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Abstract

A novel cellulose-based polymer, dicarboxymethyl cellulose (DCMC), was synthesized

from cellulose and sodium 2-bromomalonate. Inductively coupled plasma atomic emis-

sion spectrometry (ICP-AES) and Fourier-transform infrared spectroscopy (FTIR) were

employed to characterize the polymer. The size of the particles ranged between 10 and

100 µm.

Equilibrium and kinetic adsorption studies were performed to evaluate its suitability

for methylene blue removal at different pH. Equilibrium adsorption data was analyzed

using Langmuir and Freundlich isotherms. At pH = 3, adsorption isotherms followed the

Langmuir model with a maximum adsorption capacity of 887.6 mg/g. At pH = 6.4, the

adsorption isotherms produced an S-shape and were fitted with the Sips model, giving

a maximum uptake of 1354.6 mg/g. Pseudo second-order kinetic model provided the

best fit of the experimental data. The reusability of DCMC was evaluated. After the first

cycle, adsorption decreased 30%. Adsorption coupled with membrane filtration allowed

complete removal.

The adsorption of cytochrome C was evaluated. The adsorption process followed

the Langmuir adsorption isotherm, giving a maximum uptake of 1279.6 mg/g. Pseudo

second-order kinetic model adjusted well the experimental data. DCMC was success-

fully regenerated and reused without compromising performance. After three cycles,

adsorption efficiency was above 90%.

Keywords: Adsorption isotherms, Adsorption kinetics, Dicarboxymethyl cellulose, Dye

removal, Low-cost adsorbents, Protein purification.
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Resumo

Um polímero derivado de celulose, dicarboximetil celulose foi preparado com celulose

e ácido bromomalónico e a sua capacidade de adsorção de pigmentos (azul de metileno)

e proteínas (citocromo C) foi estudada. O polímero foi caracterizado por técnicas de

espectrometria de emissão atómica (ICP-AES) e de infravermelho (FTIR).

Foram realizadas experiências de equilíbrio e cinética a diferentes valores de pH,

de modo a avaliar a remoção de azul de metileno. A pH = 3, obtém-se uma capacidade

máxima de adsorção de 887.6 mg/g, ajustando a isotérmica de Langmuir. A pH = 6.4,

as isotérmicas produzem uma curva em S e foram ajustadas usando o modelo de Sips,

obtendo-se um valor máximo de 1354.6 mg/g de adsorção. Os resultados foram descritos

pelo modelo cinético de pseudo segunda-ordem. A reutilização do polímero foi estudada.

Após o primeiro ciclo de adsorção-dessorção, a adsorção foi reduzida em 30%. Adsorção

acoplada a filtração com membranas permitiu uma completa remoção do pigmento.

A adsorção de citocromo C foi também avaliada observando-se uma capacidade má-

xima de adsorção de 1279.6 mg/g. Os resultados foram descritos pelo modelo cinético de

pseudo segunda-ordem. O polímero foi regenerado e reutilizado sem alterações no seu

desempenho. Após três ciclos, a eficiência de remoção foi superior a 90%.

Palavras-chave: Adsorventes de baixo-custo, Cinética de adsorção, Dicarboximetil

celulose, Isotérmicas de adsorção, Remoção de pigmentos, Separação de proteínas.
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1
Introduction

1.1 Background and motivation

The adsorption process has been known for a long time. Processes which are now as-

sociated with adsorption have been depicted in literature over the past two millenia

(Rouquerol et al., 2013).

Adsorption is an important separation process, widely used in industrial applications

(Tien, 2018). This surface phenomena occurs when a solid substance (adsorbent) is ex-

posed to a gas or liquid (adsorbate) (Rouquerol et al., 2013). Desorption is the reverse

process, where accumulated molecules are released from the surface of the adsorbent

(Dąbrowski, 2001; Everett, 1972). Adsorption differs from absorption which in turn refers

to a bulk phenomenon where molecular species penetrate the absorbing solid rather than

accumulating at the surface (Gregg and Sing, 1991; Tien, 2018).

The adsorption process is characterized based on the interactions between solid ad-

sorbent and adsorbed molecules and the strength of the bonds between them (Bansal

and Goyal, 2005; Dąbrowski, 2001). Adsorption types are defined as physisorption or

chemisorption (Dąbrowski, 2001; Rouquerol et al., 2013).

In physisorption, van der Waals and/or electrostatic forces are responsible for the

bond between adsorbent and adsorbate (Choi et al., 2001). Since there are no chemi-

cal bonds involved, a physisorbed molecule usually returns to its previous form when

desorbed (Choi et al., 2001). Compared to chemical adsorption, physisorption has low

heat of adsorption (1-2 versus 10-100 kcal/mol, respectively) (Bhushan, 2013; Rouquerol

et al., 2013). The physisorption process is always exothermic (Rouquerol et al., 2013).

Chemisorption is a process with chemical specificity that results from the electron

exchange between adsorbent and adsorbate (Bhushan, 2013; Dąbrowski, 2001; Everett,

1



CHAPTER 1. INTRODUCTION

1972; Gregg and Sing, 1991). Chemisorbed molecules suffer alterations to their elec-

tronic structure making their recovery impossible after desorption (Choi et al., 2001).

Chemical and physical adsorption can occur simultaneously (Dąbrowski, 2001). Since,

chemisorption is necessarily a monolayer adsorption process, after the surface is fully cov-

ered, chemisorption ceases and subsequent layer formation may occur by physisorption

(Bhushan, 2013; Choi et al., 2001).

The type of accumulation of adsorbed molecules onto the adsorbent is defined as

monolayer or multilayer (Everett, 1972). In monolayer adsorption (see Figure 1.1a) all

adsorbed molecules are in contact with the surface layer (Everett, 1972). In multilayer

adsorption (see Figure 1.1b), as the name suggests, adsorbed molecules are distributed in

several layers (Everett, 1972).

Adsorbate

Adsorbent Adsorbent

a) b)

Figure 1.1: Schematic of the a) monolayer and b) multilayer adsorption process

Similarly to adsorption, ion exchange is a separation process where there is mass

transfer from fluid to solid phase (Cobzaru and Inglezakis, 2015; Tien, 2018). However,

in ion exchange, as the name implies, there is an actual exchange process (Cobzaru and

Inglezakis, 2015). This process is characterized by electrostatic interactions between the

functional groups of the adsorbent and charged ions in the fluid (Cobzaru and Inglezakis,

2015; Ståhlberg, 1994; Tien, 2018). Ion exchange materials are water-insoluble polyelec-

trolyte solids with functional active groups able to perform ionic exchange (Cobzaru and

Inglezakis, 2015).

New types of adsorbents have been developed over the past few decades (Rouquerol

et al., 2013; Tien, 2018). Adsorbent characteristics such as shape, porosity and surface

area have direct influence on adsorption capacities (Tsai et al., 2008). According to IUPAC,

adsorbents are defined based on pore internal width as micropores (> 2 mm), mesopores

(between 2 and 50 mm) and macropores (< 50 mm) (Dąbrowski, 2001; Everett, 1972;

Rouquerol et al., 2013). Some of the most widely used adsorbents are activated carbons,

aluminas and silica gels(Rouquerol et al., 2013; Tien, 2018). However, growing envi-

ronmental awareness has boosted the search for environmentally-friendly alternatives to

conventional adsorbents (Kyzas and Kostoglou, 2014).

With an estimated annual production of 1.5 × 1012 tons, cellulose is considered an

almost inexhaustible material source (Klemm et al., 2005). Cellulosic materials have been

used for the last 150 years (Klemm et al., 2005). The need for renewable resources and

2
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environmentally-friendly materials has fueled the research on cellulose-based products

(Klemm et al., 2005; Missoum et al., 2013; Xin et al., 2017). Chemical modification of hy-

droxyl groups creates cellulose derivatives with new properties and applications (Klemm

et al., 2005). Cellulose derivatives, such as carboxymethyl cellulose and hydroxyethyl

cellulose, are already being used at an industrial scale (Chagas et al., 2019; Klemm et al.,

2005; Nasatto et al., 2015; Roy et al., 2009).

The development of a novel cellulose-based polymer is of great importance for the

scientific community (Klemm et al., 2005). The synthesis of dicarboxymethyl cellulose

has been described by Diamantoglou et al., 1977 and recently by Chagas et al., 2019;

Ferreira et al., 2019. Dicarboxymethyl cellulose (DCMC) results from the introduction of

a substituent with two carboxylic acid groups (Chagas et al., 2019). The heterogeneous

etherification of cellulose with a low pKa acid results in a polymer that can perform

ion-exchange at low pH (Chagas et al., 2019; Diamantoglou et al., 1977; Ferreira et al.,

2019). Therefore, DCMC has the potential to be a relevant ion-exchanger with a wide pH

working window (Chagas et al., 2019).

The use of cellulose derivatives in industrial sectors such as wastewater treatment

and pharmaceutics is widely reported (Heinze et al., 2018; Klemm et al., 2005; Sun et

al., 2019). The presence of dyes and pigments in wastewaters is a major environmental

problem (Aksu, 2005). Recovery and immobilization of proteins can also be achieved by

electrostatic interactions between adsorbent and adsorbate (Feng et al., 2009; Miyahara et

al., 2007). Adsorption and ion exchange are common techniques used in both industries

(Bellezza et al., 2009; Cobzaru and Inglezakis, 2015; Harrison et al., 2015; Miyahara et al.,

2007; Novais et al., 2018b; Rafatullah et al., 2010). Adsorption capacity depends on the

availability of exchangeable cations of the adsorbent (Kahr and Madsen, 1995).

The protein removal capacity of DCMC has already been tested in white wine proteins

by Ferreira et al., 2019. Commercial value of white wines is reduced by the appearance

of sedimentation and turbidity (Colangelo et al., 2018; Vela et al., 2017). The presence of

positively-charged wine proteins contributes to haze formation (Ferreira et al., 2019; Van

Sluyter et al., 2015; Vela et al., 2017). The ability to perform cation exchange at low pH

is useful in white wine clarification and stabilization (Ferreira et al., 2019). Subsequent

filtration without lees formations presents significant advantages over currently used

conventional fining agents (Ferreira et al., 2019).

LAQV-REQUIMTE is responsible for the synthesis of dicarboxymethyl cellulose. An

interest in studying this polymer as an adsorbent motivated this Master’s thesis. Charac-

terization of DCMC as a novel cellulose-based polymer will be addressed. The potential of

DCMC for wastewater treatment and protein removal is investigated through adsorption

experiments using a cationic dye and protein models.

3



CHAPTER 1. INTRODUCTION

1.2 Thesis Outline

This thesis is divided into five chapters, following the work performed throughout this

project. Each chapter is self-contained and describes the materials and methods used, the

discussion of results and main conclusions. The methodology used in each individual

chapter is detailed and, when applicable, is related to that used in previous chapters. The

work performed during this Master’s thesis and presented in Chapter 3 has resulted in a

scientific article, which will be submitted for publication in the special issue Membrane
Processes and Materials for a Sustainable Bioeconomy of the Journal Membranes (MDPI).

• Chapter 1 introduces the key concepts of the work developed and explains the

motivation behind this dissertation.

• Chapter 2 presents the polymer used in this work, covers its synthesis and charac-

terization, with techniques such as Inductively Coupled Plasma Atomic Emission

Spectrometry and Fourier Transform infrared spectroscopy.

• Chapter 3 studies the adsorption of a common cationic dye, methylene blue.

• Chapter 4 reports the adsorption experiments of cytochrome C.

• Chapter 5 presents the final remarks and main conclusions of this thesis, discussing

them in an integrated way. Suggestions for future research are also presented.

4
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2
Synthesis and characterization of the

cellulose-based polymer

2.1 Summary

A novel cellulose-based polymer has been synthesized from cellulose and sodium 2-

bromomalonate (BMA). Number of carboxylate groups per gram of polymer (CG) was

controlled by altering reaction conditions, namely the molar ratio between BMA and cel-

lulose. Three polymers were prepared differing in the amount of BMA added. Inductively

coupled plasma atomic emission spectrometry (ICP-AES) and Fourier-transform infrared

spectroscopy (FTIR) were employed to characterize the structure of the cellulose-based

adsorbent. CG was calculated with sodium content determined by ICP-AES. Adjusting

BMA molar equivalents increased functionalization obtaining a CG between 0.15 and

0.30 (mmolNa/gpol). Absorption spectra revealed an intensity increase of the peaks as-

sociated with carbonyl stretching of ester groups and carboxylate groups with higher

CG. Optical microscopy was used to observe the morphology of the polymer. Quantita-

tive analysis of the images was performed using ImageJ. The synthesized polymer is an

irregularly-shaped flowing fine white powder. The length of dicarboxymethyl cellulose

particles ranged between 10 and 100 µm. Surface areas of 208, 6284 and 7415 µm2 were

obtained for the three polymers.

2.2 Introduction

Cellulose is the most abundant regenerated material on Earth (Kirk-Othmer, 2005). It is

estimated that 1.5 × 1012 tons of cellulose are produced every year (Klemm et al., 2005).

On account of being biodegradable, renewable and readily available, this polysaccharide

is already commonly used in the chemical industry (Onwukamike et al., 2019; Varshney

5
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CELLULOSE-BASED POLYMER

and Naithani, 2011). Moreover, the use of cellulose in the chemical industry follows the

Green Chemistry principle promoting the use of renewable feedstock as an alternative to

non-renewable raw materials (Anastas and Eghbali, 2010). Cellulose and its derivatives

are used in broad applications, such as optical films, fiber, coatings, plastics, pharmaceu-

tical and biomedical materials (Vilela et al., 2010; Xiao et al., 2014). Different cellulose

derivatization techniques are used to introduce the desired physical and chemical prop-

erties (Chagas et al., 2019; Xiao et al., 2014).

Cellulose is a homopolymer generated from repeating β-D-gluco-pyranose molecules

covalently linked through acetal functions between the equatorial OH group of C4 and

the C1 carbon atom (β-1,4-glycosidic bonds) (Klemm et al., 2005; Onwukamike et al.,

2019; Roy et al., 2009). The chemical structure and spatial arrangement of cellulose (see

Figure 2.1) influence its chemical and physical properties (Kirk-Othmer, 2005; Roy et

al., 2009). Homogeneous and heterogeneous derivatization methods are used to change

or introduce new characteristics to the polymer (Chagas et al., 2019; Xiao et al., 2014).

Derivatization methods include chemical modification to the hydroxyl groups (three per

anhydroglucose unit), namely substitution by specific chemical agents (Onwukamike et

al., 2019; Wuestenberg, 2014). The average number of OH groups substituted are defined

as degree of substitution (DS) and may therefore range from zero to three (Roy et al.,

2009; Wuestenberg, 2014). Degree of polymerization (DP) is the chain length of cellulose

(Klemm et al., 2005; Varshney and Naithani, 2011). This property can be regulated by

the source and treatment of the raw material (Klemm et al., 2005).

Figure 2.1: Chemical structure of cellulose (n is the degree of polymerization)

Functionalization can be achieved through multiple processes, such as phosphoryla-

tion, esterification and etherification (Onwukamike et al., 2019; Varshney et al., 2006).

The etherification process is used for modifications of the cellulose structure (Roy et al.,

2009). Cellulose etherification consists of reactions of cellulose with alkylating agents,

namely dicarboxylic acids, in the presence of a base and inert diluent (Diamantoglou

et al., 1977; Kirk-Othmer, 2005; Roy et al., 2009). Among the commonly studied cellulose

ethers are carboxymethyl cellulose (CMC), methyl cellulose and hydroxyethyl celluloses

(Kirk-Othmer, 2005; Roy et al., 2009). However, most of these derivatives have low pH

working windows (Chagas et al., 2019). The synthesis of a cellulose-based polymer with

lower pKa has the potential to be a relevant ion-exchanger with a larger pH range (Chagas

et al., 2019).

In this work, we present a cellulose-based polymer prepared by heterogeneous ether-

ification with bromomalonic acid (Diamantoglou et al., 1977; Ferreira et al., 2019; Kötz
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et al., 1991). To complete the reaction, a common base (NaOH) used in the manufacture

of cellulose ethers is added (Diamantoglou et al., 1977; Ferreira et al., 2019; Kirk-Othmer,

2005). The polymer is cross-linked by heat treatment to achieve insolubilization in aque-

ous solutions (Ferreira et al., 2019). The conditions imposed on the synthesis of the

polymer determine degree of polymerization, number of carboxylate groups per gram

of polymer and molecular weight. The polymer is characterized by optical microscopy,

Inductively coupled plasma atomic emission spectrometry (ICP-AES) and Fourier trans-

form infrared spectroscopy (FTIR). ICP-AES is a common method for qualitative and

quantitative element analysis (Moore, 2012). This technique is used for single-element

analysis due to its simplicity and accuracy. Elements in a sample are excited, using

plasma, emitting radiation of a characteristic wavelength, which is matched with emis-

sion lines of known elements (Thompson, 2012). FTIR is widely used for analysis of

absorption spectra (Rehman and Bonfield, 1997; Smith, 2011). There are established cor-

relations between peak positions and molecular structures (Smith, 2011). This technique

is useful for spectral comparison, namely identifying the different peak positions, heights

and widths (Smith, 2011). Attenuated total reflectance (ATR) provides an easy method

of obtaining polymer absorption spectra (Devasahayam et al., 2016; Smith, 2011). ATR

spectroscopy relies on the optical contact of the polymer with the reflection element, thus

avoiding techniques which could alter the morphology of the sample (Devasahayam et al.,

2016; Smith, 2011).

2.3 Materials and Methods

2.3.1 Materials

Air-dry cellulose (MN 400 Avicel) was obtained from Macherey-Nagel. Sodium bromo-

malonate was previously synthesized by LAQV - REQUIMTE with bromine and malonic

acid. Other chemicals and solvents were of laboratory grades and used without further

purification.

2.3.2 Methods

2.3.2.1 Synthesis of dicarboxymethyl cellulose

Cross-linked dicarboxymethyl cellulose (DCMC) was synthesized specifically for this

work in LAQV - REQUIMTE, Departamento de Química, Faculdade de Ciências e Tec-

nologia, Universidade Nova de Lisboa.

Three different polymers were prepared, differing in the amount of sodium 2-bro-

momalonate (BMA) added. To produce polymers with varying number of carboxylate

groups, BMA was added in 1, 2 and 3 equivalent moles of anhydroglucose units (AGU).

The reaction was controlled to avoid changes in degree of polymerization (DP), which

depends on cellulose chain length (number of AGU) (Klemm et al., 2005; Varshney and

7
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Naithani, 2011). DP affects mechanical and physiological properties, such as viscosity

of solutions (Furia, 1973; Varshney and Naithani, 2011). DCMC was synthesized follow-

ing the procedure described by Chagas et al., 2019; Ferreira et al., 2019. Figure 2.2 is a

schematic representation of the reaction between cellulose and bromomalonic acid.

Figure 2.2: Schematic representation of the synthesis of dicarboxymethyl cellulose

5 g of air-dry cellulose and 175 mL isopropanol were stirred vigorously and 5.5 mL of

a 40% (w/v) aqueous NaOH solution was slowly added to the mixture for 10 min at room

temperature. The mixture was magnetically stirred for 1 h and the appropriate quantity of

sodium 2-bromomalonate in 18 mL of water was added. After complete homogenization,

the mixture was placed on a water bath at 60 °C for 3 to 5 h with vigorous stirring.

After this time, the reaction mixture was filtrated, and the solid suspended in 70% (v/v)

methanol and neutralized with acetic acid. Aqueous and pure methanol were used for

further purification of the product. Finally, the product dried under vacuum at room

temperature. The latter was protonated dispersing the powdered product in 20% sulfuric

acid solution for 1 h. The product was decanted and the precipitate washed with distilled

water until neutral pH. After drying, the protonated polymer was heated at 100 °C

for 1 h promoting its cross-linking by esterification (formation of ester bonds between

the carboxylic acid of the malonate group and the hydroxyl group of adjacent cellulose

chains). The resulting cross-linked polymer was washed with 1 M NaCl until neutral pH

followed by washing with distilled water to remove remaining NaCl. The sodium salt of

the cross-linked polymer was isolated by filtration and dried under vacuum yielding a

white powder. Table 2.1 shows the appropriate quantities of each reagent for the synthesis

of dicarboxymethyl cellulose in these conditions (Chagas et al., 2019).

Table 2.1: Conditions for the synthesis of dicarboxymethyl cellulose

Samples BMA eq. a AGU (g) b IP (mL) c NaOH (g) BMA (g) d

DCMC 1 1 5.0 175 3.68 6.95
DCMC 2 2 5.0 175 3.68 13.91
DCMC 3 3 5.0 175 3.68 20.86
a Sodium bromomaloate equivalents to anhydroglucose unit
b Anhydroglucose units
c Isopropanol
d Bromomalonic acid
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2.3.2.2 Morphology and size distribution of the synthesized DCMC

Morphology and size distribution of dicarboxymethyl cellulose were analyzed by optical

microscopy with a Nikon Eclipse ci. The images were processed with ImageJ software.

No treatment was applied to the polymer in order to have uniform particle size.

2.3.2.3 Sodium content determination by ICP-AES

The analysis was carried out for all polymers to determine the influence of stoichiometry

on the chemical structure. The samples were prepared by adding 500 µl nitric acid to

a known mass of polymer (approximately 1.0 mg). Then, they were incubated at 70 °C

for 1 h. Differences in sodium content were assessed by ICP-AES. Quantification of

carboxylate functional groups is based on the ionic exchange between sodium ions and

carboxyl groups.

2.3.2.4 Characterization of chemical structure and functional groups

The analysis was carried out for all polymers to determine the influence of stoichiometry

on the chemical structure. FTIR was recorded on a Perkin-Elmer FT-IR Spectrometer

Spectrum Two, equipped with an attenuated total reflection (ATR) cell, in the range of

4000 to 400 cm-1.

2.4 Results and Discussion

2.4.1 Morphology and size distribution of the synthesized DCMC

Dicarboxymethyl cellulose was synthesized with the previously described method. The

final product of the three polymers can be observed in Figure 2.3. Dicarboxymethyl

cellulose is a flowing fine white powder.

Figure 2.3: Picture of a) DCMC 3, b) DCMC 2 and c) DCMC 1.

9



CHAPTER 2. SYNTHESIS AND CHARACTERIZATION OF THE

CELLULOSE-BASED POLYMER

Pictures of the polymer obtained by optical microscopy are displayed in Figure 2.4.

From Figure 2.4, the polymer has an irregular shape and seems to be aggregated. No

further analysis was performed on these particles.

(a)

(b)

(c)

Figure 2.4: Optical microscopy images of a) DCMC 1, b) DCMC 2 and c) DCMC 3.

To disrupt aggregation, the polymer was mixed with deionized water. The images ob-

tained with the polymer in aqueous solution are shown in Figure 2.5. Based on Figure 2.5,

the polymer doesn’t have a defined shape. To the naked eye, the different polymers all

look similar. However, after analyzing the images obtained by optical microscopy, the

particle size distribution varies with the number of carboxylate units per gram of DCMC.
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(a)

(b)

(c)

Figure 2.5: Optical microscopy images of dicarboxymethyl cellulose in aqueous solution:
a) DCMC 1, b) DCMC 2 and c) DCMC 3.
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The calculated dimensions for the polymers are presented on Table 2.2. Using ImageJ,

length was measured by extending a line for the length of the polymer. Surface area

was calculated by the software when delimiting the particles. DCMC 1 is considerably

smaller than DCMC 2 and DCMC 3. Contrarily, there are no significant differences in the

dimensions of DCMC 2 and DCMC 3.

Table 2.2: Dimensions of dicarboxymethyl cellulose

Samples Length (µm) Surface area (µm2) Volume (µm3) SA/V (µm-1)a

DCMC 1 14.0±4.5 207.7±141.2 1451.3±46.3 0.143
DCMC 2 77.5±26.8 6284.1±3948.6 244057.4±10025.7 0.026
DCMC 3 78.2±21.5 7415.0±2490.5 250468.0±5205.9 0.030
a Surface area to volume ratio

2.4.2 Sodium content determination by ICP-AES

The sodium content in dicarboxymethyl cellulose samples was determined by ICP-AES.

Percentage of sodium in each sample is the quotient of sodium and polymer mass. The

number of carboxylate groups per gram of polymer (CG) was calculated by Equation (2.1).

Each sodium atom corresponds to a carboxylate unit able to perform the desired ionic ex-

change. As expected, with increasing sodium 2-bromomalonate in the polymer synthesis

there is an increase in this number.

CG =
%Na
100 × 1000

23
(2.1)

where the term "23"represents the molecular mass of sodium (g/mol).

Table 2.3: Results of the synthesis of dicarboxymethyl cellulose

Samples CNa (mg/l) mpol (mg) mNa (mg) % Na CG (mmolNa/gpol)a

DCMC 1 9.69 1.3 0.0048 0.37 0.1620
DCMC 2 10.45 1.2 0.0052 0.44 0.1894
DCMC 3 12.43 1.0 0.0062 0.62 0.2703
a Carboxylate groups per gram of polymer

2.4.3 Characterization of chemical structure and functional groups

FTIR is used to characterize the chemical structure and functional groups. Figure 2.6

shows the absorption spectra of the different dicarboxymethyl cellulose polymers.

A broad adsorption peak at 3300 cm-1 is in the range of -OH stretching vibration

(Lin et al., 2017; Saber-Samandari et al., 2016). A decrease of intensity with a higher

number of carboxylate groups (CG) could be justified by a breakage of hydrogen bonds.

However, DCMC 3 has a higher intensity than DCMC 2. The difference in intensity could
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be explained by ATR spectra sensibility to applied pressure. A change in pressure or

force while measuring a solid sample may change its physical state, affecting the intensity

of the absorption peak (Friedrich and Weidler, 2010; Perkin-Elmer Manual). The peak at

2890 cm-1 is attributed to the C-H stretching vibration (Lin et al., 2017; Saber-Samandari

et al., 2016). The intensity of a band at 1720 cm-1, which is related to the carbonyl

stretching of the ester groups, increased with number of carboxylate groups per gram of

polymer since the ester groups are formed during the cross-linking procedure. With a

higher number of carboxylic acid groups an increase of the ester groups can be expected.

The bands at 1615 cm-1, 1420 cm-1 (COO- symmetric) and 1330 cm-1 (C-O stretching)

are also characteristic of the C=O bond stretching absorption (Lin et al., 2017). This

functional group is present in carboxylate groups (COO-). The asymmetric band increases

in the presence of carboxylate groups (COO-), which explains the increase in intensity

with higher number of carboxylate groups per gram of polymer. Strong broad peaks at

approximately 1100 and 1020 cm-1 indicate the presence of C-O-C bonds, characteristic

of the cellulose backbone (Yan et al., 2011).
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Figure 2.6: FTIR-ATR spectra of dicarboxymethyl cellulose
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2.5 Conclusions

The synthesis of a new cellulose-based polymer was successful. Dicarboxymethyl cellu-

lose produced will be characterized as an adsorbent to positively charged species with

industrial interest.

Adjusting the number of sodium 2-bromomalonate (BMA) equivalents in the synthesis

increased functionalization. FTIR and ICP provided information on the effect of BMA

equivalents in the chemical structure of the polymer. As expected, increasing BMA

increases the number of carboxylate groups per gram of polymer (CG). A correlation

between CG and surface area to volume ratio was not established. Surface area to volume

ratio was 0.143, 0.026 and 0.030 for the polymer synthesized with one, two and three

BMA equivalents. The particle size length was determined to be 14.0, 77.5 and 78.2 µm

for DCMC 1, DCMC 2 and DCMC 3, respectively.

The polymer should be further characterized by techniques such as scanning electron

microscopy (SEM) and solid state nuclear magnetic resonance (NMR) since the polymer is

insoluble in any tested solvent. Standardization of polymer size via mechanical processes

should be considered as it may influence adsorption capacity based on available surface

area.
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Adsorption of Methylene Blue

3.1 Summary

A novel cellulose-based polymer, dicarboxymethyl cellulose (DCMC), was used for methy-

lene blue (MB) removal. A series of equilibrium and kinetic adsorption studies were

performed to assess its suitability for dye removal. Effect of pH on adsorption capacity

was studied. Experimental results from the studied range indicated that maximum

adsorption capacity increases linearly with the number of carboxylate functional groups

per gram of polymer. The equilibrium adsorption data were analyzed using two widely

applied isotherms: Langmuir and Freundlich. At pH = 3, adsorption isotherms followed

the Langmuir model with a maximum adsorption capacity of 887.6 mg/g, implying a

homogeneous monolayer adsorption. Pseudo first-order and pseudo second-order models

were used to fit the experimental data. Pseudo-second-order kinetic model provided

the best correlation with the experimental data for the adsorption of MB onto DCMC,

indicating a chemisorption process. The adsorption process is almost instantaneous, with

more than 50% removal efficiency after 30 seconds with a low dosage of polymer. At

pH = 6.4, the adsorption isotherms produced an S-shape and were fitted with the Sips

model, with high correlation coefficients. The maximum MB uptake was 1354.6 mg/g

at 25 °C and pH = 6.4. The reusability of DCMC was evaluated. Cycles of adsorption-

desorption showed significant changes in both adsorption and desorption efficiency. A

loss in adsorption performance may be explained by heat-induced cross-linking, reducing

available binding sites. The use of a weak eluent agent did not effectively desorb methy-

lene blue from dicarboxymethyl cellulose. After the first cycle, adsorption decreased

from 84.7 to 33.8% in an experiment where the polymer was dried, and 84.6 to 56.0%

when the polymer was washed between cycles without being heated.

15
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3.2 Introduction

Dyes and pigments are used in several chemical industries, such as pharmaceutical and

textile. These industrial processes require large volumes of water and are responsible for

the annual release of up to 150 000 tons of dyes into wastewaters (Novais et al., 2018b).

The presence of dyes in wastewaters is easily recognized by human eye, due to a change

of colour, and may have dire effects on aquatic life and compromising photosynthetic

activity of certain aquatic species (Aksu, 2005). Moreover, these pollutants are generally

resistant to biodegradation because of their complex aromatic structures (Aksu, 2005).

Methylene blue (see Figure 3.1) is a common representative of cationic dyes (Liu et al.,

2018). It is typically used in the textile industry, for dying cotton and silk (Rafatullah

et al., 2010). Numerous reports are available in the literature concerning the removal of

this specific dye. Environmental awareness and regulatory measures contribute to a grow-

ing interest on cheaper and more effective techniques for the treatment of wastewaters

containing dyes (Liu et al., 2018; Novais et al., 2018b; Rafatullah et al., 2010).

Figure 3.1: Chemical structure of methylene blue

Many techniques have been tested for dye removal and adsorption is considered the

most efficient process due to its low cost, simplicity and lack of formation of harmful

byproducts (Bulut and Aydin, 2006; Novais et al., 2018b; Rafatullah et al., 2010). Ion

exchange is also commonly used in wastewater treatment (Cobzaru and Inglezakis, 2015;

Wankat, 2012). Activated carbons are used as adsorbents due to their efficiency in

dye removal. However, their high production cost urges the research on alternative

economical and renewable adsorbents (Bergaoui et al., 2018; Mitrogiannis et al., 2015;

Rafatullah et al., 2010).

Cellulose is the most abundant organic material in nature. It is biodegradable and

renewable. Cellulose-based materials are commonly used in various applications, namely

as adsorbents in wastewater treatment (Klemm et al., 2005; Vilela et al., 2010; Yan et al.,

2011). The development of new cellulose-based polymers is motivated by the demand of

low-cost and environmentally-friendly materials (Klemm et al., 2005).

Dicarboxymethyl cellulose (DCMC) is prepared by reaction of sodium 2-bromoma-

lonate with cellulose (Chagas et al., 2019; Ferreira et al., 2019). Malonic acid has pKa val-

ues of approximately 2.85 and 5.70, which the cellulose bond shouldn’t greatly influence,

resulting in deprotonated acid groups for pH greater than 3 (Kirk-Othmer, 2005). For this

reason, DCMC can perform ion exchange at low pH (Chagas et al., 2019; Diamantoglou

et al., 1977). The polymer works as a anionic polyelectrolyte, suitable for the removal of
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positively charged synthetic dyes due to its active functional groups, such as hydroxyl

and carboxyl (Diamantoglou et al., 1977; Ren et al., 2016). The use of a biodegradable

source material facilitates its disposal (Chagas et al., 2019).

In this work, the potential of dicarboxymethyl cellulose for removal of methylene blue

as a cationic dye model was investigated. Influence of parameters such as solution pH and

number of carboxylate groups per grams of polymer was studied. Adsorption equilibrium

and kinetic studies were performed. Equilibrium adsorption isotherms are essential in

understanding the interactions between adsorbent and adsorbates, providing information

on surface properties and adsorption capacities (Aquino et al., 2003; Bergaoui et al.,

2018; Bulut and Aydin, 2006; Cao et al., 2018; Ren et al., 2018). Langmuir isotherm

assumes adsorption occurs without lateral interactions between adsorbed molecules,

producing homogeneous binding sites and a monolayer coverage of the outer surface

of the adsorbent (Bergaoui et al., 2018; Novais et al., 2018a; Saber-Samandari et al., 2016).

Freundlich isotherm states that adsorption occurs on an heterogeneous surface, where

binding strength decreases with increasing occupation (Bergaoui et al., 2018; Novais et al.,

2018a). Sips isotherm is a combination of the Langmuir and Freundlich isotherm models

(Lima et al., 2015; Volesky, 2003). The Sips model indicates a multilayer adsorption at

lower concentration and monolayer at higher concentration (Anirudhan et al., 2011; Lima

et al., 2015). Kinetic studies give better understanding of the adsorption process, namely

adsorbent behaviour in the presence of distinct adsorbates (Largitte and Pasquier, 2016;

Liu et al., 2018; Ren et al., 2018). Lagergren first described adsorption kinetics of liquid-

solid systems based on solid capacity (Febrianto et al., 2009; Ho, 2004). Lagergren’s

pseudo first-order (PFO) equation is based on the assumption of physisorption process

Singha and Das, 2013. The PFO model assumes that the sorption rate decreases linearly

as the sorption capacity increases (Yan et al., 2011). The pseudo second-order (PSO)

model is similar to PFO, but it suggests a chemisorption process (Senthil Kumar et al.,

2010; Singha and Das, 2013). Furthermore, adsorption coupled with filtration using a

500 kDa regenerated cellulose membrane and reusability studies were performed.

3.3 Materials and Methods

3.3.1 Materials

The polymers used are the ones whose synthesis and characterization is presented in

Chapter 2 of this thesis. All reagents were used without further purification.

A standard citrate solution (25 mM, pH = 3) was prepared with sodium citrate dihy-

drate (MW = 294 g/mol) and citric acid monohydrate (MW = 210 g/mol) to be used as a

buffer.

Deionized water was used to prepare methylene blue solutions with pH = 6.4.

Separate stock solutions with a concentration of 2 and 3 g/L were prepared by dis-

solving the required amount of methylene blue in deionized water and citrate buffer. The
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solutions were diluted with the respective solvent to achieve the concentrations needed

for the experiment, depending on the required pH.

3.3.2 Methods

3.3.2.1 Adsorption experiments of methylene blue

The influence of number of carboxylate groups per grams of polymer was studied at

pH = 3. The process was also studied at pH = 6.4 (DI water) for the polymer with higher

adsorption capacity. 2 mL of methylene blue solutions with concentrations between

40 and 3 000 mg/L were added to 4 mg of polymer and kept in a water bath for 48 h

and at room temperature (25 °C). A Spectronic Helios Alpha spectrometer was used to

determine methylene blue concentrations at 664 nm, by comparison with a calibration

curve in the range of 0 to 4 mg/L prepared with methylene blue and deionized water

or citrate buffer. The experiment was performed in triplicate and mean values were

presented. The adsorption capacity is calculated by Equation (3.1).

q =
(C0 −Ce) V

m
(3.1)

where q (mg/g) is adsorption capacity; C0 and Ce (mg/L) are the initial and equilibrium

concentrations of methylene blue in the solution, respectively; V (L) is solution volume

and m (g) is adsorbent mass.

3.3.2.2 Modelling of adsorption isotherms

Adsorption isotherms describe interactions between adsorbate and adsorbent (Saber-

Samandari et al., 2016). In the present work, Langmuir, Freundlich and Sips models

were used for analysis of equilibrium adsorption of methylene blue onto dicarboxymethyl

cellulose.

The Langmuir isotherm is expressed by Equation (3.2) (Bergaoui et al., 2018; Novais

et al., 2018a).

q =
qm Ce
Kd +Ce

(3.2)

where qm (mg/g) is the maximum adsorption capacity, Ce (mg/L) is equilibrium concen-

tration and Kd (L/g) is the Langmuir adsorption equilibrium constant, representing the

affinity between adsorbate and binding sites.

The Freundlich mathematical model is expressed by Equation (3.3) (Bergaoui et al.,

2018; Novais et al., 2018a).

q = K C 1/n
e (3.3)

where K (L/g) is the Freundlich constant, which relates to adsorption capacity, Ce (mg/L)

is equilibrium concentration and n is the heterogeneity factor. If n is equal to 1, all

surface sites are equivalent and adsorption is linear. Larger values of n indicate strong
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adsorbate-adsorbent interaction and it is generally stated that values of n in the range of

1 to 10 represent favourable adsorption (Febrianto et al., 2009).

The Sips equation is given by (Abramian and El-Rassy, 2009; Anirudhan et al., 2011;

Lima et al., 2015; Senthil Kumar et al., 2010; Volesky, 2003):

q =
qm KsC

1/ns
e

1 + KsC
1/ns
e

(3.4)

where qm (mg/g) is maximum adsorption capacity, Ce (mg/L) is equilibrium concentra-

tion, Ks (mg/L)-1/n is the Sips equilibrium constant and 1/ns is the heterogeneity factor.

3.3.2.3 Kinetic adsorption experiments and modelling

Experiments were performed with 2 mL methylene blue solutions with concentrations

of 4 and 40 mg/L, at pH = 3.0 and 6.4. Dicarboxymethyl cellulose dosage was varied to

determine influence on methylene blue removal in a short period of time. The pseudo

first-order and pseudo second-order non-linear kinetic models were used to fit the exper-

imental data.

Pseudo first-order model is expressed by Equation (3.5) (Berizi et al., 2016; Largitte

and Pasquier, 2016).

q = qm
(
1− e−K1t

)
(3.5)

where qm (mg/g) is maximum adsorption capacity, K1 (min-1) is the rate constant and

t (min) is time.

The Pseudo second-order model follows Equation (3.6) (Berizi et al., 2016; Largitte

and Pasquier, 2016):

q =
q2
m K2 t

1 + qm K2 t
(3.6)

where qm (mg/g) is maximum adsorption capacity, K2 (mg g-1 min-1) is the rate constant

and t (min) is time.

3.3.2.4 Regenerability and reusability studies

Two experiments were performed where 100 mL of a 4 mg/L methylene solution was

added to 200 mg of polymer. After three hours, the solution was decanted. NaCl 1M was

used as an eluent for the desorption of dye molecules.

The first experiment was carried out through three cycles and the polymer was dried

in a muffle furnace at 70 °C between the adsorption and desorption processes. In the

second experiment, the polymer was washed with deionized water and decanted between

adsorption and desorption. This reusability study was conducted through four cycles.

Reusability of the polymer is determined by monitoring removal efficiency throughout the

consecutive cycles. Adsorption and desorption efficiency are calculated by the following

equations.
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Adsorption efficiency (%) =
(C0 −Ce)
C0

· 100 (3.7)

where C0 and Ce (mg/L) are the initial and equilibrium concentrations of methylene blue

in the solution, respectively.

Desorption efficiency (%) =
Cd

(C0 −Ce)
· 100 (3.8)

where Cd is the desorbed concentration of methylene blue and C0 and Ce (mg/L) are the

initial and equilibrium concentrations of methylene blue in the solution, respectively.

3.3.2.5 Adsorption coupled with filtration

An adsorption and filtration experiment under constant pressure mode was performed

using the Membrane Extraction Technology (MET) cell system. Figure 3.2 presents the

schematic diagram of the experimental setup.

Feed tank

METcell

CF CP

C0

Figure 3.2: Schematic diagram of METcell filtration system

400 mg of DCMC 3 were added to 200 mL of a 4 mg/L methylene blue solution. The

adsorption process was conducted at room temperature and pH = 6.4. After 30 min, the

mixture was added to the MET cell system. An ultrafiltration membrane (Microdyn Nadir

UC500) composed of regenerated cellulose with a molecular weight cut-off of 500 kDa

was placed at the bottom of the MET cell and supported by a porous stainless steel disk.

The system was operated under argon pressure of 5 bar. Feed and permeate samples were

collected at predefined times for analysis of methylene blue concentration.

3.4 Results and Discussion

3.4.1 Adsorption isotherms

3.4.1.1 Effect of number of carboxylate groups

Adsorption experiments were carried out with the polymer with different number of car-

boxylate groups (CG) per grams of DCMC at pH = 3. Accordingly, Figure 3.3 shows that
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maximum adsorption capacity increases linearly with the number of carboxylate groups

per grams of polymer. A higher number of CG results in additional negatively charged

functional groups, increasing the number of binding sites with affinity for positively

charged proteins, such as methylene blue (Varshney and Naithani, 2011).
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Figure 3.3: Effect of number of carboxylate units per grams of DCMC on maximum
adsorption capacity.

Figure 3.4 illustrates the effect of number of carboxylate groups per grams of DCMC

on adsorption isotherms at pH = 3. Adsorption capacity increases with increasing methy-

lene blue concentration. Experimental data indicates that a plateau is reached with higher

MB concentrations, suggesting a saturation point where no further adsorption can occur.

Table 3.1 presents adsorption isotherm parameters calculated with fitting of Langmuir

(q = qm Ce
Kd+Ce

) and Freundlich (q = K C 1/n
e ) models. Based on the correlation coefficient

values (R2) presented in Table 3.1, Langmuir model offers a better description of the data.

The R2 obtained from the Freundlich model are 0.841, 0.789 and 0.767 for DCMC 1,

DCMC 2 and DCMC 3 at pH = 3, respectively. Using the Langmuir isotherm model,

correlation values were much higher (R2 > 0.9). The applicability of the Langmuir model

is consistent with the plateaus observed in Figure 3.4, indicating a monolayer adsorption

process without lateral interactions between adsorbed molecules (Ren et al., 2018). The

Langmuir model is often applied to ion exchange isotherms (Wankat, 1990). Maximum

adsorption capacities calculated from the Langmuir model reached 277.6, 546.2 and

887.6 mg/g for DCMC 1, DCMC 2 and DCMC 3 at pH = 3, respectively (see Table 3.1).

These values were all close to the experimental values, reinforcing the Langmuir model

as an applicable fitting model.
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Figure 3.4: Adsorption isotherm at pH = 3 for a) DCMC 1, b) DCMC 2 and c) DCMC 3
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Table 3.1: Adsorption isotherms parameters

Langmuir Freundlich

Samples pH qm (mg/g) KD (L/mg) R2 n K (L/mg) R2

DCMC 1

3.0

277.6±12.0 0.021±0.004 0.913 3.4±0.9 0.037±0.018 0.841
DCMC 2 546.2±44.2 0.012±0.004 0.938 3.0±0.8 0.052±0.029 0.789
DCMC 3 887.6±107.4 0.014±0.005 0.921 2.6±0.7 0.071±0.040 0.767

3.4.1.2 Effect of pH

The pH of the dye solution is an important factor on the adsorption process, influencing

the surface charge of the adsorbent, which consequently affects adsorption capacity

(Anirudhan and Sreekumari, 2010; Khodaie et al., 2013). DCMC 3 provided better

results for the adsorption experiment at pH 3, compared with the other samples. In

order to investigate the effect of pH on methylene blue uptake, similar experiments were

performed at pH = 6.4 with DCMC 3.

Figure 3.5 is characterized by S-shaped adsorption. These types of isotherms are

usually associated with cooperation adsorption caused by solute-solute attraction and/or

competing reaction with the solution, which inhibit solute adsorption (Inglezakis et al.,

2018).
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Figure 3.5: Effect of pH on adsorption isotherm of methylene blue in DCMC 3

From Figure 3.5 it is clear that maximum removal of methylene blue is achieved at

pH = 6.4. With increasing pH, negatively charged binding sites increase and positively

charged binding sites decrease, favoring adsorption of cationic dyes, such as methylene
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blue. Conversely, at pH = 3.0 dicarboxymethyl cellulose has an increase in H+ ion concen-

tration resulting in electrostatic repulsion between the polymer and the cationic dye.

Since experimental data at pH = 6.4 did not adjust well to Langmuir and Freundlich

model, the results were fitted with Sips (q = qm KsC
1/ns
e

1+KsC
1/ns
e

) model, a combination between

the previous models (Hamdaoui and Naffrechoux, 2007). Based on the correlation factor

(R2 = 0.968), Sips described experimental data more appropriately. The calculated Sips

heterogeneity factor n is 0.3 and equilibrium constant Ks is 8.794× 10−6 (mg/L)1/n. The

calculated maximum adsorption capacity is very similar to the experimental value, 1354.6

and 1365.5 mg/g, respectively.

Figure 3.5 illustrates the effect of pH on adsorption isotherms of methylene blue

onto dicarboxymethyl cellulose. As seen from the figure, adsorption rate and adsorption

capacity at pH = 6.4 were significantly higher than at pH = 3.0. Maximum adsorption

capacities for the best fitting models went from to 887.6 to 1354.6 mg/g for pH = 3.0 and

6.4, respectively. As mentioned previously, higher methylene blue uptake for higher pH

is expected due to the increasing availability of binding sites.

3.4.1.3 Comparison with other adsorbents

Comparison of methylene blue adsorption on other adsorbents reported in literature is

presented in Table 3.2. Adsorption capacity of dicarboxymethyl cellulose was higher

than those found in literature, confirming that this novel cellulose-based adsorbent has

potential for binding methylene blue from aqueous solutions.

Table 3.2: Comparison of maximum adsorption capacity of methylene blue
with other adsorbents

Adsorbent qm (mg/g) pH Reference

DCMC 1354.6 6.4 Present study
MCA–E0.7/CMC a 998.2 7.0 Lin et al., 2017
CAC b 980.3 7.4 Kannan and Sundaram, 2001
A. platensis biomass c 312.5 7.5 Mitrogiannis et al., 2015
SCSM d 178.6 7.0 Zhao and Zhou, 2016
KT3B e 99.9 9.0 Mouni et al., 2018
DCMC 887.6 3.0 Present study
CHACZ f 463.0 4.0 Khodaie et al., 2013
a Epichlorohydrin-crosslinked carboxymethyl cellulose microspheres treated with

0.7 mL C4H9OH and modified with monochloroacetic acid
b Commercial activated carbon
c Arthrospira platensis biomass
d Extraction residues of Salvia mitiorrziza Bge modificated with 1 M NaCO3
e Natural raw (Algerian) kaolin
f Corn husk by ZnCl2 activation

Commercial activated carbon (CAC) is commonly used in wastewater treatment (Ce-

cen and Aktas, 2011). CAC are effective adsorbents, but have high production and

regeneration costs (Bergaoui et al., 2018; Mitrogiannis et al., 2015). Alternatively, DCMC
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is synthesized from an abundant biodegradable source, resulting in an economical adsor-

bent with facile disposal (Chagas et al., 2019). Results showed that DCMC has adsorption

capacities in the same order of magnitude as CACs. Therefore, dicarboxymethyl cellulose

may be used as a water remediation tool, namely in the removal of methylene blue from

aqueous solutions.

3.4.2 Adsorption kinetics

Kinetic studies were performed at pH = 3.0 and 6.4, with initial concentrations of 4 and

40 mg/L. Changes in solution concentration over a period of time can be observed in

Figures 3.6a, 3.7a, 3.8a and 3.9a. Results show that adsorption is almost instantaneous.
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Figure 3.6: Adsorption kinetics of a 4 mg/L solution at pH = 3.0 represented by normal-
ized a) concentration and b) adsorption capacity.
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Figure 3.7: Adsorption kinetics of a 4 mg/L solution at pH = 6.4 represented by normal-
ized a) concentration and b) adsorption capacity.
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Figure 3.8: Adsorption kinetics of a 40 mg/L solution at pH = 3.0 represented by
normalized a) concentration and b) adsorption capacity.

0 4 0 8 0 1 2 0 1 6 0

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

C/
C 0

T i m e  ( m i n )
(a)

0 4 0 8 0 1 2 0 1 6 0

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

 E x p e r i m e n t a l
 P F O
 P S O

q/q
m

T i m e  ( m i n )
(b)

Figure 3.9: Adsorption kinetics of a 40 mg/L solution at pH = 6.4 represented by
normalized a) concentration and b) adsorption capacity.

Figures 3.6 to 3.9 show the effect of pH and influence of initial dye concentration

in methylene blue adsorption kinetics at 4 and 40 mg/L initial concentration. For the

same concentration, an increase in pH results in a higher dye uptake, consistent with the

results on Section 3.4.1.

Adsorption capacity of methylene blue was calculated by q = (C0−Ce)V
m . As shown in

Figures 3.6 to 3.9, the adsorption of methylene blue onto DCMC was very rapid. There

is almost complete dye removal in the first five minutes. After this rapid adsorption

an equilibrium is established. Adsorption capacities obtained for 40 mg/L of initial

methylene blue concentration, represented in Figures 3.8 and 3.9, were in agreement

with the results obtained in Section 3.4.1.
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Experimental data on the adsorption of methylene blue onto dicarboxymethyl cel-

lulose was adjusted to pseudo first-order (q = qm
(
1− e−K1t

)
) and pseudo second-order

(q = q2
m K2 t

1+qm K2 t
) kinetic models. The adsorption kinetic parameters are displayed in Table 3.3.

The data shows high correlation factors (R2) for both kinetic models at pH = 6.4. However,

at pH = 3 the experimental data is better adjusted by pseudo second-order model. Calcu-

lated adsorption capacity values from PSO are close to experimental results, suggesting

the applicability of this model for methylene blue adsorption kinetics on dicarboxymethyl

cellulose.

Table 3.3: Adsorption kinetics parameters

Pseudo first order Pseudo second order

pH C (mg/L) K1 (min -1) qm (mg/g) R2 K2 (mg g-1 min-1) qm (mg/g) R2

3.0
4 0.699±0.324 0.835±0.055 0.860 1.252±0.861 0.881±0.062 0.883

40 2.044±0.539 12.646±0.536 0.952 0.221±0.048 13.285±0.339 0.986

6.4
4 4.587±0.534 3.116±0.030 0.995 6.014±2.204 3.134±0.037 0.993

40 43.246±3.340 50.346±1.450 0.985 0.276±0.072 52.676±0.691 0.997

From Table 3.3, it can be observed that the adsorption capacity increases with the

increase of methylene blue concentration and increasing pH. As the initial dye increases

the adsorption capacity of methylene blue onto the polymer changes from 0.881 to

13.285 mg/g, at pH = 3.0, and 3.134 to 52.676 mg/g, at pH = 6.4. Also, the kinetic

rate constant K2 decreases with increasing methylene blue concentration. When dye

concentration is higher, competition for binding sites on the polymer’s surface increases,

lowering the kinetic rates.
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Figure 3.10: Effect of DCMC dosage on methylene blue removal after 30 seconds

Since the adsorption process is almost instantaneous, the ratio between polymer mass
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and the solution volume, denominated as dosage, was varied. Figure 3.10 shows that

evolution of the adsorption kinetic process with 40 mg/L initial concentration at pH = 6.4.

In order to observe a continuous decrease of methylene blue concentration, dosages were

reduced up to 0.17 mg/mL and samples were taken at 30 seconds. Nonetheless, the

adsorption process is very quick, achieving 50% methylene blue removal in only 30

seconds. This suggests smaller doses of polymer may be used depending on the desired

final concentrations and on the imposed timetable.

3.4.3 Reusability study

The regenerability of an adsorbent is an important aspect, particularly with the increas-

ing environmental awareness. To study the reusability of dicarboxymethyl cellulose,

1 M NaCl was used as an eluent in two different experiments.

In the first experiment, the polymer was dried in a muffle furnace between adsorption

and desorption cycles. Figure 3.11 shows that desorption efficiency remained relatively

constant throughout the cycles. However, adsorption capacity decreased significantly

after the second cycle. Between adsorption and desorption processes, the polymer was

dried in a muffle furnace at 70 °C. Cross-linking occurs at 90-100 °C, so it is possible

that the polymer may have continued to cross-link. Since the carboxylic groups are

involved in the cross-linking reaction, a reduction of active binding sites may justify

the loss in adsorption capacity. Also, temperature-induced decarboxylation may have

produced carboxymethylcellulose (CMC). CMC has a higher pKa than DCMC (4.5 versus

2.1, respectively). For this reason, CMC has a smaller pH range where ionized groups

are able to interact with cationic compounds resulting in reduced adsorption capacity

(Wuestenberg, 2014).
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Figure 3.11: Removal efficiency for different adsorption-desorption cycles with in-
between drying (adsorbent dosage: 2 mg/mL, pH = 6.4) represented by a) adsorption
and b) desorption efficiency.
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Figure 3.12 represents the second reusability experiment where the polymer was not

dried. It is clear that after several consecutive cycles, adsorption and desorption efficiency

decreased. The effect on adsorption performance may be justified by the presence of dye

on the adsorbent surface. The presence of residual cationic dye in the adsorbent may

also contribute to an increase of electrostatic repulsion, preventing other dye molecules

from occupying free adsorption binding sites. Moreover, desorption efficiency strongly

decreased after the consecutive cycles. This indicates that the electrostatic attraction be-

tween the cationic dye and the negative surface charge of the polymer wasn’t significantly

reduced, hindering the desorption process.
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Figure 3.12: Removal efficiency for different adsorption-desorption cycles (adsorbent
dosage: 2 mg/mL, pH = 6.4) represented by a) adsorption and b) desorption efficiency.

For future work, experiments on reusability should consider product filtration in

order to remove non-adsorbed dye molecules present in the solution. As desorption

efficiency also decreased throughout the cycles, desorption studies as a function of des-

orbing agents should be carried out. By increasing ionic strength, electrostatic attraction

between positively-charged molecules and the surface of the polymer is reduced (Li et al.,

2012). Therefore, using stronger eluent agents, such as 2 M NaCl or HCl, may increase

desorption.

3.4.4 Adsorption coupled with filtration

In this experiment, 200 mL of a methylene blue solution (C0) were added to 400 mg

of polymer. After 30 minutes, the polymer had removed 77.4% of the cationic dye and

the solution had a reduced concentration of 1.18 mg/L (CF). A 500 kDa membrane was

placed at the bottom of a METcell system and the solution was permeated by using a

transmembrane pressure of 5 bar. The differences in solution concentration throughout

this process are presented in Table 3.4.
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Table 3.4: Results from the adsorption and filtration process

Sample C (mg/L) Removal Efficiency (%)

C0 4.28 NAa

CF 1.18 77.4
CP 0.01 99.8

a Not applicable

After filtration with the MET cell system, the permeate was clear (see Figure 3.13).

Analysis showed residual (less than 10 ppb) methylene blue concentration. The selected

membrane has a pore size of 500 kDa whereas methylene blue has a molar mass of

319.85 Da, which suggests that dicarboxymethyl cellulose completely sequestered the

cationic dye. Figure 3.14 shows the recovery of the retentate after filtration was complete.

Figure 3.13: Experimental setup for filtration using a MET cell system

The permeate fluxes generated during the course of the membrane filtration process

are displayed in Figure 3.15. A continuous decrease in permeate flux is caused by

membrane fouling, offering increasing resistance to the system.

In order to determine resistance, flux was calculated using a modified Darcy’s law,

represented in Equation (3.9). Total resistance includes membrane and polymer layer

resistance. The process was carried out for 6153 seconds until the aqueous solution

of methylene blue was completely filtrated. The viscosity of the aqueous solution was

considered to be the viscosity of water at 20 °C.
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Figure 3.14: Retentate recovered from the filtration experiment: dicarboxymethyl
cellulose loaded with methylene blue.

J =
V
At

=
∆P
µRT

(3.9)

where J (m3/(m2 · s)) is filtrate flux rate, V (m3) is volume, A (m2) is membrane area, t (s)

process is time, ∆P (Pa) is transmembrane pressure, µ (mPa · s) is viscosity and RT (m-1)

is total resistance.
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Figure 3.15: Permeate flux variation over time
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Membrane resistance was calculated by performing the experiment with water. A flux

of 2.57 × 10-4 m3/(m2·s) was obtained. Using Equation (3.9) and substituting RT by RM

a value of 1.94 × 1012 m-1 was obtained. Then, with the final experimental flux of 4.90

× 10-6 m3/(m2·s), a total resistance of 1.02 × 1014 m-1 was determined by Equation (3.9).

Polymer layer resistance was then calculated with Equation (3.10) and determined to be

1.00 × 1014 m-1. Therefore, the dicarboxymethyl cellulose layer offers 98.1% resistance

to the system. This high resistance can be decreased working on cross-flow mode instead

of dead-end mode as described.

RT = RM +RP (3.10)

where RT (m-1) is total resistance, RM (m-1) is membrane resistance and RP (m-1) is

polymer resistance.

3.5 Conclusions

In this study, dicarboxymethyl cellulose prepared from air-dry cellulose was used for the

adsorption of methylene blue from aqueous solutions. Experimental results showed that

methylene blue adsorption was dependent on adsorbent surface characteristics, which are

manipulated by solution pH. At an acidic pH, Langmuir isotherm model adjusted better

to experimental data, suggesting monolayer adsorption on a homogenous adsorbent

surface. The maximum dye uptake at these conditions was 887.6 mg/g. At pH = 6.4,

experimental data fitted with Sips isotherm model with calculated maximum adsorption

capacities similar to experimental values (1354.6 and 1365.5 mg/g, respectively). High

dye uptakes suggest dicarboxymethyl cellulose can be used as an alternative to commer-

cial adsorbents. Kinetics studies revealed experiments were well described by pseudo

second-order kinetic model which is associated with chemisorption processes. Methylene

blue adsorption onto DCMC is almost instantaneous with more than 50% removal effi-

ciency after 30 seconds. Reusability studies showed a decrease in desorption efficiency

throughout consecutive cycles, which may have influenced the decrease in adsorption

efficiency. Adsorption coupled with filtration was successful in the removal of methylene

blue. Even though the membrane pore size was much larger than methylene blue, the

molecule was not permeated. Therefore, methylene blue was completely sequestered by

DCMC.

DCMC exhibited potential as an effluent treatment material. Moreover, the use of

a low-cost, cellulose-based polymer offers promising benefits for commercial purposes.

Nevertheless, future studies should include scale-up experiments with cost-benefit analy-

sis to assess commercial viability of the polymer. Future work should also address the use

DCMC in the treatment of real wastewaters. Further reusability studies should consider

desorbing agents with higher ionic strength.
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Adsorption of Cytochrome C

4.1 Summary

In the present study, a novel cellulose-based polymer is used in protein adsorption.

Dicarboxymethylcelllose (DCMC) was evaluated as a cytochrome C (Cyt C) adsorbent.

Factors affecting the adsorption capacity of DCMC such as adsorbent dosage, number of

carboxylate groups per gram of polymer and time were investigated. Removal efficiency

increased with increasing adsorbent dosage, reaching a balanced value of approximately

90% at a critical dosage of 0.25 mg/mL. Cytochrome C uptake increased with number of

carboxylate groups. The adsorption process followed the Langmuir adsorption isotherm,

suggesting monolayer coverage. Maximum protein uptake was 1279.6 mg/g for the

highest substituted polymer (DCMC 3). Pseudo second-order kinetic model adjusted

well to experimental data. Selective adsorption experiments revealed that DCMC does

not display preferential equilibrium uptake of Cyt C over lysozyme (Lys). Doping Cyt C
with Lys in a competitive environment did not affect the uptake of Cyt C. Furthermore,

DCMC was successfully regenerated and reused (up to 3 cycles) without compromising

performance. After three cycles, adsorption efficiency was above 90%.

4.2 Introduction

Proteins are complex and sophisticated biomolecules that participate in several physi-

ological processes (Alberts et al., 2002; Qiao et al., 2019). The increasing demand for

proteins in research and other applications contributed to the scientific importance of the

adsorption phenomenon applied to these biomolecules (Bellezza et al., 2009; Kondo and

Higashitani, 1992).

Protein adsorption has been thoroughly studied throughout the years (Kondo and
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Higashitani, 1992; Qiao et al., 2019). With the recent interests in green technology,

the applications of the adsorption process have expanded (Tien, 2018). Adsorption

is applied to the recovery and immobilization of proteins, namely for pharmaceutical

and biomedical purposes (Anirudhan et al., 2011; Miyahara et al., 2007; Tien, 2018).

Therefore, understanding the mechanisms of protein adsorption is vital to enhance the

separation or removal efficiency of the proteins (Anirudhan et al., 2011; Bellezza et al.,

2009). Adsorption is affected by chemical and physical characteristics of the protein

and the adsorbent (Bellezza et al., 2009). Molecular size, surface charge, hydrophobicity

and electrostatic interactions are some of the factors that influence adsorption behavior

(Bellezza et al., 2009; Kondo and Higashitani, 1992).

The research and design of adsorbents with high adsorption capacities is of great

importance (Qiao et al., 2019). Moreover, environmental awareness leads to a research on

sustainable and renewable adsorbents (Liu et al., 2018). Cellulose is the most abundant

organic material on Earth with 1.5 x 1012 tons of annual production (Kirk-Othmer, 2005;

Klemm et al., 2005). This raw material is biodegradable, renewable and a potential

adsorbent (Klemm et al., 2005; Suhas et al., 2016). However, naturally occurring cellulose

has low protein adsorption capacity as well as variable physical stability (Anirudhan et al.,

2011; Suhas et al., 2016). Therefore, derivatization of cellulose is necessary to introduce

new physical and chemical properties (Xiao et al., 2014). Through functionalization of

cellulose, a novel polymer was synthesized. Dicarboxymethyl cellulose is prepared by

heterogenous etherification with bromomalonic acid (Chagas et al., 2019; Diamantoglou

et al., 1977; Ferreira et al., 2019; Kötz et al., 1991). Due to the presence of a low pKa ether

group, dicarboxymethyl cellulose can perform ion exchange at low pH (2.5 – 3.5) (Chagas

et al., 2019).

Cytochrome C is a small heme protein (MW ≈ 13 kDa) with a high isoelectric point

(pI = 10.0-10.5) (Anirudhan et al., 2011; Sigma-Aldrich Product Information; Vinu et

al., 2004). Cyt C is well-characterized and often used as a model protein (Kondo and

Higashitani, 1992; Takeda et al., 2015). The chemical structure of the protein is presented

on Figure 4.1.

Figure 4.1: Chemical structure of cytochrome C
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In the present contribution, the adsorption behavior of Cytochrome C onto dicar-

boxymethyl cellulose was studied. The cellulose-based polymer is prepared following

the method described by Chagas et al., 2019; Ferreira et al., 2019. Adsorption isotherm

and kinetics were studied. Effect of pH of the solution and degree of substitution of the

adsorbent were considered. Reusability studies of the polymer were carried out. Further-

more, competitive and selective experiments using an analogous protein, lysozyme, were

performed.

4.3 Materials and Methods

4.3.1 Materials

The polymers used are the ones whose synthesis and characterization is presented in

Chapter 2 of this thesis. Horse heart cytochrome C (Cyt C, MW = 12.4 kDa, pI = 10.0-10.5)

and Lysozyme (Lys, MW = 14.3 kDa, pI = 11.35) were purchased from Sigma-Aldrich.

All other reagents were used without further purification.

A standard phosphate solution (25 mM, pH 7.2) was prepared with the required

quantities of sodium phosphate dibasic heptahydrate (MW = 268 g/mol) and sodium

phosphate monobasic dihydrate (MW = 156 g/mol).

4.3.2 Methods

4.3.2.1 Adsorption experiments for Cytochrome C removal

Experiments were carried out to determine the effect of number of carboxylate groups

and adsorbent dosage on adsorption capacities.

Adsorption isotherms were studied at pH 7.2 with sodium phosphate buffer. 200 mg/L

cytochrome C solutions were added to the polymers in adsorbent dosages between 0.06

and 2.00 mg/mL. The vials were stirred continuously on a multi-mixer for 48 h. A

Spectronic Helios Alpha spectrometer was used to determine cytochrome C concentra-

tions at 409 nm. All experiments were performed in triplicate and mean values were

presented.

4.3.2.2 Modelling of adsorption isotherms

The adsorption isotherms of Cytochrome C onto DCMC were studied by fitting the

experimental data with known mathematical models. The theoretical reasoning behind

this study is described in detail in Chapter 3. Langmuir and Freundlich models were

used to describe the data.

The Langmuir isotherm model is expressed by Equation (4.1).

q =
qm Ce
Kd +Ce

(4.1)
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where qm (mg/g) is the maximum adsorption capacity, Ce (mg/L) is equilibrium concen-

tration and Kd (L/g) is the Langmuir adsorption equilibrium constant, representing the

affinity between adsorbate and binding sites.

The Freundlich isotherm model follows Equation (4.2).

q = K C 1/n
e (4.2)

where K (L/g) is the Freundlich constant, which relates to adsorption capacity, Ce (mg/L)

is equilibrium concentration and n is the heterogeneity factor. If n is equal to 1, all

surface sites are equivalent and adsorption is linear. Larger values of n indicate strong

adsorbate-adsorbent interaction and it is generally stated that values of n in the range of

1 to 10 represent favorable adsorption (Febrianto et al., 2009).

4.3.2.3 Modelling of adsorption kinetics

In this experiment, 200 mL of a 20 mg/L Cytochrome C solution were added to 200 mg of

DCMC 3. Experimental data was fitted with two non-linear kinetic models, thoroughly

described in Chapter 3.

The pseudo first-order kinetic model is calculated by Equation (4.3) (Largitte and

Pasquier, 2016; Liu et al., 2018; Ren et al., 2018).

q = qm
(
1− e−K1t

)
(4.3)

where qm (mg/g) is maximum adsorption capacity, K1 (min-1) is the rate constant and

t (min) is time.

Pseudo second-order follows Equation (4.4) (Berizi et al., 2016; Largitte and Pasquier,

2016).

q =
q2
m K2 t

1 + qm K2 t
(4.4)

where qm (mg/g) is maximum adsorption capacity, K2 (mg g-1 min-1) is the rate constant

and t (min) is time.

4.3.2.4 Reusability study

In this study, 6 mL of a 200 mg/L Cytochrome C solution were added to 6 mg of the

polymer with a higher number of carboxylate groups (DCMC 3). After three hours,

the solution was decanted, washed three times with deionized water and decanted once

more. The same volume of 1 M NaCl was added to dicarboxymethyl cellulose in order

to remove the protein by ionic exchange. Reusability of the polymer is determined

by monitoring removal efficiency throughout the consecutive cycles. Adsorption and

desorption efficiency are calculated by the following equations.

Adsorption efficiency (%) =
(C0 −Ce)
C0

· 100 (4.5)
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where C0 and Ce (mg/L) are the initial and equilibrium concentrations of Cyt C in the

solution, respectively.

Desorption efficiency (%) =
Cd

(C0 −Ce)
· 100 (4.6)

where Cd is the desorbed concentration of Cyt C and C0 and Ce (mg/L) are the initial and

equilibrium concentrations of Cyt C in the solution, respectively.

4.3.2.5 Competitive adsorption of cytochrome C and lysozyme

To determine selectivity of dicarboxymethyl cellulose for Cytochrome C, a model protein

(Lysozyme) with similar characteristics was used.

Solutions of Cyt C and Lys were prepared with a concentration of 200 mg/L, using

a phosphate buffer solution (pH = 7.2). Adsorption experiments for Cyt C and Lys

were performed separately. Equilibrium concentration was determined by measuring

UV absorbance after the mixtures were shaken for 48 h at room temperature.

The competitive adsorption experiment was studied by adding phosphate buffer solu-

tion (pH = 7.2) with cytochrome C and lysozyme in the same concentration (200 mg/L) to

dicarboxymethyl cellulose. Identically to previous adsorption experiments, the mixture

was stirred for 48 h at room temperature. Equilibrium concentrations for Cyt C and Lys

were calculated by measuring UV absorbance at 409 and 280 nm, respectively.

4.4 Results and Discussion

4.4.1 Effect of DCMC dosage and number of carboxylate groups

The appearance of the samples before and after the adsorption experiments are shown

in Figure 4.2. From the picture, it is evident that the polymer with a higher number of

carboxylate groups (DCMC 3) has better results than the other polymers. Logically, the

vials with clearer solutions are the ones where the polymer has a more intense reddish

color. A decrease in the solution color intensity can be observed with increasing number

of carboxylate functional groups. This can be explained by the availability of negatively-

charged binding sites for cationic proteins. The removal of Cyt C originates a clear and

colorless solution.

The effect of adsorbent dosage was studied on Cytochrome C removal. Figure 4.3

illustrates the influence of DCMC dosage on Cyt C removal efficiency. Results show that

increasing adsorbent dosage beyond 0.25 mg/mL does not affect removal. At this critical

dosage, removal efficiency reaches a balanced value of approximately 90%. For the same

contact time, maximum removal of Cyt C reached 95% with a dosage of 2.00 mg/mL,

while at 0.06 mg/mL there was 38% removal. These results can be explained by the

increasing number of binding sites with increasing amount of adsorbent.
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(a)

(b)

Figure 4.2: Pictures of the samples a) before and b) after the adsorption experiment of
Cyt C onto DCMC.

At high dosages, the number of carboxylate groups (CG) per grams of polymer has no

influence on the removal efficiency of Cytochrome C. However, at lower dosages removal

efficiency increases with increasing CG. For the same DCMC dosage, an increase in CG

results in increasing available binding sites which facilitates protein adsorption.

4.4.2 Adsorption isotherm

Based on the results obtained in the previous section, an adsorption isotherm experiment

was conducted with the most efficient polymer, regardless of dosage. To understand the

adsorption mechanism of Cytochrome C the experiment was conducted with the polymer

with highest number of carboxylate groups (DCMC 3).

The experimental data was adjusted to Langmuir and Freundlich models. Table 4.1

presents the calculated adsorption isotherm parameters. Correlation coefficients (R2)

show that Langmuir model adjusts better to experimental data, compared to Freundlich

model. Additionally, adsorption capacity calculated by the Langmuir model (qm = 1279.6

mg/g) is in agreement with experimental results (qm = 1142.8 mg/g). Fitting with
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Figure 4.3: Effect of DCMC dosage on Cytochrome C removal efficiency for a) DCMC 1,
b) DCMC 2 and c) DCMC 3 at pH 7.2.
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Langmuir model suggests adsorption of Cyt C onto dicarboxymethyl cellulose is a mono-

layer process.

Table 4.1: Adsorption isotherm parameters

Langmuir Freundlich

Sample pH qm (mg/g) KD (L/mg) R2 n K (L/mg) R2

DCMC 3 7.2 1279.6±95.6 0.095±0.026 0.947 4.2±1.5 0.385±0.127 0.823

4.4.3 Comparison with other adsorbents

Comparison of the adsorption capacity of Cytochrome C onto other adsorbents is pre-

sented in Table 4.2.

Adsorption capacity of DCMC3 was significantly higher than those reported in litera-

ture. Based on these results, it was found that dicarboxymethyl cellulose may be used for

the removal of Cyt C.

Table 4.2: Comparison of maximum adsorption capacity of Cytochrome
C with other adsorbents

Adsorbent qm (mg/g) pH Reference

DCMC 1279.6 7.2 Present study
MPSs a 453.3 5.0 Li et al., 2012
5 nm nanodiamonds 195.0 6.5 Huang and Chang, 2004
APSs b 180.8 5.0 Li et al., 2012
CPSs c 173.2 5.0 Li et al., 2012
MIMs d 156.1 7.4 Li et al., 2018
PSs e 101.2 5.0 Li et al., 2012
100 nm nanodiamonds 97.0 6.5 Huang and Chang, 2004
NIMs f 38.6 7.4 Li et al., 2018
a Modified peanut shells
b Alkaline peanut shells
c Crosslinked peanut shells
d Molecularly imprinted mesoporous materials
e Unmodified peanut shells
f Non-imprinted mesoporous materials

Several reports mention Ion Exchange Chromatography (IEC) as a method for pro-

tein separation (Bonner, 2007; Guthrie and Bullock, 1960; Peterson and Sober, 1956;

Zeng and Ruckenstein, 1998). Carboxymethyl cellulose, diethylaminoethyl cellulose,

quaternary aminoethyl cellulose, sulphopropyl cellulose and methyl sulphone cellulose

are commercially available ion exchange resins (Zeng and Ruckenstein, 1998). These

resins can be classified as cation or anion-exchangers, respectively attracting negative or

positively-charged proteins (Bonner, 2007; Cobzaru and Inglezakis, 2015). Depending

on the ionization range, ion exchange resins are considered weak or strong (Bonner,
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2007). Strong ion exchange resins have wider working pH windows (Bonner, 2007).

Dicarboxymethyl cellulose and carboxymethyl cellulose (CMC) are similar in structure,

with the former having an additional carboxymethyl functional group. The potential of

DCMC as a cation-exchanger resin is motivated by its similarities with CMC and wider

pH range.

4.4.4 Adsorption kinetics

The kinetic experiment was performed on the polymer with higher number of carboxylate

groups. A 20 mg/L Cytochrome C solution was added to 200 mg of DCMC 3. Figure 4.4

shows the adsorption kinetic process of Cytochrome C onto dicarboxymethyl cellulose.

Based on Figure 4.4a, Cyt C was rapidly removed in the first 100 min. In that

period of time, concentration is reduced to a third of its initial value. Then, equilibrium

concentration reaches a plateau which may be explained by the reduction of available

binding sites on the surface of dicarboxymethyl cellulose.
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Figure 4.4: Adsorption kinetics of a 20 mg/L Cytochrome C solution at pH = 7.2 onto
DCMC 3 represented by normalized a) concentration and b) adsorption capacity.

Adsorption capacity of Cytochrome C onto dicarboxymethyl cellulose was calculated

by q = (C0−Ce)V
m . The process was modeled with pseudo first-order and pseudo second-

order kinetic models. The kinetic parameters for the adsorption of Cytochrome C onto

DCMC 3 are displayed in Table 4.3. Both kinetic models present high correlation coef-

ficients (R2 > 0.990). However, since maximum adsorption capacity calculated by the

pseudo second-order model is closer to experimental values (181.7 versus 188.0 mg/g,

respectively), it is considered that this model adjusts better to experimental data.

4.4.5 Reusability study

The reusability experiments were performed with the polymer with better removal ef-

ficiencies. A 20 mg/L solution was added to 6 mg of DCMC 3. After three hours, the
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Table 4.3: Adsorption kinetics parameters

Pseudo first order Pseudo second order

Sample pH K1 (min -1) qm (mg/g) R2 K2 (mg g-1 min-1) qm (mg/g) R2

DCMC 3 7.2 223.1±0.0 179.8±2.2 0.990 0.180±0.105 181.7±2.1 0.993

polymer was washed with deionized water and 1 M NaCl was added. The experiment

was conducted over three cycles. The results on regeneration and reusability of dicar-

boxymethyl cellulose are shown in Figure 4.5.
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Figure 4.5: Removal efficiency for different adsorption-desorption cycles (adsorbent
dosage: 1 mg/mL, pH = 7.2) represented by a) adsorption and b) desorption efficiency.

After three cycles, adsorption and desorption efficiencies remain unaffected. Adsorp-

tion efficiency ranged from 88 to 91%, while desorption exceeded 90% in all cycles. Since

there is close to full desorption in each cycle, it is assumed that Cyt C is almost entirely

removed. The lack of positively-charged proteins on the surface of the adsorbent reduce

electrostatic repulsion between adsorbate and adsorbent, contributing to high adsorption

efficiencies. Complete desorption of Cyt C may be explained by weak attraction between

the protein and dicarboxymethyl cellulose. The use of NaCl as eluent agent proved to be

successful.

4.4.6 Competitive adsorption of cytochrome C and lysozyme

Adsorptions experiments of cytochrome C and lysozyme were performed with two poly-

mer dosages. Selective and competitive adsorption experiments were performed in

phosphate buffer solution (pH = 7.2). 200 mg/L solutions of Cyt C and Lys were added

to dicarboxymethyl cellulose. Similaly to previous experiments, the polymer with higher

number of carboxylate groups (DCMC 3) was used. Lys was used as a reference protein
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due to its similarities with Cyt C. The adsorption parameters for both proteins are

presented in Tables 4.4 and 4.5.

In selective adsorption, Cyt C and Lys were added separately to the polymer. As

expected, since Cyt C and Lys are similar in size and isoelectric point, selectivity was not

observed. Polymer dosage did not affect the experiment, with removal efficiencies of 97

and 93% for Cyt C and Lys at a low dosage.

Table 4.4: Selective adsorption of Cyt C and Lys onto dicarboxymethyl cellulose

Cyt C Lys

Dosage (mg/mL) 0.50 1 0.50 1

Removal Efficiency (%) 97.01 96.30 88.95 92.69

In the competitive adsorption experiments, dicarboxymethyl cellulose was in contact

with both solutions at the same time. Results showed that both proteins had removal

efficiencies over 85%. Once again, polymer dosage did not influence the results. Coad-

sorption of Cyt C and Lys did not reveal competition for binding sites.

Table 4.5: Competitive adsorption of Cyt C and Lys onto dicarboxymethyl cellulose

Cyt C Lys

Dosage (mg/mL) 0.50 1 0.50 1

Removal Efficiency (%) 94.19 96.87 91.71 86.06

In both experiments, cation-exchange between the proteins and the adsorbent occurs.

An experiment using a negatively-charged protein at the studied pH (lower isoelectric

point) could demonstrate the charge-sensitive ion-exchange process. α-Lactalbumin (α-

LA, MW = 14.2 kDa, pI = 4-5) has comparable size to Cyt C and Lys and an isoelectric

point quite below the solution pH (Permyakov and Berliner, 2000). Therefore, α-LA

would be completely deprotonated at pH = 7.2 and could be used for the proposed exper-

iment.

4.5 Conclusions

Dicarboxymethyl cellulose was used for the adsorption of Cytochrome C. Results showed

that increasing adsorbent dosage beyond 0.25 mg/mL did not affect removal efficiency.

At this dosage, all samples removed above 90% of the protein. Adsorption efficiency

increased with number of carboxylate groups per gram of polymer. Experimental data

was adjusted to Langmuir isotherm model with a maximum protein uptake of 1279.6

mg/g. Kinetic studies showed that the experimental data was well described by pseudo

second-order model. Cyt C is rapidly removed in the first 100 min. Selective and

competitive adsorption studies did not display preferential equilibrium uptake of either
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protein nor did it affect adsorption capacity. Reusability studies showed promising

results. After three cycles, adsorption efficiency was above 90%. These results make

dicarboxymethyl cellulose an ideal candidate for protein purification and separation.

The separation of positively-charged proteins, such as Cyt C, with this new cellulose-

based polymer is promising. Future work should include the use of DCMC in Ion Ex-

change Chromatography. Also, selective and competitive studies using opposite charged

proteins should be considered.
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Conclusions

In this work, the adsorption of dyes (Chapter 3) and proteins (Chapter 4) onto a new

cellulose-based polymer was studied. The data obtained from these experiments allows

for the evaluation of the potential of dicarboxymethyl cellulose as an adsorbent. The data

gathered is of great importance since there is scarce information on the subject applied

to this polymer.

Dicarboxymethyl cellulose was successfully synthesized following the method de-

scribed by Chagas et al., 2019; Ferreira et al., 2019.

Excellent results on the removal of methylene blue showed that dicarboxymethyl

cellulose may be used as a water remediation tool. Maximum adsorption capacities

of methylene blue onto dicarboxymethyl cellulose, but especially DCMC 3, are higher

than those reported in literature. High adsorption capacities, biodegradability and easy

disposal are some of the factors that announce DCMC as an alternative to conventional

adsorbents, namely commercial activated carbon. The coupling of adsorption and mem-

brane filtration allowed for complete pigment removal.

Protein separation was studied by using Cytochrome C as a model protein. Equi-

librium adsorption studies revealed that beyond a critical dose of 0.25 mg/mL there

was 90% protein removal. Two thirds of the protein were adsorbed in the first 100 min.

Reusability studies showed that, after three cycles, adsorption and desorption efficiencies

were above 90%.

Results showed that, in general, adsorption capacity increases with the number of

carboxylate groups per gram of polymer. The availability of binding sites contributes to

the cation exchange between dicarboxymethyl cellulose and the respective adsorbate.

Dicarboxymethyl cellulose showed satisfactory performance in all experiments when

compared to other adsorbents. Since information on this polymer is lacking, further
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characterization by solid state nuclear magnetic resonance and scanning electron mi-

croscopy is advised. Standardization of the polymer size via mechanical processing

and its influence on adsorption capacity should be considered. Future studies should

include adsorption coupled with membrane filtration in cross-flow mode. In cross-flow

the particles are swept by the flow of the bulk solution, leaving a thinner deposited

polymer layer, reducing concentration polarization. The use of dicarboxymethyl cellulose

in Ion Exchange Chromatography should be evaluated. It would also be interesting to

study methylene blue adsorption at pH = 6.4 in a buffered solution and observe if there

are changes in the isotherm shape.
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