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Abstract

Electrical power systems are vulnerable to external disturbances, such as short circuits,

that can lead to damage on the equipments and even blackouts. In order to improve the

system response to external disturbances, the generators of the power system are equipped

with automatic controllers devised to maintain the generators working on a constant opera-

ting condition. The tuning of the controllers is performed assuming the system loads do not

have time-dependent variations, but such assumption is not realistic as the power system

loads are stochastically changing due to the switching on and off of every device (PCs, TVs,

cellphones, etc.) connected to it.

This work proposes two new methods for the tuning of the generator controllers which takes

into account the stochastic nature of the system loads. More specifically, this work proposes

two new methods for the tuning of the governors and AVRs of the power system generators:

one focused on the steady state response and the other focused on the fault response. First,

the system response as a function of the controller parameters is calculated. As the power

system is under the effect of stochastic loads, the resulting system response is stochastic.

Then, a stochastic objective function which measures the quality of the system response

is defined. Each tuning method uses a different objective function. Finally, the objective

function is optimized using the metaheuristic Cuckoo Search, which is used for global opti-

mization problems and can be used to optimize stochastic functions. The method was tested

in different benchmark systems showing better system responses.

Keywords: Transient, stability, stochastic, controller, tuning, optimization, metaheu-

ristic
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Ṽt0 Steady state terminal voltage phasor of the generator, network reference
~̃V Vector of node voltage phasors

Xd Direct-axis steady state reactance of the generator

Xq Quadrature-axis steady state reactance of the generator

X ′d Direct-axis transient reactance of the generator

X ′q Quadrature-axis transient reactance of the generator

X ′′d Direct-axis subtransient reactance of the generator

X ′′q Quadrature-axis subtransient reactance of the generator

Y Admittance matrix

YL Load admittance

YL0 Steady state load admittance

Yij ij element of the admittance matrix

h Time step

i Instant current

m Number of generators in the power system

n Number of nodes in the power system

pa Probability of detecting alien eggs (Cuckoo Search)

ps Population size (Cuckoo Search)

uB Steam valve bowl output of the governor

uD Delayed control signal of the governor

uL Limited delayed control signal of the governor



Table List xix

Symbol Term

uS Servo output of the governor

u (t) Unit step function evaluated at time t

v Instant voltage

~x Vector of controller parameters

~y Vector of differential variables

~z Vector of algebraic variables

Greek letter symbols

Symbol Term

δ Angle of network reference phasor voltage

γij Angle of the ij element of the admittance matrix

λi Stochastic penetration of the load of node i

θ Rotor angle of the generator

ξ Standard normal random variable

ψ Flux linkage

ρi Slope of the linear variation of the load of node i

ω Synchronous speed of the generator

ωs Rated synchronous speed of the generator

Subindices

Subindex Term

L Of the load

d Direct axis

dq Using generator reference (for phasors and associated variables)

i of the ith generator, node, AVR, etc. It can also refer to the ith element of a vector

ij ij element of a matrix



xx Table List

Subindex Term

q Quadrature axis

sp Specified

0 Zero axis

∞ Steady state

Superindices

Superindex Term

~ Vector

(k) kth iteration

˜ Phasor1

˙ Time derivative

∗ Complex conjugate

H Conjugate transpose

Abbreviations

Abbreviation Term

AC Alternating Current

ANOVA Analysis of Variance

AVR Automatic Voltage Regulator

CCT Critical Clearing Time

COI Center of Inertia

CS Cuckoo Search

DAE Differential Algebraic Equation

DC Direct Current

EE Explicit Euler

EP Equilibrium Point

1Phasors written without their signature symbol ˜ refer to their magnitude. For example: let the terminal
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1. Introduction

Electrical power systems are designed to transport the electric energy from the generation

sites (hydroelectric plants, fossil fuel plants, etc.) to the consumption sites (houses, industrial

facilities, etc.) in an efficient and reliable way. The power system is capable of transporting

and distributing electric power, but it is not capable of storing it. Therefore it must exist,

at every instant of time the system is operating, a balance between generated power injec-

ted to the system and the demanded power extracted from the system. The main problem

associated with keeping this balance is that the demanded power at a future instant is not

known, which forces the generators of the power system to restore the balance dynamically,

at every instant.

The demanded power, although unknown, can be estimated in an approximate way using

time series methods and data of past values. The aforementioned methods can be used as the

demanded power normally possesses a strong periodicity associated with both the hour of

the day and the day of the week. Using the estimated values of the demanded power of every

system load at a given time period, the generated power of each generator is scheduled for

that period, in a procedure known as Economic Dispatch [5]. The estimated value of the load

is clearly an approximate value, and a method for balancing generated and demanded power

in real time is required. For that reason, the generators of the power system are equipped

with automatic controllers capable of continuously adjusting the generated power to keep

the balance between generation and demand.

The generator controllers are capable of restoring the generation-demand balance by con-

tinuously modifying the generator operating condition, but doing so can cause undesired

variations on the power system variables. The voltage and the frequency are the most im-

portant system variables, and they must be kept as close as possible to their rated values as

large variations of these variables can lead to damage on the generators and other devices

connected to the power system (electronic devices, motors, etc.). Each generator is equipped

with two main controllers: the governor, which controls the generator frequency, and the

AVR, which controls the generator voltage. The focus of this dissertation is the development

of a tuning method for the governors and AVRs of the generators in a power system, taking

into account the unknown variations of the loads. However, It must be noted that in this

work not one, but two tuning methods were developed.
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1.1. Objectives

1.1.1. Main Objective

• Develop a tuning method for the governors and AVRs of the generators of a power

system, taking into account the stochastic variation of loads.

1.1.2. Specific Objectives

• Define the required models of the power system elements.

• Define an appropriate model for the stochastic variation of power system loads.

• Develop a metric to quantify the quality of the controllers to be tuned.

• Test the tuning method in a benchmark power system.

1.2. Scope

• The power system loads will be modelled as stochastic processes instead of the classical

deterministic model.

• High-order AVR and governor models will be considered for the tuning method.

• The tuning methods to be proposed may be applied to power systems of arbitrary size.

• The performance achieved with the tuning method will be statistically tested.

1.3. Limitations

• No other controllers apart from the AVR and the governor are considered.

• The only controllable elements considered are generators
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1.4. Background

Controller tuning can be performed by neglecting the interaction between each generator and

the network. This allows applying analytical methods like the classical Ziegler-Nichols tuning

[6]. This method was developed in 1942 by John G. Ziegler and Nathaniel B. Nichols for the

tuning Proportional-Integral-Derivative (PID) controllers. The method was developed with

the aim maximizing the perturbation-rejection capabilities of the controller. However, it can

affect the controller normal operation.

In 1988, Sanathanan developed an analytical method for tuning the governor of a hydraulic

generator based on the frequency response of said generator and its controllers [7].

The main advantage of analytical methods is that they are computationally inexpensive,

but they require the assumption of no interaction between generator and network, which is

unrealistic. With the computational capabilities of modern day computers and the advent of

metaheuristic techniques capable of solving non-convex optimization problems, research has

shifted towards tuning methods based on black box optimization techniques which allow to

take into account the interaction between generators and the network.

The most common metaheuristics for optimization are Particle Swarm Optimization and

Genetic Algorithms. Particle Swarm Optimization is a population metaheuristic based on

the swarm behaviour of distinct species of animals [8]. A Genetic Algorithm is a population

metaheuristic based on natural selection and genetics [9].

One of the most recent optimization metaheuristics is the Cuckoo Search method. This met-

hod was publicated in 2009 by Yang and Deb [10]. Is is a population metaheuristic based

on the brood parasitism of the cuckoos. One important property is that it is only needed to

specify one metaparameter (apart from the population size) before using it.

In 1992 Lansberry and Wozniak developed a method based on genetic algorithms to tune

the governor of a hydraulic generator [9]. In 2010 Shabib, Gayed and Rashwan proposed a

method for tuning a PID-type AVR using Particle Swarm Optimization [8]. In 2011 Zhang

designed a procedure for tuning a PID-type AVR for a diesel generator using genetic al-

gorithms [11]. In 2016 Shahgholian et al. devised a controller based on a combination of

a fuzzy logic controller, a Proportional-Integral (PI) controller and a Thyristor Controlled

Series Capacitor (TCSC) to generate an auxiliary signal for the AVR and also regulate the

electrical power output of the generator in a Single Machine Infinite Bus (SMIB) system [12].

In 2017 Lomei et al. designed an approach for AVR tuning based on choosing appropria-

te AVR parameters to reduce the magnitude of the nonlinear characteristics of the system

transient response and thus improve the system stability [13]. In 2017 Pandey and Gupta
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developed a tuning method based on the Dynamic Knowledge Domain Inference concept.

The method is comprised of two stages: first, an offline tuning of the controllers is perfor-

med, and second an online controller tuning is performed depending on the magnitude of

the transient oscillations of the state variables during a disturbance [14].



2. Power System Elements and Models

This chapter is devoted to the development of the mathematical models describing the diffe-

rent elements conforming a power system. The model of each element is studied individually,

and then they will be linked together to conform the complete model of the power system as

a whole. This work only considers the essential elements of any power system: shunt capaci-

tors and reactors, transformers, transmission lines, loads and generators and their controls.

Some modern power system have power electronics devices (SVCs, TCSCs, etc.) that impro-

ve some of their characteristics like maximum power transfer and voltage regulation. Such

systems are called Flexible Alternating Current Transmission Systems (FACTS). FACTS are

not going to be taken into account on this work, and thus the models of the SVCs, TCSCs

and other similar devices will not be developed here.

2.1. Per-Unit Representation

Before starting the development of the models for the different power system elements,

the per-unit representation is going to be discussed. The per-unit representation, or per-

unit system, is a normalization of the physical quantities of a power system that offers

computational simplicity by eliminating the physical units [15]. In general, any quantity can

be expressed in per unit by applying the following substitution:

per-unit quantity value =
physical quantity value

base quantity value

The quantities in per-unit (p.u.) can be used in the same way as their physical counterparts

if and only if all the related quantities are in p.u. The specific p.u. system used is completely

arbitrary, and defined by choosing some of the base quantities at will. In power systems the

voltage and power base quantities are freely chosen. The rest of the base quantities are not

chosen, they are calculated using the basic circuit equations. Doing so ensures that the basic

relationships between electrical quantities are preserved in the p.u. system. For example: let

VB and SB be the base voltage and base power for the p.u. representation of a single-phase

system, then the base current, impedance and admittance are calculated as:

IB =
SB
VB
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ZB =
VB
IB

=
V 2
B

SB

YB =
1

ZB
=
SB
V 2
B

In three-phase systems the line voltage and three-phase power base quantities are freely

chosen, and the rest of base quantities are calculated. For example: let VLB and S3φB be the

base line voltage and base three-phase power for the p.u. representation of a three-phase

system, then the base line current and base single phase power are calculated as:

ILB =
S3φB√
3VLB

S1φB =
S3φB

3

In a Y-connected load the base phase voltage is calculated as:

VφB =
VLB√

3
, (Y-connection)

The base impedance and admittance are calculated assuming a Y-connection, making pos-

sible to construct single-phase equivalent systems in p.u.:

ZB =
V 2
φB

S1φB

=
V 2
LB

S3φB

YB =
1

ZB
=
S3φB

V 2
LB

The base quantities are normally chosen so that the p.u. quantities are equal to 1 at rated

operation. One important advantage of the p.u. representation is that the phase and line

quantities in p.u. are equal. The p.u. representation has a wide acceptance over the industry,

to the point that the data of electrical equipments are normally expressed in p.u., using the

rated voltage and power of the equipment as base. When representing a power system in

p.u., the base must be the same for all elements, which means the data of equipments with

different p.u. systems must be converted to the p.u. system of the power system in a process

known as base changing. Base changing is performed by calculating the physical quantity

using the p.u. base of the previous p.u. system and then re-normalizing the physical quantity

using the p.u. base of the new p.u. system.

The p.u. representation will be used throughout the rest of this dissertation, save some sec-

tions where the clarification will be made. The p.u. base for the models of each element

developed in this chapter is calculated using the element’s rated values.
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2.2. Shunt Capacitor

Shunt capacitor banks are connected to a given node of the power system primarily to

improve the power factor of the node, reducing losses. Another reason to use shunt capacitors

is the strong dependence between reactive power and voltage magnitude: injecting reactive

power to a node tends to increase the voltage magnitude of that node. The shunt capacitors

act as generators of reactive power, thus increasing the node voltage in most of the cases. The

admittance of the shunt capacitor can be calculated from its rated voltage and reactive power,

as these are the normal parameters available from the manufacturers [16]. The complex power

consumed by the shunt admittance is:

Ssh = Y ∗shV
2
sh (2-1)

The shunt capacitor does not consume active power, and generates reactive power, therefore:

Ssh = Y ∗shV
2
sh

−jQsh = (Gsh + jBsh)
∗ V 2

sh

−jQsh

V 2
sh

= Gsh − jBsh

Gsh = 0, Bsh =
Qsh

V 2
sh

The shunt capacitor rated voltage in p.u. is 1, so the shunt admittance in p.u. is:

Ysh = jQsh (2-2)

Where Qsh is the rated reactive power generated by the capacitor.

2.3. Shunt Reactor Model

Shunt reactors are similar to the shunt capacitors but they consume reactive power instead

of generating it. They are primarily used to decrease the voltage of a given node, which can

be abnormally high due to an excess of injected reactive power. The equations for the shunt

capacitor apply to the shunt reactor as well, yielding that the p.u. admittance is:

Ysh = −jQsh (2-3)

Where Qsh is the rated reactive power consumed by the reactor.
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2.4. Transformer Model

Transformers are electric devices capable of changing voltage magnitude (and phase too, un-

der special configurations) with minimal power losses. This implies transformers can change

the voltage at one point of the system with almost no effect over the power flow, by changing

the current flow accordingly. They are used in transmission systems to increase the voltage

level, which reduces the current level and thus reduces the power losses on the transmission

lines. Transformers are also used in distribution systems to reduce the voltage level to safe

and practical levels for the consumers. A real transformer can be represented as a circuit

with an ideal transformer plus additional elements which represent non-ideal characteristics

of the real transformer, the development of the circuit can be found in [17, 18].

+

−

ṼP

ĨP
RP jXP

RC jXM

RS jXS ĨS

+

−

ṼS

a : 1

Figure 2-1.: Complete circuit model of the real transformer.

The transformer circuit is presented on Figure 2-1, where:

• ṼP is the voltage on the primary winding, and ṼS is the voltage on the secondary

winding. Similarly, ĨP is the current on the primary winding and ĨS is the current on

the secondary winding.

• RP represents the resistance of the primary winding, and RS represents the resistance

of the secondary winding.

• XP represents the reactance due to the inductance of the primary winding, and XS

represents the reactance due to the inductance of the secondary winding.

• XM is the magnetizing reactance. The current flowing through XM is the magnetizing

current, the current required to generate the oscillating magnetic flux on the transfor-

mer core.

• RC represents the power losses on the transformer core due to the hysteresis effect and

the Eddy currents. The hysteresis effect is nonlinear, but it is represented as a linear

element for convenience.
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+

−

ṼP

ĨP
ZT ĨS

+

−

ṼS

a : 1 1

Figure 2-2.: Reduced circuit model of the transformer.

• The ideal transformer represents the magnetic link between the primary and secondary

winding, due to the Faraday’s law. a is the effective voltage ratio of the transformer

and it is not equal to the turns ratio because part of the generated flux leaks out of the

transformer core without linking both windings. It is possible for the voltage on the

secondary side of the transformer to have a phase shift with respect to the voltage on

the primary side, in such case a becomes a complex number with its angle representing

the phase shift between the voltages.

The magnetizing current and core losses of the transformers are normally very small, which

means RC and XM tend to have very high values. For this reason, in most studies RC and

XM can be approximated as open circuits (they are not neglected only in special studies,

where the focus is the transformer itself [15]). Furthermore, the resistance and reactance of

the primary side of the transformer can be referred to the secondary side by dividing them

by a2 [17]. The approximated circuit of the transformer is shown in Figure 2-2, where the

resistances and reactances have been condensed into a single impedance ZT , defined as:

ZT =

(
RP +

RS

a2

)
+ j

(
XP +

XS

a2

)
(2-4)

Special considerations must be taken when using the p.u. representation in a system with

transformers. The p.u. system can be designed to eliminate the ideal transformer from the

circuit model of the real transformer. As the transformer changes the voltage from one side

to the other, it can be considered that the base voltage from one side of the transformer is

changed to the other side, dividing the power system in two areas, each one with a different

base voltage. That way the rated p.u. voltage at both sides of the transformer is 1 (or anot-

her value, but equal for both sides), changing the value of a to 1 in such p.u. system, and

thus eliminating the ideal transformer. In a power system with various transformers, the p.u.

representation of that system is divided in various areas with different base voltages, and

thus it is not possible to eliminate all the ideal transformers. The interested reader can find

a more detailed discussion on this topic in [5].

Another way to eliminate the ideal transformer from the model is to view the real transformer

as a two-port network, and describe it in terms of its admittance matrix instead of its circuit
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model [19]. First of all, notice that the voltage on the primary side of the ideal transformer

of Figure 2-2 is ṼP ; then, by definition, the voltage on the secondary side of the ideal

transformer is 1
a
ṼP . Applying Ohm’s law to ZT yields:

ĨSZT = ṼS −
1

a
ṼP

ĨS = − 1

aZT
ṼP +

1

ZT
ṼS (2-5)

The power consumed by the ideal transformer must be zero, so the complex power flowing

into the primary side must be equal to the power flowing out of the secondary side:

ṼP Ĩ
∗
P = −1

a
ṼP Ĩ

∗
S

ĨS = −a∗ĨP (2-6)

Replacing Equation (2-6) in Equation (2-5):

−a∗ĨP = − 1

aZT
ṼP +

1

ZT
ṼS

ĨP =
1

|a|2 ZT
ṼP −

1

a∗ZT
ṼS (2-7)

Expressing equations (2-7) and (2-5) in matrix form:

 ĨP

ĨS


 =




1
|a|2ZT

− 1
a∗ZT

− 1
aZT

1
ZT




 ṼP

ṼS




Then the admittance matrix of the transformer is:

YT =




1
|a|2ZT

− 1
a∗ZT

− 1
aZT

1
ZT


 (2-8)

The admittance matrix will be used as the default model for representing the transformer.

Notice that if a has a non-zero imaginary part, then the matrix will not be symmetric,

so it is not possible to construct a general standard circuit model (π or T circuit) for the

transformer (for the special case that a is purely real, it is possible construct a π circuit for

the transformer).

2.5. Transmission Line Model

Transmission lines are arrays of conductors used to transport electrical energy from the

generating facilities to the consumers. There are two types of transmission lines: overhead

lines and underground cables. Both types of lines are characterized by four main parameters

[15]:
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• Series Resistance (Rx): Represents the resistance of the line conductors, with the

increments due to stranding and skin effect included. This value can be obtained from

the manufacturer.

• Series Inductance (Lx): Represents the self and mutual inductances of the line con-

ductors. This value depends on their geometric distribution, and is different for all

conductors unless their distribution is symmetric. It is necessary to have equal induc-

tances for all the conductors, in order to have a balanced transmission line (the current

is the same for each phase). When the distribution is not symmetric, it is possible to

make the inductances equal by transposing the conductors to ensure each one occupies

each possible position.

• Shunt Conductance (Gx): Represents the path of the leakage current that flows

along insulators and due to the corona effect. This value depends on variables like

the weather and the humidity of the air, which make the calculation of the shunt

conductance unreliable. On top of that, the leakage current tends to be very small,

which allows to completely neglect this parameter.

• Shunt Capacitance (Cx): Represents the capacitive effect due to the potential dif-

ference between each pair of conductors and between each conductor and the ground.

This value, as the inductance, depends on the geometric distribution of the conductors.

Extensive discussions on the calculation of Lx and Cx can be found in [5, 20]. The line para-

meters have the subscript x indicating they are parameters per unit length (Ω/km, p.u./km,

etc.). These parameters are calculated assuming the conductors of the transmission line are

infinitely long, which is equivalent to say the line parameters are only valid to line sections

of differential length.

2.5.1. Complete Model

In order to develop the model of the complete transmission line, a line section of differential

length ∆x is considered, as shown in Figure 2-3. The voltage drop and leakage current on

the line section are represented as a symmetric T-circuit, because the line section is exactly

equal when observed from one end or the other [21]. The T circuit is just an approximation,

but it can be shown that in some cases, when the length of the line section tends to zero the

circuit approximation becomes exact [4].

The voltage-current relationship for the line section when ∆x tends to zero is going to be

derived. Notice that the voltages and currents are expressed as arbitrary time dependent

functions and not as phasors. The voltage drop of the line section, ∆v, is equal to the sum
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+

−

vS

iS i+ ∆i

+

−

v + ∆v

Rx
∆x
2 Lx

∆x
2

Gx∆x Cx∆x

∆i

Rx
∆x
2 Lx

∆x
2 i

+

−

v

iR +

−

vR

∆x x

d

Figure 2-3.: Circuit model for the differential section of a transmission line.

of the voltage drops to the left and to the right of the shunt branch:

∆v = ∆v1 + ∆v2

∆v1 = Rx
∆x

2
(i+ ∆i) + Lx

∆x

2

∂ (i+ ∆i)

∂t

∆v1 = ∆xfv (i+ ∆i) (2-9)

∆v2 = Rx
∆x

2
i+ Lx

∆x

2

∂i

∂t

∆v2 = ∆xfv (i) (2-10)

Where:

fv (i) =
1

2
Rxi+

1

2
Lx
∂i

∂t
(2-11)

The voltage drop equation can be rearranged as:

∆v = ∆x

[
Rxi+ Lx

∂i

∂t
+Rx∆i+ Lx

∂ (∆i)

∂t

]

∆v

∆x
= Rxi+ Lx

∂i

∂t
+

1

2
Rx∆i+

1

2
Lx
∂ (∆i)

∂t
(2-12)

The leakage current equation can be calculated directly from the shunt branch:

∆i = Gx∆x (v + ∆v2) + Cx∆x
∂ (v + ∆v2)

∂t

∆i = ∆x

[
Gx (v + ∆xfv (i)) + Cx

∂ (v + ∆xfv (i))

∂t

]

∆i = ∆x

[
Gxv + Cx

∂v

∂t

]
+ (∆x)2

[
Gxfv (i) + Cx

∂ (fv (i))

∂t

]

∆i = ∆xfi (v) + (∆x)2 fi (fv (i)) (2-13)
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Where:

fi (v) = Gxv + Cx
∂v

∂t
(2-14)

The leakage current equation can be rearranged as:

∆i

∆x
= fi (v) + ∆xfi (fv (i)) (2-15)

Applying the limit when ∆x tends to zero:

ĺım
∆x→0

∆i

∆x
=
∂i

∂x
= fi (v)

∂i

∂x
= Gxv + Cx

∂v

∂t
(2-16)

From Equation 2-13:

∂ (∆i)

∂t
= ∆x

∂ (fi (v))

∂t
fi (v) + (∆x)2 ∂ [fi (fv (i))]

∂t

ĺım
∆x→0

∆i = 0 (2-17)

ĺım
∆x→0

∂ (∆i)

∂t
= 0 (2-18)

Applying the limit when ∆x tends to zero to 2-12:

ĺım
∆x→0

∆v

∆x
=
∂v

∂x
= Rxi+ Lx

∂i

∂t
+

1

2
Rx ĺım

∆x→0
∆i+

1

2
Lx ĺım

∆x→0

∂ (∆i)

∂t
∂v

∂x
= Rxi+ Lx

∂i

∂t
(2-19)

Equations 2-19 and 2-16 conform a set of partial differential equations (PDEs) which des-

cribes the behaviour of the voltage and current at any point of the line. These PDEs are

coupled: the voltage equation depends on the current and vice versa. The PDEs can be

decoupled: first, Equation 2-19 is differentiated with respect to x:

∂2v

∂x2
= Rx

∂i

∂x
+ Lx

∂

∂t

(
∂i

∂x

)

Substituting Equation 2-16 into Equation 2-19:

∂2v

∂x2
= RxGxv + (RxCx + LxGx)

∂v

∂t
+ LxCx

∂2v

∂t2
(2-20)

Applying the same procedure to Equation 2-16 results in the following equation:

∂2i

∂x2
= RxGxi+ (RxCx + LxGx)

∂i

∂t
+ LxCx

∂2i

∂t2
(2-21)

Equation 2-20 and 2-21 conform the set of decoupled PDEs that describe the voltage and

current on the transmission line at any point.
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2.5.2. Steady State Model

In normal steady state operation, the voltages and currents at the sending and receiving ends

of the line are perfect AC (sinusoidal) waves. Equations 2-20 and 2-21 are lineal differential

equations so in steady state it is possible to express the voltage and current as phasors (Ṽ

and Ĩ) instead of their time-dependent values (v and i). Equation 2-20 in phasorial form

becomes:

d2Ṽ

dx2
= RxGxṼ + (RxCx + LxGx)

(
jωṼ

)
+ LxCx

(
j2ω2Ṽ

)

∂2Ṽ

∂x2
= (Rx + jωLx) (Gx + jωCx) Ṽ

∂2Ṽ

∂x2
= zxyxṼ (2-22)

Where zx = Rx + jωLx and yx = Gx + jωCx. Phasors are time independent so the derivative

with respect to x is not partial anymore:

d2Ṽ

dx2
= γ2Ṽ (2-23)

γ = +
√
zxyx = +

√
(Rx + jωLx) (Gx + jωCx) (2-24)

Where γ is called propagation constant of the line. Equation 2-23 is an ordinary differential

equation (ODE). More specifically, Equation 2-23 is a linear second order ODE whose general

solution is:

Ṽ = A1e
γx + A2e

−γx (2-25)

In order to find the general solution of the current, Equation 2-16 is expressed in phasor

form:
∂Ĩ

∂x
= yxṼ

Substituting Equation 2-25 and integrating with respect to x:

Ĩ =
yx
γ

(
A1e

γx − A2e
−γx)

Ĩ =
1

γ/yx

(
A1e

γx − A2e
−γx)

Ĩ =
1

ZC

(
A1e

γx − A2e
−γx) (2-26)

ZC =
γ

yx
=

√
zx
yx

(2-27)

Where ZC is called characteristic impedance of the line. At the receiving end, where x = 0,

the voltage and current are (ĨR has negative sign because its direction is opposite to that of

ĨS):

ṼR = A1e
γ0 + A2e

−γ0 = A1 + A2



2.5 Transmission Line Model 15

−ĨR =
1

ZC

(
A1e

γ0 − A2e
−γ0
)

=
1

ZC
(A1 − A2)

Solving for A1 and A2 yields:

A1 =
ṼR − ĨRZC

2
, A2 =

ṼR + ĨRZC
2

Therefore, the voltage and current of the transmission line at a distance x from the receiving

end are:

Ṽ (x) =
ṼR − ĨRZC

2
eγx +

ṼR + ĨRZC
2

e−γx (2-28)

Ĩ (x) =
ṼR − ĨRZC

2ZC
eγx − ṼR + ĨRZC

2ZC
e−γx (2-29)

At the sending end, where x = d, the voltage and current are:

ṼS =
ṼR − ĨRZC

2
eγd +

ṼR + ĨRZC
2

e−γd (2-30)

ĨS =
ṼR − ĨRZC

2ZC
eγd − ṼR + ĨRZC

2ZC
e−γd (2-31)

The current at the receiving end can be expressed in terms of the voltages at the lines ends

from Equation 2-30:

ṼS = ṼR
eγd + e−γd

2
− ĨRZC

eγd − e−γd
2

ĨRZC
eγd − e−γd

2
= −ṼS + ṼR

eγd + e−γd

2

ĨR = −ṼS
1

ZC

2

eγd − e−γd + ṼR
1

ZC

eγd + e−γd

eγd − e−γd (2-32)

Equation 2-32 can be rearranged as follows:

ĨR = −ṼS
1

ZC

2

eγd − e−γd + ṼR
1

ZC

[
eγd + e−γd − 2

eγd − e−γd +
2

eγd − e−γd
]

ĨR = −ṼS
1

ZC

1

sinh (γd)
+ ṼR

1

ZC

[ (
eγd/2 − e−γd/2

)2

(eγd/2 − e−γd/2) (eγd/2 + e−γd/2)
+

1

sinh (γd)

]

ĨR = −ṼS
1

ZC

1

sinh (γd)
+ ṼR

1

ZC

[(
eγd/2 − e−γd/2

)

(eγd/2 + e−γd/2)
+

1

sinh (γd)

]

ĨR = −ṼS
1

ZC

1

sinh (γd)
+ ṼR

1

ZC

[
tanh (γd/2) +

1

sinh (γd)

]

ĨR = −ṼS
1√
zx/yx

1

sinh (γd)
+ ṼR

[
1√
zx/yx

tanh (γd/2) +
1√
zx/yx

1

sinh (γd)

]
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ĨR = −ṼS
1

zx

√
zxyx

sinh (γd)
+ ṼR

[
yx

tanh (γd/2)√
zxyx

+
1

zx

√
zxyx

sinh (γd)

]

ĨR = −ṼS
1

zxd

γd

sinh (γd)
+ ṼR

[
yxd

2

tanh (γd/2)

γd/2
+

1

zxd

γd

sinh (γd)

]

ĨR = −ṼS
1

z

γd

sinh (γd)
+ ṼR

[
y

2

tanh (γd/2)

γd/2
+

1

z

γd

sinh (γd)

]
(2-33)

Where:

z = zxd (2-34)

y = yxd (2-35)

Equation 2-31 can be rearranged as:

ĨS = ṼR
1

ZC

eγd − e−γd
2

− ĨR
eγd + e−γd

2
(2-36)

Substituting Equation 2-32:

ĨS = ṼR
1

ZC

eγd − e−γd
2

+ ṼS
1

ZC

eγd + e−γd

eγd − e−γd − ṼR
1

ZC

(
eγd + e−γd

)2

2 (eγd − e−γd)

ĨS = ṼS
1

ZC

eγd + e−γd

eγd − e−γd − ṼR
1

ZC

(
eγd + e−γd

)2 −
(
eγd − e−γd

)2

2 (eγd − e−γd)

ĨS = ṼS
1

ZC

eγd + e−γd

eγd − e−γd − ṼR
1

ZC

e2γd + 2 + e−2γd − e2γd + 2− e−2γd

2 (eγd − e−γd)

ĨS = ṼS
1

ZC

eγd + e−γd

eγd − e−γd − ṼR
1

ZC

2

eγd − e−γd (2-37)

A rearrangement analogous to that of Equation 2-32 can be applied to Equation 2-37, giving

the following result:

ĨS = ṼS

[
y

2

tanh (γd/2)

γd/2
+

1

z

γd

sinh (γd)

]
− ṼR

1

z

γd

sinh (γd)
(2-38)

Equations 2-38 and 2-33 can be expressed in matrix form as:


 ĨR

ĨS


 =




y
2

tanh(γd/2)
γd/2

+ 1
z

γd
sinh(γd)

−1
z

γd
sinh(γd)

− γd
z sinh(γd)

y
2

tanh(γd/2)
γd/2

+ γd
z sinh(γd)




 ṼS

ṼR


 (2-39)

Let Z = z sinh(γd)
γd

and Y = y tanh(γd/2)
γd/2

, then:


 ĨR

ĨS


 =




Y
2

+ 1
Z

− 1
Z

− 1
Z

Y
2

+ 1
Z




 ṼS

ṼR


 (2-40)
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Therefore, the admittance matrix of the transmission line is:

YL =




Y
2

+ 1
Z

− 1
Z

− 1
Z

Y
2

+ 1
Z


 (2-41)

As the admittance matrix is symmetric, it is possible to represent the transmission line as

a π equivalent circuit as shown in Figure 2-4. The series impedance of the circuit is Z and

the shunt admittance is Y .

+

−

ṼS

ĨS

Y
2

Z=z sinh(γd)
γd

Y
2 =

y
2
tanh(γd/2)

γd/2

ĨR

+

−

ṼR

Figure 2-4.: Steady state circuit model of the transmission line.

It is typical to give the line data in terms of its series resistance R, series reactance X

(Z = R+ jX), and shunt susceptance B. The shunt conductance G, as stated previously, is

negligible and taken as zero (Y = G+ jB). It must be remembered that this circuit model is

only valid for steady state. For analysis of transient events, Equations 2-20 and 2-21 should

be used. However, the time constants of the line transients tend to be much smaller than

the time constants of the electro-mechanic transients which are the main interest in the

transient analysis of power systems. For that reason, it is common practice lo neglect the

line transients and use just the circuit model in the simulations of power systems [15].

2.6. Load Model

The loads of the power system are the final users, they extract the power injected by the

generators to the system. At transmission level, it is common to represent whole distribution

systems as single loads, in order to simplify the analysis of the power system. A load can be

modelled as a shunt element, and its specific power consumption can be modelled in different

ways. Depending on the specific model a load can be classified as static load or dynamic load.
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2.6.1. Static Load Models

A static load has a power consumption that is an algebraic function of the voltage magnitude

of the node it is connected to. Static loads also do not depend of the time. Loads can depend

on the frequency, but such dependence is not as strong as the voltage one (exept when the load

is a motor), so throughout this work it will be assumed the loads do not depend on frequency.

One of the most common load models is the ZIP model, where the power consumption (active

and reactive) is represented as a quadratic function of the voltage magnitude [15]:

PL = a2LV
2
L + a1LVL + a0L (2-42)

QL = b2LV
2
L + b1LVL + b0L (2-43)

The complex power of the load can be expressed as:

SL = (a2L + jb2L)V 2
L + (a1L + jb1L)V + (a0L + jb0L) (2-44)

The quadratic term can be interpreted as the complex power consumed by a shunt ad-

mittance. Similarly, the linear term can be interpreted as the complex power consumed by

a current source1 and the constant term can be interpreted as the power consumed by a

constant-power load. With these interpretations in mind, the coefficients of Equation 2-44

can be relabelled as:

SL = YLV
2
L + ILV + S0L (2-45)

In this work the load models will be restricted to two special cases. The first case corresponds

to a pure constant-admittance load:

SL = YLV
2
L (2-46)

And the second case corresponds to a pure constant power load:

SL = S0L (2-47)

Notice that for both cases it is implicitly assumed that the power factor of the load is cons-

tant. Also, the constant power model is nonlinear, because its voltage-current relationship

is nonlinear.

1The complex power consumed by a constant current load is S = Ṽ Ĩ∗ = V I∠ (θV − θI) which is a function

of both the voltage magnitude and angle, whereas the linear term of Equation 2-44 is a function of just

the voltage magnitude, so it cannot be identically equal to the power consumed by a current source.

However, the coefficient of the linear term has physical units of current, thus giving place to the current

source interpretation.
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2.6.2. Dynamic Load Models

A dynamic load has a power consumption that is a differential function of the voltage, fre-

quency, time, or any combination of them. Dynamic load models are used for studies where

the time scale is large, like long-term stability studies [15]. On top of that, typical dynamic

model are deterministic, whereas the load variations considered in this work are of stochastic

nature. For that reason, typical dynamic load models are not considered. For convenience,

stochastic load models will be delayed to Chapter 4, where the context is more suitable.

2.7. Generator Model

Synchronous generators are the core of any power system. They are in charge of transforming

mechanical power to electrical power and injecting it to the system for consumers to use. The

generators are also the most complex elements of the power systems, and the complexity of

their models can differ vastly depending on the application. The model that is going to be

developed in this section is the two-axis model, which is typically used in transient stability

analysis [15]. The development of the model is based on [22, 23, 15, 4].

phase a axis

1q′

2q′

1q

2q

a

a′

b

b′

c

c′

d-axis

q-axis

fd
1d

1d′
fd′

γ

Figure 2-5.: Schematic diagram of the cross-section of a synchronous machine.
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2.7.1. Time-Varying Inductances Model

Figure 2-5 shows a simplified cross section of a two-pole synchronous machine. Each stator

winding is represented with a single coil accounting for all the electromotive force (EMF)

induced on all the coils of the winding. Stator windings have 120◦ of separation between

them, and the axis of each winding points in the direction of the positive flux linkage of that

winding. The direct axis, or d-axis, points in the direction of the magnetic field produced

by the field winding. The quadrature axis, or q-axis, leads the d-axis by 90◦ with respect to

rotation direction of the rotor2. All the damper windings plus the field winding of the machine

are represented as four equivalent rotor circuits (two damper windings aligned over the q-

axis, one damper winding aligned over the d-axis and the field winding) which account for

the total magnetic field produced by the original windings. Before developing the equations

of the machine, the following assumptions are going to be made [15]:

• Stator coils are sinusoidally distributed, so the rotating magnetic flux of the rotor is

perceived by the stator as a sinusoidal flux.

• The stator shape does not produce any variation of the rotor inductances with respect

to the rotor position.

• Magnetic hysteresis is negligible.

• Magnetic saturation is negligible.

• The synchronous machine only has two poles.

The last assumption is made only to simplify the development of the equations, it is possible

to develop the same models for machines with more than two poles, but the procedure is

more extensive.

Figure 2-6 shows the circuit model of the stator windings, the stator currents are assumed

to flow out of the machine because it is working as a generator. The circuit equations of the

stator, using instantaneous variables, are:

va = −Raia +
dψa
dt

+ vn

vb = −Raib +
dψb
dt

+ vn

vc = −Raic +
dψc
dt

+ vn

2More generally, the q-axis leads the d-axis by 180◦/p in a p-pole machine. Geometrically speaking, the

q-axis bisects the angle formed by the d-axis, the rotor center, the pole face immediately leading the

d-axis.
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+

−

vfd

ifd
Rfd

ψfd

i1d
R1d

ψ1d

i1q
R1q

ψ1q

i2q
R2q

ψ2q

ψa

Ra
ia

+

−
va

ψb Ra
ib

+

−

vb

ψc

Ra

ic
+

−

vc

ψn

Rn

in

+

−

vn

Figure 2-6.: Stator and rotor circuits of a synchronous machine.
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The equations can be expressed in vector form as:

~vabc = −Ra
~iabc +

d~ψabc
dt

+~1vn (2-48)

Where ~1 is a vector of ones with adequate dimension. The currents of the rotor circuits are

assumed to flow into their respective circuits (motor convention). The equations of the rotor

circuits using instantaneous variables are:

vfd = Rfdifd +
dψfd
dt

0 = R1di1d +
dψ1d

dt

0 = R1qi1q +
dψ1q

dt

0 = R2qi2q +
dψ2q

dt
Notice that damper windings are short circuited, so they have no sources. On the other hand,

the field winding is connected to a DC source of voltage vfd. The rotor equations can be

expressed in vector form as:



vfd

0

0

0




=




Rfd 0 0 0

0 R1d 0 0

0 0 R1q 0

0 0 0 R2q







ifd

i1d

i1q

i2q




+
d

dt







ψfd

ψ1d

ψ1q

ψ2q







Grouping variables of the d-axis circuits in a single vector, and doing the same to variables

of the q-axis circuits:

 ~vf1d

~0


 =


 Rf1d 0

0 R12q





~if1d

~i12q


+

d

dt





~ψf1d

~ψ12q






Where ~0 is a vector of zeros with adequate dimension and 0 is a matrix of zeros with adequate

dimensions. Rotor and stator equations can be expressed together as:



~vabc

~vf1d

~0


 =




−RaU 0 0

0 Rf1d 0

0 0 R12q







~iabc

~if1d

~i12q


+

d

dt







~ψabc

~ψf1d

~ψ12q





+




~1vn

~0

~0


 (2-49)

Where U is an identity matrix with adequate dimensions. The flux linkages can be expressed

in terms of the currents and the inductances coupling the different circuits:



~ψabc

~ψf1d

~ψ12q


 =




−LSSγ LSDγ LSQγ

−LT
SDγ LDD 0

−LT
SQγ 0 LQQ







~iabc

~if1d

~i12q


 (2-50)
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Notice that d-axis circuits are decoupled from q-axis circuits. This occurs because the q-axis

was specifically defined to be magnetically decoupled from the d-axis. The values of the

inductance submatrices are [15]:

LSSγ =




Laa0 + Laa2 cos 2γ −Lab0 − Laa2 cos
(
2γ + π

3

)
−Lab0 − Laa2 cos

(
2γ − π

3

)

−Lab0 − Laa2 cos
(
2γ + π

3

)
Laa0 + Laa2 cos 2

(
γ − 2π

3

)
−Lab0 − Laa2 cos (2γ − π)

−Lab0 − Laa2 cos
(
2γ − π

3

)
−Lab0 − Laa2 cos (2γ − π) Laa0 + Laa2 cos 2

(
γ + 2π

3

)




(2-51)

LSDγ =




Lafd cos γ La1d cos γ

Lafd cos
(
γ − 2π

3

)
La1d cos

(
γ − 2π

3

)

Lafd cos
(
γ + 2π

3

)
La1d cos

(
γ + 2π

3

)


 (2-52)

LSQγ =




−La1q sin γ −La2q sin γ

−La1q sin
(
γ − 2π

3

)
−La2q sin

(
γ − 2π

3

)

−La1q sin
(
γ + 2π

3

)
−La2q sin

(
γ + 2π

3

)


 (2-53)

LDD =


 Lffd Lf1d

Lf1d L11d


 (2-54)

LQQ =


 L11q L12q

L12q L22q


 (2-55)

All the stator inductances (self and mutual) are time-varying (they depend on the shaft

angle γ, the angle between the d-axis and the phase a axis), and this largely complicates

the machine model.

2.7.2. Park’s Transformation

The time-varying inductances model of the synchronous machine can be simplified by means

of a variable transformation, the resultant inductance matrices for the transformed variables

are constant. This transformation is the dq0 transformation, also called Park’s Transforma-

tion in honour of R. H. Park [24]. To derive the transformation, let us first rearrange the

equations of the flux linkages of the rotor in scalar form as:

ψfd = −Lafd
[
ia cos γ + ib cos

(
γ − 2π

3

)
+ ic cos

(
γ +

2π

3

)]
+ Lffdifd + Lf1di1d

ψ1d = −La1d

[
ia cos γ + ib cos

(
γ − 2π

3

)
+ ic cos

(
γ +

2π

3

)]
+ Lf1difd + L11di1d
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ψ1q = −La1q

[
−ia sin γ − ib sin

(
γ − 2π

3

)
− ic sin

(
γ +

2π

3

)]
+ L11qi1q + L12qi2q

ψ2q = −La2q

[
−ia sin γ − ib sin

(
γ − 2π

3

)
− ic sin

(
γ +

2π

3

)]
+ L12qi1q + L22qi2q

Mia

d-axis

q-axis

γ

Mia cos γ

−Mia sin γ

120◦

120◦

−Mib sin
(
γ − 2π

3

)

−Mic sin
(
γ + 2π

3

)

Mic cos
(
γ + 2π

3

)Mib cos
(
γ − 2π

3

)

Mib

Mic

Figure 2-7.: Stator-rotor mutual fluxes projected over the d-axis and q-axis.

The stator flux perceived by the d-axis circuits is proportional to the projection of the fluxes

generated by the stator windings over the d-axis, and the analogous is true for the q-axis

circuits. Figure 2-7 shows these projections, where M is the mutual inductance whose value

is different for each rotor circuit. The stator flux perceived by the d-axis circuits can be

thought as being generated by the current of a fictitious winding which rotates at the same

speed of the rotor, and is always aligned with the d-axis. Applying an analogous consideration

to the stator flux perceived by the q-axis circuits, it is possible to express the currents of the

two fictitious windings as:

id = kd

[
ia cos γ + ib cos

(
γ − 2π

3

)
+ ic cos

(
γ +

2π

3

)]
(2-56)

iq = −kq
[
ia sin γ + ib sin

(
γ − 2π

3

)
+ ic sin

(
γ +

2π

3

)]
(2-57)
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Where kd and kq are proportionality coefficients whose values can be arbitrarily chosen to

simplify the machine equations. The two most common choices are:

• kd = kq = 2/3. This choice of parameters ensures better physical resemblance of the

fictitious windings and currents with respect to the real stator windings [15]. However,

this choice makes the inductance matrix asymmetric. It possible to recover the sym-

metry of the inductance matrix by expressing the equations in p.u. with an adequate

selection of stator and rotor base quantities.

• kd = kq =
√

2/3. This choice is suggested by some authors [22, 23], as it preserves the

symmetry of the inductance matrix, giving freedom to express the machine equations

in p.u. using arbitrary base quantities.

In this work the second choice is selected as it leads, in the author’s opinion, to a simpler

derivation of the models. With kd = kq =
√

2/3, the transformation can be expressed in

matrix form as:


 id

iq


 =

√
2

3


 cos γ cos

(
γ − 2π

3

)
cos
(
γ + 2π

3

)

− sin γ − sin
(
γ − 2π

3

)
− sin

(
γ + 2π

3

)







ia

ib

ic




The transformation matrix is not square, and therefore it is not invertible (it is not possible

to uniquely determine the phase currents ia, ib and ic using only the transformed currents id
and iq). The transformation can be made invertible by adding a third transformed current.

As the currents id iq already account for the total flux produced by the stator windings,

the third current must not produce any flux on the rotor. The neutral current satisfies this

condition so it is chosen to be the last transformed current:

i0 = k0 (ia + ib + ic) (2-58)

Where i0 is the current of a fictitious stationary winding aligned with an axis called zero

axis, or 0-axis. This axis is called that way because the amount of flux generated by i0 that

is perceived by the rotor windings is zero. Notice also that if the machine is operating in a

balanced condition, i0 will be zero. The term k0 is a proportionality coefficient whose value

can be chosen to simplify the machine equations. In order to keep the symmetry of the

inductance matrix, the value of k0 must be 1/
√

3. Now the dq0 transformation is complete,

and it can be expressed in matrix form as:

~iabc =
[
ia ib ic

]T

~idq0 =
[
id iq i0

]T

~idq0 = P~iabc (2-59)
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P =

√
2

3




cos γ cos
(
γ − 2π

3

)
cos
(
γ + 2π

3

)

− sin γ − sin
(
γ − 2π

3

)
− sin

(
γ + 2π

3

)

1√
2

1√
2

1√
2


 (2-60)

The inverse dq0 transformation can be defined by solving Equation 2-59 for ~iabc:

~iabc = P−1~idq0 (2-61)

P−1 =

√
2

3




cos γ − sin γ 1√
2

cos
(
γ − 2π

3

)
− sin

(
γ − 2π

3

)
1√
2

cos
(
γ + 2π

3

)
− sin

(
γ + 2π

3

)
1√
2


 = PT (2-62)

The matrix P is called orthogonal, because its inverse its equal to its transpose. Notice that

the dq0 transformation and its inverse can be applied to voltages and flux linkages too:

~vdq0 = P~vabc (2-63)

~ψdq0 = P~ψabc (2-64)

~vabc = P−1~vdq0 (2-65)

~ψabc = P−1 ~ψdq0 (2-66)

Equation 2-50 can be expressed in terms of the dq0 variables as:



P−1 ~ψdq0

~ψf1d

~ψ12q


 =




−LSSγ LSDγ LSQγ

−LT
SDγ LDD 0

−LT
SQγ 0 LQQ







P−1~idq0

~if1d

~i12q







~ψdq0

~ψf1d

~ψ12q


 =




−PLSSγP
−1 PLSDγ PLSQγ

−LT
SDγP

−1 LDD 0

−LT
SQγP

−1 0 LQQ







~idq0

~if1d

~i12q







~ψdq0

~ψf1d

~ψ12q


 =




−PLSSγP
−1 PLSDγ PLSQγ

− (PLSDγ)
T LDD 0

− (PLSQγ)
T 0 LQQ







~idq0

~if1d

~i12q







~ψdq0

~ψf1d

~ψ12q


 =




−LSS LSD LSQ

−LT
SD LDD 0

−LT
SQ 0 LQQ







~idq0

~if1d

~i12q


 (2-67)

Let us define three new inductances:

Ld = Laa0 + Lab0 +
3

2
Laa2 (2-68)
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Lq = Laa0 + Lab0 −
3

2
Laa2 (2-69)

L0 = Laa0 − 2Lab0 (2-70)

Then the new inductance submatrices of Equation 2-67 can be expressed as [22]:

LSS = PLSSγP
−1 =




Ld 0 0

0 Lq 0

0 0 L0


 (2-71)

LSD = PLSDγ =




√
3
2
Lafd

√
3
2
La1d

0 0

0 0


 (2-72)

LSQ = PLSQγ =




0 0√
3
2
La1q

√
3
2
La2q

0 0


 (2-73)

The inductance matrix for the dq0 variables is constant and symmetric. Furthermore, the

variables of the d-axis circuits, q-axis circuits and 0-axis circuits are decoupled from each

other, so it is possible to rearrange Equation 2-67 as:

~ψD =
[
ψd ψfd ψ1d

]T
(2-74)

~ψQ =
[
ψq ψ1q ψ2q

]T
(2-75)




~ψD

~ψQ

ψ0


 =




LD 0 0

0 LQ 0

0 0 −L0







~iD

~iQ

i0


 (2-76)

Where:

LD =




−Ld
√

3
2
Lafd

√
3
2
La1d

−
√

3
2
Lafd Lffd Lf1d

−
√

3
2
La1d Lf1d L11d


 (2-77)

LQ =




−Lq
√

3
2
La1q

√
3
2
La2q

−
√

3
2
La1q L11q L12q

−
√

3
2
La2q L12q L22q


 (2-78)



28 2 Power System Elements and Models

In order to complete the machine model in dq0 variables, it is necessary to rewrite Equation

2-49. First, Let us define the extended transformation matrix:

T =




P 0 0

0 U2 0

0 0 U2


 (2-79)

Where U2 is a identity matrix of size 2 × 2. Multiplying both sides of Equation 2-49 by T

yields:

T




~vabc

~vf1d

~0


 = T







−RaU 0 0

0 Rf1d 0

0 0 R12q







~iabc

~if1d

~i12q


+

d

dt







~ψabc

~ψf1d

~ψ12q





+




~1vn

~0

~0










~vdq0

~vf1d

~0


 =




−RaP 0 0

0 Rf1d 0

0 0 R12q







~iabc

~if1d

~i12q


+ T




d~ψabc
dt

d~ψf1d
dt

d~ψf2q
dt


+




P~1vn

~0

~0







~vdq0

~vf1d

~0


 =




−RaP 0 0

0 Rf1d 0

0 0 R12q







P−1~idq0

~if1d

~i12q


+




Pd~ψabc
dt

d~ψf1d
dt

d~ψf2q
dt


+




P~1vn

~0

~0







~vdq0

~vf1d

~0


 =




−RaU 0 0

0 Rf1d 0

0 0 R12q







~idq0

~if1d

~i12q


+




P d
dt

(
P−1 ~ψdq0

)

d~ψf1d
dt

d~ψf2q
dt


+




P~1vn

~0

~0




(2-80)

There are two terms that require detailed examination. The first one is the neutral voltage,

which can be expressed according to Figure 2-6 as:

vn = −Rnin +
dψn
dt

It can be safely assumed that the neutral circuit is not coupled to the rest of the machine

circuits, therefore:

ψn = −Lnin
Where Ln is constant. Replacing in the neutral voltage equation:

vn = −Rnin − Ln
din
dt
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The neutral current is the sum of the stator currents, then:

vn = −Rn (ia + ib + ic)− Ln
d

dt
(ia + ib + ic)

vn = −
√

3Rni0 −
√

3Ln
di0
dt

Hence:

P~1vn =




0

0
√

3


 vn

~vn0 = P~1vn =




0

0

−3Rni0 − 3Ln
di0
dt


 (2-81)

The second term requiring detailed examination is the derivative of the stator flux linkages

in dq0 variables:

P
d

dt

(
P−1 ~ψdq0

)
= P

d

dt

(
P−1

)
~ψdq0 + PP−1 d

dt

(
~ψdq0

)

P
d

dt

(
P−1 ~ψdq0

)
= P

d

dt

(
P−1

)
~ψdq0 +

d

dt

(
~ψdq0

)

After calculating the term P d
dt

(
P−1

)
, the result is:

P
d

dt

(
P−1

)
=




0 −dγ
dt

0

dγ
dt

0 0

0 0 0


 =




0 −ω 0

ω 0 0

0 0 0




Where ω is the rotor speed, and it is equal to the time derivative of γ. Now, let us define

the vector of speed voltages as:

~vω = P
d

dt

(
P−1

)
~ψdq0 =




−ωψq
ωψd

0


 (2-82)

Therefore:

P
d

dt

(
P−1 ~ψdq0

)
=
d~ψdq0
dt

+ ~vω (2-83)

The term accompanying the vector of speed voltages in Equation 2-82 is a vector of transfor-

mer voltages, which represent the induced voltages due to time variation of the flux linkages.
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On the other hand, the speed voltages represent the induced voltages due to the spatial

variation of the flux linkages. Replacing Equations 2-81 and 2-82 in Equation 2-80 yields the

final voltage equations:



~vdq0

~vf1d

~0


 =




−RaU 0 0

0 Rf1d 0

0 0 R12q







~idq0

~if1d

~i12q


+




d~ψdq0
dt

d~ψf1d
dt

d~ψ12q

dt


+




~vω

~0

~0


+




~vn0

~0

~0


 (2-84)

The complete model of the synchronous machines in dq0 variables is given by Equations 2-

76, 2-81, 2-82 and 2-84. The equations of the machine model can be solved for the derivative

terms in scalar form as follows:

dψd
dt

= vd +Raid + ωψq (2-85)

dψq
dt

= vq +Raiq − ωψd (2-86)

dψ0

dt
= −v0 − (Ra + 3Rn) i0 − 3Ln

di0
dt

(2-87)

dψfd
dt

= vfd −Rfdifd (2-88)

dψ1d

dt
= −R1di1d (2-89)

dψ1q

dt
= −R1qi1q (2-90)

dψ2q

dt
= −R2qi2q (2-91)

ψd = −Ldid +

√
3

2
Lafdifd +

√
3

2
La1di1d (2-92)

ψfd = −
√

3

2
Lafdid + Lffdifd + Lf1di1d (2-93)

ψ1d = −
√

3

2
La1did + Lf1difd + L11di1d (2-94)

ψq = −Lqiq +

√
3

2
La1qi1q +

√
3

2
La2qi2q (2-95)

ψ1q = −
√

3

2
La1qiq + L11qi1q + L12qi2q (2-96)

ψ2q = −
√

3

2
La2qiq + L12qi1q + L22qi2q (2-97)

ψ0 = −L0i0 (2-98)

The equations conform a set of Differential Algebraic Equations (DAEs) with seven diffe-

rential variables (the flux linkages) and seven algebraic variables (the circuit currents).
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2.7.3. Simplifications of the Complete Model

The complete model of the synchronous machine developed in the previous subsection des-

cribes the most significant electromagnetic phenomena of the machine, leading to a model

whose complexity prohibits its use in large power systems with dozens or even hundreds of

machines. In order to develop a suitable model for stability studies and simplify the inter-

facing of the machine model with the power system model, the following simplifications are

going to be made:

• The machine will be assumed to be operating in a balanced condition.

• The transformer voltages (dψd
dt

and dψq
dt

) will be neglected.

• The rotor speed variations will be neglected (ω will be set to 1 p.u. in the equations).

• Rotor saliency will be neglected (the rotor will be assumed to be perfectly round and

symmetric).

The first simplification implies the 0-axis voltages and currents are zero, so it is not necessary

to consider the 0-axis equations.

Electromagnetic transients have time constants much lower than that of the electromecha-

nical transients, so considering electromagnetic transients in stability studies would increase

the stiffness3 of the system and require lower time steps in the simulation of the system

response, thus increasing the computational effort required [15]. The second simplification

neglects the electromagnetic transients in the stator windings, avoiding the aforementioned

undesired effects and making the stator equations purely algebraic. In addition, the stator

quantities will be conformed only of fundamental frequency components, allowing the use of

phasor representation, which will be developed further ahead in another subsection.

The third simplification counterbalances the error introduced by the second supposition in

low frequency oscillations [15], and it will allow to write the model equations in terms of

constant reactances. This will be done in the next subsection. Notice that neglecting speed

variations is not the same as assuming constant speed. During transient events the rotor

speed variations, though small, still need to be calculated.

The last simplification implies the the geometric distribution of the machine as seen from the

d-axis is the same as seen from the q-axis, this in turn implies that the following inductances

are equal:

Ld = Lq

3For more information about stiffness and stiff differential equations, see [25].
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Lffd = L11q

L11d = L22q

Lafd = La1q

Lafd = La1q

La1d = La2q

Lf1d = L12q

This simplification introduces minimal errors in round rotor machines, but in salient pole

machines the difference between d-axis and q-axis inductances are larger. To reduce the

error, the inductances can be approximated as the average of the values of both axes:

Ld ≈ Lq ≈
Ld + Lq

2
(2-99)

Lffd ≈ L11q ≈
Lffd + L11q

2
(2-100)

L11d ≈ L22q ≈
L11d + L22q

2
(2-101)

Lafd ≈ La1q ≈
Lafd + La1q

2
(2-102)

La1d ≈ La2q ≈
La1d + La2q

2
(2-103)

Lf1d ≈ L12q ≈
Lf1d + L12q

2
(2-104)

The main advantage introduced by the last simplification is that it allows to represent the

stator algebraic equations resulting from the second supposition as a purely linear circuit.

This will be demonstrated further ahead in another subsection. Finally, the p.u. equations

of the simplified model are:

vd = −Raid − ωsψq (2-105)

vq = −Raiq + ωsψd (2-106)

dψfd
dt

= vfd −Rfdifd (2-107)

dψ1d

dt
= −R1di1d (2-108)

dψ1q

dt
= −R1qi1q (2-109)

dψ2q

dt
= −R2qi2q (2-110)

ψd = −Ldid +

√
3

2
Lafdifd +

√
3

2
La1di1d (2-111)

ψfd = −
√

3

2
Lafdid + Lffdifd + Lf1di1d (2-112)
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ψ1d = −
√

3

2
La1did + Lf1difd + L11di1d (2-113)

ψq = −Lqiq +

√
3

2
La1qi1q +

√
3

2
La2qi2q (2-114)

ψ1q = −
√

3

2
La1qiq + L11qi1q + L12qi2q (2-115)

ψ2q = −
√

3

2
La2qiq + L12qi1q + L22qi2q (2-116)

The equations of the simplified model conform a set of DAEs with four differential variables

(the flux linkages of the rotor circuits) and eight algebraic variables (ψd, ψq and the circuit

currents).

2.7.4. Simplified Model in Terms of Measurable Parameters

The flux linkage equations of the simplified model can be eliminated by substituting them

in the rest of equations, reducing the size of the model from twelve equations to six (four

differential equations and two algebraic equations of the stator). The stator algebraic equa-

tions are used to interface the machine model with the power system model, and for that

reason they are not eliminated.

Before eliminating the flux linkage equations it is convenient to express the model equations

in terms of parameters that can be physically measured from machine tests. First, it will be

assumed that the field circuit and circuit 1q encompass the d-axis and q-axis components of

the original damper windings with slow dynamics, respectively4. Similarly, it will be assumed

that the damper windings 1d and 2q encompass the d-axis and q-axis components of the

original damper windings with fast dynamics, respectively. Then, let us define the following

machine parameters [23]:

• Steady State Direct-Axis Reactance:

Xd , ωLd (2-117)

• Steady State Quadrature-Axis Reactance:

Xq , ωLq (2-118)

4The field winding normally has a slow dynamic (its electrical transients decay slowly) and in the machine

model it is lumped together with the d-axis components of the damper windings with slow dynamics,

forming a single equivalent circuit
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• Transient Direct-Axis Reactance:

X ′d , ω

(
Ld −

3
2
L2
afd

Lfd

)
(2-119)

• Transient Quadrature-Axis Reactance:

X ′q , ω

(
Lq −

3
2
L2
a1q

L1q

)
(2-120)

• Subtransient Direct-Axis Reactance:

X ′′d , ω


Ld −

3
2
L2
afdL1d + 3

2
L2
a1dLfd − 2

√
3
2
Lafd

√
3
2
La1dLf1d

L1dLfd − L2
f1d


 (2-121)

• Subtransient Quadrature-Axis Reactance:

X ′′q , ω


Lq −

3
2
L2
a1qL2q + 3

2
L2
a2qL1q − 2

√
3
2
La1q

√
3
2
La2qL12q

L2qL1q − L2
12q


 (2-122)

• Transient Direct-Axis Open Circuit Time Constant:

T ′d0 ,
Lfd
Rfd

(2-123)

• Transient Quadrature-Axis Open Circuit Time Constant:

T ′q0 ,
L1q

R1q

(2-124)

• Subtransient Direct-Axis Open Circuit Time Constant:

T ′′d0 ,
LfdL1d − L2

f1d

R1dLfd
(2-125)

• Subtransient Quadrature-Axis Open Circuit Time Constant:

T ′′q0 ,
L1qL2q − L2

12q

R2qL1q

(2-126)

Notice that the previously defined reactances are constant because speed variations are being

neglected, they can be easily calculated by replacing ω with ωs in therir definitions. These

parameters can be measured from various standard machine tests [15]. It is convenient to

rewrite the model equations in terms of variables that simplify such equations instead of

keeping the flux linkages. Therefore, new convenient variables are defined [23]:
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• Transient Direct-Axis Electromotive Force:

e′d , −ωs

√
3
2
La1q

L1q

ψ1q (2-127)

• Transient Quadrature-Axis Electromotive Force:

e′q , ωs

√
3
2
Lafd

Lfd
ψfd (2-128)

• Subtransient Direct-Axis Electromotive Force:

e′′d , −ωs




√
3
2
La1qL2q −

√
3
2
La2qL12q

L1qL2q − L2
12q

ψ1q +

√
3
2
La2qL1q −

√
3
2
La1qL12q

L1qL2q − L2
12q

ψ2q


 (2-129)

• Subtransient Quadrature-Axis Electromotive Force:

e′′q , ωs




√
3
2
LafdL1d −

√
3
2
La1dLf1d

LfdL1d − L2
f1d

ψfd +

√
3
2
La1dLfd −

√
3
2
LafdLf1d

LfdL1d − L2
f1d

ψ1d


 (2-130)

• Field Voltage Referred to Stator:

efd , ωs

√
3
2
Lafd

Rfd

vfd (2-131)

Substituting Equations 2-117 to 2-131 into Equations 2-105 to 2-116 gives the model equa-

tions in terms of measurable parameters:

vd = −Raid +X ′′q iq + e′′d (2-132)

vq = −Raiq −X ′′d id + e′′q (2-133)

T ′q0
de′d
dt

= −e′d +
(
Xq −X ′q

)
iq (2-134)

T ′d0

de′q
dt

= efd − e′q − (Xd −X ′d) id (2-135)

T ′′q0
de′′d
dt

= e′d − e′′d +
(
X ′q −X ′′q

)
iq (2-136)

T ′′d0

de′′q
dt

= e′q − e′′q − (X ′d −X ′′d ) id (2-137)

This model is called Subtransient Dynamic Model [4], and its equations conform a set of

DAEs with four differential variables (the transient and subtransient EMFs) and two alge-

braic variables (the d-axis and q-axis terminal voltages).
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2.7.5. Model Equations in Phasor Form

As discussed previously, by neglecting the stator transients the voltages will be composed

only of fundamental frequency components. Therefore, the phase voltages may be written

as:

~vabc =




va

vb

vc


 =




√
2Vt cos (ωst+ δ0)

√
2Vt cos

(
ωst+ δ0 − 2π

3

)
√

2Vt cos
(
ωst+ δ0 + 2π

3

)


 (2-138)

The magnitude and angle of the phase voltages may change with respect to time due to

transient events, but their mathematical form remains unchanged. The electrical angular

speed is equal to the synchronous speed ωs because the machine is assumed to have two

poles. For machines with more than two poles the angular speeds are different but the same

results that are going to be derived here can be achieved. From Equation 2-138 it is clear

that the terminal voltage phasor is:

Ṽt = Vte
jδ0 = Vt∠δ0 (2-139)

The phasor uses the angle of phase a because that phase is the one used in single-phase

equivalent circuits. The phase voltages transformed to dq0 variables are:

~vdq0 =




vd

vq

v0


 =




√
3Vt cos (ωst+ δ0 − γ)
√

3Vt sin (ωst+ δ0 − γ)

0


 (2-140)

Notice that at steady state both terms, ωst and γ change at the same rate and their difference

is a constant. Therefore it is convenient to express γ in terms of an angle that at steady state

must be constant. Then the rotor angle is defined as:

θ , γ − ωst+
π

2
(2-141)

The term π/2 in the definition of the rotor angle represents a 90◦ phase shift. The term is

added for convenience as it will be seen in a latter subsection. Expressing the dq0 voltages

in terms of θ gives:

~vdq0 =




vd

vq

v0


 =




√
3Vt cos

(
δ0 + π

2
− θ
)

√
3Vt sin

(
δ0 + π

2
− θ
)

0


 (2-142)

The voltages vd and vq can be expressed in complex form as:

vd + jvq =
√

3Vt∠
(
δ0 +

π

2
− θ
)

(2-143)
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vd + jvq =
√

3Ṽdq (2-144)

Where Ṽdq is the terminal voltage phasor in dq0 variables, and is defined as:

Ṽdq = Vd + jVq = Ṽt

[
1∠
(π

2
− θ
)]

(2-145)

real part

d-axis

q-axis

θ − π
2

Ṽ

VR

VI

Vd
Vq

imaginary part

Figure 2-8.: Voltage phasor components in network and generator reference frame.

Equation 2-145 defines the Park’s transformation for phasors, and it can be extended to other

phasor quantities like currents. The real part of the dq0 phasor is proportional to the d-axis

component of that variable and the imaginary part is proportional to the q-axis component.

It must be noted that the transformation just applies a rotation of angle π/2−θ to the origi-

nal phasor, as it can be seen in Figure 2-8. For that reason, the angle reference of the original

(phase) phasors is the network reference, whereas the angle reference of the dq0 phasors is

the generator reference. It also must be noted that, as the rotor angles of different machines

are not necessarily equal, the angle reference of the dq0 phasors is different for each machine.

The network phasor can be easily recovered from the dq0 phasor using the inverse Park’s

transformation for phasors :

Ṽt = Ṽdq

[
1∠
(
θ − π

2

)]
(2-146)

Equation 2-146 also applies to other phasor quantities like currents.

Finally, d-axis and q-axis components of the dq0 phasor can be expressed in terms of the

d-axis and q-axis voltages as:

Vd =
1√
3
vd (2-147)

Vq =
1√
3
vq (2-148)
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The other model variables can be expressed in phasor form in an analogous way:

Ĩdq = Id + jIq =
1√
3

(id + jiq) (2-149)

Ẽ ′dq = E ′d + jE ′q =
1√
3

(
e′d + je′q

)
(2-150)

Ẽ ′′dq = E ′′d + jE ′′q =
1√
3

(
e′′d + je′′q

)
(2-151)

Ẽfd = 0 + jEfd =
1√
3

(0 + jefd) (2-152)

The d-axis and q-axis components of the previously defined phasors are:

Id =
1√
3
id (2-153)

Iq =
1√
3
iq (2-154)

E ′d =
1√
3
e′d (2-155)

E ′q =
1√
3
e′q (2-156)

E ′′d =
1√
3
e′′d (2-157)

E ′′q =
1√
3
e′′q (2-158)

Efd =
1√
3
efd (2-159)

The model equations expressed in terms of the phasor quantities are:

Vd = −RaId +X ′′q Iq + E ′′d (2-160)

Vq = −RaIq −X ′′d Id + E ′′q (2-161)

T ′q0
dE ′d
dt

= −E ′d +
(
Xq −X ′q

)
Iq (2-162)

T ′d0

dE ′q
dt

= Efd − E ′q − (Xd −X ′d) Id (2-163)

T ′′q0
dE ′′d
dt

= E ′d − E ′′d +
(
X ′q −X ′′q

)
Iq (2-164)

T ′′d0

dE ′′q
dt

= E ′q − E ′′q − (X ′d −X ′′d ) Id (2-165)

With the model equations in phasor form, it is possible to interface them with the power

system equations in phasor form.
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2.7.6. Model Equations in p.u.

As discussed in previous sections, it is common practice to express electrical equations and

quantities in p.u. with reference to certain base quantities. It is possible to choose different

p.u. base quantities for each generator circuit, in the same way the windings of a transformer

have different p.u. base quantities. In Subsection 2.7.4, the process of substituting the rotor

flux linkages by the defined EMFs is equivalent to referring the rotor variables to the stator,

in the same way the impedance of the primary winding of a transformer is referred to the

secondary winding (Section 2.4). Therefore, only base quantities of the stator windings need

to be considered [23]. In the special case that a rotor variable is desired, the referred quantity

along with Equations 2-127 to 2-131 can be used to obtain the original rotor quantity . If

the rotor circuit associated to that quantity has a different p.u. base than that of the stator

circuit, the base of the referred quantity must be changed to that of the rotor circuit.

This work assumes that any arbitrary p.u. base may be used for the machine circuits, with

the sole restriction that the base time must be 1s. Hence, the terms of the model equations

can be expressed in p.u. without changing the equations in any way. Care must be taken

that the variable t and the time constants will still keep units of time.

2.7.7. Two-Axis Model

The subtransient time constants are normally small compared to the time constant of the

electromechanical transients, so the dynamics of the subtransient damper windings tend to

be much faster than the electromechanical dynamics. Therefore, it is possible to neglect the

subtransient dynamics in the same way the stator electromagnetic transients are neglected.

The machine model with subtransients dynamics can be obtained by setting T ′′d0 and T ′′q0 to

zero5:

Vd = −RaId +X ′′q Iq + E ′′d

Vq = −RaIq −X ′′d Id + E ′′q

T ′q0
dE ′d
dt

= −E ′d +
(
Xq −X ′q

)
Iq

T ′d0

dE ′q
dt

= Efd − E ′q − (Xd −X ′d) Id
0 = E ′d − E ′′d +

(
X ′q −X ′′q

)
Iq

0 = E ′q − E ′′q − (X ′d −X ′′d ) Id

5Setting the subtransient time constants to zero is equivalent to assume the subtransient EMFs react

instantaneously fast to perturbations, becoming algebraic variables
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The subtransient EMFs can be eliminated from the model using substitution, obtaining the

following reduced model:

Vd = −RaId +X ′qIq + E ′d (2-166)

Vq = −RaIq −X ′dId + E ′q (2-167)

T ′q0
dE ′d
dt

= −E ′d +
(
Xq −X ′q

)
Iq (2-168)

T ′d0

dE ′q
dt

= Efd − E ′q − (Xd −X ′d) Id (2-169)

This reduced model is called Two-Axis Model [4], and is a standard choice for transient

stability analysis. It must be noted that the algebraic equations for Vd and Vq can be expressed

phasor form as:

Ṽdq = − (Ra + jX ′d) Ĩdq + Ẽ ′dq +
(
X ′q −X ′d

)
Im
{
Ĩdq

}
(2-170)

which is a nonlinear circuit equation because of the last term. However, as the machine

saliency is being neglected, X ′q and X ′d are equal, and the equation becomes:

Ṽdq = − (Ra + jXd) Ĩdq + Ẽ ′dq (2-171)

which is a linear circuit equation. The phasors can be expressed using the network reference,

giving:

Ṽt = − (Ra + jXd) Ĩdq

[
1∠
(
θ − π

2

)]
+ Ẽ ′dq

[
1∠
(
θ − π

2

)]
(2-172)

The equivalent circuit of the generator in network reference is shown in Figure 2-9.

−
+

Ẽ′
dq

[
1∠
(
θ − π

2

)]

Ra jX ′
d Ĩdq

[
1∠
(
θ − π

2

)]

+

−

Ṽt=Vt∠δ

Figure 2-9.: Equivalent circuit of the generator using the Two-Axis Model.

2.7.8. Swing Equation

The Two-Axis Model describes the electrical dynamics of the synchronous machine with

sufficient detail for transient stability analysis, but in order to have a complete electrome-

chanical model of the machine, it is necessary to derive another set of equations to describe
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the mechanical dynamics of the generator. The first equation of this new set is called the

swing equation, and is obtained by applying Newton’s Second Law to the machine rotor [15]:

J
dω

dt
= τM − τe

Where τM is the mechanical torque moving the rotor (it can be produced a turbine in a

thermal plant, or the water flow in a hydraulic plant), τe is the induced electromagnetic

torque that opposes the rotor movement, and J is the combined inertia moment of the rotor

and any other elements coupled to it (a turbine for example). The friction torque is normally

very small and is neglected. Notice that all quantities are in physical units. Multiplying by

ωs yields:

Jωs
dω

dt
= ωs (τM − τe)

Jωs
dω

dt
=
ωs
ω

(ωτM − ωτe)

As speed variations are being neglected, the fraction ωs/ω can be approximated to 1. Power

is equal to the product of angular speed and torque, so the equation can be expressed in

terms of powers after neglecting speed variations as:

Jωs
dω

dt
= PM − Pe

It is customary to express the swing equation in terms of the inertia constant H, which is

defined as the ratio of the kinetic energy stored in the rotor (including the coupled elements)

at synchronous speed to the rated three-phase power of the machine:

H =
1
2
Jω2

s

Srated
(2-173)

Notice that H has units of seconds. The swing equation in terms of H becomes:

2H
Srated
ωs

dω

dt
= PM − Pe

The electrical power of the electromagnetic torque equals the power generated by the stator

EMFs:

Pe =
dψa
dt

ia +
dψb
dt

ib +
dψc
dt

ic

By the Energy Conservation Principle, the power generated by the stator EMFs must be

equal to the output power plus the power losses on the stator windings and the neutral

circuit:

Pe = vaia + vbib + vcic +Ra

(
i2a + i2b + i2c

)
+Rn (ia + ib + ic)

2

Pe = ~vTabc~iabc +Ra
~iTabc~iabc +Rn (ia + ib + ic)

2
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The electrical power can be expressed in terms of dq0 variables as:

Pe = ~vTdq0P
TP~idq0 +Ra

~iTdq0P
TP~idq0 +Rni

2
0

Pe = ~vTdq0~idq0 +Ra
~iTdq0~idq0 +Rni

2
0

Pe = vdid + vqiq + v0i0 +Ra

(
i2d + i2q + i20

)
+Rni

2
0

As the machine is assumed to be operating in a balanced condition, the zero sequence

components vanish:

Pe = vdid + vqiq +Ra

(
i2d + i2q

)

The electrical power in terms of phasor components is:

Pe = 3
[
VdId + VqIq +Ra

(
I2
d + I2

q

)]

If the Two-Axis Model is being used, the electrical power can be expressed in terms of the

transient EMFs as:

Pe = 3
[
E ′dId + E ′qIq +

(
X ′q −X ′d

)
IdIq

]

As the transient saliency is being neglected, X ′d and X ′q are equal:

Pe = 3
(
E ′dId + E ′qIq

)

Replacing in the swing equation:

2H
Srated
ωs

dω

dt
= PM − 3

(
E ′dId + E ′qIq

)

2H
d

dt

(
ω

ωs

)
=

PM
Srated

− 3
(
E ′dId + E ′qIq

)

Srated

The rated three-phase power can be expressed in terms of the rated phase voltage and

current:

Srated = 3VφratedIφrated

Replacing:

2H
d

dt

(
ω

ωs

)
=

PM
Srated

− 3
(
E ′dId + E ′qIq

)

3VφratedIφrated

2H
d

dt

(
ω

ωs

)
=

PM
Srated

− E ′d
Vφrated

Id
Iφrated

− E ′q
Vφrated

Iq
Iφrated

Expressing all quantities in p.u. (except the ones with units of time) using the machine rated

quantities as base:

2H
dω

dt
= PM − E ′dId − E ′qIq
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If the Two-Axis Model is being used, the asynchronous torque produced by the subtransient

damper windings will be neglected6 [23]. The effect of the asynchronous torque can be in-

cluded approximately as a torque proportional to the speed deviation [23, 4]:

2H
dω

dt
= PM − E ′dId − E ′qIq −D (ω − 1) (2-174)

Where D is in p.u. of power. The speed equation was derived assuming a 2-pole machine,

but the equation is exactly equal in p.u. for a p-pole machine, the only difference is the

synchronous speed.

In order to interface the electromechanical model of the machine with the model of the

power system, the dq0 phasors must be transformed to network phasors, and to do this it is

necessary to calculate the variations of the rotor angle with respect to time. This variations

are quantified by the derivative of the rotor angle, which can be calculated from the definition

of the rotor angle:

dθ

dt
=
dγ

dt
− ωs

dθ

dt
= ω − ωs

Where ω and ωs have units of rad/s. The equation can be expressed as:

dθ

dt
= ωs (ω − 1) (2-175)

Where ω is now in p.u. and ωs still has units of rad/s. Notice that θ has units of radians. As

the angle variables like θ are dimensionless, there is no need to express them in p.u., they

will be always be expressed in radians (or degrees, depending on the context).

The final electromechanical model of the synchronous machine is comprised of the following

equations:

dθ

dt
= ωs (ω − 1) (2-176)

2H
dω

dt
= PM − E ′dId − E ′qIq −D (ω − 1) (2-177)

T ′q0
dE ′d
dt

= −E ′d +
(
Xq −X ′q

)
Iq (2-178)

T ′d0

dE ′q
dt

= Efd − E ′q − (Xd −X ′d) Id (2-179)

6Damper windings produce a torque that tries to keep the rotor at synchronous speed, like the electrical

torque of an induction machine. One of the main reasons for having damper windings in a synchronous

machine is that the torque they produce can start the rotor movement from standstill.
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Vd = −RaId +X ′qIq + E ′d (2-180)

Vq = −RaIq −X ′dId + E ′q (2-181)

These equations conform a set of DAEs with four differential variables and two algebraic

variables.

2.7.9. Steady State Characteristics

In steady state, if the machine operating condition is stable7, the variations with respect to

time of the model variables will be zero, which implies the derivatives of the model variables

will be zero. It must be noted that it cannot be stated a priori that the derivative of the rotor

angle is zero, because the rotor angle is a variable created for convenience, and it has no

direct physical meaning (although physical interpretations can be constructed). The machine

model in steady state can be simplified as follows:

dθ∞
dt

= ωs (ω∞ − 1)

0 = PM∞ − E ′d∞Id∞ − E ′q∞Iq∞ −D (ω∞ − 1)

0 = −E ′d∞ +
(
Xq −X ′q

)
Iq∞

0 = Efd∞ − E ′q∞ − (Xd −X ′d) Id∞
Vd∞ = −RaId∞ +X ′qIq∞ + E ′d∞

Vq∞ = −RaIq∞ −X ′dId∞ + E ′q∞

The subscript ∞ indicates a steady state quantity. The machine is normally equipped with

automatic controllers responsible of keeping the rotor speed equal to the synchronous speed

(1 p.u.), so in steady state ω∞ = 1. Replacing:

dθ∞
dt

= 0 (2-182)

0 = PM∞ − E ′d∞Id∞ − E ′q∞Iq∞ (2-183)

0 = −E ′d∞ +
(
Xq −X ′q

)
Iq∞ (2-184)

0 = Efd∞ − E ′q∞ − (Xd −X ′d) Id∞ (2-185)

Vd∞ = −RaId∞ +X ′qIq∞ + E ′d∞ (2-186)

Vq∞ = −RaIq∞ −X ′dId∞ + E ′q∞ (2-187)

As the derivative of the rotor angle in steady state is zero, the value of θ∞ must be a constant

which will be calculated shortly. First, the values of E ′d∞ and E ′q∞ will be calculated by

7Generators are designed to work in stable operating conditions. It can happen in real situations that a

generator ends up working in an unstable operating condition after a disturbance, this problem is known

as the voltage stability problem and it conforms a field of study in itself [15, 23].
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expressing the equations of Vd∞ and Vq∞ in phasor form:

Ṽdq∞ = − (Ra + jX ′d) Ĩdq∞ + Ẽ ′dq∞ +
(
X ′q −X ′d

)
Im
{
Ĩdq∞

}

As transient saliency is being neglected, X ′q and X ′d are equal:

Ṽdq∞ = − (Ra + jX ′d) Ĩdq∞ + Ẽ ′dq∞

The equation can be expressed in network reference by multiplying both sides by [1∠ (θ∞ − π/2)]:

Ṽt∞ = − (Ra + jX ′d) Ĩg∞ + Ẽ ′dq∞

[
1∠
(
θ∞ −

π

2

)]

Where the steady state generator voltage and current are Ṽt∞ and Ĩg∞ respectively. The

transient EMFs can be expressed in terms of Ṽt∞ and Ĩg∞ as follows:

Ẽ ′dq∞ =
[
Ṽt∞ + (Ra + jX ′d) Ĩg∞

] [
1∠
(π

2
− θ∞

)]

E ′d∞ = Re
{[
Ṽt∞ + (Ra + jX ′d) Ĩg∞

] [
1∠
(π

2
− θ∞

)]}

E ′q∞ = Im
{[
Ṽt∞ + (Ra + jX ′d) Ĩg∞

] [
1∠
(π

2
− θ∞

)]}

In order to calculate θ∞ and Efd∞, let us retake the original equations of Vd∞ and Vq∞. The

transient EMFs can be eliminated from the Equations 2-186 and 2-187 by substitution of

Equations 2-184 and 2-185, yielding:

Vd∞ = −RaId∞ +XqIq∞

Vq∞ = −RaIq∞ −XdId∞ + Efd∞

In phasor form:

Ṽdq∞ = − (Ra + jXq) Ĩdq∞ + j
[
Efd∞ + (Xq −Xd)Re

{
Ĩdq∞

}]

As transient saliency is being neglected, Xq and Xd are equal:

Ṽdq∞ = − (Ra + jXq) Ĩdq∞ + jEfd∞

In network reference:

Ṽt∞ = − (Ra + jXq) Ĩg∞ + jEfd∞

[
1∠
(
θ∞ −

π

2

)]

Ṽt∞ = − (Ra + jXq) Ĩg∞ + Efd∞ (1∠θ∞)

Ṽt∞ = − (Ra + jXq) Ĩg∞ + Efd∞∠θ∞

The equivalent circuit in network reference of the generator in steady state is shown in Figure

2-10. It is possible express both Efd∞ and θ∞ in terms of the generator voltage and current

as:

Efd∞∠θ∞ = Ṽt∞ + (Ra + jXq) Ĩg∞
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−
+Efd∞∠θ∞

Ra jXq Ĩdq∞
[
1∠
(
θ∞ − π

2

)]

+

−

Ṽt∞=Vt∞∠δ∞

Figure 2-10.: Equivalent circuit of the generator in steady state.

Efd∞ =
∣∣∣Ṽt∞ + (Ra + jXq) Ĩg∞

∣∣∣ (2-188)

θ∞ = Arg
{
Ṽt∞ + (Ra + jXq) Ĩg∞

}
(2-189)

The steady state mechanical input power Pm∞ can be calculated from Equation 2-183 as:

PM∞ = E ′d∞Id∞ + E ′q∞Iq∞

PM∞ = Re
{
Ẽ ′dq∞Ĩ

∗
dq∞

}

PM∞ = Re
{[
Ṽdq∞ + (Ra + jX ′d) Ĩdq∞

]
Ĩ∗dq∞

}

PM∞ = Re
{[
Ṽg∞ + (Ra + jX ′d) Ĩg∞

] [
1∠
(π

2
− θ∞

)](
Ĩg∞

[
1∠
(π

2
− θ∞

)])∗}

PM∞ = Re
{[
Ṽg∞ + (Ra + jX ′d) Ĩg∞

]
Ĩ∗g∞

}

PM∞ = Re
{
Ṽg∞Ĩ

∗
g∞ + (Ra + jX ′d) I

2
g∞

}

PM∞ = Re
{
Ṽg∞Ĩ

∗
g∞

}
+RaI

2
g∞ (2-190)

The generator voltage and current in steady state are normally calculated from the power

system equations, as it will be seen in a latter chapter.

2.8. Automatic Voltage Regulator (AVR)

The automatic voltage regulator (AVR) is an automatic controller responsible for keeping

constant the magnitude of the terminal voltage of a generator. The AVR controls the ge-

nerator voltage by manipulating the field voltage. Each generator has its own AVR so the

model can vary greatly from generator to generator, however most AVRs can be represented

as one of the standard models defined by IEEE [26]. In this work all AVRs are represented

with a simplified version of the Type DC1A AVR model [26], whose block diagram can be

seen in Figure 2-11. The equations of the AVR model in p.u. (generator base) are:

dVC
dt

=
1

TR
(Vt − VC) (2-191)
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dVR
dt

=
1

TA
[KA (VREF − VC − Vf )− VR]u (VR − VRMIN)u (VRMAX − VR) (2-192)

dEfd
dt

=
1

TE
(VR −KEEfd) (2-193)

dVf
dt

=
1

TF

(
KF

dEfd
dt
− Vf

)
(2-194)

1
1+sTR

Σ

VRMIN

VRMAX

KA

1+sTA
Σ

1
sTE

KE

sKF

1+sTF

Vt VC −

VREF

+ VR

+

−

Vf

− Efd

Figure 2-11.: AVR block diagram.

Where u (x) denotes the unit step function, Vt is the magnitude of the generator terminal

voltage, VC is the compensated voltage8, VR is the regulator output voltage, the term Efd
is the same used on the machine model, Vf is the stabilizing feedback output, VREF is the

AVR setpoint and KA is the regulator gain. The rest are AVR constants.

The tunable parameter of the AVR is the regulator gain KA. The value of the AVR setpoint,

VREF , is a constant defined by the steady state operation of the generator. The values of the

rest of parameters are defined by the AVR physical characteristics. The interested reader is

referred to [27], where this and other AVR models are explained in detail. Some stabilizing

feedbacks have variable parameters (KF and TF ), but in this work they are considered cons-

tant. As it will be seen later, the proposed tuning method can be extended to consider any

set of variable parameters without loss of generality.

2.9. Speed Governor

The speed governor is an automatic controller responsible for keeping constant the rotor

speed of the generator. The governor controls the speed by manipulating the mechanical

8In most AVRs the compensated voltage is just a rectified measurement of the terminal voltage using a

potential transformer. In some AVRs the controlled voltage is not at the generator terminals but at some

other point of the system (the high voltage side of the generator transformer, for example), but the

measurement is still taken at the generator terminals. In those cases, the measurement is compensated

by adding a current-dependent term that simulates an impedance drop, effectively regulating the voltage

at some point different than the generator terminals [26].
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power. There are two main types of governors [27]:

• Isochronous governor: It uses an integral control to keep the speed constant. It has

a very small stability margin and is commonly used for generators in small, isolated

systems.

• Droop governor: It uses a proportional control to keep the speed constant. It has

a larger stability margin than the isochronous governor and is commonly used for

generators connected to large power systems.

Each generator has its own governor, and it is assumed in this work that all generator have

droop governors. The model can vary greatly from generator to generator, however most

models can be transformed to the equivalent general purpose model proposed in [27]. In this

work all governors are represented with the general purpose model, whose block diagram is

shown in Figure 2-12. The equations of the governor model in p.u. (generator base) are:

duD
dt

=
1

TD

[
(ω − 1)

R
+
Tω
R

dω

dt
− uD

]
(2-195)

uL = max {min {PREF − uD, PMAX} , 0} (2-196)

duS
dt

=
1

TS
(uL − uS) (2-197)

duB
dt

=
1

TB
(uS − uB) (2-198)

dPM
dt

=
1

TP

(
uB + FTP

duB
dt
− PM

)
(2-199)

Σ 1
R

1+sTω

1+sTD
Σ

PMAX 1
1+sTS

1
1+sTB

1+sFTP

1+sTP

ω +

1

−

uD −

PREF

+

uL uS uB PM

Figure 2-12.: Governor block diagram.

Where PM is the mechanical input power of the generator, uD, uL, uS and uB are the other

differential variables of the model (their physical meaning depends on the original governor

model), PREF is the governor setpoint and R is the governor droop (not to be confused with

resistance). The rest are governor constants.

The tunable parameter of the governor is the droop R. The value of the governor sepoint,

PREF , is a constant defined by the steady state operation of the generator. The values of

the rest of parameters are defined by the governor physical characteristics. The interested

reader is referred to [27], where this and other governor models are explained in detail.



3. Power System Analysis

This chapter is focused on the methods and techniques required for the study of power

systems in two different states: steady state and transient state. For the rest of this work

the following suppositions are going to be made:

• The power system works in a balanced operating condition. Therefore, it is possible to

represent the system with a single-phase equivalent representation.

• There are no harmonic components present in the system, so it is possible to represent

voltages and currents as phasors.

The scope of this chapter is limited to the methods used to implement the proposed solution.

3.1. Steady State Analysis: Power Flow

The steady state analysis of a power system involves the calculation of electric variables

like voltages, currents and powers given specific conditions at each node. Such calculations

become trivial if the voltages of all nodes are known, so the main problem of the analysis

reduces to determining the node voltages. This is known as the power flow problem, or load

flow problem [5].

3.1.1. Node types

The steady state performance of the system is determined by the operative conditions of each

node, which provide the necessary information to determine the node voltages. The node

conditions are normally expressed in terms of two of the following four electric quantities:

injected active power P , injected reactive power Q, voltage magnitude V and voltage angle

δ. Each node can be classified, depending on the specified quantities, as one of the following

types [15]:

• Load (PQ) node: Injected active and reactive power are known. This type of nodes

normally have loads connected to them, when no loads are connected the node is called

transit node and its injected powers are zero. Nodes with linear (constant admittance)
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loads also have zero injected powers, because it is considered that only sources and

nonlinear devices inject power into the node.

• Voltage-controlled (PV ) node: Injected active power and voltage magnitude are

known. This type of nodes normally have generators, SVCs or or other voltage-controlling

devices attached to them. The reactive power capability of the voltage-controlling de-

vice is limited and when the limit is reached, the voltage control is lost and the node

type becomes PQ [5]. The reactive capability limits are typically known so those cases

can be managed programatically. In this work it is assumed that the only voltage-

controlling devices are synchronous generators, and their reactive capability limits are

expressed in terms of their AVR limits, so the case when a PV node becomes a PQ

node will be neglected.

• Slack or swing (V δ) node: Voltage magnitude and angle are specified. A system

must have at least one slack node in order to have an angle reference, otherwise the

power flow would have infinite solutions (one for each angle reference). The slack node

has a voltage-controlling device which normally has limited reactive power capability,

much like the PV node.

• Limited slack (Qδ) node: Injected reactive power and voltage angle are known.

When the reactive capability limit of the voltage-controlling device of the slack node

is reached, the voltage control is lost and the injected power is fixed at the limiting

value. In such case, V becomes an unknown variable and Q becomes a known variable.

As with the PV nodes, the case in which a V δ node becomes a Qδ will be neglected.

• Device node: A node of this type has attached a device that imposes special conditions

to the node’s electric variables that do not fit in any of the previous node types (a

HVDC converter, for example [15]). Nodes of this type are not considered in this work.

3.1.2. Network Equations

The relationship between node voltages and injected node currents depends on the elements

linking them. In this work it is considered that two nodes can be connected only through a

transformer or a transmission line (a series capacitor, reactor or resistance is possible too),

or a parallel combination of them, so any pair of nodes is connected through linear elements

(constant admittances). Therefore the voltage-current relationship between any pair of nodes

(excluding ground) is linear, and it can be expressed by means of the node equations as [5]:



Ĩ1

Ĩ2

...

Ĩn




=




Y11 Y12 · · · Y1n

Y21 Y22 · · · Y2n

...
...

. . .
...

Yn1 Yn2 · · · Ynn







Ṽ1

Ṽ2

...

Ṽn




(3-1)
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Where [15]:

n is the total number of nodes

Yii is the self admittance of node i

= sum of all admittances connected to node i

Yij is the mutual admittance between nodes i and j

= negative of the sum of all admittances between nodes i and j

Ṽi is the phasor voltage of node i with respect to ground

= Vi∠δi
Ĩi is the phasor injected current by sources and nonlinear elements to node i

The self admittances include the shunt admittances and the constant admittance loads, so it

is considered that only sources and nonlinear loads contribute to the node injected current.

The node equations can be expressed in compact form as:

~̃I = Y~̃V (3-2)

Where:

Y is the admittance matrix
~̃V is the vector of node voltages
~̃I is the vector of injected currents

If the injected currents were known, the node equations would be purely linear, and finding

the node voltages would be trivial. However, in most cases only the injected powers are

known. The injected current of node i can be expressed in terms of its injected active a

reactive power as:

Ĩi =
Pi − jQi

Ṽ ∗i
=
S∗i
Ṽ ∗i

(3-3)

The whole system of equations can be expressed as:

~S∗ � ~̃V
∗

= Y~̃V (3-4)

~S∗ = ~̃V
∗
◦
(
Y~̃V

)
(3-5)

~S = ~̃V ◦
(
Y~̃V

)∗
(3-6)

~0 = ~̃V ◦
(
Y~̃V

)∗
− ~S (3-7)



52 3 Power System Analysis

Where ◦ is the Hadamard (elementwise) product, and � is the Hadamard (elementwise)

division. The scalar equation for an arbitrary node i is:

Ṽi

(
n∑

k=1

YikṼk

)∗
− Si = 0 (3-8)

Equation 3-8 is called power mismatch equation. The relationship between Ṽi and Si in Equa-

tion 3-8 depends on the type of node. In PQ nodes Si is a known constant but Ṽi is not

known. In PV nodes Vi and Pi are known but Qi and δi are unknown. In slack nodes Ṽi is

known but Si is not. In Qδ nodes Qi and δi are known but Vi and Pi are unknown. Device

nodes specify the relationship between Pi, Qi, Vi and δi as a set of two equations (typically

nonlinear).

In general, each node has four real variables to be found: Pi, Qi, Vi and δi. In order to find

them all, four equations per node are required: the complex node equations contribute with 2

real equations per node, and the node type specifications add two more equations per node.

When no device nodes are present, it is possible to replace the nodes’ specifications into the

node equations, yielding a set of n complex equations that can be solved to find the n node

voltage phasors. The complex node equations can also be expressed in real and imaginary

components, giving a set of 2n real equations that can be solved to find 2n variables: the

node voltage magnitudes and angles.

3.1.3. Newton-Raphson Method

The Newton-Raphson method is one of the most popular iterative techniques used to solve

systems of real nonlinear equations [28]. Let ~f (~x) = [f1 (~x) f2 (~x) · · · fnf (~x)]T be a vector

of nf functions dependent of the variable vector ~x = [x1 x2 · · · xnf ]T , where the solution of

the following vector equation is required:

~f (~x) = ~0 (3-9)

The method starts with an initial estimate of the solution ~x(0), provided by the user. The

method performs a series of iterations, each one yielding a new estimate that is (hopefully)

closer to the real solution than the previous ones. Assuming iteration k has been executed

and its estimate ~x(k) is known, iteration k+ 1 is executed by performing the following steps:

• Evaluate the function using the current estimate:

~f (k) = ~f
(
~x(k)
)

(3-10)
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• Calculate the Jacobian of ~f (~x) using the current estimate:

J(k) =
∂ ~f (~x)

∂~xT

∣∣∣∣∣
~x(k)

=




∂f1(~x)
∂x1

∂f1(~x)
∂x2

· · · ∂f1(~x)
∂xnf

∂f2(~x)
∂x1

∂f2(~x)
∂x2

· · · ∂f2(~x)
∂xnf

...
...

. . .
...

∂fnf (~x)

∂x1

∂fnf (~x)

∂x2
· · · ∂fnf (~x)

∂xnf




∣∣∣∣∣∣∣∣∣∣∣∣
~x(k)

(3-11)

• Approximate the difference between the real solution and the actual estimate as the

solution of the following system of linear equations:

~f (k) = −J(k)∆~x(k) (3-12)

• Calculate the new estimate as:

~x(k+1) = ~x(k) + ∆~x(k) (3-13)

Subsequent iterations are executed by repeating the previous steps, until a specific termina-

tion criterion is met. Normally the method is implemented with the following two criteria:

• If the absolute value of all the elements of ~f (~x) are lesser than a specified tolerance ε,

that is, if:

max
i

∣∣fi
(
~x(k)
)∣∣ =

∥∥∥~f (k)
∥∥∥
∞
< ε (3-14)

Then the method is considered to have converged to a solution ~x(k) and the execution

stops.

• If the method reaches a specified number of iterations before satisfying the first crite-

rion, it is considered that the method failed to find any valid solution and the execution

stops. This does not imply that the system of equations has no solutions, and remedial

measures can be taken (changing the initial estimate or trying another method, for

example).

The Newton-Raphson method has quadratic convergence: the error of a given iteration’s

estimate is proportional to the square of the error of the previous iteration’s estimate [29].

Because of the previous property, this method can converge to a solution in very few ite-

rations. However, the computational cost of the method is very high due to the following

reasons:

• To calculate the Jacobian matrix it is required to calculate the partial derivatives of

each element of the function vector, and these calculations must be repeated for each

iteration. The exact calculations of the partial derivatives are, except for special cases,

computationally costly.
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• The Jacobian matrix must be factored in order to solve Equation 3-12. This matrix

changes with each iteration, so the factoring must be performed once per iteration.

There exist some modifications of the method that avoid those problems:

• Quasi-Newton: The Jacobian matrix is approximated by estimating the partial de-

rivatives with numerical methods instead of calculating their exact values [30].

• Dishonest Newton-Raphson: The Jacobian matrix is not recalculated at every

iteration but instead it is left unchanged during a predetermined number of iterations.

It can also be recalculated prematurely when slow convergence is detected [29].

• Very Dishonest Newton-Raphson: Equation 3-12 is solved using the SAME matrix

at all iterations. That matrix does not necessarily have to be the Jacobian [29].

One of the most popular methods for solving the power flow problem is the Fast Deco-

upled Load Flow (FDLF) which is a Very Dishonest Newton-Raphson adapted to the power

flow problem. It was proposed by Stott and Alsac in 1974 [31]. In this work the full Newton-

Raphson method was used to solve the power flow problem, as proposed originally by Tinney

and Hart in 1967 [32].

3.1.4. Power Flow Solution Using Newton-Raphson Method

Before applying the Newton-Raphson method, Equation 3-7 must decomposed in two real

equations, corresponding to its real and imaginary part (the the subscript sp to denotes the

specified complex power of the nodes):


 Re

{
~̃V ◦

(
Y~̃V

)∗
− ~Ssp

}

Im
{
~̃V ◦

(
Y~̃V

)∗
− ~Ssp

}

 =



~0

~0


 (3-15)


 ∆~P

∆ ~Q


 =



~0

~0


 (3-16)

Where ~Ssp = ~SG − ~SL. The subscript G means generated (injected) power, whereas the

subscript L means consumed (extracted) power. Equation 3-16 can be expressed as:

∆~P = ~P − ~Psp = ~P −
(
~PG − ~PL

)
(3-17)

∆ ~Q = ~Q− ~Qsp (3-18)

~P = Re
{
~̃V ◦

(
Y~̃V

)∗}
(3-19)

~Q = Im
{
~̃V ◦

(
Y~̃V

)∗}
(3-20)
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Notice that the elements of ~Qsp corresponding to the PV or slack nodes are not defined.

Similarly, the elements ~Psp corresponding to the slack and Qδ nodes are not defined. For

now it will be assumed that all nodes are of type PQ, and the case with PV , slack and Qδ

nodes will be treated later. Vectors ~P and ~P depend on the node voltage phasors. but the

variable vector must be composed only of real numbers. In order to achieve that, the nodes

voltages will be expressed in terms of their magnitude and angle as:

~̃V = ~V ◦ ej~δ (3-21)

Where the exponential function is applied individually to each angle δi. The objective fun-

ction and variable vector of the Newton-Raphson method are defined as:

~f (~x) =
[
∆~P ∆ ~Q

]T
(3-22)

~x =
[
~δ ~V

]T
(3-23)

The Jacobian matrix can be calculated as:

J =




∂∆~P

∂~δT
∂∆~P

∂~V T

∂∆ ~Q

∂~δT
∂∆ ~Q

∂~V T


 (3-24)

J =


 H N

M L


 (3-25)

The submatrix H can be expressed as:

H =
∂∆~P

∂~δT
(3-26)

H =
∂

∂~δT

(
~P − ~Psp

)
(3-27)

H =
∂

∂~δT

(
Re
{
~̃V ◦

(
Y~̃V

)∗})
(3-28)

The real part function Re {·} can be commuted with the (vectorial) derivative with respect

to a real (vector) variable:

H = Re

{
∂

∂~δT

(
~̃V ◦

(
Y~̃V

)∗)}
(3-29)

In order to calculate the vectorial derivative of a complex Hadamard product, the matrix

calculus theory proposed in [33] and expanded in [34] is required. First, consider ~δ to be the

real part of an arbitrary complex vector variable ~ζ defined as:

~ζ = ~δ + j~ε (3-30)
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In scalar form:

ζi = δi + jεi (3-31)

For the scalar case, the derivative of an arbitrary complex function g with respect to δi can

be expressed in terms of Wirtinger derivatives as [35]:

∂g

∂δi
=
∂g

∂ζi
+

∂g

∂ζ∗i
(3-32)

The previous equation can be easily extended to the vectorial case as:

∂~g

∂~δT
=

∂~g

∂~ζT
+

∂~g

∂~ζH
(3-33)

Where the superscript H denotes conjugate transpose. Let ~g = ~g1 ◦ ~g2 be the Hadamard

product of two arbitrary vector functions, then the Wirtinger derivatives of ~g1◦~g2 are [33, 34]:

∂

∂~ζT
(~g1 ◦ ~g2) = diag (~g2)

∂~g1

∂~ζT
+ diag (~g1)

∂~g2

∂~ζT
(3-34)

∂

∂~ζH
(~g1 ◦ ~g2) = diag (~g2)

∂~g1

∂~ζH
+ diag (~g1)

∂~g2

∂~ζH
(3-35)

Where the operator diag (·) transforms the input vector into a square diagonal matrix whose

diagonal elements are equal to those of the input vector. In mathematical terms:

~g1 ∈ Rn, diag (~g1) ∈ Rn×n

{diag (~g1)}ii = {~g1}i
{diag (~g1)}ij = 0, i 6= j

Three important properties of the operator diag (·) that are going to be needed next are:

diag (~v1)∗ = diag (~v∗1)

diag (~v1)~v2 = diag (~v1 ◦ ~v2)

diag (~v1) diag (~v2) = diag (~v1 ◦ ~v2) , ~v1, ~v2 ∈ Rn

Adding the Equations 3-34 and 3-35 together:
[
∂

∂~ζT
(~g1 ◦ ~g2) +

∂

∂~ζH
(~g1 ◦ ~g2)

]
= diag (~g2)

[
∂~g1

∂~ζT
+
∂~g1

∂~ζH

]
+ diag (~g1)

[
∂~g2

∂~ζT
+
∂~g2

∂~ζH

]
(3-36)

∂

∂~δT
(~g1 ◦ ~g2) = diag (~g2)

∂~g1

∂~δT
+ diag (~g1)

∂~g2

∂~δT
(3-37)

Therefore, Equation 3-29 can be rewritten as:

H = Re

{
diag

((
Y~̃V

)∗) ∂ ~̃V
∂~δT

+ diag
(
~̃V
) ∂

∂~δT

((
Y~̃V

)∗)
}

(3-38)
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The conjugate operator ∗ can be commuted with the (vectorial) derivative with respect to

a real (vector) variable:

H = Re



diag

((
Y~̃V

)∗) ∂ ~̃V
∂~δT

+ diag
(
~̃V
)(∂Y~̃V

∂~δT

)∗
 (3-39)

H = Re



diag

((
Y~̃V

)∗) ∂ ~̃V
∂~δT

+ diag
(
~̃V
)

Y∗

(
∂ ~̃V

∂~δT

)∗
 (3-40)

The derivative of the voltage vector is calculated as:

∂ ~̃V

∂~δT
=

∂

∂~δT

(
~V ◦ ej~δ

)
(3-41)

∂ ~̃V

∂~δT
= diag

(
ej
~δ
) ∂~V
∂~δT

+ diag
(
~V
) ∂ej~δ
∂~δT

(3-42)

∂ ~̃V

∂~δT
= diag

(
ej
~δ
)

0 + diag
(
~V
)
jdiag

(
ej
~δ
)

(3-43)

∂ ~̃V

∂~δT
= jdiag

(
~̃V
)

(3-44)

Replacing Equation 3-44 in Equation 3-40:

H = Re
{

diag
((

Y~̃V
)∗)

jdiag
(
~̃V
)

+ diag
(
~̃V
)

Y∗
(
jdiag

(
~̃V
))∗}

(3-45)

H = Re
{
jdiag

(
~̃V ◦

(
Y~̃V

)∗)
− jdiag

(
~̃V
)

Y∗diag
(
~̃V
)∗}

(3-46)

Let ~S = ~̃V ◦
(
Y~̃V

)∗
denote the vector of injected complex powers given the node voltage

vector ~̃V , then:

H = Re
{
jdiag

(
~S
)
− jdiag

(
~̃V
)

Y∗diag
(
~̃V
)∗}

(3-47)

H = Re
{
−j
(

diag
(
~̃V
)

Y∗diag
(
~̃V
)∗
− diag

(
~S
))}

(3-48)

H = Im
{

diag
(
~̃V
)

Y∗diag
(
~̃V
)∗
− diag

(
~S
)}

(3-49)

The other submatrices can be calculated by applying a similar process, yielding the following

results:

M = −Re
{

diag
(
~̃V
)

Y∗diag
(
~̃V
)∗
− diag

(
~S
)}

(3-50)

N = Re
{

diag
(
~̃V
)

Y∗diag
(
ej
~δ
)∗

+ diag
(
~S � ~V

)}
(3-51)
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L = Im
{

diag
(
~̃V
)

Y∗diag
(
ej
~δ
)∗

+ diag
(
~S � ~V

)}
(3-52)

It must be noted that ~̃V is the vector of node voltage phasors, whereas ~V is the vector of

node voltage magnitudes.

Let ~x(k) =
[
~δ(k) ~V (k)

]T
be the estimate at iteration k. The change in the estimate, ∆~x(k) =

[
∆~δ(k) ∆~V (k)

]T
, is calculated by solving the following system of linear equations:


 ∆~P (k)

∆ ~Q(k)


 =


 H(k) N(k)

M(k) L(k)




 ∆~δ(k)

∆~V (k)


 (3-53)

The superscript (k) in the power mismatches and the Jacobian submatrices indicate that

they are evaluated using ~x(k).

Equation 3-53 was obtained assuming that all nodes were of type PQ, but it can be extended

to other cases as well. Suppose node i is of type PV , then there is no specified reactive power

Qspi, and the reactive power mismatch ∆Q
(k)
i is undefined. Also, as the true value of Vi is

already known, ∆V
(k)
i must be zero. The row associated with ∆Q

(k)
i must be removed from

Equation 3-53 in order to remove the undefined mismatch. Similarly, the column associated

with ∆V
(k)
i be removed from Equation 3-53 as there is no need to estimate Vi. In conclusion,

a PV node only contributes with one equation (∆Pi) and one unknown variable (∆δi).

A similar procedure can be performed for slack and Qδ nodes, so in general Equation 3-

53 can be constructed by assuming all nodes are PQ and then removing the rows of the

undefined mismatch equations and the columns of the already known variables. The total

number of rows (and columns) of the final Jacobian matrix is:

(total rows) = 2 (# of nodes)− (# of PV nodes)− (# of Qδ nodes)

− 2 (# of slack nodes)
(3-54)

After solving Equation 3-53, the new estimate can be calculated by applying Equation 3-13.

3.2. Transient Stability Analysis: Time-Domain

Simulation

The previous section discussed how to calculate the steady-state performance of a power

system. When the system is disturbed by an event (a short-circuit, for example), the electrical

and mechanical variables start to change with respect to time in what is known as the
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transient response. The transient response of a real power system can be simulated. In order

to do that, it is necessary to solve the differential equations describing the system variables.

At the same time, the variables must satisfy the power flow equations described in the

previous section at any time. This leads to a set of Differential Algebraic Equations (DAEs)

that must be solved over the time range of interest to obtain the transient response [15, 4, 23].

Before deriving the set of DAEs, the following assumptions are going to be made:

• Electromagnetic transients are neglected, because their time constants are small com-

pared to those of electro-mechanical transients (stiffer system). Also, they have little

impact on transient stability [15]. For these reasons, the electric network is modelled

with just algebraic equations (power flow equations).

• Variations of the speed of the generators are small, so the total frequency of the system

can be assumed to be constant, and thus the network reactances do not vary.

• Saturation and salient poles effects are neglected by taking each machines’ direct and

quadrature axis reactances as constants equal to the average of the two real values. This

is done for the reactances of each period (subtransient, transient and steady state).

The previous assumptions allow using the two-axis machine model developed in the previous

chapter. The first assumption is specially important as its greatly reduces the amount of

differential equations that must be solved, thus reducing the complexity of the model. The

first assumption also implies that the only elements contributing with differential equations

to the set of DAEs are the generators and their controllers. In the next subsection the set of

DAEs will be derived.

3.2.1. Power System DAEs

In order to construct the set of DAEs, let us first define all the algebraic equations. All

algebraic equations will expressed in the form f (x) = 0. The first ones are the power

flow equations. Let n be the number of system nodes and m the number of generators.

Assume nodes number 1 to m are the generator nodes (node numbering can be changed

when required to fit the numbering proposed here). These nodes must be type PV or slack,

as the generators’ AVRs keep the voltage magnitude constant. The remaining nodes must

be of type PQ. During the transient response, the voltage magnitude of the PV and slack

nodes vary, and in order to calculate it the generator model must be used. The circuit model

of each generator adds one node to the system, for a new total of n+m nodes (nodes n+1 to

n + m are the generators’ internal nodes). The new system including the generator circuits

is called extended system. During the transient response nodes 1 to m are considered PQ

with zero power injection, and nodes n + 1 to n + m are considered slack. The power flow
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equations of the extended system at a time t are:




Re

{
Ṽ1

(
n+m∑
k=1

Y1k (t) Ṽk

)∗
− Ssp1 (t)

}

...

Re

{
Ṽn

(
n+m∑
k=1

Ynk (t) Ṽk

)∗
− Sspn (t)

}

Im

{
Ṽ1

(
n+m∑
k=1

Y1k (t) Ṽk

)∗
− Ssp1 (t)

}

...

Im

{
Ṽn

(
n+m∑
k=1

Ynk (t) Ṽk

)∗
− Sspn (t)

}




= ~gPQ = ~0 (3-55)

Where:

Ṽn+i = Ẽ ′dqi · 1∠
(
θi −

π

2

)
, 1 ≤ i ≤ m (3-56)

Replacing:




Re

{
Ṽ1

(
n∑
k=1

Y1k (t) Ṽk +
m∑
k=1

Y1(n+k) (t) Ẽ ′dqk · 1∠
(
θk − π

2

))∗
− Ssp1 (t)

}

...

Re

{
Ṽn

(
n∑
k=1

Ynk (t) Ṽk +
m∑
k=1

Yn(n+k) (t) Ẽ ′dqk · 1∠
(
θk − π

2

))∗
− Sspn (t)

}

Im

{
Ṽ1

(
n∑
k=1

Y1k (t) Ṽk +
m∑
k=1

Y1(n+k) (t) Ẽ ′dqk · 1∠
(
θk − π

2

))∗
− Ssp1 (t)

}

...

Im

{
Ṽn

(
n∑
k=1

Ynk (t) Ṽk +
m∑
k=1

Yn(n+k) (t) Ẽ ′dqk · 1∠
(
θk − π

2

))∗
− Sspn (t)

}




= ~gPQ = ~0

(3-57)

Notice that the power flow equations are only considered for nodes 1 to n, because the volta-

ges of the generators’ internal nodes (generators’ EMFs) are calculated by applying Equation

3-56 after solving the differential equations of E ′di and E ′qi. Basically, nodes n+1 to n+m are

treated as slack nodes. It must also be noted that certain disturbances produce continuous

changes on the injected powers, and for that reason the time dependence is explicitly stated.

Some disturbances can also change the system topology, modifying the admittances matrix,

and for that reason the time dependence is also explicitly stated.

The next algebraic equations to be considered are ones of the generators’ currents, which

can be calculated by solving the generators’ circuits:

Ĩdqi =
Ẽ ′dqi − Ṽi · 1∠

(
π
2
− θi

)

Rai + jX ′di
(3-58)
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Idi = Re

{
Ẽ ′dqi − Ṽi · 1∠

(
π
2
− θi

)

Rai + jX ′di

}
(3-59)

Iqi = Im

{
Ẽ ′dqi − Ṽi · 1∠

(
π
2
− θi

)

Rai + jX ′di

}
, 1 ≤ i ≤ m (3-60)

In vector form: 


Re

{
Ẽ′dq1−Ṽ1·1∠(π2−θ1)

Ra1+jX′d1

}
− Id1

...

Re

{
Ẽ′dqm−Ṽm·1∠(π2−θm)

Ram+jX′dm

}
− Idm

Im

{
Ẽ′dq1−Ṽ1·1∠(π2−θ1)

Ra1+jX′d1

}
− Iq1

...

Im

{
Ẽ′dqm−Ṽm·1∠(π2−θm)

Ram+jX′dm

}
− Iqm




= ~gIDQ = ~0 (3-61)

The set of algebraic equations is completed by adding the limiter equations of the generators’

governors (Equation 2-197):

uLi = max {min{PREFi − uDi, PMAXi} , 0} , 1 ≤ i ≤ m (3-62)

The complete set of DAEs comprising all system equations can be expressed as:

~̇y = ~f (~x, ~y, ~z) (3-63a)

~0 = ~g (~y, ~z, t) (3-63b)

Where the dot superscript means time derivative and:

~x = [KA1 · · · KAm R1 · · · Rm]T

~y =
[
θ1 ω1 E

′
d1 E

′
q1 VC1 VR1 Efd1 Vf1 uD1 uS1 uB1 PM1 · · ·

· · · θm ωm E ′dm E ′qm VCm VRm Efdm Vfm uDm uSm uBm PMm

]T

~z = [δ1 · · · δn V1 · · · Vn Id1 · · · Idm Iq1 · · · Iqm uL1 · · · uLm]T

~g (~y, ~z, t) =




~gPQ (~y, ~z, t)

~gIDQ (~y, ~z)

max {min{PREF1 − uD1, PMAX1} , 0} − uL1

...

max {min{PREFm − uDm, PMAXm} , 0} − uLm




(3-64)
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~f (~x, ~y, ~z) =




ωs (ω1 − 1)

1
2H1

(
PM1 − E ′d1Id1 − E ′q1Iq1 −D1 (ω1 − 1)

)

1
T ′q01

(
−E ′d1 +

(
Xq1 −X ′q1

)
Iq1
)

1
T ′d01

(
Efd1 − E ′q1 − (Xd1 −X ′d1) Id1

)

1
TR1

(V1 − VC1)

1
TA1

[KA1 (VREF1 − VC1 − Vf1)− VR1]u (VR1 − VRMIN1)u (VRMAX1 − VR1)

1
TE1

(VR1 −KE1Efd1)

1
TF1

(
KF1

dEfd1
dt
− Vf1

)

1
TD1

[
1
R1

(
ω1 − 1 + Tω1

dω1

dt

)
− uD1

]

1
TS1

(uL1 − uS1)

1
TB1

(uS1 − uB1)

1
TP1

(
uB1 + F1TP1

duB1

dt
− PM1

)
...

ωs (ωm − 1)

1
2Hm

(
PMm − E ′dmIdm − E ′qmIqm −Dm (ωm − 1)

)

1
T ′q0m

(
−E ′dm +

(
Xqm −X ′qm

)
Iqm
)

1
T ′d0m

(
Efdm − E ′qm − (Xdm −X ′dm) Idm

)

1
TRm

(Vm − VCm)

1
TAm

[KAm (VREFm − VCm − Vfm)− VRm]u (VRm − VRMINm)u (VRMAXm − VRm)

1
TEm

(VRm −KEmEfdm)

1
TFm

(
KFm

dEfdm
dt
− Vfm

)

1
TDm

[
1
Rm

(
ωm − 1 + Tωm

dωm
dt

)
− uDm

]

1
TSm

(uLm − uSm)

1
TBm

(uSm − uBm)

1
TPm

(
uBm + FmTPm

duBm
dt
− PMm

)




(3-65)

Vector ~z correspond to the system algebraic variables. Vector ~y correspond to the system

differential variables. Vector ~x correspond to the tunable parameters of the generators’ con-

trollers. It must be noted the the set of DAEs was constructed assuming all generators have

AVRs and governors. This is not necessarily true (synchronous condensers do not have gover-

nor, and some machines may have simpler models than the ones exposed in this work), but

it possible to remove or adjust the equations accordingly to fit the machines’ characteristics.
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The system transient response to a disturbance for the controller parameter values of ~x

is given by ~y (~x, t) and ~z (~x, t), which are found by solving Equation 3-63. The simulation

results are analysed to determine whether the system is stable (withstands the fault) or not

(collapses). Instability can be detected when some of the differential variables, normally the

rotor angles, diverge (increase or decrease without bounds). An example of a stable and an

unstable system response of a power system with two generators is given in Figure 3-1.
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(a) Fault cleared at time 0.6 s (stable).
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(b) Fault cleared at time 0.68 s (unstable).

Figure 3-1.: Rotor angles of the generators of a power system disturbed by a short-circuit

at time 0.5 s. The fault is cleared at different times.

The set of DAEs has no explicit solution, so it must be solved numerically to find an appro-

ximate discretization of the transient response. The next subsections discuss the numerical

methods implemented in the software developed in this work.

3.2.2. Explicit Euler Method

Consider the following first-order vectorial differential equation with initial value condition:

~̇y (t) = ~f (~y (t) , t) , ~y (t0) = ~y0 (3-66)

The previous equation can be solved as:

~y (t) = ~y0 +

∫ t

t0

~f (~y (τ) , τ) dτ (3-67)

If the vector function ~f (~y (t) , t) cannot be integrated analytically, then it is not possible

to find the exact solution ~y (t). However, it is possible to approximate the solution as a

discrete sequence of time-vector pairs (t0, ~y [0]) , (t1, ~y [1]) , · · · . The sequence should be a
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good approximation of the true time-vector solution pairs (t0, ~y (t0)) , (t1, ~y (t1)) , · · · . The

smaller the time between pairs, the better will be the sequence as an approximation of the

exact solution. As the true value of ~y (t0) is known (initial value condition), ~y [0] is set equal

to ~y (t0). The next term of the sequence (term 1) can be calculated as:

~y (t1) = ~y (t0) +

∫ t1

t0

~f (~y (τ) , τ) dτ (3-68)

~y (t1) = ~y [0] +

∫ t1

t0

~f (~y (τ) , τ) dτ (3-69)

If the time difference t1 − t0 is small enough, it is possible to approximate the function
~f (~y (τ) , τ) inside the integral as a function whose integral can be calculated analytically.

The main difference between the numerical methods considered in this work lies in the ap-

proximation used for the integrand. For this reason, the numerical methods used to solve

differential equations are also called numerical integration methods.

The Explicit Euler method assumes the integrand is constant and equal to the value of the

original function at the time of the previous term, that is:

~y (t1) ≈ ~y [0] +

∫ t1

t0

~f (~y (t0) , t0) dτ = ~y [0] +

∫ t1

t0

~f (~y [0] , t0) dτ (3-70)

~y (t1) ≈ ~y [0] + (t1 − t0) ~f (~y [0] , t0) (3-71)

~y (t1) ≈ ~y [0] + h~f (~y [0] , t0) (3-72)

Where h = t1 − t0 is called step size. The sequence term ~y [1] is set equal to this numerical

approximation:

~y [1] = ~y [0] + h~f (~y [0] , t0) (3-73)

Assume the sequence is equally spaced in time, that is tk = t0 + kh. Then the rest of terms

can be calculated inductively as:

~y [k + 1] = ~y [k] + h~f (~y [k] , tk) (3-74)

The Explicit Euler method is of order 1, because the global approximation error is propor-

tional to h1. This method is called explicit because the term k + 1 of the sequence can be

calculated directly using the term k. One of the main disadvantages of the Explicit Euler

method is that it is not A-stable [25]. This means the numerical solution may diverge (uns-

table) even when the true solution does not. Another problem is that the stability region of

the method is relatively small. This implies that in order to generate a convergent solution it

is normally required to use very small step sizes, and this greatly increases the computation

time required to execute the method.
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Notice that the Explicit Euler method (and the other methods that are going to be presented

here) approximate the differential equations as algebraic equations. A set of DAEs can be

solved by applying this or another numerical method and then solving the whole set of

algebraic equations at each time step. By applying the Explicit Euler method to Equation

3-63, the following set of algebraic equations is obtained:

~y [~x, k + 1] = ~y [~x, k] + h~f [~x, ~y [~x, k] , ~z [~x, k]] (3-75a)

~0 = ~g [~y [~x, k + 1] , ~z [~x, k + 1] , t0 + (k + 1)h] (3-75b)

Where:

~y [~x, k] ≈ ~y (~x, t0 + kh)

~z [~x, k] ≈ ~z (~x, t0 + kh) , ∀k > 0

~y [~x, 0] = ~y (~x, t0)

~z [~x, 0] = ~z (~x, t0)

Equation 3-75a can be evaluated directly. After that, Equation 3-75b is solved numerically

to find ~z [~x, k + 1]. The calculation of the initial values y (~x, t0) and ~z (~x, t0) is going to be

discussed later.

3.2.3. Implicit Euler Method

The Implicit Euler method assumes the integrand in Equation 3-69 is constant and equal to

the value of the original function at the time of the next term, that is:

~y (t1) ≈ ~y [0] +

∫ t1

t0

~f (~y (t1) , t1) dτ (3-76)

As ~y (t1) cannot be exactly known, it is replaced by its approximation ~y [1]:

~y (t1) ≈ ~y [0] +

∫ t1

t0

~f (~y [1] , t1) dτ (3-77)

~y (t1) ≈ ~y [0] + (t1 − t0) ~f (~y [1] , t1) (3-78)

~y (t1) ≈ ~y [0] + h~f (~y [1] , t1) (3-79)

The sequence term ~y [1] is set equal to this numerical approximation:

~y [1] = ~y [0] + h~f (~y [1] , t1) (3-80)

Assume the sequence is equally spaced in time, that is tk = t0 + kh. Then the rest of terms

can be calculated inductively as:

~y [k + 1] = ~y [k] + h~f (~y [k + 1] , tk+1) (3-81)
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The Implicit Euler method is of order 1, because the global approximation error is propor-

tional to h1. This method is called implicit because the term k + 1 is defined as a function

of itself. For that reason, the term must be calculated by numerically solving Equation 3-81

(with Newton-Raphson method, for example). Therefore, one step of the Implicit Euler met-

hod requires a computation time much longer than one step of the Explicit Euler method.

This is the main disadvantage of this method. On the other hand, this method is A-stable

[25]. This implies that if the true solution is stable, then the numerical solution will be stable

too1 (the converse is not necessarilly true). Moreover, this method is L-stable [25], which

means it can rapidly dampen oscillations produced by the stiff components of the equations2.

One of the main advantages of this method is that it allows using large time steps without

losing stability3.

By applying the Implicit Euler method to Equation 3-63, the following set of algebraic

equations is obtained:

~y [~x, k + 1] = ~y [~x, k] + h~f [~x, ~y [~x, k + 1] , ~z [~x, k + 1]] (3-82a)

~0 = ~g [~y [~x, k + 1] , ~z [~x, k + 1] , t0 + (k + 1)h] (3-82b)

Where:

~y [~x, k] ≈ ~y (~x, t0 + kh)

~z [~x, k] ≈ ~z (~x, t0 + kh) , ∀k > 0

~y [~x, 0] = ~y (~x, t0)

~z [~x, 0] = ~z (~x, t0)

Equation 3-82a cannot be evaluated directly, so in order to find ~y [~x, k + 1] and ~z [~x, k + 1]

both Equation 3-82a and Equation 3-82b must be solved simultaneously using a numerical

method.

3.2.4. Implicit Trapezoidal Method

The Implicit Trapeziodal method assumes the integrand in Equation 3-69 varies linearly

during the integration interval (the integral becomes simply the area of a trapezium), that

1The property of A-stability is defined for linear differential equations, so it might not hold true for nonlinear

differential equations. However, in most cases the nonlinear equations can be approximated as linear ones.

The A-stability also holds true for those cases.
2Again, the property of L-stability is defined for linear differential equations, but it also holds true for a

large set of nonlinear differential equations.
3When solving DAEs, the Implicit Euler method with a large time step can even be faster than the Explicit

Euler method. In this work that was the case.
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is:

~y (t1) ≈ ~y [0] +

∫ t1

t0

[
~f (~y (t0) , t0) +

τ − t0
t1 − t0

(
~f (~y (t1) , t1)− ~f (~y (t0) , t0)

)]
dτ (3-83)

~y (t1) ≈ ~y [0] +

∫ t1

t0

[
~f (~y [0] , t0) +

τ − t0
t1 − t0

(
~f (~y (t1) , t1)− ~f (~y [0] , t0)

)]
dτ (3-84)

As ~y (t1) cannot be exactly known, it is replaced by its approximation ~y [1]:

~y (t1) ≈ ~y [0] +

∫ t1

t0

[
~f (~y [0] , t0) +

τ − t0
t1 − t0

(
~f (~y [1] , t1)− ~f (~y [0] , t0)

)]
dτ (3-85)

~y (t1) ≈ ~y [0] +
t1 − t0

2

(
~f (~y [0] , t0) + ~f (~y [1] , t1)

)
(3-86)

~y (t1) ≈ ~y [0] +
h

2

(
~f (~y [0] , t0) + ~f (~y [1] , t1)

)
(3-87)

The sequence term ~y [1] is set equal to this numerical approximation:

~y [1] = ~y [0] +
h

2

(
~f (~y [0] , t0) + ~f (~y [1] , t1)

)
(3-88)

Assume the sequence is equally spaced in time, that is tk = t0 + kh. Then the rest of terms

can be calculated inductively as:

~y [k + 1] = ~y [k] +
h

2

(
~f (~y [k] , tk) + ~f (~y [k + 1] , tk+1)

)
(3-89)

The Implicit Trapezoidal method is of order 2, because the global approximation error is

proportional to h2. This method is called implicit because the term k + 1 is defined as a

function of itself. For that reason, the term must be calculated by numerically solving Equa-

tion 3-89 (with Newton-Raphson method, for example). Therefore, one step of the Implicit

Trapezoidal method requires a computation time similar to one step of the Implicit Euler

method, which is much longer than one step of the Explicit Euler method. This is the main

disadvantage of this method. On the other hand, this method is margninally A-stable [25].

This implies that the numerical solution will be stable if and only if the true solution is

stable too (in some cases when solving nonlinear differential equations, this might not hold

true). However, this method is not L-stable [25], which means the stiff components of the

equations can affect the solution by generating abnormally large oscillations that are not

correctly damped. One of the main advantages of this method is that it allows using large

time steps without losing stability.

Let us compare the Implicit Trapezoidal method with the Implicit Euler method. Implicit

Trapezoidal has an order of accuracy of 2, but it is not L-stable. Implicit Euler is L-stable,

but its order of accuracy is 1. Basically, Implicit Trapezoidal method is more accurate than

the Euler methods (explicit and implicit). However, in some cases it can suffer heavy nume-

rical oscillations in the solution, a problem that does not affect the Implicit Euler method.
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Depending on the application and stiffness of the system, one method may be preferable

over the other.

By applying the Implicit Trapezoidal method to Equation 3-63, the following set of algebraic

equations is obtained:

~y [~x, k + 1] = ~y [~x, k] +
h

2

(
~f [~x, ~y [~x, k] , ~z [~x, k]] + ~f [~x, ~y [~x, k + 1] , ~z [~x, k + 1]]

)
(3-90a)

~0 = ~g [~y [~x, k + 1] , ~z [~x, k + 1] , t0 + (k + 1)h] (3-90b)

Where:

~y [~x, k] ≈ ~y (~x, t0 + kh)

~z [~x, k] ≈ ~z (~x, t0 + kh) , ∀k > 0

~y [~x, 0] = ~y (~x, t0)

~z [~x, 0] = ~z (~x, t0)

Equation 3-90a cannot be evaluated directly, so in order to find ~y [~x, k + 1] and ~z [~x, k + 1]

both Equation 3-90a and Equation 3-90b must be solved simultaneously using a numerical

method.

3.2.5. Heun (Explicit Trapezoidal) Method

The Heun method belongs to the family of predictor-corrector methods [15]. It assumes

the integrand in Equation 3-69 varies linearly during the integration interval, just like the

Implicit Trapezoidal method. However, instead of replacing the term ~y (t1) in Equation 3-84

by its approximation ~y [1], the Heun method replaces it by the predictor step ~y [1](p):

~y (t1) ≈ ~y [0] +

∫ t1

t0

[
~f (~y [0] , t0) +

τ − t0
t1 − t0

(
~f
(
~y [1](p) , t1

)
− ~f (~y [0] , t0)

)]
dτ (3-91)

~y (t1) ≈ ~y [0] +
t1 − t0

2

(
~f (~y [0] , t0) + ~f

(
~y [1](p) , t1

))
(3-92)

~y (t1) ≈ ~y [0] +
h

2

(
~f (~y [0] , t0) + ~f

(
~y [1](p) , t1

))
(3-93)

The sequence term ~y [1] is set equal to the corrector step, which corresponds to the previous

numerical approximation:

~y [1] = ~y [0] +
h

2

(
~f (~y [0] , t0) + ~f

(
~y [1](p) , t1

))
(3-94)

Assume the sequence is equally spaced in time, that is tk = t0 + kh. Then the rest of terms

can be calculated inductively as:

~y [k + 1] = ~y [k] +
h

2

(
~f (~y [k] , tk) + ~f

(
~y [k + 1](p) , tk+1

))
(3-95)
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The predictor step ~y [k + 1](p) is calculated by performing one step of the Explicit Euler

method:

~y [k + 1](p) = ~y [k] + h~f (~y [k] , tk) (3-96)

The Heun method is of order 2, because the global approximation error is proportional to h2.

This method is of explicit type because the term k+1 can be calculated by direct evaluation

of Equations 3-96 and 3-95. Therefore, one step of the Heun method requires a computation

time much shorter than one step of either the Implicit Euler method or the Implicit Tra-

pezoidal method. However, this method requires two evaluations of ~f per step, whereas the

Explicit Euler method requires only one, and thus it is roughly two times faster. One of the

main disadvantages of this method is that is not A-stable [25]. This means that the numeri-

cal solution may be unstable even when the true solution is stable. Another problem is that

the stability region of this method is relatively small (although not as small as the stability

region of the Explicit Euler method). This implies that in order to generate a convergent

solution it is normally required to use very small step sizes, and this greatly increases the

computation time required to execute the method.

By applying the Heun method to Equation 3-63, the following set of algebraic equations is

obtained:

~y [~x, k + 1](p) = ~y [~x, k] + h~f [~x, ~y [~x, k] , ~z [~x, k]] (3-97a)

~0 = ~g
[
~y [~x, k + 1](p) , ~z [~x, k + 1](p) , t0 + (k + 1)h

]
(3-97b)

~y [~x, k + 1] = ~y [~x, k] +
h

2

(
~f [~x, ~y [~x, k] , ~z [~x, k]] + ~f

[
~x, ~y [~x, k + 1](p) , ~z [~x, k + 1](p)

])

(3-97c)

~0 = ~g [~y [~x, k + 1] , ~z [~x, k + 1] , t0 + (k + 1)h] (3-97d)

Where:

~y [~x, k] ≈ ~y (~x, t0 + kh)

~z [~x, k] ≈ ~z (~x, t0 + kh) , ∀k > 0

~y [~x, 0] = ~y (~x, t0)

~z [~x, 0] = ~z (~x, t0)

Equation 3-97a can be evaluated directly. After that, Equation 3-97b is solved numerically

to find ~z [~x, k + 1](p). This procedure is then repeated for Equations 3-97c and 3-97d.

3.2.6. Initial Conditions and Setpoints of the Power System DAEs

As discussed at the start of the section, the objective of the time domain simulation is to

study the behaviour of a power system after being perturbed by an external event. Before the
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occurrence of the event the power system is, by design, operating at steady state. Therefore

the initial value conditions required to implement any of the previously discussed methods

are the steady state values of the power system differential and algebraic variables.

The steady state values can be found by performing the following procedure:

• First, let the controller parameter values be given by the vector ~x:

[KA1 · · · KAm R1 · · · Rm]T = ~x

• The power flow of the original system (NOT the extended one) is solved to get the

steady state voltages of the original system4 ~̃Vs0. Then the voltage angles and magni-

tudes are calculated as:

~δ0 = arg
{
~̃Vs0

}
(3-98)

~V0 =
∣∣∣~̃Vs0

∣∣∣ (3-99)

• The admittance value of each constant admittance load is calculated as:

YL0i =
SL0i∣∣∣Ṽs0i
∣∣∣
2 (3-100)

Where SL0i is the steady state consumption of the load of node i. This step is only

performed for nodes with constant admittance loads.

• The generator injected currents are calculated using the node equations (Equation

3-2):

~̃IG0 =




n∑
k=1

Ys1kṼs0k

...
n∑
k=1

YsmkṼs0k




+
(
~SL0 � ~̃Vs0

)∗
(3-101)

Where Ysij is the ij of the admittance matrix of the original system and ~SL0 is the

vector of steady state load consumptions.

• The steady state and transient EMFs in network reference are calculated as:

~̃E0 =




Vs01

...

Vs0m


+







Ra1

...

Ram


+ j




Xq1

...

Xqm





 ◦

~̃IG0 (3-102)

4In steady state all loads are normally specified in terms of their consumed power. Hence, all loads must

be treated as constant power loads during this initial power flow. The model parameters of the loads can

be determined with using the voltages of the initial power flow [5].
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~̃E ′0 =




Vs01

...

Vs0m


+







Ra1

...

Ram


+ j




X ′d1

...

X ′dm





 ◦

~̃IG0 (3-103)

• The steady state rotor angle is calculated as:

~θ0 = arg
{
~̃E0

}
(3-104)

• The steady state values of the transient EMFs and currents in generator reference are

calculated as:

~̃E ′0dq = ~̃E ′0 ◦
[
1∠
(π

2
− ~θ0

)]
(3-105)

~̃I0dq = ~̃IG0 ◦
[
1∠
(π

2
− ~θ0

)]
(3-106)

The subscript 0dq indicates the steady state value of the respective phasor. That subs-

cript was selected over the subscript dq0 to avoid confusion, as the quantities here have

nothing to do with the zero-axis.

• The steady state value of the converted electrical powers (provided by the transient

EMFs) is:

~Pe0 = Re
{
~̃E ′0dq

}
◦Re

{
~̃I0dq

}
+ Im

{
~̃E ′0dq

}
◦ Im

{
~̃I0dq

}

~Pe0 = Re
{
~̃E ′0dq ◦ ~̃I∗0dq

}
(3-107)

• The steady state speed of the generators is 1 p.u.:

~ω0 =
[
~1
]
m×1

(3-108)

• In steady state, all derivatives are zero. Therefore the steady state mechanical powers

of the generators are calculated using the differential equations of the speeds:

~0 = ~1�




2H1

...

2Hm


 ◦



~PM0 − ~Pe0 −




D1

...

Dm


 ◦

(
~ω0 −~1

)



~PM0 = ~Pe0 (3-109)

• The steady state value of the differential variables of the generators’ governors is found

by setting the derivatives in the governors’ equations and solving:

~uD0 =
[
~0
]
m×1

(3-110)
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~uL0 = ~PM0 (3-111)

~uS0 = ~PM0 (3-112)

~uB0 = ~PM0 (3-113)

• The steady state value of the generators’ field voltages referred to stator is calculated

from the differential equations of E ′qi:

~0 = ~1�




T ′d01

...

T ′d0m


 ◦



~Efd0 − Im

{
~̃E ′0dq

}
−




Xd1 −X ′d1

...

Xdm −X ′dm


 ◦Re

{
~̃I0dq

}



~Efd0 = Im
{
~̃E ′0dq

}
+




Xd1 −X ′d1

...

Xdm −X ′dm


 ◦Re

{
~̃I0dq

}
(3-114)

• The steady state value of the differential variables of the generators’ AVRs is found by

setting the derivatives in the AVRs’ equations and solving:

~VC0 =




∣∣∣Ṽs01

∣∣∣
...∣∣∣Ṽs0m
∣∣∣


 (3-115)

~VR0 =




KE1

...

KEm


 ◦

~Efd0 (3-116)

~Vf0 =
[
~0
]
m×1

(3-117)

• The initial values of the vectors ~y and ~z are:

~y (~x, t0) = vec

([
~θ0 ~ω0 Re

{
~̃E ′0dq

}
Im
{
~̃E ′0dq

}
~VC0

~VR0
~Efd0

~Vf0 ~uD0 ~uS0 ~uB0
~PM0

]T)

(3-118)

~z (~x, t0) = vec

([
~δ0
~V0 Re

{
~̃I0dq

}
Im
{
~̃I0dq

}
~uL0

]T)
(3-119)
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Where the operator vec (·) transforms the input matrix into a column vector by con-

catenating the columns of the input matrix5.

It must be noted that the AVR variable VRi and the governor variable uLi are limited, so

their steady state values must satisfy the following inequalities:

VRMINi ≤ VR0i ≤ VRMAXi (3-120a)

0 ≤ uL0i ≤ PMAXi, ∀ 1 ≤ i ≤ m (3-120b)

If the inequality does not hold for all the steady state values of the variables, that means

the steady state for a power system those specific parameters does not exist.

To solve the set of DAEs, the setpoint value of the generators’ controllers is also required.

These can be found from the system steady state performance. The setpoints of the AVRs

are calculated from the differential equations of VRi. As Inequality 3-120 must hold true, the

limits of the equations can be ignored:

~0 = ~1�




TA1

...

TAm


 ◦







KA1

...

KAm


 ◦







VREF1

...

VREFm


−

~VC0 − ~Vf0


−

~VR0







VREF1

...

VREFm


 =




KE1

...

KEm


�




KA1

...

KAm


 ◦

~Efd0 +




∣∣∣Ṽs01

∣∣∣
...∣∣∣Ṽs0m
∣∣∣


 (3-121)

Similarly, the setpoints of the governors are calculated from the equations of uLi:




PREF1

...

PREFm


 = ~PM0 (3-122)

5Let us define the matrix A ∈ Rn×m as:

A = [~a1 · · · ~am] , ~ai ∈ Rn, 1 ≤ i ≤ m

Then the operator vec (·) is defined as:

vec (A) =
[
~aT1 · · · ~aTm

]T ∈ Rnm

Where vec (A) is a column vector of size nm.
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3.2.7. Step Calculation of Numerical Integration Methods

As discussed before, the implicit methods for solving differential equations have their step

defined as the solution of a system of nonlinear equations. This means each step must be

calculated by numerically solving those equations. When explicit methods are used to solve

a set of DAEs, it is also required to solve a system of nonlinear equations at each step. In

this work the step calculation is performed by applying a modified variant of the Dishonest

NR (Newton-Raphson) method. The objective of this subsection is to discuss the implemen-

tation of that method.

In order to generalize the implementation, the integration methods discussed in this work

(except Heun method) will be treated as special cases of the more general theta method [36].

The step equations of the theta method is the following:

~y [k + 1] = ~y [k] + h
(

(1− θth) ~f (~y [k] , tk) + θth ~f (~y [k + 1] , tk+1)
)

(3-123)

Where the parameter θth (not to be confused with rotor angle) is constant during all steps.

Notice that for θth = 0, the theta method reduces to the Explicit Euler method. Similarly,

Implicit Trapezoidal is a theta method with θth = 1
2

and Implicit Euler is a theta method

with θth = 1. Heun method does not correspond to any theta method, but nevertheless

the implementation that is going to be discussed next can be easily applied to it. The step

equation of theta method applied to the poser system DAEs is the following (for convenience

it is assumed the simulation starts at t0 = 0):

~y [~x, k + 1] = ~y [~x, k] + h
(

(1− θth) ~f [~x, ~y [~x, k] , ~z [~x, k]] + θth ~f [~x, ~y [~x, k + 1] , ~z [~x, k + 1]]
)

(3-124a)

~0 = ~g [~y [~x, k + 1] , ~z [~x, k + 1] , (k + 1)h] (3-124b)

Where:

~y [~x, 0] = ~y (~x, 0)

~z [~x, 0] = ~z (~x, 0)

The objective function that must be solved for the step calculation is:

~fth (~yst, ~zst, k) =


 ~y [~x, k] + h

(
(1− θth) ~f [~x, ~y [~x, k] , ~z [~x, k]] + θth ~f [~x, ~yst, ~zst]

)
− ~yst

~g [~yst, ~zst, (k + 1)h]




(3-125)

In explicit methods ~fth does not include the first term. The Jacobian of the objective function
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is:

Jth =



θth

∂ ~f [~x,~yst,~zst]

∂yTst
− I θth

∂ ~f [~x,~yst,~zst]

∂zTst
∂~g[~yst,~zst,(k+1)h]

∂yTst

∂~g[~yst,~zst,(k+1)h]

∂zTst


 (3-126)

Where I is an identity matrix of appropriate dimensions. In explicit methods the Jacobian

only includes the last submatrix (the lower right one).

The algorithm to solve the power systems DAEs using an implicit integration method with

Dishonest NR method for step calculation can be expressed as the following sequence of

steps:

1. Define the time step h and the final simulation time tmax.

2. Define the following algorithm parameters: tol, thresh, itermax. The default values used

in this work for these parameters are:

tol← 10−3

thresh← 5

itermax ← 20

3. Calculate the steady state vectors ~y (~x, 0), ~y (~x, 0) and the controllers’ setpoints. The

initial values of the solution are:

~y [~x, 0]← ~y (~x, 0)

~z [~x, 0]← ~z (~x, 0)

4. Calculate the Jacobian Jth. The Jacobian will be kept the same during all the steps.

Exceptions to this are the steps when a disturbance occurs or when slow convergence

is detected. In both cases the Jacobian is recalculated.

5. k ← 1

6. If kh > tmax go to step 17.

7. If a disturbance occurs at this step (or between this step and the previous one), update

the admittance matrix and recalculate Jth.

8.


 ~y [~x, k]

~z [~x, k]


←


 ~y [~x, k − 1]

~z [~x, k − 1]




9. l← 0, l2 ← 0
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10. ~fthl ← ~fth (~y [~x, k] , ~z [~x, k] , k)

11.


 ~y [~x, k]

~z [~x, k]


←


 ~y [~x, k]

~z [~x, k]


− J−1

th
~fthl

12. l← l + 1, l2 ← l2 + 1

13. If ‖~y [~x, k]‖∞ < tol and ‖~z [~x, k]‖∞ < tol the next step has been found. Assign k ← k+1

and go back to step 6.

14. If l ≥ itermax the next step could not be calculated. Print error message and go to step

18.

15. If l2 ≥ thresh there is slow convergence. Recalculate J−1
th and assign l2 ← 0.

16. Go back to step 10.

17. Return solutions ~y and ~z.

18. End algorithm.

The algorithm can be easily adapted to explicit methods by calculating ~y [~x, k] directly and

removing it from steps 8 and 11. Special care must be taken when implementing the Heun

method, as it requires two NR iterations per step (see Equation 3-97).

3.3. Transient Stability Analysis: Energy Functions

One of the most important questions of transient stability analysis is how much time can

a power system withstand a disturbance (fault) without becoming unstable. The maximum

value of such time is called Critical Clearing Time (CCT) of that specific fault. The value

of the CCT depends on the type of fault, its location, and the power system characteristics.

The CCT of the fault presented in Figure 3-1 lies between 0.10 s and 0.18 s. The exact

value of the CCT is of great interest for the design and coordination of the power system

protections.

The CCT for a specific fault can be calculated using time-domain simulation by performing

various simulations with different fault durations in a bisection-like procedure [28]. Each

new simulation narrows down the range where the CCT lies until the desired accuracy is

achieved. This procedure is basically a brute force approach and as such the computation

time required is too high.
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The evident need of fast methods of calculating the CCT is a problem that has been extensi-

vely studied in the past decades [1, 37, 38, 39, 40]. For the simple case of the Single Machine

Infinite Bus (SMIB) system, the CCT can be calculated directly using a method known

as the Equal Area Criterion [5]. For the general case of a power system with an arbitrary

number of machines, there are various methods which are basically generalizations of the

equal area criterion. These methods are based on the stability theory of energy functions

developed by Lyapunov in 1892 [41]. They are usually called direct methods because they

allow to calculate the CCT without the need of a complete time-domain simulation.

Before discussing any direct method it is convenient to rewrite the system DAEs in terms

of the time, as the disturbances change the equations. In general, it is possible to recognize

three conditions:

• Pre-fault: It is the system condition before the disturbances begin.

• Fault: It is the system condition during the fault (a short-circuit normally). It may

include reclosing [4].

• Post-fault: It is the system condition after the fault has been cleared. The post-fault

condition is normally different than the pre-fault condition (fault clearing normally

requires the disconnection of the faulted line or element).

These three conditions can be expressed in equations as:

~̇y (t) = ~fP (~x, ~y (t) , ~z (t)) , t < tF (3-127)

~0 = ~gP (~y (t) , ~z (t) , t) , t < tF (3-128)

~̇y (t) = ~fF (~x, ~y (t) , ~z (t)) , tF ≤ t < tF + tcl (3-129)

~0 = ~gF (~y (t) , ~z (t) , t) , tF ≤ t < tF + tcl (3-130)

~̇y (t) = ~f (~x, ~y (t) , ~z (t)) , tF + tcl < t (3-131)

~0 = ~g (~y (t) , ~z (t) , t) , tF + tcl < t (3-132)

Where fP and gP represent the pre-fault DAEs, fF and gF represent the fault DAEs and

f and g represent the post-fault DAEs. The pre-fault condition is of minimal interest as

it corresponds to the steady state of the power system. The fault condition determines the

initial state of the post-fault condition. The post-fault condition determines the stability of

the system under the given fault. In conclusion, the stability of the system is reduced to

the stability of the set of DAEs described by Equation 3-131 and 3-132, given the initial

conditions determined by Equations 3-129 and 3-130. The CCT then corresponds to the

maximum value of tcl for which the post-fault condition is stable.
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3.3.1. Lyapunov’s Method

Define the following system of autonomous (time independent) differential equations with

equilibrium point (steady state) at the origin:

~̇y = ~f (~y) (3-133)

~0 = ~f
(
~0
)

(3-134)

In systems where the equilibrium point (EP) is not at the origin a simple substitution of

variables can shift the state-space in order to have the EP at the origin, so there is no

loss of generality. Lyapunov established in his work that the stability of an EP of a set of

differential equations can be asserted without numerical integration. The only requirement

is the definition of what is called Lyapunov function or energy function W (~y). It is possible

to define various energy functions for the same set of differential equations. The EP is

asymptotically stable [42] if and only if there exists at least one energy function satisfying

the following conditions over the neighbourhood (also called region of attraction or stability

region) of the EP [4]:

• W (~y) > 0, ~y 6= ~0

• W
(
~0
)

= 0

• dW (~y)
dt

=
∑
i

∂W (~y)
∂yi

fi (~y) = ~∇W (~y)T ~f (~y) < 0, ~y 6= ~0

Another way of asserting the stability of the EP is by using the Local Invariant Set Theorem

[42]. This theorem establishes that if the energy function satisfies the inequality dW (~y)
dt
≤ 0

in a region of the form W < Wl that only contains the EP of interest, then that EP is

asymptotically stable. Furthermore, the system state will converge to that EP if the initial

point is inside that region.

In the context of power systems, one main conclusion can be drawn: if the fault condition

drives the initial state of the post-fault condition outside the region of attraction of the stable

EP (SEP), the system will become unstable. Otherwise, the system is stable. The stability

problem has been reduced to two subproblems: the construction of a suitable energy function

for the power system DAEs and the determination of the largest stability region.

For general power system no suitable energy functions have been found yet [4, 43]. On top of

that, Lyapunov’s method cannot be applied to non-autonomous equations (a power system

perturbed by stochastic load, for example). If these conditions are ignored, direct methods

can still be applied. The results will not be exact but they will be accurate enough (although

having no theoretical validity). The subproblems now are the construction of an energy fun-

ction and the determination of a stability region that minimizes the introduced error.
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3.3.2. Center of Inertia (COI) Transformation

Before deriving the energy function used in this work, it is convenient to introduced a trans-

formation of the variables that simplify the expressions of the energy function. First, let us

define the Center of Inertia (COI) of the rotor speeds and angles as:

θo =
1

HT

m∑

i=1

Hiθi (3-135)

ωo =
1

HT

m∑

i=1

Hiωi (3-136)

Where:

HT =
m∑

i=1

Hi (3-137)

The COI transformation for rotor angles and speeds is defined as:

θi = θi − θo (3-138)

ωi = ωi − ωo (3-139)

Where 1 ≤ i ≤ m. The COI transformation can be applied to electrical angles too:

δi = δi − θo (3-140)

Where 1 ≤ i ≤ n. Notice that θo and ωo vary with respect to time, so the transformation

must be applied at each time instant considered.

3.3.3. Transient Energy Function (TEF)

The energy function in Lyapunov’s method is a generalization of the energy in mechanical

systems. One common example is a spring-mass system. The energy function of that system

is simply the sum of the kinetic energy of the mass and the potential energy of the spring.

The energy is calculated as the first integral of the motion. By analogy, the first candidate

energy function for power systems is the first integral of motion. In fact, this candidate has

been used previously with satisfactory results [4]. In this work the energy function used is a

simplified version of the first integral of motion which is discussed in [43]. The function also

includes a term that takes into account the transfer conductances of the power system [4].

The function was derived following the suppositions of section 3.2, specially the no-saliency

assumption, and is showed next:

W (~y (t) , ~z (t) , t) = WKE (~y (t) , ~z (t) , t) +WPE (~y (t) , ~z (t) , t) (3-141)

WKE (~y (t) , ~z (t) , t) = ωs

m∑

i=1

Hiω
2
i (3-142)
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WPE (~y (t) , ~z (t) , t) =
8∑

i=1

WPEi (3-143)

Where each potential energy term is defined as (dependence on ~y (t), ~z (t) and t is omitted):

WPE1 = −
m∑

i=1

∫ t

tF

Di

(
dθi (τ)

dt

)2

dτ (3-144)

WPE2 = −
m∑

i=1

∫ t

tF

Pmi (τ)

(
dθi (τ)

dt

)
dτ (3-145)

WPE3 =
n∑

i=1

∫ t

tF

Pli (τ)

(
dδi (τ)

dt

)
dτ (3-146)

WPE4 =
n∑

i=1

∫ t

tF

Qli (τ)

Vi (τ)

(
dVi
dt

)
dt (3-147)

WPE5 =
1

2

[
m∑

i=1

(
E ′di (t) Idi (t) + E ′qi (t) Iqi (t)

)
−

n∑

j=1

Qli (t)

]

− 1

2

[
m∑

i=1

(
E ′di (tF ) Idi (tF ) + E ′qi (tF ) Iqi (tF )

)
−

n∑

j=1

Qli (tF )

] (3-148)

WPE6 =
m∑

i=1

∫ t

tF

Idi (τ)

(
dE ′qi (τ)

dt

)
dτ (3-149)

WPE7 = −
m∑

i=1

∫ t

tF

Iqi (τ)

(
dE ′qi (τ)

dt

)
dτ (3-150)

WPE8 =
1

2

n∑

i=1

n∑

j=1

∫ t

tF

Gij (τ)Vi (τ)Vj (τ) cos
(
δi (τ)− δj (τ)

)
(
d
(
δi + δj

)
(τ)

dt

)
dτ (3-151)

As the energy function is expressed in terms of COI variables, it is also called Transient

Energy Function (TEF) [4]. The terms Pli (t) and Qli (t) are the active and reactive power

demanded by the nonlinear load of node i, respectively. The term Gij (t) is the real part

of Yij (t), the ij element of the admittance matrix at time t. The time dependence is sta-

ted because of the possible presence of time-varying admittance loads (stochastic loads, for

example). The integrals with respect to time imply that the TEF not only depends on the

initial point of the post-fault condition, but how the system state was driven to that point.

Therefore, in order to evaluate the TEF it is necessary to perform a time-domain simulation

of the fault condition. Even though a simulation is required, the post-fault condition does not

need to be simulated. This greatly reduces the computation time required. The integrals in

the TEF can be evaluated numerically with one of the methods presented previously. In this

work the integrals were always evaluated using the Implicit Trapezoidal method, even if the

simulation was performed using another method. The reason is because Implicit Trapezoidal
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introduces a smaller approximation error.

It must be noted that the TEF is constructed for the post-fault equations but it was defined

to be zero at the pre-fault EP instead of the post-fault EP. There is no problem in doing

so, as it will be seen in the next subsection.

3.3.4. Potential Energy Boundary Surface (PEBS) Method

Having defined a TEF, now it is necessary to determine an appropriate stability region. In

order to do so, let us refer again to the Local Invariant Set Theorem. This theorem allows

asserting the stability of the system in terms of regions of the form W < Wl. Therefore,

the largest stability region can be approximated as W < Wcr, where Wcr is called critical

energy. Regions of the form W < Wcr where W is defined to be zero at the SEP are equiva-

lent to regions of the form W ′ < W ′
cr where W ′ is defined to be zero at another point (the

pre-fault EP) [43]. Therefore, the TEF defined in the previous subsection can be used to

calculate the stability region of a power system.

Recalling that the fault condition drives the initial point away from the SEP, if the fault lasts

long enough it will end up driving the initial point outside of the stability region. Hence, the

time instant at which the initial point crosses the stability boundary is:

tcr = tF + tCCT (3-152)

Where tCCT is the CCT. The boundary of the stability region is clearly of the form W = Wcr.

Then, tcr is the time at which W = Wcr. In conclusion, the problem of calculating the CCT

reduces to calculating Wcr.

There are various methods in the literature for calculating Wcr. One logical approach would

be to calculate Wcr as the largest value of Wl that satisfies the conditions of the Local

Invariant Set Theorem. Such calculation cannot be performed exactly, but it can be appro-

ximated, as proposed in [38]. The problem is this approach yields very conservative results

because the true largest stability region is not necessarily of the form W < Wcr.

The method implemented in this work is the Potential Energy Boundary Surface (PEBS)

method proposed in [39], which is based on the equal area criterion. Figure 3-2 shows the

potential TEF of a SMIB system using the classical model for the generator (constant E ′di
and E ′qi) [4], and without controllers. The stable equilibrium point is marked with a black

dot. With the previous simplifications the potential TEF only depends on the rotor angle θ

(subscript dropped because the SMIB only have one generator). In the context of the equal

area criterion, the power system can be thought as trying to remove the excess kinetic energy

injected by the fault to the generators. In order to do so, the system converts that energy
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Figure 3-2.: Potential transient energy function of a SMIB system.

into electrical (potential) energy. However, the potential energy is bounded (see Figure 3-2),

so the system cannot remove infinite amounts of kinetic energy. If the total energy surpasses

one of the relative maxima of the potential energy, the system will not be able to convert all

the excess kinetic energy. This implies the generator speed will never settle to the synchro-

nous value, the rotor angle will increase (or decrease) without bound and the system will be

unstable.

Graphically, the system state can be thought as a ball rolling inside a bowl formed by the

potential energy graph. When the total energy of the system exceeds one of the relative

maxima of the potential energy, the ball will exit the bowl to keep rolling infinitely without

ever returning (instability). Otherwise, the ball will keep rolling inside the bowl until it

settles down at the bottom (the SEP). The stability region of the SMIB is simply the

interval between the two relative maxima shown in Figure 3-2 (the bowl).

The PEBS method is a generalization of the bowl analogy to multimachine power systems.

It is based on two suppositions:

• The potential TEF of the multimachine power system conforms a multidimensional

“bowl” (for example, see Figure 3-3).

• The stability region corresponds to the bowl. Therefore, the boundary of the region

corresponds to the rim of the bowl.

The execution of the PEBS method is straightforward. The energy function is evaluated

multiple times, each one increasing the time value, until the maximum value of the potential



3.3 Transient Stability Analysis: Energy Functions 83

−100

0

100

200

−100

0

100

200

−10

0

10

20

30

θ
1
 (COI)θ

2
 (COI)

W
P

E

Figure 3-3.: Potential transient energy function of a two-generator system with infinite bus

(adapted from [1]).

energy over the fault trajectory is found. This value is the critical energy, that is:

Wcr = max
t
WPE (3-153)

Then tcr is calculated as the time at which W = Wcr. Finally, the CCT is calculated from

Equation 3-152. Figure 3-4 shows the application of the PEBS method graphically.

There may be cases with various possible values of tcr. In this work it is assumed that the

CCT always corresponds to the lowest possible value of tcr at which W = Wcr.
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Figure 3-4.: Calculation of the CCT using the PEBS method and assuming tF = 0 (adapted

from [2]).



4. Proposed Tuning Methods

The analysis methods described in the previous chapter provide the necessary information

to assess the power system and the controllers’ response. This chapter presents two pro-

posed methods for controller tuning using the described analysis methods. One method is

focused on minimizing the steady state perturbations of the system, whereas the other one

is focused on improving the fault response. Both methods take into account the stochastic

perturbations produced by the load variations. In order to not having to modify the existent

analysis methods to include stochastic effects, a simple approach for treating the stochas-

tic load perturbations as time-dependent deterministic effects is proposed in the next section.

4.1. Stochastic Load Modelling

The main focus of this work is to take into account the stochastic variations in the power

consumption of the loads. A load in a transmission system can represent the consumption of

a whole city, with all the devices that are being turned on and off continuously. These events

produce unpredictable changes on the consumption of the load. As these variations cannot

be known with certainty, it is necessary to use appropriate stochastic models to represent

them. Stochastic load effects have already been studied in the literature [44, 2, 45, 46]. This

work follows the models of [44] and [2] and represents the stochastic load variations as White

Gaussian Noise (WGN). WGN is defined as the derivative of a standard Wiener process

WP = {WP (t) , t ≥ 0} (do not confuse WP with an energy function) which satisfies the

following conditions [44]:

• WP (t) is continuous.

• WP (0) = 0 with probability 1.

• For any t ≥ 0, WP (t) is a random normal variable with variance t. That is:

WP (t) ∼ N (0, t)

• The process is independent of its previous values. The difference between two values

belongs to the following distribution:

WP (t+ h)−WP (t) ∼ N (0, h) , t, h > 0
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Where N (µ, σ2) denotes a normally distributed random variable with mean µ and variance

σ2. One important property of the normal distribution is the following one:

X ∼ N
(
µ, σ2

)
⇔ kX ∼ N

(
kµ, k2σ2

)
, k, µ, σ ∈ R, σ ≥ 0

The standard Wiener process can be discretized using a time step h as follows:

WP [k + 1] = WP [k] +
√
kξ [k] , WP [k] = 0

Where WP [k] is the discretized value of WP (kh) and ξ [k] ∼ N (0, 1).

In this work only constant power and constant admittance loads are considered. For cons-

tant power loads the model adopted is the one proposed in [44]. Let SLi (t) be the power

consumption of the load of node i at time t, then such consumption can be expressed as:

SLi (t) = SL0i (1 + λidWi (t)) = PLi (t) + jQLi (t) (4-1)

Where SL0i is the steady state load consumption and dWi (t) is a WGN variable. Similarly,

for constant admittance loads the model adopted is the one proposed in [2]. Let YLi (t) be

the admittance of the load of node i at time t, then such admittance can be expressed as:

YLi (t) = YL0i (1 + λidWi (t)) = GLi (t) + jBLi (t) (4-2)

Where YL0i is the steady state admittance. The load processes are independent: dWi (t1) and

dWj (t2) are independent for any valid values of i, j, t1 and t2. Notice that these models

assume that the power factor remains constant.

The previous models assume the mean load consumption (or admittance) does not change.

The previous assumption is not always acceptable. The mean load consumption experiments

very low frequency changes associated with the daily (and weekly) periodicity of the load.

As this change is very slow, it can be modelled approximately as a linear change. Again, the

nature of this change cannot be exactly determined. Thus, the slope of the linear variation

is a stochastic variable. The final model for constant power loads can be written as:

SLi (t) = SL0i (1 + λidWi (t)) (1 + ρit) = PLi (t) + jQLi (t) (4-3)

And for constant admittance loads as:

YLi (t) = YL0i (1 + λidWi (t)) (1 + ρit) = GLi (t) + jBLi (t) (4-4)

Where the slope ρi is constant during a single observation but varies between observations.

The load variations are stochastic processes that affect the power system response. In fact,

the response of the system affected by a stochastic process is a stochastic process as well.
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This means the system response now is described by a set of Stochastic Differential Algebraic

Equations (SDAEs) instead of a set of DAEs. There are methods for solving sets of SDAEs

[44], but they are far more complex than the numerical integration methods explained before,

specially when applied to sets of equations of arbitrary size.

One critical observation is that stochastic processes of Equations 4-3 and 4-4 are inde-

pendent of the system response. This implies the stochastic process of the loads and the

stochastic process of the system response are decoupled, and thus do not need to be cal-

culated simultaneously.

Based on the previous observation, this work proposes the following two-step procedure for

calculating observations of the system response:

1. The load variations are calculated first, and the resulting observations are be treated

as time-varying deterministic load profiles.

2. Each load profile is inputted to the deterministic power system model (previous chap-

ter) and the response for each input is calculated. The obtained system responses are

the desired observations.

The idea is to seize the fact that the loads are the only stochastic components of the power

system. By calculating the observations of the loads first, the rest of the process becomes

deterministic. After that it can be solved using standard numerical integration methods.

Figure 4-1 shows graphically this procedure.

Load
stochastic
process

...

Load observations

Power
system
DAEs

Power
system
DAEs

...
Power
system
DAEs

...

System response
observations

1

Figure 4-1.: Procedure for calculating the observations of the power system response.
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The load variation processes must de discretized in order to be used in Step 2. For constant

power loads Equation 4-3 is discretized using a time step h as:

SLi [k] = SL0i

(
1 + λi

√
hξi [k]

)
(1 + ρihk) = PLi [k] + jQLi [k] (4-5)

Where SLi [k] is the discretized value of SLi (kh) and ξi [k] ∼ N (0, 1). Similarly, for constant

admittance loads Equation 4-4 is discretized using a time step h as:

YLi [k] = YL0i

(
1 + λi

√
hξi [k]

)
(1 + ρihk) = GLi [k] + jBLi [k] (4-6)

Where YLi [k] is the discretized value of YLi (kh). In this work the slopes ρi will be assumed

to follow an uniform distribution. The load processes are independent: ξi [k] and ξj [l] are

independent for any valid values of i, j, k and l. Similarly, ρi and ρj are independent for any

valid values of i and j. The variables ξi [k] and ρi can be calculated using a Random Number

Generator (RNG).

4.2. Steady State Tuning

The stochastic load variations affect the power systems continuously, all the time. Even when

no disturbances are present, strictly speaking the power system is not at steady state. The

system keeps oscillating continuously around the SEP because the loads are continuously

perturbing it. This is illustrated in Figure 4-2. The magnitude of the oscillations is small,

but that does not make them less problematic. Small oscillations can produce resonance in

the power system, eventually leading it to instability1. This section discusses the first tuning

method proposed, which aims to minimize the steady state oscillations produced by the

stochastic load variations.

The purpose of the AVR is to keep the voltage of its respective generator at its specified

(steady state) value. Ideally, the control action of the AVR should keep the generator voltage

constant regardless of any transient event happening on the system. In reality the generator

voltage suffers a transient variation after the event occurs, and the magnitude of such varia-

tion is a measure of the quality of the AVR. Therefore, the AVR tuning can be performed

by minimizing the magnitude of the transient variations of the voltage. More formally, such

variations can be measured using an error integral criterion like the Integral Absolute Error

(IAE). Applying the IAE criterion to the AVR of generator i yields (assuming the time

period of interest starts at 0):

IAEVi (~x) =

∫ ∞

0

|Vi (~x, t)− V0i| dt (4-7)

1This phenomenon is the main subject of study of the the field of small-signal stability [15, 4, 22].
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Figure 4-2.: Simulation of a generator in a system with stochastic load perturbation (ob-

served response in blue, ideal response in red).

Where Vi (~x, t) is the voltage at time t of generator i given the controller parameter values

of ~x, and V0i = Vi (~x, 0). The voltage curve can be found, along with the rest of the system

variables, through time-domain simulation. The simulation (and thus the generator voltage),

depend on ~x. It must be noted that the steady state value of the voltage is independent of

the controller and thus it is written as the constant V0i. Notice that as Vi (~x, t) is found

through the simulation, the voltage is only known up to the final simulation time tf and the

integral in (26) must be truncated:

IAEVi (~x) =

∫ tf

0

|Vi (~x, t)− V0i| dt (4-8)

Similarly, applying the IAE criterion to the governor of generator i yields:

IAEωi (~x) =

∫ tf

0

|ωi (~x, t)− 1| dt (4-9)

A single metric of quality of the response of the power system generators can constructed as

a weighted sum of all the previously defined IAEs:

fs (~x) =

m∑
i=1

[wV iIAEVi (~x) + wωiIAEωi (~x)]

m∑
i=1

[wV i + wωi]
(4-10)

fs (~x) =

m∑
i=1

[
wV i

∫ tf
0
|Vi (~x, t)− V0i| dt+ wωi

∫ tf
0
|ωi (~x, t)− 1| dt

]

m∑
i=1

[wV i + wωi]
(4-11)

It is evident that if the value of fs (~x) is smaller, the response of the system generators is

better. The vales of the weights can be adjusted to give more importance to certain genera-

tors. In this work the value of wV i was set to 1 if generator i had AVR. If not wV i was set
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to 0. Similarly, the value of wωi was set to 1 if generator i had governor. If not wωi was set to 0.

It must be noted that the system response is a stochastic process, and thus fs (~x) is a random

variable. In order to have a reliable deterministic metric, a new function is defined as the

expected value of fs (~x):

fo (~x) = E [fs (~x)] (4-12)

The proposed tuning method consists in finding the vector of controller parameters ~x? which

minimizes the following optimization problem:

~x? = min
~x
fo (~x) (4-13)

It must be noted that fo (~x) is a parameter of the random variable fs (~x), and as such it can

only be estimated. In this work, fo (~x) was estimated by taking the average of a set of samples

of fs (~x). The simulations required to calculate fo (~x) are performed with the stochastic load

variations as the only disturbances of the power systems (no other disturbances or faults are

considered). It must be noted that the estimation of fo (~x) is also a random variable.

4.3. Fault Response Tuning

The stochastic variation of the load introduces variability to the CCT, such that a single

fault can present different values of CCT. This is illustrated in Figure 4-3. The observations

of the stochastic CCT are calculated by applying the PEBS method in an analogous as

the stochastic system response. This section discusses the second tuning method proposed,

which aims to maximize the CCT and minimize its variability.

In order to achieve a robust fault response, not only the CCT must be maximized, but its

variability must be reduced as well. This is equivalent to maximizing the mean CCT and

minimizing its variance. To achieve both objectives simultaneously, the following objective

function can be used:

fa (~x) = σ2
C (~x)− µ2

C (~x) (4-14)

Where ~x is the vector of tunable parameters, µC is the mean of the CCT of the considered

fault, and σ2
C is the population variance of the CCT of the considered fault. The objective

of the tuning process is to improve the fault response of a power system for any given fault.

Therefore, the objective function should have information of all possible faults. However,

in large scale systems the number of elements that can suffer a fault is too high, making

computationally impossible to consider them all. For that reason the objective function

is defined as a weighted sum of estimated minimum CCTs for a selected subset of the

possible faults in the power system. The subset of faults and their weights can be selected
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to be give greater importance to the most critical faults, while considering at the same time

representative faults of all the areas of the power system. The proposed objective function

can be expressed as follows:

fb (~x) =

|Fs|∑
i=1

wi [σ
2
Ci (~x)− µ2

Ci (~x)]

|Fs|∑
i=1

wi

(4-15)

Where Fs is the subset of faults considered, |Fs| is the number of faults in the set Fs, wi
is the weight of fault i of the set, µCi is the mean of the CCT of fault i and σ2

Ci is the

population variance of the CCT of fault i. As the mean and population variance cannot

be exactly known, they must be estimated with the average and the sample variance. The

proposed objective function is now written as follows:

fo (~x) =

|Fs|∑
i=1

wi

[
1

ns−1

ns∑
k=1

[
τCik (~x)− 1

ns

ns∑
l=1

τCil (~x)

]2

−
(

1
ns

ns∑
k=1

τCik (~x)

)2
]

|Fs|∑
i=1

wi

(4-16)

fo (~x) =

|Fs|∑
i=1

wi

[
1

ns−1

[(
ns∑
k=1

τ 2
Cik (~x)

)
− 1

ns

(
ns∑
k=1

τCik (~x)

)2
]
−
(

1
ns

ns∑
k=1

τCik (~x)

)2
]

|Fs|∑
i=1

wi

(4-17)

fo (~x) =

|Fs|∑
i=1

wi

[
1

ns−1

ns∑
k=1

τ 2
Cik (~x)− 2ns−1

n2
s(ns−1)

(
ns∑
k=1

τCik (~x)

)2
]

|Fs|∑
i=1

wi

(4-18)

Where τCik (~x) is the k-th sample of the CCT of fault i and ns is the number of CCT sam-

ples taken (it is assumed to be the same for all faults). Notice that τCik (~x) is not a random

variable, it is a sample.

The proposed tuning method consists in finding the vector of controller parameters ~x? which

minimizes the following optimization problem:

~x? = min
~x
fo (~x) (4-19)

The samples of the CCT required to evaluate fo (~x) are calculated using the PEBS method.

It must be noted that fo (~x) is a random variable corresponding to the estimation of fb (~x).
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4.4. Optimization Using Cuckoo Search

The two tuning methods presented before were expressed as optimization problems of sto-

chastic continuous functions. This work proposes using the metaheuristic Cuckoo Search for

solving these optimization problems.

The original Cuckoo Search (CS) method [10] is a metaheuristic for global optimization of

continuous functions which is based on the brood parasitism of the cuckoos. The cuckoos

put their eggs in the nests of other species of birds for the host bird to hatch the eggs.

Cuckoos usually remove some eggs of the host bird to increase the probability of their own

eggs hatching. The host bird can also detect the alien eggs, in which case she can remove

them from the nest or migrate to another place and build a new nest there. The CS method

makes an analogy where the eggs represent candidate solutions, the nests represent sets of

candidate solutions and the cuckoos represents agents in charge of creating new solutions.

In this case it is assumed that each nest contains only one egg and there is only one cuckoo

per nest, therefore eggs, nests and cuckoos can be considered as the same. This method is

based on three idealized rules:

• Each cuckoo lays one egg at a time, in a randomly chosen nest.

• Nests with eggs of high quality are carried over to the next generation.

• The number of nests is fixed and each egg laid by a cuckoo has a probability pa of

being discovered by her host bird. If an egg is discovered, the host bird can dump it

or build a new nest. As it was assumed that each nest has one egg, if an alien egg is

discovered the host bird will replace it with a randomly generated egg.

A pseudo-code of the method based on the previous rules is shown in Algorithm 1. A fully

implemented MATLAB R© version of the algorithm is provided by the authors in [47]. The only

metaparameters of the algorithm are ps and pa. The default values of ps and pa, according

to the authors [10], are ps = 25 and pa = 0.25. The authors also state that the performance

of the algorithm has very low sensitivity to the metaparameters [10], so most of the time

the default values were used. To generate new solutions the method uses Lévy flights, which

means a new solution ~x(l+1) is generated using ~x(l) as:

~x(l+1) = ~x(l) + ~α ◦ −−→Lévy (β) (4-20)

Where ~α represents the step length in each dimension (normally taken as 1 for all dimensions,

as in this work), ◦ represents the Hadamard (elementwise) product and
−−→
Lévy (β) is a vector

of random independent variables following a Lévy distribution:

{−−→
Lévy (β)

}
i
∼ u = t−β, 1 < β ≤ 3 (4-21)
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Algorithm 1 Cuckoo Search

1: begin

2: define objective function fo (~x)

3: generate initial population of ps nests ~xi and evaluate their fitness

4: while (t < MaxGeneration) or (StopCriterion) do

5: generate a random cuckoo using a Lévy flight and evaluate its fitness Fi
6: choose a random nest j whose fitness is Fj;

7: if (Fi < Fj) then

8: replace nest j with cuckoo i

9: end if

10: a fraction pa of the worst nests are abandoned and replaced with randomly gene-

rated new nests

11: keep the nests with the best quality

12: rank nests and find the current best one

13: end while

14: output best solution

15: end

The Lévy distribution has and infinite mean and an infinite variance, and the scale of the

distribution is controlled with the parameter β, which was chosen to be 1.5. To computatio-

nally generate numerical samples of the Lévy distribution the Mantegna algorithm was used

[48]. It must noted that, although not explicitly stated in the algorithm, the nest population

must be confined to a finite search space defined by the user. For the controller tuning the

search space can be defined as the range of admissible or typical parameter values.



5. Test and Results

This chapter discusses the different tests performed for validating the proposed tuning met-

hods. The development of the tests is explained in detail and the obtained results are dis-

cussed.

5.1. IEEE14: Steady State Tuning

This section discusses the test performed to validate the proposed steady state tuning met-

hod. The test consisted on the tuning of the generator controllers of the IEEE (Institute

of Electrical and Electronics Engineers) 14 bus system, widely known in the literature as

IEEE14. The oneline diagram of the system is shown in Figure 5-1.

slack

Bus 10

Bus 9
Bus 8

Bus 11

Bus 14

Bus 13

Bus 12

Bus 3

Bus 2

Bus 1 Bus 4

Bus 7Bus 6

Bus 5

Figure 5-1.: Oneline diagram of the IEEE14 system.

The complete data of the system is available in [49]. The original IEEE14 system does not

have generator or controller data, but in 2015 Demetriou et. al. estimated the generator
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and controller data of the IEEE14 and other reference systems [50]. The controller and

generator data used for the IEEE14 system can be found in [3]. The generators of nodes 3,

6 and 8 act as synchronous condensers. For convenience, the armature resistance (Rai) of

the synchronous condensers was neglected. The complete data with this modification can be

found in Appendix A. The tunable parameters estimated in [50] are presented on Table 5-1.

Table 5-1.: Tunable parameters of the IEEE14 system [3].

Parameter Value [p.u.]

Amplifier Gain, Generator 5 (node 8), KA5 50

Amplifier Gain, Generator 4 (node 6), KA4 25

Amplifier Gain, Generator 3 (node 3), KA3 400

Amplifier Gain, Generator 2 (node 2), KA2 400

Amplifier Gain, Generator 1 (node 1), KA1 400

Speed Droop, Generator 2 (node 2), R2 0.05

Speed Droop, Generator 1 (node 1), R1 0.05

Generators 3 to 5 act as synchronous condensers and thus do not have governor.

In this test the error function was calculated using simulations of 30 seconds, using the im-

plicit trapezoidal method and a time step of 0.2 seconds. The parameters λi were set at a

value of 0.5 % for all the loads, and the parameters ρi were set to vary uniformly between

±0.2 %. The loads were modelled with the constant power model (independent of voltage).

The controller tuning was performed using two methods: the Response Surface method (clas-

sical approach in the field of design of experiments [51]) and the steady state tuning method.

The obtained results were used to compare both methods.

In order to perform the optimization through the Response Surface method, a statistical mo-

del must be constructed. The possible factors influencing the value of the objective function

are the controller parameters. Before constructing the model, an experiment must be carried

out to detect which of the factor have a significant influence over the response variable (the

objective function).

5.1.1. Screening Experiment

The screening experiments are applied to detect the significant factors of a process. The

non-significant factors are free to be set on any convenient value, as they do not have much
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impact on the response of the process. The possible factors influencing the process can be

too much to be tested thoroughly; therefore the screening process must require an amount

of runs as low as possible.

A common screening experiment is the 2k factorial design, in which the process is executed 2k

times, varying the value of the possible factors from their minimum value to their maximum

value, performing all the possible combinations of factor values [51].

In this test, a 27 factorial design with no repetitions (1 sample per point of the design) was

selected. In order to execute the experiment, the experimental region was defined by setting

the levels of operation of the factors, based on the typical values they can take [27]. The

values of the factor levels are in Table 5-2.

In the experiment, the error function is evaluated with each possible combination of the

factor levels, for a total of 27 = 128 runs.

Table 5-2.: Design factor levels.

Design Factor Low Level High Level

Amplifier Gain, Generator 5 (node 8), KA5 25 500

Amplifier Gain, Generator 4 (node 6), KA4 25 500

Amplifier Gain, Generator 3 (node 3), KA3 25 500

Amplifier Gain, Generator 2 (node 2), KA2 25 500

Amplifier Gain, Generator 1 (node 1), KA1 25 500

Speed Droop, Generator 2 (node 2), R2 0.02 0.1

Speed Droop, Generator 1 (node 1), R1 0.02 0.1

The process is not only affected by the variation of the factors, but by the interaction bet-

ween factors as well. The significance of the factors and its interactions is tested through

an Analysis of Variance (ANOVA). The total amount of effects plus their interactions y

27 − 1 = 127, and they cannot be tested all at once, so some factors or interactions must

be discarded as non-significant beforehand. To do this, a normal probability plot of the fac-

tors and interactions is drawn. The factors and interactions close to the normal line can

be represented as a whole set of normal residuals. This means the effect of these factors

and interactions do not have a significant influence over the response variable, and they can

represent the normal residuals on the fixed effects model of the ANOVA.

For simplicity, the effect of each factor (tunable parameter) will be coded with a letter, and
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interactions will be coded as the concatenation of those letters. The coding of the effects is

shown in Table 5-3.

Table 5-3.: Design factor coding.

Parameter Value [p.u.]

Amplifier Gain, Generator 5 (node 8), KA5 A

Amplifier Gain, Generator 4 (node 6), KA4 B

Amplifier Gain, Generator 3 (node 3), KA3 C

Amplifier Gain, Generator 2 (node 2), KA2 D

Amplifier Gain, Generator 1 (node 1), KA1 E

Speed Droop, Generator 2 (node 2), R2 F

Speed Droop, Generator 1 (node 1), R1 G

E:Ka1

D:Ka2
F:R2

ACDFG
ABDE
ACEFG

ABCDEFGABBCGCEFGBCDFBCDEGCDFGABCFGBCEFABDFGBCDEFGABEFGG:R1B:Ka6ADEGABCEGACDEA:Ka8AGACBCEBCFGACFDEFBEFGCDEGCDCEACDEFBEFBDECGADFGBDFDEFGBDEFABCDEFACDCDEFABDEGABDEFBGABGABCFAEFGABCDEBDGABFGCFABCDGACGDEGAEFEFGADADFBFABEFADEABCAEDFGC:Ka3ABFACDEGAFGAFACEGCEGFGBDABCDBEGCDEBCDEABCEFGBDFGDFACEADEFABCDEGABCEFBDEFGBDEGBCDGABCGCDFABCDFABCEADEFGBCDCEFAEGBCFDGBFGABDFCDGADGBCACDGABEGBCEGABDEFGBCDEFBCEFGABDGBEEFABDCDEFGEGCFGACEFBCDFG
ABCDFG
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Figure 5-2.: Normal plot of the effects (27 factorial experiment).

The factor and interaction effects were drawn in the normal probability plot of Figure 5-2.

From the normal plot it can be concluded that the significant effects are effects D, E, F and

DE. A multifactor ANOVA was performed for these effects. In order for the ANOVA to be

statistically valid, the following three assumptions must hold:
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• The variances of the levels of each factor must be equal (homoscedasticity).

• The residuals of the samples must be normally distributed.

• The residuals of the samples must be independent.

The equality of variance assumption was tested using the Levene’s test with a significance

α = 0.05. The factor E showed significant differences in its variances, as its P-Value was

lower than the significance. The exact value is shown in Table 5-4:

Table 5-4.: Levene’s test for fac-

tor E.

Levene’s test

Factor Test P-Value

E 43.144 1.20598 · 10−9

In order to correct the violation of the homoscedasticity assumption, the data was transfor-

med using the power transform y∗ = yλ. The value of λ was calculated using the Box-Cox

method [51], and it was found to be -0.722. However, this value of λ was not adequate to

correct the variances. By trial and error an adequate value λ = −1.3 was found. The Levene’s

test was applied to the significant factors using the transformed data, and the results are

shown in Table 5-5:

Table 5-5.: Levene’s test for for the sig-

nificant factors with transfor-

med data.

Levene’s test for transformed data

Factor Test P-Value

D 3.5685 0.0611839

E 3.4545 0.065413

F 1.1893 0.277553

As all the P-Values are greater than the significance, then it can be concluded that the

homoscedasticity assumption holds. A multifactor ANOVA was then applied to the trans-

formed data, using the same significance of the Levene’s test. The results are shown in Table

5-6:
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Table 5-6.: ANOVA table for the 27 factorial experiment.

SoV SS DoF MS Fo P-Value

D 16847.5 1 16847.5 21.88 0.0000

E 277651 1 277651 360.54 0.0000

F 20878.6 1 20878.6 27.11 0.0000

DE 5749.52 1 5749.52 7.47 0.0072

Residuals 94720.9 123 770.089

Total 415847 127

The meaning of the headers is the following [51]:

• SoV: Source of Variation.

• SS: Square Sum of Errors.

• DoF: Degrees of Freedom.

• MS: Mean Square Sum.

• Fo: Fisher Statistic.

It can be concluded that the effects D, E, F and DE have a significant influence over the

response variable. To validate the results of the ANOVA, the other two assumptions must

be verified. The residuals were calculated using the fixed effects model of the ANOVA.

The Shapiro-Wilks test was performed on the residuals to verify that they follow a normal

distribution. The result of the normality test is shown in Table 5-7.

Table 5-7.: Shapiro-Wilks test for the residuals.

Test P-Value

Shapiro-Wilks 0.3839

As the P-Value of the Shapiro-Wilks test is greater than the significance, it can be concluded

that the residuals are normal. The normal plot of the residuals in Figure 5-3 serves to

graphically verify the results of the Shapiro-Wilks test.

To verify the independence of the residuals, they were arranged by the time each associated

datum was obtained, and the lag 1 of the autocorrelation was calculated. The value obtained



5.1 IEEE14: Steady State Tuning 101

-90 -50 -10 30 70 110
ordered residuals

0,1

1

5

20

50

80

95

99

99,9

p
e

rc
e

n
ta

g
e

Figure 5-3.: Normal plot of the residuals.

was -0.0303988, which is lower than zero. Therefore, it can be concluded that the residuals

are independent.

As the three assumptions of the ANOVA were validated, it can be concluded that the results

of the ANOVA are statistically valid.

5.1.2. Regression Model Experiment

From the results of the screening experiment, the significant factors are D, E, and F (KA2,

KA1 and R2, respectively). Factors A, B, C and G (KA5, KA4, KA3 and R1, respectively)

are not significant and therefore there is no need to change them. For this reason, the non-

significant factors are set to their normal operating values.

The next step to perform the Surface Response method consists in finding an adequate re-

gression model of the response variable (the objective function in this case). This model must

be able to represent the nonlinearity and any other type of trend of the response variable

over the experimental region.

The 2k factorial design does not provide enough data to capture the nonlinearity of the pro-

cess. A more detailed experiment, like the 3k factorial design, is required in order to construct

appropriate nonlinear regression models. The 3k factorial design is an experiment similar to

the 2k factorial design, with the difference that an intermediate level is introduced. The values

of the factors at the intermediate level are the means of the values at the low and high levels.

As in this test there are 3 significant factors, a 33 factorial experiment with no repetitions (1

sample per point of the design) was performed to collect the required data for the regression

model. The values of the factors at the different levels are shown in Table 5-8.
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Table 5-8.: Factor levels of the 33 factorial design.

Factor Low Level High Level Medium Level

KA2 25 262.5 500

KA1 25 262.5 500

R2 0.02 0.06 0.1

5.1.3. Response Surface Method

The data collected with the 3k factorial design can be used to construct a regression model

fitting the response variable inside the experimental region. The model can be optimized

with classical optimization techniques, and if the optimum point is inside the experimen-

tal region, then is also an optimum point of the response variable. If not (the optimum

point is found at the boundary of the experimental region), the whole process (including

the screening experiment and regression model experiment) must be repeated over a new

experimental region containing the expected optimum point. This must be done because the

regression model is only valid over the experimental region. If another region is suspected of

containing the optimum point, then it must be properly sampled first. The regression model

of the response variable is often called the Response Surface of the process, and because of

that reason this technique is called Response Surface method.

After obtaining the data from the 33 factorial design, a regression model was applied to fit

the obtained data. Through trial and error, the following model structure was obtained:

f ′o = c1 + c2KA2 + c3KA1 + c4K
2
A1 + c5K

2
A2KA1 (5-1)

By applying nonlinear regression coefficients c1 to c5 were calculated, obtaining the final

regression model:

f ′o = 0.0518−4.5868 ·10−5KA2−1.4479 ·10−4KA1 + 1.6678 ·10−7K2
A1 + 1.8613 ·10−10K2

A2KA1

(5-2)

The statistical significance of the model was verified by applying an ANOVA (significance

level α = 0.05). The results are shown in Table 5-9:
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Table 5-9.: ANOVA table for the regression model.

SoV SS DoF MS Fo P-Value

Model 0.002801 4 0.000700 7.5615 0.000544

Error 0.002038 22 9.26 · 10−5

Total 0.004839 26

If the variation produced by the model were not statistically significant, the model would not

be appropriate to explain the behaviour of the response variable. The statistical significance

of each term of the model was verified too. The verification was made using hypotheses tests

with significance level α = 0.05. The results are shown in Table 5-10:

Table 5-10.: Hypothesis tests for the significance of the model terms.

Term Coefficient LB 95 % UB 95 % to P-Value

Constant 0.051822 0.040385 0.063258 9.3974 3.69 · 10−9

KA2 −4.58 · 10−5 −7.74 · 10−5 −1.43 · 10−5 -3.0158 0.006357

KA1 -0.000144 -0.000225 −6.41 · 10−5 -3.7233 0.001181

K2
A1 1.66 · 10−7 2.23 · 10−8 3.11 · 10−7 2.3943 0.025602

K2
A2KA1 1.86 · 10−10 8.02 · 10−12 3.64 · 10−10 2.1672 0.041315

Where the following headers mean:

• LB 95 %: Lower bound of the confidence interval (confidence level 95 %).

• LB 95 %: Upper bound of the confidence interval (confidence level 95 %).

• to: T-Student statistic.

The residuals of the model are plotted against each factor in Figures 5-4, 5-5 and 5-6. There

is no obvious pattern in the plotted residuals, so they represent typical random variables,

and it can de concluded that the regression model is statistically valid.

The model does not include any term involving R2, which may seem contradictory because

the screening experiment labelled it as significant. However, the regression model has been

proved to be statistically valid, and therefore there is no contradiction. Remember that the

screening experiment takes less samples of each factor than the 3k experiment. Because of

this, the data used to calculate the regression model is more representative of the experimen-

tal region than the data used on the screening experiment, and the statistical conclusions
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derived from the regression model are more robust than the ones from the screening experi-

ment. As R2 does not affect the value of the regression model, there is no need to change it,

and it was set at its normal operating value.

Finally, as the model is only valid inside the experimental region, the optimization can be

formulated as:

min
[KA1 KA2]

f ′o (5-3)

Subject to:

25 ≤ KA1 ≤ 500 (5-4)

25 ≤ KA2 ≤ 500 (5-5)

The optimization was performed in Microsoft R© Excel, and the optimal parameters obtained

were:

KA1 = 373.26 (5-6)

KA2 = 330.10 (5-7)

Taking into account that the others factors were kept at their normal values, the optimal set

of parameters found are shown in Table 5-11.

Table 5-11.: Controller parameters

found with the Response

Surface method.

Parameter Optimal Value [p.u.]

KA5 400

KA4 400

KA3 400

KA2 330.10

KA1 373.26

R2 0.05

R1 0.05
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5.1.4. Proposed Tuning Method

The Response Surface method proved that the only significant variables for the response of

the IEEE14 system under stochastic loads are KA1 and KA2. Therefore, the vector of tunable

parameters for this test is the following:

~x = [KA1 KA2]T (5-8)

The rest of AVR gains and the governor droops are set as constants equal to their normal

operating values. The steady state tuning method was performed the optimal values of KA1

and KA2. In order to do so, the objective function fo was calculated as a 10 sample average

of the metric fs. The Cuckoo Search method was implemented with parameters ps = 25 and

pa = 0.25. Cuckoo Search was programmed to stop after 20 generations (iterations). No other

stopping criterion was implemented. The search space was restricted to the experimental

region of the Response Surface method. Therefore ~x ∈ [25, 500]2. The optimal vector of

controller parameters found with the steady state tuning method was the following:

~x? = [221.39 27.78]T (5-9)

Taking into account that the others factors were kept at their normal values, the optimal set

of parameters found are shown in Table 5-12.

Table 5-12.: Controller parameters

found with the steady

state tuning method.

Parameter Optimal Value [p.u.]

KA5 400

KA4 400

KA3 400

KA2 27.78

KA1 221.39

R2 0.05

R1 0.05

5.1.5. Comparison of Methods

Both of the previous methods yielded a set of controller parameters that is expected to

improve the performance of the IEEE14 system under stochastic loads with respect to the
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original set of parameters. In order to check whether this is true or not, and to compare

both methods and determine which one shows better performance, a single factor ANOVA

was performed. The factor was the set of parameters and the levels were the set found with

both methods and the original set. This is shown in Table 5-13.

Table 5-13.: ANOVA factor and its levels.

Factor Levels

Parameter set Original (1) Response Surface (2) Steady state tuning (3)

Set 1 corresponds to the original set of parameters, Set 2 corresponds to the set of parameters

found with the Response Surface Method, and Set 3 corresponds to the set of parameters

found with the steady state tuning method. 20 samples of the objective function for each set

of parameters were taken to perform the ANOVA. The data is shown in Table 5-14.

Table 5-14.: Samples of the objective function.

Experiment data

Set 1 Set 1 Set 2 Set 2 Set 3 Set 3

0.0291 0.02742 0.02451 0.02502 0.02152 0.02198

0.02491 0.0263 0.01869 0.02338 0.01977 0.02467

0.02453 0.02997 0.01928 0.02392 0.02128 0.02181

0.02573 0.0284 0.01847 0.02561 0.01992 0.01868

0.02315 0.0263 0.02375 0.02235 0.01922 0.02178

0.02558 0.02234 0.02089 0.02008 0.02077 0.01996

0.02783 0.0267 0.02042 0.01912 0.02169 0.0204

0.02902 0.02528 0.02081 0.02034 0.02264 0.02189

0.02521 0.03024 0.02297 0.01889 0.02019 0.01807

0.02754 0.02689 0.02415 0.02116 0.0258 0.02084

The results of the ANOVA are shown in Table 5-15.
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Table 5-15.: ANOVA table for the parameter sets.

SoV SS DoF MS Fo P-Value

Parameter set 0.000364 2 0.000182 41.1027 8.88 · 10−12

Error 0.000253 57 4.43 · 10−6

Total 0.000617 59

In order for the ANOVA to be statistically valid, its assumptions must be validated. The

equality of variance assumption was tested using the Levene’s test with a significance α =

0.05. The results are shown in Table 5-16. As the P-Value is greater than α, it can be

concluded that the homoscedasticity assumption holds.

Table 5-16.: Levene’s test for the pa-

rameter sets.

Levene’s test

Factor Test P-Value

Parameter set 1.77711 0.178368

To validate the assumption of normally distributed residuals, the Shapiro-Wilks test was

performed to verify that they follow a normal distribution. The result of the normality test

is shown in Table 5-17.

Table 5-17.: Shapiro-Wilks test for the residuals.

Test P-Value

Shapiro-Wilks 0.4952

As the P-Value of the Shapiro-Wilks test is greater than the significance, it can be concluded

that the residuals are normal. The normal plot of the residuals in Figure 5-7 serves to

graphically verify the results of the Shapiro-Wilks test.

To verify the independence of the residuals, they were arranged by the time each associa-

ted datum was obtained, and the lag 1 of the autocorrelation was calculated. The value

obtained was -0.193298. The 95 % confidence interval of the lag 1 of the atocorrelation is

[−0.059733, 0.446329]. As the confidence interval contains the value 0, it can be concluded

that the residuals are independent.
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Figure 5-7.: Normal plot of the residuals.

As the three assumptions of the ANOVA were validated, it can be concluded that the results

of the ANOVA are statistically valid.

From the results of the ANOVA it is clear that parameter sets have significant effect over

the response of the IEEE14 system affected by stochastic loads. The multiple range test

was implemented to detect significant differences in the values of the objective function for

each parameter set. The test was performed using the HSD (Honset Significant Difference)

Tukey method with significance α = 0.05 [51]. The Tukey method was preferred over more

popular methods (Duncan, Least Significant Difference (LSD) for example) because it allows

to control the significance. The homogeneous regions derived from the multiple range test

are shown in Table 5-18.

Table 5-18.: Homogeneous regions of the performance of the pa-

rameter sets.

Parameter

set

Objective

function average
Homogeneous regions1

1 0.02662

2 0.02169

3 0.02114

1 Calculated using Tukey HSD method (HSD=0.001605).

From the homogeneous regions it is clear the performance of the set of parameters obtained

with both methods is significantly better than the performance of the original set of parame-

ters. Another conclusion that there is no significant difference in the performance of the set

of parameters obtained with both methods. This is remarkable, the steady state tuning with

just 20 iterations of Cuckoo Search was able to achieve the same statistical performance

of the Response Surface method. On top of that, the Response Surface method has very

disadvantages compared to the proposed steady state tuning method:
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• The effects considered for the ANOVA of the screening experiment have to be selected

based on the normal plot of the effects. This process is not algorithmic, so an appro-

priate selection of effects depends on the knowledge and experience of the designer.

• The ANOVA of the screening experiment must satisfy the assumptions of the fixed

effects models. If not the sample data must be transformed in a way that an ANOVA

applied to the transformed data would satisfy those assumptions. The process of selec-

ting an appropriate transformation is not algorithmic and depends on the knowledge

and experience of the designer (the are algorithmic procedures like the Box-Cox method

but they might fail, as in the case of this test). In the worst of cases, if no appropriate

transformation is found, the experiment must be discarded. In that case it would be

necessary to design a more appropriate screening experiment, or to resort to an entirely

distinct method.

• The process of selecting an appropriate structure for the regression model is not algo-

rithmic and depends on the knowledge and experience of the designer. If not appro-

priate structure if found, the Response Surface method cannot be applied.

• The number of samples required for the experiments scale exponentially with the num-

ber of tunable parameters. Therefore, it is not possible to perform this method on large

scale power systems without making coarse approximations and assumptions (fractio-

ned factorial experiments [51]).

The proposed steady state tuning method does not have any of this disadvantages and yet

it manages to achieve a statistically equal level of performance.

5.2. IEEE9: Fault Response Tuning

This section discusses the test performed to validate the proposed fault response tuning

method. The test consisted on the tuning of the generator controllers of the IEEE 9 bus

system, widely known in the literature as IEEE9. This system is the same 9 bus system

of the Western System Coordinating Council (WECC). The complete data of the system

is available in [4]. The IEEE9 system does not have governor data, so it is assumed the

generators only have AVRs. The AVR amplifier gains of the IEEE9 system generators are

shown in Table 5-19.
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Table 5-19.: AVR amplifier gains of the IEEE9 system gene-

rators [4].

Parameter Value [p.u.]

Amplifier Gain, Generator 1 (node 1), KA1 20

Amplifier Gain, Generator 2 (node 2), KA2 20

Amplifier Gain, Generator 3 (node 3), KA3 20

slack

Bus1

Bus 4

Bus 5

Bus 2

Bus 7
Bus 8 Bus 9 Bus 3

Bus 6

Figure 5-8.: Oneline diagram of the IEEE9 system.

Figure 5-8 shows the oneline diagram of the IEEE9 system. For this tests the following

changes were made to the IEEE9 system:

• The generators’ damping coefficients Di were assumed to be zero.

• The generator of node 1 (generator 1) is assumed to be ideal. Therefore, the voltage

of node 1 remains constant.

The data of the modified IEEE9 system can be found in Appendix B. As generator is

assumed to behave as a perfect voltage source, there is no need to solve any of its algebraic

or differential equations. Also, there is no need to tune the AVR of generator 1. This way,

the vector of tunable parameters for this tests is the following:

~x = [KA2 KA3]T (5-10)
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The fault response tuning requires calculating the CCT using the PEBS method, which

in turn requires a small time domain simulation to calculate the energy function. The time

domain simulation was performed using the Explicit Euler method with a time step of 5·10−4

seconds. The parameters λi were set at a value of 0.5 % for all the loads, and the parameters

ρi were all set to 0. The loads were modelled with the constant admittance model. The set

of considered faults consisted of the two following faults:

• Fault 1: A direct (no fault impedance) balanced three-phase short circuit at the line

between nodes 4 and 5. The short circuit was placed at 50 % of the line length.

• Fault 2: A direct (no fault impedance) balanced three-phase short circuit at the line

between nodes 6 and 9. The short circuit was placed at 50 % of the line length.

The weight of each fault was set to 1.

5.2.1. Initial Exploration

Before proceeding to perform the fault response tuning, it is necessary to define the search

space of the tuning method. A feasible region of the AVR tunable parameters was estimated

for that purpose. Such region was defined based on the typical values the AVR gains can

have, according to [27]. The feasible region was defined as the rectangle [20, 520]× [20, 520].

An initial exploration of the objective function over the search space was then performed.

The search space was divided in a 21 × 21 grid, and the value of the objective function at

each point of the grid was calculated The objective function was calculated using 20 samples

of each CCT. The values at the grid points were used to plot a estimated surface of the

objective function, which is shown in Figure 5-9.

It is clear from Figure 5-9 that the objective function tends to decrease with increasing

values of the AVR gains. To determine the search space of the tuning method a more detailed

inspection of the surface was performed over the subregion [320, 520]× [320, 520]. The result

is shown in Figure 5-10.

It can be appreciated from Figure 5-10 that the decreasing trend of the objective function

over the subregion [320, 520] × [320, 520] is not as strong as over the whole feasible region.

The minimum value of the objective function over the grid points is found at [495, 520].

5.2.2. Parameter Tuning

The selected search space for the tuning was the rectangle [420, 520] × [420, 520], therefore

~x ∈ [420, 520]2. For the tuning method the objective function was calculated using 2 samples
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Figure 5-9.: Estimated surface plot of the objective function.
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Figure 5-10.: Estimated surface plot of the objective function (zoomed in).
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of each CCT. The Cuckoo Search method was implemented with parameters ps = 25 and

pa = 0.25. Cuckoo Search was programmed to stop after 500 generations (iterations). No

other stopping criterion was implemented. The optimal vector of controller parameters found

with the fault response tuning method was the following:

~x? = [518.81 518.88]T (5-11)

5.2.3. Tuning Quality

The objective function can only be estimated, and those estimations are stochastic variables.

Therefore, it is not possible to check the optimality of the solution using analytic criteria (first

and second order conditions [30], for example). However, it is still possible to statistically

check that the CCTs with the tuned parameters are higher than the CCTs with the original

parameters. Figures 5-11 and 5-12 show estimates of the probability distribution function

(PDF) of the CCTs of the considered faults with the original and tuned parameters. A total

of 4000 samples were taken to generate all the estimated PDFs, 1000 samples per PDF.
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Figure 5-11.: Estimated PDFs of the CCTs of fault 1 with the original and tuned parame-

ters.

Table 5-20 shows different statistics of the CCT of each parameter set and fault, calculated

using the 4000 samples of the histograms.
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Figure 5-12.: Estimated PDFs of the CCTs of fault 2 with the original and tuned parame-

ters.

Table 5-20.: CCT statistics for different parameter sets and faults.

Parameter

set

Fault

number

Average

[ms]

Standard

deviation [ms]

Minimum

value [ms]

Maximum

value [ms]

Original
1 135.854 3.236 122.5 144

2 135.747 3.189 124 145

Tuned
1 193.192 2.326 185 203.5

2 193.15 2.392 183 200.5

From the figures and the table it is clear that the tuned parameter set produces a significant

increase of the mean CCT of the considered faults. The tuned parameter set also produces a

significant reduction of the standard deviations of the CCT for the considered faults. These

conclusions can be statistically proved with hypotheses tests for the variances and differen-

ce of means (significance level α = 0.05) [51]. The results are shown in Tables 5-21 and 5-22.

Table 5-21.: Hypotheses tests of the variances of the CCTs.

Fault number Fo P-Value Conclusion

1 1.9352 2.36327 · 10−25 Variance decreased

2 1.7785 8.20367 · 10−20 Variance decreased
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Table 5-22.: Hypotheses tests of the means of the

CCTs.

Fault number to P-Value Conclusion

1 454.95 0 Mean increased

2 455.35 0 Mean increased

5.2.4. Error Quantification

The PEBS method gives only an approximate value of the CCT. The CCT value can be

obtained with arbitrarily small precision using time domain simulation (this was discussed

previously in Chapter 3). In order to quantify the approximation error of the PEBS met-

hod, The CCTs of a large set of faults were calculated with both PEBS method and time

domain simulation. The CCTs calculated with time domain simulation have an accuracy of

+0.5 ms (the true CCTs are at most 0.5 ms greater than the calculated ones). The set of

faults considered consists on direct balanced three-phase short circuits at each of the lines

of the IEEE9 system. Each short circuit was placed at 50 % of the length of the respective line.

The aim of this procedure is to quantify the approximation error of the PEBS method, so

no stochastic load variations was considered. The reason is that the natural variability of

the CCT due to the stochastic load might be confused with the approximation error of the

PEBS method. As no stochastic load is considered, the CCTs become deterministic so it is

only needed to calculate them once. The deterministic CCTs were calculated for both the

original and tuned set of parameters. The obtained CCTs and their errors are shown Table

5-23.
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Table 5-23.: Deterministic CCTs of various faults for both parameter sets.

Parameter

set

Faulted

element

CCT

(PEBS)

[ms]

CCT

(simulation)

[ms]

Error

[ms]

Error

[ %]

Original

Line 4-6 169.5 202.5 -33 16.3 %

Line 4-5 140 159.5 -19.5 12.2 %

Line 5-7 89.5 64 25.5 39.8 %

Line 6-9 135 147 -12 8.2 %

Line 7-8 129 120.5 8.5 7.1 %

Line 8-9 156 177 -21 11.9 %

Tuned

Line 4-6 230 528.5 -298.5 56.5 %

Line 4-5 196 648.5 -452.5 69.8 %

Line 5-7 148 119.5 28.5 23.8 %

Line 6-9 213.5 190.5 23 12.1 %

Line 7-8 171.5 146.5 25 17.1 %

Line 8-9 209 211.5 -2.5 1.2 %

From Table 5-23 it is clear that the approximation error of the PEBS method can vary

greatly between distinct faults. In this case, the relative error can vary from 1.2 % to 69.8 %.

The tuned parameter set not only improved the CCTs of the two faults initially considered,

but it also improved the CCTs of all other line faults. Although no stochastic load was

considered, the increase in the CCTs is significant enough to overcome the variability of the

stochastic CCTs. On interesting fault is the one occurring at line 4-5 (which was initially

considered as well), the true increase of its CCT is multiple times greater than the calculated

with the results of the PEBS method.
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6.1. Conclusions

This work describes the mathematical description and the implementation of two new tu-

ning methods for controller tuning in a power system. One tuning method is focused on the

steady state response and the other is focused on the fault response. A major novelty of

these tuning methods is that they take into account the stochastic variations of the power

system loads by modelling their observations as time-dependent processes.

The tuning methods were described as optimization problems. For the steady state tuning,

the objective function was defined as the weighted average of the integral absolute errors of

the controlled variables’ responses. These errors are calculated using time domain simula-

tions, which are calculated using numerical methods for solving systems of differential and

algebraic equations.

For the fault response tuning, the objective function was defined as the weighted average

of the difference of variances and squared means of the critical clearing times (CCTs) of a

defined set of faults. The critical clearing times are calculated using the Potential Energy

Boundary Surface (PEBS) method, which is base on the stability theory of Lyapunov.

The optimization problems of the tuning methods are solved using the metaheuristic Cuc-

koo Search. Cuckoo Search has been designed primarily to solve continuous optimization

problems like the ones of the tuning methods. It also has the advantage that only one me-

taparameter apart from the population size must be specified.

The proposed steady state tuning method was tested against the Surface Response method

in the IEEE14 system. The set of parameters obtained with the steady state tuning after

only 20 iterations of Cuckoo Search achieved the same statistical performance of the set of

parameters obtained with the Response Surface method. The steady state tuning proved to

be a better alternative than the Response Surface method in the sense that it is a completely

algorithmic procedure that does not depend on the compliance of a set of assumptions nor

the experience of the user.

From the previous test it is also concluded that neither the AVRs of the synchronous con-
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densers nor the governors have a significant effect on the response of the IEEE14 system

affected by stochastic loads. This is not unexpected because the apparent powers generated

by the synchronous condensers are much lower than that of the rest of generators. Also, the

governors have relatively high time constants due to the inertia of the mechanical elements

considered in their models. For this reason, it is normal for the governors to have no signi-

ficant impact on the system response affected by the high frequency stochastic variations of

the loads.

The proposed fault response tuning was tested by using it to tune the controllers of the

IEEE9 system, considering a set of two specific faults. A sample set of the CCTs of both

faults with the original and tuned set of parameters was taken to estimate their probabi-

lity distribution functions and some other statistics like the mean and standard deviation.

From the results it is concluded that the tuned set of parameters increases the CCTs of the

considered faults and reduces their variances, thus achieving a better and more robust fault

response. These conclusions were validated using hypotheses tests of the variances and means.

The deterministic (without considering stochastic loads) CCTs of a larger set of faults of the

IEEE9 system were calculated with time domain simulation to quantify the approximation

error of the PEBS method. The relative error varied greatly for each fault of the set. Also the

CCT estimations obtained with the PEBS method can either be optimistic or pessimistic

with no particular trend. However, when considering the tuned set of parameters the deter-

ministic CCTs were higher for all the faults. This shows that although the approximation

error of the PEBS method can vary greatly, it can still be used to successfully improve the

CCT, hence improving the fault response of the system.

6.2. Future Work

The proposed tuning methods have been developed and tested in detail, considering the sto-

chastic variation of loads. However, the proposed methodologies can be extended in various

ways. Future work can consider implementing stochastic variations on the generators to mo-

del renewable energy sources. Another possible research would be testing other methods for

fast calculation of the CCT with low approximation error, apart from the PEBS method.

Also, a research of interest would be extending the proposed tuning methods to other types

of controllers present on power systems (power system stabilizers, FACTS, for example).

The proposed tuning methods have been tested thus far using computer simulations. Im-

plementations of these tuning methods on real power systems would provide additional

validation to the already obtained results.
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From the conclusions of this work one logical question arises: do the AVR of synchronous

condenser and governors have a significant impact on the response of a power system affected

by stochastic loads? Future research can focus on solving this question on general large-scale

power systems.
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A. Appendix: Modified IEEE14 System

and Controller Data

Table A-1.: Modified IEEE14 line and transformer data (base power 100

MVA).

From

node

To

node
R [p.u.] X [p.u.] B [p.u.] Tap

Phase

shift [ ◦]

1 2 0.01938 0.05917 0.0528 - -

1 5 0.05403 0.22304 0.0492 - -

2 3 0.04699 0.19797 0.0438 - -

2 4 0.05811 0.17632 0.034 - -

2 5 0.05695 0.17388 0.0346 - -

3 4 0.06701 0.17103 0.0128 - -

4 5 0.01335 0.04211 0 - -

4 7 0 0.20912 0 0.978 0

4 9 0 0.55618 0 0.969 0

5 6 0 0.25202 0 0.932 0

6 11 0.09498 0.1989 0 - -

6 12 0.12291 0.25581 0 - -

6 13 0.06615 0.13027 0 - -

7 8 0 0.17615 0 - -

7 9 0 0.11001 0 - -

9 10 0.03181 0.0845 0 - -

9 14 0.12711 0.27038 0 - -

10 11 0.08205 0.19207 0 - -

12 13 0.22092 0.19988 0 - -

13 14 0.17093 0.34802 0 - -

The values of Tap and Phase shift correspond to the magnitudes and angles of the trans-
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formers’ voltage ratio, respetively. Therefore, elements with valid Tap are transformers, and

the rest are lines.

Table A-2.: Modified IEEE14 power flow data.

Node Type
V

[p.u.]

PL
[MW]

QL

[MVAR]

PG
[MW]

Bsh

[MVAR]

1 Slack 1.06 - - 232.4 -

2 PV 1.045 21.7 12.7 40 -

3 PV 1.01 94.2 19 - -

4 PQ - 47.8 -3.9 - -

5 PQ - 7.6 1.6 - -

6 PV 1.07 11.2 7.5 - -

7 PQ - - - - -

8 PV 1.09 - - - -

9 PQ - 29.5 16.6 - 19

10 PQ - 9 5.8 - -

11 PQ - 3.5 1.8 - -

12 PQ - 6.1 1.6 - -

13 PQ - 13.5 5.8 - -

14 PQ - 14.9 5 - -

Values of Bsh correspond to the nominal power of shut capacitor and reactors. A positive

value indicates a capacitor, and a negative value indicates a reactor. The slack node voltage

angle is assumed to be 0◦.
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Table A-3.: Modified IEEE14 generator data.

Node
Srated

[MVA]
H [s]

D

[p.u.]

Ra

[p.u.]

Xd

[p.u.]

Xq

[p.u.]

X ′d
[p.u.]

X ′q
[p.u.]

T ′d0 [s] T ′q0 [s]

1 448 2.656 2 0.0043 1.67 1.6 0.265 0.46 0.5871 0.1351

2 100 4.985 2 0.0035 1.18 1.05 0.22 0.38 1.1 0.1086

3 40 1.52 0 0 2.373 1.172 0.343 1.172 11.6 0.159

6 25 1.2 0 0 1.769 0.855 0.304 0.5795 8 0.008

8 25 1.2 0 0 1.769 0.855 0.304 0.5795 8 0.008

The values of Srated are the rated apparent power of the generators. The generator p.u. data

uses the generator p.u. base, and must be base-changed to 100 MVA before using it.

Table A-4.: Modified IEEE14 AVR data.

Node TR [s]
KA

[p.u.]
TA [s]

VRMAX

[p.u.]

VRMIN

[p.u.]

KE

[p.u.]
TE [s]

KF

[p.u.]
TF [s]

1 0 50 0.06 1 -1 -0.0465 0.52 0.0832 1

2 0.06 25 0.2 1 -1 -0.0582 0.6544 0.105 0.35

3 0 400 0.05 6.63 -6.63 -0.17 0.95 0.04 1

6 0 400 0.05 4.407 -4.407 -0.17 0.95 0.04 1

8 0 400 0.05 4.407 -4.407 -0.17 0.95 0.04 1

The AVR p.u. data uses their respective generators’ p.u. base, but there is no need to base-

change them before using them.

Table A-5.: Modified IEEE14 governor data.

Node
PMAX

[p.u.]

R

[p.u.]
TD [s] Tω [s] TS [s] TB [s] TP [s]

F

[p.u.]

1 0.87 0.05 0.1 0 0.3 0.05 10 0.25

2 1.05 0.05 0.09 0 0.2 0.3 0 1

The governor p.u. data uses their respective generators’ p.u. base. The values of PMAX and

R must be base-changed to 100 MVA before using them.
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Table B-1.: Modified IEEE9 line and transformer data (base power 100

MVA).

From

node

To

node
R [p.u.] X [p.u.] B [p.u.] Tap

Phase

shift [ ◦]

4 6 0.017 0.092 0.158 - -

4 5 0.01 0.085 0.176 - -

5 7 0.032 0.161 0.306 - -

6 9 0.039 0.17 0.358 - -

7 8 0.0085 0.072 0.149 - -

8 9 0.0119 0.1008 0.209 - -

1 4 0 0.0576 0 1 0

2 7 0 0.0625 0 1 0

3 9 0 0.0586 0 1 0

The values of Tap and Phase shift correspond to the magnitudes and angles of the trans-

formers’ voltage ratio, respetively. Therefore, elements with valid Tap are transformers, and

the rest are lines.



126 B Appendix: Modified IEEE9 System and Controller Data

Table B-2.: Modified IEEE9 power flow data.

Node Type
V

[p.u.]

PL
[MW]

QL

[MVAR]

PG
[MW]

Bsh

[MVAR]

1 Slack 1.04 - - - -

2 PV 1.025 - - 163 -

3 PV 1.025 - - 85 -

4 PQ - - - - -

5 PQ - 125 50 - -

6 PQ - 90 30 - -

7 PQ - - - - -

8 PQ - 100 35 - -

9 PQ - - - - -

Values of Bsh correspond to the nominal power of shut capacitor and reactors. A positive

value indicates a capacitor, and a negative value indicates a reactor. The slack node voltage

angle is assumed to be 0◦.

Table B-3.: Modified IEEE9 generator data.

Node
Srated

[MVA]

H

[s]

D

[p.u.]

Ra

[p.u.]

Xd

[p.u.]

Xq

[p.u.]

X ′d
[p.u.]

X ′q
[p.u.]

T ′d0

[s]

T ′q0
[s]

1 100 ∞ 0 0 0 0 0 0 ∞ ∞
2 100 6.4 0 0 0.8958 0.8645 0.1198 0.1969 6 0.535

3 100 3.01 0 0 1.3125 1.2578 0.1813 0.25 5.89 0.6

The values of Srated are the rated apparent power of the generators. The generator p.u. data

uses the generator p.u. base, and must be base-changed to 100 MVA before using it. Notice

that the slack generator (node 1) is assumed to be ideal and behave like a perfect voltage

source.
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Table B-4.: Modified IEEE9 AVR data.

Node TR [s]
KA

[p.u.]
TA [s]

VRMAX

[p.u.]

VRMIN

[p.u.]

KE

[p.u.]
TE [s]

KF

[p.u.]
TF [s]

1 0 20 0.2 ∞ −∞ 1 0.314 0.063 0.35

2 0 20 0.2 ∞ −∞ 1 0.314 0.063 0.35

3 0 20 0.2 ∞ −∞ 1 0.314 0.063 0.35

The AVR p.u. data uses their respective generators’ p.u. base, but there is no need to base-

change them before using them.
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