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Abstract 

One of the most important tendencies in the development of the 

industrial automation is the application of intelligent control systems 

within factories, which focuses heavily on networked architectures. 

Following this line of thinking, the goal of this dissertation resumes itself 

in the implementation of a distributed system that controls two physical 

processes, where the system components not only trade information 

between each other, but also have that same information be accessible 

remotely and within HMI equipment. 

The controllers were conceptualized to offer different functional modes 

with high customization available. 

This system also takes resource of an OPC server, so it allows, not only 

the communication between different manufacturer PLC controllers but 

also the connection with remotes clients 

The implemented remote clients hold the intent of demonstrating the 

versatility of this architecture and are, namely, an operational historian 

that registers information and a data viewer, which allows the use of more 

advanced methods of monitoring. 

 

Keywords: Distributed System, Programmable Logic Controllers 

(PLC), Remote Clients, OPC®, Matlab®, Scilab®. 
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Resumo 

Uma das mais importantes tendências no desenvolvimento da 

automação industrial é a aplicação de sistemas de controlo inteligentes, 

no ambiente de manufatura, que focam arquiteturas fortemente baseadas 

em redes de comunicação. Seguindo esta linha de pensamento, o objetivo 

desta dissertação resume-se na implementação de um sistema de controlo 

distribuído de dois processos físicos, onde os componentes não só trocam 

informação entre si, como essa mesma informação é acessível 

remotamente e por equipamento HMI.  

Os controladores foram implementados de forma a oferecerem diversos 

modos de funcionamento com alta vertente de customização.  

Este sistema também recorre a um servidor OPC de forma a não só 

possibilitar a comunicação ente controladores de fabricantes diferentes 

como também a conexão a clientes remotos. 

Os Clientes remotos implementados possuem o intuito de demonstrar a 

versatilidade desta arquitetura e são, nomeadamente, um historiador 

operacional onde toda a informação é registada e um visualizador de 

informação, que possibilita a implementação de métodos de 

monitorização mais avançados.  

 

Palavras-chave: Sistema Distribuído, Controladores Lógicos 

Programáveis (PLC),Clientes Remotos, OPC®, Matlab®, Scilab®. 
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1. Introduction 

In this chapter, the reasoning that led to the execution of this dissertation is 

done. 

In sub-chapter 1.1 it is mentioned the context to what motivated the 

implementation of this system. 

The goals and contributions of this project are descripted in sub-chapter 1.2 

and 1.3, respectively. 

Lastly, it is given a notion of how the dissertation is organized, in sub-

chapter 1.4. 

 

1.1 Motivation  

The tendency of the current industrial automation scene relies heavily in 

the concept of Industry 4.0, which illustrates the implementation and further 

development of smart manufacturing environments based in strong network 

communications.  

This initiative aims to satisfy customer demands for new, high-quality 

customized products and, at the same time, reduce production time cycles and 

resource utilization. Such goal is done by not only heavily networking a 

manufactory process but also by applying more flexible, open and smart 

distributed system architectures. 

In many manufacturing companies, the used control systems are based in 

outdated concepts and methods of production with strong sequential logic and 

controllers with very specific tasks. Additionally, this systems have very rigid 

structures with small synchronism and interaction foundations. Therefore, this 

project intends to propose a reliable and cheap distributed system that holds 
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many of the benefits the concept of Industry 4.0 has to offer (interoperability, 

interaction, flexibility, autonomy). 

1.2 Goals  

Initially, the goals of this dissertation resumed themselves to the detailed 

study of the most important topics concerning distributed systems for the area of 

industrial automation and control. From programmable controllers and fault 

detection methodologies, to communication protocols and human-machine 

interaction. With this notion, the main goal of this dissertation is to present a 

possible distributed system with high interoperability, supervision and 

accessibility features. 

The system is conceptualized to hold an architecture composed by a varied 

array of technologies and operational methodologies, where all the main 

components communicate with each other and the most important information 

is compatible and accessible remotely. Different manufacturer programmable 

controllers are used with the goal of making the system more versatile and 

compatible. It also intends to conjugate different types of SISO controllers and 

monitoring techniques, permitting several possible work states and different 

manners of observing control information.  

Concerning the contextualization for the application to which the system 

was developed, it was in regards to the post treatment of stainless steel parts. 

This method is named pickling, and it is usually applied to a post welding phase.  

In short, pickling is essentially a timed treatment where the welded parts are 

submersed in chemical solutions, with the sole goal of fortifying the weakened 

sectors due to heat exposure.  

With this context in mind, this system’s main purpose is to control and 

monitor the transportation of the part from a prior workstation to the pickling 

station and its respective chemical treatment procedure. 

1.3 Contributions 

The main contribution of this project is to present a new concept for 

industrial systems in an effort to approach the industry 4.0 tendency without it 

translating in expensive production line restructuration. 

In terms of scientific value, this system was centralized in an Open Protocol 

Communication server, which allows for all of the system’s information to be 

neutral and available to any of the system’s components (current or future 

additions). The differentiation comparatively to other systems, is that typical 
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distributed systems never use servers and networks as the foundation of the 

system, usually, they are used just for information collection and for high level 

monitoring. 

It also presents a fully functional industrial prototype within the control 

laboratory, which allows for a didactic way of illustrating the importance of 

automation and distributed control, presenting several technologies applied 

within the industry.  

1.4 Thesis Organization 

This dissertation is constituted by five chapters, including the introduction 

and is organized in the following manner: 

Chapter 2 - State of Art and Technology 

This chapter studies the important topics used within the project in an 

automation aspect. The first section is dedicated to automation in general and its 

evolution; the second section approaches the important programmable logic 

controllers. The third section is dedicated to distributed control systems 

structures and production methodologies. The fourth section focuses on the 

industrial networking, going over its concepts and the most used communication 

protocols. The last section concludes and encompasses all of the former described 

technologies and makes the connection with the project in the following chapter.  

The first four sub-sections also describe current developments that give the 

reader a notion of what is being researched and developed. 

Chapter 3 – Architecture and Implementation  

The third chapter is dedicated to describing every aspect of the system, from 

architectures and control methodologies to hardware structure and software 

implementation. 

It is divided in global architecture and in the detailed overview of both 

physical process control systems, supervision, communication and remote 

clients. 

Chapter 4 – Experimental Results 

On the fourth chapter, the main experimental results and notes concerning 

the main risk factors within the overall system will be presented. 
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Chapter 5 – Conclusions 

On the final chapter, the conclusion of the dissertation is elaborated and the 

presentation of possible future works following the automation distributed 

systems area. 
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2. State of the Art and Technology 

In this chapter, it will be approached and explained with some detail the 

automation thematic within the project. From the theory behind the subjects to 

popular alternatives, current projects and scientific research being developed. 

The sub-chapter 2.1 will briefly go over what automation is and what 

categories it can be divided onto, its historical development as well as the 

industrial revolution and the current projects being worked. 

The sub-chapter 2.2 is going to describe the main technology behind the 

industrial Automation, called Programmable Logic Controller (PLC), from the 

hardware constitution, used programing tools to current developments. 

 In the section 2.3, the subject is distributed control systems, where the 

following topics will be discussed: the concept, comparisons against non-

distributed systems, applications, manufacturing methods and current 

developments. 

In sub-chapter 2.4 we will focus on industrial networks, which were crucial 

for the further development of the industrial control systems. We will see how 

industrial networks are structured and how the specific protocols developed 

work, as also what differentiates the industrial networks from the commercial 

networks, as also current researches about the subject. 

The sub-chapter 2.5 concludes and encompasses all of the former described 

technologies and makes the connection with the project in the following chapter. 

2.1 Industrial Automation 

The concept of automation is, essentially, the creation and implementation 

of technology that allows monitoring and control of a device, so it possesses the 

capability to perform a task on its own. Ultimately, having the objective of 

improving production efficiency and minimizing task associated human 

intervention. 
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Such devices might be classified as machinery, factory processes, heat 

treating ovens, steering and stabilization mechanisms and much more. 

Automation is virtually applied in all of the industrial sectors, from 

manufacturing (Figure 2.1), transportation, to the better use/reach of utilities, 

building automation and military purposes. 

 
Figure 2.1 - Tesla Manufacturing line [1]. 

Its concept has been realistically implemented through means that include 

mechanical, hydraulic, pneumatic, electronic and microprocessor technologies. 

In the modern times, typical systems include a combination of all of the 

mentioned above. 

It is worth noting that the idea is proved to be applied since the beginning 

of humanity, but the term itself was adopted after the creation of the automation 

department from General Motors, in 1947. It was at this time that the vision of 

fully automated factories was starting to be very prominent in manufacturing 

companies, especially after continuous research and development, which 

proceeded the invention of the first feedback controllers in the mid-1700s [2]. 

2.1.1 Types of Automation 

There are many different types and ways of implementing the automation 

concept. However, they generally fall in the following three categories 

(comparison made in Table 1): 

• Fixed/Hard automation: this category is illustrated by the use of specific 

automate components to perform very detailed and simple tasks, usually on lines 

of production that are mainly structured by sequential operations. Its use is often 

justified when there is the need of high demand of one kind of product to be 

manufactured [3][5].  

The worst factor associated to fixed automation systems is the incapability 

of adapting, specially, when it is desired to modify the initial product to which 

the system was designed.  For instance, this type of automation can be found in 

the automobile industry, steel rolling and paper production. 
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• Programmable automation: the production equipment in these kinds of 

systems is designed to be able to change work states for different product 

specifications. The operation sequence is coded and programmable, allowing the 

creation of new configurations and operation states through reprograming [3] 

[5]. It is associated with this structure, a significantly lower production rate, 

therefore generally being adopted by factories that have higher priority in 

product variety comparatively to product demand. For instance, this type of 

automation can be found in the systems that use numerical controlled machine 

tools, industrial robots and programmable controllers. 

• Flexible automation: this structure is an upgraded concept of 

programmable automation with the goal of having the same benefits but with 

higher production rates. The main difference lies essentially on the fact that there 

is no time lost between work state changes, therefore, allowing a much faster and 

variable production sequence [3], [5]. 

Table 1 - Comparison between Types of Automation. 

 Fixed Programmable Flexible 

Production Rate High Low Medium 

Cost Low Medium High 

Adaptability Low High Medium 

2.1.2 The Evolution of Automation 

On what concerns automation, it is important to have an insight of how it, 

developed through the ages into the modern control systems we have today. As 

observed in the Figure 2.2, the automation evolution was heavily influenced by 

the Industrial Revolution. 

Although the general perception with autonomous controllers is that they 

are  related with factory production structures since the mid 1800’s, there were 

already existing inventions in the Ancient Greek and Arabic communities that 

represented the raw concept of automation and most of them were based in the 

use of float-valve regulators [5][6]. The basic functioning of these regulators are, 

when open, it would cause the retained liquid to drop with a periodic frequency 

directly associated with the percentage of the regulator’s opening. 
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Figure 2.2 - Automation progression timeline. 

This almost periodic re-allocation of liquid, made possible the invention of 

what is believed to be one of the first feedback control devices documented in the 

history of humanity. That device was the water clock of Ktesibios (Figure 2.3), 

created in Alexandria, Egypt around 250B.C. [5].  This clock allowed the notion 

of time to be a quantifiable variable and it was arguably one of the most exact 

time measuring inventions, until the invention of pendulum clocks in the 17th 

century [5][6]. 

 
Figure 2.3 - Ancient water clock illustration [8]. 

Patented around 1745 by Edmund Lee, one of the earliest feedback control 

mechanisms created,  was used to manipulate the sails of the windmills, with the 

purpose of controlling the gap between grinding stones [5][6]. This concept 

contributed greatly for major advances in control systems around the beginning 

of the first Industrial Revolution, in the 18th century. In the same time period, as 

steam and water resources were starting to be used as means of energy, it 

eventually helped the creation of the first steam engine governor (Figure 2.4), 

created in 1788 by James Watt. 
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The steam governor offered a proportional controller that regulated the 

amount of fuel admitted onto the engine, therefore maintaining a near constant-

speed, without providing exact speed control. This mechanism was only 

considerably acknowledged by scientists when James Maxwell published a paper 

entitled ‘On Governors’ (1867) that truly established the start of the theoretical 

foundation for control theory [7]. 

 
Figure 2.4 - An example of a steam governor [9]. 

Besides the research and development around the steam governor and the 

theory behind it, the 1800’s and  early 1900’s eras, are mainly illustrated by the 

creation of simple process task controllers for temperatures, pressures, liquid 

levels and speed of rotating machines [6]. 

With the introduction of electrical energy to the factories by the second 

Industrial Revolution, a new means of automation was heavily adopted, by using 

logic, based on electromechanical Relays (created in 1835 by Joseph Henry), due 

to the high demand of controllers in factories and power plants (1900 through 

1920) [5]. 

This logic was used to facilitate the implementation and representation of 

manufacturing programs based on relays (typically on-off controllers). With this 

concept, there was also the adoption of central control rooms, where operators 

observed charts with periodic acquired data and manually actuated on the 

factory process (trough switches and/or valves). 

Even though the evolution in control theory was quite noticeable, mostly 

via the concept above as well as innovations in the transportation area (use of 

gyroscopes for ship stabilization and primitive auto pilot systems), there were 

still a lot of conceptual challenges [5]. Namely, a lot of confusion in the reason 

why the controllers presented different behaviors, especially when changed the 

dynamic and environment the processes the controller was designed for.  
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In 1932, the concept of negative feedback was understood and 

implemented, clearing a lot of the former challenges at hand. This concept added 

the ability of precisely impacting the actuators of a process, in order to get the 

desired results [5] [6]. 

Conjoined with the advancement of wired/wireless communication 

systems, this era (1935-1950) denominated “The Classical Period”, was 

considered the main basis for the modern controllers [6]. 

In the mid-1950s, the third phase of the Industrial Revolution started to be 

noticed through the creation of data processing machines [5]. These devices made 

possible the beginning of the implementation of digital controllers, which 

minimized even more the intervention of a human in a factory process. Until 

then, the control systems were all predominantly analog based and/or used relay 

concept structures.  

During this period, is it also worth mentioning that there were a lot of 

advancements in control theory, mainly via the acknowledgment that control 

systems are non-linear and the existence of significant errors in the sensors 

caused by noise. There were also new concepts created, such as the use of 

physical behavior equations and “black box models” [6]. 

All of these concepts being developed, along the significant fall of prices in 

digital processor devices, led to the considered official beginning of the third 

Industrial Revolution, with the creation of the Programmable Logic Controller 

(Figure 2.5). This device helped minimize significantly the costs associated, 

mainly to the constant re-calibrating of already existing controllers implemented, 

by allowing a means of reprogrammable higher logic take place in the factories, 

and also by offering tools with programing languages that were easily 

understood and used by their own factory technicians [5].  

 
Figure 2.5 - The first Programmable logic Controller Modicon 084 [10]. 
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This era was mostly translated by evolving the industry through the 

implementation of electronics and digital controllers. 

The current era, denominated by fourth Industrial Revolution or Industry 

4.0, is mainly illustrated by bringing communication systems (e.g. internet 

network technologies) into the factories, with the goal “smartening” the 

industrial processes. Allowing further efficiency and profit, through the creation 

of long distance distributed control systems, where each component of the 

production line, autonomously communicates with each other and adjusts itself 

to a required functioning state.  

This era primarily focuses on the development of concepts that use the 

following principles [11]: 

• Interoperability: every main machinery has to be capable to 

communicate autonomously through the internet; 

• Virtualization: data bases full of acquired information associated 

with virtual models of the real production line implemented; 

• Real-time data acquisition; 

• Decentralized systems: the ability of each component making 

decisions on its own; 

• Information accessible without location restrictions; 

• Flexibility: easy adaption of each component to different desired 

work tasks; 

Due to most stakeholder’s natural inertia into investing on further 

developing already existing factories, this era is still on its early ages. However, 

the believed tendency is to see complex networks being more prominent in lines 

of production in the coming years. 

2.1.3 Current State and Developments 

The ultimate goal of the global current research is to bring to reality viable 

and effective implementations of the concept of Industry 4.0; in other words, to 

create smart factories that are extremely networked, distributed and flexible.  

This sub-chapter will approach a few researches that approach the main 

theme of automation. 

On what concerns advancements in interoperable and distributed systems, 

there is a concept being developed where every material resource and 
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component of a product has a special RFID tag, as shown in Figure 2.6 [12][13]. 

When going through the assembly line, those materials are able to communicate 

with each other, allowing the identification of which materials should go through 

the same route, in order for a specific product to be created. Furthermore, each 

assembler robot is integrated with a scanner to read the information from the 

group of materials and consequently know exactly which manufacturing task to 

perform. This concept relies greatly on the use of radio frequency identification 

chips, and it is considered a main future tendency on what concerns factory 

layout and product planning optimization. 

 
Figure 2.6 - RFID usage on smart manufacturing of bottles  [12]. 

There are also being developed major industrial projecting and 

implementation tools trough virtual 3D prototyping [14]. These tools rely on the 

idea that while creating the 3D model of the desired product, at the same time, 

the program would be able to project the entire production line and machinery 

associated, offering specific market analysis on the materials needed. This would 

significantly lower initial placement costs by companies. 

Another aspect being researched focuses on human resource 

advancements. The idea is based on consolidating, in real time, the factory 

manufacturing operations with the available workers, considering their many 

individual chrono-biological attributes [15].  

The workers would be connected to the network at all time, allowing each 

workstation to acknowledge which employee is to work next, and adapting itself 

to any possible limitations or disabilities. It would also create a mean of data 

acquisition, which would be conveyed into more efficient human resource 

deployment. The main goal of this concept is to add further flexibility onto a 

factory. 

In a last remark, there is a new tendency that came to fruition with the 

evolving penetration of 3D printing systems into the market [16]. This notion is 

denominated additive manufacturing and it is based on the use of a new concept 
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of “3D printing” implemented into conventional manufacturing lines (Figure 

2.7). The concept uses as resource materials that can be presented in the form of 

fine powder, and what it does is constructing components (simple or complex) 

layer by layer, contrary to the current concept used of 3D printing that is based 

on milling techniques.  

 
Figure 2.7 - Additive manufacturing principle [16]. 

2.2 Programmable Logic Controllers 

A PLC is a digital device that processes, in real time, the acquired 

information from an industrial equipment to which is coupled with (typically the 

ones that resort to electromechanical technology) and consequently manipulates 

the process into the desired work state (Figure 2.8). 

 This is done by offering several kinds of digital and analog input/output 

ports that are compatible with different types of industrial machinery, therefore 

allowing the reading of sensors and a following calculated actuation on the 

components of the main process equipment.  

 
Figure 2.8 - A PLC industrial cabinet [20]. 
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As mentioned on the previous chapter, the PLCs were an invention of great 

significance during the second Industrial Revolution, having the main focus of 

digitalization of the production environment. 

It allowed a new level of flexibility and ease of control by programming and 

executing logical instructions. The first PLC to be produced was Modicon 084, in 

1964. 

It is worth noting that this device is still very prominent on the modern 

industrial scene, largely due to their durability, reliability, cost and ease of 

technical implementation compared to the more advanced control systems.  

2.2.1 Structure and functioning 

A PLC normal cycle of work is based on the main following actions (Figure 

2.9) [17]:  

1. Input Scan: processor time slot reserved to access and verify every 

single input port acknowledged as in use and note their state changes 

on the input memory table; 

2. Program Scan: with the information gathered in the former action, 

the CPU takes the new changed/unchanged information retrieved 

from the input ports check and executes the respective previously 

programmed sequence of logic instructions. While the instructions are 

being executed, the output memory table is kept updated; 

3. Output Scan: uses the results from the programmed logic that 

affect output ports by accessing the output memory table and 

activates/de-activates them by applying or cutting off the hardware 

designed voltage of each port; 

4. System operations: last group of operations in a PLC cycle is 

reserved for more advanced actions such as communications, 

diagnostics and so forth. 
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Figure 2.9 - A PLC high level cycle of operation. 

Concerning its hardware structure, it is essentially divided in four sectors: 

input/output modules, central processing unit (CPU), memory and 

programming terminal (Figure 2.10) [17]. 

 
Figure 2.10 - PLC hardware structure. 

Going a bit over the components and starting with the central processing 

unit, all PLCs are generally based on microprocessor structures. Their function is 

to control and supervise all the operations within the device itself and execute 

instructions from the programed logic stored in the memory. All the components 

communicate periodically with the CPU via a main internal bus system. Some 

more advanced PLCs are built with more than one CPU, in order to achieve 

efficiently more complex instructions [17]. 

On what concerns the memory, PLCs contain both random access and read 

only modules (RAM/ROM). The memories are composed by the following 

segments (Figure 2.11) [17]: 
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 Executive Memory: this sector of the memory is ROM type, and it is 

where the main manufacturer default system operations are stored. 

It instructs the PLC on how to scan I/O modules, interpret user 

programed logic, test and diagnose internal modules. 

 System Memory:  RAM type sector reserved for results and 

information of system only operations, such as error codes and 

module work states. 

 I/O Image Table: reserved area of the memory that is constantly 

being updated with the new values read/wrote from the 

input/output modules Each I/O port has a dedicated memory slot 

with an individual address.  RAM type of memory applied in this 

case. 

 Data Memory: it has a similar way of functioning to the previous 

sector mentioned, but applied to instruction logic values that must 

be stored, such as values that are calculated, or counters and timers 

being used. Sometimes it is divided into a constant value and 

variable value area (RAM). 

 User Program Memory: portion of memory where the code 

programmed by the user is allocated, during the CPU work cycle, 

when the program scan phase is achieved. This is the place from 

where the CPU takes the operations to execute. Usually comes in 

RAM format, but can be set in EPROM if desired (a more definitive 

mean of assuring the information stays allocated). 

 
Figure 2.11 - PLC Memory structure. 
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The programming terminal is what offers the PLC the compatibility to 

communicate with secondary devices with the intent of being programmed, 

tested and monitored by the user. The technologies generally offered are through 

USB variations and several network technologies (Modbus, Serial 

communication, Ethernet, Etc.) 

In regard to the Input/output modules, they are the means to interact with 

industrial mechanisms that are a part of the control system. Usually, PLCs offer 

a digital module where the inputs typically work at 24V DC, and the outputs 

have either a discrete 24V DC functioning or a relay/TRIAC supported output 

where an output of up to 240V AC/1A can be used. The ports are often electrically 

isolated to protect the device from any undesired power-supply surges. 

2.2.2 Programming Languages 

In the implementation of a successful control system using PLCs, there must 

be a code programed by the user with all necessary operations. In order for that 

to happen, the PLC offers several programming languages, which initially had 

the goal of using similar logic and representation to the former techniques 

applied by the engineers and technicians. In one way, this was one of the biggest 

factors to the success of such devices, making them easier to implement and 

modify without the need of specialized technicians and, therefore, more cost 

effective. 

The languages currently supported by the IEC 61131-3 standard for 

programmable logic controllers are the following: 

• Ladder Diagram (LD); 

• Function Block Diagram (FBD); 

• Instruction List (IL); 

• Sequential Function Chart (SFC); 

• Structured Text (ST); 

On a side note, most of the PLCs are multi task based, allowing the 

simultaneous use of combinations of different operations with varied languages. 

It is also worth mentioning that all variables used, need to be specifically 

allocated on a space of memory conceptually implemented to handle the type of 

the variable. Next, the summaries of such languages are presented  
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2.2.2.1 Ladder Diagram  

This language was the first one offered by the initial PLCs created and its 

main goal was to be simple, useful and, most importantly, easily comprehensible 

by the technicians. It was designed in such a manner that could visually and 

conceptually illustrate the important relay logic (very dominant before the 

digitalization of the industrial environment occurred).  

As seen in Figure 2.12, the logic in Ladder offers several “branches” and flows 

from the left to the right. Each branch can be considered a rule that conceptually 

starts on the verification of one or several inputs and verifies if they satisfy certain 

conditions. In other words, verifies if the input variables are activated/de-

activated and, if so, it proceeds into the operation phase, naturally altering output 

variables. All the rules typically run simultaneously in a continuous cycle. 

 
Figure 2.12 - Example of a simple button activated timer in Ladder. 

The instructions are made to visually resemble electric wiring. Therefore, 

the inputs are represented by contacts and the outputs by coils, and both are 

interpreted as Boolean variables. 

This language was conceptualized for tasks that mainly resort to Boolean 

combinatorial logic, consequently being based mostly in Boolean conditions 

(e.g..: AND, OR,NOT). Regarding the operations it offers, besides setting a 

variable “ON/OFF”, there is also the possibility of using counter and timer 

associated actions in form of pre-programed logic blocks [19]. 

The foundation of this language and style of programming allows for a global 

and easy way of use and understanding, especially by the less expert technicians. 

However, its disadvantage is that, when tasks get complicated, the programming 

complexity and process resources grow exponentially [18]. Moreover, 

developing simple sequential structures becomes a very complicated task to 

implement, and when the code becomes significantly large it is hard to interpret 

and debug, even when well structured. 
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2.2.2.2 Function Block Diagram 

The conceptual principle behind the Function Block Diagram (FBD)  

languages is data flow - the information continuously flows through the code 

from inputs to the outputs (left to right), meaning that the operations between 

the transition are all done through function blocks. 

The function blocks can be sequentially concatenated by connecting the 

outputs of the former block to the inputs of a subsequent block, therefore 

facilitating the creation of more complex instructions. The blocks not only offer 

Boolean logic and simple arithmetic functions, but also comparisons, 

mathematical functions (ABS, COS, TAN) and can also have user programmed 

instructions, simplified to a higher level (Figure 2.13). 

 
Figure 2.13 - Example of a simple alarm in FBD. 

In contrast to the Ladder language, FBD is usually analyzed from the right 

(output) to the left (input). And it holds advantages compared to the former 

mentioned language, in the aspect that is easily analyzed and diagnosed by users 

that are not familiar with electrical schematics [18]. 

The FBD is a language that deals very well with simple numerical 

processing tasks, such as limit verification, scaling, and more. The cons regarding 

this language are that the larger the code, the harder it is to monitor, edit and 

analyze. 

2.2.2.3 Instruction List 

The Instruction List (IL) language is one of the first textual programming 

tools offered by PLCs [19]. It is considered to be a low level coding tool, similar 

to the assembly language, and its foundation follows the Accumulator concept. 

In other words, it represents a chain of mathematical or logical operations that 

occur in a stepwise fashion, basing the current operation with the results from 

the previous action.   
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In this programing language there are several code lines and in each line 

there is one single operation to be executed that may be applied to a single or 

several variables (Figure 2.14).  

 
Figure 2.14 - Example of a conditional allocation in IL. 

It supports loop programming and conditional verification trough 

commands like jump (JMP), which takes the execution pointer to an address 

where the desired following instruction is, as well as offering several arithmetic 

and comparative operators.  

The main advantages of this language lie in the fact that it is textual and 

condensed, being executed and processed a lot faster, when compared to 

graphical languages. Furthermore, no specific editors are needed adding a layer 

of portability to this language. It is also a language generally preferred by 

programmers that prioritize performance over diagnosing and monitoring [18].  

2.2.2.4 Sequential function Chart 

The Sequential Function Chart (SFC) is a more flexible adaptation of the 

Grafcet language, allowing an easier implementation and debugging check of 

automation systems with a well-defined sequential evolution. 

This language can be divided in a sequential way of coding with two main 

components: action steps/states and conditional transitions (Figure 2.15).  

 
Figure 2.15 - Example of a robot movement routine code via SFC. 
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The way it works is: an initial state is triggered, assuring the activation of a 

group of variables, and if the existent condition in the following transition is 

satisfied, the system will disable the current state and move onto the next state 

and its individual variable operations. Transitions can activate several parallel 

states at the same time. There can be more than one initial state when there are 

different concurrent tasks within the project. 

This language allows simpler code execution, due to the fact that there is no 

need to scan the whole code each cycle, but rather just the current state and the 

following transition. This fact also allows fast identification of malfunctioning 

transitions and "dead end” states [19]. 

There are several disadvantages worth mentioning. First, amongst the 

graphical languages, SFC is by far the one that consumes more memory 

resources, making the execution simpler but a lot heavier and slower. It is also  

the language that lacks the most in portability - every equipment/software 

associated has its unique configurations, making it impossible to pass a coded 

SFC from one source to another without using a third party conversion tool or 

ultimately having to re-code the whole program [18]. 

2.2.2.5 Structured Text 

Structured Text programming language is the last standardized language 

offered by the majority of the PLCs produced and sold today. It is the tool with 

the highest level of programming capability of all the mentioned before in this 

sub-section. It is often compared to a Pascal language further developed into 

industrial applications [19].  

The language is composed of statements separated by semicolons -these 

statements can be pre-defined or can be user programmed subroutines (Figure 

2.16). The coding is composed by various instructions, such as loop iterations, 

conditional verifications and further advanced mathematical equations. Every 

variable is defined previously to the main code of instructions it alludes to, and 

it can be of the type related to the I/O ports of the PLC internally stored memory 

types or constant values. 

 
Figure 2.16 - Example of an average value calculation code via ST. 
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Concerning pros and cons, this tool brings for a more productive means of 

programming in the current day where the complexity of the problems to be 

solved have grown very significantly. Besides being well-structured, compact 

and having more advanced instructions, its highly compatible and consumes 

lower processing resources. The cons usually mentioned of this language are its 

textual nature, and the fact that it is arguably harder to diagnose and perform 

maintenance [18].  

2.2.3 Current State and Developments 

About the advancements of this technology, it is worth noting that PLC 

devices have existed for over 40 years and their structure gives great emphasis to 

programming languages that have been surpassed. Furthermore, the great 

developments in PC performance and the introduction of Programmable 

Automation Controllers (PAC) in the industrial market have caused the PLC to 

decrease in market share dominance of the current manufacturing scene. 

Although there is not an established consensus on what should a PAC be or 

what are the exact differences from a PLC, PAC devices are globally seen as 

highly advanced PLCs -  they hold a more open architecture and modular design, 

that further facilitates interoperability and communication, more robust PCUs 

that can perform greater complexity routines, highly developed software tools 

that bring lower complexity and more modern programming languages to the 

table (C,C++, JAVA) [22]. 

 PACs do seem to be the successor of the PLCs, technologically wise, but it 

really depends on the complexity of the control system to be implemented. PACs 

are very expensive when compared to PLCs, and PLC manufacturers, due to the 

pressure of the PAC devices market penetration, have been implementing 

notable upgrades to the current PLCs, from additional CPU features, high speed 

communication capabilities, larger variety of I/O ports to superior performance 

and efficiency [21].  

There is also a notable philosophical shift in the industrial scene today: the 

customers do not prioritize individual technology performance but instead focus 

on global system functioning. Consequently, there has been less focus on buying 

individual components (PLCs, inverters, etc.) and more emphasis on industrial 

solution services to create the best global system possible for the situation [22]. 

A brief conclusion to this sub-chapter is that, even though the PLC devices 

have been surpassed technologically, depending on the industrial solution 

complexity and funding, they are still used immensely on the current 

manufacturing control systems. 
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2.3 Distributed Control Systems 

A Distributed Control System (DCS) is a conceptual automation structure 

that uses individual controllers and monitoring technologies. The system 

components are placed strategically throughout the whole industrial plant with 

the goal of processing/executing specific tasks in large and complex processes. 

Each component of the DCS communicates in a type of hierarchy level 

organization, via network, for higher command and supervision purposes [23]. 

This structure can also be seen as a global system composed of varied sub-

systems with individual tasks, contrary to the concept of centralized control 

systems, where all of the tasks and components of a manufacturing line are 

controlled and processed through only one main controller. Comparing the two 

of them, DCSs do bring a higher initial investment cost but portray a higher 

degree of flexibility, simplicity, control reliability and performance, especially in 

systems that are subjected to production changes or extensions.  

The most valued key feature of this concept is redundancy. DCSs are all 

designed to accommodate multiple elements that control/monitor the same 

process component, allowing the existence of back up resources in case of 

anomalies and/or critical failures. Such feature is extremely important in the 

modern day mass production industrial lines, where there are major security 

risks and huge profit losses in case of production stoppage [25]. 

Applications of DCS are seen over all of the industrial areas, especially the 

ones that require a higher degree of plant complexity and high cost efficiency, 

such as power generation, transportation fuel refining, pharmaceutical and 

highly automated food and beverage production.  

2.3.1 Production methods 

Before continuing the further description of distributed systems, it is 

important to enunciate the usual methodologies applied to manufacturing 

systems, in other words, what are the most common strategies for assembling a 

commercially viable product. This reason is justified due to the fact of DCS being 

generally associated to manufacturing processes, so it is important to have a 

notion of the most used production methods.  

In the modern days, it is hard to define a specific factory production 

structure due to the fact that the industrial scene usually uses combinations of 

different manufacturing methods that best adapt to their personal goal and cost 

efficiency. With that in mind, there are three main manufacturing concepts: Job, 

Batch and Flow production [26]. 
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2.3.1.1 Job Production 

Job Production, or One-off production, is a production method that 

illustrates the execution of custom/personalized work. It is a unique and time 

constrained kind of service that usually serves as a third party contracted 

production resource. 

This method assures that the product/service created matches the customer 

needs exactly, and it is usually characterized by highly specialized tasks and 

quality work. Therefore, it is a significantly expensive method, due to the use of 

highly skilled staff and time demanding activities [27].  

Examples of this kind of production go from building new installations, 

extending a production line, installing new equipment, maintaining/fixing 

manufacturing processes to producing highly specialized materials for a new 

upcoming technology. 

2.3.1.2 Batch Production 

The Batch production concept lies in producing a fixed number of units to 

satisfy a certain customer’s order. It is usually best applied in low-mid initial 

capital companies that produce several types of the same product. 

The way it works is as such: if there are 3 types of units to be produced, the 

factory is set with the needed specifications for one type and produces all the 

units needed; afterwards, it is reset for the next type of unit. Initially, the raw 

materials are picked and passed through sequential manufacturing stages that 

are divided by different workstations.  

This method is mostly applied in companies that have no need or cannot 

afford continuous production.  If there is a sudden cut in demand, this method 

allows production stoppage without suffering huge profit losses (this factor is 

best suited for factories that produce seasonal items) [27].  

Examples of businesses that generally use this method are in the areas of 

bakery, clothing, pharmaceutical and construction materials. 

One method worth mentioning that is usually associated with batch 

production is Just in Time manufacturing, and it is essentially a more cost 

effective method that minimizes the investment in resource preparation and 

storage by ordering and manufacturing the products right before the limit date 

required by the customer. 
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2.3.1.3 Flow Production 

Flow or Mass production is the method that truly applies continuous 

assembly of goods. Individual products proceed sequentially from one to another 

manufacturing phase in a single production line; ach phase has specific staff and 

mechanisms that perform the same task over and over, as quickly as possible, 

with minimal quality loss. 

Factories that apply this method are meant to be producing 24/7 with high 

product output so that the overall cost of running the production line is dispersed 

by each produced unit. Consequently, in cases of stoppage, there are always high 

costs associated, mostly due to resources needing to be reprocessed and 

disposed, in order to maintain quality levels in the start of the next work cycle 

[27].  

As it is stated by its name, this method is used in large companies that have 

a very high demand but small cost flexibility per unit, therefore, being applied in 

areas such as energy, fuel, electronics, transportation, etc. 

2.3.2 Structure and Types of DCS 

A distributed control system is, by definition, composed by a hierarchical 

structure. For further explanation, we shall divide the general structure into three 

levels [24].  

As it can be observed in Figure 2.17, the low-level is composed by the 

different industrial plant processes and their respective controllers. The 

processes can go from conveyors, robots, to ovens and are always equipped with 

easily reachable/compatible actuators and sensors.  The controllers are usually 

custom microprocessors and are responsible for assuring that their respective 

processes successfully execute the planned manufacturing tasks.  

The mid-level is where the supervision controllers are. Their task is to 

automatically oversee all of the plant controllers, set their work state and possibly 

detect global system failures.  

Servers are installed in this level, which gather all the information available 

at low and mid-level and, consequently, send it to high level technologies.  It is 

also the place where the lowest means of human intervention is possible by using 

equipment such as HMIs (screens with graphical interface of the process) and 

physical buttons.   

The industrial network technologies and protocols used at this level are 

usually the ones supported by the installed HMI and controllers, for example, 
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serial type, fieldbus and industrial Ethernet communications (such topic will be 

described on the next sub-chapter 2.4). 

The high-level is where specialized tasks are executed, having computers 

connected to an Ethernet LAN network with the goal of scheduling, coordinating 

and supervising the whole factory. Databases and remote clients are also 

available in this level, mainly for further accessibility and reliability. 

 

 
Figure 2.17 - Typical DCS structure. 

On what concerns types of DCS, it is a very subjective matter but through 

research, it can be divided in the following categories: 

 

 Discrete : this is where the conventional DCSs lie and they are 

basically conceptual systems that control processes of closed loop 

nature; 

 Sequential:  PLC based systems, typically illustrated by command 

control, where the notion of states and list of instructions is applied 

onto a process; 

 Hybrid: applies both control concepts above; 

 Smart: these are the most advanced distributed control systems that 

blur the conventional hierarchy structure by having a higher degree 

of interoperability and communication between all of its 

components, making each more independent and autonomous.  
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2.3.3 Comparison with other typical Control Systems 

On the automated manufacturing scene it is important to compare and 

define the main used systems. Therefore, in this sub chapter, an overview and 

comparison will be made with SCADA and PLC systems. 

2.3.3.1 Comparison with PLC systems 

Comparing PLC to distributed control systems, they initially had different 

applications, PLCs were often used in simple batch controls.  

PLC systems presented low component value where it was easy to reset the 

installation and possible downtime wouldn’t present damage risk onto the 

process. In counterpart, the DCS was usually applied to much more expensive 

processes and would have to be able to control critical applications, where a 

possible failure has high profit loss and security risk associated [23]. 

In the modern days, it is actually hard to distinguish both systems due to 

the fact that the evolution of their technology and the adoption of new conceptual 

manufacturing methods has transitioned both technologies into each other [25]. 

Therefore being very usual to be observed the use of PLC as plant controllers in 

distributed systems. 

2.3.3.2 Comparison with SCADA systems 

A SCADA system is conceptualized for data acquisition with the purpose 

of plant supervision. It is mainly composed by software, being usually present in 

higher level layers within the hierarchy of an industrial system.  

Its main focus is to gather information and present it to technicians in order 

for them to monitor and set the processes in correct work states, while DCS is a 

more process control oriented system. 

Comparing both of the systems, as also seen in Table 2, besides DCS being 

process driven and the SCADA being event driven, there are other noticeable 

differences in typical systems. Distributed control systems are applied in smaller 

geographic areas, assuring reliable and good quality data and are composed by 

closed loop process control.  

On the other hand, SCADA systems usually have larger geographical reach 

and the quality, reliability and determinism of the data is not high priority, since 

it is used only for monitoring purposes and not for autonomous control. It is also 

more efficient energetically, due to its equipment only being associated to data 

processing [25].  
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Another important factor is the human intervention at process levels. 

Distributed control systems allow operators to intervene in a more direct manner 

than a SCADA system would, which only allows HMI interaction. Moreover,, 

DCS are dependent of a constant stream of data from processes, in order to 

properly function, while SCADA systems are capable of keeping a well-

functioning work state in case of outage, basing its decision on stored data. 

Table 2 - Comparison between DCS and SCADA. 

DCS SCADA 

Process driven Event driven 

Small geographic areas Large geographic areas 

Good data quality and reliability Poor data quality and reliability 

Powerful closed loop hardware 
Power efficient hardware for data 

processing 

Just like PLC and DCS systems identity is very blurry, nowadays, the same 

happens with SCADA and DCS systems. The common case is that SCADA 

components are already integrated on modern DCS, which present a very strong 

component of data gathering and processing. 

2.3.4 Current State and Developments 

One of the main trends in development on Distributed Control Systems is 

the conversion of its components into more intelligent interoperable units that 

focus primarily on the use of wireless communication technologies and 

networks, specifically in the input/output layer [28].  

This layer is one of the most important parts of a DCS where countless 

process measurements and output actuation signals are read and applied in a 

single process. The current implementation of I/O devices (I/O Bus network) 

presents slow value transitions compared to the current developments in 

technology. The fact that it is based on a wired technology alone makes it more 

expensive in large industrial plants, while at the same demanding great 

complexity to assure reliable measurement/actuation of rotating equipment. 

A second immerging trend is the implementation of server virtualization into the 

systems [28]. In other words, instead of having a centralized physical server from 

where every client requests information, that same server is further decomposed 

into several other virtual servers, which perform their individual tasks and allow 

access only to entities related to those same tasks. Benefits from this tendency 

come mainly from higher accessibility and less cost associated to physical 

resources. 
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Last but not least, there is also the idea of applying cloud computing into 

future DCS systems [28]. This would mean that, through remote servers, data 

would not only be gathered and transmitted, but also major physical tasks would 

be executed, completely taking away the notion of geographical barriers within 

a Distributed Control System. 

As we can see, the major concerns in this subject relate to general security. 

In fact, relying on transmission of sensitive information through waves or relying 

on third party remote servers, if not well conceptualized, can be very risky. 

Valuable information to a company could be leaked or, even worse, manipulated. 

Thus, these trends are still far from being implemented on a large scale, especially 

considering that the automation industry is very conservative by nature. 

2.4 Industrial Networking 

The constant evolving of the industrial systems into more advanced 

digitally dependent structures, has also driven the need of developing new and 

better communication concepts that could fully adapt and elevate the overall 

performance of the systems.  

Initially, the control structures only applied communications between the 

physical processes and the controllers. However, in the current times, networks 

are starting to be implemented at all levels, not only from a field control stand 

point, but also in a supervising and data gathering/processing point of view 

where the equipment focuses mainly in Ethernet standards. 

2.4.1 Structure 

Usually, the composition of a traditional industrial network has a 

significant number of layers and tends to be more complex the bigger the control 

system is (Figure 2.18).   

In general, it is illustrated by a hierarchical structure composed by different 

communication protocols and media equipment where the lowest level of data 

transmission lies at the connection with the controllers and the physical world; 

above there is the application level that make the sharing of information between 

different protocols possible [29].  

Following this, there is the supervision and monitoring level, ending on the 

data collection and external communication layer. This hierarchy has seen a 

tendency to dissipate, due to constant technological improvements, which 

facilitated the simultaneous interaction between all the components within a 

control systems [29]. 



2. State of Art   
 

30 

 

Figure 2.18 - A typical industrial network structure. 

This structure, in order to be open and allow constant expansion must have 

a very well defined core topology. There are, essentially, three types considered 

[30]: Star, Bus and Ring configurations (Figure 2.19). 

 

Figure 2.19 - Network Topologies. 

The Star topology essentially illustrates a network that revolves around a 

central controller to which all the nodes/components are connected. This 

topology represents ease of component expansion or possible failure of a node 

without interrupting the well-functioning of the overall network.   

Even though the failure of a node does not bring any consequences to the 

global system, this topology is highly dependent of the central controllers, 

therefore, their failure implies the failure of the entire network [30].  

In the Bus concept, every component is connected to a common 

communication channel, hence, every message sent is received by all the nodes. 

A node failure does not jeopardize the global network, as long it is not damaging 

the bus. 
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The Ring configuration is essentially a cable that goes from node onto node, 

with the message sent and received between nodes until it reaches its destination. 

In this topology, a node failure shuts down the network. 

On what concerns the equipment that is used to create the network itself, 

having a single cable is usually not enough. Because these networks must cover 

large plants, they need to be isolated and able to communicate with many 

different components with their individual communication specifications and 

protocols. Thus, an industrial network is usually physically illustrated by devices 

such as repeaters, servers, several routers and gateways devices [30].  

The information transmitted within is usually decomposed in control, 

diagnostic, safety and historic type [29]. Control information refers to the data 

being traded between controller and physical instruments, usually inputs and 

outputs of a control loop. Diagnostic is the information collected from the 

different components of the system, in order to efficiently access and deduce how 

well the system is working and if there is any failure. Safety information is the 

one that is most prioritized. It is used to sustain critical tasks functioning and it 

has presented high reliability and real time requirements. Historical information 

is the general stored data that is usually used for prediction methods and 

historical analysis.  

It is also important to point out that the industrial network’s main emphasis 

is the ability to interact with the physical world, hence, the conceptualization of 

an operable network must have a critical focus on the following requirements 

[29]: 

 Safety and failure diagnosis: since the network is used as a means 

of establishing communications between important control 

components and the physical processes, possible failure can translate 

into very serious consequences. Major losses of revenue can happen 

and, most importantly, the safety of the workers can be put at risk. 

Therefore, these networks must have very strong fault detection 

capabilities and very small packets of data to assure the quality of the 

information. 

 Real time response: the speed associated with the data transmission 

must be fast enough to not only keep the system functionality 

maximized, but also to quickly re-send information in case of 

information loss.  In general, the speed of transmission should be 

twice as fast as the receiving end requires it. 

 Determinism:  within a system there are several tasks that are time 

dependent, thus, being crucial that the network offers the capability 

of assuring low variance and predictable transmission times between 
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components, in order for a high degree of synergy and temporal 

consistency to be assured during events. 

 Periodic and aperiodic traffic: there are many different tasks 

occurring within a system - some of them require a continuous flow 

of information in order to function (e.g.: control loops) and others 

only require it when an action is needed to be performed (e.g.: trigger 

events). Therefore, a network needs to establish different natures of 

transmission, depending on the information. 

 Ruggedness: the network devices and wires must have a high 

protection index that assures the well-functioning of the network in 

locations where it is susceptible to adverse conditions such as dust, 

heat or vibrations. 

 

2.4.2 Comparison with Commercial Networks 

Comparing both networks, we can point out that, at their core, they have 

different main focuses: the industrial networks ultimate goal is to connect with 

physical machinery, in order to monitor and control a manufacturing task, while 

the commercial networks are only dedicated to processing and transferring data. 

Consequently, the networks have very different implementation requirements, 

as seen in Table 3. 

Industrial networks have higher costs of implementation, demanding a 

varied array of dedicated and expensive hardware, while the commercial 

networks rely only on routers and cable.  The structure of an industrial network 

has a higher quantity of layers associated, whereas the commercial network is 

only represented by the user local network that connects to a geographical site 

backbone and the latter connects to a supplier Wide Area Network [29].  

On what concerns the requirements mentioned in the last sub chapter, the 

commercial networks do not need to offer a high grade of quality, they are 

intended to be deployed in corporate and domestic environments, therefore they 

offer low standards of ruggedness and failure severity. 

Table 3 - Main differences between Industrial and Commercial networks. 

  Industrial Commercial 

Main Focus 
 Control of physical 

machinery. 
 Transfer and process 

information. 

Operating environment 

 Manufacturing and 
distribution facilities; 

 Subjected to harsh 
conditions. 

 Domestic and 
corporate use. 
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Structure 

 Deep with highly 
hierarchized 
constitution; 

 Varied nature 
equipment and 
communication 
protocols. 

 Shallow with 
uniform 
communication and 
standardized 
equipment. 

Failure severity High Low 

Reliability and 

Ruggedness  
High Moderate 

Determinism High Low 

Transmission times 250 µs – 10 ms +50 ms 

Temporal consistency  Highly required.  Not required. 

Type of transmission 

 Periodic and 
aperiodic 
transmission; 

 Small packages. 

 Aperiodic 
transmission; 

 Large packages. 

2.4.3 Protocol Overview 

It is impossible to describe networks without mentioning communication 

protocols. Essentially, protocols are a set of rules that allow different devices to 

communicate and understand each other through a transmission medium. 

Industrial network technologies and protocols can be gathered in three 

categories [30]: 

 Fieldbus: it was the first means of communication, developed after 

the occurrence of the digital transition in the manufacturing industry. 

It is defined as a group of protocols that are mainly based on serial 

multi-drop data bus communication. 

 Ethernet: highly penetrated technology in the business and domestic 

demographic, large data and high speed capabilities. 

 Wireless: it is a tendency being developed and tested in current 

industrial environments, establishing a more adaptable and versatile 

control system. 

Before heading onto a brief protocol overview, there is the need to go over 

a few important topics, starting by the main standardized protocol reference 

models (Figure 2.20). 

The first developed model was called Open Systems Interconnection model 

(OSI), defined in 1984 by the International Organization for Standardization 

(ISO) [29].  
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This reference model is composed by seven layers:  

 Physical: this layer concerns itself with the transmission of data over 

the hardware itself; 

 Data-link: it organizes data and detects transmission errors between 

physical nodes;  

 Network: manages data package routing; 

 Transport: executes the data transmission between network nodes; 

 Session: organizes and synchronizes the higher level data between 

network nodes; 

 Application: is where the high level interfaces run on; 

 Presentation: converts the information from the before mentioned 

layer to lower level layers. 

The fieldbus network systems adapted the OSI model into the Enhanced 

Performance Architecture model (EPA) [29], consisting of only three layers: 

physical, data-link and application. This reduced model was conceptualized in 

order to eliminate non-essential delays within industrial networks.  

It is also worth mentioning that following the Internet penetration in the 

market, the TCP/IP protocol was implemented and it represents a more efficient 

and simple OSI model for computer networking [29] - its constitution uses only 

physical, network, transport and application layers. It is still widely used as the 

foundation of the real time Ethernet existent nowadays. 

Other important concepts often used are the client-server and producer-

consumer models. Essentially, they represent how the communication is 

processed between the components of a network [30].  

The client–server model (also called master-slave) illustrates a situation 

where a component controls the other in a unidirectional way; in other words, 

the client is the one who makes a request, and the server is the one who waits for 

the request and consequently responds to it. The most basic example of this 

communication model is a PLC controller directing a group of I/O devices.  

The producer-consumer model is a broadcast model where a component 

sends a message (producer) and all the other components (consumers) receive it. 

If relevant to their tasks, the components process that information and act 

accordingly. 
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Figure 2.20 - Main protocol models. 

Also worth noting is the way the data is transmitted while the 

communication is occurring (Figure 2.21). It can be: 

 Simplex: the information is transmitted solely from the sender to 

the receiver; 

  Half-duplex: both devices can send and receive information, but in 

a singular way; 

  Full-duplex: that represents the half duplex concept but it is 

capable of doing it in a simultaneous fashion. 

 
Figure 2.21 - Terminal connectivity classifications. 

2.4.3.1 Modbus 

The Modbus protocol was created by the company Modicon, in 1979, and 

its original goal was to allow point-to-point data transmission between PLC 

devices and their respective programing tools [31].  

This protocol is classified as an application layer protocol and it comes in 

several different types, depending on the means of transportation used. The most 

used in the current day are the ones that run over serial and radio links, such as 

the Modbus ASCII and RTU, and the ones that run above Ethernet networks, like 

Modbus TCP and UDP. 
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Essentially, this protocol is based on the client-server configuration and in 

the Star network topology. It is constituted by only one client, typically a 

programming panel or a computer, and several servers which are controller 

devices mostly. The number of servers allowed on the protocol are limited by the 

number of serial ports the computer host has and by the limit number of 247 

(maximum address number specified within the protocol) [31]. 

Following the client-server analogy, the way the Modbus protocol allows 

the transaction of information between devices is as follows: first, the client 

requests information; consequently, the destination server processes the request 

and responds accordingly. As an example: if there was a severe failure in one of 

the servers, the client would only be aware of that fact, when it proceeded to 

make a request to the server in failure, in the original protocol the server would 

not have permission to initiate a reply without a request.  

The way the transaction happens between client and server can be observed on 

Figure 2.22, and for this transaction to occur, each server has to have a unique 

address identifying it, within the range of 1 to 247, the address number “0” is 

reserved as a global message identifier to whom every server has to reply to. On 

what concerns the client, there is no need for it to have an address, since there is 

usually only one [31]. 

 
Figure 2.22 - Modbus protocol transaction. 

Regarding the contents of the message, the message sent by the client is 

denominated by query and the response from the server is simply called 

response.   

There are two modes of how a message is framed and timed in the Modbus 

protocol (Figure 2.23), the ASCII and RTU modes: the ASCII mode represents the 

data in such a way that a human can interpret it, while the RTU mode represents 

the information in a long chain of binary values. Besides timing the asynchronous 

frames, both modes have different overall sizes and error check methods. 
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Figure 2.23 - Modbus message framing. 

 

In both cases, the message is generally composed by the following structure 

[31]: 

 Device address:  

This section of the message frame is intended to always hold the server 

identification and it is both used on queries and responses. Due to the 

message being sent in a broadcast kind of way, the address is crucial for 

the correct server to process it; 

 

 Function code: 

The function code is a specific number that orders the server to apply an 

individual task or command.  Depending on the function, the data portion 

of the message will vary.  

 

Concerning the functions themselves, they can be categorized in three 

main types: public, user defined and reserved. In Table 4 there are the 

most commonly used public functions offered by the Modbus protocol. 

 
Table 4 - Modbus main function codes. 

Function Code 
Read multiple coils 1 

Read multiple discrete inputs 2 

Read multiple holding registers 3 

Read multiple input registers 4 

Write single coil 5 

Write single holding registers 6 

Write multiple coils 15 

Write multiple holding registers 16 

 Data bytes: 

The data field will contain the necessary information to fulfill the initially 

function sent in the clients query. Depending on what that function wants 
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to manipulate within the destination server, the data bytes can be 

constituted by several types.  

 Error check:  

This last sector of the message is used to deduce if all of the information 

was well secured and received. As mentioned before, there are different 

methods depending on frame transmission mode used. 

On the case of the ASCII, the error checking field contains two ASCII 

characters holding the result of the application of the longitudinal 

Redundancy Check Method (LRC). Regarding the RTU mode, the error 

check field is represented by two eight-bit bytes that serve as result of the 

application of the cyclical LRC. 

 

2.4.3.2 Profibus 

The Profibus protocol was one of the first created fieldbuses. It was 

developed by a consortium of various German automation companies in 1987, 

and due to the endorsement of Siemens it was widely implemented through all 

the manufacturing industry.  

Its goal was to make possible the implementation of bit-serial fieldbus 

systems and it was defined has having three different profiles for specific 

applications. Firstly, Profibus-FMS for non-deterministic high level 

communications; secondly, Profibus PA (process automation) which is used for 

unsafe areas; and, lastly, Profibus DP (distributed periphery) for low level 

communication [33]. Since the main concept remains for all the profiles, this 

overview it will be focalized on the Profibus DP. 

This protocol is based on a client-server bus topology where for every group 

of servers there are two different clients. The clients are classified in two classes 

[33]. Class 1 client is responsible for the central control tasks and the exchange of 

data with its servers and is generally represented physically by a PLC or a 

computer with special software. The class 2 client is usually a configuration 

software that is responsible for diagnosing and authorizing servers. 

The information transaction starts via a periodical cycle where the class 1 

client initiates a sequential request to every server on the network after the query-

response interaction between the class 1 client and the servers, a token 

methodology enters in place, where the class 1 master passes the rights of 

interacting with the servers to the class 2 master.  If a master doesn’t have a token 

it is only allowed to read values from a server (Figure 2.24). 

The way the message reaches the correct server, similarly to the Modbus 

protocol, is through identifying every server with an individual address in the 
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range of 1 to 125. Also, due to the fact that there are different masters within a 

Profibus network, masters do require address identification too. 

 

 
Figure 2.24 - Profibus protocol transaction. 

The transmission applied uses two different types of services [33]: 

 

 Send and request data with acknowledge (SRD): 

In this methodology, data is sent and received in one single transmission 

cycle. Strictly speaking, the client sends a request along output 

information and the server consecutively sends a response with input 

data. This service represents a very efficient way of exchanging data with 

I/O devices. 

 Send data with no acknowledge (SDN): 

This service is used for global messages that need to simultaneously reach 

all of the servers (broadcast messages). They usually hold task instructions 

to whom the slaves act on but do not respond or give any 

acknowledgement to the client about who sent the message. 

 On what concerns the content of the message, there are two types of frames: 

request and response frames. The only difference between them, besides 

inverting who sends and who receives the message, is the fact that the request 

frame holds 1 byte with information about time synchronization between the 

master and slave involved on the transaction. 
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Figure 2.25 - Profibus message frame. 

As seen in Figure 2.25, the typical structure of a frame is composed by the 

following elements [33]: 

 

 Start Delimiter (SD): 

Establishes the start of the frame and the value it holds also defines the 

format of the frame. 

 Length field (LE and LEr): 

It is composed by two bytes that present the size value of the frame sent. 

 Address sector (DA and SA): 

This fields holds in 2 bytes, the addresses of both the sender, and receiver 

within the transaction occurring. 

 Function code (FC): 

The function code is a specific number that orders the server to apply an 

individual task or command.  Depending on the function, the data portion 

of the message will vary.  

Concerning the functions themselves, they can be categorized in two main 

groups: request message functions and response message functions. 

 Service field (DSAP and SSAP): 

This field contains information about what type of transmission service is 

to be used by both a request message and response message. 

 Data field (DU): 

The data field ranges from 0 to 32 bytes in length and it holds all the 

important information to be transmitted and processed between stations. 

 Error Check (FCS): 

This byte holds a frame sequence that serves the purpose of checking if 

the message was well received. The error checking is based mainly in 

parity methodology: the sender calculates a parity bit for each consecutive 

eight bits composing the message; then, concatenates all of those parity 

bits into the error field. When the message is received, the server will 

perform the same action and compare it to the frame sequence within the 

message.  

 End delimiter: 

Establishes the end of the frame. 
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2.4.3.3 Profinet 

The Profinet protocol is a further development of the Profibus protocol onto 

the Ethernet. This adaptation was made aiming towards the elevation of the 

former into a higher degree of accessibility, compatibility and flexibility in 

industrial systems.  

Its concept and structure are strongly similar to the Profibus overall 

concept. With that being said, it also uses a client-server bus topology with the 

same two different classes of clients assigned to a group of servers and that use 

token methodology.  

One major difference is the fact that Profinet sustains a full-duplex means 

of communication in counterpart to Profibus that only sustains half-duplex. The 

other major difference is that within the transaction of information there is one 

additional communication channel in the Profinet. 

From the two communication channels available in this protocol, there is 

the TCP/IP channel that is used for non-time critical tasks such as diagnosing and 

configuration. The other channel is used for real-time dependent tasks that need 

very fast and deterministic performances, such as main cyclic data processes, 

monitoring, alarming and critical task triggering.   

2.4.3.4 Open Protocol communications 

The Open Protocol Communication (OPC) was released in 1996. In essence, 

the OPC represented a highly compatible protocol that enabled universal 

connectivity and interoperability between all different manufacturer devices [35].  

These devices often have their own unique data modeling structures, 

communication assessments and protocols, forcing the factories either to only 

constitute their whole production control systems with devices of the same brand 

or in order to take advantage of cost efficient measures forced to implement very 

clunky, complex and inefficient global systems full of manufacturer drivers for 

each different device. 

This protocol concept can be viewed as a conversion layer between the 

communication of client and server devices (Figure 2.26). The devices do not 

need to be configured in anyway in order to exchange information - the OPC will 

simply pick the information of one device in a certain protocol and it will make 

it processable in the other device’s protocol. 
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Figure 2.26 - OPC application scheme. 

In order for that conversion to work, the OPC relies in a master-slave 

topology where both devices involved in the transaction are able to read and 

write onto each other, but it can only be started if the device that is being the 

client initiates such transaction. 

Conceptually, the OPC server-client relation has the role of a translator 

between a data source and several applications connected to the OPC that require 

that data.  

The OPC server usually is structured by the following components (Figure 

2.27) [35]: 

 Open protocol communication: 

This sector is responsible for assuring that the converted information is 

sent and well received by the OPC client 

 Native Communication: 

This is where the OPC server communicates with the data source through 

its own protocol or custom made interfaces, gathering the data requested.  

 Translation module: 

The translation module is the vital key of the OPC concept, since it has to 

efficiently be capable of interpreting a request from an application, convert 

it, send it to the native data source and, consequently, manage the data 

transaction between both different nature devices. 

 

The OPC client has a similar structure but, instead of being connected with 

a native data source, is directly connected to a data application client. 
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Figure 2.27 - OPC client-server conceptual structure. 

2.4.4 Current State and Developments 

Regarding current development efforts on what relates to industrial 

networks, there is the current trend of implementing protocols based in wireless 

technologies [29], with the general goal of furthering cost and complexity 

reduction in the quantity of wires in a global system. 

 Having a robust wireless network implemented into hazardous 

environments also brings numerous benefits in flexibility and installation 

longevity wise. The main reasons why it is yet to be largely implemented by the 

current industrial scene, lies on the lack of real time performance, determinism, 

limited distance reach and high susceptibility to interferences. 

Information loss within an industrial factory can occur through numerous 

situations, from the transmission itself, where different sent signals interfere with 

each other, to industrial equipment creating electromagnetic charges and thermal 

noise, therefore making it very hard to design and implement a very efficient 

wireless network compared to a domestic/business application. 

The most promising protocol standards that sustain the possibility of 

wireless networks being implemented in production factories are WPA-IA, 

Wireless HART, ISA100.11a and Wireless Mesh protocols. 

The latter one allows for a dynamic network that can self-generate 

communication nodes, depending on the onset control system requirements.  

2.5 Brief Chapter Conclusion 

Regarding sub-chapter 2.1, the important factors to retain is that automation 

has been accompanying the human evolution trough the beginning of time, it is 

a concept that will only evolve, therefore, further developing production and 

manufacturing environments. Current researches revolve around the Industry 
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4.0 concept where communication, interoperability, autonomy and flexibility are 

key factors.  

In sub-chapter 2.2, it is intended to pass informative knowledge on one of 

the most important devices applied in automation industry. It is described how 

they are structured and programmed. A very important fact, is that despite the 

technology’s age, it is still very competitive device currently. 

In Sub-chapter 2.3 it is important to note that distributed control systems 

are indeed the best control solution. Although more initial investment is needed, 

a lot of mid and long term benefits are gathered. Benefits like significant degrees 

of redundancy and information propagation, as also more open and flexible 

architectures. Developments in this area are associated to server virtualization, 

cloud computing and wireless technology. 

Interoperability and interaction within a system is only possible trough 

highly networked systems, therefore in sub-chapter 2.4 it was decided to 

approach industrial networking and communication methods (protocols). The 

crucial information to retain from this sub-chapter is that industrial networks 

have much higher requirements comparatively to a network used for corporate 

and domestic purposes. Data reliability and speed is crucial for the well-

functioning of DCSs.   

The following project is strongly supported by all of the technologies 

described within this chapter. The application of industry 4.0 would simply not 

be possible without the combination and synergy between all of them. 
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3. Architecture and Implementation 

In this chapter, a detailed description of this system will be issued, going 

over architectures, operational functionalities, specifications, to hardware and 

software implementation methodologies. 

In sub-chapter 3.1, the global system architecture and functionality will be 

presented. 

 In sub-chapter 3.2, it will be descripted the conveyor control system in its 

entirety, from process specifications, operational functionality, to hardware and 

software implementation topics. 

Following the same logic, in sub-chapter 3.3 the tank control system will be 

the focus. 

Within sub-chapter 3.4, an overview over the supervision and high level 

monitoring component of this system will take place. 

Sub-chapter 3.5, it will explain how the communication system was 

implemented and what tools it was based on. 

Lastly, within sub-chapter 3.6, the remote clients implemented will be 

overviewed, explaining their functionalities and reason of their existence as well 

as how they were implemented. 

3.1 Architecture and general functionality 

This distributed system is strongly dependent on a local Ethernet network 

and software run in common computers, which facilitates the implementation of 

diverse client applications, therefore, allowing for a lesser dependability on 

specialized equipment. 

This structure was mainly conceptualized to operate two physical 

processes: a tank and a conveyor. The reason for their use comes mainly from 

taking advantage of available resources in the laboratory and the fact that the 
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conjugation of those processes does sustain a realistic manufacturing 

contextualization.  It is worth noting that each process is controlled by PLCs of 

different manufacturers, in order for the system to present a higher degree of 

interoperability (Figure 3.1). 

 
Figure 3.1 - Hybrid System of Distributed Automation. 

Besides the processes and the two controllers associated with them, the 

system is composed by a supervisor that monitors, imposes working states, 

gathers information and transmits it to remote clients. There is also a Human-

Machine Interface device (HMI), which allows high level interaction with the 

whole system, having varied tools available for monitoring and global system 

manipulation.  Furthermore, one Computer running an open protocol server, 

with the purpose of making the communication between controllers, supervisor 

and remote clients compatible and possible. And, finally, two remote clients that 

consist of one operational historian and an advanced monitoring client. 

As seen in Figure 3.2, although the system may seem to be centralized, due 

to presenting a star architecture around the OPC server, on what concerns the 

control and system work states, every controller holds its own routines and 

procedures, making it distributed in a control sense. The main reason for it to be 

centralized on the OPC server, is due to the different manufacturer controllers, 

that have very different communication protocols, therefore making it 

imperative to have, in a communication sense, a centralized structure  for them 

to be able to communicate with each other.  
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Figure 3.2 - Global system scheme. 

Another important detail to mention is that the system does not hold a true 

unidirectional master-slave communication structure. All of the controllers have 

variables that are used exclusively to be received and others to be sent; with that 

being said, it can be seen as doubled master-slave communication between two 

controllers, where to a group of data, one plays the role of the slave and to other 

group of information the inverse case happens. 

In regards to its general working, the system presents two main modes: 

 Manual Mode: this mode permits the direct control of the physical 

actuators associated with each process and can be used either in low 

levels (via mechanical buttons near the tank/conveyor) or in high 

level (through the HMI). 

 Automatic Mode: it represents the full automated cycle of 

transporting and treating a specific part, applying different working 

routines depending on the part’s individual characteristics. Those 

part characteristics/specifications are pre-selected or created by a 

user before the initiation of the mode or during the treatment of a 

former part. This method can only be initiated if the whole system is 

operational. In case this condition is not verified, the whole system 

will maintain itself in a manual state. This mode has also a strong 

failure detection and treatment tools, alerting the whole installation 

in case of failure, waiting for a technician’s presence in order to do 

manual monitoring and, ultimately, in case the failure is not 

attended, global system blocking is ensued.  
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3.2 Conveyor Control System 

The conveyor implemented in this project has the main goal of transporting 

a part towards the tank station (Figure 3.3).  Each part has its own individual 

characteristics and, since, some might be more fragile than others, this system 

was designed to allow the user to define the conveyor’s speed in different stages 

of the transportation, assuring the most adequate transportation task to a certain 

type of upcoming part. 

 
Figure 3.3 - Conveyor System. 

3.2.1 Process Structure and specifications 

Before describing the operational task implemented, it is important to 

mention which are the input/output mechanisms and part specifications 

available in the conveyor. As illustrated in Figure 3.4, there are a total of five 

sensors and one actuator surrounding a simple conveyor. 

 
Figure 3.4 - Conveyor illustration. 
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The sensors are activation based, emitting a signal whenever the part carrier 

goes through the sensor’s range of vision. The sensors on the edges of the 

conveyor (sensors 1.1 and 1.2) are mechanical limit relays, while the sensors 2 are 

optical. The information they transmit to the controller is used to know the 

relative position of the part, allowing self-calibration of the carrier and the 

application of user defined transportation speeds to the part in different sectors 

of the conveyor lane. The actuator is the motor that applies movement to the 

conveyor and allows the controller to manipulate the direction and speed. 

Concerning the part specifications, the idea was to divide the conveyor path 

into two different sectors and associate to each different dedicated transportation 

speeds. In Figure 3.4 the two sectors can be observed, V1 illustrates a lower speed 

that assures the safety and well-functioning of the carrying task, at the pickup 

and deployment of the part. The sector from sensor 2.1 to 2.3 with V2 associated 

is meant to minimize the transportation time. The transportation speeds are 

limited in the range of 0.33 Hz/19.8 rpm or 0.1 m/s due to the small scale of the 

conveyor. 

3.2.2 Operational Description  

As observed in the Figure 3.5, the operational routine starts with the 

verification of several conditions before applying any mode of conveyor control. 

If the global system outside of the conveyor (specifically, the supervisor and the 

tank) is not active or responding, the manual mode is forced immediately. If there 

is any external emergency stop order or non-attended failure, the system will 

block itself.  

 
Figure 3.5 - Conveyor main sequential logic. 
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If there is a case of the conveyor being in a blocked state, the only way to re 

enable it is through ordering a reset via physical buttons or through external 

components (HMI). The reset executes a memory clear of all the important 

variables and applies a courier repositioning to the beginning of the conveyor 

belt. 

When the manual mode is activated, direct control of the conveyor is made 

possible through either the low level interface or through the external HMI. This 

mode allows the technician to order the conveyor to stop or apply movement at 

a default speed going forward (from a previous workstation to the tank) or 

reverse. Additionally there are two other buttons that allow the increment or 

decrement of the speed. If the technician is monitoring the conveyor through the 

HMI device, there is also the option of applying a specific speed value onto the 

conveyor (Figure 3.6). 

 
Figure 3.6 - Manual mode main features. 

After assuring that the global system is all activated and successfully inter 

communicating, it is possible to activate the automatic mode through higher level 

interaction using the HMI. This mode starts by verifying if the tank is not busy 

and if there is a part ready to be transported. If those are valid, it will update the 

part specifications (V1 and V2) received from the supervisor and initiate the 

transportation process, as shown in Figure 3.7.  

This transportation starts by checking if the sensor 1.1 is activated; in other 

words, if the carrier is located in the beginning of the conveyor, and, if it is not, it 

will start a routine to position the carrier on the initial position. Afterwards, it 

will wait a pre-defined number of seconds and execute the routine that takes the 

carrier to the end position (the tank location). Then, it waits again, takes the 

carrier to the initial position and starts the whole cycle again. The transportation 

routines always apply V1 before passing the first and last optical sensor.  

One important last feature is the failure detection and consequent handling. 

In manual mode, there is no failure detection, since a technician is expected to be 

directly monitoring the conveyor (either through low or high level interaction), 

thus, being able to instantly detect and actuate upon the possible fault.  
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Figure 3.7 - Automatic mode logic scheme. 

The autonomous failure detection is used within the automatic mode. In 

this project, there were two ways of checking a possible failure within the 

conveyor. The first one is through the application of a timer that starts counting 

every time a transportation routine engages; if the time limit defined is reached, 

the conveyor has been in motion for too long which means faulty sensors. The 

other method is through checking if the speed applied on the motor actuator is 

indeed the desired speed and, if not, it will point out to faulty inverters, motors 

or the conveyor structure.  

If there is a failure detected, the conveyor process will send the signal to the 

server.  Consequently, the supervisor will pick up that signal and proceed to alert 

all levels that the conveyor is faulty. It will stop momentarily the conveyor and 

wait for a technician to attend the failure (via low level interface near the 

conveyor or trough HMI).  If the technician does not attend the failure, the global 

system will enter in a state of emergency stop. In the contrary case, if a technician 

is present, the system will go into a temporary manual state where the technician 

will test and deduce where the fault is, having three final choices: emergency stop 

the conveyor, shut down the whole system or ignore the failure, as seen in Figure 

3.8. In case the failure is ignored, the system will continue its automatic mode 

routine.  

 
Figure 3.8 – Main features of monitoring mode. 
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3.2.3 Hardware Composition and Implementation 

Figure 3.9 represents the real physical implementation of the conveyor 

process along the supervisor and HMI. The HMI and supervisor are meant to be 

in a different geographical locations from the conveyor process but, for practical 

purposes, it was decided to mount both in the same panel. 

On what concerns the controller, a Siemens s7-1200 was used. This PLC 

features two racks of eight digital  Relay inputs of 24 V DC and two other for 

digital outputs of 24V DC (total max current output of 2A), one analog output 

that ranges voltages from 0 to 10 V DC and, finally, one standard Ethernet port. 

The way the controller actuates on the conveyor is through indirectly 

manipulating an inverter, which consequently direct controls the motor. The 

controller sends a signal to the inverter that goes from 0 to 10 V through the 

analog output. The inverter is previously configured to interpret that signal in 

the following way: if the value received is in the range of [0 to 5[ V it will apply 

the reverse direction, being 0V the top reverse speed; if the value is] 5 to 10] V it 

will apply the forward direction onto the conveyor, being 10V the top forward 

speed. The 5 V value represents that the motor is stopped.  

In order for the inverter to offer both reverse and forward movement in a 

single range of voltages, it creates the issue of having to apply a specific voltage 

in the middle of that range for the motor to be stopped, which brings potential 

malfunctioning in cases where the inverter is turned on and the controller is not, 

due to the fact that the inverter will receive 0 V signal from the controller and 

interpret it as the right signal to apply maximum reverse speed onto the motor. 

The inverter used was a delta VFD-L. It is a very simple inverter that can 

apply a top speed of 400Hz or 24000rpm, and it can either control DC motors or 

three phased AC motors. The justification for its use comes from two main 

reasons: motors mostly require high power drives and the motor used is a three 

phased AC motor, both of which functionalities the PLC does not and is not 

meant to provide. 

One very important matter about the inverter, is that it was configured as 

controlling a range of speed around 40Hz or 2400 rpm, but the motor has a 

reductor box coupled that converts those 40 Hz into a much slower speed of 0.33 

Hz, 19.8 rpm or 0.1 m/s.  
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Figure 3.9 - Hardware configuration scheme. 

Concerning the motor itself, it is a 120W Efacec three-phased AC motor, 

picked mostly as it was the available resource, therefore presenting specifications 

that weren’t really demanded, such as a reductor box and significantly more 

power than needed for the small conveyor process.  

Regarding the sensors used and, as seen in the Figure 3.10, the two in the 

edges of the conveyor belt are the Telemecanique XCK-M, which are simple 

contact limit relays,  and the others are Sick Optic 922F sensors, which are photo- 

electric based. Both sensors are used in this project to work with 24V DC.  

The optical sensors are composed by an infra-red transmitter and a photo 

electric receiver.  Taking advantage of both, the way they were used as a position 

detection sensor was through attaching a reflector material onto the conveyor 

carrier, making the sensor identify its own transmitted photo-electric beam. In 
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the Appendix sub-sections A and B, there is the complete connection scheme of 

the panel and I/O tables.   

      

Figure 3.10 - Sensors used within the Conveyor (contact relay and infra-red optical sensor). 

3.2.4 Software Methodologies 

For the programing of the controller it was used the proprietary’s software 

Step 7® that is offered within a global tool software named Siemens TIA portal.  

As it can be seen in Figure 3.11, the software is mainly composed of a script sector 

where the executable tasks and functions are implemented, and a sector for 

variable definition and debugging. 

As in most of the PLC software environments, the variables are all pre- 

defined in tables where it is chosen the type of data used and the specific memory 

slot. Concerning the code implemented, Step 7 allows the three main languages 

from the IEC 61131-3 standard: Ladder, Function Blocks and Structured text. 

Structured text language was chosen exclusively in the conveyor 

programming, due to the fact of many concurrent sequential actions being used, 

which, ultimately, would provoke a very high complexity degree by using the 

other two graphical languages. 



 

  55  

 
Figure 3.11 - Step 7®/ TIA Portal® Software environment. 

The code was essentially divided into four task groups:  

 Communication: it has the function of updating the memories that 

are used to be read or written by the server. This task also processes 

the values in order for them to be interpreted correctly. The 

processing relies mainly on normalizing the value range and 

converting its representation type.  

 Low level interface management: its function is to manage both 

physical button inputs and light outputs to give a simple and 

effective low control and interpretation of the conveyor in its nearby 

confines. 

 Conveyor control: this task is where the major bulk of executable 

actions are applied. Its job is to manage the manual and automatic 

mode of the conveyor, but also to monitor and provide tools to 

identify, alert and correct possible failures. 

 Transportation Routines: dedicated trigger tasks for autonomous 

transportation.  

The conveyor transportation procedures (take carrier to tank and take 

carrier to the beginning) were made into concurrent trigger tasks, so the 

controller would not see itself stuck performing that sequential action only, and 

completely ignore all the other important functionalities. As seen in Figure 3.12 , 

the task will only start if the “go to beginning” flag is set. When the beginning 

sensor or limit switch 1 is activated the flag will be reset, meaning that the 

destination was achieved and the task will be forced to stop. 

IF "go_to_begining_flag1" = 1 THEN 

    "timer_transport_in" := 1; 

     

    IF "limit_switch1" =  1 THEN  

        "go_to_begining_flag1" := 0; 
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    END_IF; 

    IF "go_to_begining_flag2" = 0 THEN 

            IF "mode" <> 1 THEN//default speed values for manual mode in  

                                                             //the range of [0 to 100}%; 

                "v1_reverse_proc1" := 77;  //speed in % 

                "v2_reverse_proc1" := 77; 

            END_IF; 

        "setpoint_speed" := "v2_reverse_proc1"; 

        "go_to_begining_flag2" := 1; 

    END_IF; 

     

    IF "stop_proc1" = 0 AND "es_supervisor" = 0 AND "go_to_begining_flag1"=1 AND                      

"failure" =0 THEN 

         

        // Adjusts the motor speed acordingly to the position it is 

        IF "optical_sensor3" = 1 THEN 

            "setpoint_speed" := "v1_reverse_proc1"; 

             

        END_IF; 

        IF "optical_sensor2" = 1 THEN 

            "setpoint_speed" := "v1_reverse_proc1"; 

             

        END_IF; 

        IF "optical_sensor1" = 1 THEN 

            "setpoint_speed" := "v2_reverse_proc1"; 

            

        END_IF; 

        "q_motor" := REAL_TO_INT(16800 - 11200.0 * INT_TO_REAL("setpoint_speed") / 

100.0); 

        END_IF; 

ELSE     

    "go_to_begining_flag2" := 0; 

END_IF; 

Figure 3.12 - Partial code of a transportation task. 

The conveyor control was completely designed to follow a sequential 

command logic, therefore, there was no prioritized focus in closed loop control 

of the motor speed or carefully studied and forced sample times. The sample time 

used is the one pre-defined by the PLC which, according to the s7-1200 PLC 

manual, is a conjecture of the cycle time and I/O modules update rate. After 

checking the I/O module’s properties is estimated to be 12.8 and 40 milliseconds, 

for digital and analog connections, respectively. 

In regards to the speed applied onto the conveyor and as seen in Figure 3.12, 

the speed has to go through a lot of conversions until it is ultimately put into 

action. From a software stand of point, the goal is to send into the inverter a signal 

that scales from 0 to 10 Volt, which corresponds in a processed value of 5600 to 

27648. 

From 5600 to 16800 corresponds a reverse direction of the motor, being 5600 

the conveyor top reverse speed of 19.8 rpm, the value 16800 corresponds 0 rpm. 
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From 16800 to 27648 corresponds a forward direction, being 27648 the top 

forward speed. 

Within the program, for simplicity and abstraction purposes, both reverse 

and forward ranges were converted into the range of 0 to 100% and since both 

ranges are not equal, two distinct linear conversion equations were applied. 

3.3 Tank Control System 

The tank used in this project has the main focus of applying a timed 

submersion of a welded part where there is feedback control applied into 

maintaining a specified water level (Figure 3.13). Depending on the degree or risk 

of damage liability associated to a specific welding technique, the tank controller 

was designed so it would allow the selection of several types of control methods 

upon the liquid submersion, treatment limit times and the level of the tank 

desired to be filled. As observed in Figure 3.13, the tank also presents low level 

interaction nearby. 

 
Figure 3.13 - Tank system. 

3.3.1 Process Structure and specifications 

This tank, although very simplified, does not hold a linear behavior through 

different ranges of water level, being more unstable especially at the lower and 

upper extremities of the tank.  

As Figure 3.14 shows, the tank process is mainly composed by one sensor 

and four actuators. 
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Figure 3.14 - Tank illustration. 

The sensor is used to deduce the water level within the tank. It is composed 

by a wire attached to a floater and a weight, a sheave and a potentiometer directly 

concatenated to the former. The weight will keep the wire always extended while 

the float accompanies the water level variation.  The sheave will rotate 

accordingly to the wire response to a water level variation and, as consequence, 

the potentiometer will generate a specific DC voltage. 

The actuators are a water pump and three electro valves. The water pump 

is the only means of supplying the tank with water and is directly associated to 

a DC motor that allows the controller to manipulate the supply.  In this project, 

however, its range was limited between 0 to 10.6 ⨯ 10−5  𝑚3/𝑠 (8V motor supply) 

The electro valves have the function of limiting the speed with which the 

water escapes the tank, being each associated to one of the three escape tubes of 

the tank. The tubes associated with valve 1 and 2 have the same size and are 

significantly larger than the tube associated to valve 3.  

Regarding the part specifications, the idea was to let the user select 

important factors associated to the pickling treatment, therefore the time limit, 

desired water level and type of controller were the personalized characteristics 

chosen. 

 Five different controllers were implemented: command control, which is 

the only no water renewal sequential type control, and four others that relate to 

different variations of feedback control using mainly PID methodologies, as 

described later on. 

3.3.2 Operational Description 

 Similarly to the conveyor programmed logic, and as seen in Figure 3.15, the 

main operational routine always begins with  variable resets and state variable 
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checks; more specifically, it verifies if the other two main components are 

communicating (supervisor and conveyor) or if there isn’t any stop state or 

failure being issued. If by any means the system encounters itself in a blocked 

state, only a reset will restart the process. 

 
Figure 3.15 - Tank main logic scheme. 

In the case of manual mode being activated, the tank can be directly 

actuated by the user through the use of a switch panel nearby the process or 

through the HMI. The functionalities available are the opening or closing of each 

electro valve and the activation and the speed of the water pump (Figure 3.16). 

 
Figure 3.16 - Manual mode main features. 

Having the whole system operational and inter communicating, the 

activation of the automatic mode is possible (Figure 3.17). This mode starts by 

verifying if any part has arrived to the tank station, which is done through 

receiving information from the conveyor about its end limit sensor state. If the 

former condition is verified the mode will update the parts’ characteristics 

specified by the HMI and will initiate the treatment routine with those in mind. 
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After the treatment time being achieved, the automatic mode will start over 

again. 

 
Figure 3.17 - Automatic mode logic scheme. 

The treatment routine execution will vary depending on the water level 

controller applied and as mentioned before the selection of the following 

controllers are possible: 

 Command:   

It uses a simple sequential logic where the tank remains static after 

achieving the water level specified.  

The way it works is as follows: starts by closing all electro valves and 

activating the water pump at a default value of 5.3 ⨯ 10−5  𝑚3/𝑠 (4 V 

DC supply); when the tank reaches the specified value it will stop, in 

case the tank presents a level of water higher than 2%, compared to 

the desired a level of water higher than 2%, after the pump is 

stopped, the valves will open and close until the level is rectified. 

It was conceptualized for using in situations where the user does not 

see the need to have liquid renewal for each part.  

 

 Relay:  

Uses a simple on-off methodology. If the water tank level is below 

the desired; the water pump is activated to maximum rotation 

symbolizing 𝟏𝟎. 𝟔 ⨯ 𝟏𝟎−𝟓  𝒎𝟑/𝒔, otherwise, the pump will be off and 

the water will escape through the tube associated to valve 1.  

This controller was conceptualized for users that have robust 

actuators and value a less precise/efficient type of controller and 

prioritize faster execution.  

 

 PI controller: 

As seen in the Figure 3.18  and equation (3.1), this controller is based 

on a closed loop analogy that starts by calculating the error between 

the tank level read from the sensor and the desired tank level (y(k) 

and r(k)). The error (e(k)) will be multiplied by the sum of the 

proportional and integral components of the controller. The result of 

that calculation will generate a corrected value to actuate onto the 

motor. 
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Figure 3.18 - PI controller block scheme. 

The proportional component of the controller is represented by (3.2) 

and its focus is to influence the current error value. On the other side, 

the integral component of the controller is represented by (3.3) and 

its goal is to process the error while taking into account the error 

samples of the past. 

 𝒖(𝒕) = 𝑷(𝒕) + 𝑰(𝒕)  (3.1) 

 𝑷(𝒕) = 𝑲𝒑 ∗ 𝒆(𝒕) (3.2) 

 
𝑰(𝒕) = 𝑲𝒊 ∗ ∫ 𝒆(𝝉) 𝒅𝝉

𝒕

𝟎

 
(3.3) 

This controller needs to be tuned previously to its application, by 

calculating and simulation testing of the correct values for the 

controller gains Kp and Ki (proportional and integral gain). 

Firstly, in this project, the Ziegler-Nichols method was used to 

provide a notion of the values required; the next step was to 

manually adjust those values by testing the controller on a simulated 

model. 

The values chosen for this controller were Kp=2.5 and Ki=0.156. 

 

 Switched PI controller: 

The difference that stands between this controller and the former is 

that instead of using the same controller gains for the whole tank, 

there were different parameters distributed into smaller tank level 

intervals, with the intent of maximizing performance and stability 

(Figure 3.19). 

 
Figure 3.19 - Switched PI controller block scheme. 



3. Architecture, Technology and Implementation  
 

62 

In the modeling stage, it was decided to divide the tank level water 

control into two ranges: [0 to 65]%  with (Kp=4, Ki=0.27) and ]65 to 

100]% with (Kp=4.5, Ki=0.3).  
 

 PI controller with model rectification: 

This controller adds an internal model of the process to the first PI 

controller, having the goal to further help rectify the set-point error. 

The idea is to change the initial specified set-point (r1(t)) with the 

difference between the predicted water level and the one read from 

the process (Figure 3.20).  

The model used was the same used for the simulation, and it is, 

essentially, a trained neural network based in black box modulation. 

 
Figure 3.20 - Predictive PI controller block scheme. 

It is worth noting that the derivative effect was not used in the above 

controllers, due to the fact that satisfactory results were achieved during 

modeling phase, with only the use of proportional and integral components of 

the PID. 

 On a last note about the automatic mode, is that the closed loop controllers, 

in the beginning of their routine, always open the electro-valve 1 and close the 

rest.  

Concerning the failure detection, it holds a similar analogy to the conveyor 

control system: in manual mode there is none, since it is conceptualized to have 

a technician directly monitoring. Within the automatic mode, a failure is detected 

mainly through the incapability of the controller applied to get the water level 

up to the desired set-point, after the dynamic state has ended. This failure points 

out multiple possible failures such as water pump, sensor, electro-valves 

malfunctioning or simply hardware degradation that influences the nominal 

behavior of the process. If the failure is indeed detected, the system will halt itself, 

inform the supervisor, and set the alarm on its own process confines. If a 

technician is present, the system will head onto a variation of the manual mode, 

called monitoring mode (Figure 3.21). If not, the system will head onto a global 

system emergency stop. 
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Figure 3.21 - Monitoring mode main features. 

3.3.3 Hardware Composition and Implementation 

Figure 3.22 illustrates the main tank control system, the controller used is a 

Schneider M340 PLC equipped with one analogic, two digital I/O modules and 

Ethernet, Modbus and Can-Open ports.  

The analogic module is an AMM0600 that holds four inputs and two and 

outputs with a range of [0 to 10] V DC. The digital modules are DDM 16022 that 

present eight inputs and eight outputs of 24 V DC.  

 
Figure 3.22 - Tank hardware configuration scheme. 

Concerning the actuators, the water pump is a Flojet 12V DC. In the present 

project, the signal transmitted to it by the controller was limited to  [0 to 8 V] or 

[0 𝑡𝑜 10.6 ⨯ 10−5]  𝑚3/𝑠. This limitation was implemented so it would prevent 

unnecessary harm and noise caused by the controller methodologies applied. 

Moreover, before the signal reaches the pump, it goes through a motor driver to 

assure enough power reaches the actuator and protect the PLC. 

Due to the fact that the digital outputs coming from the controller are 24V 

DC, there is an electronic circuit that scales the voltage down to 12V. 
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In regards to the water level sensor, it generates an array of DC voltages 

depending on the potentiometer position and presents a non-linear 

representation of the tank water level having the [3.83 to 9.32] Volt range 

translated onto [0 to 100]%. In the Appendix sub-sections A and B there is the 

complete connection scheme of the tank panel and I/O tables.  

3.3.4 Software Methodologies 

For the programming of the M340 controller it was used the Schneider 

proprietor software Unity Pro®. As it can be seen in Figure 3.23, it holds a similar 

presentation and structure comparatively to the Siemens programming software 

Step 7®. What distinguishes the M340 programming software is the lack of 

graphical human-machine interface programming and holds the complete IEC 

61131-3 programming language library; in other words, it is possible to program 

the Controller in Instruction List, Sequential Control, Structured Text, Ladder 

Logic and Function block, unlike Step7®  where you can only use the latter three. 

 
Figure 3.23 - Unity Pro® Software environment. 

 

 One important factor to note is that, since the main task is running itself as 

a cycle, there are no functions within it that hold typical cyclical instructions such 

as “while” and “for”. Therefore, an instruction that needs to function during a 

significant period of time will be called several times by the main task, instead of 

the case where the main task locks itself on that function. 

 Having the factor above taken into account and not repeating too much of 

what was said from the conveyor software methodologies sub-chapter 3.2.4, the 
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code implemented within the main task divides itself in: communication, low 

level interface management, failure detection and ultimately the tank control.   

On what concerns the execution sample time, it was forced a sample time 

of 200 milliseconds due to the fact of the tank not having a fast dynamic behavior.  

 Regarding the automatic controllers implemented, The PI code 

implementation was heavily based on K.J. Aström and T. Hägglund discrete logic 

[36].  

As seen in Figure 3.24, the PI controller was indeed protected against the 

eventual windup effect. This effect is illustrated by the continuous increment of 

the integral component, which leads to the eventual malfunctioning of the 

controller. There are many different ways of tackling this problem, being the 

most common one the periodic reset of the integral component. However, in this 

project, it was decided to simply saturate the integral component within an 

interval where the controller performs accordingly to the conceptualized. This 

approach was used so the controller would not show the periodical set-point 

error associated with the resetting of the integral component. 

pi1{ 

Qv1:=1;   

 

   pi_i_k_1:=pi_i_k;  (*update for the integral component*) 

 

   pi_bi:= (pi1_kp*(time_to_real(Ts)/1000.0))/ pi1_ti;  (*integral gain*) 

   pi_ao:=  (time_to_real(Ts)/1000.0)/pi1_tt; (*gain associated to actuator saturation*) 

   pi_p_k:=error_k*pi1_kp; (*proportional component update*) 

    

 

 

   u_motor_k_p1:=pi_p_k+pi_i_k_1; (*calculation of the controller actuation*) 

   u_sat_pi:=u_motor_k_p1; 

 

   if(u_sat_pi>1.0) then  (*actuator saturation*) 

  u_sat_pi:=1.0; 

   end_if; 

   if(u_sat_pi<0.0) then 

  u_sat_pi:=0.0; 

   end_if;  

      (*calculation of the integral   component for the next sample*) 

   pi_i_k:= pi_i_k_1+pi_bi*error_k+pi_ao*(u_sat_pi-u_motor_k_p1); 

 

 (*Saturation of  the integral component to prevent the wind up effect*) 

   if (pi_i_k>5.0) then 

     pi_i_k:=5.0; 

   end_if; 

   if (pi_i_k<-5.0) then 

     pi_i_k:=-5.0; 

   end_if;  

} 

Figure 3.24 - PI controller code sample. 
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 The neural network used for simulation and for the Predictive PI 

Controller was implemented through the acquisition of a large group of data, 

representing most of the possible behaviors associated to the conceptualized use 

of the tank. That data is used to train the network via Levenberg-Marquardt back-

propagation algorithm available in Matlab’s neural network toolbox. 

 After the testing of several different trained neural networks, as seen in 

the Figure 3.25  and equation (3.5), the following structure was chosen. This 

network, on the entrance layer, holds information about three samples of the past 

regarding the tank level values (y(k − 1), y(k − 2), y(k − 3)) and two regarding 

the actuation applied (u(k − 1), u(k − 2)), one internal layer holding three 

neurons that use the hyperbolic tangent as an activation function and one neuron 

output layer that delivers the current predicted sensor value 𝑦𝑛𝑛(𝑘). The W 

matrixes represent the weights that result from the network training and are the 

key factor to represent the model behavior. The B matrixes hold the bias values 

that serve purpose to calibrate the activation functions within the neural layers. 

 
Figure 3.25 - Chosen neural network structure. 

 𝑍1 = 𝑊1 ∗ [𝑦(𝑘 − 1) . . 𝑦(𝑘 − 3) 𝑢(𝑘 − 1) 𝑢(𝑘 − 2)]′

+ 𝐵1, 

(3.4) 

  𝑍2 = 𝑊2 ∗ 𝑡𝑎𝑛ℎ(𝑍1) + 𝐵2 (3.5) 

 𝑦𝑛𝑛(𝑘) = tanh(𝑍2) (3.6) 

 

Where 𝑊1 = [
−35.44 21.33 12.23 −1.71 2.1

0.15
−7.66

0.08 0.08 −0.002 0. 0081
29.21 −27.93 3.49 2.78

] , 𝐵1 = [
2.23

−0.17
−0.76

],𝑊2 =

[
−0.04
3.25

0.0027
] and 𝐵2 = 0.58. 

Due to the inability of the M340 PLC to support calculations involving 

matrixes or more advanced mathematical functions, such as hyperbolic 

functions, the neural network was implemented as observed in the Figure 3.26. 
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neural{ 

  

x1_11:=w1_11*y_sensor_k_m1+w1_12*y_sensor_k_m2+w1_13*y_sensor_k_m3+w1_14*u_motor_k_m1+

w1_15*u_motor_k_m2; 

  

x1_21:=w1_21*y_sensor_k_m1+w1_22*y_sensor_k_m2+w1_23*y_sensor_k_m3+w1_24*u_motor_k_m1+

w1_25*u_motor_k_m2; 

  

x1_31:=w1_31*y_sensor_k_m1+w1_32*y_sensor_k_m2+w1_33*y_sensor_k_m3+w1_34*u_motor_k_m1+

w1_35*u_motor_k_m2; 

 

 z1_11:=(exp(x1_11)-exp(-x1_11))/(exp(x1_11)+exp(-x1_11))+b1_11; 

 z1_21:=(exp(x1_21)-exp(-x1_21))/(exp(x1_21)+exp(-x1_21))+b1_21; 

 z1_31:=(exp(x1_31)-exp(-x1_31))/(exp(x1_31)+exp(-x1_31))+b1_31; 

 

  x2:=w2_11*z1_11+w2_12*z1_21+w2_13*z1_31; 

  ynn_k:=(exp(x2)-exp(-x2))/(exp(x2)+exp(-x2))+b2; 

} 
Figure 3.26 - Code regarding the model prediction. 

Lastly, concerning the received values from the water sensor, it does hold a 

nonlinear scalability to its real physical value meaning, therefore, besides the 

normalization of the range [3.83 to 9.32] Volt, there was also the need of using an 

approximate polynomial regression, in order to have an accurate normalized 

value of the water level within the tank, as seen in Equation (3.7). 

𝑦(𝑘)𝑠𝑐𝑎𝑙𝑒𝑑 =
0,0051 ∗ 𝑦(𝑘)3 − 0,1281 ∗ 𝑦(𝑘)2 + 1.1582 ∗ 𝑦(𝑘) − 2.8088

1000
  

(3.7) 

3.4 Supervision and Monitoring 

The supervision and monitoring heavily relies in the use of the group of a 

controller and a graphical HMI. The role of the supervisor is to receive all of the 

main information coming from the Human-machine interface, conveyor and tank 

controllers. With that information it sets alarms and imposes the general work 

state coming from the HMI that all the other components have to adapt to. It is 

also the only component that directly communicates with the remote clients. 

 

The Human Machine Interface or HMI is used as a high level graphic interaction 

hardware, which allows the user to observe and manipulate the whole system 

within the features it provides. 
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3.4.1 Operational Description 

Concerning the supervisor controller, it essentially divides itself in the 

following operations: 

 Alarm setting:  there are six physical lights and two buzzes associated 

to the controller. Each buzzer symbolizes if the conveyor or the tank 

have encountered a failure. The lights hold information about the 

supervisor, conveyor and tank current mode, communication 

accessibility and stop state. 

 Information propagation: has a large reserved memory that holds 

information about the main aspects of each component, with the goal 

of establishing information access to the remote clients and HMI. 

 HMI support: many graphical tasks implemented were not possible 

if not by using the supervisor; such tasks were mainly animations 

and trigger screens. 

  

Regarding the HMI, its function is to give to the user the full capability of 

visualization and interaction with all of the system, without having the need to 

physically interact or monitor the processes. 

The screen programmed structure majorly divides itself between the 

manual and automatic mode, which are individually accompanied by failure, 

block, option choosing and help glossary screens. 

The manual mode holds a very simple interface, where it can be observed 

and manipulate in real time both processes with ease (Figure 3.27).  

 
Figure 3.27 - Main manual mode Screen. 

If in any case one of the processes is not communicating or is in stopped 

state, the interface will inform the user and will redirect into a manual mode 

where only the operational process can be viewed and actuated upon (Figure 

3.28). 
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Figure 3.28 - Conveyor anomaly and consequent manual mode screen. 

Concerning the automatic mode, it will only be able to be chosen if both 

processes are operational; if they are, the user will be forwarded into specification 

choosing. 

As seen in Figure 3.29, there are several custom parameter. Within the HMI, 

it was defined as there being three kinds of parts: 

 Part A: holds standard specifications regarding a smaller and more 

robust treated part, therefore, higher conveyor speeds, less treatment 

time, lower tank level and a sequential controller. 

 

 Part B: holds standard specifications regarding a larger and more 

fragile treated part, consequently, lower conveyor speeds, more 

treatment time, higher tank level and a continuous controller. 

 

 Part C: this part allows the user to implement its own desired 

treatment, allowing the customization of all the specifications offered 

by the tank and conveyor control systems. 

  

 
Figure 3.29 - Custom part specification selection screen. 

Regarding the automatic’s mode main window, as viewed in Figure 3.30, 

besides the observation of how the processes are behaving, it is also possible to: 
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let the system know when there is a part ready to be transported, jump the 

current treatment so a new control cycle can be initiated, application of simulated 

failures and change the part control parameters for the upcoming part. On a last 

note, it can also be viewed the current specifications being applied onto the part, 

and the future ones selected for the next. 

 
Figure 3.30 - Automatic mode screen. 

Regarding the failure feature, it possesses the same graphical execution of 

the logic implemented in the process controllers: if a failure is detected a window 

will show up informing the user. It will wait a set period of time and, if there is 

no action taken, the system will globally block itself. If the user is present, he will 

be able to block the process that holds the failure, block the whole system or 

choose to go into a manual monitoring mode where he will be able to access the 

process behavior (Figure 3.31 and Figure 3.32). 

 

Figure 3.31 - Failure, monitoring mode screens. 
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Figure 3.32 - Emergency block screen. 

On a side note, there is also a simple help glossary accompanying every step 

of the graphical interface, as also a main access index (Figure 3.33). 

 

Figure 3.33 - Help screens. 

3.4.2 Hardware Composition and Implementation 

As seen in the Figure 3.9, the hardware used regarding this level were a 

couple buzzers, six physical lights, three buttons a controller and a human-

machine interface 

The controller used here was a Siemens s7-1200 and the HMI was a KTP600 

Basic.  The HMI allows for a very limited colored interface for industrial safe 

interaction because it can only support directly one controller. Therefore, there is 

the need of directing the information to the supervisor controller before being 

accessible in the HMI. 

3.4.3 Software Methodologies 

For the programing of the controller, it was used the proprietor software 

Step 7® and for the HMI the WinCC®, both being offered within a global tool 

software named Siemens TIA portal.  
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As it can be seen in the Figure 3.34, the software is composed by a simple 

graphical edition sector (a toolbox for the application of several visual objects) 

and an object properties sector where you can edit each graphical object used. 

 
Figure 3.34 - Simatic WinCC/TIA Portal Software environment. 

Both the controller and HMI do not own large or complex programming 

codes. The HMI programming is essentially a drag and edit kind of programming 

where the major concern was the esthetic and ease of monitoring. Concerning the 

controller, it holds very small tasks, tackling the different operational tasks 

mentioned in the sub-chapter 3.4.1. 

One of the major details that must be mentioned was the well-functioning 

of the event triggered screens. In this project, they represent informational notice 

screens that pop-up when there is some kind of anomaly, particularly failure or 

an emergency stop performed within the system. 

The way it works within the HMI is through associating a memory variable 

with an event on value change, so each time that variable changes value it forces 

the visualization of the alert window. Due this kind of event, there was the need 

to implement on the supervisor controller, a task that would indirectly associate 

the state variables with the event triggered variable, in order to avoid incorrect 

pop ups. The code exert within the Figure 3.35 below illustrates a simple 

commutation logic that supports the HMI failure triggered screens. 

IF "failure_proc2"=1 THEN 

    IF "fail_flag_proc2" = 0 THEN 

        "fail_flag_proc2" := 1; 

        IF "fail_screen_proc2" = 0 THEN 

            "fail_screen_proc2" := 1; 

        ELSE 
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            "fail_screen_proc2" := 0; 

        END_IF; 

    END_IF; 

         

ELSE 

    "fail_flag_proc2" := 0; 

    IF "failure_proc1" = 1 THEN 

        IF "fail_flag_proc1" = 0 THEN 

            "fail_flag_proc1" := 1; 

            IF "fail_screen_proc1" = 0 THEN 

                "fail_screen_proc1" := 1; 

            ELSE 

                "fail_screen_proc1" := 0; 

            END_IF; 

        END_IF; 

         

    ELSE 

        "monitor_ok_supervisor2" := 0; 

        "fail_flag_proc1" := 0; 

    END_IF; 

END_IF; 
Figure 3.35 - Failure Trigger screen code. 

Another important aspect of the controller support programming for the 

HMI was the animation of the interface conveyor. In order for the movement of 

the carrier to be visualized correctly, there was the need of creating a task that 

would manipulate the HMI translocation animation in conformity with the real 

information of the conveyor process. 

The way the basic animation within the HMI works, is through specifying 

the beginning and end point of the translocation, and associating to it a scale of 

position values. Since there was the need of implementing a sensation of 

continuous movement within the image, the scale implemented had to be large 

enough so the increment of the position value would be slow. 

Within the controller, it was implemented the following code exert, within 

Figure 3.36, that would take notice of the direction and sensor values coming 

from the conveyor process and either increment or decrement the animation 

position value depending on the conveyors direction, as well as forcing specific 

positions, depending on the conveyor sensors.  

    IF "conveyor_direction"=2  THEN 

        "conv_move" := "conv_move" + 1; 

    END_IF; 

    IF "conveyor_direction"=1 THEN 

        "conv_move" := "conv_move" - 1; 

    END_IF; 

    IF "l_switch_1_supervisor" = 1 THEN 

        "conv_move" := 0; 

    END_IF; 

     

    IF "o_sensor_1_supervisor" = 1 THEN 
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        "conv_move" := 7500; 

    END_IF; 

    IF "o_sensor_2_supervisor" = 1 THEN 

        "conv_move" := 15000; 

    END_IF; 

    IF "o_sensor_3_supervisor" = 1 THEN 

        "conv_move" := 22500; 

    END_IF; 

     

    IF "l_switch_2_supervisor" = 1 THEN 

        "conv_move" := 29000; 

    END_IF; 

     

    IF "conv_move" > 29000 THEN 

        "conv_move" := 29000; 

    END_IF; 

    IF "conv_move" < 0 THEN 

        "conv_move" := 0; 

    END_IF; 

     

    IF "conv_move" <> 0 THEN 

        IF "conv_blink" = 1 THEN 

            "conv_blink" := 0; 

        ELSE 

            "conv_blink" := 1; 

        END_IF; 

     END_IF; 

 

Figure 3.36 - Code exert for the Conveyor animation task. 

3.5 Open Protocol Server and Communication 

The Open Protocol Communication Server, or OPC server, is the main 

foundation for the transmission of information within this system. It works as a 

translator between devices that use different communication protocols, allowing 

a higher degree of interoperability between components.  

 The main reason for the need of an OPC server in this project, was due to 

the fact of there being different manufactured controllers with their own 

proprietary communication protocols which would make it impossible to 

establish data trade without the OPC server. A second reason was so it would be 

possible to transmit low level process information coming from the PLC 

controllers to higher level remote applications. 

3.5.1 Operational Description 

As mentioned in sub-chapter 3.1, it was opted to implement a centralized 

communication structure around the OPC Server where most of the components, 
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apart from the remote clients (that only read information from the server), work 

both as masters and slaves, depending on the information that is traded. 

As seen in the Figure 3.37, the OPC server has to work with multiple 

communication protocols chosen depending on each controller’s communication 

features and the OPC software protocol drivers available. 

 
Figure 3.37 - Communication structure scheme. 

The way the general OPC communication system works is based on device 

configuration, memory linking between devices and consequent OPC protocol 

driver application.  

Within the OPC server, it is simply appointed the type of device, its internet 

protocol address and selection from the available protocol communication 

drivers. After that, the declaration of the data to be transmitted is issued and there 

is the need to define the memory address used within the controller, the type of 

data, and the desired scan rate. 

When all the controllers and their associated variables are configured, it is 

needed to apply the linking function to correlated variables between devices 

(Figure 3.38), so the trade of information is possible. In other words, connect the 

memories of the data from the sender to the receiver. 

 
Figure 3.38 - Memory linking between Controllers. 
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The case of the remote clients is a bit more complex (Figure 3.39). The 

information does not reach the application software directly; instead, the data is 

sent from an OPC server to an OPC client; from that, the application proceeds to 

request the information. Regarding the information that is traded between the 

system components, it is detailed illustratively in the section of the Appendix D. 

 
Figure 3.39 - Illustration of remote information access. 

3.5.2 Software Methodologies 

For the Open Protocol Communications it was used the KEP Server EX. It 

offers a vast array of protocol drivers for numerous PLC controllers and software, 

its functionalities rely heavily on device configuration and tag creation. 

The way the different variable memories are linked is through the use of the 

advanced tag feature. This concept portrays the application of adjacent functions 

to a tag, such as complex, average, minimum calculations. 

Regarding information acquisition, on what concerns the PLCs, there is no 

need to apply any kind of instructions to read or write from the server, since the 

OPC Server will update the data within the memories directly. In the case of the 

remote clients, however, depending on the application software used, there is the 

need to apply function libraries that are responsible for issuing a request, 

receiving and processing the information. 

Concerning update rates within the server, controller related data was 

attributed a scan rate of 100 milliseconds; and less important visual information 

for high level monitoring holds 200 milliseconds rate. The software allows for 

lower scan rate specifications up to 50 milliseconds; however, it was opted not to 

choose lower values due to the fact that most of the commercial Ethernet 

networks have minimal scan rates of 100 milliseconds. 

About the specification of the correct address of the controllers variables 

within the server, we must note that they are dependent of what type of  protocol 

is being used. In the case of the Profinet TCP/IP protocol, the address is the one 

declared within the controller; in the case of Modbus TCP, the address depends 

on the type of variable declared on the controller. For simplicity and 

compatibility purposes, it was made sure that the variables being transmitted or 
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received in the Tank controller were all of the Word type, therefore, having a 

correspondent server address of  400000+controller memory  location. 

3.6 Remote Clients         

With the effort of allowing this system to have a higher degree of 

accessibility and more complex data processing, transmission was established 

with remote computers that, with a varied array of software, could take the 

control system even further. 

In this project, two clients were implemented: an operational historian and 

an advanced data viewer. This applications constitute read only events, i.e.: do 

not influence the main system in anyway; although, the structure and software 

tools could allow remote control applications. 

3.6.1 Operational Historian 

The operational historian is used essentially as an information back up and 

log for all of the transmitted data relating to the supervisor, tank and conveyor. 

The need for the implementation of this client was to tackle the lack information 

registry for long periods of time, the controllers within the system have their 

memories constantly updated, therefore offering no data record features. 

3.6.1.1 Operational Description 

As seen in the Figure 3.40, this client performs a cycle where it logs into the 

OPC client, retrieves the desired group of data and writes into the console a log 

of the main state information about each component. Afterwards, it saves the 

data separately into individual files regarding the conveyor, tank and supervisor, 

ending on a memory check. 

Due to performance and memory resource constraints, it was established a 

limited array size to each variable. When that array is full, the historian will 

perform a global save, reset the arrays and begin the data saving onto new files. 

The higher the size of each array, the longer the period of recording between 

memory resets and higher the client initialization setup time. In this project, it 

was opted for an array size of 7200 and a sample time of 1 second, which amounts 

to 2 hours of recording between resets. 
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Figure 3.40 - Instruction logic of the historian client. 

3.6.1.2 Software Methodologies 

For this client, the software chosen was Scilab®. It is an open source 

numerical oriented programming environment. The reason for its use comes 

mainly from the fact of possessing easy to use function libraries for OPC 

communication. 

One of the most important aspects of the software implementation is how 

the client acquires the information from the OPC Server. For that task to be 

possible it was necessary the use of an OPC toolbox add-on for the Scilab® 

software made by Zhe Peng. The application is as follows: (i)start the OPC server 

browsing, (ii)connect to it, (iii)create an OPC group that holds an array with the 

structure paths of the items you desire to read from and (iv)perform an OPC item 

read every time an information update is needed. The code relating to this 

routine can be viewed in Figure 3.41. 

 

opc_server_name = 'Kepware.KEPServerEX.V5'; 

opc_group_name = 'group1';  

item_read=zeros(2,1); 

 

item(1) = 'Client_Read.Tank.proc2_active';//1=is comunicating 

item(2) = 'Client_Read.Tank.failure_proc2';//1=fail 

counter1=0; 

 

found_server = opc_server_browse(); 
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if size(found_server,'*') <> 0 then 

    opc_connect(opc_server_name); 

    opc_item_browse(); 

    opc_add_group(opc_group_name); 

    for counter1 = 1 : 2 

         opc_add_item(item,counter1); 

    end; 

    while (program_running) 

item_read=opc_item_read(2,'i'); 

Tank_active= item_read(1,1); 

Failure= item_read(2,1); 

    end; 

    opc_disconnect(); 

end; 
Figure 3.41 - OPC communication code example. 

The file composition is a Scilab® data file that holds an array of samples. 

Each sample contains a time stamp and data structures with the information 

obtained at that instant. 

On what concerns the log presentation, as seen in the figure within 

Appendix section C, it was conceptualized to be simple and it was divided into 

three groups: display of system states, I/O process values and work mode related 

information. 

3.6.2 Advanced Data Viewer 

The advanced data viewer purpose is to allow a more detailed and remote 

observation of the tank controller system, by applying different graphical 

methodologies concerning failure monitoring. Its necessity came from the high 

complexity and low performance associated to programing a more elaborate 

monitoring system at the controllers/HMI level.  

3.6.2.1 Operational Description 

This remote client works similarly to the operational historian (Figure 3.42), 

by connecting to the OPC server first, and retrieving data (system state 

information and the complete tank data). Afterwards, if the supervisor is active, 

the advanced data viewer will check the tank’s mode. In the case of being in 

manual mode, it will simply present graphical information about I/O values of 

the tank, along general system state information being presented in the form of a 

log. 
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Figure 3.42 - Operational logic scheme of the data viewer client. 

When in automatic mode, it will add the graphical representation of the 

following features: 

 Control error :  

Difference between the specified tank level and the current value 

being read through the sensor. 

 𝑒(𝑘) = |𝑟(𝑘) − 𝑦(𝑘)| (3.7) 

 

 Control action variance:  

Calculates the average variation for the control signal applied onto 

the water pump, allowing to deduce its stability. 

It is based on a sample sliding window of size N and returns the 

average value for the squared subtraction between each control 

action sample and the sliding window’s average value. 

 
𝜎2(𝑘) =

1

𝑁
∗ ∑ (𝑢(𝑖) − 𝜇(𝑢(𝑘 − 𝑁: 𝑘)))

2
𝑘
𝑖=𝑘−𝑁   

(3.8) 

 

 Normalized Harris index: 

Indicator proposed by Desborough and T.J.Harris [37], that evaluates 

the controller performance with minimal knowledge about the 

process behavior. Its value ranges between 0 and 1, where 0 indicates 

a good performance and 1 a bad performance. 

 
𝐼𝐻𝑎𝑟𝑟𝑖𝑠(𝑘) = 1 −

𝜎𝑟𝑒
2 (𝑘)

𝑥𝑒(𝑘)
  

(3.9) 

 

In which 𝑥𝑒(𝑘) represents the mean squared error of the control error 

and 𝜎𝑟𝑒
2 (𝑘) represents the variance concerning the residue between 

the control error and a predicted error. 
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 𝑟𝑒(𝑘) = 𝑒(𝑘) − ê(𝑘) (3.10) 

 

The predicted error was based on a simple auto-regression model 

AR(n,b) which is represented by the following equation: 

 ê(𝑘) =  𝑎0 − 𝑎𝑏 ∗ 𝑒(𝑘 − (𝑏 + 1)) − ⋯ − 𝑎𝑏+𝑛 ∗ 𝑒(𝑘 − (𝑏 + 𝑛)) (3.11) 

 

 Principal component analysis: 

It is a statistical method that orthogonally transforms a set of initial 

correlated variables into a new uncorrelated linear combination of 

variables (Figure 3.43). This new variable set is defined by principal 

components that allow further simplicity by variable set reduction 

and portrayal of the main variation characteristics.  

 
Figure 3.43 - PCA graphical representation [38]. 

The deduction of the principal components was done through the 

Singular Value Decomposition method (SVD) [39]. This method 

considers a matrix  𝑋𝑝 of order N×M. N is the number of past samples 

and M is the number of initial variables. Knowing that the covariance 

of the matrix 𝑋𝑝 is defined by: 

 
𝑆 =

𝑋𝑝
𝑇 ∗ 𝑋𝑝  

𝑁 − 1
 

(3.12) 

The PCA decomposes the matrix 𝑋𝑝 in the sum of the product 

between the principal component values or score vectors and the 

process’s characteristic matrix or loading matrix, 𝑡𝑖 and 𝑃𝑖 

respectively. It represents the number of principal components and 

E represents a residual matrix. 

 
𝑋𝑝 =  ∑ 𝑡𝑖

𝐼

𝑖=1

∗ 𝑃𝑖
𝑇 + 𝐸 

(3.13) 

 

Meanwhile, 𝑃𝑖 also represents the Eigen vectors of the matrix of 

covariance, hence the following equation: 

 𝑆 ∗ 𝑃𝑖 =  𝜆𝑖  ∗ 𝑃𝑖 (3.14) 
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Where 𝜆𝑖  are the Eigen values associated with the loading matrix. 

Based on equations (3.12) and (3.13), the principal components are 

calculated with the following equation: 

 𝑇 = 𝑋𝑘 ∗ 𝑃   (3.15) 

 

The vector T is the score vector, and it holds the new transformed 

values and X is the matrix that represents current values of the initial 

variable set and P is the loading matrix. 

 

In this project it was used as a failure detection observation means, 

where to each work-state, the principal components would position 

themselves in a specific localization; in case an unexpected behavior 

happened, there would be a deviation from that localization thus 

pointing to a fault. Illustration in Figure 3.44. 

 
Figure 3.44 - PCA results for controller at nominal work state.  

3.6.2.2 Software Methodologies 

For this client, the software used was Matlab®, which is a multi-paradigm 

numerical computing environment. The reason it was chosen in this project was 

due to the ease of implementation for the features initially conceptualized. 

Regarding the communication with the OPC Server, it is very similar to the 

operational historian logic, through the use of the Matlab® OPC toolbox code 

functions, thereby being started by connecting to the server and then, creating a 

group of items that hold the path to the item within the server and then read 

periodically. 

One important aspect of the software implementation is the error prediction 

model for the performance index calculation. For the error to be predicted 
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correctly, the model parameters must be calculated. This was done through 

formulating the equation (3.11) in terms of a vector regression, as observed on 

equation (3.16), whom model parameters (3.17) are calculated during the control 

period. 

 �̂�(𝑘) = 𝜑𝑇(𝑘) ∗ 𝜃(𝑘)  (3.16) 

 𝜃(𝑘) = [𝑎1 … 𝑎𝑏+𝑛  ]𝑇  (3.17) 

  𝜑(𝑘) = [1 − 𝑒(𝑘 − 𝑏) − ⋯ − 𝑒(𝑘 − (𝑏 + 𝑛 − 1)]𝑇  (3.18) 

For the calculation of the model parameters vector  𝜃(𝑘), the mean squared 

algorithm is used and it is the cyclical execution of the following equation: 

 

 𝜃(𝑘) = 𝜃(𝑘 − 1) + 𝑃(𝑘) ∗ 𝜑(𝑘) ∗ 𝜀(𝑘)  (3.19) 

Where P is the covariance matrix and 𝜀 is the model error, which are 

represented by: 

 
𝑃(𝑘) =

𝑃(𝑘 − 1)

𝜆
[𝑀𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 −

𝜑(𝑘) ∗ 𝜑𝑇(𝑘) ∗ 𝑃(𝑘 − 1)

𝜆 + 𝜑𝑇(𝑘) ∗ 𝑃(𝑘 − 1) ∗ 𝜑(𝑘)
]  

(3.20) 

 𝜀(𝑘) = 𝑦(𝑘) − 𝜑𝑇(𝑘) ∗ 𝜃(𝑘 − 1) (3.21) 

 

Concerning sample times, it was chosen 0.2 milliseconds wait period for 

each cycle. Also, the automatic monitoring methodologies were given a 30 

seconds delay after the start of each controller, so that the dynamic transition 

would be ignored.   

As seen in Figure 3.45, these are the interfaces that appear when in manual 

or automatic mode. The reason for the existence of a manual and automatic mode 

I/O plot is so the user can directly see at which instances each mode was activated 

and its respective I/O values since the beginning of the client operation. 
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Figure 3.45 - Viewer monitor interface. 
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4. Experimental Results 

This sub chapter will cover the main aspects tested that were important 

enough and might present a significant risk factor to the overall well-functioning 

of the system. 

In sub-chapter 4.1, the topic of the conveyor process will be approached, 

focusing on the sensor limitations and max travelling speeds. 

Within sub-chapter 4.2, it will be shown how the tank’s water level sensor 

behaves when the water is being inserted into the tank and how vibrations 

influence the sensor. 

On sub-chapter 4.3, it is illustrated the general testing of the closed loop 

controllers implemented within the tank system, comparing the different test 

indicators to compare the controllers between each other. 

Finally, the sub-chapter 4.4 will go over the communication and point out 

the main risks and potential consequences of there being malfunction in data 

transmission. 

4.1 Conveyor Testing 

Having the conveyor speed limited to a maximum of 19.8 rpm, and 

considering that it remains constant for the transportation task, from one side to 

the other, it takes a minimum of 7 seconds to travel the entirety of the conveyor 

belt. Between direction changes, there is a wait time of 10 seconds to assure the 

repositioning of the transported/to be transported object. On what concerns the 

motor stopping its movement when the carrier reaches the limit sensors, trough 

testing, it was deduced that if the defined speed is above 50% of the before 

mentioned max allowable speed of 19.8 rpm, the conveyor will stop its 

movement after the carrier passes the sensor and ends its range of activation, 

which consequently will force a carrier calibration task in the following 

transportation. 
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About the optical sensors, since they both work as transmitters and 

receivers, there was the need of the conceptualization of a reflector to attach on 

to the carrier. After many experiments, it was chosen the combination of a part 

of foil placed within a red light reflector.  

Figure 4.1 illustrates how the main variables react while the controller 

processes the automatic task of carrying a part to the next station and returning 

to the initial position, as explained in the sub-chapter 3.2.2. 

 
Figure 4.1 - Conveyor timing diagram. 

4.2 Tank’s Sensor Testing 

This section is dedicated to illustrating the behavior of the sensor while on 

steady water and as the water pump is on. The need for this test comes from the 

existent noise within the tank infra-structure whenever the water pump is 

activated. This noise consequently influences the controller’s performance, 

especially on its output variance. 

The first test illustrates the values originated by the sensor when there is no 

action applied on to the tank. The second test represents the values read from the 

sensor when the inflow and outflow of water are identical while the water pump 

is on. The duration of both tests was 40 seconds and the water level used for 

reference was approximately 50% (in the scale of 0 to 1). 
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Figure 4.2 - Sensor Testing. 

In the Figure 4.2, it can be observed a very significant difference between 

the values read when the water is steady (test a) and the values read when the 

water pump is on (test b). The maximum deviation within test a) is of 0.2% and 

the variance associated to it is of 0.0022; on test b) worse values were obtained, 

with a maximum deviation of 2% and a variance associated of 0.77. This obvious 

difference caused by the vibration of that water pump, makes the controllers 

performance regarding their output actuation significantly less stable.  

4.3 Tank’s Controller Testing 

In this section, it shall be presented the experimental testing of the closed 

loop control methodologies implemented within the tank system (sub-chapter 

3.3.2) with the objective of showing their general behavior and performance. 

The methodologies presented are the PI controller, Switched PI and PI with 

model rectification. Relay and command controllers are not presented due to the 

fact that one is simply a static controller that only places the water at the specified 

level and closes the valves, and the other is for less demanding systems with 

robust actuator, where computational limitations are prioritized against 

controller precision and efficiency. 

The test scenario for all the methodologies considered will be the control of 

the tank level at 50% in nominal work-state (with the scale of 0 to 1). The data 

illustratively presented for analysis will consist of sensor and controller outputs, 

set-point errors, mean-squared errors and control output variance. Furthermore, 

we will study the overshoot, rising and settling time. The duration of the test will 
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be 200 seconds with a considered dynamic state interval of 72 seconds (which 

some of the variables mentioned above will ignore). 

No failure testing is performed because the system enters in failure mode 

immediately in case the controller is unable to keep the water level at the 

specified value for a long enough interval of time.  

4.3.1 PI Controller 

As it can be observed from Figure 4.3, the application of a tuned PI 

controller to a global set point interval, holds a considered good performance for 

a conceptualized slow work state. It holds a rising time of 99 seconds and it 

stabilizes around a settling time of 140 seconds, with an over shoot of 7.1% from 

the 0.5 set point value. Moreover, an average set point error of 0.0047 or 0.94%, a 

mean square error of 3.3571 ∗ 10−5 and an actuation variance of 1.2261 ∗ 10−4. 

These values are small enough to be acceptable in the general function of the 

control task. 

 

Figure 4.3 - PI Controller behavior. 

The only observed problem is the lack of value convergence from the error 

and variance indicators along the time of control application. The main reason 
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for this to happen is related with the innate noise associated to installation 

vibrations and sensor quality. 

 

4.3.2 Switched PI Controller 

As it can be observed in Figure 4.4, the application of a Switched PI 

controller that holds different tuning parameters, depending on what the area of 

effect tank level is, shows slightly better results compared to the former 

controller. It holds a rising time of 78 seconds and it stabilizes around a settling 

time of 118.8 seconds, with an over shoot of 2.28% from the 0.5 set point value. In 

addition, it holds an average set point error of 0.0025 or 0.5%, a mean square error 

of 1.3271 ∗ 10−5 and an actuation variance of 1.9865 ∗ 10−4. These values are 

small enough to be acceptable in the general function of the control task. 

Comparing to the former controller, the lack of value convergence at small 

decimals is still present but holds lower errors and a higher actuation variance. 

This is the product of the application of more fine-tuned parameters for smaller 

work state intervals. The higher actuation variance stems from the fact that the 

parameter dimensioned were picked in order to minimize time requirements and 

overshoots. 

 

Figure 4.4 – Commuted PI Controller behavior. 
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4.3.3 PI Controller with Model Rectification 

As it can be seen in Figure 4.5, the addition of a neural model to rectify the 

first PI controller presents some interesting results. It holds a rising time of 74.4 

seconds and it stabilizes around a settling time of 117 seconds, with an over shoot 

of 5.05% from the 0.5 set point value. Also, it holds an average set point error of 

0.0034 or 0.67%, a mean square error of 1.8523 ∗ 10−5 and an actuation variance 

of 4.227 ∗ 10−4. These values are small enough to be acceptable in the general 

function of the control task. 

Comparing to the former controllers, it does hold lower time requirements 

but presents a much higher actuation variance. Besides, although it presents 

slightly lower error and overshoot values, compared to the regular PI, the 

Switched controller still performs noticeably better on those parameters. 

 The variance issue comes from the fact that the value predicted by the 

model is not precise enough to sustain rectification that avoids control oscillation. 

 

Figure 4.5 - PI Controller with model rectification behavior. 
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4.3.4 Comparison between Controllers 

The five implemented controllers can be chosen depending on the goal that 

the user holds in mind. If there is no need to renew the liquid, the command 

controller will suffice. On the other hand, if the process is robust, precision is not 

a must, and the automation controllers have very limited processing capabilities, 

then the relay controller is the one to choose. 

If the former two are not good enough then any choice of the different PI 

configurations is valid. The best overall performance is presented by the 

Switched PI. If time requirements are the number one priority, then, at the 

sacrifice of processing capability, the PI with parallel model is the one to go for. 

If there is only the need of an overall decent controller that is reliable in most of 

the areas to consider, then the normal PI configuration is the indicated. 

4.3.5 Side notes relating to Remote Client Methodologies 

As mentioned in sub-chapter 3.6.2, two additional methodologies, a PCA 

and a performance index. Relating to the PCA as long as the nominal work state 

regions are tested and calibrated, it will always allow for an exact and accurate 

visual means of deducing an anomaly. On the other side, the performance index 

implemented, due to it, on one side, being a very sensitive method (it is supposed 

to be) and, on the other side, the tank sensor being very noise influenced, leads 

onto very unstable results. In a perfect process, the index would start of being the 

worst value possible (being 1) and it would steadily converge to 0 (optimal 

performance value). 

 
Figure 4.6 – Harris index results. 



4. Experimental Results   
 

92 

Due to the facts mentioned supra, it allows for slight control error 

oscillations which highly influence the method, making it vary often between 0 

and 0.8. It can be observed in Figure 4.6 the behavior of the index for a PI 

controller at 50% tank level set-point after the dynamic state has ended. 

4.4 Communications 

Relating to communications, there is not much to say, the OPC server 

regulates all of the communications and in a general way, it asserts the 100 

milliseconds   scan rate for all the transmitted variables, which is the general 

minimal value permitted on regular Ethernet connections (50ms in some cases). 

The most important risk factor is the Ethernet connection itself. If an 

anomaly happens, it puts to risk all the communication within the system. 

Nevertheless, since the system was built in a distributed way, the worst case 

scenario is the process controllers being in halt state waiting for a part to arrive 

or for the other process to be available. After 5 minutes of no connection, the 

server will de-activate the controllers and supervisor communication flags, 

which will lead both process to go into manual mode until the communications 

are reestablished. 
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5. Conclusions 

In this chapter, the general conclusions of this dissertation are presented in 

sub-chapter 5.1. In sub-chapter 5.2, it is mentioned the honor associated to the 

implementation of this project .A proposition for future research in distributed 

systems in the control and automation areas is pointed in sub-chapter 5.3. 

5.1 General Conclusion 

The initial idea was to implement a personal interpretation of a distributed 

control system, and, taking everything into account, it can be viewed as a 

successful project. 

A lot of the project was built based on unused material within the 

automation laboratory, therefore, shifting the focus of a more efficient and 

specific system conceptualization to the notion of making the best adaptation of 

the initial idea with the available resources at hand. 

Regarding struggles of implementation, due to the fact of there being a lot 

of intersections between different natured equipment and software, the 

execution phase was highly susceptible to very unique glitches and bugs. This 

consequently led to less efficient and unconventional methods of implementing 

certain aspects, especially in the HMI device features. 

Concerning the global system functioning, the main factor that must be 

pointed out is the time limitation in the scan rate of the information transmitted. 

In general, industrial automation systems have to be very strict with time 

requirements, making real time features a must on such systems.  

In this dissertation a regular commercial Ethernet connection was used, 

thus making those time requirements very low. Realistically, they should present 

values around 0.01 milliseconds and instead, are limited by 50/100 milliseconds. 

The trade off in time requirements allowed for a more versatile and open 

system platform, making the information horizontal to every future application 

that is able to retrieve information from an Ethernet based network. 
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In conclusion, this system represents a possible viable implementation of a 

distributed system that controls slow manufacturing processes and incorporates 

all of the main areas within modern automation systems, namely, in the pickling 

contextualization. It can also be viewed as a didactic means of illustration to new 

students not aware of the equipment and methodologies that can be involved in 

industrial manufacturing systems. 

5.2 Awards and Honors 

This project entered in the contest “Prémio Nova Geração 2015” organized 

by Siemens, and it was acknowledged as one of the finalists. 

The contest had the main goal of challenging future engineers to develop 

automation projects that further improve the Portuguese Industrial sector. Its 

jury committee was composed by members of Siemens, CIP, Cotec, Cadflow and 

“Ordem dos Engenheiros”. 

5.3 Future works 

According to the experience attained from the study and execution of this 

dissertation, a proposition for a distributed system with some of the following 

characteristics is suggested: 

 Wireless technology focused either between the system components 

as also between sensors/actuators and process controllers; 

 Use of smart product identification and manufacturing via RFID 

based technology; 

 Execution of higher complexity remote clients that influence the 

global system; 

 Application of communication methodologies that present higher 

real-time requirements and higher information accessibility; 

 Implementation of significant information security standards. 
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Appendix 

A.   Connection Schemes 

 Tank Panel Connection Scheme: 
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 Conveyor connection scheme panel: 
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B.   I/O Tables 

 Supervisor (Simatic s7-1200): 

 

Table 5- Supervisor used Inputs 

Name Type Address Mode Notes 

Global ES_a Digital Relay of 
24 V DC 

DI.a 0 / %I0.0 NC  

ES Process2_a Digital Relay of 
24 V DC 

DI.a 1 / %I0.1 NC  

Reset_proc2 Digital Relay of 
24 V DC 

DI.a 2 / %I0.2 NO -Returns 
system to 
initial state; 
-Unblocks 
system from 
Emergency 
stop. 

 

Table 6- Supervisor used outputs 

Name Type Address Notes 

L1 Digital Relay of 
230 V AC 

DQ.a 0 / %Q0.0 -Indicates that the 
conveyor is active 

L2 Digital Relay of 
230 V AC 

DQ.a 1 / %Q0.1 -Indicates that the 
Tank is active 

L3 Digital Relay of 
230 V AC 

DQ.a 2 / %Q0.2 -Indicates that the 
supervisor is active 

L4 Digital Relay of 
230 V AC 

DQ.a 3 / %Q0.3 -Indicates process2 I 
stopped. 

L5 Digital Relay of 
230 V AC 

DQ.a 4 / %Q0.4 --Indicates  process1 
is stopped. 

L6 Digital Relay of 
230 V AC 

DQ.a 5 / %Q0.5 -System mode; 

Buzzer1 Digital Relay of 
230 V AC 

DQ.a 6 / %Q0.6 -Indicates Failure  on 
process1. 

Buzzer2 Digital Relay of 
230 V AC 

DQ.a 7 / %Q0.7 -Indicates Failure  on 
process2. 

 

 Conveyor controller (Simatic s7-1200): 

 

Table 7-Conveyor controller used inputs 

Name Typo Address Mode Notes 

Limit Switch 1 Digital Relay of 
24 V DC 

DI.a 0 / %I0.0 NO  

Limit Switch 2 Digital Relay of 
24 V DC 

DI.a 1 / %I0.1 NO  
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Motor_Forward 
 

Digital Relay of 
24 V DC 

DI.a 4 / %I0.4 NO -Manual mode feature; 
-Secondary button, 
activated via 
pressing/timer. 

Reset Process 1 a Digital Relay of 
24 V DC 

DI.a 4 / %I0.4 NO -Secondary button, 
activated via 
pressing/timer; 
 

Motor_Stop 
 

Digital Relay of 
24 V DC 

DI.a 3 / %I0.3 NC -Manual mode feature; 
 

Manual mode Flag 
 

Digital Relay of 
24 V DC 

DI.a 3 / %I0.3 NC -Secondary button, 
activated via 
pressing/timer; 
-Forces system to 
activate manual mode; 

-Motor_Reverse 
 

Digital Relay of 
24 V DC 

DI.a 2 / %I0.2 NO -Manual mode feature; 
 

Init Digital Relay of 
24 V DC 

DI.a 2 / %I0.2 NO -Secondary button, 
activated via 
pressing/time. 
-Initiates conveyor 
control system; 

Inc frequency 
 

Digital Relay of 
24 V DC 

di.a.5 / %I0.5 NC -Manual mode feature; 
 

Failure monitor flag Digital Relay of 
24 V DC 

di.a.5 / %I0.5 NC -Secondary button, 
activated via 
pressing/timer; 
-Tells the system, a 
technician is present 
during the occurrence 
of the failure. 

Dec frequency 
 

Digital Relay of 
24 V DC 

di.a6 / %I0.6 NO -Manual mode feature; 
 

Monitor Ok flag Digital Relay of 
24 V DC 

di.a6 / %I0.6 NO -Secondary button, 
activated via 
pressing/timer; 
-Tells the system, the 
failure was fixed. 

ES Process1 a 
 

Digital Relay of 
24 V DC 

DI.a 7 / %I0.7 NO -User’s contact 
protection for process1. 

ES Process1 b 
 

Digital Relay of 
24 V DC 

DI.b 3 / %I1.3 NC  

Reset Process1 b 
 

Digital Relay of 
24 V DC 

DI.b 4 / %I1.4 No  

Failure_proc1 Digital Relay of 
24 V DC 

DI.b 4 / %I1.4 No -Secondary button, 
activated via 
pressing/timer; 
 
-Simulated failure of the 
conveyor. 
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Optical Sensor 1 Digital Relay of 
24 V DC 

DI.b 0 / %I1.0 NO -There is the need to 
dock an aluminum 
reflector plate onto the 
metal part carrier. 

Optical Sensor 2 Digital Relay of 
24 V DC 

DI.b 1 / %I1.1 NO “” 

Optical Sensor 3 Digital Relay of 
24 V DC 

DI.b 2 / %I1.2 NO “” 

 

Table 8- Conveyor controller used inputs 

Nome Type Address Notes 

v/f Control of the 
motor 

Analogic signal of  0 
to 10 V DC 

AQ 0 / %Qw80 F-max=40 Hz=27648; 
F-stop=0 Hz=16800; 
F-min=-40 Hz=5600. 

 

 Tank controller (Modicon M340): 

 

Table 9- Tank controller used inputs 

Name Type Address Mode Notes 

Init Digital Solid 
State input of 
24 V DC 

%I0.2.0  -Initiates tank control 
system; 

ES process2_b Digital Solid 
State input of 
24 V DC 

%I0.2.1   

Reset_b Digital Solid 
State input of 
24 V DC 

%I0.2.2   

Manual_mode Digital Solid 
State input of 
24 V DC 

%I0.2.3  -Flag that forces system 
into manual mode. 

Manual_pump Digital Solid 
State input of 
24 V DC 

%I0.2.4  -If on, activates the 
water pump; 
-Default voltage applied 
to water pump= 4V 

Electro Valve 1 
control 

Digital Solid 
State input of 
24 V DC 

%I0.2.5   

Electro Valve 2 
control 

Digital Solid 
State input of 
24 V DC 

%I0.2.6   

Electro Valve  3 
control 

Digital Solid 
State input of 
24 V DC 

%I0.2.7   

Simulated 
Failure 1 

Digital Solid 
State input of 
24 V DC 

%I0.3.0  -Activates Failure 
flag;(major failure) 
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Simulated 
Failure 2 

Digital Solid 
State input of 
24 V DC 

%I0.3.1  -Opens Electro-valve 3 
(minor failure) 

Simulated 
Failure 3 

Digital Solid 
State input of 
24 V DC 

%I0.3.2  -Opens Electro-valve 2 
and 3 (mid failure) 

Timer Jump Digital Solid 
State input of 
24 V DC  

%I0.3.4  -Ignores the wait time 
associated to treatment 
of the current metal 
part on tank. 

Monitoring Flag Digital Solid 
State input of 
24 V DC 

%I0.3.6  -Flag used to notify the 
system that a user is 
monitoring the system, 
in case of failure. 

Monitor Ok Flag Digital Solid 
State input of 
24 V DC 

%I0.3.7  -Tells the system, the 
failure was fixed. 

Tank Level 
Sensor  

Analogic signal 
of  0 to 10 V DC 

%Iw0.1.0 
(U0/com0) 

 0%= 3830; 
25%=4350; 
50%=5300; 
75%=6760; 
100%=9320. 

 

Table 10- Tank controller used outputs 

Name Type Address Notes 

Electro Valve 1 
actuator 

Digital Solid State 
output of 24 V DC 

%Q0.3.16  

Electro Valve 2 
actuator 

Digital Solid State 
output of 24 V DC 

%Q0.3.17  

Electro Valve 3 
actuator 

Digital Solid State 
output of 24 V DC 

%Q0.3.18  

Tank’s Water Inflow 
Pump 

Analogic signal +/- 
10V DC 

%Qw0.1.5 
(U101/Com101) 

Voltage range 
specified= [0 to 8]V 
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C.   Operational Historian Log 
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D.  Communication between Components 

 

 Information traded between Supervisor and the Processes: 

 

 

 

 

 

 

 



 

  107  

 

 Information traded between Supervisor and the Remote Clients: 
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