the section where the leak occurs is determined as follows:
for a given section i = j, the mean value of the residuals i = j will have the following behavior

ri(t)|i= j


> 0, if there is a leak downstream of ∆z j;
= 0, if there is a leak in section ∆z j;
< 0, if there is a leak upstream of ∆z j.



5.3 Methodology 63

Liénard-type Model

Pipeline

Residual Generation

Principal Component Analysis

Leak Location and sizing

Leak?
No

Yes

Fig. 5.3 Methodology Flow Diagram

Remark 1: Notice that last section has not assigned a residual since the flow in this section is
the downstream boundary condition Qout(t) of model (5.3) and not an internal discrete flow
computed by model (5.3).
Remark 2: As a consequence, if a leak is placed in the last section, all the residuals will be
then positive.
Remark 3: If the position of the leak does not match with the limits of each section, then
r j ≈ 0.

Resuming the explanation of our methodology, the position of the single leak can be
computed by using the following equation:

ẑL = ∆z j × j. (5.9)
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where j is the section number where the leak happens and ∆z j is the section size, which in
fact is the same than the rest of sections (∆z j = ∆zi). Thus, ẑL → zL inasmuch ∆zi → 0. The
magnitude of a single leak (the leak outflow) can be calculated by means of the mass balance

Q̂L(t) = Qin(t)−Qout(t). (5.10)

In case of sequential leaks, the leak outflow computed by (5.10) will increase with the
addition of the outflow of each sequential leak. Each leak flow can be calculated by using the
following equation:

Q̂eq(t) =
M

∑
κ=1

Q̂Lκ
(t), (5.11)

where Q̂eq is the equivalent flow, which is the total flow lost due to the leaks, Q̂Lκ
is the flow lost

due to the κ-th sequential leak, which is located at the position ẑLκ
and M is the total number of

sequential leaks.
In case of sequential leaks, the residual close to zero will indicate the section involving

the equivalent position. Hence, the leak position of the κ-th sequential leak can be obtained
through the following equation:

ẑeq =

M

∑
κ=1

Q̂Lk(t)ẑLκ

Q̂eq(t)
, (5.12)

5.4 Application Results

Two scenarios regarding the application of the proposed method algorithms are presented. The
first one is simulation based, while in the second one real data obtained from a laboratory
pipeline are used.

5.4.1 Simulation Test

In this section some simulation-test results are presented. In the first test three cases of single
leaks are treated. The second test presents the performance of our proposed leak diagnosis
method to detect sequential leaks. In all cases a pipeline transporting water at 30◦C is considered.
The pipeline behavior was recreated with the commercial software PipelineStudior from Energy
Solutions, by considering as boundary conditions the upstream and downstream pressure heads
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Fig. 5.4 Simulation Test 1 - Pressures and Flow Rates at the Pipeline Ends

Hin(t) and Hout(t). Thus, this simulator provides the boundary flow rates to be injected to the
Liénard model (5.3), in order to compute the discrete flows for the residual generation.

Test 1

In this case a three independent single leaks scenario is considered for a pipeline with the
characteristic shown in Table 5.1. The three independent single leak were induced at zL1 = 15
[m] (leak 1), zL2 = 90 [m] (leak 2) and zL3 = 146 [m] (leak 3). The leaks were activated at the
instants ton

L1
= 100 [s], ton

L2
= 300 [s] and ton

L3
= 500 [s] and each one had a duration of 100 [s].

The mean values of the boundary conditions considered were Hin(t) = 20 [m] and Hout(t) = 4
[m]. Fig. 5.4 shows upstream and downstream pressure heads injected to the PipelineStudior

simulator and the flow rates provided by this for the leaks scenario considered. Notice that the
mean nominal flow obtained was about Q0 = 0.0279 [m3/s].

Table 5.1 Physical parameters

Symbol Value Units Description
g 9.81 m/s2 Gravitational acceleration
L 170 m Pipeline length
φ 0.1016 m Pipeline diameter
ε 1.083×10−3 m Mean height of roughness
ν 7.9822×10−7 m2/s Kinematic viscosity



66 Leaks Diagnosis in Pipelines by Using Only Flow Rate Measurements

On the other hand, the Liénard-type model (5.3) was programmed in Matlabr by fixing a
space step (section size) ∆zi = L/Nℓ = 170/21 = 8.1 [m]. Since Nℓ = 21, 20 internal flow are
calculated (i.e. nℓ = 20), thereby 20 residuals can be calculated (r1(t), r2(t), ..., r20(t)). Fig.
5.5 (a) shows the discrete flows computed by the Liénard-type model and Fig. 5.5 (b) shows the
residuals calculated through (5.8) (with Q0 = 0.0279 [m3/s]) for each of the leaks considered.
The effects of the leak on the synthetic flows is clearly observed (once a leak occurs the leak
outflow is distributed as several leaks in each discretization node). Fig. 5.5 (c) shows the
response of Hotelling’s statistic and the results of leak position and leak flow rate estimations
are showed in Fig. 5.5 (d).

The residuals with mean value closer to zero were r2(t), r12(t) and r19(t) for the leaks 1,
2 and 3 respectively. The leak positions were estimated through (5.9). Table 5.2 summarizes
the estimated leak positions ẑL and the estimation errors obtained for each one of three leaks
considered. The estimation errors were calculated as e = 100

∣∣∣ zL−ẑL
L

∣∣∣. It is important to address

that the minimal leak detectable corresponds to a flow rate of 2×10−4 [m3/s] (leak 3), which is
equivalent to a 0.72% of the nominal flow .

Table 5.2 Simulation Test - Single Leaks Diagnosis Results

zL [m] ẑL [m] Error [%]
15 15.45 0.27
90 92.73 1.6

146 146.82 0.48

Test 2

In this case a two sequential leaks scenario is considered for a pipeline with the characteristic
showed in Table 5.3. The two sequential leaks were induced at position zL1 = 12.87 [m] and
zL2 = 25.3 [m], at the instants tL1 = 100 [s] and tL2 = 150 [s]. The mean values of the boundary
conditions considered were Hin(t) = 4.18 [m] and Hout(t) = 0.73 [m]. Fig. 5.6 (a) shows
upstream and downstream pressure heads injected to the PipelineStudior simulator and the
flow rates provided by this for the two sequential leaks considered, and Fig. 5.6 (b) shows the
response of Hotelling’s statistic.

For this test the Liénard-type model (5.3) was programmed in Matlabr by fixing a space
step (section size) ∆zi = L/Nℓ = 57.76/21 = 2.75 [m]. Since Nℓ = 21, 20 internal flow are
calculated (i.e. nℓ = 20), thereby 20 residuals can be calculated (r1(t), r2(t), ..., r20(t)). The
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(a) Discrete flows (b) Residuals
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(c) Hotelling’s T 2 statistic
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Fig. 5.5 Simulation Test 1 - Results

discrete flows computed by the Liénard-type model are shown in Fig. 5.7 (a), and the residuals
in Fig. 5.7 (b). Equation (5.10) can be used to compute the outflow of the first leak and the
total outflow (if applied once the second leak occurs). We obtain then Q̂L1 = 5.3×10−4 [m3/s]
and Q̂eq = 9.4×10−4 [m3/s]. By using then (5.11), we obtain Q̂L2 = 4.1×10−4 [m3/s]. It can
be verified that the residual with mean value closer to zero is r5(t) before the second leak and
r7(t) after it (see Fig. 5.7 (b). This means that ẑL1 = ∆zi ×5 = 13.75 [m] and the equivalent
leak is zeq = ∆zi × 7 = 19.25 [m]. By using then (5.12), the position of the second leak can
be determined: ẑL2 = 26.36 [m]. The error with respect to the real position is due to the
discretization space step. To obtain better results ∆zi should be smaller. Table 5.4 summarizes
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Table 5.3 Physical parameters

Symbol Value Units Description
g 9.81 m/s2 Gravitational acceleration
L 57.76 m Pipeline length
φ 0.052 m Pipeline diameter
ε 1.654×10−5 m Mean height of roughness
ν 8.0066×10−7 m2/s Kinematic viscosity
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(a) Simulation Test 2 - Pressures and flow rates
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(b) Hotelling’s T 2 statistic

Fig. 5.6 Simulation Test 2 - Boundary Conditions and T 2 Statistic

the estimated leak positions ẑL and the estimation errors obtained in this case. The estimation
errors were calculated as e = 100

∣∣∣ zL−ẑL
L

∣∣∣.
Table 5.4 Simulation Test - Sequential Leaks Diagnosis Results

zL [m] ẑL [m] Error [%]
12.87 13.75 1.55
25.3 26.36 1.87

5.4.2 Experimental Test

In this section some experimental test results are presented. The diagnosis of two single leaks
is performed. Flow rates measurements at the ends of a pipeline prototype built in Instituto
Tecnológico de Tuxtla Gutiérrez are used as boundary condition to the Liénard-type model
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Fig. 5.7 Simulation Test 2 - Discrete Flows and Residuals

(5.3). Table 5.3 provides the list of model parameters considered. The prototype considered
here (Fig. 5.8) is equipped with:

• A 5 HP centrifugal pump, which provides the energy needed to recirculate the water from
a reservoir through a PVC pipeline of 0.052 [m] of diameter and 57.76 [m] of length.

• A Siemens Micromaster 420 variable-frequency drive which controls the rotational speed
of the pump motor by a variation of the AC frequency in a range from 0 to 60 [Hz].

• Four valves to emulate leaks.

• Flow and pressure sensors installed at both ends of the pipeline.

Then, in this case two independent single leak cases were induced at zL1 = 12.87 [m] (leak 1)
and zL2 = 25.3 [m] (leak 2). The leaks were activated at the instant ton

L1
= 115 [s] and ton

L2
= 120

[s] respectively. Fig. 5.9 (a) and Fig. 5.9 (b) show upstream and downstream pressure heads
and input and output flow rates for both leak 1 and leak 2 respectively.

Notice that the mean nominal flows obtained were about 4.85×10−3 [m3/s] and 4.68×10−3

[m3/s] for leaks 1 and 2 respectively. For these flow rates (taking into account the pipeline
characteristic in Table 5.1) the nominal friction factor was calculated by using an iterative
solution scheme for (2.18), obtaining f L1

= 0.01849 and f L2
= 0.01858.

Similarly to the simulation tests, the Liénard-type model (5.3) was programmed in Matlabr

by fixing a space step (section size) ∆zi = L/Nℓ = 57.76/22 = 2.63 [m]. Since Nℓ = 20, 21
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Fig. 5.8 Pipeline Prototype
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(a) Leak 1
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(b) Leak 2

Fig. 5.9 Experimental Test - Pressures and Flow Rates at the Pipeline Ends

internal flow are calculated (i.e. nℓ = 21), thereby 21 residuals can be calculated (r1(t), r2(t), ...,
r21(t)). Fig. 5.10 (a) and Fig. 5.10 (b) show the residuals calculated through (5.8) for the leaks
1 and 2 respectively. Again, the effects of the leak on the synthetic flows is clearly observed
(once a leak occurs the leak outflow is distributed as several leaks in each discretization node).

The residuals with mean value closer to zero were r5(t) and r9(t) for the leaks 1 and 2
respectively. The leak positions were estimated through (5.9). Table 5.5 summarizes the
estimated leak positions ẑL and the estimation errors obtained for each one of two leaks
considered. Notice that the estimation errors is calculated as e = 100

∣∣∣ zL−ẑL
L

∣∣∣.



5.5 Conclusions 71

(a) Leak 1 (b) Leak 2

Fig. 5.10 Experimental Test - Residuals

Table 5.5 Experimental Test Single Leaks Diagnosis Results

zL [m] ẑL [m] Error [%]
12.87 13.13 0.45
25.3 23.63 2.89

5.5 Conclusions

In this chapter, we have presented a novel approach to identify single and sequential leaks. In
order to avoid the necessity of using pressure measurements, a representation of the pipeline
dynamics under the form of a flow rate Liénard-type model has been considered for the formu-
lation of the proposed method. The approach has been validated through simulation results as
well as experimental tests. Provided simulations and, even more importantly, experimental tests
illustrated the good leak position estimation results obtained with the proposed methodology.
The main drawback of our method is that a better precision in the leak position estimation
requires an increasing of the model resolution (that is a reduction of the step used in the spatial
discretization) which in turn means an increment of the order of the model (a greater number of
equations). However with the current computational resources, this disadvantage can easily be
overcome.





Chapter 6

Approach to Diagnose Leaks in Water
Distribution Networks Using Only Flow
Rate Measurements

6.1 Introduction

Because of population growth and the associated urbanization, to provide an adequate water
supply is becoming increasingly challenging in many countries around the world. There is a
worldwide significant trend in population migrating to cities. The United Nations annual report
on urbanization [39], shows that in 2014 the 54% of the world’s population lived in cities. In
1990, only 43% of the world lived in urban areas and it is expected to reach 66% by 2050.
Taking as a guide goals 3 (halve the proportion of the population without sustainable access
to safe drinking water and basic sanitation) and 7 (ensure environmental sustainability) of the
United Nations Millennium Development [22], there has been a paradigm shift in the way water
losses are managed. Now-days, on the supply side, water suppliers have the responsibility to
manage water efficiently by reducing water losses from distribution system.

Despite the above the amount of wasted treated water is very high. The mean rates of
unaccounted-for water are estimated about 40% in developing and underdeveloped countries
(Africa, Asia, Latin America and the Caribbean) and about 15% in United States [176]. Actually,
according to [84]: "Every year, more than 32×109 [m3] of treated water physically leak(s) from
urban water supply systems around the world, while 16×109 [m3] are delivered to customers
for zero revenue". These loss in distribution networks are basically due to: overflowing service
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reservoirs, illegal connections and leaking pipes (valves and joints) [115]. Associated to the
loss of treated water, there are collateral losses among which are energy required to treat the
water and energy necessary to compensate the pressure drops due to leaks. Moreover, there
are risks associated to leaks such as landslides, contaminant infiltration into water distribution
systems, property damage, among others.

Taking into account the above-mentioned, in this chapter the method presented in Chapter 5
to diagnose leaks in pipelines by only using flow rate sensors is extended to water distribution
networks. The proposed method is based on modeling the water distribution network by using
the flow-based Liénard form presented in (2.38). Inlet and oulet flow rates of each pipe branch
are used as boundary conditions in the implementation of the network model in Matlabr. The
numerical solution of this model will provide for each space section its internal discrete flow.
For pipe branches free of leaks their discrete flow rates will be equals along each branch i.e.
for all space sections of the branch. In the case of a leak occurrence, the outflow of the leak
will be distributed along the discrete spaces of the pipe branch affected by the leak. For each
space section the residuals can be calculated by subtracting the discrete flow rates from the pipe
branch flow rate without leaks (the nominal flow). The residual corresponding to the section
where the leak is occurring will be that close to zero.

In the present chapter the behavior of a water distribution network was recreated with
the commercial software PipelineStudior from Energy Solutions. Single and sequential leak
scenarios were considered. The paper is organized as follows. Section 6.2 presents the
considered model. Section 6.3 describes the proposed diagnostic method. Section 6.4 presents
some simulation test results and Section 6.5 presents the corresponding conclusions.

6.2 System Model

For modeling a pipeline network, each branch is modeled based on the flow-based form given
in (2.38) and reproduced here in (6.1)

Q̇a
i (t) = Qb

i (t)−F (Qa
i (t)) , i = 1, ...,nℓ

Q̇i
b
(t) = b2

[
Qa

i−1(t)−2Qa
i (t)+Qa

i+1(t)

(∆zi)
2

] , (6.1)
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where ∆zi is the spatial step, nℓ is the total number of internal discrete flows and F(Qa
i (t)) is

given in (2.43), that is

F (Qa(z, t)) =
Qa(z, t)|Qa(z, t)|

(
410( ε

φ
)+111

(
ε

φ

) 13
50
)

2000Arφ
+

43Q(z, t)|Qa(z, t)|
(

ε

φ

) 33
100

2Arφ (1+κ)
(

Q
Aυ

)κ , (6.2)

with κ =
34
(

ε

φ

) 14
125

25 .
Therefore, by considering equations (6.1) for each pipe branch, a model could be developed

for a pipeline network system by using the Kirchhoff’s first laws. Kirchhoff’s current law was
originally introduced for the flow of electric charges in electrical networks. Kirchhoff’s law
state that the algebraic sum of flows in a network meeting at a point is zero, i.e. the sum of
flows flowing into that node is equal to the sum of flows flowing out of that node. This law
could be written as following equation:

nb

∑
i=1

Qa
i (t) = 0 (6.3)

where nb is the total number of branches with flows flowing towards or away from the node and
the flow rate Qa

i (t) is positive for flows entering the node and is negative for flows leaving out
from the node.
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Thereby, one can rewrite (6.1) for a pipeline network as follows:

Q̇a1
i (t) = Qb1

i (t)−F
(
Qa1

i (t)
)
, i = 1, ...,n1

ℓ

Q̇b1
i (t) = b2

1

[
Qa1

i−1 (t)−2Qa1
i (t)+Qa1

i+1 (t)(
∆z1

i
)2

]
Q̇a2

i (t) = Qb2
i (t)−F

(
Qa2

i (t)
)
, i = 1, ...,n2

ℓ (6.4)

Q̇b2
i (t) = b2

2

[
Qa2

i−1 (t)−2Qa2
i (t)+Qa2

i+1 (t)(
∆z2

i
)2

]
...

Q̇ap
i (t) = Qbp

i (t)−F
(
Qap

i (t)
)
, i = 1, ...,np

ℓ

Q̇bp
i (t) = b2

p

[
Qap

i−1 (t)−2Qap
i (t)+Qap

i+1 (t)(
∆zp

i
)2

]

where the spatial step for the pipe branch p in the network can be computed as ∆zp
i = Lp/N p

ℓ

with N p
ℓ = np

ℓ +1 as the total number of space steps (sections). For example, if the total number
of discrete flows is fixed as np

ℓ = 4 for a pipeline branch with length Lp = 500 [m], then the
total number of sections (space steps) is N p

ℓ = 5 and ∆zp
i = 100 [m]. Check Fig. 6.1 for a better

conceptualization. Notice that Qap
i (t) is the internal discrete flow of section i.
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Fig. 6.1 Space Discretization Scheme for Pipe Branch p

6.3 Methodology

The strategy of the methodology here proposed is a reformulation of the approach presented
Chapter 5 to use it in water distribution networks. For a better conceptualization Fig. 6.2 shows
a flow diagram of the proposed methodology. The proposed approach relies on model (6.4),
which is implemented in Matlabr and has as inputs the flow rates measured at the ends of
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Fig. 6.2 Methodology Flow Diagram

the supervised pipeline branch, Qp
in(t) and Qp

out(t), which in fact, as mentioned before, are the
boundary conditions required for the solution of model (6.4).

Since the unidimensional space is discretized into space steps (sections) of equal size, model
(6.4) shall compute internal discrete flow rates corresponding to each section. If the pipeline
branch is free of leaks, the discrete flow rates provided by the model will be equal, otherwise
the leak outflow will be distributed along the discrete space of the pipeline branch.

If the internal discrete flows, calculated by the model after the leak, are subtracted from the
mean nominal flow Qp

0 (the mean flow rate of the pipeline branch p without leaks), residuals
corresponding to each section will be then obtained as follows:

rp
i (t) = Qp

0 −Qap
ῑ
(t),∀i = 1,2, ...,np

ℓ , ∀ῑ = np
ℓ ,n

p
ℓ−1, ...,2,1. (6.5)
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where i is the index to enumerate the residuals, ῑ is the index for the countdown of the flows
and np

ℓ is the total number of residuals that matches with the total number of discrete flow rates
calculated by the Liénard-type model (6.4).

Depending on the behavior of the discrete flow rates calculated by the Liénard-type model,
for a given section i = j, the mean value of the residuals i = j will have the following behavior:

rp
i (t)|i= j


> 0, if there is a leak downstream of ∆zp

j ;
= 0, if there is a leak in section ∆zp

j ;
< 0, if there is a leak upstream of ∆zp

j .

Remark 1: Notice that last section has not assigned a residual since the flow in this section is
the downstream boundary condition Qp

out(t) of model (6.4) and not an internal discrete flow
computed by model (6.4).
Remark 2: As a consequence, if a leak is placed in the last section, all the residuals will be
then positive.
Remark 3: If the position of the leak does not match with the limits of each section, then
rp

j ≈ 0.
Resuming the explanation of our methodology, the position of the single leak can be

computed by using the following equation:

ẑleak = ∆zp
j × j. (6.6)

where j is the section number where the leak happens and ∆zp
j is the section size, which in fact

is the same than the rest of sections (∆zp
j = ∆zp

i ). Thus, ẑleak → zleak inasmuch ∆zp
i → 0.

The magnitude of a single leak (the leak outflow) can be calculated by means of the mass
balance

Q̂p
leak(t) = Qp

in(t)−Qp
out(t). (6.7)

In case of sequential leaks, the leak outflow computed by (6.7) will increase with the addition
of the outflow of each sequential leak. Each leak flow can be calculated by using the following
equation:

Q̂p
eq(t) =

Mp

∑
κ=1

Q̂p
Lκ
(t), (6.8)
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where Q̂p
eq is the equivalent flow, which is the total flow lost due to the leaks, Q̂p

Lκ
is the flow

lost due to the κ-th sequential leak, which is located at the position ẑLp
κ

and Mp is the total
number of sequential leaks.

In case of sequential leaks, the residual close to zero will indicate the section involving
the equivalent position. Hence, the leak position of the κ-th sequential leak can be obtained
through the following equation:

ẑp
eq =

Mp

∑
κ=1

Q̂p
Lk
(t)ẑp

Lκ

Q̂p
eq(t)

, (6.9)

6.4 Simulation Tests: Leak Diagnostic

An important component of any water supply system is the distribution network which is
a pipe network used to distribute the water to consumers (such as industrial or commercial
establishments and private houses) and other usage points e.g. fire hydrants. In a distribution
network the product, i.e. the water, is pressurized to guarantee that it reaches all branches
of the network, that a sufficient flow is available at any take-off point and to guarantee that
liquid containing contaminants cannot enter the network. In this section the simple distribution
network shown in Figure 6.3 is considered. It consists of a source reservoir from which the

n1 n2

n3

n4

n5

n6

n7

n6

p 1 p 2

p 3

p 4

p 5

p 6

p 7

p 8

Fig. 6.3 Distribution Network

product is pumped into a two-loop pipe network. There is also a pipe leading to a storage tank.
In the figure the identification labels for the various components are shown. Pipe properties are
listed in Table 6.1.
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Table 6.1 Network Pipe Characteristics

Pipe Length [m] Diameter [m]
1 914.4 0.3556
2 1524 0.3048
3 1524 0.2032
4 1524 0.2032
5 1524 0.2032
6 2133.6 0.254
7 1524 0.1524
8 2133.6 0.1524

Three scenarios regarding the application of the proposed method algorithms are presented.
In the first one a single leaks scenario is considered, while in the second one a sequential leaks
scenario is treated and in the third one a single leaks scenario, but with vainrying pressures head
at the ends of the network, is considered. The pipeline network behavior was recreated with
the commercial software PipelineStudior from Energy Solutions, by considering as boundary
conditions the upstream and downstream pressure heads Hn1(t) and Hn7(t) (see Figure 6.3).
Thus, this simulator provides the boundary flow rates to be injected to the Liénard model (5.3),
in order to compute the discrete flows for the residual generation. Table 6.2 provides the list of
model parameters considered.

Table 6.2 Physical parameters

Symbol Value Units Description
g 9.81 m/s2 Gravitational acceleration
ε 1.083×10−3 m Mean height of roughness
ν 7.9822×10−7 m2/s Kinematic viscosity

6.4.1 Single Leaks Scenario

In this section three independent single leak cases were induced in pipe branches 1, 4 and 6.
Table 6.3 shows details of the leaks scenario recreated, i.e. pipe in which the leak takes
place, leak position zleak, leak activation and deactivation times ton and toff. The mean
values of the boundary conditions considered were Hn1(t) = 700 [m] and Hn7(t) = 300 [m].
The mean nominal flows obtained were about Q0p1

= 0.6029 [m3/s], Q0p4
= 0.1304 [m3/s] and

Q0p6
= 0.5145 [m3/s] for pipes branches 1, 4 and 6 respectively.
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Table 6.3 Single Leaks Scenario

Pipe zleak [m] ton [s] toff [s]
1 300 200 400
4 762 600 800
6 533.4 1000 1200

On the other hand, the Liénard-type model (6.4) was programmed in Matlabr by fixing a
space step (section size) ∆zp

i = Lp/N p
ℓ = Lp/21 [m], where Lp is the length of the particular pipe

branch (see Table 6.1). Since Nℓ = 21, 20 internal flow are calculated (i.e. nℓ = 20), thereby 20
residuals can be calculated (r1(t), r2(t), ..., r20(t)).

Fig. 6.4a, Fig. 6.4b and Fig. 6.4c show the residuals calculated through (6.5) for the three
leaks considered respectively. The effects of the leak on the synthetic flows is clearly observed
(once a leak occurs the leak outflow is distributed as several leaks in each discretization node).
Fig. 6.4d, Fig. 6.4e and Fig. 6.4f show the response of Hotelling’s statistic and the results of
leak position and leak flow rate estimations respectively.

The residuals with mean value closer to zero were r1
7(t), r4

12(t) and r6
6(t) for the leaks

considered respectively. The leak positions were estimated through (5.9). Table 6.4 summarizes
the estimated leak positions ẑp

leak and the estimation errors obtained for each one of three leaks

considered. Notice that the estimation errors is calculated as e = 100
∣∣∣ zp

leak−ẑp
leak

Lp

∣∣∣.
Table 6.4 Single Leaks Diagnosis Results

zp
leak [m] ẑp

leak [m] Error [%]
300 290.95 0.99
762 831.27 4.55

533.4 581.89 2.27

6.4.2 Sequential Leaks Scenario

In this section two sequential leak were induced in pipe branches 3 and 8. Table 6.5 shows
details of the leaks scenario recreated, i.e. pipe in which the leak takes place, leak position
zleak, leak activation and deactivation times ton and toff. The mean values of the boundary
conditions considered were Hn1(t) = 700 [m] and Hn7(t) = 300 [m]. The mean nominal flows
obtained were about Q0p3

= 0.1982 [m3/s] and Q0p8
= 0.0776 [m3/s] for pipes branches 3 and 8

respectively.
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(a) Residuals for leak in pipe branch 1 (b) Residuals for leak in pipe branch 4

(c) Residuals for leak in pipe branch 6
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Fig. 6.4 Results for Simulation Test 1
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Table 6.5 Sequential Leaks Scenario

Pipe zleak [m] ton [s] toff [s]
3 150 200 400
8 1600.2 300 500

As in the single leak case, the Liénard-type model (6.4) was programmed in Matlabr by
fixing a space step (section size) ∆zp

i = Lp/N p
ℓ = Lp/21 [m], where Lp is the length of the

particular pipe branch (see Table 6.1). Since Nℓ = 21, 20 internal flow are calculated (i.e.
nℓ = 20), thereby 20 residuals can be calculated (rp

1 (t), rp
2 (t), ..., rp

20(t)). Fig. 6.5a and Fig. 6.5b
show the residuals calculated through (6.5) for the two leaks considered respectively. Again
the effects of the leak on the synthetic flows is clearly observed (once a leak occurs the leak
outflow is distributed as several leaks in each discretization node). Fig. 6.5c, Fig. 6.5d and Fig.
6.5e show the response of Hotelling’s statistic, the results of leak location and leak flow rate
estimations respectively.

The residuals with mean value closer to zero were r3
2(t) and r8

17(t) for the leaks considered
respectively. The leak positions were estimated through (6.6). Table 6.6 summarizes the
estimated leak positions ẑp

leak and the estimation errors obtained for each one of two leaks

considered.Notice that the estimation errors is calculated as e = 100
∣∣∣ zp

leak−ẑp
leak

Lp

∣∣∣.
Table 6.6 Sequential Leaks Diagnosis Results

zp
leak [m] ẑp

leak [m] Error [%]
150 138.55 0.75

1600.2 1648.7 0.0023

6.4.3 Varying Pressures Heads

In contrast with the two previous scenarios in which constant boundary conditions were
considered, in this case sine-like pressure signals were used as boundary conditions (Hn1(t)
and Hn7(t)) for the simulations in PipelineStudior, see Figure 6.6a. Two independent single
leak cases were induced in pipe branches 2 and 4. Table 6.7 shows details of the leaks scenario
recreated, i.e. pipe in which the leak takes place, leak position zleak, leak activation and
deactivation times ton and toff. Figure 6.6b shows the flow rates provided by PipelineStudior

for the two leaks considered.
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(b) Residuals for leak in pipe branch 5
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Fig. 6.5 Results for Simulation Test 2
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Table 6.7 Varying Pressures Leaks Scenario

Pipe zleak [m] ton [s] toff [s]
2 950 100 200
4 762 400 500

The Liénard-type model (6.4) was programmed in Matlabr by fixing a space step (section
size) ∆zp

i = Lp/N p
ℓ = Lp/21 [m], where Lp is the length of the particular pipe branch (see Table

6.1). Since Nℓ = 21, 20 internal flow are calculated (i.e. nℓ = 20), thereby 20 residuals can
be calculated (r1(t), r2(t), ..., r20(t)). Fig. 6.7a and Fig. 6.7b show the residuals calculated
through (6.5) for the two leaks considered respectively. The effects of the leak on the synthetic
flows is clearly observed (once a leak occurs the leak outflow is distributed as several leaks in
each discretization node).

The residuals with mean value closer to zero were r2
14(t) and r4

12(t) for the leaks considered
respectively. The leak positions were estimated through (6.6). Table 6.8 summarizes the
estimated leak positions ẑp

leak and the estimation errors obtained for each one of three leaks

considered. Notice that the estimation errors is calculated as e = 100
∣∣∣ zp

leak−ẑp
leak

Lp

∣∣∣.
Table 6.8 Varying Pressures Leaks Diagnosis Results

zp
leak [m] ẑp

leak [m] Error [%]
950 969.82 1.3
762 831.27 4.55



86
Approach to Diagnose Leaks in Water Distribution Networks Using Only Flow Rate

Measurements

0 100 200 300 400 500 600

Time [s]

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

R
es

id
ua

ls
 [m

3
/s

]
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(b) Residuals for leak in pipe branch 4

6.5 Conclusions

In this chapter, we have presented a novel approach to diagnose single and sequential leaks in
water distribution networks. In order to avoid the necessity of using pressure measurements,
a representation of the pipeline dynamics under the form of a flow rate Liénard-type model
has been considered for the formulation of the proposed method. The commercial software
PipelineStudior from Energy Solutions was used to reproduce the behavior of a distribution
network, and data provided by this software were used to support the validation of the proposed
approach. Provided simulations illustrated the good leak position estimation results obtained
with the proposed methodology.



Chapter 7

Conclusions and Future Works

7.1 Summary

The formulation of reliable method for leak diagnosis in pipelines is an important problem to
be solved in order to prevent catastrophic failures and wasting valuable resources. The scope
for this thesis was the design of a liquid pipeline monitoring system that incorporates state
estimators for both iteratively identifying physical parameters as well as early detection and
tracing of leaks. The main contributions of this work are as follows:

• Input Optimization Algorithms: Optimization algorithms for calculating regularly per-
sistent inputs for state affine systems that can be used to sensitize appropriate signals for
parameter identification issue were presented. Two representations of pipeline dynamics
under the form of Liénard-like systems and by considering of a varying friction factor
were used in formulating identification problems as observers. Such observers were used
to estimate pipeline parameters as wave speed and equivalent length. The approach both
for input constraints and parameters’ estimation was validated through simulation results
as well as experimental tests.

• Pipeline Leaks Diagnosis Algorithm: A novel approach to detect and locate single and
sequential leaks was presented. To avoid the necessity of using pressure measurements,
a representation of the pipeline dynamics under the form of a flow rate Liénard-type
model was used in the formulation of the proposed method. The approach was validated
through simulation results as well as experimental tests. Provided simulations and, even
more importantly, experimental tests illustrated the good leak position estimation results
obtained with the proposed methodology. The main disadvantage of the proposed method
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is that a better precision in the leak position estimation requires an increasing of the model
resolution (that is a reduction of the step used in the spatial discretization) which in turn
means an increment of the order of the model (a greater number of equations). However
with the current computational resources, this disadvantage can easily be overcome.

• Leaks Diagnosis Algorithm for Water Distribution Network: The pipeline leak de-
tection algorithm presented before is extended to water distribution networks. The
commercial software PipelineStudior from Energy Solutions was used to reproduce
the behavior of a distribution network, and data provided by this software were used to
support the validation of the proposed approach. Provided simulations illustrated the
good leak position estimation results obtained with the proposed methodology.

7.2 Future Works

Future works derived from this research could address the following issues:

• The input optimization algorithms proposed in this study generate a variable amplitude
pulse train signal. Since a sinusoidal signal have less energy that a square signal with the
same amplitude and frequency, it would be interesting to generate an optimal sinusoidal
like signal and to compare its performance with the once developed here.

• The pipeline leaks diagnosis algorithm proposed here was implemented on-line only for
the single leak scenario, basically because the conventional PCA algorithm only allows
the detection of the violation of a preset threshold and during sequential leaks various
variations (over the threshold) of the statistics T 2 take place. Since, after the first leak, the
threshold has already been exceeded, subsequent leakages are not detected automatically.
It is suggested to work on the conditioning of the PCA algorithm such that an on-line
multi-leak diagnose will be possible.

• Fixed pressures at the pipeline ends is an indispensable requirements for the operation of
the proposed leaks diagnosis method. Although this can be guaranteed through a pressure
control system, it would be better to overcome this limitation.

• This study only considered pipelines carrying liquids. To adapt the proposed algorithms
to gas pipeline networks is strongly suggested.



References

[1] Aamo, O. M. (2016). Leak detection, size estimation and localization in pipe flows. IEEE
Transactions on Automatic Control, 61(1):246–251.

[2] Ahmed-Ali, T., Van Assche, V., Massieu, J., and Dorleans, P. (2013). Continuous-discrete
observer for state affine systems with sampled and delayed measurements. IEEE Transactions
on Automatic Control, 58(4):1085–1091.

[3] Ali, J. M., Hoang, N. H., Hussain, M. A., and Dochain, D. (2015). Review and classification
of recent observers applied in chemical process systems. Computers & Chemical Engineering,
76:27–41.

[4] API (1995). 1155: Evaluation methodology for software based leak detection systems.

[5] API, R. (2007). 1130: Computational pipeline monitoring for liquids.

[6] Apriliani, E., Nurhadi, H., et al. (2017). Ensemble and fuzzy kalman filter for position
estimation of an autonomous underwater vehicle based on dynamical system of auv motion.
Expert Systems with Applications, 68:29–35.

[7] Begovich, O., Navarro, A., Sanchez, E. N., and Besançon, G. (2007). Comparison of two
detection algorithms for pipeline leaks. In Control Applications, 2007. CCA 2007. IEEE
International Conference on, pages 777–782. IEEE.

[8] Begovich, O. and Valdovinos-Villalobos, G. (2010). Dsp application of a water-leak detec-
tion and isolation algorithm. In Electrical Engineering Computing Science and Automatic
Control (CCE), 2010 7th International Conference on, pages 93–98. IEEE.

[9] Bejarano, F. J., Fridman, L., and Poznyak, A. (2007). Output integral sliding mode control
based on algebraic hierarchical observer. International Journal of Control, 80(3):443–453.

[10] Belsito, S., Lombardi, P., Andreussi, P., and Banerjee, S. (1998). Leak detection in
liquefied gas pipelines by artificial neural networks. AIChE Journal, 44(12):2675–2688.

[11] Benson, T. (2014). Oil spill one of the worst environmental events in Israel’s history,
official says.

[12] Besançon, G. (1999). Further results on high gain observers for nonlinear systems. In
Proceedings of the 38th IEEE Conference on Decision and Control, pages 2904–2909,
Phoenix, AZ, USA.



90 References
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