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Abstract

This paper analyzes the impact of illiquidity of a stock on the pricing of
derivatives. In particular, it is shown how illiquidity generates a bid-ask
spread in an option on this stock, even in the absence of other imperfec-
tions, such as transaction costs and asymmetry of information. Moreover,
the spread is shown to be asymmetric with respect to the option price under
perfect liquidity. This fact explains the appearance of a smile e¤ect when
the implied volatility is estimated from the mid-quote.



1 Introduction
Many studies suggest that bid-ask spreads in …nancial markets are the result
of some market imperfections. Examples of such imperfections are inventory-
carrying costs as in Amihud and Mendelson (1980) and Stoll (1978), transac-
tion costs as in Boyle and Vorst (1992) and asymmetric information costs as
in Glosten and Milgrom (1985) and Easley and O’Hara (1987). In this work
a model is presented, in which the bid-ask spread is generated only as a con-
sequence of illiquidity in the stock market. This modelization of the bid-ask
spread comes very much in the spirit of the recent paper of Cho and En-
gle (1999), who empirically explain the spreads in a perfect derivative hedge
world by the illiquidity of an underlying market, rather than by the usual
imperfections. Our paper fully formalizes some of their empirical …ndings.
Moreover, the power of the model becomes evident in an explanation (at
least qualitative) of the smile e¤ect in very simple terms, reinforcing the idea
in Bossaerts and Hillion (1997) that these type of e¤ects may be explained
in terms of constraints on the frequency of hedge portfolio rebalancing.

Most option pricing models assume perfect frictionless markets. The value
of an option is computed using a portfolio on the underlying risky asset
and risk-free bonds that replicates the payo¤s of the option. As both the
risky asset and the risk-free bonds are priced in the market, it is possible
to compute the theoretical value for the option that rules out any arbitrage
opportunity. It is also assumed that the replicating portfolio is adjusted
at each point in time in order to replicate the value of the option. This
possibility of continuous rebalancing is one of the assumptions taken in the
Black and Scholes (1973) valuation formula.

However, in real-world …nancial markets, there are imperfections and it
is not always possible to accept the Black and Scholes valuation model. One
of these imperfections is related to the continuous rebalancing hypothesis.
This hypothesis has been dropped in several studies, mainly because of the
existence of transaction costs1. In the presence of transaction costs, the Black
and Scholes arbitrage argument can no longer be used because the replicating
strategy would be extremely costly. To take into account the impact of this
imperfection on the price, most authors assume that trading takes place only
between discrete time intervals. Other reasons can lead to the acceptance of
discrete-time rebalancing, namely the fact that markets close every day.

This paper assumes a completely di¤erent reason for discrete time re-
balancing of portfolios. Speci…cally, it is assumed that portfolios cannot be
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rebalanced on consecutive dates, even in a discrete-time setting, because mar-
kets are illiquid. Illiquidity has become a very important matter for those
acting in …nancial markets, specially after so many crises in emerging mar-
kets, such as the one that occurred in mid-1998 after the Russian government
defaulted Russian Treasury-Bills. The point is that the e¤ective value of a
portfolio depends on the degree of market’s liquidity. In fact, to liquidate an
investor’s position in a situation where assets are illiquid, it may be di¢cult
to obtain the true value of the assets involved. In some cases it may be
necessary to wait a certain period of time before transaction prices are well
de…ned.

A measure of market illiquidity will therefore be related to the time in-
terval between portfolio rebalancing, and will have consequences in the way
derivatives are priced. As opposed to the papers dealing with transaction
costs, our work implies a pricing framework equivalent to that of incomplete
markets, in the spirit of the papers by El Karoui and Quenez (1991,1995)
and Edirisinghe, Naik and Uppal (1993). Notice that in our context market
incompleteness derives from the fact that markets are illiquid. In the usual
incomplete markets framework rebalancing is possible at every point in time.
In our framework, this is not so.

As in Leland (1985) and Boyle and Vorst (1992), the possibility of trad-
ing in the underlying asset is exogenously restrained to some points in time,
giving rise to a so-called time-based hedging strategy. Likewise, it will be as-
sumed in this paper that trading in the underlying asset can be done only in
pre-determined …xed points in time, re‡ecting the fact that markets are illiq-
uid. A di¤erent approach by Bensaid, Lesne, Pagès and Sheinkman (1992),
Edirisinghe, Naik and Uppal (1993) and Naik and Uppal (1993), among oth-
ers, consider the hedging dates as a variable to be endogenously solved by
an optimization model. The resulting optimal hedging strategy, the so-called
move-based hedging strategy, leads to the conclusion that in the presence of
transaction costs it may not be optimal to revise the hedge portfolio at every
point in time. Although a time-based trading strategy may not be optimal, it
may be “justi…ed mainly by economical and institutional reasons” as argued
by Toft (1996).

The Black-Scholes assumption on the possibility of continuous rebalanc-
ing is dropped again in the recent work of Kamal and Derman (1999). These
authors assume that options are replicated in line with the Black-Scholes
strategy, but only at certain points in time, leading to a replicating error.
The approach to the problem is quite di¤erent in this paper, since there

2



will be no replicating error. Instead, we do the following: consider a market-
maker who sells and buys options. When transacting a derivative instrument,
the replicating portfolio of this intermediary is rebalanced whenever possible
in time, in such a way as to guarantee that its future value always covers
the future value of the transacted option. The hedging portfolio built in this
way is perfectly analogous to the superreplicating portfolio in El Karoui and
Quenez (1991,1995) and Karatzas and Kou (1996) in the framework of in-
complete markets in continuous time. Then, although the adjustment of the
replicating portfolio can take place only in discrete time, the options’ dealers
will be fully hedged against the exercise of the options. As stressed by El
Karoui and Quenez (1991,1995) and Karatzas and Kou (1996), since markets
are incomplete, the hedging of the market-maker is di¤erent depending on
whether he is in a long or sort position. This results in two di¤erent prices
for the option, a bid and an ask price.

The option ask price corresponds to the minimum value of a replicating
portfolio for the long position in an option, that is, the minimum price that is
asked when an investor wants to buy it. The option bid price corresponds to
the maximum value of a replicating portfolio for a short position in the option.
As expected, the value of the option in the presence of a liquid stock market
is shown to lie between the ask and bid values, when markets are illiquid.
Furthermore, as the market becomes more liquid, both bid and ask prices
converge to the liquid price. In the continuous-time setting, we conclude that
options’ prices are given by the usual Black-Scholes option valuation where
the volatility comes adjusted to re‡ect market illiquidity. This is similar to
Leland (1985) and Boyle and Vorst (1992) conclusions in the presence of
transaction costs. However, their adjusted volatilities become in…nite as the
time between rebalancing points goes to zero, making it di¢cult to interpret
their formulas in continuous-time.

Krakovsky (1999) de…nes market liquidity of an asset as the sensitivity of
the stock’s price to the transaction volume. For a given sensitivity, he also
arrives to a liquidity adjusted Black-Scholes equation which is nonlinear in
the option’s price. His equation has the disadvantage that can only be solved
numerically.

The article is organized as follows. In section 2 the methodology of the
paper is illustrated in the simple context of a binomial two-period model.
The next section extends this analysis to consider both the e¤ect of longer
time-to-maturity and the e¤ect of a higher level of illiquidity in the stock
market. The model is developed for the case of continuous time in section

3



4. Section 5 presents some numerical results on the bid-ask spread and some
empirical implications of our results. The main conclusions of the article are
presented in the last section.

2 The Bid and Ask Prices in a Two-Period
Model

This section is based on the well-known binomial option pricing model devel-
oped by Cox, Ross, Rubinstein (1979). In this model the stock price follows a
binomial process over discrete periods. In each period the value of the stock
may evolve in two di¤erent ways: it may be multiplied either by a rate U or
by a rate D, where U > R > D and R denotes one plus a constant riskless
interest rate over each time period.

We begin by considering a European call option with exercise price K
and two periods to maturity. In this simpli…ed model there are three relevant
dates: t = 0; 1; 2: At t = 0 the option is traded for a value C, and at t = 2
the option matures and its value is given by max(0; S2 ¡K), where S2 is the
value of the stock at time t = 2.

The call option will take the following notation at each node: at t = 1, if
the stock price is raised by the rate U; the option’s value is denoted by CU :
Otherwise, if the stock price is raised by the rate D; the option’s value at
t = 1 will be denoted by CD. Similarly, for t = 2 the possible values for the
option will be denoted by CUU ; CUD and CDD: Since t = 2 is the maturity of
the contract it follows that

CUU = max [0; UUS ¡K]

CUD = max [0; UDS ¡K]

CDD = max [0; DDS ¡K]

2.1 The Two-Period Liquid Model

If there are no arbitrage opportunities, a call option must be worth the
same as the cheapest portfolio that exactly replicates the value of the call at
each point in time. Considering a simpli…ed economy with one risky asset
(the underlying) and one-period riskless bonds, one such portfolio may be
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constructed. At each point in time this portfolio consists of ¢ shares of the
stock and an amount B in riskless bonds. As time changes, the portfolio
is adjusted to continue replicating the values of the call option. Then, at
t = 0; a portfolio of ¢0 shares and an amount B0 in the riskless asset is built
such that it replicates the value of the call at t = 1: At t = 1 the portfolio
is adjusted to replicate the option at maturity. For longer maturities, this
implies that everytime the price changes, there may be transactions in the
market of the underlying stock and in the market of bonds to adjust the
hedging portfolio.

If there are no arbitrage opportunities, the value of the call option at
each point in time and at each possible state of Nature must be the same as
the value of this corresponding hedging portfolio, since both the call and the
portfolio have exactly the same payo¤s at the next point in time.

For this two period model, it is well known that the value of the call is

C = [p2CUU + 2p(1¡ p)CUD + (1¡ p)2CDD] =R2

where p = R¡D
U¡D and 1¡ p = U¡R

U¡D .

2.2 Modelling Illiquidity

Although widely discussed, there is no agreement either on how to de…ne
liquidity or on how to measure it. Liquidity is often de…ned re‡ecting two
dimensions of a transaction. One of these refers to the time taken to convert
an asset into cash. Based on this dimension, an asset is liquid if it can be
immediately transacted. The other dimension, measures the cost of trading
an asset for cash quickly. In this case, an asset is liquid if it can be transacted
at a price near the prevailing market price.

Liquidity is usually recognized as an important characteristic of capital
markets. It is generally accepted that investors prefer to invest in liquid
assets that can be traded quickly, and at a low cost, than to invest in illiquid
assets, which must o¤er higher expected returns to attract investors2.

Lippman and McCall (1986) present a measurable de…nition of liquidity
based on the length of time that it takes to sell an asset. For these authors,
money is by de…nition the most liquid asset and they de…ne other asset’s
liquidity as the “optimal expected time to transform the asset into money”.
By “optimal” it is meant that sellers only accept o¤ers greater or equal to
their reservation price. Only when these o¤ers arrive are transactions made.
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In the case of a totally illiquid asset, the expected time to convert it into
money is in…nite.

The second perspective of de…ning liquidity suggests another measure
that is widely used: the bid-ask spread. The bid and ask prices correspond
to the prices quoted by …nancial intermediaries who make up the market in
a given asset. The ask (bid) price is the price at which the market maker
is willing to sell (buy) the asset and it includes a premium for immediacy
selling (buying). In fact, market makers solve the problem of the time gap
between public buy and sell orders. When an investor does not want to wait
for another trader to take the opposite side of the transaction, this investor
must trade with the market maker accepting the price that is quoted. Thus, a
natural measure of illiquidity is the di¤erence between the bid and ask prices.
In this way, a higher bid-ask spread corresponds to a higher immediacy cost
and a less liquid asset.

At this point one may introduce the notion of illiquidity as the lack of
liquidity. For this purpose assume that at t = 1 trading in the underlying
asset is not possible, or in other words, it is not possible to convert money into
the asset, or vice-versa, at t = 1. In this speci…c case, it will take two periods
of time to achieve these conversions. This clearly typi…es an illiquid market
in the sense de…ned by Lippman and McCall (1986). It can be assumed that
the reservation price is such that the investor is not willing to trade in t = 1;
preferring to postpone his transactions until the next period. The point is
to know how this fact a¤ects the pricing of the option.

The above trading restriction implies that the initial portfolio (¢0; B0)
made at t = 0 will not be adjusted after one period. An investor who buys
this portfolio (¢0; B0) and keeps it until maturity is not fully hedged because
this portfolio did not consider the evolution of the stock price until time two3.
On the other hand, another portfolio could have been computed considering
the three states of Nature at t = 2. Once again, a portfolio computed as is
section 2.1 would not replicate the payo¤s of the call option at maturity since
it could have the same payo¤s of the call only in two of the three alternative
states of Nature. In conclusion, the usual approach to compute replicating
portfolios cannot be applied here since the portfolio would not be a fully
replicating one. In fact, the illiquid markets assumption will give rise to two
di¤erent prices of the call, a bid and an ask price.

The remainder of this section considers the simple case of a two-period
model. In a two period model, market illiquidity means that the underlying
stock can be traded only at t = 0 and/or t = 2: In this situation, any hedging
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portfolio cannot be adjusted at t = 1 and will be kept from t = 0 until the
corresponding option expires at t = 2: In the next section a more general
case is considered, where the option maturity is expanded from 2 periods
to T periods. In a T period model, market illiquidity will be related to the
number of periods between two consecutive transactions of the underlying
asset, just as in the 2 period model. In the T period model, however, this
number of periods may be greater than 2 and the underlying asset may be
transacted at di¤erent points in time, allowing the replicating portfolio to be
adjusted at each of those points.

2.2.1 The ask price of a call option

Consider a …nancial institution4 selling a call option while wishing to be
hedged. Today, the objective of the institution is to minimize the cost of
replicating the exercise value of the option at maturity. It is expected that
the buyer of the call option exercises it, at maturity, whenever the value of
the stock is greater then the exercise price. Under the simplifying assumption
that the economy is composed of the underlying and a riskless asset, this is
equivalent to building a hedging portfolio at time t = 0 in these two assets.
The replicating portfolio is built in such a way that at t = 2 its value always
exceeds, or equals, the exercise value of the option. In other words, the
…nancial institution must be prepared to the exercise of the option. If this
happens, the institution will certainly need to hold an instrument that is
worth at least as much as the exercise value of the option. The problem of
the intermediary is to minimize the cost of this initial portfolio, that is, it
must be solved the following optimization problem

min¢S +B
f¢; Bg

subject to the terminal conditions:

¢UUS +BR2 ¸ CUU
¢UDS +BR2 ¸ CUD
¢DDS +BR2 ¸ CDD

where CUU ; CUD and CDD have the meanings explained at the beginning
of this section.

It is worth noticing that these terminal restrictions are inequalities. Then,
the solution of this problem will clearly be super-replicating, since there
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cannot be found a unique solution for (¢; B) satisfying the three conditions
in equality. In at least one of the three states of nature, the portfolio will
have a strictly higher payo¤ than the exercise value of the option. With
a portfolio guaranteeing these restrictions, the institution is simultaneously
maximizing its pro…ts while being fully hedged against the exercise of the
option.

Proposition 1 Solving this problem leads to the ask price of the call

Ca = [¼CUU + (1¡ ¼)CDD] =R2

where ¼ = R2¡D2

U2¡D2 and 1¡ ¼ = U2¡R2
U2¡D2 .

Proof. See the Appendix.
It is also shown in the Appendix that

Proposition 2 Ca ¸ C; that is, the cost of the hedging portfolio is greater
when it cannot be adjusted in every period.

In other words, the …nancial institution has a lower bound on its selling
price that is higher than in the case of full liquidity. Also, it is worth noticing
that this new hedging portfolio has the following property: in the two extreme
states of Nature at maturity it has the same value as the call option; in the
intermediate state it is worth more than the call.

2.2.2 The bid price of a call option

On the other hand, the …nancial institution is also concerned about the cost
of replicating a long call option on the same underlying asset. The problem
now is analogous but quite di¤erent. The …nancial institution buys a call
option and, to be hedged, sells a hedging portfolio. This is di¤erent from
the previous case since it corresponds to short selling the underlying asset
while investing in the riskless asset. At maturity, the institution must buy the
shares in the market and it also receives the results from the investment in the
riskless asset. At the same time, it owns a call option that will exercise if the
payo¤ is positive. To be fully hedged against the probability of exercising the
option, it must be imposed that the call option’s payo¤ is at least as much as
the value of the portfolio. At the same time, and to maximize its pro…ts, the

8



…nancial institution searches today for the maximum value of the portfolio
that it is selling. This corresponds to the following problem

max¢S +B
f¢; Bg

subject to the terminal conditions:

¢UUS +BR2 � CUU
¢UDS +BR2 � CUD
¢DDS +BR2 � CDD

where again CUU ; CUD and CDD have the meanings explained at the be-
ginning of this section.

Once again, these terminal conditions are inequalities. The replicating
portfolio will satisfy the restrictions in equality only for two of the three
states of Nature. The solution to this problem has another particularity, it
has two di¤erent solutions depending on whether (UD ¡ R2) is positive or
negative5. We then have the following.

Proposition 3 The bid price of the call under the assumption that UD < R2

is

Cb = [¼
0CUU + (1¡ ¼0)CUD] =R2

where ¼0 = R2¡UD
U(U¡D) and 1¡ ¼0 = U2¡R2

U(U¡D) .
If UD > R2 the bid price of the call is

Cb = [¼
00CUD + (1¡ ¼00)CDD] =R2

where ¼00 = R2¡D2

D(U¡D) and 1¡ ¼00 = UD¡R2
D(U¡D) .

Proof. See the Appendix.
It is also shown in the Appendix that

Proposition 4 C ¸ Cb.

This means that, to be hedged, the …nancial institution is willing to pay a
smaller amount for a call option than the value obtained under full liquidity.

It is important to notice that ¼, ¼0and ¼00 have some special properties.
Given the assumption that U > R > D and the additional restrictions for
the bid price, it is easily checked that ¼, ¼0and ¼00are always positive and less
than one.
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2.2.3 The Put option

The problem can be formulated to a European put option. The ask price is
obtained minimizing the actual value of a portfolio of the stock and bonds
subject to the restriction that its value at t = 2 always exceeds or equals the
exercise value of the put option. The problem is quite similar to the one of
the ask price of the call option and its solution gives rise to the following
expression for the ask price of a put option (Pa):

Pa = [¼PUU + (1¡ ¼)PDD] =R2

where PUU = max(0; K ¡ UUS) and PDD = max(0; K ¡DDS).
In the case of the bid price of the option, the problem to be solved is the

maximization of the actual value of a portfolio subject to the restriction that
it will always value, at maturity, less than or equal to the exercise value of
the put option. Once again there will be two situations:

- if (UD ¡R2) < 0 the bid price of the put is

Pb = [¼
0PUU + (1¡ ¼0)PUD] =R2

where PUD = max(0; K ¡ UDS);
- if (UD ¡R2) > 0 the bid price of the put is

Pb = [¼
00PUD + (1¡ ¼00)PDD] =R2

Notice that all these expressions for the put prices are very similar to
those corresponding for a call option. For instance, the ask price of a put
option is a weighted average of its extreme values at the maturity, weighted
by ¼ and 1¡ ¼; exactly the same as the ask price of a call option. A similar
conclusion can be taken for the bid prices. It turns out that the put-call
parity is still valid for options on the same stock, with the same exercise
price and maturity. From the ask price of a call option, one would obtain
the ask price of a put option; from each of the bid prices of the call option,
one would get the respective put price.

3 The Bid and Ask Prices in the General Dis-
crete Case

These results can be expanded in two related directions. The …rst one consists
in expanding the time to maturity of a call option for T . In this case, it is
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necessary to generalize the number of upward movements of the stock price,
denoted by j. The second expansion is to consider di¤erent levels of illiquidity
in the stock market. In this model, the level of illiquidity is related to the
number of periods between two consecutive transactions which will be given
by n: In the previous section, for instance, an illiquid market with T = n = 2
was analyzed. In that case there was no opportunity to rebalance the hedging
portfolio. But, in the general case where T > n; the initial hedging portfolio
will be rebalanced whenever it is possible to trade in the stock market. In
the presence of a liquid market, n is equal to one meaning that the hedging
portfolio is rebalanced every period.

As in the previous section, the problem is …rst characterized for the ask
price. This price is the lowest one for which a …nancial institution would be
willing to sell the call option. By de…nition, it is given by the value of the
cheapest hedging portfolio composed of ¢ shares and a loan of B; made at
t = 0; which will be rebalanced in a way to insure that, at maturity, the
seller of the option will have a payo¤ equal or greater to its exercise value:
This portfolio will not be rebalanced every period because of stock market
illiquidity but it is not static. In fact, it will be rebalanced every n periods,
that is, it will be rebalanced at times t = n; 2n; 3n; :::T ¡ n: The problem to
be solved in the beginning of each rebalancing period is therefore

min ¢tSt +Bt
f¢t; Btg

subject to the conditions:

¢tU
jDn¡jSt +BtR

n ¸ Ct+n;j for j = 0; :::; n and t = 0; n; :::T ¡ n;
(1)

where Ct;j is the value of the option at time t; the price of the underlying
stock having increased j times in the last n periods. In particular, CT;j =
max(0; U jDn¡jST¡n ¡K):

The problem is basically the same as in the two-period model. The main
di¤erence is that the number of restrictions is generalized to be n + 1: It is
shown in the appendix that the rebalancing portfolio (¢a;t; Ba;t) is now given
by

¢a;t =
Ct+n;n¡Ct+n;0
St(Un¡Dn)

Ba;t =
UnCt+n;0¡DnCt+n;n

Rn(Un¡Dn)
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It means that, at time t = 0; a portfolio (¢a;0; Ba;0) is constructed satis-
fying restriction (1). By assumption, it is not possible to trade in the stock
market after t = 0 and before t = n. Then, the hedging portfolio will be
adjusted, for the …rst time, only at t = n: This procedure will be repeated
at times t = 2n; 3n; ::: until t = T ¡ n; which is the last rebalancing period
before maturity:

The solution to the problem solved in each n-period leads to the following
expression of the ask price at time t = 0; n; 2n; :::; T ¡ n of the call as a
function of n :

Lemma 5

Ca;t =
1

Rn
[¼Ct+n;n + (1¡ ¼)Ct+n;0] (2)

where ¼ = Rn¡Dn
Un¡Dn ; and 1¡ ¼ = Un¡Rn

Un¡Dn :

Proof. See the Appendix.
Considering T the maturity of the option6, the general formula for the

ask value of a call option at time t = 0 as a function of payo¤s at maturity
is given by

Proposition 6

Ca =
1

RT

T=nX

j=0

µ
T=n

j

¶
¼j(1¡ ¼)T=n¡j(UnjDT¡njS ¡K)+ (3)

where
¡
T=n
j

¢
= (T=n)!

j!(T=n¡j)!

Proof. Follows working backwards the result of the lemma above.
Similarly, the bid price is characterized as the maximum value that the

…nancial institution would be willing to pay for a call option. In this case, the
problem in each rebalancing period may be stated as constructing a portfolio
of ¢ shares and cash B such that

max¢tSt +Bt
f¢t; Btg

subject to the conditions:
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¢tU
jDn¡jSt +BtRn � Ct+n;j for j = 0; :::; n and t = 0; n; :::T ¡ n;

where, as before, Ct;j is the value of the option at time t; the price of the
underlying stock having increased j times in the last n periods.

Once again, the hedging portfolio constructed at t = 0 will be adjusted at
times t = n; 2n; 3n; :::T ¡n. This strategy ensures the intermediary a hedged
position.

As in the previous section, the computation of the bid price is not straight-
forward. It depends on the relation between Rn and the value of the asset
at each rebalancing point in time. Let i be de…ned as the integer satisfying
Un¡(i+1)Di+1 < Rn < Un¡iDi; and 0 � i � n¡1: It is shown in the appendix
that the hedging portfolio (¢b;t; Bb;t) is now given by

¢b;t =
Ct+n;n¡i¡Ct+n;n¡(i+1)

St(Un¡iDi¡Un¡(i+1)Di+1)

Bb;t =
Un¡iDiCt+n;n¡(i+1)¡Un¡(i+1)Di+1Ct+n;n¡i

Rn(Un¡iDi¡Un¡(i+1)Di+1)

Then, the bid price of the call option, at each rebalancing period is given
by

Lemma 7

Cb;t =
1

Rn
[¼0Ct+n;n¡i + (1¡ ¼0)Ct+n;n¡i¡1]

where ¼0 = Rn¡Un¡(i+1)Di+1
Un¡iDi¡Un¡(i+1)Di+1 ; and 1¡ ¼0 = Un¡iDi¡Rn

Un¡iDi¡Un¡(i+1)Di+1 :

Proof. See the Appendix.
Once again taking T as the maturity of the option, the general formula

for the bid price at time t = 0 as a function of of payo¤s at maturity is given
by

Proposition 8

Cb =
1

RT

T=nX

j=0

µ
T=n

j

¶
¼0j(1¡ ¼0)T=n¡j(U j+T¡T=n(1+i)DT=n(1+i)¡jS ¡K)+ (4)

where ¼0 = Rn¡Un¡(i+1)Di+1
Un¡iDi¡Un¡(i+1)Di+1 ; (1¡ ¼0) = Un¡iDi¡Rn

Un¡iDi¡Un¡(i+1)Di+1 .
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Proof. Follows working backwards the result of the lemma above
When the stock market is liquid, n is equal to one and both the bid and

ask prices reduce to the expression of the usual binomial model.
As in the simple two-period model, the put-call parity is still valid. Then,

the ask price of a put option can be easily derived from the ask price of a
call option and, for each i; the put-call parity can also be used to get the bid
price of a put option.

4 Continuous Time
The simple binomial context may be used to derive a continuous time valu-
ation equation. Suppose that each original time period is divided into 1=h
smaller periods and that one takes the limit h ! 0: As in Cox, Ross, Ru-
binstein (1979) the variables R;U and D must be adjusted consistently to
these new time intervals, preserving average rates of increase and average
variance per unit time. This is well known to be satis…ed by the rates
Uh = e

¾
p
h;Dh = e

¡¾
p
h and Rh = Rh per time interval h.

This section will develop the partial di¤erential equations for both ask and
bid prices in di¤erent illiquidity contexts. It starts assuming the framework
considered until now, namely that between two consecutive transactions there
are n time units where the underlying asset cannot be transacted. Being n an
integer, it follows that there is a lower bound in the possible bid-ask spreads
of option prices, which is far too large compared to the observed values in
the market. In the second part of this section our results are generalized to
a more ‡exible setting in which after each n-period of non-transaction, the
underlying asset may be transacted for m consecutive points in time. This
allows for less illiquid situations than the former setting. We refer to Section
5.2.3 for a discussion of the empirical relevance of such extension.

4.1 The PDE for the Ask and Bid Prices

Equation (2) relating the ask value of the call at the beginning of a period
and its two possible values after n periods was obtained in the section above.
That expression may be rewritten as

Rn¡Dn
Un¡DnCn +

Un¡Rn
Un¡DnC0 ¡ CaRn = 0;

14



where Cj is the value of the option if the price of the underlying stock
increased j times.

Choosing Rh; Uh and Dh in the way just described, and substituting them
in the above expression, it follows that

h
elogR

hn¡e¡n¾
p
h

en¾
p
h¡e¡n¾

p
h

i
C(en¾

p
hS; ¿ ¡ nh)+

h
en¾

p
h¡elogRhn

en¾
p
h¡e¡n¾

p
h

i
C(e¡n¾

p
hS; ¿ ¡ nh)¡RhnCa(S; ¿ ) = 0;

where ¿ denotes the time to maturity.
Expanding the functionC around (S; ¿) and then each exponential around

h = 0, in the limit when h ! 0 the equation above becomes the Partial
Di¤erential Equation

1

2

@2C

@S2
n¾2S2 +

@C

@S
S(logR)¡ C(logR)¡ @C

@¿
= 0 (5)

This is simply the Black-Scholes Partial Di¤erential Equation changed by
the fact that the volatility is multiplied by

p
n:

The same procedure as above7 is applied to the equation of the bid price
of the call derived in section 3 which can be rewritten as.

Rn¡Un¡1¡iDi+1
Un¡iDi¡Un¡1¡iDi+1Cn¡i +

Un¡iDi¡Rn
Un¡iDi¡Un¡1¡iDi+1Cn¡1¡i ¡ CbRn = 0

Substituting all terms and restricting the value of i = n
2

¡ 1
2
; we obtain

elogR
hn¡e¡¾

p
h

e¾
p
h¡e¡¾

p
h
C(e¾

p
hS; ¿ ¡ nh)+

e¾
p
h¡elogRhn

e¾
p
h¡e¡¾

p
h
C(e¡¾

p
hS; ¿ ¡ nh)¡RhnCb(S; ¿ ) = 0

Expanding the functionC around (S; ¿) and then each exponential around
h = 0, in the limit when h ! 0 the equation above becomes the Partial
Di¤erential Equation

1

2

@2C

@S2
¾2

n
S2 +

@C

@S
S(logR)¡ C(logR)¡ @C

@¿
= 0 (6)
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which is, once again, the Black-Scholes Partial Di¤erential Equation where
the volatility is now divided by

p
n:

Notice that, as in the discrete case, the put-call parity remains valid. This
simpli…es the derivation of put option prices since they can be obtained using
the call prices.

4.2 The PDE for the Ask and Bid Prices in an Arbi-
trarily Illiquid Market

The illiquidity setting described until now is rather strong in the sense that
there are many more periods without transactions than periods where is
possible to transact the underlying asset. Consider now the more general
case where the underlying asset can be transacted at m consecutive points in
time, m > 1, and then one must wait n time periods to be able to transact
again the underlying asset. Under this notation, the former case is the one
where m = 1. In this more general case, the partial di¤erential equations for
the ask and bid prices can also be obtained. In particular,

Proposition 9 The partial di¤erential equations for the ask price is

1

2

@2C

@S2
n2 + (m¡ 1)
m+ n¡ 1 ¾2S2 +

@C

@S
S(logR)¡ C(logR)¡ @C

@¿
= 0: (7)

Proof. See the Appendix.
Notice that the only term a¤ected by the illiquidity parameters n and m

is the second derivative of C with respect to S: In other words, it is the term
multiplied by the volatility, thus allowing the interpretation of the impact
of illiquidity as an adjustment of the implied volatility of the returns on the
underlying stock. The partial di¤erential equation of the bid price (equation
(6)) can also be generalised to consider the less illiquid stock market. Once
again, the only di¤erence is in the term multiplying @2C

@S2
; and an identical

interpretation follows.

Proposition 10 The partial di¤erential equation satis…ed by the bid price is

1

2

@2C

@S2
m

m+ n¡ 1¾
2S2 +

@C

@S
S(logR)¡ C(logR)¡ @C

@¿
= 0 (8)
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Proof. See the Appendix.
It is worth notice that both expressions resume to equations (5) and (6)

when m = 1 and to the usual Black-Scholes when n = 1: One may also
notice that since the terms multiplying @2C

@S2
are di¤erent in the two partial

di¤erential equations above, the liquid price resulting with m = 1 and n = 1
is not the mean average of the ask and bid prices. This fact will have severe
empirical implications, as discussed below.

5 Empirical Implications
It was shown in the previous sections that in the presence of an illiquid
market one arrives at an ask (bid) price for an option which is always greater
(lower) than the value obtained in the presence of a liquid stock market.
This section will implement these results in three ways. First, using the
discrete-time results, some values are computed for the bid and ask prices
of a European call option, for a given range of parameter values. In this
way it will be possible to compare our results with previous works. Next,
an explanation for the usual smile e¤ect is advanced. Finally, the model is
applied to some options traded in the market and some implied measures of
illiquidity are obtained.

5.1 The discrete-time setting

All the simulations assume the current price of the risky asset to be equal to
100, the time to maturity equal to 1 year and a 10% annual risk-free interest
rate. The …rst case analyzed assumes the annual standard deviation of the
return on the risky asset to be equal to 20%. These parameter values are the
same as in Leland (1985) and Boyle and Vorst (1992) in order to facilitate
comparison8. The sensitivity of all call prices to the exercise price and the
level of illiquidity of the stock market is studied. Here, the level of illiquidity
is related to the number of periods between two consecutive transactions,
denoted by n; and it is assumed to be constant during the entire life of the
derivative.

Table 1 presents the values of a European call option for di¤erent exercise
prices when the number of periods that one must wait to trade the stock
is …xed at n = 3. The …rst column corresponds to the length of time of
the subperiods in which the year is divided. The liquid price is computed
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assuming that the hedging portfolio is rebalanced on all of these dates. The
bid and ask prices are computed assuming that along the T periods there
were 2 points in time when it was impossible to trade in the stock market.
In all other points it was possible to trade meaning that, for instance, when
T = 15 the number of m is 13: The liquid price is obtained with the usual
binomial model, but it also corresponds to take n = 1 in either of equations
(3) or (4). As expected, all prices decrease with the exercise price. Also, the
spread decreases with the number of periods in which the year is divided,
keeping …xed the number of periods with no trading. The bid-ask spread is
non-monotonic, reaching the highest value when the current stock price is
equal to the discounted exercise price9.

Table 2 provides the same information as Table 1 for the case where the
number of periods between transactions increases to …ve. As expected, both
the bid and ask prices are further away from the liquid price, causing the bid-
ask spread to be higher. The point here is that the hedging cost increases
with the illiquidity of the stock market. One can also repeat this study for a
lower volatility of the underlying asset. In that case, all call prices are lower,
but the e¤ect is larger for the ask price. This implies a narrower bid-ask
spread.

5.2 The continuous-time setting

5.2.1 The spread

In the former subsection, the spread was obtained for some numerical ex-
amples in the discrete-time setting. Here, use of the two Partial Di¤erential
Equations for the ask and bid prices leads to the immediate computation of
the spread, now in the context of continuous time.

Figure 1 represents the bid-ask spread obtained from our model for the
following values ¾ = 0:15; ¿ = 0:25; r = 0:02; n = 3;m = 20; S = 50 and
K = 47; 48; :::54; 55:

Notice that the basic features of the spread remain true. The bid-ask
spread is non-monotonic, reaching the highest value when the current stock
price is equal to the discounted exercise price, where now the discount term
is a function of r; ¾2; ¿ ;m and n:
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5.2.2 The smile e¤ect

The Black-Scholes pricing model assumes a constant volatility of the un-
derlying asset return. However, empirical studies obtain a quite di¤erent
result, namelly these studies show that there is a curious relation between
the volatility of the underlying asset and the exercise price of the option.
What is observed is that out-of-the-money and in-the-money options tend
to have a higher implied volatility than at-the-money options. This is called
the smile volatility10.

These type of empirical studies are possible because the volatility is the
only parameter of the Black-Scholes pricing model that is not observable.
Then, using observed market option prices it is possible to compute the
implied volatility of the underlying asset return. In this situation, since there
is a bid and an ask price for the option, it is usual to employ the mid-quote
price between these values.

These results show that the constant volatility assumption is a strong
one. However, it is not easy to implement an option pricing model with
the nonconstant volatility assumption. For instance, the valuation of an op-
tion when the volatility is stochastic employs other parameters which would
be di¢cult to estimate. If, on the other hand, one accepts a deterministic
volatility function of asset price and/or time11, it would be possible to value
an option based on the Black-Scholes partial di¤erential equation. Dumas,
Fleming and Whaley (1998) examined the performance of a model with a
deterministic volatility function using S&P options from 1988 to 1993. They
found that using this model is no better than using an adjusted volatility
version of the Black-Scholes model concluding that “simpler is better”.

According to our model, the mid-quote price between the bid and ask
prices is not the liquid price, that is, this is not the price that would prevail
in the presence of a liquid market. In fact, the mid-quote price is sistemat-
ically above the liquid price. If computed from the liquid price, the implied
volatility would be constant by construction. Using the mid-quote price, the
smile e¤ect shows up.

Figure 2 shows the smile e¤ect obtained with a simple simulation of our
model. After computing the bid and ask prices of a call option, the mean
of these prices was used to get the implied volatility of the underlying asset.
It clearly shows that although the bid and ask prices of the option were
computed assuming constant volatility, the implied volatility derived from
the mid-quote of these prices re‡ects a smile e¤ect12.
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It would be interesting to show that, in general, the smile e¤ect results
from using the mid-quote of this model. To accomplish that objective, one
should be able to prove that d2¾¤

dK2 > 0; for all K; where ¾¤ is the implied
volatility of the underlying asset. Unfortunately, the expression for d2¾¤

dK2 is
so complex that no general conclusion about its sign can be reached beyond
the type of simulations performed above.

5.2.3 Market liquidity, implied volatilities and transaction vol-
umes

At this point, the model is able to provide a measure of an asset’s illiquidity
given the observed values in the market. Given the ask and bid prices of call
options written on that asset, one is able to evaluate the implied volatilities,
® and ¯ respectively, using the Black-Scholes formula. According to our
model, the implied volatilities are distinct functions of n and m: Therefore,
the di¤erences in the implied volatilities obtained from the ask and bid prices,
re‡ect a particular choice of n and m: By the fact that we are able to relate
the bid-ask spread with the frequency of transactions in the underlying assets,
our resulting measure of liquidity is compatible with both the de…nition of
Lippman and McCall (1986) and the one based on the bid-ask spread.

From equations (7) and (8) it follows that ® = ¾2 n
2+(m¡1)
m+n¡1 and ¯ =

¾2 m
m+n¡1 ;where ¾2 is the true variance of the returns of the underlying asset.

We notice that ® > ¯ and

®
¯
= 1 + n2¡1

m
:

Of course in the perfectly liquid case, n = 1 and ® = ¯: Therefore, one
may see the term

¸ = n2¡1
m

as a measure of the degree of illiquidity of the market of the underlying
asset. It follows that in a perfectly liquid market ¸ = 0 and the value of ¸
increases as the di¤erence between the implied volatilities increases. Notice
that the possible values of illiquidity resulting from the model up to section
4.1 were restricted to the values n2 ¡ 1 for n 2 N: In particular, the ratio
of implied volatilities ®=¯ would be restricted to the values n2 for n 2 N:
Introducing the parameter m allows for a much more realistic reading of the
empirical results.
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In fact, for any observed ® and ¯ it is always possible to …nd integers n
and m such that ®=¯ ¡ 1 is suitably approximated by ¸: To see that, de…ne

kxk = inf fk 2 N j k ¸ xg :

It then follows

Proposition 11 Given arbitrary positive "; the choice of

n = inf

8
<
:k 2 N j

k2¡1
®=¯¡1°°° k2¡1
®=¯¡1

°°°
¸ 1¡ "

¸

9
=
;

and m =
°°° n2¡1
®=¯¡1

°°° ; leads to ®
¯

¡ (1 + ¸) � ":

Proof. Notice that

®

¯
¡ (1 + ¸) = (

®

¯
¡ 1)(1¡ ¸

®=¯ ¡ 1) = (
®

¯
¡ 1)(1¡ n2 ¡ 1

®=¯ ¡ 1
1

m
)

� (
®

¯
¡ 1)(1¡ 1 + "

¸
) = ";

where the inequality follows from the de…nition of n; and the claim is
proved.

Notice that an error " = 0 is possible only when one can …nd an integer n
such that n2¡1

®=¯¡1 is also an integer. On the other hand, since " is an arbitrary
positive number, it follows that there is an increasing subsequence of integers
ni; i = 1; 2; :::; such that the error in approaching ®=¯ converges to zero.

A simple and merely indicative study was done with market prices of
Monday, 29th November, 1999, from the MEFF (the o¢cial options and
futures market of Spain). The data consists in call options maturing in
December 1999, with several exercise prices, and on the following underlying
assets: Acerinox, Acesa, BSCH, Endesa and Repsol.

Table 3 presents the values obtained for ®=¯ ¡ 1 using our model, the
corresponding values of n, m and ¸ for an error of 0.001 and …nally, the
volume of transactions, in thousand euros, of the underlying asset realized
on the previous day, that is, 26th November, 1999. Notice that by choosing
the error as 0.001, the values obtained for ¸ coincide with ®=¯ ¡ 1: Also
notice that in the case of Acesa, there is the remarkable situation where
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n2¡1
®=¯¡1 is an integer with n = 16 and ®=¯¡ 1 = 0:600. Therefore, the error in
approximating the value ®=¯ ¡ 1 extracted from data is zero. As expected,
there is a negative relation between the illiquidity measure and the volume of
transactions, i.e., the measure of market illiquidity increases as the volume
of transactions decreases.

6 Conclusions
This paper analyzes the impact of stock market illiquidity on option pricing.
Illiquidity of the stock market imposes restrictions on the construction of
a hedging portfolio since it is not possible to continuously rebalance it. In
this sense, there would be a replicating error if the Black-Scholes strategy
were adopted. In this article, another strategy is developed for constructing
the rebalancing portfolio that will be superreplicating in the sense used by
El Karoui and Quenez (1991,1995). This fully-hedging strategy results in a
bid-ask spread in the price of call and put options.

One of the most interesting conclusions is that the liquid price is not
in the middle of the bid-ask spread. Therefore, calculations of the implied
volatility using the mid-quote will lead to a mistake. This procedure is very
common not only in markets but also in empirical papers. The nature of
the error incurred has been shown to be compatible with the presence of the
smile structure for the implied volatilities.

The framework of this article is related to that of incomplete markets since
a superreplicating strategy is developed. But, as opposed to the traditional
papers about incomplete markets, we assume that the incompleteness in
our case is generated by the impossibility of trading, at certain dates, in
complete markets. In other words, our incompleteness is generated by market
illiquidity. In a qualitative way, our main results are expressed in equations
(7) and (8). As expected, when n = 1 we recover the traditional Black and
Scholes formulas. Notice however that when n > 1 our modi…ed Black and
Scholes formula for the ask price works as if the variance of the underlying
asset had been increased, whereas in the case of the bid price, the Black
and Scholes formula works as if the variance of the underlying asset had
been decreased. An analogous scaling is found in the literature dealing with
transaction costs.

This analysis could be extended to a consideration of American options.
In such a case the optimal exercising strategy of the owner of such an op-
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tion should be incorporated in the model . Another extension of this work
would be to consider a bid-ask spread in the underlying asset. In that case
the superreplicating strategy should be adjusted to consider di¤erent buying
and selling prices of the shares used to replicate the option. Our intuition is
that the option bid-ask spread would be wider were this imperfection to be
introduced into the model. In their recent empirical work, Cho and Engle
(1999) con…rm our intuition showing that option market spreads are posi-
tively related to spreads in the underlying market.
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A Appendix

A.1 The Two Period Model

A.1.1 Proof of Proposition 1

The problem is given bymin¢S+B; choosing f¢; Bg subject to the terminal
conditions:
¢U2S +BR2 ¸ CUU
¢UDS +BR2 ¸ CUD
¢D2S +BR2 ¸ CDD
The solution follows from the Lagrangean:

L = ¢S +B + ¸1(CUU ¡¢U2S ¡BR2)
+¸2(CUD ¡¢UDS ¡BR2)
+¸3(CDD ¡¢D2S ¡BR2)

Alternatively, the problem can be solved following Karatzas and Shreve
(1998, chapter 5). To value a contingent claim in an incomplete market these
authors introduce the notion of auxiliary complete markets. In our case, each
auxiliary market is characterized by only two active restrictions out of the
three given above. Thus, there are three auxiliary complete markets in this
problem. Each auxiliary market must satisfy the illiquidity restriction that
no trade is possible at t = 1 and the additional restriction that the terminal
wealth always exceeds or equals the payo¤ of the call option at maturity. It
then follows that the value of the call option in the constrained market is
given by the supremum of all call option prices resulting from the auxiliary
(complete) markets.

In this two period model it can be checked that only the auxiliary market
resulting from ¸1 > 0; ¸2 = 0 and ¸3 > 0 satis…es the wealth restriction.
The solution to the problem leads to a portfolio with ¢ = CUU¡CDD

S(U2¡D2)
and

B = U2CDD¡D2CUU
R2(U2¡D2)

: The result follows.

A.1.2 Proof of Proposition 2

From the proof of Proposition 1, notice that

Ca ¡ C = 2
R2
p(1¡ p)

£
DCUU+UCDD

U+D
¡ CUD

¤
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The proof depends on the way the value of the exercise price K a¤ects
the payo¤ at maturity. Then simple substitution of the payo¤s CUU ; CDD
and CUD leads to the following situations:

D2S ¸ K ) Ca ¡ C = 0
UDS > K ¸ D2S ) Ca ¡ C = 2

R2
p(1¡ p)

£
¡ U
U+D

(D2S ¡K)
¤

¸ 0

U2S > K ¸ UDS ) Ca ¡ C = 2
R2
p(1¡ p)

£
D

U+D
CUU

¤
> 0;

thus proving that in every possible case Ca ¸ C:

A.1.3 Proof of Proposition 3

The problem is given bymax¢S+B; choosing f¢; Bg subject to the terminal
conditions:
¢U2S +BR2 � CUU
¢UDS +BR2 � CUD
¢D2S +BR2 � CDD
The solution follows from the Lagrangean:

L = ¢S +B + ¸1(¢U2S +BR2 ¡ CUU)
+¸2(¢UDS +BR

2 ¡ CUD)
+¸3(¢D

2S +BR2 ¡ CDD)

Once again, the problem is solved following Karatzas and Shreve (1998,
chapter 5). In this case, Karatzas and Shreve’s main result is that the value
of the call option in the constrained market is given by the in…mum of all
call option prices resulting from the auxiliary (complete) markets.

In this two period model there are three auxiliary markets satisfying the
illiquidity restriction, but it can be checked that only two of them satisfy
the wealth condition, that is, that the value of the portfolio at maturity is
always smaller or equal to the payo¤ of the call option. These markets are
the ones resulting from ¸1 < 0; ¸2 < 0, ¸3 = 0 and ¸1 = 0; ¸2 < 0, ¸3 < 0:
The value of the call is given by the in…mum of the initial cost (computed
at t = 0) of the portfolio that satisfy the wealth restriction in the complete
markets. In other words, corresponds to the maximum price obtained in the
two auxiliary markets.

When R2 > UD; the problem is solved with ¢ = CUU¡CUD
S(U2¡UD) and B =

U2CUD¡UDCUU
R2(U2¡UD) : When UD > R2; the problem is solved with the di¤erent

values of ¢ = CUD¡CDD
S(UD¡D2)

and B = UDCDD¡D2CUD
R2(UD¡D2)

: It follows that the bid
prices of the call are those given in the statement of this Proposition.

25



A.1.4 Proof of Proposition 4

Consider the two possible ranges for the values of R : For UD < R2; it follows
that

C ¡ Cb = 1
R2

(1¡p)2
U

[DCUU ¡ (U +D)CUD + UCDD]

This proof depends again on the value of the exercise price. Then, sub-
stituting the values of the payo¤s CUU ; CUD and CDD;

D2S ¸ K ) C ¡ Cb = 0;
UDS > K ¸ D2S ) C ¡ Cb = 1

R2
(1¡p)2
U

[¡U(D2S ¡K)] ¸ 0;

U2S > K ¸ UDS ) C ¡ Cb = 2
R2

(1¡p)2
U

[DCUU ] > 0;
implying that C ¸ Cb for all possible values of K whenever UD < R2:

Now consider the case where UD > R2: Then,

C ¡ Cb = 1
R2

p2

D
[DCUU ¡ (U +D)CUD + UCDD] ;

and substituting the values of the payo¤s CUU ; CUD and CDD; for the
di¤erent values of the exercise price follows that

D2S ¸ K ) C ¡ Cb = 0;
UDS > K ¸ D2S ) C ¡ Cb = 1

R2
(1¡p)2
U

[¡U(D2S ¡K)] ¸ 0;

U2S > K ¸ UDS ) C ¡ Cb = 2
R2

(1¡p)2
U

[DCUU ] > 0:
Hence, C ¸ Cb for all possible values of K and R:

A.2 The Case of n Periods

A.2.1 Proof of Lemma 5

Now the problem is min¢tSt + Bt; choosing f¢t; Btg subject to the condi-
tions:
¢tU

jDn¡jSt +BtRn ¸ Ct+n;j for j = 0; :::; n and t = 0; n; :::T ¡ n;
where Ct;j is the value of the option at time t; the price of the underlying

stock having increased j times in the last n periods. The solution follows
from the Lagrangean:

Lt = ¢tSt +Bt +
nP
j=0

¸t;j(Ct+n;j ¡¢tU jDn¡jSt ¡BtRn)

As in the two-period model, the problem can be solved following Karatzas
and Shreve (1998). In this case there are n(n + 1)=2 auxiliary markets to
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be considered for each point in time where the call option is to be valued.
However, only the auxiliary markets resulting from ¸t;0 > 0 and ¸t;n > 0 are
relevant because all others do not satisfy the wealth restriction. The solution
of the problem leads to ¢a;t =

Ct+n;n¡Ct+n;0
St(Un¡Dn)

and Ba;t =
UnCt+n;0¡DnCt+n;n

Rn(Un¡Dn)
:

The resulting value of the call is thus the one given in the statement of the
Proposition.

A.2.2 Proof of Lemma 7

The problem is now max¢tSt +Bt; choosing f¢t; Btg subject to the condi-
tions:
¢tU

jDn¡jSt +BtRn � Ct+n;j for j = 0; :::; n and t = 0; n; :::T ¡ n;
where Ct;j is the value of the option at time t; the price of the underlying

stock having increased j times in the last n periods. The solution follows
from the Lagrangean:

Lt = ¢tSt +Bt +
nP
j=0

¸t;j(Ct+n;j ¡¢tU jDn¡jSt ¡BtRn)

Following Karatzas and Shreve (1998), one can costruct n(n+ 1)=2 aux-
iliary markets. However, in this speci…c case, only the auxiliary markets
corresponding to two consecutive negative Lagrangean multipliers satisfy the
wealth restriction, giving rise to n call prices. As in the two period model, the
value of the call is given by the maximum price obtained in the n auxiliary
markets. The solution of the problem leads to ¢b;t =

Ct+n;n¡i¡Ct+n;n¡(i+1)
St(Un¡iDi¡Un¡(i+1)Di+1)

and Bb;t =
Un¡iDiCt+n;n¡(i+1)¡Un¡(i+1)Di+1Ct+n;n¡i

Rn(Un¡iDi¡Un¡(i+1)Di+1)
, where i is de…ned as the in-

teger satisfying Un¡(i+1)Di+1 < Rn < Un¡iDi; and 0 � i � n ¡ 1: It results
that the value of the call option is the one given in the statement of the
Proposition.

A.3 Continuous Time

A.3.1 Proof of Proposition 9

Let m be the number of initial points in time with transactions, including
t = 0: Since n is de…ned as the number of periods one must wait to transact
the underlying asset, n ¡ 1 is the number of points in time between two
consecutive transactions. Taking p = R¡D

U¡D and ¼ = Rn¡Dn

Un¡Dn ; then
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1. the term multiplying C is
m¡1P
j=0

¡
m¡1
j

¢
pj(1¡ p)m¡1¡j ¡ (1 + (m+ n¡ 1)hr) = ¡(m+ n¡ 1)hr;

2. the term multiplying @C
@¿

is
m¡1P
j=0

¡
m¡1
j

¢
pj(1¡ p)m¡1¡j(¡(m+ n¡ 1)h) = ¡(m+ n¡ 1)h;

3. the term multiplying @C
@S
¾
p
hS is

m¡1P
j=0

¡
m¡1
j

¢
pj(1¡ p)m¡1¡j [¼(2j + n+ 1¡m) + (1¡ ¼)(2j ¡ n+ 1¡m)]

= hr
¾
p
h
(m+ n¡ 1)

and …nally

4. the term multiplying @2C
@S2
¾2hS2 is

m¡1P
j=0

¡
m¡1
j

¢
pj(1¡ p)m¡1¡j [¼(2j + n+ 1¡m)2 + (1¡ ¼)(2j ¡ n+ 1¡m)2]

= n2 +m¡ 1:

Then, the partial di¤erential equation can be rewritten as

¡rC ¡ @C
@¿
+ @C

@S
Sr + @2C

@S2
¾2S2 n

2+m¡1
m+n¡1 = 0:

A.3.2 Proof of Proposition 10

This proof follows as in the previous case, but now with p = R¡D
U¡D and

¼0 = Rn¡D
U¡D : Then,

1. the term multiplying C is
m¡1P
j=0

¡
m¡1
j

¢
pj(1¡ p)m¡1¡j ¡ (1 + (m+ n¡ 1)hr) = ¡(m+ n¡ 1)hr;

2. the term multiplying @C
@¿

is
m¡1P
j=0

¡
m¡1
j

¢
pj(1¡ p)m¡1¡j(¡(m+ n¡ 1)h) = ¡(m+ n¡ 1)h;
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3. the term multiplying @C
@S
¾
p
hS is

m¡1P
j=0

¡
m¡1
j

¢
pj(1¡ p)m¡1¡j [¼0(2j + 2¡m) + (1¡ ¼0)(2j ¡m)]

= hr
¾
p
h
(m+ n¡ 1)

and …nally

4. the term multiplying @2C
@S2
¾2hS2 is

m¡1P
j=0

¡
m¡1
j

¢
pj(1¡ p)m¡1¡j [¼0(2j + 2¡m)2 + (1¡ ¼0)(2j ¡m)2] = m:

Then, the partial di¤erential equation satis…ed by the call price is given
by

¡rC ¡ @C
@¿
+ @C

@S
Sr + @2C

@S2
¾2S2 m

m+n¡1 :
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Footnotes
1. Leland (1985), Merton (1990), Boyle and Vorst (1992) and Toft (1996),

among others, have examined the impact of transaction costs on option val-
uation.

2. This topic was discussed by Amihud and Mendelson (1986, 1988, 1991)
3. This is the case presented in Kamal and Derman (1999).
4. It will not be speci…ed which …nancial institution is a market maker

since it di¤ers between exchanges.
5. This distinction does not make any sense when UD = 1: In that case,

R2 allways exceeds UD as long as the interest rate is strictly positive, what
seems reasonable. However, in discrete-time analysis one does not need to
impose UD = 1: This assumption will be valid only in the continuous-time
model.

6. In the discrete-time model one must impose a simplifying assumption
that T is a multiple of n;but this assumption is no longer needed in the
constinuous-time framework of the next section.

7. To choose Rh; Uh and Dh in the way described, some additional
restrictions must be imposed. If Rn¡Un¡1¡iDi+1

Un¡iDi¡Un¡1¡iDi+1 is to be positive then

hnr¡(n¡2¡2i)¾
p
h must also be positive. This implies that ¡(n¡2¡2i)

n
> 0.

At the same time, if Un¡iDi¡Rn
Un¡iDi¡Un¡1¡iDi+1 > 0; then n¡2i

n
> 0: Both conditions

imply that n
2

¡ 1 < i < n
2
: As i and n are positive integers, it can be

concluded that the only relevant cases occur when n is odd and i = n
2

¡ 1
2
:

8. As in their work, Uh = exp(¾
p
h); Dh = 1=Uh and Rh = Rh; where

h is the length of time of a subperiod in which the year is subdivided. In
the case of a liquid market, h is also the time interval between rebalancing
times.

9. Boyle and Vorst (1992) have a similar result in their work with trans-
action costs.

10. In fact, Dumas, Fleming and Whaley (1998) computed S&P option-
implied volatilities for a period after the October 1987 crash and obtained
the result that instead of a smile what appears is a sneer, that is, the implied
volatilities decrease monotonically as the exercise price rises.

11. Rubinstein (1985) and Derman and Kani (1994), among others, de-
velop variations of deterministic volatility function models.

12. The values used in the model were: ¾ = 0:15; ¿ = 0:25; r = 0:02; n =
3;m = 20; S = 50 and K = 46; 47; 48; :::54; 55:
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Table 1: Prices of a European Call option when the number of periods be-
tween two transactions is three.

Time units Exercise Price Bid Price Liquid Price Ask price Spread
(years) K (n = 3) (n = 1) (n = 3)

1/15 80 28.107 27.696 27.569 0.537
90 20.656 19.736 19.436 1.220
100 14.472 13.079 12.603 1.869
110 9.628 8.032 7.463 2.165
120 6.007 4.519 3.967 2.040

1/30 80 27.855 27.660 27.598 0.257
90 20.150 19.703 19.556 0.594
100 13.619 12.924 12.689 0.930
110 8.780 7.982 7.707 1.073
120 5.315 4.568 4.306 1.001

1/45 80 27.806 27.676 27.633 0.172
90 19.978 19.683 19.585 0.393
100 13.477 13.022 12.869 0.608
110 8.467 7.932 7.751 0.716
120 5.062 4.391 4.563 0.499
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Table 2: Prices of a European Call option when the number of periods be-
tween two transactions is …ve.

Time units Exercise Price Bid Price Liquid Price Ask Price Spread
(years) K (n = 5) (n = 1) (n = 5)

1/15 80 29.229 27.696 27.452 1.777
90 22.899 19.736 19.119 3.780
100 17.625 13.079 12.064 5.561
110 13.101 8.032 6.808 6.294
120 9.207 4.519 3.343 5.864

1/30 80 28.348 27.660 27.538 0.810
90 21.220 19.703 19.404 1.816
100 15.225 12.924 12.440 2.785
110 10.586 7.928 7.413 3.173
120 6.991 4.568 4.028 2.963

1/45 80 28.126 27.676 27.592 0.534
90 20.679 19.683 19.486 1.194
100 14.532 13.022 12.710 1.822
110 9.689 7.932 7.560 2.129
120 6.199 4.391 4.212 1.988
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Table 3: Market illiquidity measure and transaction volume.

®=¯ n m ¸ transactions (ths euros)
Endesa 0.278 4 54 0.278 380 985
BSCH 0.309 8 204 0.309 117 245
Repsol 0.327 7 147 0.327 65 672
Acerinox 0.538 12 266 0.538 3 560
Acesa 0.600 16 425 0.600 2 188
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Figure 1: Spread
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Figure 2: The smile e¤ect
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