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Abstract: In this paper, we address the problem of how to bootstrap a cognitive architecture to 
opportunistically start learning skills in domains where multiple skills can be learned at the same 
time. To this end, taking inspiration from a series of computational models of the use of motivations 
in infants, we propose an approach that leverages two types of cognitive motivations: exploratory 
and proficiency based, the latter modulated by the concept of interestingness as an implementation 
of attentional mechanisms. This approach is tested in an illustrative experiment with a real robot. 
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1. Introduction 

With the aim of designing robots with a higher degree of autonomy, the field of Cognitive 
Developmental Robotics (CDR) takes inspiration from models of cognitive human development. 
Robots are endowed with cognitive architectures which, starting from basic innate knowledge 
provided by the designer, are able to generate new knowledge, mainly models and skills, in a fully 
autonomous way throughout their “lives”. Being able to learn in such an open-ended manner implies 
dealing with an unlimited sequence of a priori unknown tasks in unknown domains [1]. 

Consequently, the problem is not that of providing a robot with competences to perform 
particular tasks in known environments, but to provide the robot with mechanisms that allow it to 
figure out what tasks to carry out, and how, to achieve its objectives in the situations it faces. In other 
words, it needs to self-discover and self-select goals. It is important to emphasize here that a goal 
determines a task the robot must carry out (to reach the goal) and, consequently, a skill it must learn 
in order to be able to achieve it. 

On the other hand, the robot also needs to determine how valuable any goal is (what is its utility) 
and, by extension, what may the expected utility of any point in state space be with regards to that 
goal. The mechanisms in charge of this are generally called motivational mechanisms or value 
systems. This work is framed within the problem of creating adequate motivational systems for 
autonomous robots, specifically, within the MDB cognitive architecture [2], to efficiently learn and 
purposefully behave in open-ended settings, and focusing on the initial stages of skill learning. 

2. Unrewarded Skill Acquisition and Interestingness 

At initial stages of interaction with an unknown world, the robot can only rely on what it has 
been innately endowed with by the designer, and it must use it to progressively acquire new skills 
that will allow it to become more proficient. Consequently, designing an appropriate set of innate 
drives is key to the adequate performance of the robot.  
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In the approach chosen within the motivational engine of the MDB [3], inspired by the 
observations of child cognitive development, we propose that two types of drives constitute the 
minimum set of cognitive drives required for this process. On the one hand, the robot needs to 
explore its state space in order to find utility. This exploration must be efficient and, consequently, 
some type of cognitive drive related to exploration must be included. In particular, in the experiments 
we present in the next section, we have made use of a drive related to novelty. However, to learn a 
skill, it is also necessary to train and become proficient at it. That is, the robot needs to be motivated 
to concentrate its interaction with the environment on cases that can lead to learning the skill. That 
is, to establish a virtual goal in that point and learn its utility model. We will call this a Proficiency 
based type of motivation. In particular, as skills are usually learned in order to be able to produce 
some effect on the environment, we will make use of an effectance based motivation in the 
experiments. 

To induce training, we incorporate the concept of interestingness within the related Proficiency 
based motivation as a virtual utility value that can change in time as the robot becomes more 
proficient at achieving the corresponding goal. Thus, when an effect is produced by chance for the 
first time, the point in state space where that occurred becomes interesting (its interestingness level 
increases). This is reflected within the motivational engine as a virtual utility value when the goal is 
achieved and within the attention mechanism of the robot by increasing the saliency of the state-
space point in the process of choosing where to go next. However, interestingness is also modulated 
by the proficiency in achieving the goal: the more proficient the robot is, the less interesting the virtual 
goal becomes. Once the robot is very proficient, the skill for achieving the goal will have been 
acquired and it can be sent to Long Term Memory (LTM) for storage and future recall. 

3. Real Robot Experiment 

The Baxter robot is placed in front of a white table with three different objects it can detect: a 
brown box, a red ball and a small plastic jar which lights up when it is grabbed. The robot can detect 
the distance to the objects by using their color and shape. 

The execution of the experiment, illustrated in the images of Figure 1, can be described as 
follows: the robot started its operation without any explicit goal nor skill apart from the two innate 
motivations mentioned above. Consequently, it started moving its right arm guided by the novelty 
motivation. Eventually, this novelty seeking motivation leads it to hitting and pushing an object, in 
this case the ball (see Figure 1 (a)), thus generating a change in the perceptions of the robot that it will 
interpret as an effect of its actions on the environment. This increases the interestingness value of the 
point in state space where the change occurred and establishes it as a virtual goal to be achieved. As 
the robot becomes more proficient, the robot loses interest in moving the ball and goes back to seeking 
novelty. At this point the value function (VF) obtained for the push-ball skill, shown in Figure 2 (a), 
is stored in the LTM of the MDB for future use. 

  
(a) (b) 

Figure 1. Experimental setup with the Baxter robot. (a) Pushing skill; (b) Grasping skill. 

As the robot continues to explore, some object may end up between its gripper pads triggering 
the close gripper reflex action. This action really does not cause any effect in any of the objects except 
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for the jar. When it is the jar the one the gripper closes on, it lights up. This obviously is an effect and, 
as in the previous case, an interestingness value is assigned (see Figure 1b). Again, the proficiency 
based motivation starts guiding the robot response and a second VF learning process is launched. As 
the grasping skill associated to this VF improves, the interestingness value decreases until the 
corresponding VF (Figure 2b) has been correctly learnt and is stored in the LTM. The process 
continues with a new exploratory stage and, if pertinent, new activations of the effectance drive that 
will allow learning new skills. 

  
(a) (b) 

Figure 2. 3D representation of the skills learned in terms of distance and speed of the gripper. (a) VF 
associated to the push-object skill; (b) VF associated with the grabbing skill. 
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