
 Março, 2016

André Bernardo Quintanova

[Nome completo do autor]

[Nome completo do autor]

[Nome completo do autor]

[Nome completo do autor]

[Nome completo do autor]

[Nome completo do autor]

[Nome completo do autor]

Licenciado em Ciências da Engenharia Eletrotécnica e de

Computadores

[Habilitações Académicas]

[Habilitações Académicas]

[Habilitações Académicas]

[Habilitações Académicas]

[Habilitações Académicas]

[Habilitações Académicas]

[Habilitações Académicas]

Hybrid System of Distributed Automation

[Título da Tese]

Dissertação para obtenção do Grau de Mestre em Engenharia

Eletrotécnica e de Computadores

Dissertação para obtenção do Grau de Mestre em

[Engenharia Informática]

 Orientador: Doutor Luís Filipe Figueira Brito Palma, Professor Auxiliar,

Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa

 Júri:

Presidente: Doutor João Francisco Alves Martins

Arguente: Doutor João Almeida das Rosas

Vogal: Doutor Luís Filipe Figueira de Brito

Palma

i

Hybrid System of Distributed Automation

Copyright © André Bernardo Quintanova, Faculty of Sciences and Technology,

University.

The Faculty of Sciences and Technology and the New University of Lisbon have

the perpetual right and without any geographical boarders, to file and publish

this dissertation, trough printed copies in paper, digital form or any other known

form that might be invented. It can also be publicized in scientific repositories

and to admit your copy and distribution with education and investigation

purposes, not commercial, as long as the credit is given to the author and editor.

ii

iii

I dedicate this to my parents, my hamster and bacon

iv

v

Acknowledgments

Firstly I want to thank my parents for always motivating and supporting

me along this academic stage of my life.

I would like to thank Professor Luis Brito Palma, advisor of my dissertation,

for the opportunity, support and for enduring my ramblings.

To my friends Vasco Brito and Afonso Maria for traveling with me through

this journey. And to my friend Ana Areias for reviewing my dissertation.

Additionally I would like to thank Tucker Emerson and the Kepware

Company for helping me in technical issues and for giving me a yearly license to

all of their products.

vi

vii

Abstract

One of the most important tendencies in the development of the

industrial automation is the application of intelligent control systems

within factories, which focuses heavily on networked architectures.

Following this line of thinking, the goal of this dissertation resumes itself

in the implementation of a distributed system that controls two physical

processes, where the system components not only trade information

between each other, but also have that same information be accessible

remotely and within HMI equipment.

The controllers were conceptualized to offer different functional modes

with high customization available.

This system also takes resource of an OPC server, so it allows, not only

the communication between different manufacturer PLC controllers but

also the connection with remotes clients

The implemented remote clients hold the intent of demonstrating the

versatility of this architecture and are, namely, an operational historian

that registers information and a data viewer, which allows the use of more

advanced methods of monitoring.

Keywords: Distributed System, Programmable Logic Controllers

(PLC), Remote Clients, OPC®, Matlab®, Scilab®.

viii

ix

Resumo

Uma das mais importantes tendências no desenvolvimento da

automação industrial é a aplicação de sistemas de controlo inteligentes,

no ambiente de manufatura, que focam arquiteturas fortemente baseadas

em redes de comunicação. Seguindo esta linha de pensamento, o objetivo

desta dissertação resume-se na implementação de um sistema de controlo

distribuído de dois processos físicos, onde os componentes não só trocam

informação entre si, como essa mesma informação é acessível

remotamente e por equipamento HMI.

Os controladores foram implementados de forma a oferecerem diversos

modos de funcionamento com alta vertente de customização.

Este sistema também recorre a um servidor OPC de forma a não só

possibilitar a comunicação ente controladores de fabricantes diferentes

como também a conexão a clientes remotos.

Os Clientes remotos implementados possuem o intuito de demonstrar a

versatilidade desta arquitetura e são, nomeadamente, um historiador

operacional onde toda a informação é registada e um visualizador de

informação, que possibilita a implementação de métodos de

monitorização mais avançados.

Palavras-chave: Sistema Distribuído, Controladores Lógicos

Programáveis (PLC),Clientes Remotos, OPC®, Matlab®, Scilab®.

x

xi

Acronyms

AC Alternating Current

AR Auto Regressive

ASCII American Standard Code for Information

……..Interchange

CAN Control Area Network

CPU Central Processing Unit

DC Direct Current

DCS Distributed Control System

DP Distributed Periphery

EPA Enhanced Performance Architecture

xii Acronyms

EPROM Erasable Programmable Read Only Memory

FBD Function Block Diagram

HMI Human Machine Interface

HZ Hertz

IL Instruction List

I/O Input/Output

IP Internet Protocol

JMP Jump

LAN Local Area Network

LD Ladder Diagram

LRC Longitudinal Redundancy Check

OPC Open Protocol Communication

OSI Open Systems Interconnection

PA Process Automation

PAC Programmable Automation Controllers

PCA Principal Component Analysis

PI Proportional Integral Controller

xiii

PLC Programmable Logic Controller

RAM Random Access Memory

RFID Radio-Frequency Identification

ROM Read Only Memory

RPM Rotation per minute

RTR Remote Transmission Request

RTU Remote Terminal Unit

SCADA Supervisory Control and Data Acquisition

SFC Sequential Function Chart

SRR Substitute Remote Request

ST Structured Text

SVD Singular Value Decomposition

TCP Transmission Control Protocol

USB Universal Serial Bus

WAN Wide Area Network

xiv Acronyms

xv

Nomenclature

𝒖 Control Signal

𝒚 Sensor Value

𝒓 Set-point value

𝒆 Set point error

ê Set point error

𝑷(𝒕) Proportional Component

𝑰(𝒕) Integral Component

𝑲𝒑 Proportional Gain

𝑲𝒊 Integral Gain

xvi Nomenclature

𝒀𝒏𝒏 Predicted Sensor Value

𝝈𝟐 Control Action Variance

𝑰𝑯𝒂𝒓𝒓𝒊𝒔 Normalized Harris Index

𝑺 Covariance Matrix

𝝀𝒊 Eigen values

𝑷𝒊 Eigen Vectors

𝑻 Score Vector

𝜽 Model Parameters Vector

xvii

Table of Contents

Acknowledgments ... v

Abstract ... vii

Resumo ... ix

Acronyms ... xi

Nomenclature ... xv

1. Introduction ... 1

1.1 Motivation .. 1

1.2 Goals ... 2

1.3 Contributions ... 2

1.4 Thesis Organization .. 3

2. State of the Art and Technology ... 5

2.1 Industrial Automation.. 5

2.1.1 Types of Automation .. 6

2.1.2 The Evolution of Automation .. 7

2.1.3 Current State and Developments .. 11

xviii Table of Contents

2.2 Programmable Logic Controllers ... 13

2.2.1 Structure and functioning .. 14

2.2.2 Programming Languages ... 17

2.2.3 Current State and Developments .. 22

2.3 Distributed Control Systems ... 23

2.3.1 Production methods .. 23

2.3.2 Structure and Types of DCS ... 25

2.3.3 Comparison with other typical Control Systems 27

2.3.4 Current State and Developments .. 28

2.4 Industrial Networking ... 29

2.4.1 Structure .. 29

2.4.2 Comparison with Commercial Networks .. 32

2.4.3 Protocol Overview ... 33

2.4.4 Current State and Developments .. 43

2.5 Brief Chapter Conclusion ... 43

3. Architecture and Implementation .. 45

3.1 Architecture and general functionality .. 45

3.2 Conveyor Control System .. 48

3.2.1 Process Structure and specifications ... 48

3.2.2 Operational Description ... 49

3.2.3 Hardware Composition and Implementation 52

3.2.4 Software Methodologies ... 54

3.3 Tank Control System .. 57

3.3.1 Process Structure and specifications ... 57

3.3.2 Operational Description ... 58

3.3.3 Hardware Composition and Implementation 63

3.3.4 Software Methodologies ... 64

xix

3.4 Supervision and Monitoring ... 67

3.4.1 Operational Description ... 68

3.4.2 Hardware Composition and Implementation 71

3.4.3 Software Methodologies ... 71

3.5 Open Protocol Server and Communication .. 74

3.5.1 Operational Description ... 74

3.5.2 Software Methodologies ... 76

3.6 Remote Clients ... 77

3.6.1 Operational Historian ... 77

3.6.2 Advanced Data Viewer ... 79

4. Experimental Results ... 85

4.1 Conveyor Testing .. 85

4.2 Tank’s Sensor Testing ... 86

4.3 Tank’s Controller Testing .. 87

4.3.1 PI Controller ... 88

4.3.2 Switched PI Controller .. 89

4.3.3 PI Controller with Model Rectification .. 90

4.3.4 Comparison between Controllers ... 91

4.3.5 Side notes relating to Remote Client Methodologies 91

4.4 Communications ... 92

5. Conclusions ... 93

5.1 General Conclusion .. 93

5.2 Awards and Honors ... 94

5.3 Future works .. 94

Bibliography ... 95

Appendix .. 99

A. Connection Schemes ... 99

xx Table of Contents

B. I/O Tables .. 101

C. Operational Historian Log ... 105

D. Communication between Components ... 106

xxi

Figure List

Figure 2.1 - Tesla Manufacturing line [1]. ... 6

Figure 2.2 - Automation progression timeline. .. 8

Figure 2.3 - Ancient water clock illustration [8]. .. 8

Figure 2.4 - An example of a steam governor [9]. .. 9

Figure 2.5 - The first Programmable logic Controller Modicon 084 [10]. .. 10

Figure 2.6 - RFID usage on smart manufacturing of bottles [12]. 12

Figure 2.7 - Additive manufacturing principle [16]. 13

Figure 2.8 - A PLC industrial cabinet [20]. ... 13

Figure 2.9 - A PLC high level cycle of operation. .. 15

Figure 2.10 - PLC hardware structure. .. 15

Figure 2.11 - PLC Memory structure. .. 16

Figure 2.12 - Example of a simple button activated timer in Ladder. 18

Figure 2.13 - Example of a simple alarm in FBD. .. 19

Figure 2.14 - Example of a conditional allocation in IL. 20

Figure 2.15 - Example of a robot movement routine code via SFC. 20

xxii Figure List

Figure 2.16 - Example of an average value calculation code via ST. 21

Figure 2.17 - Typical DCS structure. .. 26

Figure 2.18 - A typical industrial network structure. 30

Figure 2.19 - Network Topologies. .. 30

Figure 2.20 - Main protocol models. .. 35

Figure 2.21 - Terminal connectivity classifications. 35

Figure 2.22 - Modbus protocol transaction. .. 36

Figure 2.23 - Modbus message framing. ... 37

Figure 2.24 - Profibus protocol transaction. ... 39

Figure 2.25 - Profibus message frame.. 40

Figure 2.26 - OPC application scheme. ... 42

Figure 2.27 - OPC client-server conceptual structure. 43

Figure 3.1 - Hybrid System of Distributed Automation. 46

Figure 3.2 - Global system scheme. .. 47

Figure 3.3 - Conveyor System. .. 48

Figure 3.4 - Conveyor illustration. ... 48

Figure 3.5 - Conveyor main sequential logic. ... 49

Figure 3.6 - Manual mode main features. ... 50

Figure 3.7 - Automatic mode logic scheme. ... 51

Figure 3.8 – Main features of monitoring mode. ... 51

Figure 3.9 - Hardware configuration scheme... 53

Figure 3.10 - Sensors used within the Conveyor (contact relay and infra-red

optical sensor). ... 54

Figure 3.11 - Step 7®/ TIA Portal® Software environment. 55

Figure 3.12 - Partial code of a transportation task. .. 56

Figure 3.13 - Tank system. .. 57

Figure 3.14 - Tank illustration. ... 58

Figure 3.15 - Tank main logic scheme. .. 59

xxiii

Figure 3.16 - Manual mode main features. ... 59

Figure 3.17 - Automatic mode logic scheme. ... 60

Figure 3.18 - PI controller block scheme. .. 61

Figure 3.19 - Switched PI controller block scheme. 61

Figure 3.20 - Predictive PI controller block scheme. 62

Figure 3.21 - Monitoring mode main features. .. 63

Figure 3.22 - Tank hardware configuration scheme. 63

Figure 3.23 - Unity Pro® Software environment. .. 64

Figure 3.24 - PI controller code sample. .. 65

Figure 3.25 - Chosen neural network structure. .. 66

Figure 3.26 - Code regarding the model prediction. 67

Figure 3.27 - Main manual mode Screen. ... 68

Figure 3.28 - Conveyor anomaly and consequent manual mode screen. .. 69

Figure 3.29 - Custom part specification selection screen. 69

Figure 3.30 - Automatic mode screen. ... 70

Figure 3.31 - Failure, monitoring mode screens. ... 70

Figure 3.32 - Emergency block screen. .. 71

Figure 3.33 - Help screens. .. 71

Figure 3.34 - Simatic WinCC/TIA Portal Software environment. 72

Figure 3.35 - Failure Trigger screen code. ... 73

Figure 3.36 - Code exert for the Conveyor animation task. 74

Figure 3.37 - Communication structure scheme. ... 75

Figure 3.38 - Memory linking between Controllers. 75

Figure 3.39 - Illustration of remote information access. 76

Figure 3.40 - Instruction logic of the historian client. 78

Figure 3.41 - OPC communication code example. .. 79

Figure 3.42 - Operational logic scheme of the data viewer client. 80

xxiv Figure List

Figure 3.43 - PCA graphical representation [38]. ... 81

Figure 3.44 - PCA results for controller at nominal work state. 82

Figure 3.45 - Viewer monitor interface. .. 84

Figure 4.1 - Conveyor timing diagram. ... 86

Figure 4.2 - Sensor Testing. ... 87

Figure 4.3 - PI Controller behavior. ... 88

Figure 4.4 – Commuted PI Controller behavior. ... 89

Figure 4.5 - PI Controller with model rectification behavior. 90

Figure 4.6 – Harris index results. ... 91

xxv

List of Tables

Table 1 - Comparison between Types of Automation. 7

Table 2 - Comparison between DCS and SCADA. .. 28

Table 3 - Main differences between Industrial and Commercial networks.

 .. 32

Table 4 - Modbus main function codes. .. 37

Table 5- Supervisor used Inputs .. 101

Table 6- Supervisor used outputs .. 101

Table 7-Conveyor controller used inputs ... 101

Table 8- Conveyor controller used inputs .. 103

Table 9- Tank controller used inputs ... 103

Table 10- Tank controller used outputs .. 104

xxvi List of Tables

 1

1. Introduction

In this chapter, the reasoning that led to the execution of this dissertation is

done.

In sub-chapter 1.1 it is mentioned the context to what motivated the

implementation of this system.

The goals and contributions of this project are descripted in sub-chapter 1.2

and 1.3, respectively.

Lastly, it is given a notion of how the dissertation is organized, in sub-

chapter 1.4.

1.1 Motivation

The tendency of the current industrial automation scene relies heavily in

the concept of Industry 4.0, which illustrates the implementation and further

development of smart manufacturing environments based in strong network

communications.

This initiative aims to satisfy customer demands for new, high-quality

customized products and, at the same time, reduce production time cycles and

resource utilization. Such goal is done by not only heavily networking a

manufactory process but also by applying more flexible, open and smart

distributed system architectures.

In many manufacturing companies, the used control systems are based in

outdated concepts and methods of production with strong sequential logic and

controllers with very specific tasks. Additionally, this systems have very rigid

structures with small synchronism and interaction foundations. Therefore, this

project intends to propose a reliable and cheap distributed system that holds

1. Introduction

2

many of the benefits the concept of Industry 4.0 has to offer (interoperability,

interaction, flexibility, autonomy).

1.2 Goals

Initially, the goals of this dissertation resumed themselves to the detailed

study of the most important topics concerning distributed systems for the area of

industrial automation and control. From programmable controllers and fault

detection methodologies, to communication protocols and human-machine

interaction. With this notion, the main goal of this dissertation is to present a

possible distributed system with high interoperability, supervision and

accessibility features.

The system is conceptualized to hold an architecture composed by a varied

array of technologies and operational methodologies, where all the main

components communicate with each other and the most important information

is compatible and accessible remotely. Different manufacturer programmable

controllers are used with the goal of making the system more versatile and

compatible. It also intends to conjugate different types of SISO controllers and

monitoring techniques, permitting several possible work states and different

manners of observing control information.

Concerning the contextualization for the application to which the system

was developed, it was in regards to the post treatment of stainless steel parts.

This method is named pickling, and it is usually applied to a post welding phase.

In short, pickling is essentially a timed treatment where the welded parts are

submersed in chemical solutions, with the sole goal of fortifying the weakened

sectors due to heat exposure.

With this context in mind, this system’s main purpose is to control and

monitor the transportation of the part from a prior workstation to the pickling

station and its respective chemical treatment procedure.

1.3 Contributions

The main contribution of this project is to present a new concept for

industrial systems in an effort to approach the industry 4.0 tendency without it

translating in expensive production line restructuration.

In terms of scientific value, this system was centralized in an Open Protocol

Communication server, which allows for all of the system’s information to be

neutral and available to any of the system’s components (current or future

additions). The differentiation comparatively to other systems, is that typical

 3

distributed systems never use servers and networks as the foundation of the

system, usually, they are used just for information collection and for high level

monitoring.

It also presents a fully functional industrial prototype within the control

laboratory, which allows for a didactic way of illustrating the importance of

automation and distributed control, presenting several technologies applied

within the industry.

1.4 Thesis Organization

This dissertation is constituted by five chapters, including the introduction

and is organized in the following manner:

Chapter 2 - State of Art and Technology

This chapter studies the important topics used within the project in an

automation aspect. The first section is dedicated to automation in general and its

evolution; the second section approaches the important programmable logic

controllers. The third section is dedicated to distributed control systems

structures and production methodologies. The fourth section focuses on the

industrial networking, going over its concepts and the most used communication

protocols. The last section concludes and encompasses all of the former described

technologies and makes the connection with the project in the following chapter.

The first four sub-sections also describe current developments that give the

reader a notion of what is being researched and developed.

Chapter 3 – Architecture and Implementation

The third chapter is dedicated to describing every aspect of the system, from

architectures and control methodologies to hardware structure and software

implementation.

It is divided in global architecture and in the detailed overview of both

physical process control systems, supervision, communication and remote

clients.

Chapter 4 – Experimental Results

On the fourth chapter, the main experimental results and notes concerning

the main risk factors within the overall system will be presented.

1. Introduction

4

Chapter 5 – Conclusions

On the final chapter, the conclusion of the dissertation is elaborated and the

presentation of possible future works following the automation distributed

systems area.

 5

2. State of the Art and Technology

In this chapter, it will be approached and explained with some detail the

automation thematic within the project. From the theory behind the subjects to

popular alternatives, current projects and scientific research being developed.

The sub-chapter 2.1 will briefly go over what automation is and what

categories it can be divided onto, its historical development as well as the

industrial revolution and the current projects being worked.

The sub-chapter 2.2 is going to describe the main technology behind the

industrial Automation, called Programmable Logic Controller (PLC), from the

hardware constitution, used programing tools to current developments.

 In the section 2.3, the subject is distributed control systems, where the

following topics will be discussed: the concept, comparisons against non-

distributed systems, applications, manufacturing methods and current

developments.

In sub-chapter 2.4 we will focus on industrial networks, which were crucial

for the further development of the industrial control systems. We will see how

industrial networks are structured and how the specific protocols developed

work, as also what differentiates the industrial networks from the commercial

networks, as also current researches about the subject.

The sub-chapter 2.5 concludes and encompasses all of the former described

technologies and makes the connection with the project in the following chapter.

2.1 Industrial Automation

The concept of automation is, essentially, the creation and implementation

of technology that allows monitoring and control of a device, so it possesses the

capability to perform a task on its own. Ultimately, having the objective of

improving production efficiency and minimizing task associated human

intervention.

2. State of Art

6

Such devices might be classified as machinery, factory processes, heat

treating ovens, steering and stabilization mechanisms and much more.

Automation is virtually applied in all of the industrial sectors, from

manufacturing (Figure 2.1), transportation, to the better use/reach of utilities,

building automation and military purposes.

Figure 2.1 - Tesla Manufacturing line [1].

Its concept has been realistically implemented through means that include

mechanical, hydraulic, pneumatic, electronic and microprocessor technologies.

In the modern times, typical systems include a combination of all of the

mentioned above.

It is worth noting that the idea is proved to be applied since the beginning

of humanity, but the term itself was adopted after the creation of the automation

department from General Motors, in 1947. It was at this time that the vision of

fully automated factories was starting to be very prominent in manufacturing

companies, especially after continuous research and development, which

proceeded the invention of the first feedback controllers in the mid-1700s [2].

2.1.1 Types of Automation

There are many different types and ways of implementing the automation

concept. However, they generally fall in the following three categories

(comparison made in Table 1):

• Fixed/Hard automation: this category is illustrated by the use of specific

automate components to perform very detailed and simple tasks, usually on lines

of production that are mainly structured by sequential operations. Its use is often

justified when there is the need of high demand of one kind of product to be

manufactured [3][5].

The worst factor associated to fixed automation systems is the incapability

of adapting, specially, when it is desired to modify the initial product to which

the system was designed. For instance, this type of automation can be found in

the automobile industry, steel rolling and paper production.

 7

• Programmable automation: the production equipment in these kinds of

systems is designed to be able to change work states for different product

specifications. The operation sequence is coded and programmable, allowing the

creation of new configurations and operation states through reprograming [3]

[5]. It is associated with this structure, a significantly lower production rate,

therefore generally being adopted by factories that have higher priority in

product variety comparatively to product demand. For instance, this type of

automation can be found in the systems that use numerical controlled machine

tools, industrial robots and programmable controllers.

• Flexible automation: this structure is an upgraded concept of

programmable automation with the goal of having the same benefits but with

higher production rates. The main difference lies essentially on the fact that there

is no time lost between work state changes, therefore, allowing a much faster and

variable production sequence [3], [5].

Table 1 - Comparison between Types of Automation.

 Fixed Programmable Flexible

Production Rate High Low Medium

Cost Low Medium High

Adaptability Low High Medium

2.1.2 The Evolution of Automation

On what concerns automation, it is important to have an insight of how it,

developed through the ages into the modern control systems we have today. As

observed in the Figure 2.2, the automation evolution was heavily influenced by

the Industrial Revolution.

Although the general perception with autonomous controllers is that they

are related with factory production structures since the mid 1800’s, there were

already existing inventions in the Ancient Greek and Arabic communities that

represented the raw concept of automation and most of them were based in the

use of float-valve regulators [5][6]. The basic functioning of these regulators are,

when open, it would cause the retained liquid to drop with a periodic frequency

directly associated with the percentage of the regulator’s opening.

2. State of Art

8

Figure 2.2 - Automation progression timeline.

This almost periodic re-allocation of liquid, made possible the invention of

what is believed to be one of the first feedback control devices documented in the

history of humanity. That device was the water clock of Ktesibios (Figure 2.3),

created in Alexandria, Egypt around 250B.C. [5]. This clock allowed the notion

of time to be a quantifiable variable and it was arguably one of the most exact

time measuring inventions, until the invention of pendulum clocks in the 17th

century [5][6].

Figure 2.3 - Ancient water clock illustration [8].

Patented around 1745 by Edmund Lee, one of the earliest feedback control

mechanisms created, was used to manipulate the sails of the windmills, with the

purpose of controlling the gap between grinding stones [5][6]. This concept

contributed greatly for major advances in control systems around the beginning

of the first Industrial Revolution, in the 18th century. In the same time period, as

steam and water resources were starting to be used as means of energy, it

eventually helped the creation of the first steam engine governor (Figure 2.4),

created in 1788 by James Watt.

 9

The steam governor offered a proportional controller that regulated the

amount of fuel admitted onto the engine, therefore maintaining a near constant-

speed, without providing exact speed control. This mechanism was only

considerably acknowledged by scientists when James Maxwell published a paper

entitled ‘On Governors’ (1867) that truly established the start of the theoretical

foundation for control theory [7].

Figure 2.4 - An example of a steam governor [9].

Besides the research and development around the steam governor and the

theory behind it, the 1800’s and early 1900’s eras, are mainly illustrated by the

creation of simple process task controllers for temperatures, pressures, liquid

levels and speed of rotating machines [6].

With the introduction of electrical energy to the factories by the second

Industrial Revolution, a new means of automation was heavily adopted, by using

logic, based on electromechanical Relays (created in 1835 by Joseph Henry), due

to the high demand of controllers in factories and power plants (1900 through

1920) [5].

This logic was used to facilitate the implementation and representation of

manufacturing programs based on relays (typically on-off controllers). With this

concept, there was also the adoption of central control rooms, where operators

observed charts with periodic acquired data and manually actuated on the

factory process (trough switches and/or valves).

Even though the evolution in control theory was quite noticeable, mostly

via the concept above as well as innovations in the transportation area (use of

gyroscopes for ship stabilization and primitive auto pilot systems), there were

still a lot of conceptual challenges [5]. Namely, a lot of confusion in the reason

why the controllers presented different behaviors, especially when changed the

dynamic and environment the processes the controller was designed for.

2. State of Art

10

In 1932, the concept of negative feedback was understood and

implemented, clearing a lot of the former challenges at hand. This concept added

the ability of precisely impacting the actuators of a process, in order to get the

desired results [5] [6].

Conjoined with the advancement of wired/wireless communication

systems, this era (1935-1950) denominated “The Classical Period”, was

considered the main basis for the modern controllers [6].

In the mid-1950s, the third phase of the Industrial Revolution started to be

noticed through the creation of data processing machines [5]. These devices made

possible the beginning of the implementation of digital controllers, which

minimized even more the intervention of a human in a factory process. Until

then, the control systems were all predominantly analog based and/or used relay

concept structures.

During this period, is it also worth mentioning that there were a lot of

advancements in control theory, mainly via the acknowledgment that control

systems are non-linear and the existence of significant errors in the sensors

caused by noise. There were also new concepts created, such as the use of

physical behavior equations and “black box models” [6].

All of these concepts being developed, along the significant fall of prices in

digital processor devices, led to the considered official beginning of the third

Industrial Revolution, with the creation of the Programmable Logic Controller

(Figure 2.5). This device helped minimize significantly the costs associated,

mainly to the constant re-calibrating of already existing controllers implemented,

by allowing a means of reprogrammable higher logic take place in the factories,

and also by offering tools with programing languages that were easily

understood and used by their own factory technicians [5].

Figure 2.5 - The first Programmable logic Controller Modicon 084 [10].

 11

This era was mostly translated by evolving the industry through the

implementation of electronics and digital controllers.

The current era, denominated by fourth Industrial Revolution or Industry

4.0, is mainly illustrated by bringing communication systems (e.g. internet

network technologies) into the factories, with the goal “smartening” the

industrial processes. Allowing further efficiency and profit, through the creation

of long distance distributed control systems, where each component of the

production line, autonomously communicates with each other and adjusts itself

to a required functioning state.

This era primarily focuses on the development of concepts that use the

following principles [11]:

• Interoperability: every main machinery has to be capable to

communicate autonomously through the internet;

• Virtualization: data bases full of acquired information associated

with virtual models of the real production line implemented;

• Real-time data acquisition;

• Decentralized systems: the ability of each component making

decisions on its own;

• Information accessible without location restrictions;

• Flexibility: easy adaption of each component to different desired

work tasks;

Due to most stakeholder’s natural inertia into investing on further

developing already existing factories, this era is still on its early ages. However,

the believed tendency is to see complex networks being more prominent in lines

of production in the coming years.

2.1.3 Current State and Developments

The ultimate goal of the global current research is to bring to reality viable

and effective implementations of the concept of Industry 4.0; in other words, to

create smart factories that are extremely networked, distributed and flexible.

This sub-chapter will approach a few researches that approach the main

theme of automation.

On what concerns advancements in interoperable and distributed systems,

there is a concept being developed where every material resource and

2. State of Art

12

component of a product has a special RFID tag, as shown in Figure 2.6 [12][13].

When going through the assembly line, those materials are able to communicate

with each other, allowing the identification of which materials should go through

the same route, in order for a specific product to be created. Furthermore, each

assembler robot is integrated with a scanner to read the information from the

group of materials and consequently know exactly which manufacturing task to

perform. This concept relies greatly on the use of radio frequency identification

chips, and it is considered a main future tendency on what concerns factory

layout and product planning optimization.

Figure 2.6 - RFID usage on smart manufacturing of bottles [12].

There are also being developed major industrial projecting and

implementation tools trough virtual 3D prototyping [14]. These tools rely on the

idea that while creating the 3D model of the desired product, at the same time,

the program would be able to project the entire production line and machinery

associated, offering specific market analysis on the materials needed. This would

significantly lower initial placement costs by companies.

Another aspect being researched focuses on human resource

advancements. The idea is based on consolidating, in real time, the factory

manufacturing operations with the available workers, considering their many

individual chrono-biological attributes [15].

The workers would be connected to the network at all time, allowing each

workstation to acknowledge which employee is to work next, and adapting itself

to any possible limitations or disabilities. It would also create a mean of data

acquisition, which would be conveyed into more efficient human resource

deployment. The main goal of this concept is to add further flexibility onto a

factory.

In a last remark, there is a new tendency that came to fruition with the

evolving penetration of 3D printing systems into the market [16]. This notion is

denominated additive manufacturing and it is based on the use of a new concept

 13

of “3D printing” implemented into conventional manufacturing lines (Figure

2.7). The concept uses as resource materials that can be presented in the form of

fine powder, and what it does is constructing components (simple or complex)

layer by layer, contrary to the current concept used of 3D printing that is based

on milling techniques.

Figure 2.7 - Additive manufacturing principle [16].

2.2 Programmable Logic Controllers

A PLC is a digital device that processes, in real time, the acquired

information from an industrial equipment to which is coupled with (typically the

ones that resort to electromechanical technology) and consequently manipulates

the process into the desired work state (Figure 2.8).

 This is done by offering several kinds of digital and analog input/output

ports that are compatible with different types of industrial machinery, therefore

allowing the reading of sensors and a following calculated actuation on the

components of the main process equipment.

Figure 2.8 - A PLC industrial cabinet [20].

2. State of Art

14

As mentioned on the previous chapter, the PLCs were an invention of great

significance during the second Industrial Revolution, having the main focus of

digitalization of the production environment.

It allowed a new level of flexibility and ease of control by programming and

executing logical instructions. The first PLC to be produced was Modicon 084, in

1964.

It is worth noting that this device is still very prominent on the modern

industrial scene, largely due to their durability, reliability, cost and ease of

technical implementation compared to the more advanced control systems.

2.2.1 Structure and functioning

A PLC normal cycle of work is based on the main following actions (Figure

2.9) [17]:

1. Input Scan: processor time slot reserved to access and verify every

single input port acknowledged as in use and note their state changes

on the input memory table;

2. Program Scan: with the information gathered in the former action,

the CPU takes the new changed/unchanged information retrieved

from the input ports check and executes the respective previously

programmed sequence of logic instructions. While the instructions are

being executed, the output memory table is kept updated;

3. Output Scan: uses the results from the programmed logic that

affect output ports by accessing the output memory table and

activates/de-activates them by applying or cutting off the hardware

designed voltage of each port;

4. System operations: last group of operations in a PLC cycle is

reserved for more advanced actions such as communications,

diagnostics and so forth.

 15

Figure 2.9 - A PLC high level cycle of operation.

Concerning its hardware structure, it is essentially divided in four sectors:

input/output modules, central processing unit (CPU), memory and

programming terminal (Figure 2.10) [17].

Figure 2.10 - PLC hardware structure.

Going a bit over the components and starting with the central processing

unit, all PLCs are generally based on microprocessor structures. Their function is

to control and supervise all the operations within the device itself and execute

instructions from the programed logic stored in the memory. All the components

communicate periodically with the CPU via a main internal bus system. Some

more advanced PLCs are built with more than one CPU, in order to achieve

efficiently more complex instructions [17].

On what concerns the memory, PLCs contain both random access and read

only modules (RAM/ROM). The memories are composed by the following

segments (Figure 2.11) [17]:

2. State of Art

16

 Executive Memory: this sector of the memory is ROM type, and it is

where the main manufacturer default system operations are stored.

It instructs the PLC on how to scan I/O modules, interpret user

programed logic, test and diagnose internal modules.

 System Memory: RAM type sector reserved for results and

information of system only operations, such as error codes and

module work states.

 I/O Image Table: reserved area of the memory that is constantly

being updated with the new values read/wrote from the

input/output modules Each I/O port has a dedicated memory slot

with an individual address. RAM type of memory applied in this

case.

 Data Memory: it has a similar way of functioning to the previous

sector mentioned, but applied to instruction logic values that must

be stored, such as values that are calculated, or counters and timers

being used. Sometimes it is divided into a constant value and

variable value area (RAM).

 User Program Memory: portion of memory where the code

programmed by the user is allocated, during the CPU work cycle,

when the program scan phase is achieved. This is the place from

where the CPU takes the operations to execute. Usually comes in

RAM format, but can be set in EPROM if desired (a more definitive

mean of assuring the information stays allocated).

Figure 2.11 - PLC Memory structure.

 17

The programming terminal is what offers the PLC the compatibility to

communicate with secondary devices with the intent of being programmed,

tested and monitored by the user. The technologies generally offered are through

USB variations and several network technologies (Modbus, Serial

communication, Ethernet, Etc.)

In regard to the Input/output modules, they are the means to interact with

industrial mechanisms that are a part of the control system. Usually, PLCs offer

a digital module where the inputs typically work at 24V DC, and the outputs

have either a discrete 24V DC functioning or a relay/TRIAC supported output

where an output of up to 240V AC/1A can be used. The ports are often electrically

isolated to protect the device from any undesired power-supply surges.

2.2.2 Programming Languages

In the implementation of a successful control system using PLCs, there must

be a code programed by the user with all necessary operations. In order for that

to happen, the PLC offers several programming languages, which initially had

the goal of using similar logic and representation to the former techniques

applied by the engineers and technicians. In one way, this was one of the biggest

factors to the success of such devices, making them easier to implement and

modify without the need of specialized technicians and, therefore, more cost

effective.

The languages currently supported by the IEC 61131-3 standard for

programmable logic controllers are the following:

• Ladder Diagram (LD);

• Function Block Diagram (FBD);

• Instruction List (IL);

• Sequential Function Chart (SFC);

• Structured Text (ST);

On a side note, most of the PLCs are multi task based, allowing the

simultaneous use of combinations of different operations with varied languages.

It is also worth mentioning that all variables used, need to be specifically

allocated on a space of memory conceptually implemented to handle the type of

the variable. Next, the summaries of such languages are presented

2. State of Art

18

2.2.2.1 Ladder Diagram

This language was the first one offered by the initial PLCs created and its

main goal was to be simple, useful and, most importantly, easily comprehensible

by the technicians. It was designed in such a manner that could visually and

conceptually illustrate the important relay logic (very dominant before the

digitalization of the industrial environment occurred).

As seen in Figure 2.12, the logic in Ladder offers several “branches” and flows

from the left to the right. Each branch can be considered a rule that conceptually

starts on the verification of one or several inputs and verifies if they satisfy certain

conditions. In other words, verifies if the input variables are activated/de-

activated and, if so, it proceeds into the operation phase, naturally altering output

variables. All the rules typically run simultaneously in a continuous cycle.

Figure 2.12 - Example of a simple button activated timer in Ladder.

The instructions are made to visually resemble electric wiring. Therefore,

the inputs are represented by contacts and the outputs by coils, and both are

interpreted as Boolean variables.

This language was conceptualized for tasks that mainly resort to Boolean

combinatorial logic, consequently being based mostly in Boolean conditions

(e.g..: AND, OR,NOT). Regarding the operations it offers, besides setting a

variable “ON/OFF”, there is also the possibility of using counter and timer

associated actions in form of pre-programed logic blocks [19].

The foundation of this language and style of programming allows for a global

and easy way of use and understanding, especially by the less expert technicians.

However, its disadvantage is that, when tasks get complicated, the programming

complexity and process resources grow exponentially [18]. Moreover,

developing simple sequential structures becomes a very complicated task to

implement, and when the code becomes significantly large it is hard to interpret

and debug, even when well structured.

 19

2.2.2.2 Function Block Diagram

The conceptual principle behind the Function Block Diagram (FBD)

languages is data flow - the information continuously flows through the code

from inputs to the outputs (left to right), meaning that the operations between

the transition are all done through function blocks.

The function blocks can be sequentially concatenated by connecting the

outputs of the former block to the inputs of a subsequent block, therefore

facilitating the creation of more complex instructions. The blocks not only offer

Boolean logic and simple arithmetic functions, but also comparisons,

mathematical functions (ABS, COS, TAN) and can also have user programmed

instructions, simplified to a higher level (Figure 2.13).

Figure 2.13 - Example of a simple alarm in FBD.

In contrast to the Ladder language, FBD is usually analyzed from the right

(output) to the left (input). And it holds advantages compared to the former

mentioned language, in the aspect that is easily analyzed and diagnosed by users

that are not familiar with electrical schematics [18].

The FBD is a language that deals very well with simple numerical

processing tasks, such as limit verification, scaling, and more. The cons regarding

this language are that the larger the code, the harder it is to monitor, edit and

analyze.

2.2.2.3 Instruction List

The Instruction List (IL) language is one of the first textual programming

tools offered by PLCs [19]. It is considered to be a low level coding tool, similar

to the assembly language, and its foundation follows the Accumulator concept.

In other words, it represents a chain of mathematical or logical operations that

occur in a stepwise fashion, basing the current operation with the results from

the previous action.

2. State of Art

20

In this programing language there are several code lines and in each line

there is one single operation to be executed that may be applied to a single or

several variables (Figure 2.14).

Figure 2.14 - Example of a conditional allocation in IL.

It supports loop programming and conditional verification trough

commands like jump (JMP), which takes the execution pointer to an address

where the desired following instruction is, as well as offering several arithmetic

and comparative operators.

The main advantages of this language lie in the fact that it is textual and

condensed, being executed and processed a lot faster, when compared to

graphical languages. Furthermore, no specific editors are needed adding a layer

of portability to this language. It is also a language generally preferred by

programmers that prioritize performance over diagnosing and monitoring [18].

2.2.2.4 Sequential function Chart

The Sequential Function Chart (SFC) is a more flexible adaptation of the

Grafcet language, allowing an easier implementation and debugging check of

automation systems with a well-defined sequential evolution.

This language can be divided in a sequential way of coding with two main

components: action steps/states and conditional transitions (Figure 2.15).

Figure 2.15 - Example of a robot movement routine code via SFC.

 21

The way it works is: an initial state is triggered, assuring the activation of a

group of variables, and if the existent condition in the following transition is

satisfied, the system will disable the current state and move onto the next state

and its individual variable operations. Transitions can activate several parallel

states at the same time. There can be more than one initial state when there are

different concurrent tasks within the project.

This language allows simpler code execution, due to the fact that there is no

need to scan the whole code each cycle, but rather just the current state and the

following transition. This fact also allows fast identification of malfunctioning

transitions and "dead end” states [19].

There are several disadvantages worth mentioning. First, amongst the

graphical languages, SFC is by far the one that consumes more memory

resources, making the execution simpler but a lot heavier and slower. It is also

the language that lacks the most in portability - every equipment/software

associated has its unique configurations, making it impossible to pass a coded

SFC from one source to another without using a third party conversion tool or

ultimately having to re-code the whole program [18].

2.2.2.5 Structured Text

Structured Text programming language is the last standardized language

offered by the majority of the PLCs produced and sold today. It is the tool with

the highest level of programming capability of all the mentioned before in this

sub-section. It is often compared to a Pascal language further developed into

industrial applications [19].

The language is composed of statements separated by semicolons -these

statements can be pre-defined or can be user programmed subroutines (Figure

2.16). The coding is composed by various instructions, such as loop iterations,

conditional verifications and further advanced mathematical equations. Every

variable is defined previously to the main code of instructions it alludes to, and

it can be of the type related to the I/O ports of the PLC internally stored memory

types or constant values.

Figure 2.16 - Example of an average value calculation code via ST.

2. State of Art

22

Concerning pros and cons, this tool brings for a more productive means of

programming in the current day where the complexity of the problems to be

solved have grown very significantly. Besides being well-structured, compact

and having more advanced instructions, its highly compatible and consumes

lower processing resources. The cons usually mentioned of this language are its

textual nature, and the fact that it is arguably harder to diagnose and perform

maintenance [18].

2.2.3 Current State and Developments

About the advancements of this technology, it is worth noting that PLC

devices have existed for over 40 years and their structure gives great emphasis to

programming languages that have been surpassed. Furthermore, the great

developments in PC performance and the introduction of Programmable

Automation Controllers (PAC) in the industrial market have caused the PLC to

decrease in market share dominance of the current manufacturing scene.

Although there is not an established consensus on what should a PAC be or

what are the exact differences from a PLC, PAC devices are globally seen as

highly advanced PLCs - they hold a more open architecture and modular design,

that further facilitates interoperability and communication, more robust PCUs

that can perform greater complexity routines, highly developed software tools

that bring lower complexity and more modern programming languages to the

table (C,C++, JAVA) [22].

 PACs do seem to be the successor of the PLCs, technologically wise, but it

really depends on the complexity of the control system to be implemented. PACs

are very expensive when compared to PLCs, and PLC manufacturers, due to the

pressure of the PAC devices market penetration, have been implementing

notable upgrades to the current PLCs, from additional CPU features, high speed

communication capabilities, larger variety of I/O ports to superior performance

and efficiency [21].

There is also a notable philosophical shift in the industrial scene today: the

customers do not prioritize individual technology performance but instead focus

on global system functioning. Consequently, there has been less focus on buying

individual components (PLCs, inverters, etc.) and more emphasis on industrial

solution services to create the best global system possible for the situation [22].

A brief conclusion to this sub-chapter is that, even though the PLC devices

have been surpassed technologically, depending on the industrial solution

complexity and funding, they are still used immensely on the current

manufacturing control systems.

 23

2.3 Distributed Control Systems

A Distributed Control System (DCS) is a conceptual automation structure

that uses individual controllers and monitoring technologies. The system

components are placed strategically throughout the whole industrial plant with

the goal of processing/executing specific tasks in large and complex processes.

Each component of the DCS communicates in a type of hierarchy level

organization, via network, for higher command and supervision purposes [23].

This structure can also be seen as a global system composed of varied sub-

systems with individual tasks, contrary to the concept of centralized control

systems, where all of the tasks and components of a manufacturing line are

controlled and processed through only one main controller. Comparing the two

of them, DCSs do bring a higher initial investment cost but portray a higher

degree of flexibility, simplicity, control reliability and performance, especially in

systems that are subjected to production changes or extensions.

The most valued key feature of this concept is redundancy. DCSs are all

designed to accommodate multiple elements that control/monitor the same

process component, allowing the existence of back up resources in case of

anomalies and/or critical failures. Such feature is extremely important in the

modern day mass production industrial lines, where there are major security

risks and huge profit losses in case of production stoppage [25].

Applications of DCS are seen over all of the industrial areas, especially the

ones that require a higher degree of plant complexity and high cost efficiency,

such as power generation, transportation fuel refining, pharmaceutical and

highly automated food and beverage production.

2.3.1 Production methods

Before continuing the further description of distributed systems, it is

important to enunciate the usual methodologies applied to manufacturing

systems, in other words, what are the most common strategies for assembling a

commercially viable product. This reason is justified due to the fact of DCS being

generally associated to manufacturing processes, so it is important to have a

notion of the most used production methods.

In the modern days, it is hard to define a specific factory production

structure due to the fact that the industrial scene usually uses combinations of

different manufacturing methods that best adapt to their personal goal and cost

efficiency. With that in mind, there are three main manufacturing concepts: Job,

Batch and Flow production [26].

2. State of Art

24

2.3.1.1 Job Production

Job Production, or One-off production, is a production method that

illustrates the execution of custom/personalized work. It is a unique and time

constrained kind of service that usually serves as a third party contracted

production resource.

This method assures that the product/service created matches the customer

needs exactly, and it is usually characterized by highly specialized tasks and

quality work. Therefore, it is a significantly expensive method, due to the use of

highly skilled staff and time demanding activities [27].

Examples of this kind of production go from building new installations,

extending a production line, installing new equipment, maintaining/fixing

manufacturing processes to producing highly specialized materials for a new

upcoming technology.

2.3.1.2 Batch Production

The Batch production concept lies in producing a fixed number of units to

satisfy a certain customer’s order. It is usually best applied in low-mid initial

capital companies that produce several types of the same product.

The way it works is as such: if there are 3 types of units to be produced, the

factory is set with the needed specifications for one type and produces all the

units needed; afterwards, it is reset for the next type of unit. Initially, the raw

materials are picked and passed through sequential manufacturing stages that

are divided by different workstations.

This method is mostly applied in companies that have no need or cannot

afford continuous production. If there is a sudden cut in demand, this method

allows production stoppage without suffering huge profit losses (this factor is

best suited for factories that produce seasonal items) [27].

Examples of businesses that generally use this method are in the areas of

bakery, clothing, pharmaceutical and construction materials.

One method worth mentioning that is usually associated with batch

production is Just in Time manufacturing, and it is essentially a more cost

effective method that minimizes the investment in resource preparation and

storage by ordering and manufacturing the products right before the limit date

required by the customer.

 25

2.3.1.3 Flow Production

Flow or Mass production is the method that truly applies continuous

assembly of goods. Individual products proceed sequentially from one to another

manufacturing phase in a single production line; ach phase has specific staff and

mechanisms that perform the same task over and over, as quickly as possible,

with minimal quality loss.

Factories that apply this method are meant to be producing 24/7 with high

product output so that the overall cost of running the production line is dispersed

by each produced unit. Consequently, in cases of stoppage, there are always high

costs associated, mostly due to resources needing to be reprocessed and

disposed, in order to maintain quality levels in the start of the next work cycle

[27].

As it is stated by its name, this method is used in large companies that have

a very high demand but small cost flexibility per unit, therefore, being applied in

areas such as energy, fuel, electronics, transportation, etc.

2.3.2 Structure and Types of DCS

A distributed control system is, by definition, composed by a hierarchical

structure. For further explanation, we shall divide the general structure into three

levels [24].

As it can be observed in Figure 2.17, the low-level is composed by the

different industrial plant processes and their respective controllers. The

processes can go from conveyors, robots, to ovens and are always equipped with

easily reachable/compatible actuators and sensors. The controllers are usually

custom microprocessors and are responsible for assuring that their respective

processes successfully execute the planned manufacturing tasks.

The mid-level is where the supervision controllers are. Their task is to

automatically oversee all of the plant controllers, set their work state and possibly

detect global system failures.

Servers are installed in this level, which gather all the information available

at low and mid-level and, consequently, send it to high level technologies. It is

also the place where the lowest means of human intervention is possible by using

equipment such as HMIs (screens with graphical interface of the process) and

physical buttons.

The industrial network technologies and protocols used at this level are

usually the ones supported by the installed HMI and controllers, for example,

2. State of Art

26

serial type, fieldbus and industrial Ethernet communications (such topic will be

described on the next sub-chapter 2.4).

The high-level is where specialized tasks are executed, having computers

connected to an Ethernet LAN network with the goal of scheduling, coordinating

and supervising the whole factory. Databases and remote clients are also

available in this level, mainly for further accessibility and reliability.

Figure 2.17 - Typical DCS structure.

On what concerns types of DCS, it is a very subjective matter but through

research, it can be divided in the following categories:

 Discrete : this is where the conventional DCSs lie and they are

basically conceptual systems that control processes of closed loop

nature;

 Sequential: PLC based systems, typically illustrated by command

control, where the notion of states and list of instructions is applied

onto a process;

 Hybrid: applies both control concepts above;

 Smart: these are the most advanced distributed control systems that

blur the conventional hierarchy structure by having a higher degree

of interoperability and communication between all of its

components, making each more independent and autonomous.

 27

2.3.3 Comparison with other typical Control Systems

On the automated manufacturing scene it is important to compare and

define the main used systems. Therefore, in this sub chapter, an overview and

comparison will be made with SCADA and PLC systems.

2.3.3.1 Comparison with PLC systems

Comparing PLC to distributed control systems, they initially had different

applications, PLCs were often used in simple batch controls.

PLC systems presented low component value where it was easy to reset the

installation and possible downtime wouldn’t present damage risk onto the

process. In counterpart, the DCS was usually applied to much more expensive

processes and would have to be able to control critical applications, where a

possible failure has high profit loss and security risk associated [23].

In the modern days, it is actually hard to distinguish both systems due to

the fact that the evolution of their technology and the adoption of new conceptual

manufacturing methods has transitioned both technologies into each other [25].

Therefore being very usual to be observed the use of PLC as plant controllers in

distributed systems.

2.3.3.2 Comparison with SCADA systems

A SCADA system is conceptualized for data acquisition with the purpose

of plant supervision. It is mainly composed by software, being usually present in

higher level layers within the hierarchy of an industrial system.

Its main focus is to gather information and present it to technicians in order

for them to monitor and set the processes in correct work states, while DCS is a

more process control oriented system.

Comparing both of the systems, as also seen in Table 2, besides DCS being

process driven and the SCADA being event driven, there are other noticeable

differences in typical systems. Distributed control systems are applied in smaller

geographic areas, assuring reliable and good quality data and are composed by

closed loop process control.

On the other hand, SCADA systems usually have larger geographical reach

and the quality, reliability and determinism of the data is not high priority, since

it is used only for monitoring purposes and not for autonomous control. It is also

more efficient energetically, due to its equipment only being associated to data

processing [25].

2. State of Art

28

Another important factor is the human intervention at process levels.

Distributed control systems allow operators to intervene in a more direct manner

than a SCADA system would, which only allows HMI interaction. Moreover,,

DCS are dependent of a constant stream of data from processes, in order to

properly function, while SCADA systems are capable of keeping a well-

functioning work state in case of outage, basing its decision on stored data.

Table 2 - Comparison between DCS and SCADA.

DCS SCADA

Process driven Event driven

Small geographic areas Large geographic areas

Good data quality and reliability Poor data quality and reliability

Powerful closed loop hardware
Power efficient hardware for data

processing

Just like PLC and DCS systems identity is very blurry, nowadays, the same

happens with SCADA and DCS systems. The common case is that SCADA

components are already integrated on modern DCS, which present a very strong

component of data gathering and processing.

2.3.4 Current State and Developments

One of the main trends in development on Distributed Control Systems is

the conversion of its components into more intelligent interoperable units that

focus primarily on the use of wireless communication technologies and

networks, specifically in the input/output layer [28].

This layer is one of the most important parts of a DCS where countless

process measurements and output actuation signals are read and applied in a

single process. The current implementation of I/O devices (I/O Bus network)

presents slow value transitions compared to the current developments in

technology. The fact that it is based on a wired technology alone makes it more

expensive in large industrial plants, while at the same demanding great

complexity to assure reliable measurement/actuation of rotating equipment.

A second immerging trend is the implementation of server virtualization into the

systems [28]. In other words, instead of having a centralized physical server from

where every client requests information, that same server is further decomposed

into several other virtual servers, which perform their individual tasks and allow

access only to entities related to those same tasks. Benefits from this tendency

come mainly from higher accessibility and less cost associated to physical

resources.

 29

Last but not least, there is also the idea of applying cloud computing into

future DCS systems [28]. This would mean that, through remote servers, data

would not only be gathered and transmitted, but also major physical tasks would

be executed, completely taking away the notion of geographical barriers within

a Distributed Control System.

As we can see, the major concerns in this subject relate to general security.

In fact, relying on transmission of sensitive information through waves or relying

on third party remote servers, if not well conceptualized, can be very risky.

Valuable information to a company could be leaked or, even worse, manipulated.

Thus, these trends are still far from being implemented on a large scale, especially

considering that the automation industry is very conservative by nature.

2.4 Industrial Networking

The constant evolving of the industrial systems into more advanced

digitally dependent structures, has also driven the need of developing new and

better communication concepts that could fully adapt and elevate the overall

performance of the systems.

Initially, the control structures only applied communications between the

physical processes and the controllers. However, in the current times, networks

are starting to be implemented at all levels, not only from a field control stand

point, but also in a supervising and data gathering/processing point of view

where the equipment focuses mainly in Ethernet standards.

2.4.1 Structure

Usually, the composition of a traditional industrial network has a

significant number of layers and tends to be more complex the bigger the control

system is (Figure 2.18).

In general, it is illustrated by a hierarchical structure composed by different

communication protocols and media equipment where the lowest level of data

transmission lies at the connection with the controllers and the physical world;

above there is the application level that make the sharing of information between

different protocols possible [29].

Following this, there is the supervision and monitoring level, ending on the

data collection and external communication layer. This hierarchy has seen a

tendency to dissipate, due to constant technological improvements, which

facilitated the simultaneous interaction between all the components within a

control systems [29].

2. State of Art

30

Figure 2.18 - A typical industrial network structure.

This structure, in order to be open and allow constant expansion must have

a very well defined core topology. There are, essentially, three types considered

[30]: Star, Bus and Ring configurations (Figure 2.19).

Figure 2.19 - Network Topologies.

The Star topology essentially illustrates a network that revolves around a

central controller to which all the nodes/components are connected. This

topology represents ease of component expansion or possible failure of a node

without interrupting the well-functioning of the overall network.

Even though the failure of a node does not bring any consequences to the

global system, this topology is highly dependent of the central controllers,

therefore, their failure implies the failure of the entire network [30].

In the Bus concept, every component is connected to a common

communication channel, hence, every message sent is received by all the nodes.

A node failure does not jeopardize the global network, as long it is not damaging

the bus.

 31

The Ring configuration is essentially a cable that goes from node onto node,

with the message sent and received between nodes until it reaches its destination.

In this topology, a node failure shuts down the network.

On what concerns the equipment that is used to create the network itself,

having a single cable is usually not enough. Because these networks must cover

large plants, they need to be isolated and able to communicate with many

different components with their individual communication specifications and

protocols. Thus, an industrial network is usually physically illustrated by devices

such as repeaters, servers, several routers and gateways devices [30].

The information transmitted within is usually decomposed in control,

diagnostic, safety and historic type [29]. Control information refers to the data

being traded between controller and physical instruments, usually inputs and

outputs of a control loop. Diagnostic is the information collected from the

different components of the system, in order to efficiently access and deduce how

well the system is working and if there is any failure. Safety information is the

one that is most prioritized. It is used to sustain critical tasks functioning and it

has presented high reliability and real time requirements. Historical information

is the general stored data that is usually used for prediction methods and

historical analysis.

It is also important to point out that the industrial network’s main emphasis

is the ability to interact with the physical world, hence, the conceptualization of

an operable network must have a critical focus on the following requirements

[29]:

 Safety and failure diagnosis: since the network is used as a means

of establishing communications between important control

components and the physical processes, possible failure can translate

into very serious consequences. Major losses of revenue can happen

and, most importantly, the safety of the workers can be put at risk.

Therefore, these networks must have very strong fault detection

capabilities and very small packets of data to assure the quality of the

information.

 Real time response: the speed associated with the data transmission

must be fast enough to not only keep the system functionality

maximized, but also to quickly re-send information in case of

information loss. In general, the speed of transmission should be

twice as fast as the receiving end requires it.

 Determinism: within a system there are several tasks that are time

dependent, thus, being crucial that the network offers the capability

of assuring low variance and predictable transmission times between

2. State of Art

32

components, in order for a high degree of synergy and temporal

consistency to be assured during events.

 Periodic and aperiodic traffic: there are many different tasks

occurring within a system - some of them require a continuous flow

of information in order to function (e.g.: control loops) and others

only require it when an action is needed to be performed (e.g.: trigger

events). Therefore, a network needs to establish different natures of

transmission, depending on the information.

 Ruggedness: the network devices and wires must have a high

protection index that assures the well-functioning of the network in

locations where it is susceptible to adverse conditions such as dust,

heat or vibrations.

2.4.2 Comparison with Commercial Networks

Comparing both networks, we can point out that, at their core, they have

different main focuses: the industrial networks ultimate goal is to connect with

physical machinery, in order to monitor and control a manufacturing task, while

the commercial networks are only dedicated to processing and transferring data.

Consequently, the networks have very different implementation requirements,

as seen in Table 3.

Industrial networks have higher costs of implementation, demanding a

varied array of dedicated and expensive hardware, while the commercial

networks rely only on routers and cable. The structure of an industrial network

has a higher quantity of layers associated, whereas the commercial network is

only represented by the user local network that connects to a geographical site

backbone and the latter connects to a supplier Wide Area Network [29].

On what concerns the requirements mentioned in the last sub chapter, the

commercial networks do not need to offer a high grade of quality, they are

intended to be deployed in corporate and domestic environments, therefore they

offer low standards of ruggedness and failure severity.

Table 3 - Main differences between Industrial and Commercial networks.

 Industrial Commercial

Main Focus
 Control of physical

machinery.
 Transfer and process

information.

Operating environment

 Manufacturing and
distribution facilities;

 Subjected to harsh
conditions.

 Domestic and
corporate use.

 33

Structure

 Deep with highly
hierarchized
constitution;

 Varied nature
equipment and
communication
protocols.

 Shallow with
uniform
communication and
standardized
equipment.

Failure severity High Low

Reliability and

Ruggedness
High Moderate

Determinism High Low

Transmission times 250 µs – 10 ms +50 ms

Temporal consistency Highly required. Not required.

Type of transmission

 Periodic and
aperiodic
transmission;

 Small packages.

 Aperiodic
transmission;

 Large packages.

2.4.3 Protocol Overview

It is impossible to describe networks without mentioning communication

protocols. Essentially, protocols are a set of rules that allow different devices to

communicate and understand each other through a transmission medium.

Industrial network technologies and protocols can be gathered in three

categories [30]:

 Fieldbus: it was the first means of communication, developed after

the occurrence of the digital transition in the manufacturing industry.

It is defined as a group of protocols that are mainly based on serial

multi-drop data bus communication.

 Ethernet: highly penetrated technology in the business and domestic

demographic, large data and high speed capabilities.

 Wireless: it is a tendency being developed and tested in current

industrial environments, establishing a more adaptable and versatile

control system.

Before heading onto a brief protocol overview, there is the need to go over

a few important topics, starting by the main standardized protocol reference

models (Figure 2.20).

The first developed model was called Open Systems Interconnection model

(OSI), defined in 1984 by the International Organization for Standardization

(ISO) [29].

2. State of Art

34

This reference model is composed by seven layers:

 Physical: this layer concerns itself with the transmission of data over

the hardware itself;

 Data-link: it organizes data and detects transmission errors between

physical nodes;

 Network: manages data package routing;

 Transport: executes the data transmission between network nodes;

 Session: organizes and synchronizes the higher level data between

network nodes;

 Application: is where the high level interfaces run on;

 Presentation: converts the information from the before mentioned

layer to lower level layers.

The fieldbus network systems adapted the OSI model into the Enhanced

Performance Architecture model (EPA) [29], consisting of only three layers:

physical, data-link and application. This reduced model was conceptualized in

order to eliminate non-essential delays within industrial networks.

It is also worth mentioning that following the Internet penetration in the

market, the TCP/IP protocol was implemented and it represents a more efficient

and simple OSI model for computer networking [29] - its constitution uses only

physical, network, transport and application layers. It is still widely used as the

foundation of the real time Ethernet existent nowadays.

Other important concepts often used are the client-server and producer-

consumer models. Essentially, they represent how the communication is

processed between the components of a network [30].

The client–server model (also called master-slave) illustrates a situation

where a component controls the other in a unidirectional way; in other words,

the client is the one who makes a request, and the server is the one who waits for

the request and consequently responds to it. The most basic example of this

communication model is a PLC controller directing a group of I/O devices.

The producer-consumer model is a broadcast model where a component

sends a message (producer) and all the other components (consumers) receive it.

If relevant to their tasks, the components process that information and act

accordingly.

 35

Figure 2.20 - Main protocol models.

Also worth noting is the way the data is transmitted while the

communication is occurring (Figure 2.21). It can be:

 Simplex: the information is transmitted solely from the sender to

the receiver;

 Half-duplex: both devices can send and receive information, but in

a singular way;

 Full-duplex: that represents the half duplex concept but it is

capable of doing it in a simultaneous fashion.

Figure 2.21 - Terminal connectivity classifications.

2.4.3.1 Modbus

The Modbus protocol was created by the company Modicon, in 1979, and

its original goal was to allow point-to-point data transmission between PLC

devices and their respective programing tools [31].

This protocol is classified as an application layer protocol and it comes in

several different types, depending on the means of transportation used. The most

used in the current day are the ones that run over serial and radio links, such as

the Modbus ASCII and RTU, and the ones that run above Ethernet networks, like

Modbus TCP and UDP.

2. State of Art

36

Essentially, this protocol is based on the client-server configuration and in

the Star network topology. It is constituted by only one client, typically a

programming panel or a computer, and several servers which are controller

devices mostly. The number of servers allowed on the protocol are limited by the

number of serial ports the computer host has and by the limit number of 247

(maximum address number specified within the protocol) [31].

Following the client-server analogy, the way the Modbus protocol allows

the transaction of information between devices is as follows: first, the client

requests information; consequently, the destination server processes the request

and responds accordingly. As an example: if there was a severe failure in one of

the servers, the client would only be aware of that fact, when it proceeded to

make a request to the server in failure, in the original protocol the server would

not have permission to initiate a reply without a request.

The way the transaction happens between client and server can be observed on

Figure 2.22, and for this transaction to occur, each server has to have a unique

address identifying it, within the range of 1 to 247, the address number “0” is

reserved as a global message identifier to whom every server has to reply to. On

what concerns the client, there is no need for it to have an address, since there is

usually only one [31].

Figure 2.22 - Modbus protocol transaction.

Regarding the contents of the message, the message sent by the client is

denominated by query and the response from the server is simply called

response.

There are two modes of how a message is framed and timed in the Modbus

protocol (Figure 2.23), the ASCII and RTU modes: the ASCII mode represents the

data in such a way that a human can interpret it, while the RTU mode represents

the information in a long chain of binary values. Besides timing the asynchronous

frames, both modes have different overall sizes and error check methods.

 37

Figure 2.23 - Modbus message framing.

In both cases, the message is generally composed by the following structure

[31]:

 Device address:

This section of the message frame is intended to always hold the server

identification and it is both used on queries and responses. Due to the

message being sent in a broadcast kind of way, the address is crucial for

the correct server to process it;

 Function code:

The function code is a specific number that orders the server to apply an

individual task or command. Depending on the function, the data portion

of the message will vary.

Concerning the functions themselves, they can be categorized in three

main types: public, user defined and reserved. In Table 4 there are the

most commonly used public functions offered by the Modbus protocol.

Table 4 - Modbus main function codes.

Function Code
Read multiple coils 1

Read multiple discrete inputs 2

Read multiple holding registers 3

Read multiple input registers 4

Write single coil 5

Write single holding registers 6

Write multiple coils 15

Write multiple holding registers 16

 Data bytes:

The data field will contain the necessary information to fulfill the initially

function sent in the clients query. Depending on what that function wants

2. State of Art

38

to manipulate within the destination server, the data bytes can be

constituted by several types.

 Error check:

This last sector of the message is used to deduce if all of the information

was well secured and received. As mentioned before, there are different

methods depending on frame transmission mode used.

On the case of the ASCII, the error checking field contains two ASCII

characters holding the result of the application of the longitudinal

Redundancy Check Method (LRC). Regarding the RTU mode, the error

check field is represented by two eight-bit bytes that serve as result of the

application of the cyclical LRC.

2.4.3.2 Profibus

The Profibus protocol was one of the first created fieldbuses. It was

developed by a consortium of various German automation companies in 1987,

and due to the endorsement of Siemens it was widely implemented through all

the manufacturing industry.

Its goal was to make possible the implementation of bit-serial fieldbus

systems and it was defined has having three different profiles for specific

applications. Firstly, Profibus-FMS for non-deterministic high level

communications; secondly, Profibus PA (process automation) which is used for

unsafe areas; and, lastly, Profibus DP (distributed periphery) for low level

communication [33]. Since the main concept remains for all the profiles, this

overview it will be focalized on the Profibus DP.

This protocol is based on a client-server bus topology where for every group

of servers there are two different clients. The clients are classified in two classes

[33]. Class 1 client is responsible for the central control tasks and the exchange of

data with its servers and is generally represented physically by a PLC or a

computer with special software. The class 2 client is usually a configuration

software that is responsible for diagnosing and authorizing servers.

The information transaction starts via a periodical cycle where the class 1

client initiates a sequential request to every server on the network after the query-

response interaction between the class 1 client and the servers, a token

methodology enters in place, where the class 1 master passes the rights of

interacting with the servers to the class 2 master. If a master doesn’t have a token

it is only allowed to read values from a server (Figure 2.24).

The way the message reaches the correct server, similarly to the Modbus

protocol, is through identifying every server with an individual address in the

 39

range of 1 to 125. Also, due to the fact that there are different masters within a

Profibus network, masters do require address identification too.

Figure 2.24 - Profibus protocol transaction.

The transmission applied uses two different types of services [33]:

 Send and request data with acknowledge (SRD):

In this methodology, data is sent and received in one single transmission

cycle. Strictly speaking, the client sends a request along output

information and the server consecutively sends a response with input

data. This service represents a very efficient way of exchanging data with

I/O devices.

 Send data with no acknowledge (SDN):

This service is used for global messages that need to simultaneously reach

all of the servers (broadcast messages). They usually hold task instructions

to whom the slaves act on but do not respond or give any

acknowledgement to the client about who sent the message.

 On what concerns the content of the message, there are two types of frames:

request and response frames. The only difference between them, besides

inverting who sends and who receives the message, is the fact that the request

frame holds 1 byte with information about time synchronization between the

master and slave involved on the transaction.

2. State of Art

40

Figure 2.25 - Profibus message frame.

As seen in Figure 2.25, the typical structure of a frame is composed by the

following elements [33]:

 Start Delimiter (SD):

Establishes the start of the frame and the value it holds also defines the

format of the frame.

 Length field (LE and LEr):

It is composed by two bytes that present the size value of the frame sent.

 Address sector (DA and SA):

This fields holds in 2 bytes, the addresses of both the sender, and receiver

within the transaction occurring.

 Function code (FC):

The function code is a specific number that orders the server to apply an

individual task or command. Depending on the function, the data portion

of the message will vary.

Concerning the functions themselves, they can be categorized in two main

groups: request message functions and response message functions.

 Service field (DSAP and SSAP):

This field contains information about what type of transmission service is

to be used by both a request message and response message.

 Data field (DU):

The data field ranges from 0 to 32 bytes in length and it holds all the

important information to be transmitted and processed between stations.

 Error Check (FCS):

This byte holds a frame sequence that serves the purpose of checking if

the message was well received. The error checking is based mainly in

parity methodology: the sender calculates a parity bit for each consecutive

eight bits composing the message; then, concatenates all of those parity

bits into the error field. When the message is received, the server will

perform the same action and compare it to the frame sequence within the

message.

 End delimiter:

Establishes the end of the frame.

 41

2.4.3.3 Profinet

The Profinet protocol is a further development of the Profibus protocol onto

the Ethernet. This adaptation was made aiming towards the elevation of the

former into a higher degree of accessibility, compatibility and flexibility in

industrial systems.

Its concept and structure are strongly similar to the Profibus overall

concept. With that being said, it also uses a client-server bus topology with the

same two different classes of clients assigned to a group of servers and that use

token methodology.

One major difference is the fact that Profinet sustains a full-duplex means

of communication in counterpart to Profibus that only sustains half-duplex. The

other major difference is that within the transaction of information there is one

additional communication channel in the Profinet.

From the two communication channels available in this protocol, there is

the TCP/IP channel that is used for non-time critical tasks such as diagnosing and

configuration. The other channel is used for real-time dependent tasks that need

very fast and deterministic performances, such as main cyclic data processes,

monitoring, alarming and critical task triggering.

2.4.3.4 Open Protocol communications

The Open Protocol Communication (OPC) was released in 1996. In essence,

the OPC represented a highly compatible protocol that enabled universal

connectivity and interoperability between all different manufacturer devices [35].

These devices often have their own unique data modeling structures,

communication assessments and protocols, forcing the factories either to only

constitute their whole production control systems with devices of the same brand

or in order to take advantage of cost efficient measures forced to implement very

clunky, complex and inefficient global systems full of manufacturer drivers for

each different device.

This protocol concept can be viewed as a conversion layer between the

communication of client and server devices (Figure 2.26). The devices do not

need to be configured in anyway in order to exchange information - the OPC will

simply pick the information of one device in a certain protocol and it will make

it processable in the other device’s protocol.

2. State of Art

42

Figure 2.26 - OPC application scheme.

In order for that conversion to work, the OPC relies in a master-slave

topology where both devices involved in the transaction are able to read and

write onto each other, but it can only be started if the device that is being the

client initiates such transaction.

Conceptually, the OPC server-client relation has the role of a translator

between a data source and several applications connected to the OPC that require

that data.

The OPC server usually is structured by the following components (Figure

2.27) [35]:

 Open protocol communication:

This sector is responsible for assuring that the converted information is

sent and well received by the OPC client

 Native Communication:

This is where the OPC server communicates with the data source through

its own protocol or custom made interfaces, gathering the data requested.

 Translation module:

The translation module is the vital key of the OPC concept, since it has to

efficiently be capable of interpreting a request from an application, convert

it, send it to the native data source and, consequently, manage the data

transaction between both different nature devices.

The OPC client has a similar structure but, instead of being connected with

a native data source, is directly connected to a data application client.

 43

Figure 2.27 - OPC client-server conceptual structure.

2.4.4 Current State and Developments

Regarding current development efforts on what relates to industrial

networks, there is the current trend of implementing protocols based in wireless

technologies [29], with the general goal of furthering cost and complexity

reduction in the quantity of wires in a global system.

 Having a robust wireless network implemented into hazardous

environments also brings numerous benefits in flexibility and installation

longevity wise. The main reasons why it is yet to be largely implemented by the

current industrial scene, lies on the lack of real time performance, determinism,

limited distance reach and high susceptibility to interferences.

Information loss within an industrial factory can occur through numerous

situations, from the transmission itself, where different sent signals interfere with

each other, to industrial equipment creating electromagnetic charges and thermal

noise, therefore making it very hard to design and implement a very efficient

wireless network compared to a domestic/business application.

The most promising protocol standards that sustain the possibility of

wireless networks being implemented in production factories are WPA-IA,

Wireless HART, ISA100.11a and Wireless Mesh protocols.

The latter one allows for a dynamic network that can self-generate

communication nodes, depending on the onset control system requirements.

2.5 Brief Chapter Conclusion

Regarding sub-chapter 2.1, the important factors to retain is that automation

has been accompanying the human evolution trough the beginning of time, it is

a concept that will only evolve, therefore, further developing production and

manufacturing environments. Current researches revolve around the Industry

2. State of Art

44

4.0 concept where communication, interoperability, autonomy and flexibility are

key factors.

In sub-chapter 2.2, it is intended to pass informative knowledge on one of

the most important devices applied in automation industry. It is described how

they are structured and programmed. A very important fact, is that despite the

technology’s age, it is still very competitive device currently.

In Sub-chapter 2.3 it is important to note that distributed control systems

are indeed the best control solution. Although more initial investment is needed,

a lot of mid and long term benefits are gathered. Benefits like significant degrees

of redundancy and information propagation, as also more open and flexible

architectures. Developments in this area are associated to server virtualization,

cloud computing and wireless technology.

Interoperability and interaction within a system is only possible trough

highly networked systems, therefore in sub-chapter 2.4 it was decided to

approach industrial networking and communication methods (protocols). The

crucial information to retain from this sub-chapter is that industrial networks

have much higher requirements comparatively to a network used for corporate

and domestic purposes. Data reliability and speed is crucial for the well-

functioning of DCSs.

The following project is strongly supported by all of the technologies

described within this chapter. The application of industry 4.0 would simply not

be possible without the combination and synergy between all of them.

 45

3. Architecture and Implementation

In this chapter, a detailed description of this system will be issued, going

over architectures, operational functionalities, specifications, to hardware and

software implementation methodologies.

In sub-chapter 3.1, the global system architecture and functionality will be

presented.

 In sub-chapter 3.2, it will be descripted the conveyor control system in its

entirety, from process specifications, operational functionality, to hardware and

software implementation topics.

Following the same logic, in sub-chapter 3.3 the tank control system will be

the focus.

Within sub-chapter 3.4, an overview over the supervision and high level

monitoring component of this system will take place.

Sub-chapter 3.5, it will explain how the communication system was

implemented and what tools it was based on.

Lastly, within sub-chapter 3.6, the remote clients implemented will be

overviewed, explaining their functionalities and reason of their existence as well

as how they were implemented.

3.1 Architecture and general functionality

This distributed system is strongly dependent on a local Ethernet network

and software run in common computers, which facilitates the implementation of

diverse client applications, therefore, allowing for a lesser dependability on

specialized equipment.

This structure was mainly conceptualized to operate two physical

processes: a tank and a conveyor. The reason for their use comes mainly from

taking advantage of available resources in the laboratory and the fact that the

3. Architecture, Technology and Implementation

46

conjugation of those processes does sustain a realistic manufacturing

contextualization. It is worth noting that each process is controlled by PLCs of

different manufacturers, in order for the system to present a higher degree of

interoperability (Figure 3.1).

Figure 3.1 - Hybrid System of Distributed Automation.

Besides the processes and the two controllers associated with them, the

system is composed by a supervisor that monitors, imposes working states,

gathers information and transmits it to remote clients. There is also a Human-

Machine Interface device (HMI), which allows high level interaction with the

whole system, having varied tools available for monitoring and global system

manipulation. Furthermore, one Computer running an open protocol server,

with the purpose of making the communication between controllers, supervisor

and remote clients compatible and possible. And, finally, two remote clients that

consist of one operational historian and an advanced monitoring client.

As seen in Figure 3.2, although the system may seem to be centralized, due

to presenting a star architecture around the OPC server, on what concerns the

control and system work states, every controller holds its own routines and

procedures, making it distributed in a control sense. The main reason for it to be

centralized on the OPC server, is due to the different manufacturer controllers,

that have very different communication protocols, therefore making it

imperative to have, in a communication sense, a centralized structure for them

to be able to communicate with each other.

 47

Figure 3.2 - Global system scheme.

Another important detail to mention is that the system does not hold a true

unidirectional master-slave communication structure. All of the controllers have

variables that are used exclusively to be received and others to be sent; with that

being said, it can be seen as doubled master-slave communication between two

controllers, where to a group of data, one plays the role of the slave and to other

group of information the inverse case happens.

In regards to its general working, the system presents two main modes:

 Manual Mode: this mode permits the direct control of the physical

actuators associated with each process and can be used either in low

levels (via mechanical buttons near the tank/conveyor) or in high

level (through the HMI).

 Automatic Mode: it represents the full automated cycle of

transporting and treating a specific part, applying different working

routines depending on the part’s individual characteristics. Those

part characteristics/specifications are pre-selected or created by a

user before the initiation of the mode or during the treatment of a

former part. This method can only be initiated if the whole system is

operational. In case this condition is not verified, the whole system

will maintain itself in a manual state. This mode has also a strong

failure detection and treatment tools, alerting the whole installation

in case of failure, waiting for a technician’s presence in order to do

manual monitoring and, ultimately, in case the failure is not

attended, global system blocking is ensued.

3. Architecture, Technology and Implementation

48

3.2 Conveyor Control System

The conveyor implemented in this project has the main goal of transporting

a part towards the tank station (Figure 3.3). Each part has its own individual

characteristics and, since, some might be more fragile than others, this system

was designed to allow the user to define the conveyor’s speed in different stages

of the transportation, assuring the most adequate transportation task to a certain

type of upcoming part.

Figure 3.3 - Conveyor System.

3.2.1 Process Structure and specifications

Before describing the operational task implemented, it is important to

mention which are the input/output mechanisms and part specifications

available in the conveyor. As illustrated in Figure 3.4, there are a total of five

sensors and one actuator surrounding a simple conveyor.

Figure 3.4 - Conveyor illustration.

 49

The sensors are activation based, emitting a signal whenever the part carrier

goes through the sensor’s range of vision. The sensors on the edges of the

conveyor (sensors 1.1 and 1.2) are mechanical limit relays, while the sensors 2 are

optical. The information they transmit to the controller is used to know the

relative position of the part, allowing self-calibration of the carrier and the

application of user defined transportation speeds to the part in different sectors

of the conveyor lane. The actuator is the motor that applies movement to the

conveyor and allows the controller to manipulate the direction and speed.

Concerning the part specifications, the idea was to divide the conveyor path

into two different sectors and associate to each different dedicated transportation

speeds. In Figure 3.4 the two sectors can be observed, V1 illustrates a lower speed

that assures the safety and well-functioning of the carrying task, at the pickup

and deployment of the part. The sector from sensor 2.1 to 2.3 with V2 associated

is meant to minimize the transportation time. The transportation speeds are

limited in the range of 0.33 Hz/19.8 rpm or 0.1 m/s due to the small scale of the

conveyor.

3.2.2 Operational Description

As observed in the Figure 3.5, the operational routine starts with the

verification of several conditions before applying any mode of conveyor control.

If the global system outside of the conveyor (specifically, the supervisor and the

tank) is not active or responding, the manual mode is forced immediately. If there

is any external emergency stop order or non-attended failure, the system will

block itself.

Figure 3.5 - Conveyor main sequential logic.

3. Architecture, Technology and Implementation

50

If there is a case of the conveyor being in a blocked state, the only way to re

enable it is through ordering a reset via physical buttons or through external

components (HMI). The reset executes a memory clear of all the important

variables and applies a courier repositioning to the beginning of the conveyor

belt.

When the manual mode is activated, direct control of the conveyor is made

possible through either the low level interface or through the external HMI. This

mode allows the technician to order the conveyor to stop or apply movement at

a default speed going forward (from a previous workstation to the tank) or

reverse. Additionally there are two other buttons that allow the increment or

decrement of the speed. If the technician is monitoring the conveyor through the

HMI device, there is also the option of applying a specific speed value onto the

conveyor (Figure 3.6).

Figure 3.6 - Manual mode main features.

After assuring that the global system is all activated and successfully inter

communicating, it is possible to activate the automatic mode through higher level

interaction using the HMI. This mode starts by verifying if the tank is not busy

and if there is a part ready to be transported. If those are valid, it will update the

part specifications (V1 and V2) received from the supervisor and initiate the

transportation process, as shown in Figure 3.7.

This transportation starts by checking if the sensor 1.1 is activated; in other

words, if the carrier is located in the beginning of the conveyor, and, if it is not, it

will start a routine to position the carrier on the initial position. Afterwards, it

will wait a pre-defined number of seconds and execute the routine that takes the

carrier to the end position (the tank location). Then, it waits again, takes the

carrier to the initial position and starts the whole cycle again. The transportation

routines always apply V1 before passing the first and last optical sensor.

One important last feature is the failure detection and consequent handling.

In manual mode, there is no failure detection, since a technician is expected to be

directly monitoring the conveyor (either through low or high level interaction),

thus, being able to instantly detect and actuate upon the possible fault.

 51

Figure 3.7 - Automatic mode logic scheme.

The autonomous failure detection is used within the automatic mode. In

this project, there were two ways of checking a possible failure within the

conveyor. The first one is through the application of a timer that starts counting

every time a transportation routine engages; if the time limit defined is reached,

the conveyor has been in motion for too long which means faulty sensors. The

other method is through checking if the speed applied on the motor actuator is

indeed the desired speed and, if not, it will point out to faulty inverters, motors

or the conveyor structure.

If there is a failure detected, the conveyor process will send the signal to the

server. Consequently, the supervisor will pick up that signal and proceed to alert

all levels that the conveyor is faulty. It will stop momentarily the conveyor and

wait for a technician to attend the failure (via low level interface near the

conveyor or trough HMI). If the technician does not attend the failure, the global

system will enter in a state of emergency stop. In the contrary case, if a technician

is present, the system will go into a temporary manual state where the technician

will test and deduce where the fault is, having three final choices: emergency stop

the conveyor, shut down the whole system or ignore the failure, as seen in Figure

3.8. In case the failure is ignored, the system will continue its automatic mode

routine.

Figure 3.8 – Main features of monitoring mode.

3. Architecture, Technology and Implementation

52

3.2.3 Hardware Composition and Implementation

Figure 3.9 represents the real physical implementation of the conveyor

process along the supervisor and HMI. The HMI and supervisor are meant to be

in a different geographical locations from the conveyor process but, for practical

purposes, it was decided to mount both in the same panel.

On what concerns the controller, a Siemens s7-1200 was used. This PLC

features two racks of eight digital Relay inputs of 24 V DC and two other for

digital outputs of 24V DC (total max current output of 2A), one analog output

that ranges voltages from 0 to 10 V DC and, finally, one standard Ethernet port.

The way the controller actuates on the conveyor is through indirectly

manipulating an inverter, which consequently direct controls the motor. The

controller sends a signal to the inverter that goes from 0 to 10 V through the

analog output. The inverter is previously configured to interpret that signal in

the following way: if the value received is in the range of [0 to 5[V it will apply

the reverse direction, being 0V the top reverse speed; if the value is] 5 to 10] V it

will apply the forward direction onto the conveyor, being 10V the top forward

speed. The 5 V value represents that the motor is stopped.

In order for the inverter to offer both reverse and forward movement in a

single range of voltages, it creates the issue of having to apply a specific voltage

in the middle of that range for the motor to be stopped, which brings potential

malfunctioning in cases where the inverter is turned on and the controller is not,

due to the fact that the inverter will receive 0 V signal from the controller and

interpret it as the right signal to apply maximum reverse speed onto the motor.

The inverter used was a delta VFD-L. It is a very simple inverter that can

apply a top speed of 400Hz or 24000rpm, and it can either control DC motors or

three phased AC motors. The justification for its use comes from two main

reasons: motors mostly require high power drives and the motor used is a three

phased AC motor, both of which functionalities the PLC does not and is not

meant to provide.

One very important matter about the inverter, is that it was configured as

controlling a range of speed around 40Hz or 2400 rpm, but the motor has a

reductor box coupled that converts those 40 Hz into a much slower speed of 0.33

Hz, 19.8 rpm or 0.1 m/s.

 53

Figure 3.9 - Hardware configuration scheme.

Concerning the motor itself, it is a 120W Efacec three-phased AC motor,

picked mostly as it was the available resource, therefore presenting specifications

that weren’t really demanded, such as a reductor box and significantly more

power than needed for the small conveyor process.

Regarding the sensors used and, as seen in the Figure 3.10, the two in the

edges of the conveyor belt are the Telemecanique XCK-M, which are simple

contact limit relays, and the others are Sick Optic 922F sensors, which are photo-

electric based. Both sensors are used in this project to work with 24V DC.

The optical sensors are composed by an infra-red transmitter and a photo

electric receiver. Taking advantage of both, the way they were used as a position

detection sensor was through attaching a reflector material onto the conveyor

carrier, making the sensor identify its own transmitted photo-electric beam. In

3. Architecture, Technology and Implementation

54

the Appendix sub-sections A and B, there is the complete connection scheme of

the panel and I/O tables.

Figure 3.10 - Sensors used within the Conveyor (contact relay and infra-red optical sensor).

3.2.4 Software Methodologies

For the programing of the controller it was used the proprietary’s software

Step 7® that is offered within a global tool software named Siemens TIA portal.

As it can be seen in Figure 3.11, the software is mainly composed of a script sector

where the executable tasks and functions are implemented, and a sector for

variable definition and debugging.

As in most of the PLC software environments, the variables are all pre-

defined in tables where it is chosen the type of data used and the specific memory

slot. Concerning the code implemented, Step 7 allows the three main languages

from the IEC 61131-3 standard: Ladder, Function Blocks and Structured text.

Structured text language was chosen exclusively in the conveyor

programming, due to the fact of many concurrent sequential actions being used,

which, ultimately, would provoke a very high complexity degree by using the

other two graphical languages.

 55

Figure 3.11 - Step 7®/ TIA Portal® Software environment.

The code was essentially divided into four task groups:

 Communication: it has the function of updating the memories that

are used to be read or written by the server. This task also processes

the values in order for them to be interpreted correctly. The

processing relies mainly on normalizing the value range and

converting its representation type.

 Low level interface management: its function is to manage both

physical button inputs and light outputs to give a simple and

effective low control and interpretation of the conveyor in its nearby

confines.

 Conveyor control: this task is where the major bulk of executable

actions are applied. Its job is to manage the manual and automatic

mode of the conveyor, but also to monitor and provide tools to

identify, alert and correct possible failures.

 Transportation Routines: dedicated trigger tasks for autonomous

transportation.

The conveyor transportation procedures (take carrier to tank and take

carrier to the beginning) were made into concurrent trigger tasks, so the

controller would not see itself stuck performing that sequential action only, and

completely ignore all the other important functionalities. As seen in Figure 3.12 ,

the task will only start if the “go to beginning” flag is set. When the beginning

sensor or limit switch 1 is activated the flag will be reset, meaning that the

destination was achieved and the task will be forced to stop.

IF "go_to_begining_flag1" = 1 THEN

 "timer_transport_in" := 1;

 IF "limit_switch1" = 1 THEN

 "go_to_begining_flag1" := 0;

3. Architecture, Technology and Implementation

56

 END_IF;

 IF "go_to_begining_flag2" = 0 THEN

 IF "mode" <> 1 THEN//default speed values for manual mode in

 //the range of [0 to 100}%;

 "v1_reverse_proc1" := 77; //speed in %

 "v2_reverse_proc1" := 77;

 END_IF;

 "setpoint_speed" := "v2_reverse_proc1";

 "go_to_begining_flag2" := 1;

 END_IF;

 IF "stop_proc1" = 0 AND "es_supervisor" = 0 AND "go_to_begining_flag1"=1 AND

"failure" =0 THEN

 // Adjusts the motor speed acordingly to the position it is

 IF "optical_sensor3" = 1 THEN

 "setpoint_speed" := "v1_reverse_proc1";

 END_IF;

 IF "optical_sensor2" = 1 THEN

 "setpoint_speed" := "v1_reverse_proc1";

 END_IF;

 IF "optical_sensor1" = 1 THEN

 "setpoint_speed" := "v2_reverse_proc1";

 END_IF;

 "q_motor" := REAL_TO_INT(16800 - 11200.0 * INT_TO_REAL("setpoint_speed") /

100.0);

 END_IF;

ELSE

 "go_to_begining_flag2" := 0;

END_IF;

Figure 3.12 - Partial code of a transportation task.

The conveyor control was completely designed to follow a sequential

command logic, therefore, there was no prioritized focus in closed loop control

of the motor speed or carefully studied and forced sample times. The sample time

used is the one pre-defined by the PLC which, according to the s7-1200 PLC

manual, is a conjecture of the cycle time and I/O modules update rate. After

checking the I/O module’s properties is estimated to be 12.8 and 40 milliseconds,

for digital and analog connections, respectively.

In regards to the speed applied onto the conveyor and as seen in Figure 3.12,

the speed has to go through a lot of conversions until it is ultimately put into

action. From a software stand of point, the goal is to send into the inverter a signal

that scales from 0 to 10 Volt, which corresponds in a processed value of 5600 to

27648.

From 5600 to 16800 corresponds a reverse direction of the motor, being 5600

the conveyor top reverse speed of 19.8 rpm, the value 16800 corresponds 0 rpm.

 57

From 16800 to 27648 corresponds a forward direction, being 27648 the top

forward speed.

Within the program, for simplicity and abstraction purposes, both reverse

and forward ranges were converted into the range of 0 to 100% and since both

ranges are not equal, two distinct linear conversion equations were applied.

3.3 Tank Control System

The tank used in this project has the main focus of applying a timed

submersion of a welded part where there is feedback control applied into

maintaining a specified water level (Figure 3.13). Depending on the degree or risk

of damage liability associated to a specific welding technique, the tank controller

was designed so it would allow the selection of several types of control methods

upon the liquid submersion, treatment limit times and the level of the tank

desired to be filled. As observed in Figure 3.13, the tank also presents low level

interaction nearby.

Figure 3.13 - Tank system.

3.3.1 Process Structure and specifications

This tank, although very simplified, does not hold a linear behavior through

different ranges of water level, being more unstable especially at the lower and

upper extremities of the tank.

As Figure 3.14 shows, the tank process is mainly composed by one sensor

and four actuators.

3. Architecture, Technology and Implementation

58

Figure 3.14 - Tank illustration.

The sensor is used to deduce the water level within the tank. It is composed

by a wire attached to a floater and a weight, a sheave and a potentiometer directly

concatenated to the former. The weight will keep the wire always extended while

the float accompanies the water level variation. The sheave will rotate

accordingly to the wire response to a water level variation and, as consequence,

the potentiometer will generate a specific DC voltage.

The actuators are a water pump and three electro valves. The water pump

is the only means of supplying the tank with water and is directly associated to

a DC motor that allows the controller to manipulate the supply. In this project,

however, its range was limited between 0 to 10.6 ⨯ 10−5 𝑚3/𝑠 (8V motor supply)

The electro valves have the function of limiting the speed with which the

water escapes the tank, being each associated to one of the three escape tubes of

the tank. The tubes associated with valve 1 and 2 have the same size and are

significantly larger than the tube associated to valve 3.

Regarding the part specifications, the idea was to let the user select

important factors associated to the pickling treatment, therefore the time limit,

desired water level and type of controller were the personalized characteristics

chosen.

 Five different controllers were implemented: command control, which is

the only no water renewal sequential type control, and four others that relate to

different variations of feedback control using mainly PID methodologies, as

described later on.

3.3.2 Operational Description

 Similarly to the conveyor programmed logic, and as seen in Figure 3.15, the

main operational routine always begins with variable resets and state variable

 59

checks; more specifically, it verifies if the other two main components are

communicating (supervisor and conveyor) or if there isn’t any stop state or

failure being issued. If by any means the system encounters itself in a blocked

state, only a reset will restart the process.

Figure 3.15 - Tank main logic scheme.

In the case of manual mode being activated, the tank can be directly

actuated by the user through the use of a switch panel nearby the process or

through the HMI. The functionalities available are the opening or closing of each

electro valve and the activation and the speed of the water pump (Figure 3.16).

Figure 3.16 - Manual mode main features.

Having the whole system operational and inter communicating, the

activation of the automatic mode is possible (Figure 3.17). This mode starts by

verifying if any part has arrived to the tank station, which is done through

receiving information from the conveyor about its end limit sensor state. If the

former condition is verified the mode will update the parts’ characteristics

specified by the HMI and will initiate the treatment routine with those in mind.

3. Architecture, Technology and Implementation

60

After the treatment time being achieved, the automatic mode will start over

again.

Figure 3.17 - Automatic mode logic scheme.

The treatment routine execution will vary depending on the water level

controller applied and as mentioned before the selection of the following

controllers are possible:

 Command:

It uses a simple sequential logic where the tank remains static after

achieving the water level specified.

The way it works is as follows: starts by closing all electro valves and

activating the water pump at a default value of 5.3 ⨯ 10−5 𝑚3/𝑠 (4 V

DC supply); when the tank reaches the specified value it will stop, in

case the tank presents a level of water higher than 2%, compared to

the desired a level of water higher than 2%, after the pump is

stopped, the valves will open and close until the level is rectified.

It was conceptualized for using in situations where the user does not

see the need to have liquid renewal for each part.

 Relay:

Uses a simple on-off methodology. If the water tank level is below

the desired; the water pump is activated to maximum rotation

symbolizing 𝟏𝟎. 𝟔 ⨯ 𝟏𝟎−𝟓 𝒎𝟑/𝒔, otherwise, the pump will be off and

the water will escape through the tube associated to valve 1.

This controller was conceptualized for users that have robust

actuators and value a less precise/efficient type of controller and

prioritize faster execution.

 PI controller:

As seen in the Figure 3.18 and equation (3.1), this controller is based

on a closed loop analogy that starts by calculating the error between

the tank level read from the sensor and the desired tank level (y(k)

and r(k)). The error (e(k)) will be multiplied by the sum of the

proportional and integral components of the controller. The result of

that calculation will generate a corrected value to actuate onto the

motor.

 61

Figure 3.18 - PI controller block scheme.

The proportional component of the controller is represented by (3.2)

and its focus is to influence the current error value. On the other side,

the integral component of the controller is represented by (3.3) and

its goal is to process the error while taking into account the error

samples of the past.

 𝒖(𝒕) = 𝑷(𝒕) + 𝑰(𝒕) (3.1)

 𝑷(𝒕) = 𝑲𝒑 ∗ 𝒆(𝒕) (3.2)

𝑰(𝒕) = 𝑲𝒊 ∗ ∫ 𝒆(𝝉) 𝒅𝝉

𝒕

𝟎

(3.3)

This controller needs to be tuned previously to its application, by

calculating and simulation testing of the correct values for the

controller gains Kp and Ki (proportional and integral gain).

Firstly, in this project, the Ziegler-Nichols method was used to

provide a notion of the values required; the next step was to

manually adjust those values by testing the controller on a simulated

model.

The values chosen for this controller were Kp=2.5 and Ki=0.156.

 Switched PI controller:

The difference that stands between this controller and the former is

that instead of using the same controller gains for the whole tank,

there were different parameters distributed into smaller tank level

intervals, with the intent of maximizing performance and stability

(Figure 3.19).

Figure 3.19 - Switched PI controller block scheme.

3. Architecture, Technology and Implementation

62

In the modeling stage, it was decided to divide the tank level water

control into two ranges: [0 to 65]% with (Kp=4, Ki=0.27) and]65 to

100]% with (Kp=4.5, Ki=0.3).

 PI controller with model rectification:

This controller adds an internal model of the process to the first PI

controller, having the goal to further help rectify the set-point error.

The idea is to change the initial specified set-point (r1(t)) with the

difference between the predicted water level and the one read from

the process (Figure 3.20).

The model used was the same used for the simulation, and it is,

essentially, a trained neural network based in black box modulation.

Figure 3.20 - Predictive PI controller block scheme.

It is worth noting that the derivative effect was not used in the above

controllers, due to the fact that satisfactory results were achieved during

modeling phase, with only the use of proportional and integral components of

the PID.

 On a last note about the automatic mode, is that the closed loop controllers,

in the beginning of their routine, always open the electro-valve 1 and close the

rest.

Concerning the failure detection, it holds a similar analogy to the conveyor

control system: in manual mode there is none, since it is conceptualized to have

a technician directly monitoring. Within the automatic mode, a failure is detected

mainly through the incapability of the controller applied to get the water level

up to the desired set-point, after the dynamic state has ended. This failure points

out multiple possible failures such as water pump, sensor, electro-valves

malfunctioning or simply hardware degradation that influences the nominal

behavior of the process. If the failure is indeed detected, the system will halt itself,

inform the supervisor, and set the alarm on its own process confines. If a

technician is present, the system will head onto a variation of the manual mode,

called monitoring mode (Figure 3.21). If not, the system will head onto a global

system emergency stop.

 63

Figure 3.21 - Monitoring mode main features.

3.3.3 Hardware Composition and Implementation

Figure 3.22 illustrates the main tank control system, the controller used is a

Schneider M340 PLC equipped with one analogic, two digital I/O modules and

Ethernet, Modbus and Can-Open ports.

The analogic module is an AMM0600 that holds four inputs and two and

outputs with a range of [0 to 10] V DC. The digital modules are DDM 16022 that

present eight inputs and eight outputs of 24 V DC.

Figure 3.22 - Tank hardware configuration scheme.

Concerning the actuators, the water pump is a Flojet 12V DC. In the present

project, the signal transmitted to it by the controller was limited to [0 to 8 V] or

[0 𝑡𝑜 10.6 ⨯ 10−5] 𝑚3/𝑠. This limitation was implemented so it would prevent

unnecessary harm and noise caused by the controller methodologies applied.

Moreover, before the signal reaches the pump, it goes through a motor driver to

assure enough power reaches the actuator and protect the PLC.

Due to the fact that the digital outputs coming from the controller are 24V

DC, there is an electronic circuit that scales the voltage down to 12V.

3. Architecture, Technology and Implementation

64

In regards to the water level sensor, it generates an array of DC voltages

depending on the potentiometer position and presents a non-linear

representation of the tank water level having the [3.83 to 9.32] Volt range

translated onto [0 to 100]%. In the Appendix sub-sections A and B there is the

complete connection scheme of the tank panel and I/O tables.

3.3.4 Software Methodologies

For the programming of the M340 controller it was used the Schneider

proprietor software Unity Pro®. As it can be seen in Figure 3.23, it holds a similar

presentation and structure comparatively to the Siemens programming software

Step 7®. What distinguishes the M340 programming software is the lack of

graphical human-machine interface programming and holds the complete IEC

61131-3 programming language library; in other words, it is possible to program

the Controller in Instruction List, Sequential Control, Structured Text, Ladder

Logic and Function block, unlike Step7® where you can only use the latter three.

Figure 3.23 - Unity Pro® Software environment.

 One important factor to note is that, since the main task is running itself as

a cycle, there are no functions within it that hold typical cyclical instructions such

as “while” and “for”. Therefore, an instruction that needs to function during a

significant period of time will be called several times by the main task, instead of

the case where the main task locks itself on that function.

 Having the factor above taken into account and not repeating too much of

what was said from the conveyor software methodologies sub-chapter 3.2.4, the

 65

code implemented within the main task divides itself in: communication, low

level interface management, failure detection and ultimately the tank control.

On what concerns the execution sample time, it was forced a sample time

of 200 milliseconds due to the fact of the tank not having a fast dynamic behavior.

 Regarding the automatic controllers implemented, The PI code

implementation was heavily based on K.J. Aström and T. Hägglund discrete logic

[36].

As seen in Figure 3.24, the PI controller was indeed protected against the

eventual windup effect. This effect is illustrated by the continuous increment of

the integral component, which leads to the eventual malfunctioning of the

controller. There are many different ways of tackling this problem, being the

most common one the periodic reset of the integral component. However, in this

project, it was decided to simply saturate the integral component within an

interval where the controller performs accordingly to the conceptualized. This

approach was used so the controller would not show the periodical set-point

error associated with the resetting of the integral component.

pi1{

Qv1:=1;

 pi_i_k_1:=pi_i_k; (*update for the integral component*)

 pi_bi:= (pi1_kp*(time_to_real(Ts)/1000.0))/ pi1_ti; (*integral gain*)

 pi_ao:= (time_to_real(Ts)/1000.0)/pi1_tt; (*gain associated to actuator saturation*)

 pi_p_k:=error_k*pi1_kp; (*proportional component update*)

 u_motor_k_p1:=pi_p_k+pi_i_k_1; (*calculation of the controller actuation*)

 u_sat_pi:=u_motor_k_p1;

 if(u_sat_pi>1.0) then (*actuator saturation*)

 u_sat_pi:=1.0;

 end_if;

 if(u_sat_pi<0.0) then

 u_sat_pi:=0.0;

 end_if;

 (*calculation of the integral component for the next sample*)

 pi_i_k:= pi_i_k_1+pi_bi*error_k+pi_ao*(u_sat_pi-u_motor_k_p1);

 (*Saturation of the integral component to prevent the wind up effect*)

 if (pi_i_k>5.0) then

 pi_i_k:=5.0;

 end_if;

 if (pi_i_k<-5.0) then

 pi_i_k:=-5.0;

 end_if;

}

Figure 3.24 - PI controller code sample.

3. Architecture, Technology and Implementation

66

 The neural network used for simulation and for the Predictive PI

Controller was implemented through the acquisition of a large group of data,

representing most of the possible behaviors associated to the conceptualized use

of the tank. That data is used to train the network via Levenberg-Marquardt back-

propagation algorithm available in Matlab’s neural network toolbox.

 After the testing of several different trained neural networks, as seen in

the Figure 3.25 and equation (3.5), the following structure was chosen. This

network, on the entrance layer, holds information about three samples of the past

regarding the tank level values (y(k − 1), y(k − 2), y(k − 3)) and two regarding

the actuation applied (u(k − 1), u(k − 2)), one internal layer holding three

neurons that use the hyperbolic tangent as an activation function and one neuron

output layer that delivers the current predicted sensor value 𝑦𝑛𝑛(𝑘). The W

matrixes represent the weights that result from the network training and are the

key factor to represent the model behavior. The B matrixes hold the bias values

that serve purpose to calibrate the activation functions within the neural layers.

Figure 3.25 - Chosen neural network structure.

 𝑍1 = 𝑊1 ∗ [𝑦(𝑘 − 1) . . 𝑦(𝑘 − 3) 𝑢(𝑘 − 1) 𝑢(𝑘 − 2)]′

+ 𝐵1,

(3.4)

 𝑍2 = 𝑊2 ∗ 𝑡𝑎𝑛ℎ(𝑍1) + 𝐵2 (3.5)

 𝑦𝑛𝑛(𝑘) = tanh(𝑍2) (3.6)

Where 𝑊1 = [
−35.44 21.33 12.23 −1.71 2.1

0.15
−7.66

0.08 0.08 −0.002 0. 0081
29.21 −27.93 3.49 2.78

] , 𝐵1 = [
2.23

−0.17
−0.76

],𝑊2 =

[
−0.04
3.25

0.0027
] and 𝐵2 = 0.58.

Due to the inability of the M340 PLC to support calculations involving

matrixes or more advanced mathematical functions, such as hyperbolic

functions, the neural network was implemented as observed in the Figure 3.26.

 67

neural{

x1_11:=w1_11*y_sensor_k_m1+w1_12*y_sensor_k_m2+w1_13*y_sensor_k_m3+w1_14*u_motor_k_m1+

w1_15*u_motor_k_m2;

x1_21:=w1_21*y_sensor_k_m1+w1_22*y_sensor_k_m2+w1_23*y_sensor_k_m3+w1_24*u_motor_k_m1+

w1_25*u_motor_k_m2;

x1_31:=w1_31*y_sensor_k_m1+w1_32*y_sensor_k_m2+w1_33*y_sensor_k_m3+w1_34*u_motor_k_m1+

w1_35*u_motor_k_m2;

 z1_11:=(exp(x1_11)-exp(-x1_11))/(exp(x1_11)+exp(-x1_11))+b1_11;

 z1_21:=(exp(x1_21)-exp(-x1_21))/(exp(x1_21)+exp(-x1_21))+b1_21;

 z1_31:=(exp(x1_31)-exp(-x1_31))/(exp(x1_31)+exp(-x1_31))+b1_31;

 x2:=w2_11*z1_11+w2_12*z1_21+w2_13*z1_31;

 ynn_k:=(exp(x2)-exp(-x2))/(exp(x2)+exp(-x2))+b2;

}
Figure 3.26 - Code regarding the model prediction.

Lastly, concerning the received values from the water sensor, it does hold a

nonlinear scalability to its real physical value meaning, therefore, besides the

normalization of the range [3.83 to 9.32] Volt, there was also the need of using an

approximate polynomial regression, in order to have an accurate normalized

value of the water level within the tank, as seen in Equation (3.7).

𝑦(𝑘)𝑠𝑐𝑎𝑙𝑒𝑑 =
0,0051 ∗ 𝑦(𝑘)3 − 0,1281 ∗ 𝑦(𝑘)2 + 1.1582 ∗ 𝑦(𝑘) − 2.8088

1000

(3.7)

3.4 Supervision and Monitoring

The supervision and monitoring heavily relies in the use of the group of a

controller and a graphical HMI. The role of the supervisor is to receive all of the

main information coming from the Human-machine interface, conveyor and tank

controllers. With that information it sets alarms and imposes the general work

state coming from the HMI that all the other components have to adapt to. It is

also the only component that directly communicates with the remote clients.

The Human Machine Interface or HMI is used as a high level graphic interaction

hardware, which allows the user to observe and manipulate the whole system

within the features it provides.

3. Architecture, Technology and Implementation

68

3.4.1 Operational Description

Concerning the supervisor controller, it essentially divides itself in the

following operations:

 Alarm setting: there are six physical lights and two buzzes associated

to the controller. Each buzzer symbolizes if the conveyor or the tank

have encountered a failure. The lights hold information about the

supervisor, conveyor and tank current mode, communication

accessibility and stop state.

 Information propagation: has a large reserved memory that holds

information about the main aspects of each component, with the goal

of establishing information access to the remote clients and HMI.

 HMI support: many graphical tasks implemented were not possible

if not by using the supervisor; such tasks were mainly animations

and trigger screens.

Regarding the HMI, its function is to give to the user the full capability of

visualization and interaction with all of the system, without having the need to

physically interact or monitor the processes.

The screen programmed structure majorly divides itself between the

manual and automatic mode, which are individually accompanied by failure,

block, option choosing and help glossary screens.

The manual mode holds a very simple interface, where it can be observed

and manipulate in real time both processes with ease (Figure 3.27).

Figure 3.27 - Main manual mode Screen.

If in any case one of the processes is not communicating or is in stopped

state, the interface will inform the user and will redirect into a manual mode

where only the operational process can be viewed and actuated upon (Figure

3.28).

 69

Figure 3.28 - Conveyor anomaly and consequent manual mode screen.

Concerning the automatic mode, it will only be able to be chosen if both

processes are operational; if they are, the user will be forwarded into specification

choosing.

As seen in Figure 3.29, there are several custom parameter. Within the HMI,

it was defined as there being three kinds of parts:

 Part A: holds standard specifications regarding a smaller and more

robust treated part, therefore, higher conveyor speeds, less treatment

time, lower tank level and a sequential controller.

 Part B: holds standard specifications regarding a larger and more

fragile treated part, consequently, lower conveyor speeds, more

treatment time, higher tank level and a continuous controller.

 Part C: this part allows the user to implement its own desired

treatment, allowing the customization of all the specifications offered

by the tank and conveyor control systems.

Figure 3.29 - Custom part specification selection screen.

Regarding the automatic’s mode main window, as viewed in Figure 3.30,

besides the observation of how the processes are behaving, it is also possible to:

3. Architecture, Technology and Implementation

70

let the system know when there is a part ready to be transported, jump the

current treatment so a new control cycle can be initiated, application of simulated

failures and change the part control parameters for the upcoming part. On a last

note, it can also be viewed the current specifications being applied onto the part,

and the future ones selected for the next.

Figure 3.30 - Automatic mode screen.

Regarding the failure feature, it possesses the same graphical execution of

the logic implemented in the process controllers: if a failure is detected a window

will show up informing the user. It will wait a set period of time and, if there is

no action taken, the system will globally block itself. If the user is present, he will

be able to block the process that holds the failure, block the whole system or

choose to go into a manual monitoring mode where he will be able to access the

process behavior (Figure 3.31 and Figure 3.32).

Figure 3.31 - Failure, monitoring mode screens.

 71

Figure 3.32 - Emergency block screen.

On a side note, there is also a simple help glossary accompanying every step

of the graphical interface, as also a main access index (Figure 3.33).

Figure 3.33 - Help screens.

3.4.2 Hardware Composition and Implementation

As seen in the Figure 3.9, the hardware used regarding this level were a

couple buzzers, six physical lights, three buttons a controller and a human-

machine interface

The controller used here was a Siemens s7-1200 and the HMI was a KTP600

Basic. The HMI allows for a very limited colored interface for industrial safe

interaction because it can only support directly one controller. Therefore, there is

the need of directing the information to the supervisor controller before being

accessible in the HMI.

3.4.3 Software Methodologies

For the programing of the controller, it was used the proprietor software

Step 7® and for the HMI the WinCC®, both being offered within a global tool

software named Siemens TIA portal.

3. Architecture, Technology and Implementation

72

As it can be seen in the Figure 3.34, the software is composed by a simple

graphical edition sector (a toolbox for the application of several visual objects)

and an object properties sector where you can edit each graphical object used.

Figure 3.34 - Simatic WinCC/TIA Portal Software environment.

Both the controller and HMI do not own large or complex programming

codes. The HMI programming is essentially a drag and edit kind of programming

where the major concern was the esthetic and ease of monitoring. Concerning the

controller, it holds very small tasks, tackling the different operational tasks

mentioned in the sub-chapter 3.4.1.

One of the major details that must be mentioned was the well-functioning

of the event triggered screens. In this project, they represent informational notice

screens that pop-up when there is some kind of anomaly, particularly failure or

an emergency stop performed within the system.

The way it works within the HMI is through associating a memory variable

with an event on value change, so each time that variable changes value it forces

the visualization of the alert window. Due this kind of event, there was the need

to implement on the supervisor controller, a task that would indirectly associate

the state variables with the event triggered variable, in order to avoid incorrect

pop ups. The code exert within the Figure 3.35 below illustrates a simple

commutation logic that supports the HMI failure triggered screens.

IF "failure_proc2"=1 THEN

 IF "fail_flag_proc2" = 0 THEN

 "fail_flag_proc2" := 1;

 IF "fail_screen_proc2" = 0 THEN

 "fail_screen_proc2" := 1;

 ELSE

 73

 "fail_screen_proc2" := 0;

 END_IF;

 END_IF;

ELSE

 "fail_flag_proc2" := 0;

 IF "failure_proc1" = 1 THEN

 IF "fail_flag_proc1" = 0 THEN

 "fail_flag_proc1" := 1;

 IF "fail_screen_proc1" = 0 THEN

 "fail_screen_proc1" := 1;

 ELSE

 "fail_screen_proc1" := 0;

 END_IF;

 END_IF;

 ELSE

 "monitor_ok_supervisor2" := 0;

 "fail_flag_proc1" := 0;

 END_IF;

END_IF;
Figure 3.35 - Failure Trigger screen code.

Another important aspect of the controller support programming for the

HMI was the animation of the interface conveyor. In order for the movement of

the carrier to be visualized correctly, there was the need of creating a task that

would manipulate the HMI translocation animation in conformity with the real

information of the conveyor process.

The way the basic animation within the HMI works, is through specifying

the beginning and end point of the translocation, and associating to it a scale of

position values. Since there was the need of implementing a sensation of

continuous movement within the image, the scale implemented had to be large

enough so the increment of the position value would be slow.

Within the controller, it was implemented the following code exert, within

Figure 3.36, that would take notice of the direction and sensor values coming

from the conveyor process and either increment or decrement the animation

position value depending on the conveyors direction, as well as forcing specific

positions, depending on the conveyor sensors.

 IF "conveyor_direction"=2 THEN

 "conv_move" := "conv_move" + 1;

 END_IF;

 IF "conveyor_direction"=1 THEN

 "conv_move" := "conv_move" - 1;

 END_IF;

 IF "l_switch_1_supervisor" = 1 THEN

 "conv_move" := 0;

 END_IF;

 IF "o_sensor_1_supervisor" = 1 THEN

3. Architecture, Technology and Implementation

74

 "conv_move" := 7500;

 END_IF;

 IF "o_sensor_2_supervisor" = 1 THEN

 "conv_move" := 15000;

 END_IF;

 IF "o_sensor_3_supervisor" = 1 THEN

 "conv_move" := 22500;

 END_IF;

 IF "l_switch_2_supervisor" = 1 THEN

 "conv_move" := 29000;

 END_IF;

 IF "conv_move" > 29000 THEN

 "conv_move" := 29000;

 END_IF;

 IF "conv_move" < 0 THEN

 "conv_move" := 0;

 END_IF;

 IF "conv_move" <> 0 THEN

 IF "conv_blink" = 1 THEN

 "conv_blink" := 0;

 ELSE

 "conv_blink" := 1;

 END_IF;

 END_IF;

Figure 3.36 - Code exert for the Conveyor animation task.

3.5 Open Protocol Server and Communication

The Open Protocol Communication Server, or OPC server, is the main

foundation for the transmission of information within this system. It works as a

translator between devices that use different communication protocols, allowing

a higher degree of interoperability between components.

 The main reason for the need of an OPC server in this project, was due to

the fact of there being different manufactured controllers with their own

proprietary communication protocols which would make it impossible to

establish data trade without the OPC server. A second reason was so it would be

possible to transmit low level process information coming from the PLC

controllers to higher level remote applications.

3.5.1 Operational Description

As mentioned in sub-chapter 3.1, it was opted to implement a centralized

communication structure around the OPC Server where most of the components,

 75

apart from the remote clients (that only read information from the server), work

both as masters and slaves, depending on the information that is traded.

As seen in the Figure 3.37, the OPC server has to work with multiple

communication protocols chosen depending on each controller’s communication

features and the OPC software protocol drivers available.

Figure 3.37 - Communication structure scheme.

The way the general OPC communication system works is based on device

configuration, memory linking between devices and consequent OPC protocol

driver application.

Within the OPC server, it is simply appointed the type of device, its internet

protocol address and selection from the available protocol communication

drivers. After that, the declaration of the data to be transmitted is issued and there

is the need to define the memory address used within the controller, the type of

data, and the desired scan rate.

When all the controllers and their associated variables are configured, it is

needed to apply the linking function to correlated variables between devices

(Figure 3.38), so the trade of information is possible. In other words, connect the

memories of the data from the sender to the receiver.

Figure 3.38 - Memory linking between Controllers.

3. Architecture, Technology and Implementation

76

The case of the remote clients is a bit more complex (Figure 3.39). The

information does not reach the application software directly; instead, the data is

sent from an OPC server to an OPC client; from that, the application proceeds to

request the information. Regarding the information that is traded between the

system components, it is detailed illustratively in the section of the Appendix D.

Figure 3.39 - Illustration of remote information access.

3.5.2 Software Methodologies

For the Open Protocol Communications it was used the KEP Server EX. It

offers a vast array of protocol drivers for numerous PLC controllers and software,

its functionalities rely heavily on device configuration and tag creation.

The way the different variable memories are linked is through the use of the

advanced tag feature. This concept portrays the application of adjacent functions

to a tag, such as complex, average, minimum calculations.

Regarding information acquisition, on what concerns the PLCs, there is no

need to apply any kind of instructions to read or write from the server, since the

OPC Server will update the data within the memories directly. In the case of the

remote clients, however, depending on the application software used, there is the

need to apply function libraries that are responsible for issuing a request,

receiving and processing the information.

Concerning update rates within the server, controller related data was

attributed a scan rate of 100 milliseconds; and less important visual information

for high level monitoring holds 200 milliseconds rate. The software allows for

lower scan rate specifications up to 50 milliseconds; however, it was opted not to

choose lower values due to the fact that most of the commercial Ethernet

networks have minimal scan rates of 100 milliseconds.

About the specification of the correct address of the controllers variables

within the server, we must note that they are dependent of what type of protocol

is being used. In the case of the Profinet TCP/IP protocol, the address is the one

declared within the controller; in the case of Modbus TCP, the address depends

on the type of variable declared on the controller. For simplicity and

compatibility purposes, it was made sure that the variables being transmitted or

 77

received in the Tank controller were all of the Word type, therefore, having a

correspondent server address of 400000+controller memory location.

3.6 Remote Clients

With the effort of allowing this system to have a higher degree of

accessibility and more complex data processing, transmission was established

with remote computers that, with a varied array of software, could take the

control system even further.

In this project, two clients were implemented: an operational historian and

an advanced data viewer. This applications constitute read only events, i.e.: do

not influence the main system in anyway; although, the structure and software

tools could allow remote control applications.

3.6.1 Operational Historian

The operational historian is used essentially as an information back up and

log for all of the transmitted data relating to the supervisor, tank and conveyor.

The need for the implementation of this client was to tackle the lack information

registry for long periods of time, the controllers within the system have their

memories constantly updated, therefore offering no data record features.

3.6.1.1 Operational Description

As seen in the Figure 3.40, this client performs a cycle where it logs into the

OPC client, retrieves the desired group of data and writes into the console a log

of the main state information about each component. Afterwards, it saves the

data separately into individual files regarding the conveyor, tank and supervisor,

ending on a memory check.

Due to performance and memory resource constraints, it was established a

limited array size to each variable. When that array is full, the historian will

perform a global save, reset the arrays and begin the data saving onto new files.

The higher the size of each array, the longer the period of recording between

memory resets and higher the client initialization setup time. In this project, it

was opted for an array size of 7200 and a sample time of 1 second, which amounts

to 2 hours of recording between resets.

3. Architecture, Technology and Implementation

78

Figure 3.40 - Instruction logic of the historian client.

3.6.1.2 Software Methodologies

For this client, the software chosen was Scilab®. It is an open source

numerical oriented programming environment. The reason for its use comes

mainly from the fact of possessing easy to use function libraries for OPC

communication.

One of the most important aspects of the software implementation is how

the client acquires the information from the OPC Server. For that task to be

possible it was necessary the use of an OPC toolbox add-on for the Scilab®

software made by Zhe Peng. The application is as follows: (i)start the OPC server

browsing, (ii)connect to it, (iii)create an OPC group that holds an array with the

structure paths of the items you desire to read from and (iv)perform an OPC item

read every time an information update is needed. The code relating to this

routine can be viewed in Figure 3.41.

opc_server_name = 'Kepware.KEPServerEX.V5';

opc_group_name = 'group1';

item_read=zeros(2,1);

item(1) = 'Client_Read.Tank.proc2_active';//1=is comunicating

item(2) = 'Client_Read.Tank.failure_proc2';//1=fail

counter1=0;

found_server = opc_server_browse();

 79

if size(found_server,'*') <> 0 then

 opc_connect(opc_server_name);

 opc_item_browse();

 opc_add_group(opc_group_name);

 for counter1 = 1 : 2

 opc_add_item(item,counter1);

 end;

 while (program_running)

item_read=opc_item_read(2,'i');

Tank_active= item_read(1,1);

Failure= item_read(2,1);

 end;

 opc_disconnect();

end;
Figure 3.41 - OPC communication code example.

The file composition is a Scilab® data file that holds an array of samples.

Each sample contains a time stamp and data structures with the information

obtained at that instant.

On what concerns the log presentation, as seen in the figure within

Appendix section C, it was conceptualized to be simple and it was divided into

three groups: display of system states, I/O process values and work mode related

information.

3.6.2 Advanced Data Viewer

The advanced data viewer purpose is to allow a more detailed and remote

observation of the tank controller system, by applying different graphical

methodologies concerning failure monitoring. Its necessity came from the high

complexity and low performance associated to programing a more elaborate

monitoring system at the controllers/HMI level.

3.6.2.1 Operational Description

This remote client works similarly to the operational historian (Figure 3.42),

by connecting to the OPC server first, and retrieving data (system state

information and the complete tank data). Afterwards, if the supervisor is active,

the advanced data viewer will check the tank’s mode. In the case of being in

manual mode, it will simply present graphical information about I/O values of

the tank, along general system state information being presented in the form of a

log.

3. Architecture, Technology and Implementation

80

Figure 3.42 - Operational logic scheme of the data viewer client.

When in automatic mode, it will add the graphical representation of the

following features:

 Control error :

Difference between the specified tank level and the current value

being read through the sensor.

 𝑒(𝑘) = |𝑟(𝑘) − 𝑦(𝑘)| (3.7)

 Control action variance:

Calculates the average variation for the control signal applied onto

the water pump, allowing to deduce its stability.

It is based on a sample sliding window of size N and returns the

average value for the squared subtraction between each control

action sample and the sliding window’s average value.

𝜎2(𝑘) =

1

𝑁
∗ ∑ (𝑢(𝑖) − 𝜇(𝑢(𝑘 − 𝑁: 𝑘)))

2
𝑘
𝑖=𝑘−𝑁

(3.8)

 Normalized Harris index:

Indicator proposed by Desborough and T.J.Harris [37], that evaluates

the controller performance with minimal knowledge about the

process behavior. Its value ranges between 0 and 1, where 0 indicates

a good performance and 1 a bad performance.

𝐼𝐻𝑎𝑟𝑟𝑖𝑠(𝑘) = 1 −

𝜎𝑟𝑒
2 (𝑘)

𝑥𝑒(𝑘)

(3.9)

In which 𝑥𝑒(𝑘) represents the mean squared error of the control error

and 𝜎𝑟𝑒
2 (𝑘) represents the variance concerning the residue between

the control error and a predicted error.

 81

 𝑟𝑒(𝑘) = 𝑒(𝑘) − ê(𝑘) (3.10)

The predicted error was based on a simple auto-regression model

AR(n,b) which is represented by the following equation:

 ê(𝑘) = 𝑎0 − 𝑎𝑏 ∗ 𝑒(𝑘 − (𝑏 + 1)) − ⋯ − 𝑎𝑏+𝑛 ∗ 𝑒(𝑘 − (𝑏 + 𝑛)) (3.11)

 Principal component analysis:

It is a statistical method that orthogonally transforms a set of initial

correlated variables into a new uncorrelated linear combination of

variables (Figure 3.43). This new variable set is defined by principal

components that allow further simplicity by variable set reduction

and portrayal of the main variation characteristics.

Figure 3.43 - PCA graphical representation [38].

The deduction of the principal components was done through the

Singular Value Decomposition method (SVD) [39]. This method

considers a matrix 𝑋𝑝 of order N×M. N is the number of past samples

and M is the number of initial variables. Knowing that the covariance

of the matrix 𝑋𝑝 is defined by:

𝑆 =

𝑋𝑝
𝑇 ∗ 𝑋𝑝

𝑁 − 1

(3.12)

The PCA decomposes the matrix 𝑋𝑝 in the sum of the product

between the principal component values or score vectors and the

process’s characteristic matrix or loading matrix, 𝑡𝑖 and 𝑃𝑖

respectively. It represents the number of principal components and

E represents a residual matrix.

𝑋𝑝 = ∑ 𝑡𝑖

𝐼

𝑖=1

∗ 𝑃𝑖
𝑇 + 𝐸

(3.13)

Meanwhile, 𝑃𝑖 also represents the Eigen vectors of the matrix of

covariance, hence the following equation:

 𝑆 ∗ 𝑃𝑖 = 𝜆𝑖 ∗ 𝑃𝑖 (3.14)

3. Architecture, Technology and Implementation

82

Where 𝜆𝑖 are the Eigen values associated with the loading matrix.

Based on equations (3.12) and (3.13), the principal components are

calculated with the following equation:

 𝑇 = 𝑋𝑘 ∗ 𝑃 (3.15)

The vector T is the score vector, and it holds the new transformed

values and X is the matrix that represents current values of the initial

variable set and P is the loading matrix.

In this project it was used as a failure detection observation means,

where to each work-state, the principal components would position

themselves in a specific localization; in case an unexpected behavior

happened, there would be a deviation from that localization thus

pointing to a fault. Illustration in Figure 3.44.

Figure 3.44 - PCA results for controller at nominal work state.

3.6.2.2 Software Methodologies

For this client, the software used was Matlab®, which is a multi-paradigm

numerical computing environment. The reason it was chosen in this project was

due to the ease of implementation for the features initially conceptualized.

Regarding the communication with the OPC Server, it is very similar to the

operational historian logic, through the use of the Matlab® OPC toolbox code

functions, thereby being started by connecting to the server and then, creating a

group of items that hold the path to the item within the server and then read

periodically.

One important aspect of the software implementation is the error prediction

model for the performance index calculation. For the error to be predicted

 83

correctly, the model parameters must be calculated. This was done through

formulating the equation (3.11) in terms of a vector regression, as observed on

equation (3.16), whom model parameters (3.17) are calculated during the control

period.

 �̂�(𝑘) = 𝜑𝑇(𝑘) ∗ 𝜃(𝑘) (3.16)

 𝜃(𝑘) = [𝑎1 … 𝑎𝑏+𝑛]𝑇 (3.17)

 𝜑(𝑘) = [1 − 𝑒(𝑘 − 𝑏) − ⋯ − 𝑒(𝑘 − (𝑏 + 𝑛 − 1)]𝑇 (3.18)

For the calculation of the model parameters vector 𝜃(𝑘), the mean squared

algorithm is used and it is the cyclical execution of the following equation:

 𝜃(𝑘) = 𝜃(𝑘 − 1) + 𝑃(𝑘) ∗ 𝜑(𝑘) ∗ 𝜀(𝑘) (3.19)

Where P is the covariance matrix and 𝜀 is the model error, which are

represented by:

𝑃(𝑘) =

𝑃(𝑘 − 1)

𝜆
[𝑀𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 −

𝜑(𝑘) ∗ 𝜑𝑇(𝑘) ∗ 𝑃(𝑘 − 1)

𝜆 + 𝜑𝑇(𝑘) ∗ 𝑃(𝑘 − 1) ∗ 𝜑(𝑘)
]

(3.20)

 𝜀(𝑘) = 𝑦(𝑘) − 𝜑𝑇(𝑘) ∗ 𝜃(𝑘 − 1) (3.21)

Concerning sample times, it was chosen 0.2 milliseconds wait period for

each cycle. Also, the automatic monitoring methodologies were given a 30

seconds delay after the start of each controller, so that the dynamic transition

would be ignored.

As seen in Figure 3.45, these are the interfaces that appear when in manual

or automatic mode. The reason for the existence of a manual and automatic mode

I/O plot is so the user can directly see at which instances each mode was activated

and its respective I/O values since the beginning of the client operation.

3. Architecture, Technology and Implementation

84

Figure 3.45 - Viewer monitor interface.

 85

4. Experimental Results

This sub chapter will cover the main aspects tested that were important

enough and might present a significant risk factor to the overall well-functioning

of the system.

In sub-chapter 4.1, the topic of the conveyor process will be approached,

focusing on the sensor limitations and max travelling speeds.

Within sub-chapter 4.2, it will be shown how the tank’s water level sensor

behaves when the water is being inserted into the tank and how vibrations

influence the sensor.

On sub-chapter 4.3, it is illustrated the general testing of the closed loop

controllers implemented within the tank system, comparing the different test

indicators to compare the controllers between each other.

Finally, the sub-chapter 4.4 will go over the communication and point out

the main risks and potential consequences of there being malfunction in data

transmission.

4.1 Conveyor Testing

Having the conveyor speed limited to a maximum of 19.8 rpm, and

considering that it remains constant for the transportation task, from one side to

the other, it takes a minimum of 7 seconds to travel the entirety of the conveyor

belt. Between direction changes, there is a wait time of 10 seconds to assure the

repositioning of the transported/to be transported object. On what concerns the

motor stopping its movement when the carrier reaches the limit sensors, trough

testing, it was deduced that if the defined speed is above 50% of the before

mentioned max allowable speed of 19.8 rpm, the conveyor will stop its

movement after the carrier passes the sensor and ends its range of activation,

which consequently will force a carrier calibration task in the following

transportation.

4. Experimental Results

86

About the optical sensors, since they both work as transmitters and

receivers, there was the need of the conceptualization of a reflector to attach on

to the carrier. After many experiments, it was chosen the combination of a part

of foil placed within a red light reflector.

Figure 4.1 illustrates how the main variables react while the controller

processes the automatic task of carrying a part to the next station and returning

to the initial position, as explained in the sub-chapter 3.2.2.

Figure 4.1 - Conveyor timing diagram.

4.2 Tank’s Sensor Testing

This section is dedicated to illustrating the behavior of the sensor while on

steady water and as the water pump is on. The need for this test comes from the

existent noise within the tank infra-structure whenever the water pump is

activated. This noise consequently influences the controller’s performance,

especially on its output variance.

The first test illustrates the values originated by the sensor when there is no

action applied on to the tank. The second test represents the values read from the

sensor when the inflow and outflow of water are identical while the water pump

is on. The duration of both tests was 40 seconds and the water level used for

reference was approximately 50% (in the scale of 0 to 1).

 87

Figure 4.2 - Sensor Testing.

In the Figure 4.2, it can be observed a very significant difference between

the values read when the water is steady (test a) and the values read when the

water pump is on (test b). The maximum deviation within test a) is of 0.2% and

the variance associated to it is of 0.0022; on test b) worse values were obtained,

with a maximum deviation of 2% and a variance associated of 0.77. This obvious

difference caused by the vibration of that water pump, makes the controllers

performance regarding their output actuation significantly less stable.

4.3 Tank’s Controller Testing

In this section, it shall be presented the experimental testing of the closed

loop control methodologies implemented within the tank system (sub-chapter

3.3.2) with the objective of showing their general behavior and performance.

The methodologies presented are the PI controller, Switched PI and PI with

model rectification. Relay and command controllers are not presented due to the

fact that one is simply a static controller that only places the water at the specified

level and closes the valves, and the other is for less demanding systems with

robust actuator, where computational limitations are prioritized against

controller precision and efficiency.

The test scenario for all the methodologies considered will be the control of

the tank level at 50% in nominal work-state (with the scale of 0 to 1). The data

illustratively presented for analysis will consist of sensor and controller outputs,

set-point errors, mean-squared errors and control output variance. Furthermore,

we will study the overshoot, rising and settling time. The duration of the test will

4. Experimental Results

88

be 200 seconds with a considered dynamic state interval of 72 seconds (which

some of the variables mentioned above will ignore).

No failure testing is performed because the system enters in failure mode

immediately in case the controller is unable to keep the water level at the

specified value for a long enough interval of time.

4.3.1 PI Controller

As it can be observed from Figure 4.3, the application of a tuned PI

controller to a global set point interval, holds a considered good performance for

a conceptualized slow work state. It holds a rising time of 99 seconds and it

stabilizes around a settling time of 140 seconds, with an over shoot of 7.1% from

the 0.5 set point value. Moreover, an average set point error of 0.0047 or 0.94%, a

mean square error of 3.3571 ∗ 10−5 and an actuation variance of 1.2261 ∗ 10−4.

These values are small enough to be acceptable in the general function of the

control task.

Figure 4.3 - PI Controller behavior.

The only observed problem is the lack of value convergence from the error

and variance indicators along the time of control application. The main reason

 89

for this to happen is related with the innate noise associated to installation

vibrations and sensor quality.

4.3.2 Switched PI Controller

As it can be observed in Figure 4.4, the application of a Switched PI

controller that holds different tuning parameters, depending on what the area of

effect tank level is, shows slightly better results compared to the former

controller. It holds a rising time of 78 seconds and it stabilizes around a settling

time of 118.8 seconds, with an over shoot of 2.28% from the 0.5 set point value. In

addition, it holds an average set point error of 0.0025 or 0.5%, a mean square error

of 1.3271 ∗ 10−5 and an actuation variance of 1.9865 ∗ 10−4. These values are

small enough to be acceptable in the general function of the control task.

Comparing to the former controller, the lack of value convergence at small

decimals is still present but holds lower errors and a higher actuation variance.

This is the product of the application of more fine-tuned parameters for smaller

work state intervals. The higher actuation variance stems from the fact that the

parameter dimensioned were picked in order to minimize time requirements and

overshoots.

Figure 4.4 – Commuted PI Controller behavior.

4. Experimental Results

90

4.3.3 PI Controller with Model Rectification

As it can be seen in Figure 4.5, the addition of a neural model to rectify the

first PI controller presents some interesting results. It holds a rising time of 74.4

seconds and it stabilizes around a settling time of 117 seconds, with an over shoot

of 5.05% from the 0.5 set point value. Also, it holds an average set point error of

0.0034 or 0.67%, a mean square error of 1.8523 ∗ 10−5 and an actuation variance

of 4.227 ∗ 10−4. These values are small enough to be acceptable in the general

function of the control task.

Comparing to the former controllers, it does hold lower time requirements

but presents a much higher actuation variance. Besides, although it presents

slightly lower error and overshoot values, compared to the regular PI, the

Switched controller still performs noticeably better on those parameters.

 The variance issue comes from the fact that the value predicted by the

model is not precise enough to sustain rectification that avoids control oscillation.

Figure 4.5 - PI Controller with model rectification behavior.

 91

4.3.4 Comparison between Controllers

The five implemented controllers can be chosen depending on the goal that

the user holds in mind. If there is no need to renew the liquid, the command

controller will suffice. On the other hand, if the process is robust, precision is not

a must, and the automation controllers have very limited processing capabilities,

then the relay controller is the one to choose.

If the former two are not good enough then any choice of the different PI

configurations is valid. The best overall performance is presented by the

Switched PI. If time requirements are the number one priority, then, at the

sacrifice of processing capability, the PI with parallel model is the one to go for.

If there is only the need of an overall decent controller that is reliable in most of

the areas to consider, then the normal PI configuration is the indicated.

4.3.5 Side notes relating to Remote Client Methodologies

As mentioned in sub-chapter 3.6.2, two additional methodologies, a PCA

and a performance index. Relating to the PCA as long as the nominal work state

regions are tested and calibrated, it will always allow for an exact and accurate

visual means of deducing an anomaly. On the other side, the performance index

implemented, due to it, on one side, being a very sensitive method (it is supposed

to be) and, on the other side, the tank sensor being very noise influenced, leads

onto very unstable results. In a perfect process, the index would start of being the

worst value possible (being 1) and it would steadily converge to 0 (optimal

performance value).

Figure 4.6 – Harris index results.

4. Experimental Results

92

Due to the facts mentioned supra, it allows for slight control error

oscillations which highly influence the method, making it vary often between 0

and 0.8. It can be observed in Figure 4.6 the behavior of the index for a PI

controller at 50% tank level set-point after the dynamic state has ended.

4.4 Communications

Relating to communications, there is not much to say, the OPC server

regulates all of the communications and in a general way, it asserts the 100

milliseconds scan rate for all the transmitted variables, which is the general

minimal value permitted on regular Ethernet connections (50ms in some cases).

The most important risk factor is the Ethernet connection itself. If an

anomaly happens, it puts to risk all the communication within the system.

Nevertheless, since the system was built in a distributed way, the worst case

scenario is the process controllers being in halt state waiting for a part to arrive

or for the other process to be available. After 5 minutes of no connection, the

server will de-activate the controllers and supervisor communication flags,

which will lead both process to go into manual mode until the communications

are reestablished.

 93

5. Conclusions

In this chapter, the general conclusions of this dissertation are presented in

sub-chapter 5.1. In sub-chapter 5.2, it is mentioned the honor associated to the

implementation of this project .A proposition for future research in distributed

systems in the control and automation areas is pointed in sub-chapter 5.3.

5.1 General Conclusion

The initial idea was to implement a personal interpretation of a distributed

control system, and, taking everything into account, it can be viewed as a

successful project.

A lot of the project was built based on unused material within the

automation laboratory, therefore, shifting the focus of a more efficient and

specific system conceptualization to the notion of making the best adaptation of

the initial idea with the available resources at hand.

Regarding struggles of implementation, due to the fact of there being a lot

of intersections between different natured equipment and software, the

execution phase was highly susceptible to very unique glitches and bugs. This

consequently led to less efficient and unconventional methods of implementing

certain aspects, especially in the HMI device features.

Concerning the global system functioning, the main factor that must be

pointed out is the time limitation in the scan rate of the information transmitted.

In general, industrial automation systems have to be very strict with time

requirements, making real time features a must on such systems.

In this dissertation a regular commercial Ethernet connection was used,

thus making those time requirements very low. Realistically, they should present

values around 0.01 milliseconds and instead, are limited by 50/100 milliseconds.

The trade off in time requirements allowed for a more versatile and open

system platform, making the information horizontal to every future application

that is able to retrieve information from an Ethernet based network.

5. Conclusions

94

In conclusion, this system represents a possible viable implementation of a

distributed system that controls slow manufacturing processes and incorporates

all of the main areas within modern automation systems, namely, in the pickling

contextualization. It can also be viewed as a didactic means of illustration to new

students not aware of the equipment and methodologies that can be involved in

industrial manufacturing systems.

5.2 Awards and Honors

This project entered in the contest “Prémio Nova Geração 2015” organized

by Siemens, and it was acknowledged as one of the finalists.

The contest had the main goal of challenging future engineers to develop

automation projects that further improve the Portuguese Industrial sector. Its

jury committee was composed by members of Siemens, CIP, Cotec, Cadflow and

“Ordem dos Engenheiros”.

5.3 Future works

According to the experience attained from the study and execution of this

dissertation, a proposition for a distributed system with some of the following

characteristics is suggested:

 Wireless technology focused either between the system components

as also between sensors/actuators and process controllers;

 Use of smart product identification and manufacturing via RFID

based technology;

 Execution of higher complexity remote clients that influence the

global system;

 Application of communication methodologies that present higher

real-time requirements and higher information accessibility;

 Implementation of significant information security standards.

 95

Bibliography

[1] Tesla Assembly line, digital image. Available in

https://www.teslamotors.com /blog/inside-tesla-060512, [Online];

Consult: 2015-July-1

[2] Adam Robinson, “Industrial Automation: A brief History of

manufacturing”, Available in http://cerasis.com/2014/10

/22/industrial-automation/, [Online]; Consult: 2015-July-1

[3] Peter Farkas, “Hard Vs. Soft Assembly Automation”. Available in

http://www.agi-automation.com/2014/05/hard-vs-soft-assembly-

automation-increased-factory-productivity/, [Online]; Consult:

2015-July-1

[4] John Paul MacDuffie, “From Fixed to Flexible: Automation and

Work Organization trends”, in Transforming Auto Assembly:

International Experiences With Automation and Work organization,

March 1996

[5] Ernie Hayden GICSP, “An Abbreviated History of Automation &

Industrial Controls Systems”, SANS institute, August 2014

[6] Stuart Bennett, “A brief History of Automatic Control”, IEEE Control

Systems, June 1996

[7] J. Clerk Maxwell, “On Governors”, Proceedings of the Royal Society

of London, January 1867

[8] Egyptian Water clock illustration. Available in http://

beforeitsnews.com/travel/2015/10/the-water-clock-of-the-ancient-

egyptian-2475404.html, [Online]; Consult: 2015-July-1

[9] Boulton & Watt engine of 1788, digital image, Available in https://

en.wikipedia.org/wiki/Centrifugal_governor#/media/File:Boulto

n_and_Watt_centrifugal_governor-MJ.jpg, [Online]; Consult: 2015-

July-1

 Bibliography

96

[10] Original Modicon 084 PLC, digital image. Available in

http://www.openautomation.de/detailseite/40-jahre-sps.html,

[Online]; Consult: 2015-July-1

[11] Mario Hermann, “Design Principles for Industry 4.0 Scenarios”,

Business Engineering Institute, January 2015

[12] Pamela J. Waterman, “Manufacturing in the World of Industry 4.0”,

Available in http://www.deskeng.com/de/manufacturing-in-the-

world-of-industrie-4-0/, [Online]; Consult: 2015-June-1

[13] Harald Hassenmuller, “The door The Recognized its body”,

Available in http://www.siemens.com/innovation/en/home/

pictures-of-the-future/industry-and-automation/digital-factory-

the-door-that-recognized-its-body.html, [Online]; Consult: 2015-

July-1

[14] Arthur F. Pease, “Scenario 2030: Riding to Reality”, Available in

http://www.siemens.com/innovation/en/home/pictures-of-the-

future/industry-and-automation/digital-factories-riding-to-

reality.html, [Online]; Consult: 2015-July-1

[15] Susanne Gold, “Coming Soon: Personalized Factory Workstations”,

Available in http://www.siemens.com/innovation/en/home/

pictures-of-the-future/industry-and-automation/digital-factories-

personalized-workstations.html, [Online]; Consult: 2015-June-1

[16] EOS Lab, “Additive Manufacturing”, Available in http://

www.eos.info/additive_manufacturing/for_technology_interested,

[Online]; Consult: 2015-July-1

[17] Tata McGraw, “Industrial Electronics and Control”, Hill Education,

1998.

[18] Wojciech, “Personal comments on IEC61131-3 standard”, Festo,

July 2011.

[19] W.Bolton, “Programmable Logic Controllers”, Elsevier Newnes,

2006.

[20] PLC cabinet, digital image. Available in http://www.njc-

usa.com/wooddy/controls.htm, [Online]; Consult: 2015-June-3

[21] Jeff Payne, “Future of the PLC”, Available in

http://www.controleng.com/single-article/future-of-the-plc/

a5e0a692be5b5a2f93dbe38215f770d1.html, Consult: 2015-July-4

 97

[22] Sammy Natsui, “PLC Developments Increase Flexibility and

Speed”. Available in http://www.controleng.com/single-

article/plc-developments-increase-flexibility-and-speed/b5b891

a11132d6622e32a617ba12c679 .html, [Online]; Consult: 2015-July-4

[23] Siemens, “PLC or DCS”. Available in http://w3.siemens.com

/mcms/process-control-systems/SiteCollectionDocuments/efiles

/pcs7/support/marktstudien/PLC_or_DCS.pdf, [Online]; Consult:

2015-July-6

[24] Tarun Agarwal, “Everything you need to know about DCS”.

Available in http://www.elprocus.com/distributed-control-

system-features-and-elements/, [Online]; Consult: 2015-July-6

[25] HIS Engineering, “DCS information”. Available in http://www

.globalspec.com/learnmore/networking_communication_equipme

nt/networking_equipment/distributed_control_systems_dcs

[26] Wikipedia, “Methods of production”, Available in

https://en.wikipedia.org/wiki/Methods_of_production, [Online];

Consult: 2015-July-6

[27] Business Management Theory, “Production Methods”. Available in

http://www.learnmanagement2.com/production.html, , [Online];

Consult: 2015-July-6

[28] Barry Young, “Recent Trends shape Future of DCS”. Available in

http://www.automationworld.com/dcs/recent-trends-shape-

future-distributed-control-systems, [Online]; Consult: 2015-July-6

[29] Brendan Galloway and Gerard Hancke, “Introduction to Industrial

Control Networks”, IEEE, June 2012.

[30] S. Dijev, “Industrial Networks for Communication and Control”.

Available in http://anp.tu-sofia.bg/djiev/PDF%20files/Industrial

%20Networks.pdf, [Online]; Consult: 2015-July-12

[31] George Thomas, “Introduction to Modbus”. Available in

http://www.ccontrols.com/pdf/Extv9n5.pdf, [Online]; Consult:

2015-July-13

[32] Marco Natale, “Understanding and using CAN”. Available in

http://inst.cs.berkeley.edu/~ee249/fa08/Lectures/handout_canbu

s2.pdf, Consult: 2015-July-14

 Bibliography

98

[33] Acromag, “Introduction to Profibus DP”. Available in

http://www.diit.unict.it/users/scava/dispense/II/Profibus.pdf/,

[Online]; Consult: 2015-July-15

[34] Siemens, “Profinet Description”. Available in

http://www.siemens.fi/pool/products/industry/iadt_is/tuotteet

/automaatiotekniikka/teollinen_tiedonsiirto/profinet/man_pnsyst

em_description.pdf, [Online]; Consult: 2015-July-16

[35] Darek Kominek, “OPC: The Ins and Outs to What it is About”.

Avaialble in http://www.automation.com/pdf_articles/Guide_to_

OPC. pdf, [Online]; Consult: 2015-July-17

[36] K.J. Aström and T. Hägglund, “Automatic Tuning of PID

Controllers”, Instrument Society of America, 1988.

[37] Desborough L. & Harris, T. J., “Performance assessment measures

for univariate feedback control”. Canadian Journal of Chemical,

1992.

[38] Fspanero, “Análise de Componente Principais – PCA”. Available in

http : / / fspanero .wordpress.com/, [Online],Consult: 2015-

August-20.

[39] Jolliffe, “Principal component analysis”. New York: Springer-Verlag,

,1986.

 99

Appendix

A. Connection Schemes

 Tank Panel Connection Scheme:

 Appendix

100

 Conveyor connection scheme panel:

 101

B. I/O Tables

 Supervisor (Simatic s7-1200):

Table 5- Supervisor used Inputs

Name Type Address Mode Notes

Global ES_a Digital Relay of
24 V DC

DI.a 0 / %I0.0 NC

ES Process2_a Digital Relay of
24 V DC

DI.a 1 / %I0.1 NC

Reset_proc2 Digital Relay of
24 V DC

DI.a 2 / %I0.2 NO -Returns
system to
initial state;
-Unblocks
system from
Emergency
stop.

Table 6- Supervisor used outputs

Name Type Address Notes

L1 Digital Relay of
230 V AC

DQ.a 0 / %Q0.0 -Indicates that the
conveyor is active

L2 Digital Relay of
230 V AC

DQ.a 1 / %Q0.1 -Indicates that the
Tank is active

L3 Digital Relay of
230 V AC

DQ.a 2 / %Q0.2 -Indicates that the
supervisor is active

L4 Digital Relay of
230 V AC

DQ.a 3 / %Q0.3 -Indicates process2 I
stopped.

L5 Digital Relay of
230 V AC

DQ.a 4 / %Q0.4 --Indicates process1
is stopped.

L6 Digital Relay of
230 V AC

DQ.a 5 / %Q0.5 -System mode;

Buzzer1 Digital Relay of
230 V AC

DQ.a 6 / %Q0.6 -Indicates Failure on
process1.

Buzzer2 Digital Relay of
230 V AC

DQ.a 7 / %Q0.7 -Indicates Failure on
process2.

 Conveyor controller (Simatic s7-1200):

Table 7-Conveyor controller used inputs

Name Typo Address Mode Notes

Limit Switch 1 Digital Relay of
24 V DC

DI.a 0 / %I0.0 NO

Limit Switch 2 Digital Relay of
24 V DC

DI.a 1 / %I0.1 NO

 Appendix

102

Motor_Forward

Digital Relay of
24 V DC

DI.a 4 / %I0.4 NO -Manual mode feature;
-Secondary button,
activated via
pressing/timer.

Reset Process 1 a Digital Relay of
24 V DC

DI.a 4 / %I0.4 NO -Secondary button,
activated via
pressing/timer;

Motor_Stop

Digital Relay of
24 V DC

DI.a 3 / %I0.3 NC -Manual mode feature;

Manual mode Flag

Digital Relay of
24 V DC

DI.a 3 / %I0.3 NC -Secondary button,
activated via
pressing/timer;
-Forces system to
activate manual mode;

-Motor_Reverse

Digital Relay of
24 V DC

DI.a 2 / %I0.2 NO -Manual mode feature;

Init Digital Relay of
24 V DC

DI.a 2 / %I0.2 NO -Secondary button,
activated via
pressing/time.
-Initiates conveyor
control system;

Inc frequency

Digital Relay of
24 V DC

di.a.5 / %I0.5 NC -Manual mode feature;

Failure monitor flag Digital Relay of
24 V DC

di.a.5 / %I0.5 NC -Secondary button,
activated via
pressing/timer;
-Tells the system, a
technician is present
during the occurrence
of the failure.

Dec frequency

Digital Relay of
24 V DC

di.a6 / %I0.6 NO -Manual mode feature;

Monitor Ok flag Digital Relay of
24 V DC

di.a6 / %I0.6 NO -Secondary button,
activated via
pressing/timer;
-Tells the system, the
failure was fixed.

ES Process1 a

Digital Relay of
24 V DC

DI.a 7 / %I0.7 NO -User’s contact
protection for process1.

ES Process1 b

Digital Relay of
24 V DC

DI.b 3 / %I1.3 NC

Reset Process1 b

Digital Relay of
24 V DC

DI.b 4 / %I1.4 No

Failure_proc1 Digital Relay of
24 V DC

DI.b 4 / %I1.4 No -Secondary button,
activated via
pressing/timer;

-Simulated failure of the
conveyor.

 103

Optical Sensor 1 Digital Relay of
24 V DC

DI.b 0 / %I1.0 NO -There is the need to
dock an aluminum
reflector plate onto the
metal part carrier.

Optical Sensor 2 Digital Relay of
24 V DC

DI.b 1 / %I1.1 NO “”

Optical Sensor 3 Digital Relay of
24 V DC

DI.b 2 / %I1.2 NO “”

Table 8- Conveyor controller used inputs

Nome Type Address Notes

v/f Control of the
motor

Analogic signal of 0
to 10 V DC

AQ 0 / %Qw80 F-max=40 Hz=27648;
F-stop=0 Hz=16800;
F-min=-40 Hz=5600.

 Tank controller (Modicon M340):

Table 9- Tank controller used inputs

Name Type Address Mode Notes

Init Digital Solid
State input of
24 V DC

%I0.2.0 -Initiates tank control
system;

ES process2_b Digital Solid
State input of
24 V DC

%I0.2.1

Reset_b Digital Solid
State input of
24 V DC

%I0.2.2

Manual_mode Digital Solid
State input of
24 V DC

%I0.2.3 -Flag that forces system
into manual mode.

Manual_pump Digital Solid
State input of
24 V DC

%I0.2.4 -If on, activates the
water pump;
-Default voltage applied
to water pump= 4V

Electro Valve 1
control

Digital Solid
State input of
24 V DC

%I0.2.5

Electro Valve 2
control

Digital Solid
State input of
24 V DC

%I0.2.6

Electro Valve 3
control

Digital Solid
State input of
24 V DC

%I0.2.7

Simulated
Failure 1

Digital Solid
State input of
24 V DC

%I0.3.0 -Activates Failure
flag;(major failure)

 Appendix

104

Simulated
Failure 2

Digital Solid
State input of
24 V DC

%I0.3.1 -Opens Electro-valve 3
(minor failure)

Simulated
Failure 3

Digital Solid
State input of
24 V DC

%I0.3.2 -Opens Electro-valve 2
and 3 (mid failure)

Timer Jump Digital Solid
State input of
24 V DC

%I0.3.4 -Ignores the wait time
associated to treatment
of the current metal
part on tank.

Monitoring Flag Digital Solid
State input of
24 V DC

%I0.3.6 -Flag used to notify the
system that a user is
monitoring the system,
in case of failure.

Monitor Ok Flag Digital Solid
State input of
24 V DC

%I0.3.7 -Tells the system, the
failure was fixed.

Tank Level
Sensor

Analogic signal
of 0 to 10 V DC

%Iw0.1.0
(U0/com0)

 0%= 3830;
25%=4350;
50%=5300;
75%=6760;
100%=9320.

Table 10- Tank controller used outputs

Name Type Address Notes

Electro Valve 1
actuator

Digital Solid State
output of 24 V DC

%Q0.3.16

Electro Valve 2
actuator

Digital Solid State
output of 24 V DC

%Q0.3.17

Electro Valve 3
actuator

Digital Solid State
output of 24 V DC

%Q0.3.18

Tank’s Water Inflow
Pump

Analogic signal +/-
10V DC

%Qw0.1.5
(U101/Com101)

Voltage range
specified= [0 to 8]V

 105

C. Operational Historian Log

 Appendix

106

D. Communication between Components

 Information traded between Supervisor and the Processes:

 107

 Information traded between Supervisor and the Remote Clients:

	Acknowledgments
	Abstract
	Resumo
	Acronyms
	Nomenclature
	1. Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Contributions
	1.4 Thesis Organization

	2. State of the Art and Technology
	2.1 Industrial Automation
	2.1.1 Types of Automation
	2.1.2 The Evolution of Automation
	2.1.3 Current State and Developments

	2.2 Programmable Logic Controllers
	2.2.1 Structure and functioning
	2.2.2 Programming Languages
	2.2.2.1 Ladder Diagram
	2.2.2.2 Function Block Diagram
	2.2.2.3 Instruction List
	2.2.2.4 Sequential function Chart
	2.2.2.5 Structured Text

	2.2.3 Current State and Developments

	2.3 Distributed Control Systems
	2.3.1 Production methods
	2.3.1.1 Job Production
	2.3.1.2 Batch Production
	2.3.1.3 Flow Production

	2.3.2 Structure and Types of DCS
	2.3.3 Comparison with other typical Control Systems
	2.3.3.1 Comparison with PLC systems
	2.3.3.2 Comparison with SCADA systems

	2.3.4 Current State and Developments

	2.4 Industrial Networking
	2.4.1 Structure
	2.4.2 Comparison with Commercial Networks
	2.4.3 Protocol Overview
	2.4.3.1 Modbus
	2.4.3.2 Profibus
	2.4.3.3 Profinet
	2.4.3.4 Open Protocol communications

	2.4.4 Current State and Developments

	2.5 Brief Chapter Conclusion

	3. Architecture and Implementation
	3.1 Architecture and general functionality
	3.2 Conveyor Control System
	3.2.1 Process Structure and specifications
	3.2.2 Operational Description
	3.2.3 Hardware Composition and Implementation
	3.2.4 Software Methodologies

	3.3 Tank Control System
	3.3.1 Process Structure and specifications
	3.3.2 Operational Description
	3.3.3 Hardware Composition and Implementation
	3.3.4 Software Methodologies

	3.4 Supervision and Monitoring
	3.4.1 Operational Description
	3.4.2 Hardware Composition and Implementation
	3.4.3 Software Methodologies

	3.5 Open Protocol Server and Communication
	3.5.1 Operational Description
	3.5.2 Software Methodologies

	3.6 Remote Clients
	3.6.1 Operational Historian
	3.6.1.1 Operational Description
	3.6.1.2 Software Methodologies

	3.6.2 Advanced Data Viewer
	3.6.2.1 Operational Description
	3.6.2.2 Software Methodologies

	4. Experimental Results
	4.1 Conveyor Testing
	4.2 Tank’s Sensor Testing
	4.3 Tank’s Controller Testing
	4.3.1 PI Controller
	4.3.2 Switched PI Controller
	4.3.3 PI Controller with Model Rectification
	4.3.4 Comparison between Controllers
	4.3.5 Side notes relating to Remote Client Methodologies

	4.4 Communications

	5. Conclusions
	5.1 General Conclusion
	5.2 Awards and Honors
	5.3 Future works

	Bibliography
	Appendix
	A. Connection Schemes
	B. I/O Tables
	C. Operational Historian Log
	D. Communication between Components

