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Abstract

In the framework of incomplete markets, due to the non-existence of
trade at some points in time, and using a partial equilibrium analysis,
we show how the bid-ask spread of an European derivative is generated.
We also ™ nd conditons for the existence of the spread. These conditions
concern the market structure of the maret-makers, which can be a
oligolopoly with price competition or a monopoly, as well as the risk-
aversion of the demand and supply of the market.

1 Introduction

Financial markets present equilibria characterized by bid-ask spreads, that
can only be explained by market imperfections. The literature has been
centered in two main imperfections, namely information asymmetries and
transaction costs. This papers aims to show that equilibrium bid-ask spreads
may be generated by market illiquidity, an alternative market imperfection,
even in the absence of information asymmetries and transaction costs.
Among the traditional assumptions on which derivatives' pricing is based,
markets are perfect and the underlying asset can be transacted at any point
in time. Under the absence of arbitrage opportunities the value of a deriva-
tive can be computed as the value of a portfolio on the underlying risky asset
and risk-free bonds that exactly replicates its payo®. Such portfolio can be
rebalanced in a self- nancing way until the maturity of the derivative, by
continuously transacting the underlying asset and the bonds. Under these
assumptions, the calculated value of the initial portfolio can be shown to
be the equilibrium price of the derivative and is unique. In this paper we
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assume that the underlying asset cannot be transacted at every point in
time and study the impact of this constraint on the equilibrium pricing of
options. The illiquidity implies that markets may become incomplete, in
the sense that perfect hedging of the derivative in all states of nature is no
longer possible. Hence, a unique price does not exist anymore, opening a
range for the possible characterization of the equilibrium bid-ask spread.

The existence of a bid-ask spread may therefore be related to the pric-
ing of derivatives in incomplete markets. The di®erent approaches in the
literature to characterize such problem are revisited below.

First, we consider the superreplicating bounds for European derivatives.
The nature of such bounds is well characterized in the context of incomplete
markets in the papers by El Karoui and Quenez (1991,1995), Edirisinghe,
Naik and Uppal (1993) and Karatzas and Kou (1996). A direct application
to the case of European option pricing when the market for the underlying
is dry can be found in Amaro de Matos and Antao (2001). The super-
replication procedure relates to the minimization of the expected losses,
as considered by FAllmer and Leukert (1999). Several works, also using
superreplication, but with di®erent criteria of pure arbitrage opportunity,
got narrower superreplication bounds®. In most cases the superreplication
bounds produce too broad bounds, and certainly not equilibrium values.
An alternative pricing criterion, is the utility indi®erence pricing, as intro-
duced by Hodges and Neuberger (1989). This criterion, despite having the
disadvantage of being utility dependent, has a meaningful economic inter-
pretation. However, as Davis, Panas and Zariphopoulou (1993) suggest,
this de nition does not allow the determination of equilibrium prices be-
cause the reservation write price is always higher than the reservation buy
price. Therefore, reservations prices de ne a range in which the trading of
the derivative must take place but they do not determine equilibrium prices.
Alternatively, and still in the framework of utility indi®erence pricing, we
may introduce the marginal price as the utility indi®erence price for an in-
“nitesimal quantity. Marginal pricing have been used in several contexts by
Davis (1997), Karatzas and Kou (1996) and Kallsen (2002). The uniqueness
of the marginal price is proved by Karatzas and Kou (1996), for portfolio
constraints, and by Hugonnier, Kramkov and Schachermayer (2005) when
the number of states of Nature is larger than the number of assets. However,
this price is not yet an equilibrium price re®ecting only the willingness to
pay for a marginal (in nitesimal) amount.

An alternative is to price the derivatives as their expected discounted
payo®, according to one of the several risk-neutral probability measures.
Several criteria have been proposed for the selection of one particular mea-
sure. For instance, the minimal martingale measure by Follmer and Schweizer

1See the works of Bernardo and Ledoit (2000), Cochrane and Sa§-Requejo (2000) and
Bondarenko (2003).



(1990), the variance optimal measure by Schweizer (1996) and the minimal
entropy measure by Rouge and El Karoui (2000) and Frittelli (2000a),(2000b),
who also analyzed the connection between entropy measures and utility-
based prices when utilities are exponential. The dependence of the utility-
maximization price on the choice of the distance metric, can be found in
Henderson (2005) and Henderson et al (2003). Coherent risk measures were
studied by Artzner et al (1999), and convex risk measures by Follmer and
Schied (2002). Such measures were introduced to axiomatize measures of
risk and to generalize the properties of utility-indi®erence prices.

With the exception of the marginal price, all the methodologies proposed
above either establish a range of variation for the value of the derivative or
use an ad hoc criterion in order to get the price without any economic
insight. In this work we intend to characterize an equilibrium price for our
speci ¢ incomplete market model. Equilibrium in a nancial markets must
verify that all agents maximize their utilities and markets clear. Hence, the
determination of equilibrium considers both market-makers' and traders'
decisions. Using the maximization utility approach, a market demand and
market supply for the derivative is constructed. \We then introduce the
market-makers, who set an ask and a bid price, rst in a monopolistic and
next in a competitive context.

Market Ask Price Market Maker(s) Bid Price Supply
P LI —— »
Demand Demand

Figure 1. The derivatives' market.

Although a large number of studies on microstructure model of securi-
ties markets have been published in the last years, most of the attention
has been devoted to stock markets, while only a few papers discuss the mi-
crostructure of derivative markets®>. Moreover, in order to generate a market
and a bid-ask spread another imperfections were introduced. We can group
them as the inventory approach® and the information based approach®. In

2There is much work on stock bid-ask spreads but the spread of derivatives have been
investigated by fewer researchers. Biais, Foucault and Salani§ (1998) analyze three di®er-
ent market structures and the ways the associated restrictions lead to di®erences in prices,
bid-ask spreads, trades and risk-sharing. There are also a few empirical studies examine
bid-ask spreads in the derivatives markets, such as, George and Longsta® (1993), Chan,
Chung and Johnson (1995) and Etling and Miller, jr (2000).

3Among others, Stoll (1978) and Amihud and Mendelson (1980) studied bid-ask spreads
ans stock inventory. More recently, Lee, Mucklow and Ready (1993), Hasbrouck and
So anos (1993), Madhavan and Smidt (1993) and Manaster and Mann (1996) also found
some evidence on the realationship of bid-ask spreads to market-maker inventory costs.

4Some authors discussing the topic: Copeland and Galai (1983), Glosten and Milgrom
(1985), Admati and P °eiderer (1992) and Foster and Viswanathan (1994). More recently,
Morrison (2004), Bagnoli et al (2001) and Vayanos (2001).



the former case transaction costs determine the bid-ask spread. The market-
maker(s) want(s) to be compensated by the cost of keeping inventory. In the
latter case the asymmetry of information leads to the existence of transac-
tions. When there is an order imbalance that moves the market-maker away
from his desired inventory position, he adjusts the bid-ask spread to attract
orders to move back to his optimal inventory position. On the other hand,
information asymmetry models assume that an adverse selection problem
exists because the market-maker is at an informational disadvantage to the
informed traders. In this case spreads must be kept wide enough to en-
sure that gains from trading with the uninformed agents exceed the losses
associated with trading with informed agents.

Our model assumes neither asymmetric nor optimal inventory strategies
and still explains the existence of an equilibrium bid-ask spread. Itis related
to the failure of continuous hedging portfolio rebalancing hypothesis. We
assume, as in Longsta® (2001), that the underlying asset can not be trans-
acted at all points in time. In this paper we provide conditions for a bid-ask
spread to exist if the risk-neutral market-maker is a monopolist. However,
if there are more than one market-market, and if they compete in prices,
there will be no equilibrium if the market-makers are risk neutral.

Our work is organized as follows. In section 2 the demand and supply of
the market are derived. In subsection 2.4 some simulations are performed
for constant relative risk aversion and constant absolute risk aversion utility
functions. Section 3 states the problem of the market-maker(s), presenting
“rst the monopoly case and then the oligopoly case. Finally, in section 4 we
conclude. Our main technical proofs are presented in the appendix.

2 The Model

Consider a discrete-time two-period economy, corresponding to datest =0;1
and 2: Due to liquidity constraints transactions are only possible at time
t=0and t= 2. Attimet = 2 there are three possible states of Nature,
labelled by i = 1; 2; 3: In this economy there are three di®erent assets being
transacted. The rst one is a risk free asset with unitary initial value, that
provides a certain total return of R per period; the second is a risky asset
(the stock) with initial value So and uncertain ~nal values Si; for i = 1;2;3:
In particular, we number the states in an order such that S3 > S2 > S3;
notice also that, in order to avoid arbitrage opportunities, we must have
S1 > R2Sy > S3; Tnally, the third asset is a European derivative, written
on the stock, with expiration date T = 2: The possible payo®s at time
t = 2 are denoted by Gi; for i =1;2;3; and depend only on the ~nal state
of Nature. We also assume that the payo®s of each considered European
derivative are ordered according to the states’ labels, in a monotonic way.
Every agent may build a portfolio composed of shares, risk free asset



and derivatives. By assumption, each agent can in®uence neither the market
price of the stock, nor the market price of the derivative. Each representative
agent maximizes a von Neumann-Morgenstern utility function, EU (;) ; of
the wealth at time t = 2: The utility function U (%) is increasing and concave
in wealth. These properties imply that the marginal utility is positive, but

decreasing, in wealth.

In the following subsection we derive the individual and market demand
and supply. Insection 2.4 the individual demand and supply for two di®erent
types of utility functions are presented.

2.1 Demand

Consider a representative agent that maximizes the expected value of wealth
at the terminal date, t = 2: The problem that he faces is to choose the
number of shares €o.q that he will hold, the amount Bo.q invested in the
risk-free asset and how many units gqq of the derivative he is going to buy, for
a given price of the derivative. Hence, the problem that the representative

agent solves is

max

£
EU @€o4S2 + R?Bgg +04G2

o]

. £ . o
p'U €©qqS) + R?Bgg + 44Gh

€0.d;Bo:d;0d i=1
subject to
€o.4So +Bg.g +qqPg - Y @)
@S} +R2Bgg+0eGh _ 0 ; i=1;23 @)
and

Qg . O:

Proposition 1 Ignoring the positivity constraints of wealth at time 2, pre-
sented in equations (2), the optimum values ¢4 and g4 are implicitly given

by

So

Pg
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with
i ;¢ piU“iwi¢
®wy =Pr— Od 4 :
i=1P'U” wy
and
i _ o i . p2e b, o2 ai~i . o2 .

Proof. As the utility function is increasing in wealth the constraint
presented in equation (1) is satis ed in equality. Hence, the problem abtove
can be rewritten as

X £ iai 20 b oo i 2p 0°
max p'U Coq S i R°Sy +Ry+0qq G j RPy
€0;4;0d i=1

subject to
i ¢ i ¢ :
Coq S} iR%Sy) +R?y+qy GLiRPy .0 ; i=1;23
and
qq . O

Ignoring the positivity constraints, the rst order conditions are:

8

QE[UCN —
2 @¢0;d _O
pJ

= BE[UC) GE[UQ) | . —
@dq 0,0d. 0, Ggg Jd = 0

leading to equation (3). The maximum is guaranteed since the second order
conditions are satis ed. See appendix A for details.

In the next proposition, a necessary and su=cient condition to have a
negatively sloped individual demand is established.

Proposition 2 A necessary and su=zcient condition for A4 (Pg) to be a de-
creasing function of Py is that

X . ¢ wi 6K . ¢
0 . p'shiR2Sy U” W piu” W,
i=1( i=1
x g Ci . ¢ wi X ¢ wi .¢
+q  p'siiR?S 'GhiR2Pg U Wy p''shiR2Sy U”'wh
i=1 i=1 )
X ¢ i 03X i ¢
i P shiRSo U Wl pl'GhiRePg U W

i=1 i=1

Proof. See appendix A for details.
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From the maximization problem above faced by a representative buyer of
the derivative, we obtain the optimal amount q = Ay (Pg) : If this function is
monotonic, i.e., if the condition of the above Proposition is satis ed, Ay (Pg)
may be inverted in order to obtain an individual market demand

Pa=Ad'@:

Assuming that there are n equal agents buying the derivative in this econ-
omy, the market demand (Q) and the inverse market demand can be written
as
M O il
Qu =ng=nA; (Pg) D Py =Al" -

2.2 Supply

Consider a representative agent that maximizes the expected value of wealth
at the terminal date, t = 2: The problem that he faces is to choose the
number of shares €5 that he will hold, the amount Bg;s invested in the
risk-free asset and how many units gs of the derivative he is going to sell, for
a given price of the derivative. Hence, the problem that the representative
agent solves is

£ n X . f . .o
max EU ¢0;382+ RZBO;S i qst = pIU ¢0;SSé +RZBO;S i qsGIZ
€o;s;Bo;s;0s i=1
subject to
€o;sSo+ Bos i 0sPs - Y “)
¢0;sSi2+ RZBO;S i QSGiz .05 1=1;2,3 ®)
and
Js . 0

where €q;s; Bo:s and gs denote, respectively, the number of shares bought/sold,
the amount invested in the risk free asset the number of derivatives sold.

Proposition 3 Ignoring the positivity constraints of wealth at time 2, pre-
sented in equations (4), the optimum values ¢g4 and gg are implicitly given



by

1 X e
So = % @ wl S
i=1
1 X e
Ps = o ® ws Ghifgg>0and )
i=1
1 X e
Ps - " ® wi Ghifgyg=0;
i=1
with
R T
® wy =P 4
i1 P1U" wy
and

_ - ¢ i ¢
wi=ag'sh i R?S; +RY o2 'Gh i R?Py

Proof. As the utility function is increasing in wealth the constraint pre-
sented in equation (4) is satis ed in equality. Denoting by Bg.q (Ps) ; 5. (Ps)
the solution of the problem described then

o]

¢8;s (PS) S0 + Bg;s (PS) i qPS =Yy

Hence, the problem above can be written as

KB i o b i p2p O
g:nax p'U ¢gs S) i RSy +Ry jgs G j RPs
0;s:0 i=1
subject to
i ¢ i ¢ .
Cos S} iR?Sy +R?% jgs GLiR?Ps _0 ; i=1;2;3

and

gs . O:
Ignoring the positivity constraints, the —rst order conditions are:

@¢0:s -

- 000 0 M =0

leading to equation (6). The maximum is guaranteed since the second order
conditions are satis ed. See appendix B for details.
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In the next proposition a necessary and suzcient condition to have a
positively sloped individual supply is established.

Proposition 4 A necessary and su==cient condition for A (Ps) to be a pos-
itive function of Pq is that

X . ¢ i e X ¢
(I p'shi RS, U Wi piut'w
i=1( i=1
X i ¢i . ¢ oi 03X . ¢ i .C
+q  p'SiiR’S 'GhiR%Ps UMW pi'shiR%S, U” W
i=1 i=1 )
X ¢ - G ¢ ,i .C
i pl'shiRzs, cut'wiT pi'Gh i R2Ps UMW

Proof. See appendix B for details.

From the maximization problem faced by a selling agent presented above,
an individual market supply is obtained as

q=A(Ps) D Ps:Asil(Q)

Assuming that there are n equal agents in this economy the market supply
(Q) and the inverse market supply can be written as

H%'ﬂ

Qs =ng=nA (Ps) D Ps = Ail -

2.3 Arbitrage bounds, reservation prices and fair price
2.3.1 Arbitrage bounds and nite utility

In order to get a nite solution of the problem, we must assure that the
price of the derivative is within the superreplication bounds. In this sense,
we guarantee that there is no arbitrage opportunities in this market.

The upper bound of arbitrage-free range of variation is given by

PY = min ¢Sy + By
Co;Bo
subject to
¢oSH+ R?By _ G}

withi=1; 2 and 3:
The lower bound of arbitrage-free range of variation is given by

P! = max ¢oSo + By
€o;Bo



subject to
¢oS) + R?Bg - G}

withi=1; 2 and 3:

The upper and lower bounds can be written in a shorter way, if we
introduce some sirr}plifying notation. Let % denpte the vector of parameters
of our model, % ~ "Sp; S3; S7;S3;G3;G3;G3; R : We further de ne

© i ¢ i ¢ i ¢ a
Gt = ©1/4:G§fs§is§ +G3's3 sk +G’g‘fszlis§¢;oa;
Gl = %:G'S}isy 4G3'S}isy +G3'spisy -0
HY = ©1/4:822iR28050a;
Hi = %:S;iR%S-0
and
i ¢ 2 i
G, 'Sl iR%Sy G i RS
Pij = 3— i Q)
RZ S)iS;

We then have®

pY = P1.3 and pl= P23
if%2GT\H;

pY = P1.3 and pl= P12
if%2G*\HI;

pY = P2.3 and pl= P13
if42Gi\H* and

pY = P1.2 and pl= P13
if%2GT\HT:

We claim that prices above PY or below P! will generate an arbitrage
opportunity and therefore, in nite utility. The reason is as follows. First
consider demand. If the price is below the lower bound, it would be possible
to sell a superreplicating portfolio whose current value is higher than the
derivative that is being bought. Proceeding in this way, we could assure a

positive wealth in all possible states of Nature. Selling an arbitrary number
of units of this portfolio and buying an arbitrary number of units of the

5See appendix C for the full derivation of the bounds.
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derivative would assure unbounded wealth at time t = 2: Hence, the utility
and the optimal solution would not be nite. In what concerns the individual
supply, if the price is higher than the upper bound, it is possible to buy a
superreplicating portfolio that is cheaper then the derivative that is being
sold. In this way we could assure an unbounded positive wealth as well.

An interesting way of looking at this issue is to go back to the maximiza-
tion problem of both buyers and sellers of the derivative. In fact, there is no
restriction to in nite solutions to these problems. If we would have added
the restriction q <¢1; the optimal solution would immediately imply that
APYY>q=>AP!:

Therefore, the imposition of nite solutions provides an alternative way
to characterize the bounds of the no-arbitrage region.

There are two di®erent ways of proceeding, each of them leading to the
same constraints on the parameters in order to obtain a nite solution of
the problem.

First, we may look at the rst order conditions of the representative
investor. Alternatively, we may look at the wealth constraints.

The rst argument goes like this. Ignoring that the fact that the investor
is buying or selling the derivative, the rst order conditions can be written
as

8 p i i 6 P, . i ¢
= LEgmuw = L
=Py ga i 0Py i

i RZ%d U wh =" p'utw

If there is a nite solution for the maximization problem then

o1 ¢
piu" W~ A>0
i=1

where w(ij is evaluated at the optimum values of €; gy=gs and B: Hence, the
~rst order conditions solve the following system

.. . . i i 50 i o0 .
This is a linear system in U' ‘w3 ; U" ‘w3 and U’ w3 whose solution is
P(s5i83)+G3(R%S0 iS3) i G5(R®S0i S3) 1

G3(S3iS3)+G5(S2iS3) iG3(S5iS3) Pa
P(S3iS5)+G3(R%S0iS3) i G3(R®S0i S3) 1
G3(S21S3)+G3(S3isS2)iG3(S3iS2) P2
P(S3i5%)iGi(R?S0 iS5)+G3(R?S0iS3) 1 .
G3(S7isS3)+G3(s3iS3)iG3(S5is3) P3”

8 ¢
%U“M-ZA

ut'wg =A

P e
T u'we =A
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pi 1 i o0 L - " -
AsU’ 'wy ;U wg and U" wy are strictly positive, we must impose some
constraints on the parameters. These constraints being satis ed imply that
PU>P > P! for PY and P! de ned as above for the di®erent regions of %.
Let us now look at the wealth constraints. Each constraint on the nal
wealth is written as
¢o'S} § R2Sy +R2% +q Gh j RP® _ 0:
if ©o and q are respectively the number of shares and derivatives transacted
at time t = 0: Let us now ask the following question. By how many units
may ¢, and g change, guaranteeing an increase in the nal wealth at each
state of Nature? Let d¢ and d, denote the (" nite) variation in the number

of stocks and derivatives. The nal wealth is thus written as
ici . o2e b oo -
(Go+de) S; i RSy +RYy+(q+dg) G, i R°P
If the above constraint is satis ed, an increase in wealth is equivalent to

=

- ¢ i ¢
de 'Sh i R2Sp +dq 'Gh i R2P _ O:

Let ;; for i =1;2 and 3; be de ned as

We can thus conglude that an increase of wealth instatei = 1; 2and-3 occurs
ifand only ifdq g i ; . 0forS}jR?S;>0;anddy g i ; - 0for
S} § R?Sy < 0:Recallingghat S§ > R2S;, > S3; the conditions above resume
to d, %‘qﬁ i 1 .0dy %;E i 5 - Oforstates 1 and 3, respectively. For

state 2, however, the relevant condition depends on whether S% i R2Sg >0
or SZ j R?Sy <0.

In order to avoid an unbounded optimal solution, we must assure tiaat
there are no |r¢crements de¢ and dy such that the condition de¢ S i R?Sy +
dq G i R?P _ Ois satis ed for all i 2 f1;2;3g: As seen from our result
above, that depends on the values of {; 5, and 3:

On one hand, the relation between these values of s depends on how P
compares with the values of P1.2; P1:3 and P;:3; as de ned in equation (7),
and is given by

S5 i R°Sp>0]S5iR*Sp<0
P . Pas P 2 3
P _ P13 T 1. 3
P -Pip 1 2 17 2




On the other hand, the relation between P1:2; P1.3 and P2.3 depends on the
parameters %: The four possible situations are described in the following
Figures. They area) % 2 G* \H* ) P12 > Py3 > P13, b) % 2 G*\
Hi ) P2;3 > Pl;z > P1;3; C) Y, 2 Gt \Hi ) P1;3 > P]_;z > P2;3; d)
Y+ 2 GV \H* ) P13 > P23 > P1.2: Each set of three horizontal small
arrows, one for each state of Nature, indicates the range of values for %f
such that the constraint, for each of the three states, is respected. Hence,
for the range of prices such that the regions identi ed by the three arrows
have a non-empty intersection, it is possible to nd an unbounded optimal
solution, i.e., an arbitrage opportunity.

———— — —
?, 7 % d?, 20?7, % a2 20?7, X2y ? 0?7, a2
dq dq dq dq
H dq<0 H dq<0 I[ dq<0 H dq<0
y y
' ' P P
oo P fao Pu fao T fae
< G —— —
.__=. Y . PE— 5 —_— 5 — N 5
T T T v T T T T T T T T T
d?, d?
92 7 ? l::—q 2 7?, 3 d_q 7% % 2 Eﬂ 7% 7, d_q

Figure 2: In the considered set of parameters % 2 G* \ H*, P must belong
to (P23;P13) in order to avoid an unbounded solution.

=3 == - —_—
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-— - — —_—
—_— ——— —— > —+— >
d? d? d?
? %7, @ 70?7 75 Lo ?, 7?7 Lo ?, % 7?7 L
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11 d <0 ﬁ d <0 d,<0
q q
, ,
T T

=
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)
o
B
=
nQ
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o
-0
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Vv
o
o
15
t=| &
DQ
vV
o
Y v

P _ —
FE—— ForE——— — € y

T T T T T T ;} T L e T T T d’f

? ?3 ’)2 2, 707, 7% o ?, % % 7,7 7 o

dq dq dq

Figure 3: In the considered set of parameters % 2 G* \ Hi, P must belong
to (P12;P13) in order to avoid an unbounded solution.

Notice that, by using this procedure we end up imposing the same con-

straints as imposing that prices belong to the arbitrage-free range of varia-
tion.
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q q q q
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%77 % % ke %% % a2, %% 7 &,
dq dq dq dq

Figure 4: In the considered set of parameters % 2 G¥ \ H¥, P must belong
to (P13;P12) in order to avoid an unbounded solution.

nd E —— = =
HH \ | [—— — [ >
{ t T > T T T T T T T T T
7 % % e %, % % D %%, % Lo 7 &
dq q dq dq
dy<0 H d<0 H %<0 ﬁ %<0
L 4 '
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P =] 12
[[ 40 P 4,50 S (I dp0
- ——— ——— —+—
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dq dq dq

Figure 5: In the considered set of parameters ¥+ 2 G \ H*, P must belong
to (P13;P23) in order to avoid an unbounded solution.
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2.3.2 Reservation prices and the fair price

In this section we characterize the behavior of investors when the price of
the derivative is actuarially fair.6 In particular, we establish under what
conditions the investors prefer either to buy or to sell the derivative. We
also provide conditions for the investors to prefer either to buy or to sell
the underlying asset. In both cases the conditions do not depend on the
preferences. Additionally, we establish the relation between the actuarially
fair price and the reservation price of the derivative, where the reservation
price is de ned as the price such that the optimal transacted quantity is
zero. The results are as follows.

If both the derivative and underlying asset have actuarially fair values,
the investor transacts neither the derivative nor the risky asset. In this case
the investor prefers to assure a risk-free wealth at maturity.

Alternatively, if the price of the underlying asset is not actuarially fair,
we have two possibililt;iﬁs. First, if the asset is undervalued, the agent will
buy it, i.e., Sp < % ?2185 ) ¢ > 0; second, if the asset is overvalued,
the agent will sell it, i.e., Sg > —R15 ?:1 S} &” < 0. Furthermore, in this
situation the investors buy or sell the derivative, depending on the payo®
structure, as characterized in the following lemma.

Lemmgs Let the price of the derivative P be actuarially fair, i.e., P =

B~ ﬁlz- f’zlpiGiz: Also, let B belong to the arbitrage-free range of variation.
Then the sign of ¢° and q° are characterized in the Table below
Gi>G)_ G |Gi<G3 - G3
or or
o . |G G3>G3|Gh-GE<G}
3 p'.Sl jR?Sy, >0| ¢°>0,0°<0] ¢°>0;q°>0
oo P IS) i R%Sy, =0 ¢°=0,¢°=0| ¢°=0;¢° =
S 2 .pSiR2Sy <0 ¢°<0;q°>0[¢"<0;¢°<0

Proof. As the utility function is strictly concave in ¢ and q then

X
i=L

- U &

i ¢
p''sl i R2S, +q

i=1

5We say that the price of the derivative is actuarially fair if it equals the expected

i=1

payo® at maturity discounted at the risk-free rate.
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#

i ¢
p'Gh i R?P +RY



P P .
Proof. IfP =2 ¥, GhandSo== S} we have
X e g r2s bhaial s m2ptarey - U lRey
UeC S)iRS +9g GLi R-P +R°y - U Ry
i=1
Hence, in order to maximize the expected utility, the hest strategy is ¢ =
g° = 0 leading to the maximal expected utility U R?y :
In tklg, remainder of this prlgpf we shall concentrate in the case where
P = R2 _1 Gh and Sp & -_1 Sb. Regarding the sign of the optimal
€y, notice that

E ¢ i ¢ o
PU € 'Sh j R?Sy +q Gh j R?P +R?%y
i=1,
#
X i 20 b oo
- U & p'S;iRS +RYy
i=1
£
In order to guarantee a level of expected utility abovelg R2y which | Bt the
utility with ¢ —q —0 we must gssure that ¢o > 0 if 3 S i R2Sy >0

and ¢o<0if >, 'SliR2S <O
Regarding the sign of the optimal g; notice that

i ¢ i ¢ i
P=P ,p G3iR% =ip. G} iR?P jps G3ijR%P
implying that the st order condition

X . ¢ i ¢
pi'GL i RP UMW =0
i=1
may be rewritten as
i ¢E . ¢ i ,¢o i CE i € i .t
p'GEiR®P UMWY UMW = gps G i RZP UMW UMW
8
¢ P ¢
with w' = ¢0 1 i R?Sy +R% +q IG'2 i R°P ;i=1;2and 3: Using the
assumption about the order of the payo®s and the fairness of P;
© . i ¢ i ¢a
R 2 min'GL G} ;max'GL G3
|
G} j R%P
> 1—¢' <0
G FéZP .
[U“'w1 ut'w2 ']

> ey vy <°

which implies that

w! > w? and w2 > w? (Case 1)
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or
wh < w? and w® < w?: (Case 2)

. i . ¢ i ¢
Note that wi = € 'S} j R%Sg +R%y+q'GL j R%P ; implying that
3 - 3 -

wi>w , ¢ Slish <q GLjGh : ©)

We now consider the four possible situations, analyzing in each one the two
cases mentioned above.

— . P i ¢
1. We st consider the case G _ GZ _ G3and  o,p' 'Sl j R2Sp >
0.

(@) If G} > G5 > G3; in case 1 we must have
wi>w? ¢oi82 i S§¢<ing i G
As € > 0; g must be strictly negative. The same procedure
applies if case 2 is considered, leading to
wi<w? , o'SZish >q'Gh Gl (10)

and a strictly negative value for g.

(b) G5 > G3 = G3 is incompatible with case 1. However, case 2
applies.

(c) G3 = G5 > G3 is incompatible with case 2 but case 1 applies.

. P i ¢
2. We next consider the case G5 - G3 - G3and = 2, p/ 'si j R2S >
0.

i ¢
@) IfiG% < G§ < G}, in case 1 we must assure ¢o'S2j St >
g G} iG5. As ¢ > 0; g must be strictly positive. A similar
reasoning applies in case 2. Using the relation in (10), ¢ >0 )
q=>0:

(b) G} < G5 = G3 is incompatible with case 1. However, case 2
applies.

(c) G3 = G4 < G3 is incompatible with case 2 but case 1 applies.

P i ¢
3. We now consider the case G5 _ G3 _ G3and L, p '85 i RSy <
0.

(@) If G} > G35 > G3 in case 1 we must have

i ¢ i ¢
wh>w? , ¢ 'S?iSh <q'GhiG};
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and € <0 ) q>0. Asimilar procedure applies in case 2, where

we take
3 FORNCUNN PR
wr<w , € S5iS} >q G5 iGj;

and ¢ <0)qg=>0.
(b) G5 > G3 = G3 is incompatible with case 1. However, case 2

applies.
(c) G} = G% > G3 is incompatible with case 2 but case 1 applies.
_ . P i ¢
4. We "nally consider thecase G} - G3 - G3and = >_, pl '8'2 i R?Sy <

0:

¢
@) If G} > Céz > G3 in case 1 we must have ¢ S iSy <
q G i G5 . As ¢ < 0; q must be strictly negatlve A S|m¢lar
reasonlng a@plles in case 2. We must assure that €g S 82 >

q G i G5 : As ¢ <0, g must be strictly negative.

(b) G3 < G3 = G3 is incompatible with case 1. However, case 2
applies.

(c) G =G5 < G is incompatible with case 2 but case 1 applies.

We now turn to the relation between the actuarially fair price of the
derivative, P; and its reservation price P: The reservation price of the deriva-
tive is de ned as the price such that the optimal transacted quantity for a
given investor, is zero. In fact, and as opposed to the exogenous P the
reservation price P depends on the investor{s utility.

We now present conditions that relate P to P.

Proposition 6 Let P belong to the arbitrage-free range of variation and let
the optimal transacted quantity of the derivative decrease with price. Then,

G>G; . G |[G<G -G
or or
: " Gl.G>G3 |G} - G5<G3
3 piish § R%Sg, >0 P<P P>pP
3 p.ShiR2Sy, =0 pP=P pP=pP
S.p ShijiR2S, <0 P>F P<P

Proof. Fom

theorem 5 we know that when P = B the sign of the

optimal transacted quantity of the derivative is well de ned and does not
depend on the risk aversion of the investors. Hence, P will be larger that P
if the quantity demand is positive for P = B and P will be lower that P if
the quantity demand is negative for P = B:
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Remark 7 Notice that, although P depends on the utility of the investors,
the fact that B - B or P _ P depends only on the parameters of the
economy, not on the investors' preferences.

Remark 8 Notice that, if B belongs to the-arbitrage-free range, P must
be outside the range de ned by infP;supP ; where the in_ mum and the
supremum above are taken over the class of all admissible utility functions.

2.4 lllustrations

We now consider the cases of a Constant Absolute Risk Aversion (CARA)
utility function

u(w)= jet™

with £ > 0; and of the Constant Relative Risk Aversion (CRRA) utility
function

1i° -
_w il
u (W) - 1 i o
with © > 0:
Notice that, when © = 0, the utility function becomes u(w) =w j 1,

which is a utility function characterizing a risk neutral agent. Moreover,
when © ¥ 1 the utility function becomes u(w) = In(w).

2.4.1 Explicit solution for demand and supply

For these utility functions it is possible to have an explicit solution for the
demand and supply of the derivative. The derivation is presented in ap-
pendix D.1. Let

i ¢ g ¢ i
. - PSEiSI 4G RS iSLiGI RS iy 1
' G S3i S +GiS}ish iGlisiisi (m
2, = P Sg’ii S3 +¢G% RziSo i S§’¢iG§ iR280 i%zl 1
G821 % +G2 818, 162818 (P
. _ P Szlii S3 i¢G% RZiSo i S§¢+G§ isto .%% 1
’ G} S3iS} +G3S3isy iGisiisi 3

If a CARA utility function is considered then
Yo

=9 ;q>0
6= i0 ;q<0:
where
[ ¢ i ¢ i ¢
_ 1'S2iS§Int+'s§istInt,+'stist Int
1717 Gl's2 1S3 +G2'S3 1Sk +G3 'Sl §S2
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If a CRRA utility function is considered then

Yo

g@=4q ;9=0
s =iq ;q<0:
where
it ¢ it ¢ iti ¢
- L i+ S5is +% SiS)
0= iRNY 37 Ti [ ¢i ¢o
1,7 § S5iR%Sy G3jRP + S3iR%S, G3jR%P
itE iy o Cig . on® s o Pl L o @R
+1, § S5 iRSy G iRP +SiRS G5 iRP
i‘lE-iz-z i~1 - p2 el . R2 i~ . pop®®
+1, S5 iRS G iRP + S5 iRS G5 iRP
(11)
2.4.2 Properties of individual demand and supply

In what follows we present some properties of the individual demand and
supply. If u(w) is a CARA utility function then’

1.

The individual demand for the derivative is a decreasing function of
the price, i.e.,

@aq

— -0

@Pyq

2. The individual supply for the derivative is an increasing function of
the price, i.e.,

@ad

— _ 0

@ps =

3. The optimal number of options multiplying by £ is constant. Hence,

the demand and/or supply will shift downwards when the coezcient
of absolute relative aversion increases, i.e.,

@0q @9q
E - Oand@ -0

4. The price such that the optimal number of derivatives is equal to zero

is independent of the z:

5. The optimal number of shares is independent of the initial wealth.

If u(w) is a CARA utility function then®

"See appendix D.2.1 for details.
8See appendix D.2.7 for details.
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1. Numerically, the individual demand for the derivative can be shown

to be a decreasing function of the price, i.e.

2. Numerically, the individual supply for the derivative can be shown to

L]

@Pg

-0

be an increasing function of the price, i.e.

3. The demand and supply are increasing functions of the exogenous

wealth, i.e.,

@gg

oy

8gs

0

@Ps =

>0 and

@qs
@y

> 0:

4. The reservagon prlce is an |&1creasmg function of ° if Gl 82

an increasing functlon of °:

We perform two simulations to illustrate praperty 4,

Iatlon we ch%ose parameters' values such that G5 *S3
G3. S2 i S7¢ < 0: Inthesecond simulation, we have G2 S? i
G3 S2iSi >0

For the ~rst case, the values of the parameters are described in the

s3 * +
2
G2's3 st jG3's2 sl <o0: Otherwise, the reservation price is

In theI “rst si
SZ +GZ ¢Sz i Sz i

S3'+G2's3 g st

following table:
So |S3[S5|S3|G5|G5[G3|ps [p2|p3 |[R|Y
105(14 110 8 4 2 05(01(06|03(1 | 500

Note that E [G] = 1, 75 and the arbitrage-free range of valaatlon for the vatiue

of tlhe derlva‘pve is (1; 958;2; 25) : Moreover, G3 S

G3 'S7 i Si = i2: The reservation prices for a CRRA ut|I|ty functlon are
presented in the following table

If a CARA utility function is presented the reservation price is independent

o

0:1

3

10

P

2:1279

2:1493

21510 |

of £ and equals 2:1532.
For the second case the parameters are

S8 +G2's3

So

S

s

s3

G3

G

G3

P1

P2

P3

10;5

15

10

8

0:5

2

4

0:1

0:6

0:3

500
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In this case E EG] = 2;4p and the arbitrage-free range of variation is (1:85;2:75)

11q2 . o3 21a3 . -3lc2 el — 4 :
Moreover, G; S5 i S5 +G5 S5 iS; 1G5 S5 i Sy =7: Thereservation
prices for a CRRA utility function are as follows

° 0;1 3 10
P [ 2:2133 | 2:1705 | 2:1662

If a CARA utility function is presented the reservation price equals 2:1643:

In what follows we present some simulations to obtain the individual
demand and supply. The initial value of the risky asset is So = 10: At
time t = 2, the risky asset can assume three di®erent values, S;» = 12
1 Sp:2 = 10:5 and Sz = 9: A European option with strike K = 11 and
maturity of two periods is considered. Hence, its payo®s at time two are
G12 = 0 ;G222 = 0:5 and Gz.» = 2: We consider that the rate of return
of the risk free asset is zero and a initial wealth of 500; i.e., y = 500: The
probability of occurrence of the " rst, second and third state of nature are,
respectively, given by 0:2, 0:3 and 0:5. Using pure arbitrage arguments we
g thgt the arbitrage-free range of variation for the value of the put options
is 1;4 : For each price within this range, the ~gures below show for a CRRA
utility function with a curvature © = 0:1; a) the demand and supply curves;
b) transacted amount of underlying asset; c) transacted amount of risk-free
asset, and d) the utility level attained for each di®erent price.

Y B U T
q D
25000 . 25000
20000 20000 |
% 15000 % 15000 |
\ﬁ \“ﬁ‘
105 115 - 1.25 - - : = Pd
i 1.05 1.15 N“‘*izi
-5000 k
R 200
J"
et 800
1.05 L1512 125 3
_-F""-- -:L m
a .\;
- L 600
+ 100000 5,
50 .
;. -150000 N &
w0y y
-200000 S "
1.05 115 ™=t 125

Figure 6: The optimum number of units of the derivative, number of shares,
amount invested in the risk free asset and the the value of the utility for
di®erent values of the price of the derivative are presented.
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Figure 7: Individual demand and supply of the derivative in the same graph.
For prices above 1:18 the agent is selling the derivative. However, if the price
is below that threshold the agent is buying the derivative.

This last gure is obtained by inverting the rst graph above and illus-
trates the individual demand and supply of the derivative. For prices above
1:18 the agent is selling (g < 0) the derivative. However, if the price is below
that threshold, the agent is buying the derivative (q < 0). Finally, a CARA
utility function would present the same basic features of the curves above.

3 Market-Makers

In the previous section we presented the optimization problem of illiquid
traders and derive the demand and supply of derivatives as a function of
exogenous endowments. In this section we present the problem faced by
market-makers, given the demand and supply functions for derivatives. In
fact, the optimal strategy of a nancial institution transacting such contracts
depends on wether there are competitors or not. First, we are going to
consider a monopolistic market-maker, Then, we allow competition between
market-makers?. Given optimal prices and quantities the market-maker(s)
must also choose an hedging strategy, constituted of stocks and bonds.

®One important features of exchanges trading options is the use of specialits by the
American Stock Exchange in place of competing market-makers on the Chicago Board
Options Exchange. The option specialist has access to a greater amount of information
than other traders and, therefore, can mantain a monopolistic position. For instance,
on many exchanges, only the specialist has information about the orders at the opening
of the market. The access to this information allows him to extract some monopolistic
pro ts. In contrast, at the CBOE each market-maker is required to compete with others
market-makers. CBOE requires that each transaction be executed at the highest bid and
lowest ask prices emerging from the group of market-makers participating in the process.
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3.1 Monopolistic Market-Maker

The monopolist market-maker's problem consists of choosing the bid and
ask prices, together with a hedging strategy, so as to maximize his or her
expected utility. Equivalently, the problem can also be solved choosing the
optimal quantities to transact (sell and buy) and the optimal hedging strate-
gies. This equivalence follows from the assumption that the monopolistic
market-maker must satisfy all market demand and supply at the ask and
bid prices that he sets. Let Qa(Qg) be the number of European derivatives
that the market-maker is selling (buying), ¢ be the number of shares and
B be the amount invested in the risk-free asset. In what follows we allow
the optimal quantity sold (Qa) by the market-maker to be di®erent from
the optimal quantity bought (Qg).
If the market-maker is risk neutral he faces the following problem.

X £ . . . 2 o
max ~E[M]=  p; QBG; i QG+ ¢S, + RB

B:QAI¢; i1
subject to
CSp+ B i QaP4(Qa) + QePs (QB) - ¥ (12)
QeGh 1 QaGL+¢Si+R?B _0 ; i=1;23 and  (13)
Qe .0Qa.0 (14)

Several assumptions concerning the market demand and supply are made.
Assumption 1: The supply and the demand functions are, respectively,
increasing and decreasing in the transacted quantities,

dPs (QB)

> 0
dQs

dPy (Qa) _ 0:
dQa '

Assumption 2: The function
X g . ¢ P ¢ P ¢ o
P Qs 'Ghi R?P(Qr) i Qa'Ghi R?%Py(Qa) +¢'ShiR?S, +RYy
i=1

is concave in Qa; Qg and ¢1°.

These rules induce a strong competition between market-makers.

105ee appendix C.4 for details on this assumption. This function is simply the objective
function of the monopolist, incorporating the "rst restriction, shown later to be always
binding.
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Just for notation let X5 ~ X5=R?: Also, let the sets K and Bk (Qa; Qs; ¢; B)
be de ned as follows.

A |
C < i ¢)
K~ m:sign  pisiiS =isign S iSo :
i=1
and

8

< (Qa:Qp; ¢;B): €Sp +B +QaPy(Qa) i QePs(QB) =V;
Bk (Qa; Qg;¢;B) = _ QeG5 i QaGh+ ¢S} +R?B _ 0;i & k and

- QG j QaGk+ ¢Sk +R2B =0

For simplicity of notation let us introduce the constant

P?, 0idh i S
3/4k - ji=1 Mi©o2 1 20,
k - S !
2 1 20
the function of Q1
P )
o Thp@ e
© (Q) - k . dOP(Q)]
2 1 dQ
and the value ~
oy _ d[QP (Q)]-
2=
dQ QD

The existence of the bid-ask spread is characterized in the following
theorem.

Theorem 9 (Equilibrium Condition) Under assumptions 1 and 2, and
in the presence of a risk-neutral monopolist market-maker, a suzcient con-
dition for the existence of an equilibrium with strictly positive quantities
fQpg; QAQg; is characterized by Q) and Qg satisfying either
©(Qp) = O (Qu) = %X (15)
with (Qa; Qp; ¢";B") 2 Bk (Qa;Qs; ¢;B) and k 2 K or
8 P, ) £ o h i
2 L EamCh i (QB) i G5 (QR) iy G i (@) =0
- o} R
= PG i QM) § .k GE i 2RA) 1.y G i Q) =0
= P . Ea, o j
= LS iSod .k SKiSo i. ShiSo =0
(16)

Note that, if we consider the market supply, © is evaluated at Q = Qg. Alternatively,
if we consider the market demand, © is evaluated at Q = Qa:
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with .k < 0; ,j < 0; k & J with at least one of k and j in K and
(Qa; Qg; €7, B") 2 Bk (Qa;QB; ¢;B) \ Bj (Qa;Qs; ¢; B): Moreover, we
can assure that the above conditions are also su=cient to generate a bid-ask
spread, i.e., Pa (Qa) > Ps (Q):

Proof. Taking into account that, at the optimum, €Sg +B + QaPy i
QgPs =y, the problem of the monopolistic risk-neutral market-maker can
be rewritten as

X o £, o £, o i a ¢
omax - pi Qs GLiPs(Qe) iQa G iPaQa) +¢ ShiSo +y
A=

a

subject to
£.. g £.. o ia: ¢
iQs & iPs(Qe) +Qa GLiPy(Qa) i €' iSo iy-0
fori=1;2and 3 and

Qs . 0;Qa . O

Since the objective function is quasiconcave and the constraint set is con-
vex’?, we can assure®® the existence of a solution for the problem. Moreover,
we can assure* that the solution of the problem is given by the Kuhn-Tucker
solutions, provided that all the constraints that hold in equality are inde-
pendent.

The Lagrangean of the problem is given by

X o £, o £ .. o i ¢ a
L= p Qs & iPs(Qe) iQa & iPs(Qa) +¢'& Sy +RYy
i=1
X e £y . £ LD PR
i .i QB &5 iPs(QB) iQa GhiPg(Qa) +¢ S Sy +RYy
i=1
The st order Kuhn-Tucker conditions are
&= -0 Q8.0 FQs=0

= Woa -0 Qa .0 dQAQA:0

-d.o -0 Ei=o0

1235ee appendix C.4.
135ee theorem MK4, in Mas-Colell et al. (1995), page 962.
14and once again using a theorem of Mas-Colell et al. (1995), theorem MK2, page 959,
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for i = 1; 2 and 3: If the solution is characterized by QZ >0 and Q‘é > 0,
the rst order conditions at the optimum are

8 P, £ o £
Q =0 < p'—lpl é 2(QB)y i p|—1,|£é‘ (QB) =0
ﬁ: > p|—1p|£ b i [(QA};I |£:1:- Ghi 2(Qa) =0
de

=P ShiSo i yep.i éiSo—O

Notice that it is not possible to have all _; <0;i =1;2; 3 at the optimal
point characterizing the solution. If _; <O0; | = 1,2; 3, all constraints would
be binding and the value of the objectlve function Wow be zgro. Morgover,
it is not possible to have all _; =0;i =1, 2; 3; unless —1 pi S5 iSy =0.
Hence, either there is only one value of i such that _; = O; or there is only
one value of i such that _j <0. In the latter case, the rst order conditions
presented above result in equation (15) with _x = %X <0 k 2 K: In the
former case, the rst order conditions lead to equation (16).

The result of existence of a bid-ask spread under the above conditions is
discussed in appendix E.

In what follows, we present a necessary and suzcient condition in order
to have equation (15) ful lled. Notice that

P .
i3=1 pié'z i Py

C]5'§i|f’\d

> and € (Qa =0) =

e Qs =0) = —=L2

where Ps and Py are the supply and demand reservation prices, respectively.

Corollary 10 A necessary and suzcient condition to have equation (15)
satis ed is that there are reservation prices Py and Ps such that

OK(Qa=0) - %X - K Qs=0)<0 (Case 1)
it 7%, &k i & - 0 and
0>0%(Qa =0) _ %K _ ©(Qg =0) (Case 11)

. P3 i K .- .
if 7 piGh i G5 . 0: Moreover, necessary conditions to have equations
(Case 1) and (Case Il) satis ed are

x
piGh <Py - Ps <Gk (Case 1)

i=1

X
piGh > Py . Ps >Gk: (Case 1)

i=1
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Proof. In order to study the behaviour of the function ©% (Q) we take
the derivative

dZ[QP(g)]hps éi - éki
dok(Q) _ ~ d@? i=1PiG2 167

d0 = ”ék-d o T
217740

de[OESSéB(QR)] and dZ[OgPdZA(OA)]
Therefore, we identify the regions where © (Qg) is decreasing in Qg; and
©K (Qa) is increasing in Qa;

The sign o is well de ned by assumption 2.

e - - -
PopGhicdk o] 3 o pGhidk-o0
dok(Qp) 0 -0
dOp =
dox(0a)
dOa -0 .0

p. Equation (15) reads © (Qa) = © (Qg) = %*: Now consider the case
i1 piGh i G5 0:In that region ©F (Qa) = € (Qg) D & (Qa=0) .
©K(Qg =0); and the full equation (15) is satis ed i®

oK(Qa=0) . % _ Qs =0):

As ©% (Q = 0) is an increasing function on P; then Py _ Ps:
In what follows we present the relation between Py; Ps; o, pi&h and
K at the optimum of the monopolistic market-maker.

Suppose that Py and Ps belong to the arbitrage-free range of variation
for the value of gd-uropean derivative. It is not possible to have both
By and Ps above o, piBh or below &; otherwise €K (Qa =0) > 0 and
©K(Qg =0) > 0; whigh, is incompatible with %* 5 0: Moreover, it is not
possible to have By >~ 3 pi3) and &5 <Ps < - 2 p&; because from
theorem (6) we know that >, pi&h 2 PPy : Finally, the situation

where Ps < G is also not possible because in that case ©%(Qg =0) > 0;
contradicting the fact that %% _ ©K(Qg =0) and %X - 0. Hence, the case
that remains is

X
piélz = I:(’\d - r"}s >é|2(:

i=1

- - P3 i k —
Proceeding in the same way for the case >, piGh j G5 - 0 we “nd out
that

X
piéiz <Ps - Pg< éléi

i=1
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There are two important remarks regarding the equilibrium condition
above. First, in order to have an equilibrium bid-ask spread, we must as-
sure that By > Ps: Hence, the risk aversion characterizing each represen-
tative agent of the demand side has to be di®erent from the risk aversion
characterizing each representative agent of the supply side; second, in equi-
librium the market-maker gains in one side of the market but loses in the
other side of the market.

We illustrate the second point as follows. Consider case Il presented
above. In equilibrium, the market-maker gains, in terrps of expected pro t,
with the bought units of the derivative (because Ps < i3=1 piéiﬁ, but loses
in terms of expected pro t, with the sold units (because Py < f’=1 piGh).
The interpretation of this equilibrium results from the fact that (i) in equi-
librium, at least one of the wealth constraints is binding and (ii) the interval
de ned by the the demand and supply reserva‘t;ipn prices does not contain
the expected value of the derivative's payo®, ?zlpié'z. The intuition is
as follows. The latter fact implies that a market-maker in both sides of the
market (selling and buying the derivative) has necesarily positive utility on
one side, and negative expected utility on the other side. A market-maker
may thus choose to be only on the side of the market that provides a pos-
itive expected utility. However, in order to maximize the expected utility,
the market-maker may nd an incentive to enter on the other side of the
market, just to relax the binding restrictions. This would happen only if
the resulting negative expected utility would be more than compensated by
the improvement of the positive expected utility on the other side of the
market. Our result re®ects the fact that a bid-ask spread exists only when
the market-maker faces one such incentive.

3.2 Competition Between Market-Makers

In this section, our model is extended to consider the presence of several
market-makers. In an oligopoly, the payo®s for one market-maker depends
on its own actions, as well as on the actions of the other market-makers.
The strategic interactions between the market-makers will determine the
equilibrium.

Here, individual market-makers simultaneously determine their bid and
ask prices, the number of shares and the amount invested in the risk-free
asset, behaving in their own interest in an noncooperative game. The objec-
tive is to compute the Nash equilibrium of this game. A Nash equilibrium
in prices is a vector of prices such that each market-maker maximizes its
expected payo®s given the other market-maker{s decisions.

Let M be the number of market-makers in this market. Market-maker
I; 1 = 1;::;M; has expected utility Ui (Pi.d; Pi:s; Pii:d; Piis; €i; € ;i) ; where
Pi.d, Pi;s and &; are, respectively, the ask price, the bid price and the num-
ber of units of the underlying asset hold by market-maker i: The values
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P;id;Pjiis and €;j correspond to the components of the vector of the
analogous variables relative to the remaining M j 1 market-makers, i.e.,

.....

pected pro t, given by

. 5. . . o X i . i oo2p ¢

1j (Pi:d; Pjsi Pijids Pijss €j; €4j5) = L QiB (Pis;Pijis) Gy i RPjs
i~ 2p. b I:ili 2 b oo

i Qj:a(Pjiai Pija) Gy i R°Pjg + ¢ S; i R°Sp +R%y

o}

For given prices, the optimal amount transacted solve the problem

Ui (Pj:a: Piisi Pijias Pidis) = Max 2 (Pyai Piisi Pijiai Pigist @5 € )
f]

leading to an optimal amount ¢§ = &;j (Pj.q; Pj:s; P ;j.4; Pij;s) and charac-
terizing the expected utility function to be maximized on prices. In fact, for
that given amount €%, prices are set optimally as the solution of

max Ui (Pj.q; PjisiPijidi Pijis)
Pj;s,Pj;d

subject to

i ¢
0 - QjB (Pjs:Pijs) _Glz i RZF)j;s i ) ¢
Qj:A (Pj;ai P jia) IGIz i R°Pjq + ¢ lSé i RS +R?;

for i = 1;2;3; and where Qj.z (Pj:s; Pij:s) and Qj:a (Pj.d; P jj:d) are, respec-
tively, the demand and supply functions faced by rm j:

Financial products are generally accepted as being homogeneous goods!®.
As a consequence, options traded be di®erent intermediaries are perfect sub-
stitutes in the investor’s utility function, and investors will transact with the
intermediary setting the best price. The point is that in ~nancial markets the
best quotes can be easily found. In particular, automated trading systems
facilitate the disclosure of the best price. Hence, the homogeneous good as-
sumption gives rise to discontinuity of the demand and supply curves. Typi-
cally, market-maker j is viewed as facing the demand curve Qj.a (Pj.a; P jj:d):
which is a function of the ask-price that all market-makers quote. Supposing
that Pi.q = Pyyq; forall i;k & J,

8 .

< Aa(Pj:d;Pid) ; if Pjg >Pjq; foralli
Qjia(Piai Piji) = _ % Qa(Pia) 5 ifPja=Pig; foralli ; (17)

© Qa(Pja) ; if Pj.g <Pigq; for all i:

5There are, however, some exceptions to this view. Menyah and Paudyal (2000) argue
that the \order °ow on the LSE like Nasdag does not necessarily go to the dealer with
the most competitive quotes because of preferencing and internalisation by brokers™. In
such a case, orders may be satis ed by market-makers not posting the best quoted prices.
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Q
where A (Pj.d; Pi;d) 2 £O;QA(Pj;d) i M Qa (Pia)

The last line re“ects the fact that, if market-maker j quotes a lower price
than the competitors, he will face all the market demand. The second line is
trivially equivalent to a fair ratio among the market-makers. The " rst line,
however, is more subtle. If market-maker j quotes a higher price than his
competitors, several situations are possible. As the competitors of market-
maker j have wealth constraints, it may happen that they are not able to
sell additional units at the lower price to former customers of market-maker
j. In that case Qja (Pja;P;j:a) = Qa(Pja) i M Qa (Pig): However, it
also may be possible that, even having binding constraints!®, competitors
are able to sell additional units to former customers of market-maker j: In
this case, the demand faced by market-maker j when he quotes a higher
price will be zero, i.e., Qj.a (Pj.a; P;j.a) = 0: An intermediary solution is
also possible, where the competitors are not able to sell for all the former
customers of market-maker j. Hence, we can conclude that when market-
maker g sets a price above his competitors, his demand will belong to the
range 0;Qa (Pj.a) i 34 Qa(Pi:) : Figure 8 illustrates this discontinuity
in the market demand.

Pd“ Pdu

W

P_Jd

> >
>

Qn QuP)/M Q,

Figure 8: The market demand and the demand faced by market-maker j;
for the case where the wealth restrictions of the competitors do not allow to
sell the derivative to any of his former customers.

On the other hand, market-maker j is viewed as facing the following

16 e i H P?: il - 2 Kk - 2 . H F
This is the case if ;_,p'G; j R“Pij,g <0and G; j R°Pj,q < 0; where Kk identi es
the binding restriction.
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supply curve
8 H -
< Qs (Pj;s) ; if Pj.s > Pis; for all i
Qi:s (PisiPijis) = AﬁQB (Pj:s) ; if Pjis =Pis; forall i (18)
© Ag (Pjs; Pis) ; if Pj:s <Pis; for all i

- £ ] o _
where Ag (Pjs; Pis) 2 0; Qg (Pj:s) i 41 Qg (P;j:s) : See Figure 9 for an
illustration.

Ps 4 Ps 4

v
4

Q Q:(PM 9,

Figure 9: The market supply and the supply faced by market-maker j; for
the case where the wealth restrictions of the competitors do not allow to
buy the derivative to any of his former suppliers.

3 -

De nition 11 A vector of ask and bid prices (Py; Ps; €°) = P Pis; ¢

Ui lPi?d; Pisi Plia P:i;sdi = Ui (Pid; Piis; Pjica; Piss) :

In other words, a set of prices is a Nash equilibrium if market-makers
have no incentive to set di®erent prices to obtain higher utility.

The equilibrium result known as Bertrand Paradox establishes that price
competition between two or more identical rms with no constraints leads
to price equal to marginal cost, and rms make no pro t. As market-makers
are perfect competitors in prices, it is usual in the literature to accept that
market-makers earn zero pro ts. However, that is not the case here, since
there are positive wealth constraints. Hence, we must investigate further
the existence of a pure Nash equilibrium of this game.

For each rm j we de ne two reaction functions as the optimal prices
(demand and supply) as a function of the prices quoted by other rms,

Pj?s = s (PijsiPiai Pijia) s
Pj[;]d = "jd (PijaiPisi Pijis):
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The symmetric Nash equilibrium of the game is the set of prices that solve
the following system
8

3 -
< Pj[;]s_ is P.Js’Pjn-d?P?j-df ; 8j2fl1:1 Mg
© PRa=ie PhiaiPRPlis 812l Mg

Theorem 12 Under the assumptions of the madel, if all market-makers are
risk-neutral, there is no pure symmetric Nash equilibrium of the game.

Proof. Let (P§;Pg) be an equilibrium' candidate. We prove that there
is always a pro table deviation and therefore (P§; Ps) cannot be an equi-
librium. The proof examines the case of zero, one, two or all binding con-
straints.

If no alth constram& is binding, a pro table deviation is easily iden-
ti ed. If . 1 Pi i So > 0(<0) each market-maker could increase the
expected pro t by increasing (decreasing) &: Therefore, in order to elimi-
nate all the deviations concerning ¢ we must analyze the cases with one,
two or three binding constraints.

A solution with three binding constraints would not be an equilibrium of
the game. In that case, the expected pro t would be zero and a pro table
deviation would be, for instance, Py = Py, Py = P and ¢ = 0; with an
expected pro t of R2y:

Now let us turn to the morelgpmplex case of gne binding constraint (say,
constraint k). On one hand, |f -_1 Pi §2 i So > 0 the constraint that is
binding is the one such that S5 j Sp < 0; because if that is not the case that
would be possible tochrease utlllty ¢ncreasing ¢: On the other hand; for
the same reasons, if ~ ;_; pi § i So <0 the constraint that is binding is
the one such that Sk j So > 0:

In order to check for all the pro table deviations for market-maker j as-
sume that all other market-makers are playing the hypothetical equilibrium.
If market-maker j decides to slightly increase the price that he is charging
to the demand (Pj.4); and if the wealth constraints of his competitors do
not allow them to sell more units of the derivative, then the impact in the
expected pro tis

3 .
@Qja PyaiPljg N><s . . I i ¢
i @F:j;d » _, PGh i Pg +Qja PpaiPlye ¢ (19)

However, if the market-maker j decides to decrease Pj,q , he will face all the
market demand. Hence, the impact in the expected pro tis
hX3 - ¢i
i i I a " .
idg, PG PRai (20)

where dq;., denotes the variation in the quantity sold by rm j: Note that,
and ignoring the positivity constraints of wealth at time T = 2; in order
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to be pro table to slightly increase the price, we must assure that equation
(19) is positive. Moreover, it would be pro table to slightly decrease the
price, increasing the quantity sold, if equation (20) is positive.
Additionally, we must take care of the wealth constraints. As already
mentioned, because the expected pro t and the wealth constraints are lin-
ear in the quantity of stocks bought/sold (€); at least one of the wealth
constraints is binding. Let this constraint be denoted by k: In an analogous
way to the case just described of the expected pro t, if the market-maker
decides to slightly increase the price that he is charging to the demand (P;.q)
then the impact in the wealth constraint that is binding is
3 -
@Q';A I:";d;P?'- h i i
i - @PJ- e G5 i Pia +Qja |F’j;d; P?j;d¢i (21)
Jd

However, if the market-maker j decides to slightly decrease Pj.q, he will face
all the market demand. Hence, the impact in the wealth constraint that is
binding is

idya G i Plgi" (22)

where dg;., denotes the variation in the quantity sold by rm j, as before.
All the possibilities concerning the sign of equations (19), (20), (21) and
(22) are presented in the next table.

Eq. (19) | Eq. (20) | Eq. (21) | Eq. (22)
Case | -0 >0 -0 >0
Case |1 -0 >0 >0 >0
Case |11 -0 >0 >0 <0
Case IV -0 >0 >0 =0
Case V >0 .0 >0 .0
Case VI >0 .0 >0 -0
Case VII [ >0 >0 -0 >0
Case VIII | =0 = -0 >0
Case IX > 0 -0 >0 .0
Case X >0 -0 >0 -0
Case XI >0 <0 <0 >0
Case XIlI [ >0 <0 =0 >0

If cases | and Il were considered the market-maker j could slightly de-
crease the price that he is charging, increasing the quantity that he is selling,
which would result in an increase of the expected value of the wealth. In
case 11 the market-maker can nd a pro table deviation by changing P;.q
and ¢j. See appendix F. In case IV, if market-maker j decides to increase
the price the quantity demand will be zero. The reason is that as equa-
tion (20) and equation (22) are nonnegative the other market-makers can
increase their expected wealth by selling to the investors that used to buy
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from market-maker j: Hence, we can not nd a pro table deviation changing
Pj:.a: In what follows we wiﬂ,_nd a pro table equilibrium changing Pj;s: We
begin by noticing that, as f’zl &',é'z does not belong to the interval de ned
by the reservation price, then ?:1 p'é'z does not belong to the interval
de ned P;js poid Pjjq; with Pyja > P ja: Hengs, the situation described
in this case, i, p'Gh < P;ja = Gk; implies &, piGh < P;js - Gk
Notice that the impact of decreasing the price Pj.s in the expected wealth is
8 3 - S)
) <0Qj:z Pj:s; ?j;s h>< 1

' @Pj:s

i , ¢
i Qi PisiPjjis - >0

3 .
i—1 'S} § Pjis

Moreover, the impact on the constraint is

8@ 3 A i o

<@Qij.g Pj.P%.. i - =

B s s i s ©
i - él2< i Pis iQjB Pj;s;Pij;s .20
- @PJ;S >

If the impact on the constraint is positive a pro table deviation for market-
maker j is slightly decrease the price Pj.s: However, if that is not the case it
is possible to  nd a pro table deviation changing Pj:s and €;. See appendix
F.

Case V is analogous to case IV. In what concerns cases VI, IX and X,
the market-maker j must increase the price that he is charging, decreasing
the quantity that he is selling and increase the expected value of the wealth.
Case VIl is equal to case | and Il. Case VIII is not an ad'ggissible possibil-
ity because by equation (19) and (21) we conclugg that 3 Pl > &k,
whether by equations (20) and (22) we conclude = 3, p'&} < &; that is a
contradiction. The remaining cases are presented in the appendix.

Another possibility is that there is two constraints binding. Let them be
denoted by m and n: In appendix F, all the possibilities concerning the re-
lation between Pg; Ps, ég and G1; are presented in Figure 10. Futhermore,
a pro table deviation for each case is identi ed.

Hence, if price competition between market-makers is introduced in our
model, there would not exist a pure and symmetric Nash Equilibrium of the
game.

4 Conclusion

In this paper we have considered a simple economy where markets are in-
complete due to the inexistence of transactions of the underlying at some
points in time.

Although our two-period economy may be seen as simple, our main con-
tributions are quite robust since they do not depend on the type of utility
functions considered. They may be summarized as follows.
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First, we have characterized the investment decisions in the risky assets,
when the derivative is fairly priced.

Second, we nd that if the fair price is in the no-arbitrage region, then it
is either above the reservation ask price or below the reservation bid price.
The implication is that, for a risk-neutral, monopolistic market-maker to
transact in both sides of the market, a loss in one side is necessary to justify
the gain in the other side.

Third, suzcient conditions for an equilibrium to exist under a risk-
neutral, monopolistic market-maker are presented.

Finally and interestingly, the imperfection considered here (dry markets)
su=ces to provide conditions assuring the existence of a bid-ask spread under
a monopolistic market-maker, although one such equilibrium can be shown
not to exist when competition in prices is introduced.

Furthermore, for some speci ¢ and standard utility functions we can
show several additional results.

First, demand and supply curves have the desired behaviour.

Second, the reservation prices do not depend on the agents' initial wealth
level.

Third, the reservation prices may depend on the agents' risk aversion. In
the case of a CARA utility function the reservation price does not depend on
the absolute risk aversion coezcient. However, in the case of a CRRA utility
function, the reservation price does depend on the relative risk aversion
coe=cient.
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A Some Proofs on the Demand

Individual Demand: Second Order Conditions

In this appendix we present the second order conditions of the problem
presented in section 2.1 and show that, using the concavity of the utility
function, they are always respected. The second order conditions are:
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Proof of Proposition 2

Let F (qq; ¢;Py) and G (qq; ¢; P4) denote the rst order conditions, for a

positive gq; of the problem that must be solved to nd the market demand,
i.e.,

i ¢ i .¢C
pi'sh i R%So U 'wj
i=1

F (qa; €; Pq)

G Qg ;Pg) = p''G) i R%Py U wh
i=1
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Using the implicit function theorem we know
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As, using the second order conditions, we have
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the sign of g—,";‘s depends on the sign of the numerator.

B Some Proofs on the Supply

Individual Supply: Second Order Conditions
In this appendix we present the second order conditions of the problem
presented in section 2.2 and show that, using the concavity of the utility
function, they are always respected. The second order conditions are:
8

Q2EUCY 0
2 oo
= 2 .
@’ENC) | g

@q2
g h iy
= @2E[UC)]@2E[UC)] - @2E[UQ)]
ac2 6g2 1 @qec,

>0

Using the same procedure as in appendix (A) we can conclude that the
second order conditions are always satis ed.
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Proof of Proposition 4

Let F (gs; €; Ps) and G (gs; ¢; Ps) denote the " rst order conditions, for a
positive gs; of the problem that must be solved to nd the market demand,
ie.,

X ¢ i ¢

. ilci . p2 ol i

F@s; €;Ps) = p S i RSy U wg
i=1

X . ¢ i .¢

il~i 2 ob i

G(@s; ¢;Ps) = pr Gy i RPs U™ wg
i=1

Using the implicit function theorem we know

d OF 0G . 0G 0F
O _ L 0Ps I ¢ @Ps
E 0G - OF 0G
dPS %TB@QS I@qs (L= . .
-P3 il i_RZS ¢2U00| I¢£
h 1 i'_—l% SZl PO . WS ¢ ¢i

P - o i
£ jR2 3 E}UO ng i R20s ?ﬁl P Gh i I?tZPS u” wi
+ T p Gbi R°Ps 'S} i RiSo £
£U" 'wi R2%gs ;;p' Sl iR%S U 'wi
SOCs®

P, i : Pt g
+qR2 o, p''S}iR2Sy 'Gh i R2Pg U Wi | oipt'Si
ooli

P S ¢ tP i
i 2,pShiR2So cU" wh 3 plGhiR%Py U

S Lt P, it
R2' 2 pi'shiR2So 2U” Wi o 3 piu”

SOCS(I:;QS

where SOCE% s the second order condition. As SOCS® is always
positive the sign of g% depends on the sign of the numerator.

C Arbitrage bounds
The upper bound is given by
PY= gg;igo ¢S + Bo
subject to
¢oS) + R?By _ G}
withi=1; 2 and 3:

In the optimum two of the wealth constraints will be binding. Remember
that, by assumption, S3 > S3 > S3: Three possibilities must be considered.
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1. The constraints binding are the rst and the second. In that case the
solution would be given by

iG3+GS.
S$is:’

5 - (SIS

'7s2 i si R2
The third constraint will be respected if and only if

[ ¢ i ¢ [ ¢
Gi'S2iS} +G3's3ist iGgisiish -o:

¢y

If that is the case the upper bound will be given by
i ¢ i ¢
_G1'SZiR%S, jG3 S}i RS

pu 3
R2'S? j S}

2. The constraints binding are the rst and the third. In that case the
solution would be given by

¢, = iG3+Gj.
S;isy’
B, = 152G+ EiS)

'slisi R

The second constraint will be respected if and only if

i ¢ i ¢ i ¢
G;S5iS3 +G5S3iS; iG S7iS; .o

If that is the case the upper bound will be given by
i ¢ i ¢
_G3'S}iR%Sy iG) S3i RS
R2'sl j S3

Pu

3. The constraints binding are the second and the third. In that case the
solution would be given by

G342
¢ = —2—2I62 ('3:J ;
S5iS;
S3GZ i 382
By = jR2 %2 2.
S2 iS5 R?
The second constraint will be respected if and only if
i ¢ i ¢ i ¢
G; S5i1S3 +G53S3i1S; iGISiisS; -0
If that is the case the upper bound will be given by
i ¢ i ¢
_ G3'S2iR?Sy i G3'SEi RS

pu g
R2'S? j S3
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Note that if

[ ¢ [ ¢ i ¢
Gy S5isS +G3S3is; iGIsiis; .0

the upper bound will be the one described in situation 2. Howewer, if
i ¢ i ¢ i ¢
G; S5iS3 +G5S3iS iGEsSiisy -0

there are two possible solutions. The solution described in situation 1 has a
higher value than the one described in situation 3 if

i ¢ i ¢ i ¢ i ¢
G S}iR%Sq iG} S5iR% o G S3iRSy iG} 53iRSo
R2'S} j S2 - R2'S? j S3

i ¢ ¢ i ¢ ¢ i ¢ ¢
Gl 'S3iS3 'S5 iR?Sy +G2 S3iSt SZ2jR?S, jG3S2jisSt S?iR32sy

Hence, using the de nition

© i ¢ i ¢ i ¢ a
G* = %:G;isgisg +G’g‘is§iszl iegisgiszl¢,oa;
Gi = %:G;S5iS; +G5S3iS; iGy S5iS; -0 ;

a

©
H" = %:5 i RSy . 0
and
. ©
Hi = %:S5 RSy - 0

we can write the upper bound

pu— 2 2 i S3 i RSy
- R2's} i S3
2 1 92
if %2 G,
i ¢ i ¢
ou_ G3'S2i R?Sq i GF' 83 i R¥Sq
R2'S? j S3
if “2Gi\H* and
i ¢ i
PU_G% 822|RSQ iG% zliRZSo
- R2'S2 j SI

£



if%2Gi\HI:
The lower bound is given by

P! = max ¢oSo + By
€o;Bo

subject to
¢S+ R?By - G

withi=1; 2 and 3:
Proceeding in the same way we _nd out that

¢
- szl-sto i G} §2iR280
RZS iS3
if%2GH;
3ic2 - p2e b . ~2ics . p2e ¢
Pu:Gz S7i RSy iG5 55i RS0

R2'S3 j S§
if 42GT"\H* and

if%2G*T\Hi:

D Illustrations

D.1 Explicit Solution for the individual demand and supply
functions

A solution for the demand and supply of the derivative for a CARA and
a CRRA utility functions can be explicitly obtained. The procedure is the
following:

Ignoring that the fact that the investor is buying or selling the derivative,
the rst order conditions can be written as

B P, gsi i ¢ Py i
S i3=1FeZSsoU0|WI = i3=1p'UOIWI

= P, iGi i .¢ P; i ¢
i1V W= plUt W

If there is a nite solution for the maximization problem then

T (X
piU'wW ~A>0
i=1
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where w' is evaluated at the optimum values of ¢; q4=gs and B: Hence, the

~rst order conditions solve the following system

i ¢ i ¢ i ¢
This is a linear system in U"'w? : U"'w? and U®'w3" whose solution is

% UOI _Ap(sg553)+G3(sto.szz)ieg(RZSOisg)_l
= G3(S3iS3)+G3(S3iS3)iG3(S3iS3) M1

U’ |W2¢ _AP(sgisl)+el(R250.sg)iGg(RZSoiszl)_l
% ] 7 G3(S3is3)+G3(S5iS3)iGi(S3isy) P2
-y IWB = A

€ _ \P(Sii53)iGH(R2S0 1S9 +G3(R?80iS)
G1(s2159)+G3(53 1801 Gi(S15D) B3

Let
i ¢ i ¢ i 50
_F>sz-s3 +G3 RS i B, i G RS i P 1
v G182'S§ +G3'S3iSL iG3 S3i St ¢p1
_ P SZ-iSZ +n~G%IR2-SO|SZ3¢|G§|-R280 |§2 =
- 1 v T A T A g
? iG% S5i S +G3STish iGlSEist (m
P SiiS? iG) R2So i S%,+ G} R250.§2 1
T G2 s +GZS3-51.G 's2j Sl p3

and denote by [U? (:)] i be the inverse function of the marginal utility. Hence

i ¢ - n.
U''w = A1) W= Ul (AY)

. i . ¢ i ¢
Moreover, as w' = & 'Sl j R%Sy + R2y +q'Gl j R%P  the following

system is obtained

¢ -
Co. 'st i R2So,+q. 't i RPg i [U1(AY I = iRy
o 's? i R2Sqe+q.G3 i R i [V (A% = iRy

¢
¢
¢
&o'S3 i RS0’ +0 G%RZP i [U'(A)]"" = iR

(23)

The system presented above is a system of three equations and three vari-
ables (q; €o; A), with a unique solution for the CARA and CRRA utility
functions. First, we are going to consider the CARA utility functions and

then the CRRA utility functions.

¢ i
If a CARA utility is considered then uo! W' = j+ei*W: Therefore,

M T

. Al.
1

| E— In i 1

t

1
I+ =

u’ iwi¢ =AL D) w =£U°(A1-)
1 1
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Hence, system (23) can be written as

i ¢ ¢
Co'SLiR2%Sy +q'GLiR%P +1in_j&h = iRy

¢ L
Co 'S5 i RZSO¢+qu’§ i R%P +iingife = iRy
€ 'S§i RS, +q'GIiR%P +1In &2 =Ry

Solving for g we obtain the individual demand/supply for the derivative,
i.e.,
i ¢ i ¢ i ¢
's2 i3 In1 + 'S i S |n$2+'s?1 i % In%s
Gl Sgis3 +G3'S3isl +G3'stjs?

q=i

+ =

i -q: 1 .q: - O
If the CRRA utility is considered then U’ IW' = IW' ' : Therefore,

0w = a1y 3 wi =0 (ary it = (any
|

Hence, system (23) becomes

i ¢
¢o iSzl i R?So, + iG% i RP (A" = i R%y
¢ iS% i R*So, +4 iG% i R%P i (A%)'" = i R%y
Co S5 iR?Sy +q G3iR?P j(Ar)'” = jR%
Solving for g
1 1 RS ¢
0= 1I I5215%"'1I ISzlsz "'1:; I321i53
R T ; T To
11"’ 5'52- R2S, 'G3 i RP + s i R%S; 'G} i R?P
v ¢ ¢ ¢ ¢o
+1," j'shjR%S, ‘G iR?P + 'S} iR’S 'GhjR?P
i-lE ¢i ¢ i ¢i ¢o
+11° 7 's2 1 R2Sy 'GL j R2P + 'Sl i R2Sy |G} i R2P

D.2 Properties of the individual demand and supply
D.2.1 CARA utlity functions

D.2.2 Property 1

For a CARA utility function the rst order conditions are given by:

8 . . .
> ID?:lpi IS; i R250¢eii[¢o;dsé+QdG'z] =0

= P_S 0 G R2p, eitl®ousi+aCi] _ g
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) i ¢ i ¢
In order to prove that g%s < 0 notice that, as U" wy = iU’ wy , we

have

1 - ¢ 1 ¢ X 1 ) ¢ - ¢
p'si iR, U”'wh =" pileliRPg UMW =0
i=1 i=1
Using proposition 2
N ¢ i ¢ P, i .0
Gag _ R? 3.0 ShiRPSo “UT whm }piUtwl

- OF G - OF 0G
@Pq 0¢Ggg ! Gug0C

<0

D.2.3 Property 2

For a CARA utility function the ~rst order conditions presented in equations
(6) can be written as

P, i ,.t O ¢
< j=i1P S i RS exp jz

g | ¢ i
Cos S2 i RZS0 +R2y i Q Ghi RZPS

'P3 iii- 2¢ ©-£ﬂi = 2¢ 2\ = ii- 2
i=1P' G, i RPs exp jt €55 S2 i RSy +RY jQ G} i RPs

o2

8P; ..ot O £ i |
< =P S;iRSo exp it €3S QG, =0

: P3G ’ ¢ © 5 i .
i1 P' G i RPs exp jt €y S;iQG, =0
Solving for the second equation for Pg
PS iri © o} i L
i1 P'Grexp _if €5..S) i QG).
23 i <4 @f < oGl
Re Lip'exp it €4S i QG)

Py =

i i i ;¢ P, i ¢ wi ¢
Not_i?e that u” 'wi = iU’ ‘Wi’ wehave 3 pi'siiR2S, U”'wi
> p'Gh i R?Pg U” 'wi =0: Using proposition 4
P; i ¢
6gs _ R2 3 p SliR%So°U
op; ! FeQ

P

wi ¢ P N
WIS a :igzlplu WIS

>0

D.2.4 Property 3

In order to prove that d—A'gﬁEdl - 0 notice that the rstand second conditions
of the optimization problem can be written in terms of @ =+¢ and j = +q;
eliminating + and g from the “rst and second order conditions. Hence, we
can only nd the optimal values of @ and j (&° and j°). The optimal values
of the number of shares bought/sold and the number of options bought/sold

is given by

¢ =

|+|rJ

o)
I
wh

¢to2

¢to2

0

0



D.2.5 Property 4

This property follows from the fact that zq is constant.

D.2.6 Property 5

Moreover, note that the rst and second conditions are independent of y:
Hence, the optimal values will also be independent of v:

D.2.7 CRRA utility functions

For a CRRA utility function the rst order conditions presented in equations
(3) can be written as

8 : o : i
P, i ¢ ¢ . ¢

3 3,p'SliR%sS, ¢2,'s, i R%S; +Ry+Q'Gh jR®Py; ' =0
2P, i ¢h ¢ i ¢l

= L 'GhiR%Py €3'S i R%So +RY+Q'GhiR%Py =0

For a CRRA utility function the " rst order conditions presented in equa-
tions (6) can be written as
8 p, .i. CE ¢ i ¢,
= 3,p'SiiR%S, €5.'S; iR?S; +R%Y iQ'GhiR%Ps ' =0

= Ps Goge

il CE i ¢ i
S pGLiR™Ps ¢fy iR +RYiQGLiR¥Ps ' =0

D.2.8 Property 1 and 2
See Section 2.4.

D.2.9 Property 3

The property is straightforward using the optimal quantity de ned in equa-
tion (11).

D.2.10 Property 4

Let the function A (P; °) be de ned as’

it itiao

. it ¢ ¢
AP)=21]"'S3§S3 +1,° 'S} isSi +1,° 'S3iSh

Note that each 1, is a function of P.
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Using the optimal quantity, de ned in equation (11), the reservation price
is the price P such that

3 -

A P;° =0: (24)

Using the implicit function theorem we have

0A(P:°)
® _ T
do leﬁ\;o)

@{5 3¢ 2 ¢ 3 l¢
1

iti ¢ iv i ¢ i%i i ¢
In (11) 1 S 82 +In (12) 1 82 82 + In(13) 1 Sy SZ .
; ¢ 2

11“'1'82 iS% 2"'12.“1'52 i523 2+1?:O|1ISZ ; S% 2

As the denominator of the second fraction is always positive we have to
check the sign of the numerator in order to de ne the sign of ﬁlf :

__1_ _’I.
Usmg equation (24) we can write 1, ~ as an weighted average of 1
and 1 , i.e.,
11'1' :S% i Sg’ .4+S§’i821 |'1'.
2 TSiis;t 'siis?

Morover, as p11; + p2L, + p3t3 = 1; we must have one of the following
situations:

, i <1,<1, 1. <1;1,>1 (case A)

L, >1,>1; , 1 >113<1: (case B)

Additionally, as In(:) is a concave function we have

S3isi, j Sl
(13) 2
P58 S3

In(*,) . In (11)
Hence,

idig ot i:1i1_3¢ ity ¢
In®*D* S iS; +In(TF)*, iS; +In(Tm))r; S5iS;

1 s3 S3iS57, it
. et isgists meo%};§+m@@5%;$ ]
i

-1
+In(3) 13" 's

S NN
.-I
SR
N

i i ¢ i i
=mawﬂ$1;ilﬂwa%w§%i%
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If case A is considered

||n$ ; 207 07 + ||n$1? isl -52¢ .1“’1 g7 >0
1 Loil 3 7 2 173 ;
s S I o At i AL S Il

' } e | | T 1

<0 >0 <0 >0 >0 >0
If case B is considered

PR T S et .2l it iR

ngll% S515; Lo + n%13% S; 155 it >0:
—{Z= {7z < —-1Z—- —

R L | L

>0 >0 >0 <0 >0 <0

resulting in

iz ¢ iz ¢ it ¢ .
In(1))1; " 'S3 iS5 +In()1,” S3iS3 +In(L)1;  S5iSy . O

E3

It follows that
A 1

. dP £ ¢ i ¢ i ¢o
sign -5 = isign G} S3iSS +G3S3isSl iG S3iS)

E Monopolistic Market Maker

Conditions on Assumption 2

A function ¥ : A ¥ R is concave if and only if for every x 2 A, the
Hessian matrix D2f () is negative semide nite. For the function considered,
the Hessian matrix is

2 proun . 3
!0
§ 0 LaPI(QM)] Z
dQa
0 0 0

Hence, this matrix negative semide nite if and only if QgPs (Qg) is a convex
function in Qg and QP4 (Qa) is a concave functionin Qp; i.e.,

d?[QgPs(Qe)] _ dPs(QB) @ZPS(QB)

0QZ  C dQs | 0@
d*[QaPa(Qn)] _ ,dPa (Qn) | @*Py (Qa) 0:
dQa dQa 0Q4 '

Proof of theorem 9

51



E.0.11 Convexity of the constraint set

In order to check for the convexity of the colnstraint set gonsider two possikje
elements of the constraint set. Let them be QL;Q%; ¢t and Q3%;Q%;¢? :
Then, for each constraint i = 1; 2 and 3 we have

i i . c¢ P i, e i ¢

iQL GLiR?Ps QfF +Qh GhiR?Py QL ¢! ShiR?Sy iR% -0
(25)

and

i i e¢ P i 0t i ¢

iQf GLiR?Ps Q3 +Q4 GhiR?Py Q4 €2 ShiR?Sy iR% -0
(26)

If the element

- ¢ - ¢
'Rk =" QL +(1i.)Q8:.Qh+(1i.)Q%. ¢ +(1j ) ¢?

respects the three constraints then the constraint set is convex. In order to
check for that characteristic of the constraint set, multiply equation (25) by
. and equation (26) by 1 j .: The following equation is obtained

03 Gl + S_Gi-¢3isi-RZS¢- 2
iQpG, +QAG; ¢ 2 o ;i Rey

iR%.QAPq Qf +(1i.)QAPg Q¢ +
+R? _QgPs Qp +(11.)Q&Ps Q¢ -0

As QaP4(Qp) is a concave function
R2! QhPs 'Qh; + (1 .)QhPs'Qhy, - RPQAPG QR
iR2'.QhPa'Qh +(1i.)QkPa' Q4 . iR?QAPa Q4 :
Moreover, as QgPs (Qg) is a convex function
Re" QP 'Ob" + (11 ) QBPs'0R” L REQEP, 13"
we have

£ . i 0o £ . i ¢ i ¢
iQ2 GLiR»Ps QF +QA GLiR?Py Q4 i¢® SiR%Sy jRY-0:

E.0.12 Existence of the Bid-Ask Spread

In what follows the proof of the second part of theorem 9, that concerns the
existence of a bid-ask spread if there is an equilibrium with strictly positive
quantities TQE; QA0 is presented.

First, consider the optimal condition expressed in equality (15) is con-
sidered. Then, the optimal condition expressed in equality (16) is also con-
sidered.
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In the case pesented in equations (15) the proof is done by contradic-
tion. Suppose that Py (Qa) - Ps(Qg): Consider equation (16). Three cases

must be considered concerning the relation between Py (QR); QZdLgQgZ),

Ps (Q3); QE%E—E) and GX. First, consider that G§ > Ps (Q‘,’g)+Q‘,‘3ﬂ;Q(i—%).
Using equation ?15), we obtain

& iPa@) i R ek ippiopa) s,
dQa dQs
. o x o
) Pa(QR) § ATIG A - B P (@) 1 O Tt
i=1 A i=1 Qe
o o] o] dP F o dPS E
P:(Q) 1 Pa(QR) - QAo § gl
As, by assumption 1,
o dP4 (Qa) . o dPs(Qp)
Qa dQa i Qs dQs <0

then,
Ps(Qg) i Pa(Qa) <O
contradicting Py (Qa) - Ps(Qg):

In the second case, consider that Py (Qa) < Ps (Qg) and P4(QRa) +
Ps(QB).

QZ% <Gk <Ps (Qp) + Qp—gos : From equation (15) we obtain
dPs (Q2 o o dPg (Q
ek i Pt ek ipy (i LR | @)
dQs dQa
X o X . i
ek i P @) 1 ST | T P () § r e
i=1 5 =1 Qn
o] o o] dPS E o] dP U
Pa(Qa) i Ps(Qg) . Qg d((Q(sB) i Qa ((ZIjQ(iA)
As, by assumption 1,
o] dPS (QHB) - o] de (QZ)
QB dQOg 1 QA dQa >0

then,
Pa(Qa) i Ps(Qg) =>0;

contradicting Pq (Qa) - Ps(Qg):
dPa(Q3).

At last, consider that G5 < Pq(QR) + Q4 do-~ In this case, from
equation(15) we obtain the same relation that is disaayed in equation (27),
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for the case Pq(Qa) < é‘; < Ps(Qg): Therefore, by contraction we prove
that for the tangency solution Py (Qa) > Ps(Qg):

Now, consider the optimal conditions expressed in equations (16). Sub-
tracting the second equation from the ~rst one we have

(Li.ki.p)EQa i =(Qp)]=0:
Asli .ki.j> 0 we mustassure 2(Q3) i &(Qg) = 0: Then, using
assumption 1, and noting that = (Q3) i &(Qg) = 0 is equivalent to

dPg (Qa) dPs (QB)
dQa dQs

+QB

Pa(QA) i Ps (Qg) = iQx

we have Py (Q3) i Ps (Qg) > 0:

F Competition Between Market-Makers

Proof of theorem (12)
Proof. Case Il
In this case we must consider two possible situations:
Situation 1:
i 3

La(PraP® 2h|:> L
“uallioP ! > i Pig +Qja Pja; Pjj;

\

“P; ... -
- - ?:é piSh § So-

0Qi:a(Pi:aiP3;. . . B K § B
i JA(@ij(;jd ) G5 i Pig +Qja Pj:d: P 2 15

1 @Pj;d i=1 )J,d

Deviation: Increase Pj,q and decrease ¢ if §'2< i So >0 or increase ¢

if Sk § Sp<0
_ Situation 2: ~
- h i 3 - - -
- _0Q5:a(PiaiP 1) P3 iAi - .po - . -
:.%“ﬂd— i£=1p'C15'2 i Pjd +Q?§;A PidiPija = = 2, piSl § SoC
z 0Q5.4(Pj.:P® o o -=" K i )
e 5 i Pig +Qia Py P i %

As -
- - h i 3 -
P o - - _0Qa(PiaiPiy) Ps o ai . ) .po
=3 pid) i Pygn T J @l;j;d =1 P2 i Pia +QJ;A Pidi P
&K s Py " . 0Q5:A(PLaP10) B o o

2 1 ( jd i ) - Z<VA T d éIZ( i Pj;d +Qj;A Pj;d;Pij;d
we have,

P T e T
- i3=1plél2 i Pia- - i°’=1pI 2 iSOE
X§ So
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Deviation: Decrease Pjq ¥ increase Qj.5 and increase & if SKiSo=>0o0r
decrease @ if Sk j So <0
Case IV
Notice that the impact of slightly decrease the price Pj.s in the expected
wealth is B
8@Q ) h i 2
<@Qig Pj<PZ.. > i - =
1B Tis T jjis 3 4 i . ¢
i. _ I i p'élz i Pj;S i Qj;B Pj;S;Pij;s - >0
- @PJ;S i=1 -

Moreover, the impact on the constraint is

8@Q ) h i 2
< i P" y P?- 1 . —
3:B TIs: T jjis i o ¢
i ] - ég i Pis iQjB Pj;s;Pij;s _ <0
- @Pj;s >
Moreover,
>

:::1 piéiz i Pj:s - 0and élé i Pjs. 0

Proceeding in an analogous way as in case Il1 we can nd a pro table devi-
ation changing Pj;s and €;.

Case XI

In this case two possibilities must be considered
_Situation 1: )
- P, . i 2 ooC -
. i1 P'6h i Pjg +%j;A Pig Pija - >:Pf’=1 p'Sh i So-
- £ o - SKiSo

G5 i Pia +Qia PiaiPfja

Deviation: Increase Pjy and increase € if 8K i So > 0 or decrease ¢y if
SKiSo<0
Situation 2:
i 3 -
iz1P'Gh i Pig +Qja PiaiPjjg

:Pg

=1 pléé i S

SK i So

£ o
G5 i Piw +Qja PigiPijg

Note that
3

-

0QjA PjdiPija h i i ¢
i Pia ' G5 i Pig +Qja PiaiPja <0 G5 jPjg <O0:
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As,

i 3

In this case we can check that

hp,
idQja = L piGh i Pia C

i i;d P
i OPj:q Ilpé2lpjd +QJA PJd,P.-;

T  8Qua(P Piia) Fak o
! QJ’ 2 17 LA zlpj;d +Qj;A Pj;daP

OPj;q ijd

hence, as X .
P, .1 - =
100 0@ i - P psis,
idQj.a GK i Pjd - X'i So

we have the following deviation

Deviation: Decrease Pj,q ¥ increase Qj., and decrease & if 8K iSo=>0
or increase € if 35 j Sy <O:

Case XllI

In this cage note that as

i @Qj;a Pj;d;P?j;d
! @Pj;d
case XI applies.
Now, consider the case when two constraints are binding. Let them be
constraint m and n: All the possibilities concerning the relation between Py;
Ps, G2 and GJ'; are presented in Figure 10.

If an agent decides to increase Ps or decrease Py, the positive alteration
in quantities must be such that
¢

dQ,B'é (P,s+") dQja Iézl(PJdi")(p,o
dQ,Bé Pis+") i dQja & i (Piai™ .0

The alteration in the utility is
3

¢
C]5i2<i(Pj;dl ) +Qja de,P jg <0

3 -

X3 s g X3 .
dQje PG i P+ idQa PG i(Pai™) >0

and is positive or equal to zero if
8

P A
dQiE « i P& (Prai”) . . Ps iai
8Qj ;80Q;. . Pio<' 3 pidh<P;
Qj:B;8Qj.A ; Pis i=1 P G2 < Pj.d

% dQi.p < EI 1péZI(Pd|)

Ps iAi
dQj;a r,lpézl(Pjs+) ! i=1pé2<Pj;s
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} } Case |
m

Ps Pd G2 G2
: } Case 11
—-n -_m
Ps G2 Ps G2
— } — Case 111
Gz PS Pd Gz
I : Case IV
P, G> G5 Py
| | Case V
—n ' —m
G2 P G2 Py
e —— : Case VI
G2 G2 Py Py

Figure 10: The possibilities concerning the relation between Py; Ps, é’z‘ and

am:

The constraints will be respected if
3 A

-~

3
dQje G5i Pis+" idQua G5iPai™ >0

8
dQ;. Si(Prai”) ) K
§ de;i = élz(i(P;;s"'") Pj;d i éz
<
8Q;.5;80Q;. © P <@k <P
1,BOKJA L B 2 Jd

% dQ;. G i(Piai) K < P.
B de;i < 62'2<i(|:);:s""') éz =< PJ;S
Now, for each case presented in Figure 10 a pro table deviation will be
presented.
Case |

In order to have the wealth constraints respected we must have
Ya Y
Qi _ oy 2 (Pia i) G i (Piai)
dQj: GP i (Pis+") GIi (Pis+"
Situation A:
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Situation B:

dQis i Pi. i P
0Qja X B § (Prs+") BT i (Pys+")

P .
dQjs _ P?:lp'éfz i Pjai"
dQj:a ?:1 piélz i (Pj;s +")

which is veri ed.
Case 11
In order to have the wealth constraints respected we must have

dQjs _ S (Pai™.
dQj:.a é? i Pjs+" .

Situation A:
In order to have an increase in utility

P,
dQj:s - ._,|_1p c152 i (Pjai'")

dQjia ~ 1, piB) i (Ps+"

.Hence, any deviation:

. D
0048 - oy it PG i Pioi ™). 68 i (Prai ®)
dQja '—1 piGh j (Pjs +™) 'GY g (Pjs +"
Situation B:

dQie _ G (Piai ™).
dQj:a é&“ i (Pjs+")

Situation C:
In order to have an increase in utility
Ps 4 "
dQie _ mi=t PG i (Pigi™
dQjia i PG i (Pis+ ")

.Hence, as

P .
P?zlp' 21 Pig i ) _ G iCPigi"
?’=1 piéiz i (Pis+") érzn i Pjs+")

any g 3'-3 such that

" Ps 4 "
S0 i (Pigi ) - Qi _ izl PGl i (Piai™
GP i (Pis+") dQja L pB i (Pjs+ ")
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will increase utility.
Case 11l
In order to have the wealth constraints respected we must have
G2 i Pi” _dQis S iCPiai™.
ég” i Pjis+"™) de;A ég i (Pj;s"'")-

It is easy to check that there is a non-empty set for g—gj'ﬂf
Situation A: '
In order to have an increase in utility
P,
dQj:s PG i (Piai ™

>h|

dQj;a PG i (Pis+ ")

.Hence, as

El—lp "G i (P i) (’1_-}5‘ i (Pjiai"
'—1pé‘2 i Pjs+") ég i (Pjs+")

any 3 QJ-E such that

))
'—1pé2 i (Pjiai™ - dQj.s - G i (Pjai™
S opdhi(Pis+™ dQja  GF i (Pis+")

:lJ'U

G i Piai™ _dQus _ G0 i(Piai™.
é&“ i (Pis+") dQja é? i Pjs+")

Situation C:
In order to have an increase in utility

P,
dQj;s < Pl—lp G i (Pjai")
dQj:a —1 p' éz i Pjs+"

.Hence, as

P,
i 2 P& i (P DI G i (Pai)
'—1pé i (Pj,s+") éZ i (Pj§5 +"

any g—gj'ﬂf such that
P, ..
i h._1 P'Gy i (Piai ")

G i Pia i - WQip Piai".
i(PjS+) -—1p' 2l(PjS+)

& i (Pis+")  dQja

< min ég
Gy
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will increase utility.

Case IV
Any p033|ble dQ will respect the wealth constraints. Hence, it is pos-

sibleto nd a deV|at|on that increases utility.
Case V
In order to have the wealth constraints respected we must have
dQjs _ &5 i (P i ™).
dQj.a G2 i (Pjs+"

Situation A:
In order to have an increase in utility

P .
dQje _ P‘?zl P'éfz i (Pjai™)
dQj;a i PG i (Pjs+7)

.Hence, as
P L
iz PG i Poi™) G2 (Pyoi
3 péLiPis+  GYi (P +)

N—

any g d—QJ—B such that

P L
oimiP'Gl i Pioi ) Qe _ &0 i (Piai ™)
i3=1 piélz i Pjs+" dQj:a é? i Pjs+")
Situation B:
dQis _ SHIGTE
- n - _ "
dQj:a éz i Pjs+")
Situation C:
In order to also have an increase in utility
<P, .. D
Qi _ i it PO i (Prai ™). 8 i (Pioi ¥)
dQsiA PGk (Ps+") G0 i (Pis+"
Case VI
In order to have the wealth constraints respected we must have
Yo Ya

dQjs D i(Piai™). G i (Pidi™
dQj:a =min Gl i (Pjs+") GI i (Pjs +"

Situation A:
In order to increase utility

_ Ps @i o (p. in
dQi:s > piztP S i (Pijgi™
dQj:a i3=1 pi&h j (Pjs+"
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hence, as

P, ... Y

= PG i (Po i i (P i i (P

"3 il s (Pig+ " G Pis+")' 81§ Pis+"

> piGh i (Pjs+ 2 i (Pjs 2 1 (Pjs

a deviation is
P. ... Y ¥,
=1 PGhi (Pra i) Qs _ o CRi (Pra i) G (Prait)

PG i (Pis+")  dQja &) i (Pjs+")' B j (Pjs+"

Situation B:
1/2 3/4

dQj.s TG i (Pjai ™ G i (Pai ™)

oy <™ T (Pret ) CF 1 (Prs )
Situation C:

(é” i i i@
Qi _ iy G20 Pidi ") .G i (Piai ™. ._,._1I0 i Pjai")
dQj.a Ghi (Pis+")' G i (Pjs+")’ 3 piGhi (Pjs+"

which is veri ed.
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