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Article 1 

REMOTE ESTIMATION OF TARGET HEIGHT 2 

USING UNMANNED AIR VEHICLES (UAVs) 3 
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Abstract: estimation of target height from videos is used for several applications, such as 9 
monitoring agricultural plants growth or, within surveillance scenarios, supporting the 10 

identification of persons of interest. Several studies have been conducted in this domain but, in 11 
almost all the cases, only fixed cameras were considered. Nowadays, lightweight UAVs are often 12 

employed for remote monitoring and surveillance activities due to their mobility capacity and 13 
freedom for camera orientation. This paper focuses on how the height could be swiftly performed 14 

with a gimballed camera installed into a UAV using a pinhole camera model after camera 15 
calibration and image distortion compensation. The model is tailored for UAV applications 16 

outdoor and generalized for any camera orientations defined by Euler angles. The procedure was 17 
tested with real data collected with a regular-market lightweight quad-copter. The data collected 18 

was also used to make an uncertainty analysis associated with the estimation. Finally, since the 19 
height of a person who is not standing perfectly vertical can be derived by relationships between 20 

body parts or human face features ratio, this paper proposes to retrieve the pixel spacing measured 21 
along the vertical target, called here Vertical Sample Distance (VSD), to quickly measure vertical 22 

sub-portions of the target.  23 

Keywords: remote surveillance, target height, UAV, pinhole model, image distortion 24 
compensation, Vertical Sample Distance (VSD) 25 

 26 

1. Introduction 27 

Unmanned Air Vehicles have been employed for more than two decades for military activities 28 
[1] but, nowadays, they are also widely used for civil applications. In particular, non-coaxial 29 
multi-rotors with weight below 4 kg [2] are often used to complement or, in some cases, even replace 30 

fixed video cameras for monitoring and surveillance activities [3]. In fact, UAVs can bring a very 31 
relevant added value compared with static installations: the possibility to transport and orient the 32 

camera as needed, allowing to perform pre-established survey paths or even follow a specific target, 33 
if needed [4].  34 

Remote surveillance or monitoring activities may often require estimating the height of a target 35 
via image analysis. The target could be a tree for example, in order to monitor its growing for 36 

agricultural purposes [4], or a building, to follow contraction developments, or animals, to track 37 
cattle growing [5]. However, as we may expect, remote height estimation from image analysis is 38 

very often needed to define the exact stature of human beings. This is required to support the 39 
identification of a person of interest [6], health care purposes [7] or even for marketing [8]. There is a 40 

significant amount of studies in the literature dedicated to obtaining a person’s body height from a 41 
video but, almost the totality of them considered data collected by static surveillance cameras. On 42 

the other hand, UAVs have been mainly used for estimating features’ height for topographic or 43 
urban mapping using Photogrammetry and LIDAR (Laser Imaging Detection and Ranging) 44 
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techniques (see for example [9], [10] and [11]). Photogrammetric techniques require having either a 45 
double camera pointing at the same target or acquiring two images from different orientations of a 46 

(static) feature. LIDAR data needs to be acquired by sophisticated devices installed in aircrafts 47 
specifically designated for this kind of survey technique. In some studies [12], human height 48 

estimation was performed with UAV using a machine learning approach. However, this approach 49 
requires a quite intensive elaboration and it cannot be always performed in near real-time. 50 

This paper focuses on how the height of a feature standing vertically from the ground can be 51 
measured with a “regular” payload for lightweight UAVs, which is daylight Electro-Optical camera 52 

installed into steerable gimbals. The goal is to estimate the height using a single image in a swift 53 
fashion, possibly in near real-time, without the need for intense processing rapid situational 54 

evaluation and quick decision making during the UAV flight. Moreover, we need to take into the 55 
account that the UAV may operate outdoor, where topography and scene content may rapidly 56 

change and the target may be a static feature, like a tree, or dynamic, like humans or animals.  57 
A widely used approach for height estimation from video footages requires to identify, when 58 

possible, vanishing lines in the scene (see for example [13], [14] and [15]). However, this approach 59 
has relevant setbacks: defining vanishing lines may not be always possible in an image [16] and a 60 

reference height in the scene is required to define the height of the target. Other authors have more 61 
recently proposed to estimate the height of a person standing on a floor considering a pinhole 62 

camera model after camera calibration and image distortion compensation [17]. A similar approach 63 
was also used in [18] in combination with person body height estimation using interpupillary 64 
distance, the comparison of these two methods showed that they are comparable and accurate.  65 

It is here proposed an approach that foresees camera calibration and lens distortion correction 66 
before calculating geometrically the height of the target using the pinhole camera model. This 67 

procedure requires just a single image, or video frame, acquired with a camera fitted on-board of a 68 
lightweight UAV. The correction for lens distortion allows generating an image as it was acquired by 69 

a perfect pinhole system [19], which can be used for the mapping of a 3D scene to a 2D image. 70 
However, the correction of an entire image may be very time-consuming. The approach here 71 

described requires correcting just a very limited number of pixels, in order to reduce the elaboration 72 
time for near real-time applications. On the other hand, the camera calibration [20] requires intrinsic 73 

camera parameters, such as the focal length, and extrinsic parameters, such as camera position and 74 
orientation. This paper analyzes how these parameters can be defined when dealing with UAVs, for 75 

example the position of the camera is given by positional systems, like GPS.  76 
The procedure was tested with real data collected with a regular-market lightweight quad-copter. A 77 

measuring pole of known length standing vertically from the ground was used as a target for the 78 
acquisition of several still images taken from different positions. For each shot, the height of the 79 

target was calculated considering the procedure described above and compared with the real height 80 
of the pole to assess the accuracy of the estimations. An analysis of the uncertainty was conducted to 81 

analyze how the error associated with the camera-to-target distance can influence the accuracy of the 82 
estimation.  83 

The last part of this paper focuses on how estimating the vertical length of the target’s subparts, 84 
which is particularly useful to define the exact human body height. In fact, the exact human stature 85 
can be estimated in a video if the subject is standing vertically from the ground in a fully straight 86 

pose. If the person has a different pose, such as standing relaxed with feet further apart and weight 87 
on both feet standing relaxed with weight on one leg, we would manage to estimate just the height 88 

of the body in that specific pose, see [6] and [21], not the real stature of the subject. In literature is 89 
well known the relationship between the height of a person its body parts obtained via experimental 90 

measures [22]. Therefore, the height a person who is not standing perfectly vertical can be derived 91 
by relationships between body parts or and human face features ratio [23] face of the person is well 92 

visible in the scene. It is here proposed to use the pixel spacing measured along the vertical target to 93 
quickly estimate the length of body parts or face portions. The spacing in the vertical direction is 94 

here called Vertical Sample Distance (VSD), which can be calculated as the GSD (Ground Sample 95 
Distance, [24]) but perpendicular to the ground (vertical axis). 96 
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2. Methods 97 

The first part of this section describes the basic principles of the pinhole model for computer 98 

vision and processes for lens distortion compensation. After that, it is analyzed how computer vision 99 
can be performed when dealing with cameras installed into UAVs. The last part of this section 100 

presents and describe the method to estimate the height from still images or video frames acquired 101 
with cameras installed into UAVs.  102 

2.1. Pinhole camera model and computer vision  103 

In computer vision, cameras are usually modelled with the pinhole camera model [28]. The 104 
model is inspired by the simplest camera, where the light from an object enters through a small hole 105 

(the pinhole). This model considers a central projection, using the optical center of the camera and an 106 
image plane (that is perpendicular to the camera’s optical axis, see Figure 1). In the physical camera, 107 

a mirror image is formed behind the camera center but, often, the image plane is represented in front 108 
of the camera center. The pinhole camera model represents every 3D world point P (expressed by 109 

world coordinates xp,yp,zp) with by the intersection between the image plane and the camera ray 110 

line that connects the optical center with the world point P (this intersection is called the image 111 
point, noted with I in Figure 1). 112 

 113 

 114 
Figure 1. Graphical representation a 3D world point P is projected onto a 2D Image Plane. 115 

The pinhole camera projection can be described by the following linear model  116 
 117 

 [
μ𝑖
ν𝑖
1
] = 𝐾[𝑅𝑇] [

𝑋𝑝
𝑌𝑝
𝑍𝑝
1

] (1) 

 118 
Where K is the calibration matrix, defined as follow: 119 

 120 
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 𝐾 = [

αμ γ μ0  
0 αν ν0
0 0 1

]  (2) 

 121 

αμ and αν represent the focal length expressed in pixels. μ0  and ν0 are the coordinates of the 122 

image center expressed in pixels, with origin in the upper left corner (see Figure 1). γ is the skew 123 
coefficient between the x and y axis, this latter parameter is very often 0. 124 

The focal lengths, (which can be here considered as the distance between the image plane and 125 
optical center) can be also expressed in terms of distance (e.g. mm instead of pixels) considering the 126 

following expressions: 127 
 128 

 𝐹𝑥 = 𝑎μ
𝑊μ

𝑤μ
 

 
(3) 

 𝐹𝑦 = 𝑎ν
𝑊ν
𝑤ν

  (4) 

 129 
Where 𝑤μ and 𝑤ν are, respectively, the image (or video frame) width and length, 𝑊μ is the 130 

width and 𝑊ν the length of the camera sensor expressed in world units (e.g. mm). Usually, 𝐹μ and 131 

𝐹ν have the same value, although they may differ due to several reasons such as flaws in the digital 132 

camera sensor or when the lens compresses a widescreen scene into a standard-sized sensor. The 133 
focal length 𝐹  (assumed here for simplicity that 𝐹 = 𝐹ν = 𝐹μ ), 𝑊μand 𝑊ν  can be also used to 134 

calculate another important element, the Field of View (FOV) of the camera, which is the angular 135 
extent of the observable world that is seen at any given moment and it may be different in μ and ν 136 

directions (see Figure 2). 137 
 138 

 139 
Figure 2 Graphical representation of the Field of View in the μ (a) and ν (b) directions  140 

𝐹𝑂𝑉μ and 𝐹𝑂𝑉νcan be calculated as follow: 141 

 𝐹𝑂𝑉μ = 2 tan
−1
𝑊μ

2𝐹
 (5) 
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 𝐹𝑂𝑉ν = 2 tan
−1
𝑊ν
2𝐹

 (6) 

R and T in (1) are the respectively rotation and translation of the camera. These are the extrinsic 142 

parameters which define the so called “camera pose”.  143 
R is defined by the axis of rotation and the angle that describes the amount of rotation. In the 144 

case of rotation around the X axis by an angle θx, the rotation matrix Rx is given by [19]: 145 
 146 

 𝑅𝑥 = [

1 0 0
0 cos(𝜃𝑥) −sin(𝜃𝑥)

0 sin(𝜃𝑥) cos(𝜃𝑥)
] (7) 

 147 

Rotations by θy and θz about the Y and Z axes can be written as: 148 
 149 

 𝑅𝑦 =  [

cos(𝜃𝑦) 0 sin(𝜃𝑦)

0 1 0
−sin(𝜃𝑦) 0 cos(𝜃𝑦)

] (8) 

 150 

 𝑅𝑧 =  [
cos(𝜃𝑧) −sin(𝜃𝑧) 0
sin(𝜃𝑧) cos(𝜃𝑧) 0
0 0 1

] (9) 

 151 
A rotation R about any arbitrary axis can be written in terms of successive rotations about the Z, 152 

Y and finally X axes using the matrix multiplication shown below: 153 

 𝑅 = 𝑅𝑧𝑅𝑦𝑅𝑥 (10) 

In this formulation θx , θy and θz are the Euler angles. 154 

T is expressed by a 3-dimensional vector which defines the position of the camera against the 155 
origin of the world coordinate system. GPS coordinates (Latitude, Longitude) and elevation, for 156 

example, can define T. Scaling does not take place in the definition of the camera pose. Enlarging the 157 
focal length or detector size would provide the scaling.  158 

The next paragraph describes how the lens distortion effects and procedures for their 159 
correction.  160 

 161 
2.2. Lens distorsion and compensation 162 

 163 
The pinhole model does not consider that real lenses may produce several different non-linear 164 

distortions. The major defects in cameras are the radial distortion, caused by the spherical shape of 165 
the lens. Other distortions, like the tangential distortion, which is generated when the lens is not 166 

parallel to the imaging sensor, have minor relevance and will not be considered in this study. The 167 
radial distortions can usually be classified as either barrel distortions or pincushion distortions 168 

(Figure 3), are quadratic, meaning they increase as the square of the distance from the center.  169 
 170 
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 171 

 172 
Figure 3 Effect of barrel and pincushion distortions. 173 

Removing a distortion means obtaining an undistorted image point, which can be considered as 174 
projected by an ideal pinhole camera, from a distorted image point. The simplest way to model the 175 

radial distortion is with a shift to the pixel coordinates. The radial shift of coordinates modifies only 176 
the distance of every pixel from the image center. Let 𝑟 represents the observed distance (distorted 177 

image coordinates from the center) and 𝑟𝑐𝑜𝑟𝑟  the distance of the undistorted image coordinates from 178 
the center. The observed distance for a point in the image plane I of μi  and νi  coordinates (see 179 

Figure 1) can be calculated as follow:  180 

 𝑟 = √(μi −  μ0 )2 + (νi − ν0)2 (11) 

With these notations the function that can be used to remove lens distortion is: 181 

 𝑟𝑐𝑜𝑟𝑟 = 𝑓(𝑟) (12) 

However, before applying the compensation function 𝑓(𝑟) we need to underline that the 182 

model would be useless if images with the same distortion, but different resolutions would have 183 
different distortion parameters. Therefore, all pixels should be normalized to a dimensionless frame, 184 

where the image resolution is not important. In the dimensionless frame, the diagonal radius of the 185 
image is always 1, and the lens center is (0; 0) [25].  186 

The formula to transform the pixel coordinates to dimensionless coordinates is the following: 187 
 188 

 (
𝑝𝜇
𝑝𝜈
) =

(

 
 
 (μi −  μ0 )/√(

𝑤𝜇

2
)
2

+ (
𝑤𝜈
2
)
2

(νi − ν0)/√(
𝑤𝜇
2
)
2

+ (
𝑤𝜈
2
)
2

)

 
 
 

 (13) 

 189 

Where 𝑝𝜇 and 𝑝𝜈 are the dimensionless pixel coordinates and 𝑤𝜇, 𝑤𝜈 are the image width 190 

and height in pixels.  191 

The dimensionless coordinates defined in (13) can be used to calculate a normalized distance 𝑟𝑝 192 

considering the formula given in (11). 𝑟𝑝 can be then used to approximate the a normalized 𝑟𝑐𝑜𝑟𝑟  193 

with its Taylor expansion [25]:  194 

 195 

 𝑟𝑐𝑜𝑟𝑟 = 𝑟𝑝 + 𝜅1𝑟𝑝
3 + 𝜅2𝑟𝑝

5 + 𝜅3𝑟𝑝
7 (14) 
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where 𝜅𝑖  are the radial distortion coefficients. The “perfect” approximation would be a 196 
polynomial of infinite degree; however, this precision is not needed. Several studies, such as [26], 197 

confirmed that for average camera lenses the first order is enough, while more coefficients are 198 
required for fish-eye lenses.  199 

𝑟𝑐𝑜𝑟𝑟  calculated with (14) needs to be denormalized to obtain the undistorted μi−corr  and 200 
νi−corr  image coordinates for the image under study. 201 

 202 
2.3. Elements to consider when dealing with cameras installed into UAVs operating outdoor 203 

 204 
Several elements need to be taken in due consideration when operating outdoor with cameras 205 

installed into UAVs:  206 
• The camera is usually fitted into steerable gimbals, which may have the freedom to move 207 

along one, two or even three axes (which would be formalistically called one-gimbal, 208 
two-gimbal or three-gimbal configurations, [1]). In those cases where the gimbal has 209 

limited degrees of freedom, further steering capacity for the camera must be provided by 210 
the UAV itself via flight rotations.    211 

• The parameters required for the transformation from world coordinate system to camera 212 
coordinate (extrinsic parameters) are given by GPS measurements (latitude, longitude, and 213 

elevation) and Euler angles (yaw, pitch, and roll). Regular GPS receivers, which are not 214 
subject of enhancements such as Differential GPS, may be affected by a relevant positional 215 
error, especially in elevation. On the other hand, the orientation angles are measured by 216 

sensitive gyroscopes, which usually have very good accuracy [27].  217 
• The parameters for the projective transformation from the 3-D camera’s coordinates into 218 

the 2-D image coordinates (intrinsic parameters) must be known. For those cases where the 219 
UAV camera specs are not available, the intrinsic parameters (image principal point, focal 220 

length, and skew) can be retrieved using calibration procedure provided, for example, by 221 
computer vision open libraries such as OpenCV [28].    222 

• The UAV can orient the camera to have the target centered in the image plane. Besides 223 
being a common practice in UAV operations for tracking, is a mandatory requirement for 224 

the calculation of height.   225 
• The camera is usually oriented in such a way to have the feature of interest centered in the 226 

image plane. Tracking algorithms [28] can be used to automatically kept the camera 227 
pointed toward the target.  228 

• Each video frame or still image acquired by the UAV is usually accompanied by a set of 229 
camera and UAV flight information, stored as metadata. The amount of information 230 

actually stored varies from system to system. Advanced imaging equipment may provide 231 
a complete set of metadata in KLV (Key-Length-Value) format in accordance with MISB 232 

(Motion Imagery Standards Board) standards [29]. Lightweight UAV available in the 233 
regular market are not always fitted with such advanced devices but, very often, are 234 

capable to store a minimum set of metadata which includes on-board GPS coordinates, 235 
flight orientation and camera orientation. 236 

• Advanced UAV imaging systems are also fitted with laser range finders, which are capable 237 

to measure the instantaneous camera-to-target distance and store this information as 238 
metadata. The following paragraph describes in details the pinhole model for computer 239 

vision analysis and its parameters. 240 
 241 

2.4. Computer vision with cameras installed into UAVs 242 
 243 

The actual camera pose of a “gimballed” optical sensor can be determined through a sequence 244 
of homogeneous matrixes defining a number of transformations [30] that can be briefly summarized 245 

as follow: 246 
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• Transformation from Inertial frame to UAV Vehicle Frame. The UAV vehicle frame is 247 
identical to the inertial frame, only translated to the UAV position. This transformation 248 

requires a translation which only depends on the UAV’s GPS location and barometric 249 
altitude measurements. 250 

• Transformation from UAV Vehicle Frame to UAV Body frame: this transformation consists 251 
of a single rotation R, based on measurements of Euler angles that define the orientation of 252 

the UAV. In aeronautics the Eeuler angles are usually expressed through the yaw (or 253 
heading), pitch and roll.  254 

• Transformation from UAV Body to Gimbal frame (where the origin of the gimbal frame is 255 
the center of the gimbal): this requires a translation which depends on the location of the 256 

UAV’s center of mass with respect to the gimbal’s rotation center and a rotation to aligns 257 
the gimbal’s coordinates frame with the UAV’s body frame. 258 

• Transformation from Gimbal to Camera frame (origin at the camera’s center): this 259 
transformation depends on the vector that describes the location of the gimbal’s rotation 260 

center relative to the camera center and it is resolved in the camera’s coordinate frame. It 261 
also depends on a simple rotation that aligns the camera’s coordinate frame with that of 262 

the gimbal. 263 
Large UAVs, which are also called MALEs (Medium Altitude Long Endurance, [31]), are 264 

usually fitted with three-gimbaled advanced imaging systems and accurate positioning systems, 265 
such as differential GPS. These systems are capable to calculate all the above-mentioned 266 
transformation in real-time and embed the instantaneous camera pose, and other information such 267 

as FOV and image footprint on ground, into the acquired video stream using the KLV 268 
(Key-Length-Value) encoding protocols [29], in accordance to military standards [32].   269 

On the other hand, non-military lightweight UAVs available in the regular market are not 270 
always fitted with advanced imaging systems and very accurate GPS. For example, the DJI Phantom 271 

4 PRO (a widely diffused multi-rotor platform of 1.388 kg, used to collect data for the testing of the 272 
approach described in this paper, see Paragraph 3. Results). is not capable to generate KLV 273 

embedded metadata but it can generate ancillary tags in Exchangeable Image File Format (EXIF) of 274 
still images which provide, among other information, GPS position of the aircraft, aircraft 275 

orientation and camera orientation at the moment of the acquisition of the still image. DJI Phantom 4 276 
PRO has a GPS/GLONASS positioning system [33]. The actual accuracy of this positioning system is 277 

not specifically indicated by the UAV manufacturer, but it can be roughly assumed between 1m and 278 
3m in the condition of good satellite signal [34]. Moreover, it is necessary to underline that the 279 

accuracy in altitude of the GPS readings is much lower than the accuracy on the horizontal plane 280 
(Latitude, Longitude). The camera of this UAV has a pivoted support (one-gimbal) with a single 281 

degree of movement along the Y axis (pitch angle, see Figure 4). Angular values are measured with 282 
an accuracy of +/- 0.02° [33]. Although not specified in any available technical documentation but, 283 

considering the available information of this UAV, it is here assumed that the transformation 284 
employed to provide the information in the EXIF tags are the following: a) the translation defined by 285 

the GPS coordinate of the UAV body, b) rotation based on Euler angles of the body followed by c) a 286 
1D rotation of the camera (pitch angle). Therefore, the position of the camera when dealing with DJI 287 
Phantom 4 PRO can be defined by UAV body positional location (GPS coordinates) while the 288 

orientation is given by a yaw angle defined by flight orientation, a pitch angle defined by camera 289 
orientation and a roll angle defined by flight orientation. 290 

The camera sensor is a CMOS of 20M effective pixels with 5472 x 3648 resolution and 13.2 x 291 
8.8mm size, lens focal length of 8.8 mm with no optical zoom and FOV of 84°. 292 

 293 
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 294 
Figure 4 Axis and Euler angles for the case of DJI Phantom 4 PRO. 295 

Let’s now assume to have a lightweight UAV, like the one descripted in Figure 4, and a feature 296 

standing vertically on the ground, for example a pole. Let’s also assume that the UAV has a heading 297 
(Yaw angle) and pitch angle appropriate to pointing to the target as graphically represented in 298 

Figure 5. Let’s also assume that the roll angle is equal to zero 0.  299 
 300 

 301 
Figure 5 graphical representation of a lightweight UAV pointing to a vertical pole (a) with Roll angle equal to 302 

zero. In (b) the image plane is represented in orthogonal view (as it would appear on screen).  303 

Point μ0, ν0 in Figure 5b is the camera center, which is obtained, as already described, by the 304 

interception between the image plane and the optical axis (see Figure 5a). The optical axis is centered 305 
to the target, not necessarily the midpoint but any point of the pole. The Image Point I is given by the 306 

interception of the camera ray line that connects the tip (highest point) of the pole with the camera 307 
center. This point is expressed by the image coordinate μi , νi while �̂�𝑖  represents the distance from 308 

the image center. Moreover, �̂�𝑖  is a distorted value that needs to be compensated to obtain the 309 
distance ri−corr   of the ideal undistorted image. The procedure to obtain such undistorted distance 310 

was already discussed in the previous paragraph (see (14). Similarly, the Image Point J is the 311 
interception of the image plane with the ray line that connects the bottom of the pole (lowest point) 312 
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with the camera center. The point is expressed by the image coordinate μj , νj while �̂�𝑗 represents the 313 

distance from the image center that needs to be compensated to get rj−corr, the undistorted distance 314 

from the center of the ideal undistorted image. The line I-J in the image plane is the height of pole 315 
expressed in pixels in the image plane. 316 

Let’s now consider the same case when the Roll angle is different than zero, as graphically 317 
represented in Figure 6. 318 

 319 

 320 
Figure 6 graphical representation of a lightweight UAV pointing to a vertical pole (a) with Roll angle different 321 

than zero. Orthogonal view of the image plane (b) with the representation of the pole and indication of the Roll 322 

angle. 323 

When the Roll angle is different than zero, the line IR-JR, which is the representation of the pole 324 
in the image plane, will not appear as parallel to the ν axes, as in the case before, but rotated of an 325 

angle equal to the Roll angle itself, as it possible to infer from (7). As mentioned above, the observed 326 

distances (respectively �̂�𝑅𝑖  and �̂�𝑅𝑗) must be compensated to obtain the distances rRi −corr  and 327 

rRj−corr  of the ideal undistorted image. 328 

The next paragraph describes how to estimate the height of a target standing vertically (pole) 329 
considering the elements discussed so far in this paper. It is used, as an example, a lightweight UAV 330 

like the DJI Phantom 4 PRO but the approach can be extended to any imaging system installed in 331 
steerable moving platforms.    332 

2.5. Estimating target height with camera fitted into UAVs 333 

The approach proposed in this study for the estimation of target height using camera fitted into 334 

UAVs foresees the UAV pointing at the target as depicted in Figure 5 and Figure 6. Let’s get started 335 
with the case when the roll is zero (see Figure 7). 336 

 337 
 338 
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 339 

 340 
Figure 7 Perspective view of a lightweight UAV pointing to a vertical target (pole) (a). Orthogonal view of the 341 

same scene with descriptions (b). 342 

The pitch angle, which can be also identified with 𝜃𝑦, see (9) is a known value, while the angles 343 

𝛼 , 𝛽 , 𝜙 , 𝛾  are not originally known but they can be retrieved using simple trigonometric 344 

calculations: 345 

 𝛼 = tan−1 (
𝑟𝑗−𝑐𝑜𝑟𝑟

𝐹
) (15) 

 𝛽 = 90− (𝜃𝑦 + 𝛼) (16) 

 𝜙 = tan−1 (
𝑟𝑖−𝑐𝑜𝑟𝑟
𝐹

) (17) 

 𝛾 = ( 𝜙 +  𝛽 +  𝛼) (18) 

Where 𝑟𝑖−𝑐𝑜𝑟𝑟 can be calculated considering (14) in the previous paragraph starting from the 346 

observed 𝑟𝑖  in the image plane (see Figure 7). Similarly, 𝑟𝑗−𝑐𝑜𝑟𝑟 referrers to the point J (see also 347 

Figure 5). F is the focal length, which was defined by (3) and (4) (assumed here for simplicity that 348 
𝐹 = 𝐹ν = 𝐹μ).   349 

V in Figure 7 is the vertical distance between the base of the target and the camera center, while 350 

H is the horizontal distance between the target and the camera center. To be underlined H and V are 351 
not related at all to the topography, as it possible to infer in Figure 7. If the coordinates of the target 352 

are known, then H and V are also known since the GPS coordinate of the camera are available (see 353 
Paragraph 2.3. Cameras installed into UAVs). The accuracy of the GPS and how it will impact the 354 
estimation of the target height will be treated later in this paper, but, since the accuracy of altitude in 355 

the GPS readings is much lower than the accuracy on the horizontal plane (Latitude, Longitude), V is 356 
always calculated in function of H, as defined in (19) below. 357 
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 𝑉 = 𝐻 tan(90 − 𝛽) (19) 

the angles 𝛼, 𝛽, 𝜙, 𝛾 are now known, as well as the pitch angle, V and H. These elements can 358 

be used to calculate the height of the target using the triangles similarity theorem. In fact, P (see 359 
Figure 7) can be calculated as follow: 360 

 𝑃 = 𝑉 tan(𝛼 + 𝛽 + 𝜙) (20) 

p is which is the horizontal distance between the base of the target and the camera ray that 361 

passes thought the tip (highest point) of the target, which can be calculated as follow: 362 

 𝑝 = 𝑃 − 𝐻 (21) 

Finally, the height of the target can be calculated:  363 

 𝐻𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑇𝑎𝑟𝑔𝑒𝑡 = 𝑝 tan(90− 𝛾) (22) 

As already mentioned, the horizontal distance between the target and the camera center can be 364 

determined if the coordinates of the target are known. In practice, this could be the case only when 365 
dealing with immobile features like trees or buildings. If the position of the target is not known, as it 366 

may happen for moving targets like humans, vehicles, etc., laser range finder devices can be used to 367 
measure the instantaneous camera-to-target distance (slant range). As already mentioned, advanced 368 

imaging systems are very often fitted with such devices [1] and the instantaneous distance 369 
measurements can be stored in the KLV metadata set [31]. 370 

Slant Range values are distance is aligned to the optical axis of the camera (see Figure 7) and 371 
used to calculate the horizontal distance H using the following formula: 372 

 𝐻 = 𝑆𝑙𝑎𝑛𝑡 𝑅𝑎𝑛𝑔𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∗ sin(90− 𝑃𝑖𝑡𝑐ℎ 𝑎𝑛𝑔𝑙𝑒) (23) 

 373 
To be underlined that also the Slant Range distances measured by laser range finders are 374 

affected by a certain error that should duly be considered during the estimation of target height. 375 
 376 

Let’s now analyze the case when the roll angle is different than zero. In this case, as already 377 
discussed (see Figure 6) the points I and J are not located along the υ axis passing on the center of the 378 

image. In other words, a vertical feature will appear as “tilted” in the image on an angle equal to 379 
Roll. However, as it possible to infer from (10) and as graphically represented in Figure 8, I and J are 380 

in the same (vertical) plane than Pitch angle. In other words, the approach presented in this paper 381 
does not need to consider the Roll angle for the calculation of target height. Also, in this case it is 382 

necessary to perform distortion correction to obtain 𝑟𝑖−𝑐𝑜𝑟𝑟 and 𝑟𝑗−𝑐𝑜𝑟𝑟 and use these parameters in 383 

the formulas previously described (see (15) and (17)).  384 
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 385 

 386 
Figure 8 Perspective view of the image plane with visualization of the I and J, representing respectively the top 387 

and the bottom of the pole in the mage plane.  388 

2.6. Workflows for target height estimation  389 

 390 
The approach described in the following paragraphs is here summarized through workflows 391 

which are intended to be of practical use. The first workflow in Figure 9 should be considered 392 
during the planning phase prior to initiate a surveillance campaign to define if all the condition to 393 

estimate the height of the target feature are in place. It is necessary to underline that if the target is a 394 
moving feature and the UAV is not equipped with a laser range finder, it would not be possible to 395 

estimate the height of the target with the proposed procedure. This is relevant limitation should be 396 
addressed in future studies. The second workflow (Figure 10) describes the actions to perform 397 

during the UAV flight to obtain all the information needed to calculate feature height.  398 
 399 
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 400 
Figure 9 Workflow to verify if all the conditions to estimate the height of the target feature are in place. This 401 

analysis should be done during the planning phase prior to initiate a surveillance campaign. 402 

 403 
 404 



Sensors 2019, 19, x FOR PEER REVIEW 15 of 36 

 

 405 
Figure 10 Workflow describing the actions to perform during the UAV flight to obtain all the information 406 

needed to calculate feature’s height. 407 

3. Results 408 

The procedure to estimate target height described in the previous section was tested using real 409 
data acquired with a DJI Phantom 4 PRO (see Paragraph 2.3. Cameras installed into UAVs for 410 
technical details regarding this device and camera used). In this field test it was used as target a 411 

wooden pole of 180 cm standing vertically from ground located in a position of known coordinates. 412 
32 still images were acquired with different camera poses and, in each acquired image, the principal 413 

point was always oriented over the pole (any point along pole as defined in Figure 6). Images not 414 
properly oriented (principal point not located over the pole) were discarded and not used in this 415 

study. The images were acquired in an open space with good visibility to satellites.  416 
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GPS readings (position of the UAV in WGS84 geographic coordinates) and camera pitch angle 417 
of each image were extracted from EXIF tags while the number of pixels spanning upward from 418 

image principal point (𝑟𝑖) and downward (𝑟𝑗) were measured manually on screen (see also Figure 419 

11). The Lat-Long coordinates of each image were plotted into a GIS environment along with the 420 
position of the reference pole to measure horizontal distance (H values, as graphically described in 421 

Figure 7). The first part of the Table 1 and Table 2 provides the above-discussed data for all the 422 
acquired images. 423 

 424 

 425 
Figure 11 Still image acquired with DJI Phamtom 4 PRO with image principal point (visualized in the picture 426 

with a blue cross) located over the pole. The number of pixels spanning upward (680) and downward (164) 427 

from the image principal point were measured manually on screen. A level of 0.4m length was kept tight and 428 

alight to the pole to maintain it vertical during the acquisition of each shot.  429 

As mentioned in the previous paragraph, the GPS readings have an accuracy between 1 to 3m. 430 
An accuracy of 1m means that the real position of the UAV is not known, but it must be located (with 431 
a probability of 95%) within a circle of 0.5 radius around the GPS readings given in the EXIF tag. 432 

Therefore, the distance of the UAV from the pole could be any value within H+0.50m and H-0.50m. 433 
In Table 1 and Table 2 this element has been reported as H+GPS Err and H-GPS Err for each image. 434 

The accuracy of the angular measurement is +/- 0.02° (see Paragraph 2.3. Cameras installed into 435 
UAVs), which is neglectable for the purpose of this study.  436 

In the paragraph 2.2 it was described the procedure to obtain a corrected distance from image 437 
center. Such a procedure was applied to each image obtaining the 𝑟𝑖−𝑐𝑜𝑟𝑟 (number of corrected 438 

pixels from image center upward to pole’s top point) and 𝑟𝑗−𝑐𝑜𝑟𝑟   (number of corrected pixels from 439 

image center downward to pole’s bottom). These values, as well as the total number of pixels 440 

spanning the entire pole, are reported in Table 1 and Table 2. The Distortion Coefficient to be used 441 
for the correction was retrieved through camera calibration techniques [20] developed with OpenCV 442 

via Python programming.  443 
The calculation of the target height (pole) was performed in accordance with the procedure 444 

described in the Paragraph 2.4. Target height (NO GPS err) in Table 1 and Table 2 indicates the 445 
estimated height of the pole considering the Horizontal distance considering the camera position 446 

indicated in the EXIF tags. On the other hand, Target height (when H+ GPS err) and Target height (when 447 
H- GPS err) in Table 1 and Table 2 provide the calculated height of the pole considering a GPS error 448 

of +/- 0.5m). 449 
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The field called Height Uncertainty in Table 1 and Table 2 represents the arithmetical difference 450 
between Target height (when H+ GPS err) and Target height (when H- GPS err).  451 

  452 
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 453 

Table 1 data and results for the first 16 still images acquired with the lightweight UAV. 454 

 
DJI31 DJI32 DJI34 DJI41 DJ09 DJI12 DJI13 DJI15 DJI17 DJI18 DJI33 DJI35 DJI36 DJI37 DJI42 DJI_125 DJI42 

Number of pixels upwards (ri) 355 680 172 151 1358 1352 942 931 592 363 678 150 334 344 156 154 156 

Number of pixels downwards (rj) 1150 164 204 142 49 69 82 92 48 61 160 216 203 514 141 297 141 

Gimbal pitch angle (degrees) 13.7 13.7 5.6 14.8 38.7 38.7 26.4 26.4 16 10.1 13.7 12 17.9 30.6 14.8 26.7 14.8 

Flight roll angle (degrees) 1.8 0.9 4.2 5.2 0.4 0.8 0.5 0 0.6 0.3 1.2 2.9 3.3 0.8 1.3 3.6 1.3 

Horizontal distance (H) (m) 4.2 7.9 17.1 21.28 3.6 3.64 6.04 6.17 10.28 14.96 7.95 17.38 11.62 6.04 21.12 11.78 21.12 

                 
 

H+ GPS err (m) 4.7 8.4 17.6 21.78 4.1 4.14 6.54 6.67 10.78 15.46 8.45 17.88 12.12 6.54 21.62 12.28 21.62 

H- GPS err (m) 3.7 7.4 16.6 20.78 3.1 3.14 5.54 5.67 9.78 14.46 7.45 16.88 11.12 5.54 20.62 11.28 20.62 

                 
 

ri-corr (upward) in pixels 355 679 172 151 1352 1346 940 929 591 363 677 150 334 344 156 154 156 

rj-corr (downward) in pixels 1146 164 204 142 49 69 82 92 48 61 160 216 203 514 141 297 141 

Total number of pixels  1501 843 376 293 1401 1415 1022 1021 639 424 837 366 537 858 297 451 297 

                 
 

Target height (NO GPS err) (m) 1.94 1.87 1.78 1.83 1.77 1.82 1.89 1.93 1.87 1.77 1.87 1.83 1.87 1.98 1.84 1.87 1.84 

Target height (when H+ GPS err) 2.17 1.99 1.84 1.88 2.01 2.07 2.05 2.09 1.96 1.83 1.99 1.88 1.95 2.14 1.88 1.94 1.88 

Target height (when H- GPS err) 1.71 1.75 1.73 1.79 1.52 1.57 1.73 1.78 1.78 1.71 1.75 1.78 1.79 1.82 1.79 1.79 1.79 

Uncertainty (m) 0.46 0.24 0.10 0.09 0.49 0.50 0.31 0.31 0.18 0.12 0.23 0.11 0.16 0.33 0.09 0.16 0.19 

 455 
 456 

 457 
 458 

 459 
 460 
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 461 

Table 2 data and results for the remaining 16 still images acquired with the lightweight UAV (continuation of Table 1). 462 

 
DJI143 DJI144 DJI148 DJI149 DJI150 DJI151 DJI152 DJI153 DJI154 DJI155 DJI156 DJI157 DJI40 DJI43 DJI137 

Number of pixels upwards (ri) 207 359 32 83 68 112 241 156 307 339 573 902 254 114 136 

Number of pixels downwards (rj) 208 75 86 26 102 90 145 78 304 280 559 211 180 161 33 

Gimbal pitch angle (degrees) 38.5 39.4 6.9 16.6 30.4 47.3 20.7 10.7 34.4 34.4 34.5 41.7 22.9 22.4 15.5 

Flight roll angle (degrees) 9.6 8.5 5.5 8.6 3.1 3 3.8 5.2 3.3 4.2 2.8 7.1 1.9 1.1 5.6 

Horizontal distance (H) (m) 9.51 9.71 54.24 54.49 28.33 15.33 14.85 26.68 7.43 7.3 4.22 4.13 13.38 21.08 37.12 

                

H+ GPS err (m) 10.01 10.21 54.74 54.99 28.83 15.83 15.35 27.18 7.93 7.8 4.72 4.63 13.88 21.58 37.62 

H- GPS err (m) 9.01 9.21 53.74 53.99 27.83 14.83 14.35 26.18 6.93 6.8 3.72 3.63 12.88 20.58 36.62 

                

ri-corr (upward) in pixels 207 359 29 83 68 112 241 156 307 339 573 900 254 114 136 

rj-corr (downward) in pixels 208 75 84 26 102 90 145 78 304 280 559 211 180 161 33 

Total number of pixels  415 434 118 109 170 202 386 234 611 619 1132 1111 434 275 169 

                

Target height (NO GPS err) (m) 1.79 1.84 1.79 1.78 1.79 1.84 1.78 1.77 1.83 1.81 1.95 1.96 1.86 1.87 1.85 

Target height (when H+ GPS err) 1.89 1.93 1.81 1.80 1.82 1.90 1.84 1.80 1.96 1.93 2.18 2.20 1.93 1.91 1.87 

Target height (when H- GPS err) 1.70 1.75 1.77 1.77 1.75 1.78 1.72 1.74 1.71 1.69 1.72 1.73 1.79 1.82 1.82 

Uncertainty (m) 0.19 0.19 0.03 0.03 0.06 0.12 0.12 0.07 0.25 0.25 0.46 0.48 0.14 0.09 0.05 

 463 
 464 

 465 

  466 
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Looking at Target height (NO GPS err) in Table 1 and Table 2, the results clearly indicate that in 467 
almost no image the correct height (180cm) is obtained. However, considering Target height when H+ 468 

GPS err and Target height (when H- GPS err), which give interval from the highest and lowest possible 469 
height value considering the GPS error, we can see that 180cm is (almost) always within the range of 470 

each image. This can be also visualized in Figure 12. Only the images DJI137, DJI43 and DJI137 don’t 471 
include the real value (1.80m) within their range, assuming a GPS error of +/- 0.5m. 472 

In other words, the accuracy in the estimation of target height depends on the error associated 473 

to the horizontal distance H. In a real case scenario, taking for example the case of the image DJI143 474 
(first column on Table 2), we could only say that the real height of the target has a value included 475 

between 1.70m and 1.89m (0.19m interval). 476 
 477 

 478 
Figure 12 Grey rhombus represent the target height calculated considering GPS reading extracted from the 479 

EXIF tags for each acquired image, while the vertical lines represent the uncertainty when GPS error is 1m.  480 

Let’s now analyze the case when GPS is assumed to be 3m (the results of this analysis are not 481 

ere reported in a tabular format but only graphically in Figure 13). The first element to notice is that 482 
the accuracy intervals have greatly increased, for example for DJI143 the real value may range 483 
from1.51m to 2.08m (0.57m interval), three times bigger than the interval obtained when the 484 

horizontal accuracy was assumed to be 1m. The second element to underline is that all the images 485 
have the real height value (1.80m) included in their interval. Even those images that did not have the 486 

right height within their interval assuming a positional accuracy of 1m (DJI137, DJI43 and DJI137). 487 
This simply means that the positional accuracy of those three images is more than 1m and below 3m.  488 

In the case here under discussion the horizontal distance was calculated considering the 489 
coordinates of the target and UAV. A similar approach should be also considered when dealing with 490 

slant-range measurements obtained with laser range finders installed into UAVs. These devices may 491 
measure distances with a certain error that, taking into the account (23), generate uncertainty in the 492 

correct estimation of target height, as seen for the case above.  493 
 494 
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 495 
Figure 13 Grey rhombus represent the target height calculated considering GPS reading extracted from the 496 

EXIF tags for each acquired image, while the vertical lines represent the uncertainty when GPS error is 3m.  497 

We should also notice in Figure 12 and Figure 13 that the uncertainty is not constant, but it 498 
rather changes substantially from image to image. An uncertainty analysis can be conducted using 499 

the data described in Table 1 and Table 2 to verify how the parameters involved in the calculations 500 
are affecting the uncertainty.  501 

The first parameter to consider is the Pitch angle. However, this parameter may depend on 502 
which part of the vertical target the camera is pointing to (see Figure 7). To avoid this issue, it is 503 

preferable to consider the Pitch angle plus α angle, in this way we always refereeing to the bottom 504 
point of the pole in every image. In Figure 14 the angles obtained by the Pitch angle plus the α angle 505 

are plotted against the Height Uncertainty values of the images described in Table 1 and Table 2 506 
(horizontal accuracy of 1m). The data distribution looks quite sparse although we may say that the 507 

uncertainty is generally growing when the Pitch angles are higher, as the best linear fit and its 508 
coefficient of determination can also attest.  509 

The second parameter to consider is the camera-to-target horizontal distance H. If we plot in a 510 
graph the uncertainty against the horizontal distance, we can notice a clear relationship between 511 

them (see Figure 15). They are related by an exponential relationship which tells us that the accuracy 512 
is lower when the horizontal distance is higher. In Figure 15 it is reported the equation of the curve 513 

that best fits when the horizontal accuracy of 1m.  514 
The distance from the image center to top and bottom of the pole measure in pixels after 515 

distortion correction (𝑟𝑖−𝑐𝑜𝑟𝑟 and 𝑟𝑗−𝑐𝑜𝑟𝑟) should be also considered. However, as seen for the Pitch 516 

angle, also these parameters depend on which part of the vertical target the camera is pointing to. It 517 

is therefore preferable to consider the total number of pixels spanning the feature (the pole) for this 518 
analysis. In Figure 16 the Total Number of Pixels for each image was plotted against the Height 519 

Uncertainty. The data distribution shows a quite evident linear trend, the equation of the best linear 520 
fit and its coefficient of determination are also reported in the figure. 521 

Finally, intrinsic camera parameters should be also considered to analyze how they influence 522 
the overall accuracy. This analysis was not performed in this study because all the images were 523 
acquired with the same camera configuration. 524 
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 525 
Figure 14 Pitch angle plus α angle expressed in degrees (y) vs uncertainty values expressed in meters (x) for the 526 

images described in Table 1 and Table 2. The equation of the best linear fit and its coefficient of determination 527 

are also reported. 528 

 529 

 530 
Figure 15 Horizontal distance expressed in meters (y) vs uncertainty values expressed in meters (x) for the 531 

images described in Table 1 and Table 2. The equation of the best exponential fit curve and its coefficient of 532 

determination are also reported. 533 
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 534 
Figure 16 Total Number of Pixels (y) vs uncertainty values expressed in meters (x). The equation of the best 535 

linear fit and its coefficient of determination are also reported. 536 

The graph in Figure 15 is particularly interesting. The regression curve has an extremely good 537 

coefficient of determination to the data; therefore, the equation of the curve can tell us quite precisely 538 
which is the expected accuracy considering a certain distance from the target.  539 

 540 
Although not directly related to uncertainty analysis, it is also interesting to analyze the 541 

correlation between Total Number of Pixels and the Horizontal Distance, this is shown in Figure 17. 542 
The data distribution can be well fitted with a power regression curve, whose equation and 543 

coefficient of determination are reported in the graph. This relationship is valid for a target of 1.80m, 544 
which was the height of the pole used in this study; further research should be conducted to verify if 545 

there is a clear and well predictable relationship also for different target heights. If this is the case, 546 
the target-to-target distance could be no longer a required parameter for the calculations. The 547 

relationship shown in Figure 17 also explains the linear correlation between Height Uncertainty and 548 
Total Number of Pixels seen in Figure 16. On the other hand, there is no evident relationship 549 

between pith angle and number of pixels as shown in Figure 18.  550 
 551 
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 552 
Figure 17 Total Number of Pixels (y) vs horizontal distance expressed in meters (x) for the images described in 553 

Table 1 and Table 2. The equation of the best regression curve and its coefficient of determination are also 554 

reported in the figure. 555 

 556 

 557 
Figure 18 Total number of pixels (y) vs Pitch angle expressed in degrees (x) for the images described in Table 1 558 

and Table 2. The equation of the best linear fit and its coefficient of determination are also reported. 559 

Finally, it is interesting to analyze the impact of an inaccurate distortion correction. A 560 

non-accurate correction, that may lead to an erroneous value of the distance from the image center 561 
measured in pixels. Therefore, it is important to understand how a variation of number of pixels 562 

may impact the estimation of the target height. To achieve this goal, 5 pixels were added to the total 563 
number of pixels (3 upward and 2 downward, the values were chosen arbitrary) and the height was 564 
recalculated to verify the variation. The results are reported in Table 3.  565 

The difference in height varies from 0.005m up to 0.08m, and it increases linearly with the 566 
horizontal distance, as we may expect. This analysis demonstrates that a non-accurate distortion 567 

correction may lead to an erroneous value of height, which is however much lower than the error 568 
associated to the horizontal distance. This statement is anyway true for the camera and UAV system 569 

used in this study; other cameras with a different resolution may give different errors.  570 
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 571 

Table 3 The height calculated with the number of pixels measured in each image is compared with height 572 

calculated by adding 5 pixels to the original number. The table reports also the difference between the height 573 

calculated with the original number the height with when 5 pixels are added. 574 

 

Original total 

number of 

pixels 

Height (m) 

considering 

Total 

number of 

pixels 

Total number 

of pixels +5 

Height (m) 

considering 

Total 

number of 

pixels +5 

Height 

Difference (m) 

DJI31 1501 1.94 1506 1.94 0.006 

DJI32 843 1.87 848 1.88 0.011 

DJI34 376 1.78 381 1.81 0.023 

DJI41 293 1.83 298 1.86 0.031 

DJ09 1401 1.77 1406 1.77 0.005 

DJI12 1415 1.82 1420 1.82 0.005 

DJI13 1022 1.89 1027 1.90 0.008 

DJI15 1021 1.93 1026 1.94 0.009 

DJI17 639 1.87 644 1.88 0.014 

DJI18 424 1.77 429 1.79 0.020 

DJI33 837 1.87 842 1.88 0.011 

DJI35 366 1.83 371 1.86 0.024 

DJI36 537 1.87 542 1.89 0.017 

DJI37 858 1.98 863 1.99 0.010 

DJI42 297 1.84 302 1.87 0.030 

DJI125 451 1.87 456 1.88 0.019 

DJI142 161 1.78 166 1.83 0.051 

DJI143 415 1.79 420 1.81 0.020 

DJI144 434 1.84 439 1.86 0.019 

DJI148 118 1.79 123 1.86 0.074 

DJI149 109 1.78 114 1.86 0.081 

DJI150 170 1.79 175 1.84 0.051 

DJI151 202 1.84 207 1.88 0.043 

DJI152 386 1.78 391 1.80 0.022 

DJI153 234 1.77 239 1.81 0.037 

DJI154 611 1.83 616 1.85 0.013 

DJI155 619 1.81 624 1.82 0.013 

DJI156 1132 1.95 1137 1.95 0.007 

DJI157 1111 1.96 1116 1.97 0.007 

DJI40 434 1.86 439 1.88 0.020 

DJI43 275 1.87 280 1.90 0.033 

DJI137 169 1.85 174 1.90 0.054 

 575 
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4. Estimating the vertical length of target’s subparts  576 

In several occasions there might be the need to measure the length of subparts of the target. This 577 
is a common situation when the purpose of the surveillance activities is dedicated to estimate 578 

human body height.  579 
In fact, the body height is the vertical distance from the bottom of bare feet to the top of the 580 

head, which shall be measured while the person is standing in a straight position [35]. If the person 581 
has a different pose, such as standing relaxed with weight on one leg or watching the telephone 582 

with the head tilted down, we would manage to estimate just the height of the body in that specific 583 
pose, not the real stature of the subject. On the other hand, in literature is well known the 584 

relationship between the height of a person its body parts (harms, hands, legs, etc.) [22] or and 585 
human face features ratio [23] obtained via experimental measures.  586 

It is here proposed to determine pixel spacing expressed in length units (e.g. meters) measured 587 
along the vertical target, this pixel spacing can be used to estimate the length of body parts or face 588 

portions by counting the number of pixels spanning these sub-features. This is deemed to be the 589 
most practical approach to swiftly estimate the body stature when the subject does not have a 590 

straight pose in scene.  591 
 592 

The spacing in the vertical direction is here proposed to be called Vertical Sample Distance 593 
(VSD), which can be calculated as the GSD (Ground Sample Distance, [24]), but along the vertical 594 
axis perpendicular to the ground. GSD represents the distance between pixel centers measured on 595 

the ground. When the camera is looking vertically to the ground (viewing angle τ equal to zero, see 596 
Figure 19), GSD can be calculated as follow [36]: 597 

 GSD =
d

F
D (24) 

Where d is the distance between detectors centers (pixel pitch), F is the focal length (see (3) and 598 
(4)) and D is the range. In the camera is not oriented perpendicular to the ground, τ is different than 599 

zero and the GSD must be corrected as follow, obtaining GSD’ (see Figure 19). 600 

 GSD′ =
d

F
D′

1

cos 𝜏
 (25) 
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When dealing with UAVs, the GSD’ is not a static but rather a dinamic parameter [37] since it 601 
changes according to the camera-to-target distance and viewing angle. Genrally speacking, we can 602 
say that each video frame has a specific GSD’. 603 

 604 

 605 

Figure 19 GSD (when the looking angle τ is zero) and GSD’ (when τ is different than zero). υ is the Field of View 606 

of a single element (pixel) of the detector. 607 

As graphically represented in Figure 20 and expressed in (26), the sum of all the singles GSD’ of 608 
the pixels spanning the vertical target in the image plane (distance from point I to point J) are equal 609 
to the distance p on ground (this distance has been previously mentioned during the calculations to 610 

obtain the height of the target, see (21). 611 
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 612 

Figure 20 The horizontal distance p is the sum of the GSD’ of each pixel spanning from the point I and J in the 613 

image plane. In analogy, the height of the target.  614 

 p =∑𝐺𝑆𝐷′𝑛

𝑗

𝑛=𝑖

 (26) 

Dividing the distance p by the number of pixels spanning the feature in the image plane (I-J) 615 
would then give the average value of GSDs for each pixel within the distance I-J measured on the 616 
image place.  617 

In this paper we propose to follow the same approach to calculate the sample distance on 618 
vertical planes, the Vertical Sample Distance (VSD), which can be calculated as follow considering 619 
Figure 19: 620 

 VSD′ =
d

F
D′ sin 𝜏 (27) 

In analogy to GSD, as graphically represented in Figure 20 and expressed in (28), VSD of all the 621 
pixels spanning the vertical target are equal to height of the target. 622 

 Height of the target =∑𝑉𝑆𝐷′𝑛

𝑗

𝑛=𝑖

 (28) 

Dividing the height of the target by the number of pixels spanning the feature in the image 623 
plane (I-J) would then give the average value of VSD’ for each pixel spanning the feature in the 624 
image plane (distance I-J in Figure 20). As seen for GSD’, also VSD’ is not constant, each image has a 625 

specific value that depends on the instantaneous camera-to-target distance and viewing angle.  626 

More practically, we can measure the height of human subject using the procedure described in 627 
the previous chapters. If he subject does not have a straight pose, the height of the body in the 628 

specific pose can be anyway used to calculate the average VDS’ (estimated target height divided 629 
the number of pixels spanning the target) and multiply this value for the number of pixels 630 
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spanning subject’s subparts, such as face features or body parts, which can be used to retrieve the 631 

real stature considering ratios or relationships available in literature.  632 

Each pixel has a specific GDS’ value and, in analogy to that, each pixel has a specific VDS’ 633 
value. The next paragraph intends to analyse the error generated by using the average VDS’ instead 634 
the real VDS of the pixels spanning the target subpart.   635 

4.6. Field verification 636 

The data acquired with DJI Phantom 4 PRO can be used to verify the error due to using average 637 
VSD’. A level of 0.4m was kept tight and alighted to the pole to keep it vertical in each acquired 638 

image. The length of this level could be considered, for the sake of this analysis, as a subpart of the 639 
pole (see Figure 11).  640 

For each mage (see Table 1 and Table 2) the VSD was calculated dividing the real length of the 641 
pole (1.80m) by the Total Number of pixels spanning the pole. The total number of pixels spanning 642 
the level in each image was measured on screen and then corrected for lens distortion. This value 643 

was then multiplied for VSD to obtain the estimated length of the level (see Table 4). 644 

 645 

Table 4 Data used to calculate the average VSD’ and the estimated length of the level (real level length is 0.4m).   646 

 

Total Number 

of pixels 

spanning the 

pole 

Average VSD’ 

(m) 

(height of the 

pole = 1.80m) 

Total Number 

of pixels 

spanning the 

level (after 

distortion 

correction) 

Estimated 

length of the 

Level        

(m) 

DJI31 1501 0.120 342 0.41 

DJI32 843 0.214 191 0.41 

DJI34 376 0.479 84 0.40 

DJI41 293 0.614 66 0.41 

DJ09 1401 0.128 320 0.41 

DJI12 1415 0.127 324 0.41 

DJI13 1022 0.176 230 0.41 

DJI15 1021 0.176 228 0.40 

DJI17 639 0.282 143 0.40 

DJI18 424 0.425 93 0.39 

DJI33 837 0.215 188 0.40 

DJI35 366 0.492 81 0.40 

DJI36 537 0.335 120 0.40 

DJI37 858 0.210 194 0.41 

DJI42 297 0.606 66 0.40 

DJI125 451 0.399 100 0.40 

DJI142 161 1.118 35 0.39 

DJI143 415 0.434 91 0.39 

DJI144 434 0.415 94 0.39 
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DJI148 118 1.525 26 0.40 

DJI149 109 1.651 25 0.41 

DJI150 170 1.059 38 0.40 

DJI151 202 0.891 44 0.39 

DJI152 386 0.466 85 0.40 

DJI153 234 0.769 52 0.40 

DJI154 611 0.295 133 0.39 

DJI155 619 0.291 137 0.40 

DJI156 1132 0.159 253 0.40 

DJI157 1111 0.162 250 0.41 

DJI40 434 0.415 30 0.39 

DJI43 275 0.655 91 0.39 

DJI137 169 1.065 37 0.39 

 647 
The results in Table 4 show that the length of the level obtained using average VDS’ gave a 648 

general error of less than 0.01m (real level length is 0.4m) which means that the average value of 649 
VDS the pixels involved in the calculation have a good average of the real value. However, this is 650 

clearly specific to the conditions analyzed in this study, namely height of the target of 1.80m, subpart 651 
of 0.4m, etc.   652 

 653 
Finally, in a real case scenario, the average VDS’ should consider the accuracy in the estimation 654 

of the target height. Taking for example the case of the image DJI143 (first column on Table 2), 655 
where the estimated height of the target has an uncertainty that ranges between 1.70m and 1.89m. In 656 

this case we would get an average VSD´ included between 0.004m and 0.005m, which give a length 657 
of the level included between 0.37m and 0.41m. 658 

5. Discussion: Future developments for an automatic estimation of human body height in near 659 
real-time using camera installed into UAVs  660 

Among all the possible applications of remote target height estimation using camera installed 661 

into UAVs, obtaining the real human body height is one of the most relevant. The method described 662 
in this paper, although not specifically focused on human target but usable also for other targets like 663 

trees or buildings, provides fundamental elements for this purpose.  664 
The presence of human beings can be automatically detected in still images or video frames by 665 

computer vision algorithms, such as Histograms of Oriented Gradients (HOG) [38] and Viola Jones 666 

Object Detection Framework (Haar Cascades) [39] pre-trained for human detection. Those 667 
algorithms usually show the localization of a person via a rectangular boundary surrounding each 668 

object (see Figure 21a) that, if properly fitted to the human target (see Figure 21b), can be used to 669 
measure automatically the number of pixels spanning the target upward and downward from the 670 

image center. The camera position and orientation (camera pose) can be extracted from metadata 671 
embedded in the still images or video (e.g. KLV) to estimate in near real-time the height of the 672 

boundary box using the procedure described in this paper. If the person is standing straight in the 673 
image, the height of the bounding box could be assuming as the real stature of the subject. 674 

Otherwise, the height of the bound box divided the total number of pixels spanning the rectangle 675 
would give the average VSD’. Face identification algorithms [40] or other object recognition 676 

algorithms trained for body parts detection (such as arms, [41]) can be used to automatically detect 677 
subparts and count the number of pixels spanning vertically the face or other body parts. The 678 

number of pixels multiplied for average VDS’ would give the vertical length of those parts, which 679 
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can be used to estimate the real stature of the human subject. Finally, we need always to take into the 680 

account the accuracy of the estimation to define the range within which the real height would be.  681 
However, to achieve a solid automatic estimation of human body height in near real-time 682 

several developments still need to be implemented: 683 

• The accuracy analysis associated to height estimation should consider also intrinsic 684 
camera parameters. In this study the intrinsic parameters were not considered because 685 

all the data (still images) were collected with the same camera.  686 

• Algorithms previously trained for human detection available in freely available 687 
libraries may have drawbacks such as missed detection, false detections and duplicated 688 
detections for the same features. Deep Convolution Neural Networks should be used to 689 

develop more robust human detection algorithms specifically dedicated for high angle 690 
images usually acquired by UAVs [42]. 691 

• Generating accurate and consistent boundary rectangles between detections of the 692 

same features in subsequent video frames is a key element to estimate real human body 693 
height. A robust detection algorithm can only partially solve this issue. In fact, high 694 

looking angles may generate non-vertical boundary rectangles (see Figure 22) that may 695 
introduce an additional error in estimations of human stature. Further studies are 696 

required to analysis these issues and identify suitable solutions to compensate for this 697 
problem.   698 

• VDS can be used to estimate the length of body parts oriented vertically from the 699 
ground. However, very often, the body parts may be oriented differently (lets’ think 700 

about the ordination of the legs while walking, for example). Further studies should be 701 
focused on how to measure distances in the vertical plane (see Figure 21b) 702 

independently from the orientation of the subpart.  703 

• Finally, it would be very important to analyse if height can be estimated without the 704 
need of the camera-to-target distance. In fact, even a laser range finder, which is 705 
mandatory payload device when dealing with moving targets such as people, may not 706 

have enough accuracy for precise human height estimations. The graph in Figure 17 707 
may be of interest in this respect, since it shows a clear relationship between the total 708 

number of pixels and the horizontal distance, well descrivable by a power regression 709 
curve. This relationship is valid for a target of 1.80m, which was the height of the pole 710 

used in this study. Further studies should be conducted to analyze if there is also a clear 711 
and well predictable relatinship between the total number of pixels, horizontal distance 712 

and the height. If this is the case, the target-to-target distance could be no longer a 713 
required parameter for the calculations. 714 
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 715 

Figure 21 a) human detection algorithms usually show the presence of person with a boundary rectangle (light 716 

blue, the red dot represents the center of the rectangle, blue cross indicates the center of the image, the number 717 

in the rectangle’s top left corner indicates the total number of pixels spanning the rectangle, while the other 718 

number indicates the number of pixels from image center to the top of the rectangle). b) if the rectangle is 719 

properly fitted to the person, it can be used to measure the number of pixels spanning the target. 720 

 721 

 722 

Figure 22 a) Boundary rectangles generated by high looking angles may be not vertical. b) example of boundary 723 

rectangle in a real picture.  724 

5. Conclusions 725 

This paper described a procedure for the remote estimation of target height using gimballed 726 

camera installed into a UAV. The procedure foresees the camera calibration and image distortion 727 
compensation before using a pinhole model to calculate geometrically the vertical length of a 728 

feature. The main strengths of this approach are the simplicity and rapidness. In fact, height 729 
estimation does not require special equipment or double cameras, a single still image or video frame 730 

acquired with an optical camera is sufficient. Moreover, no vanishing lines or objects of reference 731 
height are required to be present in the scene. Finally, just few parameters are required: intrinsic 732 

camera parameters, which are usually provided by manufacturer but they can also retrieved via 733 
computer vision analysis, camera pitch angle, usually available in metadata associated to the 734 

acquired images or video data, number of pixels spanning the feature, which can be measured either 735 
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manually or automatically using feature detection algorithms, and, finally, the distance between the 736 

camera and target, which can be obtained using coordinates if the position of the target is known or 737 
using devices to measure distances, such as laser range finders. These parameters are involved in 738 

simple trigonometric calculations that can be very rapidly performed for near real-time applications. 739 
Also, the processing for lens distortion compensation, which may be very time-consuming if 740 
performed for the entire image, is very swift because it involves only a very little number of pixels.  741 

On the other hand, the weakness of this procedure is related to the uncertainty of the 742 
estimation, which is mainly linked to the error associated to the camera-to-target distance. Also, 743 
inaccurate lens distortion correction procedures may introduce some error, but this study confirmed 744 

that they are very minor compared to camera-to-sensor distance error. This distance, either acquired 745 
via coordinates difference of measured via laser range finders, is always affected by a certain error 746 

that generates an uncertainty in the height estimation. This paper has also analyzed how extrinsic 747 
camera parameters are affecting the overall uncertainty, identifying interesting relationships that 748 

may be used to define in advance the expected accuracy during surveillance activities. However, this 749 
analysis did not take into consideration how intrinsic camera parameters are concurring to the 750 

uncertainty, future studies should be dedicated to further develop this aspect. Future studies should 751 
be also dedicated on how the height can be estimated without the need of the camera-to-target 752 

distance. Along this line, this paper has shown a very well predictable relationship between the 753 
number of pixels and the camera-to-target distance, additional studies should be conducted to 754 
analyze if there is also a clear and well predictable relationship between the total number of pixels, 755 

horizontal distance and the height. If this is the case, the target-to-target distance could be no longer 756 
a required parameter for the calculations. 757 

Another important element treated in this paper was the Vertical Sample Distance (VSD). The 758 
height a person who is not standing perfectly vertical can be derived by relationships between body 759 

parts or human face features ratio VDS can be used to estimate the length of body parts oriented 760 
vertically from the ground. However, very often, the body parts may be oriented differently (lets’ 761 

think about the ordination of the legs while walking, for example). Further studies should be 762 
focused on how to measure distances in the vertical plane (see Figure 21b) independently from the 763 

orientation of the subpart. 764 

Finally, the method described in this paper, although not specifically focused on human target 765 
but usable also for other targets like trees or buildings, provides fundamental elements for an 766 

automatic estimation of human body height in near real-time using camera installed into UAVs. 767 
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