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Abstract

Diabetic Retinopathy is a pathology, asymptomatic in early stages, that is a conse-

quence of diabetes mellitus, a disease that affects millions of people worldwide. Specif-

ically on people with Diabetic Retinopathy, long periods of hyperglycemia lead to the

creation of very fragile blood vessels in the retina, or to the suppression of old ones,

leading to problems like hemorrhages or exudates, that may cause blindness.

Diabetic Retinopathy can be diagnosed with several devices, but these are mainly too

expensive and non-portable, not allowing the screening of a great part of the popula-

tion. This way, EyeFundusScope was created, being a smartphone based, non-mydriatic,

handheld and low-cost Embedded Retinal Imaging System. Image quality depends on the

system’s optical alignment and it should provide fundus images with a wide field-of-view.

A communication protocol for streaming video and capturing still fundus images,

from an UVC-Compliant Camera was developed, after a careful examination of the types

of cameras that could be integrated in the system. Such cameras can be placed meticu-

lously in the compact optical system, and suppress issues related to the different spec-

ifications of smartphone cameras, that often vary according to the manufacturers. An

approach for low level control of high resolution and low cost camera modules was also

evaluated.

With the system developed, the user can select Internal Fixation Point Actuators, that

are extremely important for this diagnosis, since they allow a fixed target for the patient

to fixate on, reducing image aberrations due to its eye movement and providing wider

field-of-view images.

In the future, the UVC-Compliant Camera and Internal Fixation Points Actuators

should be integrated on the current prototype, providing an accurate Diabetic Retinopa-

thy screening tool which can enhance the early treatment of the pathology to a greater

percentage of the population.

Keywords: Diabetic Retinopathy; Fundus Camera; UVC Compliant Cameras, Fixation

Targets; Mechanical Prototyping

ix





Resumo

A Retinopatia Diabética é uma patologia, inicialmente assintomática, consequência da

diabetes mellitus, que afeta milhões de pessoas em todo o mundo. Assim, longos períodos

de hiperglicemia levam à criação de estruturas frágeis na retina, originando problemas

como hemorragias ou exudatos, que podem levar à cegueira.

Os métodos de diagnóstico da Retinopatia Diabética existentes tendem a ser muito

dispendiosos e de não-portáteis, pelo que não abrangem toda a população. Assim, criou-se

o EyeFundusScope, um Retinógrafo de baixo custo constituído por um protótipo mecânico

acoplado ao smartphone, cujo objetivo é colmatar estas desvantagens.

A qualidade das imagens obtidas depende, em grande parte, do alinhamento ótico de

todas as componentes do sistema, sendo que este deve conseguir providenciar imagens

com um campo de visão extenso da retina.

Neste âmbito, foi efetuado um estudo cuidado dessas mesmas câmaras, para que

fosse criado um protocolo de comunicação para exibir vídeo aquando da aquisição de

imagens do fundo, através de uma câmara UVC. Este protocolo tem um papel importante

no alinhamento ótico do protótipo, uma vez que estas câmaras podem ser colocadas no

mesmo. Para além disso, estas podem suprimir problemas relacionados com as diferentes

especificações dos smartphones, que variam consoante o fabricante. O possível controlo

de alguns dos parâmetros destas câmaras também foi avaliado.

O protocolo criado permite ainda a interação do utilizador com Pontos de Fixação

Internos, que criam um ponto fixo que evita artefactos provenientes do movimento ocular

e aumenta o campo de visão para diagnóstico.

No futuro a câmara UVC e os Pontos de Fixação deverão ser integrados no protótipo

atual, para criar uma ferramenta de diagnóstico da Retinopatia Diabética precisa, que

permitirá o tratamento atempado da mesma a uma maior percentagem de população.

Palavras-Chave: Retinopatia Diabética; Retinógrafo; Câmaras UVC; Pontos de Fixa-

ção; Prototipagem mecânica
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1
Introduction

1.1 Contextualization

Diabetes mellitus is a disease that affects millions of people around the world, and that

may lead to complications such as Diabetic Retinopathy (DR), a pathology that affects the

retina in a cumulative way. Due to its asymptomatic nature, it is one of the main causes

of avoidable blindness at adult age [1].

In 2010, DR affected around 127 million people, and it is predicted that in 2030

this number will grow to 191 million people. It is also estimated that the number of

patients with a great probability of blindness will increase from 37 million (in 2010)

to 56 million in 2030, if prevention measures, such as a correct and early on diagnosis,

are not implemented meanwhile. The estimated values are based on factors such as the

increasing of elderly population and obesity cases resulting from incorrect eating and a

sedentary lifestyle [1].

The purpose of an effective screening program for diabetic retinopathy is to determine

who needs to be referred to an ophthalmologist for close follow-up, treatment and who

may simply be screened annually [2].

Currently there already exist a few diagnosis mediums for DR assessment, being the

most common:

• Ophthalmoscopes

• Table-top Fundus Cameras

• Handheld Fundus Cameras

Even though the most commonly used diagnosis method is through Table-Top, non-

mydriatic Fundus Cameras, these are very expensive and non-portable. This raises a big

1



CHAPTER 1. INTRODUCTION

problem in terms of making the diagnosis available for affordable to everyone, especially

in rural areas.

To aggravate the problem, there is also a great lack of ophthalmologists and diagno-

sis/treatment resources in these areas [1].

Thus, there is a great necessity for the creation of less expensive and portable medical

diagnosis devices, so that a larger number of the population has access to this solutions.

Despite the existence of such devices, in 2016 the British Diabetic Association, that sup-

ports the largest DR screening in the world and that evaluates new retinal cameras every

six months, stated that "As of May 2016 no handheld retinal cameras appear on their

approval list of 20 non-mydriatic retinal cameras for retinal screening".

It’s in this context that the work here presented gets relevance, with the goal of sup-

pressing some obstacles, such as optical alignment and camera characteristics issues, in

the scope of EyeFundusScope (EFS), a project developed by Fraunhofer Portugal Research,

for DR assessment.

1.2 Motivation

EFS is a Portable Imaging System, and its prototype consists in a handheld device, with a

smartphone support case. The handheld device includes an appropriated optical system,

integrating several lenses, and EFS Light Control, to allow the controlled illumination of

the Ocular Fundus, constituted by the fovea, optical disc, retina and macula.

The fundus image is captured by the smartphone camera. The image processing is

based on machine learning algorithms, that detect certain characteristics of the pathology,

like exudates or hemorrhages, due to the burst of capillaries and blood vessels [3].

Given the common obstacles presented by this type of acquisition, such as the smart-

phone cameras being in constant evolution by manufacturers and the need for a perfectly

aligned optical system, an approach for low level control of high resolution and low cost

camera modules should be investigated, as a substitute for the smartphone cameras.

Besides, for an accurate diagnosis, it’s required that the patient under examination

keeps it’s eye focused on a given point, to suppress eye movements that may blur the final

image. This points are also a good feature to capture different areas of the fundus, and

therefore provide a final image with wider Field of View (FOV). Thus Internal Fixation

Targets should also be integrated within the current EFS prototype.

1.3 Objectives

Given the aspects referred in the Motivation (Section 1.2), the main objectives of this

thesis are:

• Research the use of dedicated camera boards, to use in the prototype developed by

Fraunhofer.

2



1.4. OVERVIEW

• Evaluate the use of UVC compliant cameras, because they are natively supported

by most operative systems.

• Establish a communication protocol to allow the Android smartphone to control

the camera and to display a preview stream during capture.

• Investigate the possible control of a fundus illumination system simultaneously to

the image acquisition system, with the same Android application.

• Develop an approach for low level (highly parametrized) control of high resolution

and low cost camera modules.

• Define a protocol for data acquisition with actuators for internal fixation points.

Given the complexity and the range of camera solutions available in the market, the

use of dedicated camera boards and UVC-Compliant cameras must be evaluated, thus

selecting a camera that could be integrated in Fraunhofer EFS prototype.

In order to capture fundus images, the fundus of the retina needs to be perfectly

aligned with the device. Thus, the examiner has to hold the device with one hand, and

move it closest or further away from the patient’s eye, in order to center the ocular disc and

have a clear image of the macula and fovea. For this to be possible, it is required that a real-

time preview of the fundus is available on the smartphone’s screen while the application

is in use. This means that the capture of the image, as well as the adjustable parameters

must be done simultaneously to image capturing. As such, the fourth objective of this

thesis is, as mentioned, to establish a communication protocol between Android devices

and cameras modules, for the control and display of a video stream during capture.

The low level control of the high resolution camera modules is an important feature,

and this thesis should point out the possibility of such control, since the fundus images

obtained are taken in low-light environment conditions that many times require image

parameters to be adjusted.

Finally, user control of internal fixation point actuators should be added to the An-

droid application, to provide a wider FOV of the final image and to provide a fixation

target to minimize eye movements that may blur the final images.

1.4 Overview

This master thesis is divided in six main Chapters, organized for an easier understanding

of the themes studied in this thesis. In Chapter 1 the reasons that support the thesis

were presented, as well as the contextualization of the problem, that approaches the

high relevance of EyeFundusScope (EFS) for people with Diabetes Mellitus, and more

specifically, patients with Diabetic Retinopathy (DR). The Objectives were also defined

to set a starting point for this work.

3



CHAPTER 1. INTRODUCTION

The Chapter 2, referring the Theoretical Concepts, addresses the theory that supports

the Proposed Approach, including important concepts for handling and better under-

standing cameras’ functioning.

The available devices for DR assessment, including Table-Top and Handheld fundus

cameras are discussed in the Literature Review that constitutes Chapter 3.

Chapter 4 outlines the Approach followed, describing the development of Camer-

aApp, the Android application created in this work, for full control of UVC-Compliant

cameras, selected for integration in the EFS prototype after a thorough research, and

Internal Fixation Point Actuators.

In Chapter 5, the results obtained with the approach followed by this thesis will

be presented, and in Chapter 6 discussed and analyzed, in order to find what could be

concluded from the present work and what could be done to improve it in the future.

4
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2
Theoretical Concepts

2.1 Optics of the Human Eye

Since DR is a pathology that affects vision, some aspects about the eye’s anatomy must

be taken in account, namely the structures that constitute this organ. The human visual

system, as well as other vertebrates is constituted by three major components that work

together, the eyes, that capture light and turn it into stimulus that are transmitted to the

brain and processed by it, the visual path, that modifies and transmits those stimulus

since they are received by the eye until they reach the brain, and finally, the visual centers

of the brain, that interpret the information received so that they can form a reaction to it

[4].

Vision works based on the reflection and absorption of light, when it interacts with

the surface of an object, providing information about the presence/absence of those, as

well as its structure and composition [4].

When light propagates in Air, it has a velocity of 3.0E8 m/s, that represents a refractive

index of n=1, as stated by SI Unit Measurement system. This value depends on the

medium the light it is propagating in. When entering the eye through the Cornea, a layer

with only 0.5mm thickness, its refractive index is n=1.377. Then it reaches the anterior

chamber, with a lower refractive index, of n=1.336, and a thickness of 3.04mm, ending

at the Iris. This path, causes the light rays to get closer together, as it is seen in Figure 2.1

[5].

The Iris regulates the amount of light that enters the eye, since it’s a diaphragm of

variable diameter, which controls the numerical aperture and the radiance entering the

eye [5].

By then, a lens of variable shape and size changes its refractive power, so that the

eye can accommodate to an object a certain distance. Behind the lens, the light passes

5



CHAPTER 2. THEORETICAL CONCEPTS

through the vitreous humor and it’s received at the retina where the detection of light

takes place.

The Fovea, central area of the retina, is an important structure for DR detection, since

it’s the region where the light is most focused on when the eye is focused on a certain

object, therefore it is the portion of the retina that presents the best image detail. This

structure is a small gap inside the Macula, that by its end is a 4mm diameter yellow point,

next to the center of the posterior retina [6].

It’s through the Optical Disc that the central artery of the retina enters the eye, and the

central vein of the retina and the optical nerve exit, providing the connection to the brain.

The ramifications of this vessels spread around the surface of the retina. The optical disc

does not contain photo-receptor cells, reason why it is known as the blind spot of the eye

[6].

Figure 2.1: Fundus photograph of the right eye. It is possible to see the most relevant
structures of the retina. Adapted from [5].

The eye has three chambers (Figure 2.1), an anterior small chamber, mentioned before,

a posterior chamber and a vitreous chamber. The anterior chamber is located between the

cornea and the iris, and the posterior between the iris and the lens. Both of these contain

aqueous humor inside, to help maintain the intraocular pressure, which helps maintain

the approximately spherical form of the ocular globe [6].

It is normal to use an analogy between the filming camera and the human eye, since

both of them are optical structures, with the goal of capturing visual images resulting

from the interaction of light (namely through absorption, transmission and reflection)

with different materials. Both have a lens system and a variable aperture, which in the

eye is the pupil. In the cameras there is the film, where the image is formed, which in the

eye corresponds to the retina [6].

6



2.2. DIABETIC RETINOPATHY

2.2 Diabetic Retinopathy

Diabetes mellitus is a metabolic disease characterized by hyperglycemia, which results

from a flaw in the production of insulin and/or its non-actuation, even if it is produced.

If this flaw is not controlled, hyperglycemia may lead to the bad functioning of several

organs, specially the eyes, kidneys, nerves and blood vessels. In extreme cases it can lead

to the total failure of one or more of this organs [7].

Individuals diagnosed with Diabetes mellitus may develop a complication derived

from this disease, that is known as Diabetic Retinopathy (DR). This pathology begins for

being asymptomatic, that causing it to be the main cause of avoidable blindness in the

World [7].

Given the case where a person with diabetes mellitus goes through a long period of

hyperglycemia, it’s possible there is an accumulation of fluid inside the ocular lens, that

controls the focus of the viewed images.

This liquid accumulation leads to changes in the curvature of the lens, and therefore

the vision gets blurred. This symptoms may improve as soon as the glycemia levels are

normalized.

There are two known types of DR, that differ in the way the blood vessels are affected

by diabetes mellitus: [7]

• Proliferative DR - It’s a result of the abnormal growth of new blood vessels in

the retina, the optical disc or inside the vitreous cavity. Due to the fragile nature

of this new vessels, there is a great probability for them to collapse, originating

hemorrhages and/or detaching from the retina, possibly leading to blindness [8].

• Non-proliferative DR - The deterioration of the blood vessels in the retina is the

cause of this type of DR, causing blood shed that can generate microaneurysms,

intra-retina hemorrhages and ocular edemas (liquid accumulation inside the eye).

Besides blood vessels, there are capillaries in the eye that contain lipids. These can

also burst, leading to hard and soft exudates. Non-Proliferative DR can be classified

according to its severity, thus if there is at least one microaneurysm, it’s classified

as mild state. The presence of blood hemorrhages leads to the moderate state and

the severe state happens when there is more than 20 hemorrhages in 4 quadrants,

vessel distention in 2 quadrants or intraretinal microvascular abnormalities in 1 of

the quadrants [7–9]

There are several imaging methods to diagnose DR. For the purpose of this thesis only

the non-invasive ones will be approached, since EFS purpose is insert in this category.

2.3 Fundus Photography

Fundus Photography (FP) is based on the principle of indirect ophthalmoscopy, where

a digital camera is set at a certain distance from the eye, that usually varies between 5
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to 50 mm. The camera’s lens has the capacity to, simultaneously, transmit rays of light

into the eye and collect the reflected rays, providing an amplified image of the fundus, as

illustrated in the top row of Figure 2.2.

Some FP devices can be non-mydriatic, which means there is no need to dilate the

eye through pharmacological agents. This constitutes a big advantage, since that forced

dilation is extremely incommode for the patient undergoing the diagnosis [10].

As described in Section 2.2, in Figure 2.2 B and C, it is possible to observe the fundus

of a subject with DR. In this particular case some significant structures, characteristic of

DR can be seen, such as exudates, due to capillaries rupture that caused lipids leakage,

hemorrhages, caused by blood vessels burst, and microaneurysms, with the appearance

of small and well-defined red dots. For this last case it’s important to mention that

microaneurysms’ size grows according to the stage of the pathology. In early stages these

are about 25-125 µm. Given this fact, fundus cameras should have a high resolution, that

is needed for an early diagnosis of the pathology. [9].

Figure 2.2: Fundus Photographs obtained from fundus cameras. A represents a healthy
fundus. Figures B and C represent DR affected fundus, given the existence of exudates,
hemorrhages and microaneurysms, resultant from the neovascularization described on
the images bellow. Adapted from [11].

In order to understand how FP cameras work, a few of its characteristics must be

known, being the most important concepts: [12]

• Angular Field of View (AFOV) - Full angle, in degrees, associated with the hori-

zontal dimension (width) of the sensor that the lens is to be used with;

• Focal Length, f - Defines the lens’ AFOV. It is the calculation of an optical distance

from the point where light rays converge to form a sharp image of an object to
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the digital image sensor. For a given sensor size, the shorter the focal length, the

wider the AFOV of the lens. This way, the AFOV can be calculated according to the

equation 2.1, on which h represents the horizontal dimension of the sensor and f
the focal length, all measured in millimeters.

AFOV (o) = 2xtan−1 h
2f

(2.1)

• Spatial Resolution - Defined as the minimum distance between two image pixels,

formed by the intersection of a column and a row that form the digital image, in

order to distinguish them. Thus the image resolution is given by the number of

pixels that form the image obtained [13].

• Image Sensor - Cameras are constituted by image sensors, that process the im-

age, considered aspects such as pixel size and distribution, or light sensitivity, as

described in section 2.4.

• Optics System Quality - Optical Systems for DR assessment include a number of

optics materials, such as optical lenses and mirrors, through which rays of light pass.

Some of this rays will reach the retina, while others undergo the inverse process,

thus providing an image of the human fundus. If the components that constitute

this systems are not in perfect condition, or the design isn’t perfectly aligned, optical

aberrations will surge, possibly leading to diagnosis errors [3].

Besides the characteristics mentioned, it’s relevant to understand the difference be-

tween the AFOV of a camera and the FOV of an image, since it is an important feature

of the obtained image of the fundus. The FOV is influenced by the optical composition

of the lens, and it indicates the area of the image (in this case, the retina) that the lens

will cover at a certain distance, which means that it indicates the angle through which a

device can capture electromagnetic radiation. Because of this aspect, the FOV of a camera

it’s usually measured in angles [14].

A FOV of 30º is usually considered the normal angle of visualization, generating

a plane fundus image 2.5 times bigger then the real image. There are cameras with

FOV’s between 45º and 60º, however, one must remember that cameras with bigger FOV’s

usually require pupil’s with wider diameters [14].

In order for Fundus Photography or Recording Systems to be approved, thus be com-

mercialized as a diagnosis support system for DR assessment, the requisites established by

the International Standard for Ophthalmic Instruments - Fundus cameras (ISO 10940:2009)
must be fulfilled, since this protocol specifies the necessary requirements and test meth-

ods.

The following listed tests are part of the full test list that must be performed for the

approval of the optical system as a DR assessment diagnosis, as stated in ISO 10940:2009.

The tests mentioned are the only ones applicable to the camera selection, therefore these
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are the only ones refereed to in this thesis. For the complete approval of the system there

are a few more tests, namely related to the optical path, that need to be fulfilled [15].

• Check the Resolving power of the fundus camera optics - The test targets images

from the center, middle and periphery used for checking resolving power.

• Check the Field-of-View - The check shall be done by taking a picture of a gradu-

ated target (i.e. millimeter paper), placed 1 m from the entrance pupil of the fundus

camera. The scale has to be perpendicular to the optical axis and centered to the

field of view. From the image obtained, the distance 2r can then me measured, in

millimeters, from edge to edge on the image of the visible scale. The angular field

of view is then found according to the equation:

FOV (o) = 2(arctan(
r

1000
)) (2.2)

It should also be referred that there are other techniques that also use a camera cou-

pled to an image processor, as is the case of Fluorescence Angiography (FA). Due to this

reason, FA was used during many years to diagnose pathologies related to the retina,

as instance DR. However, it is being surpassed by the FP technique, because FA has the

disadvantage of having to rely on an intravenous injection of fluorescent sodium to obtain

the fundus image [14].

2.4 Camera Concepts

In order to select a camera to integrate in the EFS prototype, it’s necessary to have a

wide background knowledge about the components that constitute this devices, since its

components affect the fundus image that constitutes the final outcome of this process.

One of the most important parts of the camera’s optical system is the sensor, that

contains millions of pixels for image resolution, and creates the conversion of an analog

image into a digital one [16].

It’s the combination between the camera’s sensor, lens and image processor that dic-

tates the quality of the image produced, therefore even if two cameras have the exact

same sensor, the image obtained can be very different from each other [16].

The simplified block diagram in Figure 2.4 represents the architecture behind cam-

era’s functioning. First, the scene is focused on the image sensor, using imaging optics,

the group constituted by an optical lens and the image sensor. The focal length of a lens

depends, not only on the lens itself, but also on the sensor used, and more specifically on

its size.

As represented by the scheme on Figure 2.3, for smaller sensor sizes, using the same

lens for imaging, the image will appear more cropped, thus the AFOV of a camera with

this sensor, will be smaller. This factor can be measured by the crop factor, that is stan-

dardized as n=1 for full frame sensors, that provide a film pane of exactly 36 x 24 mm

[17].
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Figure 2.3: Schematics of the AFOV representation for two cameras using the same lens
and sensors with different sizes.

The incident light is then converted into an array of electrical signals by a two-

dimensional array of pixels. Color imaging is done by the use of a color-filtered array. In

this specific case, a Red-Green-Blue Color Model (RGB) filter is used. This filter causes

each pixel to produce a signal corresponding to only one of these three colors. The analog

pixel data (i.e. the electrical signals) are then read out of the image sensor and digitized

by an Analog to Digital Converter (ADC) converter, producing a full color image, with

green, blue and red values for each pixel in that image, as well as a spatial interpolation

operation, known as demosaicking [18].

After this operations are performed, Image Signal Processors (ISP) functionalities

can still be added, for white-balance, auto-focus, auto-exposure and color correction

operations, as well as to diminish the adverse effects of fault pixels and imperfect optics.

The final step of the process is the image compression and memory storing [18].

Figure 2.4: Imaging System simplified block diagram [18].
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Image sensors consist on arrays of pixels, each containing a photodetector for incident

light conversion into photocurrent. Some circuits need to convert that photocurrent into

eletric charge to read it. The most common sensors belong to two categories, represented

in Figure 2.5: [14, 18]

• Charged-Coupled Device (CCD)

• Metal Oxide Semi-Conductor (CMOS)

Figure 2.5: Camera sensor types: (a) CCD sensor and (b) CMOS sensor architectures [18].

Invented in 1970, CCD is a silicon sensor, constituted by a series of photosensitive

circuits ((a) in Figure 2.5), that move the charges inside the sensor. This is a sequential

logic circuit, therefore it needs two clocks for set or reset states, simultaneously. The

CCD sensor is an analog device, however, its output is immediately converted in a digital

signal through an ADC, that exists in digital cameras [14, 19].

Before reaching the exit amplifier, the charges must be transferred, and the limited

velocity at which this transfer occurs must be taken into consideration, since it leads to

delays in the velocity between shoots. Apart from this delay, it’s this charge’s transfer

that causes a bigger sensitivity and pixel-to-pixel consistency, that characterizes the CCD

sensors [14].

The main advantages of using a CCD sensor are the higher quality of the images

obtained (especially in low light environments), given there is less noise, better depth of

color (twice the dynamic range achieved by CMOS sensors), higher resolution and greater

sensitivity to light [20].

CMOS sensors are digital sensors, constituted by an integrated circuit that converts

the photosensitive pixel’s charge into voltage on each smaller circuit that composes it.

After this conversion, CMOS possesses a multiplex system by line and column that allows
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the several signals obtained to be converted into just one signal, that will be sent to the

multiple ADC converters presents in the camera chip ( Figure 2.5 - b) [19].

Each smaller circuit is composed by one photodiode and three transistors. The sensor

has the reset or pixel activation function, as well as the amplify/convert the charge into

analog signal, and select or synthesize the information of the several signals in a single

one. Therefore, the velocity of the CMOS sensors is far greater then the CCD sensors,

however, the sensibility is way smaller, and the noise that contaminate the image is bigger,

what is due to the inconsistency on the several charge to voltage conversion circuits [19].

The CMOS advantages, when compared to CCD are: [19, 20].

• Lower costs, due to a lower flux of charges, or current in the CMOS sensor.

• Its ability to work with very high luminosity levels, what allows its use on dynamic

reach cameras.

• Allowing the integration of stabilization systems, image treatment and compression.

• Fastest image processing. CMOS sensors are constituted by active pixels and an

ADC converter on the same chip.

• Low power consumption, due to 100 times less flow of charge, when compared to

CCD.

When looking for a camera to integrate with the EFS prototype, it was relevant to

check for cameras without Infra Red (IR) filters, since these record short-wave IR frequen-

cies, constituting a good feature for EFS, given the capturing is done under this low-light

environment conditions.
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3
Literature Review

Fundus imaging may be obtained by several devices. The first device for fundus viewing

was the ophthalmoscope, a small, handled device that didn’t allow DR screening, given

it’s low FOV. The growing integration of technology in imaging techniques lead to the

appearance of Non-mydriatic Cameras, that are an efficient DR screening technique, but

aren’t portable and are very expensive. To suppress this limitations, FP systems are now

starting to be available in the market [21, 22].

3.1 Non-mydriatic Automated Cameras

Non-mydriatic cameras, as seen in Figure 3.1, do not require pupil dilation by the use

of mydriatic agents, allowing the user to see the fundus on a digital screen, with the

possibility to zoom in, perform vessel and/or lesion measurements and share those images

with the patients and on Picture Archiving and Communication System (PACS) systems

[22].

Figure 3.1: Non-mydriatic Automated Camera used for fundus examination [22].
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Stereoscopic color fundus photography in 7 standard fields, and with a 30º FOV, is, as

defined by Early Treatment Diabetic Retinopathy Study group, the Gold Standard for DR

assessment in the world. Table-top fundus cameras are included in this group, being the

most commonly used devices by Portuguese ophthalmologists for DR assessment. Despite

their good results in terms of diagnosis accuracy, there are two main disadvantages for

the use of such devices, namely the costs associated with purchase and their very low

portability, since they are required to be placed on a fixed, plain surface in order to be

used, therefore it becomes very difficult to transport such devices into rural areas, where

the access to medical devices is a challenge [23].

3.2 Handheld Fundus Cameras

As described in Subsection 2.3, FP has been a very interesting area for engineers and

developers to explore. Since Carl Zeiss, in 1926, created a 10º FOV, flash powder and

color film equipped mydriatic fundus camera, FP has improved a lot. Some of the most

relevant innovations are related to the appearance of nonmydriactic imaging, electronic

illumination control, automated eye alignment, and high resolution digital image capture.

The combination of this new features made FP a standard technique for developing and

documenting retinal disease, such as DR [24].

Despite this improvements, fundus cameras still don’t take full advantage of consumer

camera’s built-in function and space saving. Besides that, the prices of such cameras

are still too high, specially for underdeveloped countries, that still face a great lack of

diagnosis resources, and DR diagnosis is no exception [25].

In order to face this disadvantages, Kenneth Tran developed a study with the main

goal of creating a FP device for the capture of human fundus images and the documenta-

tion of retinal pathologies, using only components under £1000. A front objective lens,

positioned at 5 to 50 mm from the front of the eye was used. The purpose of this lens

was to simultaneously relay light rays towards the eye and collect the reflected light,

providing a view of the fundus. The camera used was Panasonic’s Lumix G2 [26].

To allow a better comparison between this camera and the EFS cameras, the following

characteristics of the Lumix G2 should be evaluated: [26]

• CMOS sensor

• Rapid Automatic Focus

• Exposure Capabilities

• Live-view imaging

• 12 MP resolution

• Built-in image stabilization
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To increase the focusing ability, there was the need to attach a screw-in macro lens to

the front lens of the Panasonic Lumix G2. The autofocus, as well as the image composition,

are both performed on the camera’s built-in LCD screen. The best way to obtain the

desired focus is to move the focusing area of the camera over the optic nerve , since

the contrast between the surrounding vasculature and the optic disc allows the camera’s

contrast-based autofocusing algorithms to lock the accurate focus. This way, a fundus

image is acquired by following a point-and-shoot operation sequence [26].

Figure 3.2: Hand-held, low cost fundus camera prototype developed in [26].

The final fundus camera prototype developed (Figure 3.5) was able to be used in a

handheld portable manner, with the subject sitting down in a reclined head position. The

camera should be operated with both hands, while the user was standing. In most cases,

the camera was used 40 to 45 mm away from the subject’s eye, depending upon variances

in refractive power. Both the optic nerves and macula-centered images could be obtained

with the device, but only with a certain degree of subject cooperation [26].

Each image acquisition lasted 10 to 25 seconds, but this parameter, as well as image

quality, depended greatly on the dilation pupil size and the reflectivity of the fundus,

resulting in low, partial or vingnette exposure of the fundus. In an attempt to fix this

situation, it was stated by the investigators that the user should take two to three fundus

photographs to ensure satisfactory image quality for clinical diagnosis. Overall, 22 of 26

photos (85 %) taken were judged sufficient for clinical diagnosis.

Despite all this, the biggest disadvantage of the prototype created by Tran, in [26] is

the need for pharmacological mydriasis, that as stated before, causes a great discomfort

to subjects.

3.3 Optomed Aurora

Aurora fundus camera, developed by Optomed, is a non-mydriatic imaging system for

DR detection, Figure 3.3. Its main features include: [27]

• 50º FOV.
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• Compact and portable for clinics of all sizes.

• Rechargeable battery, including an Optomed dual charger for power supply.

• Image archive including Digital Imaging and Communications in Medicine (DI-

COM) systems.

• Minimum 3.1mm pupil size.

• 5MP camera resolution.

• 9 internal fixation targets for peripheral imaging.

• Color, red-free, IR and Low-red photography.

Figure 3.3: Optomed Aurora fundus camera [27].

3.4 OICO Fundus Camera

OICO Fundus Camera is a portable, automated, non-mydriatic camera, that can also be

used on manual mode, Figure 3.4.

The most relevant features of this camera are: [28]

• 30º to 35º FOV, depending on pupil size.

• Pupil must be at least 3.5mm, without dilation.

• Build-in camera with 12MP resolution.

• 4h Battery autonomy. Buying the system also includes its own charger.

• White-light flash for fundus illumination and IR light for system adjustment.

• System protected with password.
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• Bluetooth and WiFi system, to facilitate the information share with dropbox, Google,

Microsoft or other sharing systems. Medical systems such as DICOM and PACS are

also available.

Figure 3.4: OICO fundus camera [28].

This camera still has improvement points to consider, being the most relevant ones

the need for diopetry compensation, that has to be inserted manually by the doctor and

it doesn’t possess internal fixation targets.

3.5 Volk Pictor Plus

Volk Pictor Plus is an ophtalmological device, non-mydriatic, portable and relatively light.

This features make this device easy to use for examinations outside the hospital, reaching

a greater number of patients.

The main characteristics of Volk Pictor Plus are: [29]

• Non-mydriatic.

• 5 MP Image sensor.

• 40º static FOV.

• 120º dynamic FOV.

• Two illumination modules: white-light, IR LEDs.

• Image transfer through Universal Serial Bus (USB) port or via WiFi network.

• AutoFocus and Automatic Shooting.

• Static and video image capture.
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• Eight internal Fixation Targets.

• Pupil minimum size of 2.7 mm without pupil dilation.

Figure 3.5: Volk Pictor Plus fundus camera. Adapted from [29].

3.6 EyeFundusScope

The current prototype developed by Fraunhofer, consists in a mobile device that can

illuminate the human fundus and capture images of it through a smartphone camera, as

it is seen in Figure 3.6.

The main features of the EFS prototype are: [3]

• Handheld device.

• Low-cost.

• Non-mydriatic.

• 40º FOV.

• Image capture with Nexus 5X smartphone camera.

• 4mm Pupil Size.

As it happens with OICO Fundus Camera (Section 3.4), EFS doesn’t integrate internal

fixation targets. This aspect, as well as the integration of an internal, fixed camera on the

prototype, are two important improvements, that are part of the objectives of the current

work.
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Figure 3.6: EyeFundusScope mechanical prototype schematics. Schematics developed
with SolidWorks in [3].

3.7 Fundus Photography Cameras Comparison

In tables 3.1 and 3.2, it is possible to compare some relevant characteristics of Fundus

Photography devices available in the market, namely the ones mentioned in Subsections

3.3, 3.4, 3.5, in order to establish a correlation to the solution presented by Fraunhofer’s

EFS, described in Subsection 3.6.

Table 3.1: Fundus Photography Devices. [28–33]

D-Eye
Ophtalmoscope

VOLK InView VOLK Pictor Plus
Horus DEC

200

OICO
Fundus
Camera

Optomed
Smartscope

pro

FOV
20º (Mydriasis)

6º (No Mydriasis)
50º (Static)

80º (Dynamic)
40º(Static)

120º(Dynamic)
45º 30-35º 40º

Resolution
(MP)

1 1 5 5 12 5

Pupil
Dilation

Yes
Yes (5mm pupil

minimum)
No (3mm pupil

minimum)
No

No (3.5mm
pupil

minimum)

No (3.5mm
pupil

minimum)
Internal
Fixation
Targets

No No 9 7 No 9
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Table 3.2: Fundus Photography Devices. [3, 27, 34–36]

Optomed Aurora
Zeiss

VISUSCOUT 100
Eyenez V300 EpiCam C EyeFundusScope

FOV 50º 40º (Static) 45º
33º(Vertical) 45º

(Horizontal)
40º

Resolution (MP) 5 5 5
1.3 (USB 2.0) and

5 (USB 3.0)
12 (using Nexus
5X smartphone)

Pupil Dilation
No (3.1mm pupil

minimum)
No (3.5mm pupil

minimum)
No

No (4mm pupil
minimum)

No (4mm pupil
minimum)

Internal Fixation
Targets

9 9 No No No

The analysis of Tables 3.1 and 3.2 allowed to the comparison of some aspects of

available fundus cameras and the current EFS prototype.

The FOV of fundus cameras, as referred in ISO 10940:2009 [15] refers to the the area

of the fundus that can be imaged by this devices in single field fundus images and it has

to be big enough to capture the optic nerve and the macula, always keeping a compromise

with image resolution. EFS has a 40º FOV, this value has a good range for capturing this

structures, despite other devices, like Aurora fundus camera, have bigger FOV values.

Despite this, single field fundus images are not always enough to reach an accurate

diagnosis for DR, considering that a significant proportion of the fundus remains un-

covered [25]. This factor can be compensated by adding Internal or External fixation

points to the fundus camera, since these provide a fixed target for the patient to fixate, in

different positions, that are acquired and then stitched in a wider fundus image, as will

be discussed in Subsection 4.2.2.

As described on Table 3.2, EFS doesn’t have internal fixation targets at this point,

which is a great disadvantage when in comparison to the other devices mentioned. Thus,

given this feature’s importance for the system differentiation, it constituted one of the

main improvement points that is a part of the objectives in the current work.

EFS is a non-mydriatic camera, which is a strong advantage in comparison to others

that do not have this feature, like D-Eye Ophthalmoscope and VOLK InView fundus cam-

era. This feature reduces patient discomfort related to pupil dilation via pharmacological

substances, and eases the image acquisition for the specialized technician handling the

device.

For the image acquisition, a light source is needed, since the fundus is not illuminated

as is. This way, EFS uses a flash to capture the final fundus image. Another option, also

studied in the beginning of this work, was the use of a camera without IR filters. This

feature, enables this cameras to display low-light environment scenarios. Raspberry Pi

NoIR Camera is included in this category, therefore being considered one of the solutions

to integrate in the FOV prototype. Nonetheless, the use of a Raspberry Pi Computer

Board would not be the best option in terms of prototyping, causing design issues and

requiring additional programming.

Another consideration to EFS, that increases its commodity to the patient undergoing

the examination, is the integrated illumination module. This module, also known as
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Light Control, provides the user control over the light intensity, so that the light incising

on the patient’s eye is by one side, enough to illuminate the fundus for image acquisition,

and at the same time isn’t too intense that causes pain to that same patient.

3.8 Fraunhofer Enhanced Camera API

The EFS Android application uses Fraunhofer EnhancedCameraAPI library, which is a

solution developed for providing a large range of parameters, as is the case of focus,

exposure, white balance, digital zoom, preview and acquisition sizes, amongst others.

The main features of this library are:

• Easy configuration of Camera in Android

• Fault tolerant setup of parameters

– Handle multiple possible options

– Ensure that unsupported parameters are not chosen

• Low Level Control over all available parameters

• Access to individual preview frames

Retinal imaging requires very specific parameters. For the illumination of the retina,

a warm white LED is needed, thus the white balance should be set to Incandescent.

Two different operation modes are also required, the alignment and acquisition mode.

For the first one, since the LED intensity is low, the ISO value must be extremely high

and the shutter time needs to be longer as well.

For the acquisition mode, the LED intensity is set to high, therefore the ISO value

decreases and the shutter time is shorter (1/20s). More than fifteen Android smartphone’s

have been tested and are fully compliant with the EnhancedCameraAPI.

The controllable camera parameters released by Fraunhofer’s EnhancedCameraAPI

are a strong feature of this application, given the reasons presented for the importance of

such control in the acquisition of fundus images for DR assessment.

Nonetheless, this API still doesn’t provide a solution for the optical alignment issues

and image quality if the EFS prototype isn’t used with a specific smartphone, in this

case the Nexus 5X smartphone, that was used for the calibration of the optical system.

Besides, internal fixation target actuators cannot be controlled with this API. Therefore,

this work aims to present a possible solution to improve this points, by trying to keep a

set of controllable parameters as the ones controlled by the EnhancedCameraAPI.
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4
Proposed Approach

4.1 EyeFundusScope Camera Selection

The growing use of smartphones in the daily lives of the great majority of the population

changed the way medical devices work today. Smartphone based imaging systems became

a reality, that is relatively easy to use and to access. As EFS aims to reach population that

cannot access a DR diagnosis so easily, or at all, it was first designed to use the smartphone,

and therefore its camera, to photograph the ocular fundus.

Smartphone’s compact cameras are the result of the development of CMOS camera

sensors, that made the integration of high pixel camera lens in mobile phones possible,

given their very reduced size. The FOV of mobile cameras is usually in the interval

of 70º to 80º, which are large values for this characteristic [37]. This kind of cameras

have very specific characteristics, that often change between manufacturers, which raises

some concerns like the perfectly aligned optical system or the fundus image quality.

Concerning this, the selection of a fundus camera for integration in the EFS prototype is

extremely important.

CMOS sensors were chosen during the selection of a camera for EFS considering their

characteristics, as described in Section 2.4:

• Lower costs, when compared to CCD sensors.

• Faster image processing, relevant for a video stream of the fundus image without

delays.

• Low power consumption, important given the power source of the entire system

will be the smartphone’s battery.

• Reduced size, for enabling the future integration inside the EFS prototype, that

aims to be a handheld device.
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The EFS cameras studied include three relevant camera types: Embedded Camera

Modules, Dedicated Camera Boards and UVC-Compliant Cameras.

These cameras have some characteristics in common, such as the available image

sensor interface, that is usually of the parallel or MIPI type. Parallel interfaces use more

than one wire to establish the communication between systems, which makes it possible

for both spatial and temporal dimensions to be available for the data.

MIPI interface, namely MIPI’s CSI-2 interface, is a low-power, high-speed and robust

hardware interface that implements camera and imaging components in mobile devices

[38].

Despite these similarities, the camera types mentioned are different in many aspects.

Camera modules consist on cameras that can apply a certain level of post capture pro-

cessing to the images captured. In order to make its use simpler to the developer, camera

modules have built-in sensor interfaces, so that there is no need to alter the driver used

to communicate with the board attached, since all camera sensors, even future ones, are

supported by the camera driver supplied by the manufacturers.

Dedicated camera boards are the central module of embedded image capturing sys-

tems, Figure 4.1. They’re composed by a processing chip, memory disc, power supply

source and some may include ethernet, USB and/or HDMI ports. Raspberry Pi NoIR V2

camera board is an open design camera board, and it was initially studied for integration

in the prototype. This camera seemed like a good option because of it’s characteristics,

namely its high flexibility and operational simplicity, at the cost of requiring a relatively

cumbersome Raspberry Pi 1,2 or 3 computer board [39, 40].

Figure 4.1: Raspberry Pi NoIR Camera Board used in [41], for the development of an
inexpensive fundus camera.

Raspberry Pi NoIR V2 camera is constituted by an image sensor with 8MP image

resolution, but the feature that makes this camera the most appealing for EFS integration

is that it doesn’t have IR filters. Without these, the camera is capable of capturing IR

wavelengths, thus being a good option for the capture of low-light environment images.
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With this feature, it becomes possible to capture fundus images without an illumina-

tion module. This is an important feature, since the prolonged use of a light source to

illuminate the retina can damage it [40, 41].

But despite the clear advantages presented by Raspberry’s NoIR Camera, there were

four disadvantages that lead to the discard of this option for EFS integration. The first

one is that there already was a solution for DR assessment based on this camera module,

therefore the current approach wouldn’t have a great differentiation from the current

literature [41].

The second reason is that in terms of prototyping, it’s not as advantageous to have

a Raspberry Pi Computer Board in the final solution, given the space it occupies, that

would require many changes to the current design.

Besides the solution would only be available for the integration of Raspberry Pi Com-

puter Board based cameras. This would limit the solution developed, making it com-

pletely focused on a specific camera board device, thus making the solution less embrac-

ing for future cameras, with faster and better quality sensors.

The fourth reason, and the most decisive one, was that Raspberry Pi requires an

external power supply. This would be a major limitation to the system’s portability, since

this pretends to use only the smartphone’s battery as the power supply for the entire

system.

Embedded camera modules are very versatile and have a wide range of options, since

they can be interfaced to a specific processor, of the developers choice, or to a lens of their

choice. This type of camera modules are Plug & Play devices, that in opposite to Dedicated

Camera Boards, don’t require a specific programmable Board to be connected to a device,

in this case, the smartphone. For the desired solution, a e-con Systems embedded camera,

also UVC-Compliant, Figure 4.2 was evaluated as a possibility for EFS integration, given

it is a Near Infra Red (NIR) camera with a 60º AFOV value, that is within the desired

range for EFS integration, and it’s low price of $89. But still, given delays in the delivery

of the embedded system from it’s manufacturer, this option wasn’t possible to integrate

during the course of this thesis [42, 43].

Figure 4.2: Embedded e-CAM51_USB - 5 MP OEM USB Camera Module [43].

Finally, the last option to be considered is the use of UVC-Compliant Cameras, that are

natively supported by most Operative System (OS). UVC-Compliant Cameras, commonly

known as Plug & Play cameras, are easily plugged in Windows and Linux systems, without

requiring additional device driver software. The most commonly used UVC-Compliant
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Cameras have USB 2.0 or 3.0 interfaces, allowing the connection to other USB compliant

devices, as is the case of the smartphone used in this thesis.

UVC-Compliant Cameras are equipped with UVC controls to adjust imaging parame-

ters, such as brightness, contrast, hue, saturation, sharpness, black-light, gamma, white

balance, exposure, gain and focus. Ascella (See3CAM_CX3ISPRDK) and Logitech C270

webcamera in Figure 4.3 were the two UVC-Compliant cameras selected for this category,

as will be discussed in Subsection 4.2.1 [44].

a UVC-Compliant Cam-
era Module - Ascella
(See3CAM_CX3ISPRDK).

b Logitech C270 webcamera
UVC-Compliant.

Figure 4.3: Logitech C270 and Ascella (See3CAM_CX3ISPRDK) UVC-Compliant Cam-
eras [44, 45]

In order to select the final camera for prototype integration, an important character-

istic of the camera types discussed, that had to be considered was their interface. There

are two relevant USB interfaces, 2.0 and 3.0, with important variations from one another

that affect, amongst other characteristics, the speed of the data transfer between devices.

A more detailed analysis of this interfaces is done in Subsection 4.1.1. This is relevant

for this work, since the aim is to get a connection between the UVC-Compliant Cameras

and the Android smartphone, with enough speed to allow the simultaneous display and

capture of the fundus image, with the lowest delay possible.

4.1.1 Universal Serial Bus (USB) Specification

USB is a personal-computer interface, established in the majority of devices, such as key-

boards, computers, cameras, drives, audio and video devices, amongst others. This is

a versatile technology, that primes for being very reliable, inexpensive and most impor-

tantly for being supported by most OS.

The mentioned characteristics make USB a likely solution for enabling the commu-

nication between a computer to a device, or as is the case of this work, a camera and a

smartphone.

USB has had many improvements, one of which being the data transfer speed im-

provement, known as SuperSpeed USB (SS) and a more flexible power delivery. These

features are the main distinction between USB 2.0 and 3.0 interfaces.
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USB 2.0 showed that a bus 40 times faster then the previous versions, could still sup-

port both low and high speed interfaces. The ability to use several speed levels increased

the complexity of the serial hubs, but managed to conserve bandwidth so that the hubs

used could remain the same for both interfaces. What causes this difference in terms of

data transfer speed is USB 3.0 larger Band Width (BW), causing great improvements in

transfer rate, with a maximum of 400 MByte/s. This is possible due to the mass data

transfer mechanism that is characteristic of the USB interface [46].

USB 3.0 interface is compatible with USB 2.0 and 3.0 hosts and hubs supporting all

four speeds. This new interface was created to complement USB 2.0 specifications [46].

In conclusion, the main add-on to the USB 2.0, was the speed increase. USB 3.0 is 10

times faster then USB 2.0, plus it can carry data on both directions at the same time, thus

constituting a more efficient solution [46].

In the specific case of Android smartphones, the USB interface is usually micro-USB,

and it can be of several types. The most common is the micro-USB Type-B port [47].

The newest smartphone devices are equipped with USB Type-C port. This is an

improvement in terms of data-transfer speed and power saving, and as it happens with

the mentioned USB 3.0/3.1, micro-USB Type-C is much more simple then its previous

Type-B version. USB Type-C ports have a range of 15 – 100 Watts per port, featuring

support for the USB power delivery specification. This means that a smartphone with a

USB Type-C entrance can easily charge other devices (apart from a full desktop PC). If

we’re referring to a micro-USB Type-B port, it ts limited to a maximum of 7.5 Watts [47].

As the purpose of this thesis includes the connection between an external camera,

with an USB 2.0 or 3.0 interface and an Android smartphone with a micro- port, that will

act as the host device, providing the power to support the entire system created, then an

USB On-The-Go (OTG) cable must be used to fit this purpose [48].

Given this information on USB Interfaces, the best options in terms of data-transfer

speed, so that the Android Application developed is as fast as possible in terms of simul-

taneously displaying a stream image from the camera selected for EFS, and allow image

capturing is a smartphone with a micro-USB Type-C port and with a camera with USB

3.0 interface.

Despite this fact, the smartphone available for testing during this thesis was a Sam-

sung A3 2016, with a micro-USB Type-B interface, that could only be connected to USB

2.0 compliant camera devices. Nonetheless, the application proved to be fast enough to

fulfill the requirements established above, meaning that if a device with USB 3.0 interface

and micro-USB Type-C is used instead of the Samsung A3 2016, the results are expected

to be even better then the ones obtained.

This proves that, despite USB 3.0 interface is faster then its previous USB 2.0 version,

the use of a camera with a USB 3.0 connection is not required for the good functioning of

the CameraApp developed in this work.
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4.2 CameraApp: Android Camera Application Development

One of the main Objectives of the present thesis is to establish a communication protocol

to allow the Android smartphone to control the camera, simultaneously to the capture of

fundus images by the user.

As it was mentioned in Section 4.1, UVC-Compliant Cameras are the most relevant

cameras for EFS integration. This way, the USB Video Class Protocol must be studied to

allow such connection.

This way, an Android Camera Application constitutes the approach developed in the

thesis, allowing the communication between Android, UVC-Compliant Cameras and an

ATMega2560 board, that will add an extra, and very important feature in the detection

of DR, Internal Fixation Target Actuators, further discussed in this Chapter’s Subsection

4.2.2.

4.2.1 USB Video Class Protocol

After a careful research of the potential camera types, in Section 4.1, and the type of USB

Interfaces available, in Subsection 4.1.1, UVC-Compliant Cameras were selected as the

best option to integrate in the EFS prototype. It is very important to know how to make

the connection between the camera and the smartphone, in a way that the communication

protocol selected in this thesis, can adapt to a wide range of UVC-Compatible devices.

Considering, UVC drivers must be evaluated, since they seem to be a good option for

the solution this thesis aims to achieve.

UVC is a Microsoft-provided AVStream minidriver that provides driver support for

USB Video Class Compliant Devices. This means that when a device uses UVC, there is

no need to develop a new, specific driver for it, since the device will work automatically

with the system-supplied driver. This protocol enables devices like webcameras, digital

camcorders, analog video converters, analog and digital television tuners, amongst others,

to connect seamlessly with host machines. UVC supports streaming from multiple video

formats, that include Motion JPEG (MJPEG) for instance. [49].

Many OS platforms already have native support for UVC drivers, which greatly re-

duces the time required for developers to create USB video devices.

This way, by using UVC models, it is possible to implement video streaming hard-

ware according to the guidelines in the USB Device class definition for video devices

specification, and without having to create proprietary drivers. Besides, there is also the

possibility to add vendor-specific processing to the UVC driver functionality [49].

To make sure the right smartphone-camera connection is chosen, it’s important to

know the main advantages of using an UVC driver:

• No need for development of proprietary drivers.

• Opportunity for vendors to add functionality.
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• No maintenance cost.

• Compliant with Selective Suspend power management.

The USB Video Class protocol is provided by USB Implementers Forum, Inc., and it

is a specification for devices that follow Universal Serial Bus technology. This protocol

describes the minimum capabilities and characteristics that a video streaming device

must support to comply with the UVC specification.

Devices that follow this protocol have standardized video streaming functionality,

and it provides information for designers to built UVC Compliant Devices, incorporating

the video streaming functionality. A number of mandatory or optional requirements are

specified, in order to help developers understand how to use the UVC protocol. [49].

The UVC protocol establishes a Video Interface class that groups all functions that

can interact with USB-Compliant Video Data streams. The Video Interface is divided into

subclasses, Video Control and Video Streaming Interfaces, that are used for Streaming

the Video from the UVC Camera [49].

The video function is constituted by Units, that provide the basic building blocks

to fully describe most video functions, and Terminals, divided in Input Terminal (IT),

representing a starting point for data stream inside the video function, and Output Termi-

nal (OT), representing an ending-point for output streams. The protocol also allows the

user to make some changes to the video being displayed during the stream. For instance,

Brightness, White Balance, Gamma, Contrast Controls, amongst others, can be added

inside a Processing Unit (PU), by issuing appropriate requests. This way, these controls

can be displayed in a User Inteface (UI) thus providing those features to be controlled

[49].

Besides the mentioned terminals, that control image parameters, the UVC protocol

also allows the control of some of mechanical (or equivalent digital) features of the device,

known as Camera Terminal (CT) controls. These can be features like Auto-Focus, Focus

and Auto-Exposure [49].

There is also the possibility for Still Image Capture, associated with the video stream,

that can be done by three different methods. The one used in this thesis extracts the

next available video frame from the active video pipe in the relevant Video Streaming

interface upon receiving the triggered event. This way, the video stream will not be

altered or interrupted, and the still image captured will have the same size as the video

frames being streamed [49].

CameraApp was build using Android Studio, an Android application development

environment. For the development of the application, Java Native Interface (JNI) libraries,

that include the UVC-Protocol described, were imported into the code developed in this

thesis, for full support for UVC-Compliant Cameras, as well as to provide some of the

low-level control for this cameras [50]. This JNI libraries define the way the managed

code interacts with native C/C++ code, provided by Android Native Development Kit
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(NDK), that allowed the build of performance-critical parts of the Android applications

developed, using liuvc and libusb C/C++ dynamic libraries, [51, 52].

The main features of the CameraApp developed are:

• Streaming UVC-Compliant Cameras images.

• Capture of still images.

• Burst Capture of still images, allowing the user to select how many pictures to take.

• Image processing features for the low-level control of the camera settings

• Provided user control for ATMega2560 board.

The usability tests, as well as a full description of the CameraApp, will be described

in Section 5.2.

4.2.2 Internal Fixation Point Actuators

It has been studied that a still fundus image of one specific area of the fundus may not be

enough to evaluate if the patient under examination has DR or not, given a wide part of

the fundus won’t be covered in just one examination [25].

Additionally, a good fundus photography involves a steady image, where the most

important eye structures for DR assessment are well visible for a correct diagnosis. For

this to be possible, many fundus photography devices have integrated External, Internal

or both, Fixation Targets, that consist on light points at specific locations, that the patient

is asked to look at.

In the scope of EFS, the CameraApp developed in this thesis should establish the

simultaneous control of the UVC-Compliant cameras and fixation point actuators, that

serve this two purposes.

External Fixation Targets are located, as the name indicates, outside the imaging

device used for FP [53]. For this reason, the system will be less compact and the risk of

breaking this target is high. The solution for this problem are Internal Fixation Targets,

fixated inside the imaging system.

Internal Fixation Targets main goal is to create a visual target, so that the person

under examination can direct its gaze at that point, for an extended period of time [54].

Besides, this points will allow a very important feature, by having several targets to fixate,

at different and very specific positions, several photographs of different regions of the

eye can be captured, and can be integrated in a single shot, by Stitching technique, thus

providing a wider FOV for examination.

Stitching consists on overlapping images taken from different angles of the fundus. At

the moment, EFS can already use this technique for, as can be seen in Figure 4.4 [3].

Prior to this work, Melo, D. designed a possible optical system, for the integration

of the Internal Fixation Points in the EFS Prototype, Figure 4.5. The LED matrix for
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Figure 4.4: Fundus Images stitched together, providing a wider FOV of the retina, for DR
assessment. Pictures obtained with the EFS prototype [3].

prototype integration was selected based on size and LED color, given the reduced size

of the prototype [3].

Figure 4.5: (Left) LED matrix, with the positions selected for the Internal Fixation Point
Actuators in EFS: 4 Central LEDs and four pairs of periphery LEDs, for Top, Left, Right
and Bottom positions. (Right) Internal Fixation Points Simulation for the Adafruit LED
matrix , on the left. The points are being focused on the retina and the simulation was
made using BEAM IV [3].

The model shown on the right side of Figure 4.5, is a test representation of one of the

lateral fixation targets being focused on the retina. In this case, the light isn’t centered

with the optical path. It’s the proximity with the retina that allows the patient to see the

fixation targets, therefore this was the only requirement for the BEAM IV Display Path

simulation. Since the optical system is roundly symmetrical, all rays equally deviated

from the center will show the exact same behavior, therefore only one simulation was

made, using, as mentioned, the central fixation targets [3].

The approach followed for the creation of the Internal Fixation Point Actuators in the

EFS prototype started by establishing the communication between Android smartphones

and an Arduino Mega 2560 microcontroller, based on ATmega2560 board, with 54 digital
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input/output pins. The board is connected to a Breadboard with a LED Matrix, an IR

LED and a White LED, with integrated electronics.

Solution implementation required a BreadBoard with the following electronics:

• LuckyLight M1610008 KWM-2082CUB (Adafruit LED Matrix) [55]

• MAX7219CNG LED matrix/Digit display driver [56]

• 3 220Ω Resistors

• 1 µF (160V) Capacitor

• 10 µF (50V) Capacitor

• 1 ATmega5260 microncontroller board [57]

• 1 IR LED

• 1 White LED

• USB hub

• USB OTG converter cable

The BreadBoard setup, for the LED matrix, white and IR Led control, using the

Adafruit Digital display driver, was made accordingly to the schematics in Figure 4.6,

provided by Arduino 1 and Adafruit 2 manufacturers [58, 59].

1https://www.arduino.cc/
2https://www.adafruit.com/
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Figure 4.6: Complete Schematics for control of the 8*8 Led Matrix and white and IR LEDs, represented by Led1 and Led2. Adafruit
MAX7219CNG Digital display driver was used for the LED matrix control, along with one 220Ω Resistor, and two Capacitors with 1µF and
10µF. For the white and IR LEDs, two Resistors, R1 and R2 were used, both of 220Ω. Arduino Mega Board was employed to control the
LEDs display. Adapted from [59, 60].

35



CHAPTER 4. PROPOSED APPROACH

In this thesis, a Communication and Acquisition Protocol was integrated in the Cam-
eraApp Android Application developed, so that the user can control image capture with

the UVC-Compliant Camera simultaneously to displaying the stream video image and

controlling the Internal Fixation Target actuators.

4.2.3 CameraApp: Still Image Capabilities

DR Imaging systems need to be tested so that its quality is guaranteed to the detection of

DR structures. Quality tests are divided in three categories, as described in Table 4.1.

Table 4.1: System tests for evaluation of factors that affect the quality of fundus images.
Adapted from [61].

- Illumination
- Light scatter
- Pupil Size Requirements

Optical Properties

- Retinal FOV
- Resolution
- Color DepthImage File Properties
- Image file type and size
- Alignment
- Computer-user interface
- Information system interface

User Properties

- Ergonomics

Illumination is required in low-light environments, as is the case of the human fundus.

EFS has an illuminations system constituted by a white and IR LED. The protocol estab-

lished in this thesis, allows the control of this LEDs, that in this specific case are integrated

in the BreadBoard for the Internal Fixation Targets, controlled by an ATmega2560 board.

Light Scatter and Pupil Size Requirements were studied by Melo, D., that established the

minimum pupil size, without dilation, to be 4mm [3].

Retinal FOV measurements, further described in Subsection 5.2.1, include an optical

setup constituted by the cameras selected for integration in the prototype, a 35mm PCX

Lens, millimeter paper and a Nexus 5X smartphone, that is used in the current version

of EFS, for a possible comparison of the outcomes obtained with the two solutions.

Image file properties should demonstrate the quality of the image in terms of Resolu-

tion and Color Depth. Resolution is defined as an image system’s ability to distinguish

object details, and it’s often expressed in terms of line-pairs per millimeter. A low resolu-

tion image usually lacks fine-detail and is often blurry, whereas a high resolution image

is highly detailed and clear [62].

Color depth determines the true color balance or optical density of any color rendition

system.

Aliasing is also a common issue in photography. It is an artifact created by the presence

of frequencies in the image that are too high when compared to the sensor’s sampling

frequency [63].
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Image colors can also be accessed, since there can be some undesired color saturation.

This issue refers to the brilliance or purity of a color. When the colors present in an image

are projected at the proper screen brightness and without interference from stray light,

or are printed at high output resolution, saturated colors appear bright, deep, rich and

undiluted [63].

Wavelength influences the performance of the optical system, given different wave

lengths bend at different angles as light passes through a certain medium. Shorter wave-

lengths are bent more then longer ones, creating problems for the imaging system, when

trying to resolve details and gain information [19].

Chromatic aberrations are usually of two types, lateral color shift and chromatic color

shift, Figure 4.7. The first type, referring to lateral color shift can be seen when the

center of the image is moved towards the edge of the image. In the center, concentric

wavelengths of light spots will appear. At the borders of the image, these wavelengths

tend to separate and produce a rainbow effect. As a result of this color separation, a given

point on the object is imaged over a larger area, resulting in reduced contrast, a result that

affects sensors with smaller pixels in a more pronounced way, since the blurring spreads

over more pixels [19].

Figure 4.7: Types of chromatic aberrations: A-Lateral color shift, B- Chromatic color shift.
Adapted from [19].

The second type of chromatic aberration is chromatic color shift, relating the ability of

a lens to focus all wavelengths at the same distance from the lens. Different wavelengths

will have different planes of best focus. This effect also results in reduced contrast, since

different wavelengths create different size spots at the image plane where the camera

sensor is located [19].

If the optical system is not completely aligned, there is a great probability of the

existence of chromatic aberrations, usually of the lateral color shift type, since the image

won’t be completely focused in one plane.

Image format is important in terms of saving data storage space on the smartphone,

but always guaranteeing a high-quality image file. There are several formats for saving

images in mobile devices, but the ones that are based on lossless compression, as Portable

Network Graphic (PNG) format, have the advantage of assuring this relation between
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quality and space saving, thus constituting a good option for medical imaging devices

[64].

Given this reason, this is the privileged image format for saving fundus images in the

work developed.

The alignment of the system depends on many factors, including the optics system

and the camera position, thus to reach the best outcome, the camera selected in this work

for integration in the EFS prototype, should be set inside the optical system, integrated

with the lenses and beamsplitter that are responsible for the refraction and reflection of

light that allows the system to photograph the human fundus.

The computer-user interface and the information system interface, described in Sub-

sections 5.2 and 5.3 offer an information tool, so that the user can quickly comprehend

how to use the Internal Fixation Targets. This tool fully describes how the protocols for

targets control are established, thus constitute an important feature of the CameraApp,

since it eases the use of the Computer-user interface and thus ensures that it is ergonomic.
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Results

5.1 Cameras Selected in the Scope of EyeFundusScope

In Section 4.1, several types of cameras were evaluated for integration in the EFS proto-

type. Given the reasons presented in Section 4.1, UVC-Compliant Cameras were selected

for this thesis. Still, a wide range of options is available within this category, therefore,

after researching several solutions, Table 5.1 shows the three cameras selected.

Table 5.1: Camera Selection by Camera Specifications. Label. NA - Not Available, A* -
Available by customization.

Parameters
Logitech C270

webcamera [45]

Ascella
(See3CAM_CX3ISPRDK)

[65]

e-CAM51_USB
[66]

Sensor Type -
OmniVision OV13850

(CMOS)
OmniVision 5640

(CMOS)
AFOV 60º 70º 60º

Resolution 3.0MP 13.0MP 5MP
Dynamic Range - HDR 68 dB

No Infra Red
Filter (NoIR)

NA NA A*

USB Connection 2.0 2.0/3.0 2.0
Price $21.50-$35 $299 $89

The parameters described in Table 5.1 were the deciding factors for the camera selec-

tion. Based on what was said in section 2.4:

• CMOS sensors are smaller and very versatile, constituting a good choice for integra-

tion in the small dimension prototype.
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• The AFOV for an approximate 40º FOV value, that is desired for a DR assessment

systems, should be around 50º to 60º.

• Camera resolution should have at least 5MP, as defined by ISO 10940:2009 norm

[15]. This value was obtained based on the requirements of minimum separation

of two adjacent lines on the fundus (number of line pairs per millimetre) and the

distance between two pixels (from center to center) of a digital image sensor theo-

retically projected on to the fundus.

• Cameras without IR filters are good options for capturing images with low frequen-

cies, like the ones captured in low-light conditions, as is the case of fundus pictures.

• Preferentially, the USB connection should have the option to be 3.0, since it allows

a faster connection, thus displaying an almost immediate stream video.

• The price of the selected camera should not add relevant costs to the prototype.

It was very difficult to find a camera with all this features, therefore, the three cameras

in Table 5.1 were selected, since all of them are better at at least one characteristic then the

other, and they are all UVC-Compliant, thus they would be compatible with the Android

System developed, and that would facilitate its testing.

Logitech C270 webcamera was selected since it was a very cheap device, with a FOV

within the required values, despite having a very low resolution, only 3MP. The main

goal of testing this camera was to see if the Android System developed could actually

stream video and simultaneously capture images from an UVC-Compliant Camera, and

it proved to be useful for this task.

The Ascella (See3CAM_CX3ISPRDK) Camera is a more sophisticated camera, of high-

resolution (13MP), with a USB3.0 connection and a High Dynamic Range (HDR), but its

FOV is slightly higher then the one required for EFS, it doesn’t allow capture without IR

light source filtering and it is a very expensive camera.

The last option was the e-CAM51_USB UVC-Compliant Camera Module, that com-

bined this last two in terms of having a 60º FOV, that’s within the required range, a 5MP

resolution, the option to take pictures without IR filters and being relatively cumbersome.

The less positive points of this camera is the USB 2.0 connection. Given delays in the

delivery of this camera by the manufacturers, it could not be implemented in the duration

of the thesis.

5.2 Android Camera Application: UVC-Compliant Cameras

In order to test the correct functioning of the CameraApp application created, the two

cameras selected in Section 5.1, Ascella (See3CAM_CX3ISPRDK) and Logitech C270,

were connected, separately, to an Android Smartphone, using the respective camera

vendor USB connection cable and an USB OTG cable, as represented in Figure 5.1. Two
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Android Smartphones (Samsung A3 2016 and Samsung S5) were tested, and are fully

compliant with the application.

Figure 5.1: Montage used for testing the usability of CameraApp. An Ascella
(See3CAM_CX3ISPRDK) Camera, with an USB3.0 Type-A to Micro-B cable (in blue) was
used, as well as an USB OTG cable (in black). This last one was then connected to the
micro-USB port of a Samsung A3 2016 smartphone.

Once the camera is connected to the CameraApp application, the User must grant the

necessary permissions to enable it. This is a security measurement necessary in Android

systems, Figure 5.2. Once those permissions have been granted, the image stream will

be available in the smartphone screen, as well as user interaction functions for image

capture, burst image capture and image processing settings.

The image capture can be made in two modes, as mentioned, the single capture and

burst capture mode. These are both available by clicking the capture button, displayed

in the CameraApp application, while the stream video is active.

For the single capture mode, the user clicks on the capture button only once, and

the image is saved to the EyeFundusScope folder, created in the internal memory of the

smartphone. The first time this process occurs, permission to write to external storage

needs to be granted by the user, thus a new message appears, in a similar way to the ones

shown in Figure 5.2 A and B.

If the user wishes to take several pictures at once, burst mode should be more effective.

One long click of the capture button will display an Android DialogFragment that allows

the selection of the amount of pictures to save to the EyeFundusScope folder, as shown in

Figure 5.3.

The images are saved in the PNG image format, since it supports lossless compression,

that is in accordance with what was described in Subsection 4.2.3.

For the smartphone used in this tesis, Samsung A3 2016, the resolution of the saved
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Figure 5.2: CameraApp application.A and B show the permissions required for the appli-
cation to access the connected USB device. Once those are granted, message C specifies
the UVC Camera to stream video from. Settings and Capture buttons are now available.

images was 720 x 600 px, because the screen width of this smartphone is 720px. If the

CameraApp is used on another smartphone, with a wider or more narrow screen, then

this value changes, adapting to the new width.

Finally, the low-level control of the camera’s characteristics was one of the objectives

of this thesis, that should evaluate the possibility for such level of control. This proved

to be possible, and image processing can be done to the stream video while it’s being

displayed, as well as save those changes in the captured image. Figure 5.4 exemplifies the

features that can be changed by the user.

Fundus images are captured, as has been said, in low-light environments, causing

EFS prototype to capture images using a white-light LED flash to properly illuminate the

fundus, so that an image can be captured by the system.

This illumination module leads undesired color changes in the fundus photography,

causing it to be heavily weighted towards a yellow-red tonality. This causes retinal pig-

mentation and blood vessels to look exaggerated in the captured image. To reach color

accuracy, White-balance mode should be applied to match the spectral characteristics of

the illumination source [64].

The color balance is achieved by altering the relationship of the RGB color code of

the image pixels. Since in this work the fundus image obtained will appear with the

yellow-red tonality described, a cooler temperature white-balance mode must be applied,
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Figure 5.3: CameraApp burst capture mode. The capture button at the right of the
camera’s ON/OFF button, must be pressed for a few seconds, in order to show the frames
selection DialogFragment (central image). While the Capturing message is being displayed,
the user needs to keep the prototype focused and immobile for capturing.

since this will match the lightning conditions, thus originating an image closer to reality

[64].

CameraApp application features include the control of the white-balance mode, and

for the conditions described during acquisition, the user should change the colors to

the first mode in Figure 5.5, that were obtained with Logitech C270 webcamera, using

CameraApp.

Another important low-level control of the camera sensor for EFS is the ISO value.

Changing this value will brighten or darken the photograph, which is a good tool for

images taken on dark environments. To fully adjust the ISO value, settings like shutter

speed, that controls the amount of light that enters the sensor, should be evaluated, but

at this moment CameraApp can only adjust the brightness value of the stream video/cap-

tured image.

Auto-Focus is automatically enabled for UVC-Compliant Cameras that support it, as

is the case of the Ascella (See3CAM_CX3ISPRDK) Camera, but sometimes, given the

close proximity of the camera to the optical path lenses, focusing the image automatically

results in slightly blurred images. To solve this issue, CameraApp can disable the focus

mode, and it can be adjusted manually by the user.

Contrast describes the separation, in intensity between black and white pixels. This

feature is important in terms of image resolution, helping define image details [67]. This

is also important for EFS, specially in the detection of some of DR characteristics, such

as exudates or hemorrhages, that in early stages are not as noticeable without contrast
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Figure 5.4: Example of low-level control of the camera - Image processing. By clicking the
Settings Button, on CameraApp Toolbar, The parameters displayed in the central image
can be changed for a better image capture/display.

Figure 5.5: CameraApp has a white-balance controllable feature, that can be adjusted
by the user before image capture, by adjusting the value of the white-balance Scrollbar
implemented in the Settings Menu.
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adjustment.

The last adjustable feature in CameraApp is the Gamma Correction, that defines the

relationship between a pixel’s actual luminous intensity and it’s numerical value. The

human eye is very perceptive to changes in dark colors, but camera’s do not function

exactly like that, thus this parameters needs to be adjusted, in order to relate the camera’s

and the human eye light sensitivity [68].

Given the two UVC-Compliant Cameras selected (Section 5.1 are working as expected,

displaying a video stream while taking pictures of the fundus, it is expected that all

cameras, even future ones, that are still not available in the market, are fully compliant

with the Interface created, provided the Vendor-ID number of the device is known.

In 2005, there were twenty-six vendors with UVC-Compliant Products, number that

seems to be rising. This proves to be a very good feature for this application, since

the interface created won’t require time consuming changes to fully integrate a different

UVC-Compliant camera that emerges in the market, with better features for EFS’s Optical

System [69].

Adding an UVC-Compliant camera to EFS has clear advantages as the maintenance of

the optical alignment of the system, and the image characteristics, despite the Android

Smartphone being used, but the low-level control of the camera is also very important. Ta-

ble 5.2 establishes the comparison between the controllable parameters for both cameras,

in order to evaluate if the requirements for taking a photograph of the human fundus can

be fulfilled by both.

Table 5.2: CameraApp and Enhanced Camera API low-level controllable parameters
comparison.

Low-Level Parameters CameraApp: UVC-Complian Cameras Smartphone Cameras
Brightness Yes Yes

ISO No Yes
Contrast Yes Yes

Shutter-Speed No Yes
Gama Yes Yes

White-Balance Yes Yes
Auto-Focus/Manual-Focus Yes Yes

Manual-Focus Yes Yes

Despite not being able to control ISO and Shutter-Speed, due to limitations of the

libraries used in the development of CameraApp, the application can already manage to

alter many other image settings. This way, it was proved in this work that it is possible to

control low-level camera parameters relevant for the capture of such images, but there is

still work to be done in this field.

It is also important to refer that the settings on Table 5.2 only work on cameras that

posses such parameters, thus it’s important, when selecting an UVC-Compliant camera,

in case of CameraApp, or a smartphone, for Enhanced Camera API, that this features are

evaluated.
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5.2.1 Field-of-View Prototype Results

The usability of the CameraApp developed in this thesis, as well as the capabilities of the

resulting imaging path were tested in the Optics Instrumentation Laboratoty of Faculdade

de Ciências e Tecnologias - NOVA University of Lisbon. A montage, as the one seen in

Figure 5.6 was used, being constituted by the following components:

• Optical Post Holders.

• Optics Table.

• Millimeter paper.

• 35mm PCX Lens.

• EFS prototype (constituted by 3D printing prototype and several lenses for light

refraction and optical alignment).

• Samsung A3 2016 Smartphone.

• Logitech C270 webcamera, with a 3D printed support.

• Ascella (See3CAM_CX3ISPRDK) Camera.

• Right Stand support.

• Three Prong Extension Clamp.

• USB OTG cable [70].

• USB 2.0 camera cables (from the respective vendors).

The Optical Table, Optical Post Holders, the 3D printed support and Right Stand

support mounted with a Three Prong Extension Clamp helped with the systems Op-

tical Alignment, keeping the PCX lens, the millimeter paper and the respective UVC-

Compliant cameras in place for the acquisition tests.

The millimeter paper had the main purpose of replacing the retina, where the image

is formed, since it is a graduated target, that facilitates the measurement of the FOV. A

35 mm focal PCX lens was placed at the end of the EFS prototype to replace the eye’s

refractive center, and the two UVC-Compliant Cameras, Logitech C270 webcamera and

Ascella (See3CAM_CX3ISPRDK) Camera, were placed at the right of the final prototype

lens, one at a time, and they were connected to the smartphone using the USB OTG and

the respective USB 2.0 camera cables.

The millimeter paper was aligned so that it would be centered and perpendicular

to the optical axis, but given the EFS prototype was used as the optical path for light

reflection and refraction, and since it can’t be fixated to the Optics Table, it was difficult

to do this exactly, thus the resulting images are not completely centered.
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Figure 5.6: Montage used for obtaining the FOV of the optical system. The distance
from the millimeter paper and the PCX lens is given by dtl and dlp is the distance from
the PCX lens and the EFS prototype end. The camera used alternated between the two
UVC-Compliant cameras tested and the Nexus 5X smartphone camera. For the setup
presented in this image, Logitech C270 webcamera was used, as close to the prototype as
possible. For the final tests presented in this work dtl=50mm and dlp=0mm, instead of
the distances represented in this figure.

As mentioned in Section 5.1, Table 5.3 resumes the AFOV values of the three tested

cameras, so that conclusions about the FOV of each camera can be established. The

EFS prototype was dimensioned specifically for the Nexus 5X smartphone camera, that

according to its specifications [71], has a 4.54mm width sensor and a 4mm focal length.

This way, the Nexus 5X AFOV was calculated, according to equation 5.1, resulting in an

approximately 60º AFOV value.

AFOV (rad) = 2∗tan−1(0.5∗ 4.54mm
4mm

)↔ AFOV (rad) = 1.032rad→ AFOV = 59.14o (5.1)

Table 5.3: AFOV values of the three cameras tested, [42, 45].

Logitech C270
webcamera

Ascella
(See3CAM_CX3ISPRDK)

camera
Nexus 5X camera

AFOV 60º 70º 60º

The results obtained for the FOV calculation, with the two UVC-Compliant cameras

are shown in Figure 5.7. Another test, using the same configuration, was performed with
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the Nexus 5X smartphone, for comparison with the results of the cameras studied as

possible to integrate in the EFS prototype, Figure 5.8.

The mounting configuration of the EFS prototype and the Nexus 5X smartphone was

different from the two UVC-Compliant cameras. For maintaining the optical alignment,

the Nexus 5X smartphone must be placed in a specific cover, as shown by the scheme in

Figure 3.6, that sets the distance between the smartphone camera and the prototype lens

at 20mm.

The UVC-Compliant cameras were set as close as possible to that same lens, using

a montage similar to the one presented in Figure 5.6. The distances dtl=50mm and

dlp=0mm, were the same for all three tests. Nexus 5X smartphone and Ascella images

were obtained using AutoFocus feature and Logitech C270 webcamera image with fixed

focus, since it doesn’t support AutoFocus mode.

The light conditions were also different between the UVC-Compliant Cameras and

the Nexus 5X smartphone, since this last one used a white-Led as illumination source for

image acquisition. As has been said, the CameraApp developed in this work also allows

the control of a white-Led, with the same purpose, but this Led is still on the board for

the internal fixation point actuators, since its purpose it’s to be controlled simultaneously

with this points for the capture of a wider fundus. Since the board has not yet been

integrated inside the prototype, the images for this two cameras were obtained only with

the room’s natural light, thus resulting in darker images then the one obtained with the

Nexus 5X, as is visible on images 5.7 and 5.8.

In order to calculate the FOV, the distance 2r was measured, from edge to edge

on the image of the visible scale, set by the millimeter paper. The FOV calculations

followed equation 2.2, and the results for the Logitech C270 webcamera and Ascella

(See3CAM_CX3ISPRDK) are displayed in Figure 5.7.

The FOV for the three images was calculated based on Equation 5.2, being Xdistance
the distance in any direction between the center and the circumference limiting the

observable area and dtl is the distance between the refractive center, represented here by

the PCX lens, and the target in the millimeter paper.

FOV (o) = 2 ∗ tan−1(
Xdistance
dtl

) (5.2)

FOV results with Logitech C270 webcamera, Figure 5.7a:

FOV (o) = 2 ∗ tan−1(
31mm
50mm

)⇔ FOV (o) = 63.60o (5.3)

FOV results with Ascella (See3CAM_CX3ISPRDK) Camera, Figure 5.7b:

FOV (o) = 2 ∗ tan−1(
26mm
50mm

)⇔ FOV (o) = 54.94o (5.4)
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a Millimeter paper photography using Logitech C270 webcamera

b Millimeter paper photography using Ascella (See3CAM_CX3ISPRDK).

Figure 5.7: Results obtained with Logitech and Ascella (See3CAM_CX3ISPRDK) Cameras,
with the montage in Figure 5.6. The FOV values were obtained by measuring the visible
area, and using equation 5.2.
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Figure 5.8: Results obtained with Nexus 5X smartphone camera, with the montage in
Figure 5.6.

FOV results with Nexus 5X smartphone Camera, Figure 5.8:

FOV (o) = 2 ∗ tan−1(
24mm
50mm

)⇔ FOV (o) = 51.28o (5.5)

Due to the distance between the prototype lens and the cameras, even though the

Logitech C270 has a 60º AFOV, that is the same value of the Nexus 5X smartphone AFOV,

the final FOV, calculated in Equations 5.3 and 5.5 differ from one another in about 11º,

resulting in a cropped image and a wider FOV for the Logitech C270 webcamera. This

should be solved if the webcamera were set at about 20mm further from the prototype

lens, as it happens with the Nexus 5X camera.

Through equation 5.4, it was possible to obtain the FOV for the camera Ascella

(See3CAM_CX3ISPRDK), that is 54.64º. This value is slightly higher then the Nexus

5X smartphone camera FOV, as expected, since the AFOV of this camera is 70º, being 10º

larger then the Nexus 5X AFOV.

Due to this difference, in Figure 5.7b, it’s possible to see, on top of the image, a line

and a small dark square. These constitute the beamsplitter, used for the diffraction of the

light rays to obtain the final image. If in the future, this camera is fully integrated in the

EFS prototype, some changes to the optical system are required in order to suppress this

issue.

The image analysis evaluated the existence of aberrations qualitatively, since there

were no methods available for a quantitative analysis. The images obtained in Figure

5.7 are very clear, demonstrating that there are no undesired reflections that could cause

problems in DR diagnosis, since these can cover some important parts of the fundus.
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A small percentage of aliasing was detected, that is demonstrated by the blur closest to

the periphery of the millimeter paper. This characteristic is normal, since the prototype

lenses are curve, given the fundus of the human eye is also curve. Since the millimeter

paper used for the tests was set in a plain surface, some aliasing was expected, that is

completely disappears when the photographed surface as a round shape. This can be

confirmed by Figure 5.9, taken using EFS prototype with the Nexus 5X smartphone

camera, to an eye model.

Figure 5.9: Eye phantom model image captured using Nexus 5X smartphone and the
current EFS optical system prototype. Aliasing is very reduced when comparing to the
plain millimeter paper images captured, despite revealing some chromatic aberrations
closest to the borders of the eye model.

5.3 Android Camera Application: Internal Fixation Targets

The capture of a fundus image is done at low-light environment conditions, thus the need

to use an IR LED, to allow the streaming of the fundus image without requiring the use

of a white LED that can damage the eye if used for a long period of time, at a very close

distance. For this reason, the IR LED is turned ON at the same time as the matrix LED’s,

on the different acquisition positions. The white LED is used to capture the image, thus

it is light ON when both the IR LED and the matrix LED’s are turned OFF.

Since the image needs to be well centered, in order for the outcome to be the best

possible, the person that is handling the EFS prototype will have to hold it in front of the

patient’s eye, and move it closer or further away from it, until the image that appears on

the screen is well focused and the desired regions of the eye are in display.

This way, two modes are available in the UI, as seen in Figure 5.10:

• Testing mode
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• Acquisition mode

Figure 5.10: CameraApp has control over the ATmega2560 board in order to light
ON/OFF the LED matrix, IR-light and white-light LEDs for acquisition. This is done
by writing specific commands, described at the User Guide, in an Android EditText box,
identified as "Target". Left image: No Targets selected, the matrix LEDs are OFF. Center
image: The user selected Target "a", turning ON the Acquisition mode for Left Fixation
Points. Right image: User Guide to assist the user in the selection of the Target Actuators.

These two modes are very similar, working under the same principle. In the Android

Application, there is an Handler that converts the message sent through the form of a

String into an Arduino Char (single character) Command. The characters are defined in

an Arduino IDE .ino file, and they define the way the matrix LED’s are turned ON/OFF,

as well as the way the IR LED and White LED are displayed.

For the Testing mode, only the IR LED and the matrix LED’s are used, since the aim

of this mode is to assure that the fundus is well centered in the image display.

The Acquisition Mode is automatic and it must be used after Testing Mode, given this

mode is automatic and runs on only 15 ms, the centering of the image will be very difficult

for the user. It is important that the user keeps as still as possible during acquisition, so

that the outcome is the best possible. The command sent in Acquisition Mode must be

the capital letter of the one sent in Testing Mode, since these correspond to the same LED

positions, differing only in the way the acquisition is set.

In this mode, all the LED’s connected to the Breadboard are used, as explained before.

The IR LED and the specified matrix LEDs will both be light ON during 5 seconds, so that

the patient fixates the light of this last ones. After those 5 second, both the LED matrix

and the IR LED are turned OFF, simultaneously with the white LED being turned ON.
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This step is very quickly (15 ms), since we must consider the response time of the human

eye, so that the patient doesn’t lose focus of the fixation target.

As it was studied, the time that an average person takes to detect a change in a viewed

image is around 12-15ms. This way, if a change in a given scenario occurs under this

small interval of time, a observer won’t notice any changes. For the case being studied,

this means that when the process of turning the matrix LED ON and OFF, if the 12-15ms

time is exceeded, the patient will notice that the red LED light is not in the same position,

and there is a great chance that he loses track of the target.

Since the time interval referred is very small, it is likely that the captured image will

require some image processing.
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6
Conclusions

Diabetic Retinopathy is a pathology that affects millions of people worldwide, being the

leading cause of avoidable blindness for adults with working age. There already exist

some mediums for DR diagnosis, but these are either too expensive, non-portable or not

very accurate. This way, EyeFundusScope prototype was developed, being a handheld

medical smartphone based imaging device for DR assessment. This prototype is currently

uses the smartphone’s camera for capturing the fundus image, but despite being a good

solution, it still needed improvements, thus the four main objectives of this thesis were

set:

• Research the use of dedicated camera boards, to use in the prototype developed by

Fraunhofer.

• Evaluate the use of UVC compliant cameras, because they are natively supported

by most operative systems.

• Establish a communication protocol to allow the Android smartphone to control

the camera and to display a preview stream during capture.

• Define a protocol for data acquisition with actuators for internal fixation points.

• Develop an approach for low level (highly parametrized) control of high resolution

and low cost camera modules.

The use of external cameras was evaluated in this thesis, reaching the conclusion that

the best cameras to integrate in the EFS prototype should be UVC-Compliant cameras,

given their easier integration in terms of not requiring specific drivers, being easily inte-

grated based on the UVC-Protocol, being simple Plug&Play devices and their small size

dimensions for prototyping.
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The UVC-Compliant cameras selected for the prototype integration were Logitech

C270, Ascella (See3CAM_CX3ISPRDK) and e-CAM51_USB cameras. This last one, was

taught out to be the better choice amongst the three selected, given its characteristics,

that include:

• 60º FOV, that’s the same as the Nexus 5X smartphone used for the optical system

developed. This would suppress the need for altering this system, since cameras

with the same AFOV should produce images with the same FOV.

• 5MP Resolution, that is considered the minimum acceptable value for digital fundus

cameras by ISO 10940:2009 [15].

• Good results in capturing low-light environment photographs, given its NoIR func-

tionality.

• Relatively low-price, given its features.

Despite this, due to vendor issues, it couldn’t be delivered during the course of this the-

sis, thus only Logitech C270 and Ascella (See3CAM_CX3ISPRDK) cameras were tested.

In this work, an Android application, entitled CameraApp was developed, success-

fully establishing a communication protocol between Android and UVC Compliant de-

vices, that constituted one of the main objectives of this work. This was accomplished

by the implementation of methods established by [50–52] Open Source Libraries, that

include the USB Video Class devices Protocol, for the control of cameras that support this

driver.

CameraApp features include the video stream from the camera connected through

the micro-USB port of the Android smartphone, with simultaneous capturing, as well as

control over Internal Fixation Target Actuators for peripheral imaging, another objective

of this thesis, that could be achieved.

The Internal Fixation Targets have the purpose to reduce patient eye movement, and

therefore possible image artifacts, as well as enabling the capture of pictures of several

angles of the retina, for posterior application of stitching, in image processing. This creates

the possibility of capturing a wider area of the fundus.

This feature was added to the CameraApp developed, by establishing a protocol to

allow the communication between Android devices and an ATmega2560 board.

Using only the CameraApp application and the micro-USB port of the smartphone,

the user handling the EFS device can write specific commands, described in the applica-

tions support page, that are then converted to binary data that is sent to the serial port pf

the ATmega2560 board.

This board is programmed to receive the binary data and execute specific tasks related

to the light ON/OFF of the matrix LEDs, as well as the IR and white LEDs. This can

be done simultaneously to the control of the UVC-Compliant Camera, that can also be

plugged in the micro-USB port of the smartphone, using a USB-hub.
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For acquiring images of the fundus, with the current EFS prototype, and without a

NoIR camera, the white LED mentioned above is required for the illumination of the

dark fundus. For patient comfort, this LED will be turned ON only during the image

capture, and it needs to be perfectly synchronized with the fixation and the IR LEDs, so

that these do not interfere with the acquisition, causing unwanted aberrations. For this

to be possible, and for the patient to keep its eye focused on the target, the acquisition

must be done under 15ms, the time response for the human eye.

Given this period of time is so small, two modes were set, given the necessity of

fixating the EFS prototype in front of the patients eye prior to the acquisition.

This way, the communication protocol included in CameraApp, for the control of

Internal Fixation Targets includes a Testing mode, for the user to center the retina before

capturing, and an Acquisition mode, that automatically photographs the fundus.

As for the low-level control of the camera, a settings menu is also available in the ap-

plication developed, with the possibility to enable/disable auto-focus, adjust brightness,

contrast and gamma values. Besides, it is possible to select High temperatures White Bal-

ance. Despite this, for the full control of the image sensor parameters, ISO, shutter speed

and aperture control must be added. This features are important, given the photographs

of the human fundus are made in low-light environment conditions.

Prior to this work, Fraunhofer’s EFS used Enhanced Camera API for control of the

smartphone camera settings. In comparison to the settings controlled by the CameraApp

developed, Enhanced Camera API is able to control a wider range of smartphone camera

parameters, thus this is a disadvantage of CameraApp.

Nevertheless, CameraApp successfully established the synchronous control of UVC-

Compliant cameras and internal fixation point actuators, that Enhanced Camera API

did not include. Besides, some control of the camera settings is also possible, despite

requiring some improvements, namely referring to ISO and shutter speed control.

This constitutes a great advantage, since single field fundus pictures are many times,

not enough to provide an accurate diagnosis for DR. Internal Fixation Targets solve this

issue [25].

This additional communication also set the difference between CameraApp and other

Android Applications for the use of UVC-Compliant Cameras, such as the Webeecam

application developed by Cypress [72], thus constituting a very strong improvement

point brought out by this work.

With the work developed in this thesis, and the good results obtained in terms of

FOV values and image aberrations lead to the conclusion that the integration of UVC-

Compliant cameras in the EFS prototype, for DR assessment it’s an asset.

Such cameras can guarantee the prototype’s optical alignment is better then the smart-

phone cameras currently used. This can be said because smartphone cameras differ

greatly according to manufacturers. The main aspects of this cameras for EFS integration,

such as the AFOV value, that needs to be in accordance with the one that was set out

for the optical system acquisition, and the camera placement in the smartphone, cause
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issues that originate ergonomic difficulties. This can lead to bad images of the fundus,

that originate wrong diagnosis.

Solving this issues surpasses any issues related with the inevitable project cost increase

that the integration of this cameras adds, when compared to the use of a smartphone

camera.

Furthermore, the addition of the internal fixation point actuators, controlled simul-

taneously with the UVC-Compliant cameras, using the same CameraApp application

developed in this work, constitute an important improvement for EFS in terms of com-

petition with other devices already existent in the market, as was mentioned in Section

4.1.

6.1 Future Work

The work developed in this thesis lead to important conclusions for the development of a

screening device for DR assessment, as established in the begging of this Chapter. Besides

this conclusions, some improvement points were also pointed out, leading to this future

work section.

The prototype integration of the UVC-Compliant camera selected, as well as the

Internal Fixation Point Actuators, to provide the best outcome from a perfectly aligned

optical path for DR assessment should be accessed.

Low-level control of the highly parametrized camera module should be enhanced,

specially for the enabling of controllable parameters such as ISO, shutter-speed and

exposure time. Besides, this type of control should be more automatized, in a way that a

CameraApp user could just adjust the prototype in the desired position, and the camera

settings would automatically be perfected for that particular environment. This would

be a very good feature for EFS, since the patient needs to keep it’s eyelids open during

the examination. If the user doesn’t have the need to adjust the camera parameters, then

the process should be much faster and commode, possibly increasing the quality of the

fundus image.

Another possibility to be explored is the integration of the camera module with Fraun-

hofer Enhanced Camera API, so that an external UVC-Compliant cameras can be added

to the library and its use can be simplified for other developers.

A set of resolution tests should be performed, given its importance for the assessment

of the fundus image quality, that is one of the factors affecting the DR diagnosis.

Internal fixation target actuators should be enhanced in the future by replacing the

current electronics, constituted by the Arduino Mega ATmega2560 and LED matrix by a

BackPack with integrated eletronics 1. This would diminish any issues related with the

bad connections of those two components due to ruined wires, for instance, and make

the prototype more compact.

1https://www.adafruit.com/product/870
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6.1.1 Resolution Tests

As described in Subsection 4.2.3, Resolution and Color Depth represent two factors, that

have major influence in the quality of captured images. If image resolution is not good

enough, it may not detect structures related to DR, such as microaneurysms, that in early

stages where treatment is more effective, have sizes in the order of µm.

This way, as future improvements of this work, an array of tests must be performed,

by the use of specific targets that can evaluate with high accuracy if the imaging system

quality is enough to be used as a diagnosis method for DR assessment.

Since this targets were not available during the course of this thesis, the tests couldn’t

be performed, but a protocol is here suggested in order to conclude this task.

To accurately measure Resolution, targets such as 1951 USAF Resolution Targets can

be used, since these constitute a standard test for imaging systems. This targets consist on

three vertical and three horizontal bars, equally spaced from each other. The resolution

is the measured based on the bar width and space, where the length of the bars is equal

to five times the width of a bar. Vertical bars are used to calculate horizontal resolution

and horizontal bars are used to calculate vertical resolution [73].

By then, resolution can be measured quantitatively, in terms of line per millimeter

(lp/mm), applying Equation 6.1 to the measurements obtained. GroupNumber and Ele-
mentNumber indicate the group and element number of the bars that are starting to look

blurred in the photograph taken with the imaging system’s camera. An actual represen-

tation of group and element numbers is represented in Figure 6.1a [73].

Resolution(lp/mm) = 2 ∗ (GroupNumber +
ElementNumber − 1

6
) (6.1)

a 1951 USAF Resolution Targets [73]. b X-Rite ColorChecker [74].

Figure 6.1: Resolution test targets suggested for implementation as future work.

Color depth tests take in consideration the true color balance of the acquired image.

This kind of tests consist on photographing a color palette, as the X-Rite ColorChecker
2, provides a non-subjective comparison with a test-pattern of 24 specifically prepared

2https://www.xrite.com/pt–pt/categories/calibration–profiling/colorchecker–passport–photo
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colored squares, Figure 6.1b. Each color square represents a natural object color, such as

the human skin, blue sky colors, amongst many others, to provide a qualitative reference

to quantitative values [75].

The quantitative analysis is done by measuring the Dynamic Range of the imaging

system. This can be done by comparison of the color target and the image captured with

the imaging system [76].

In order to assure the best results, the tests mentioned should be applied after the

integration of the UVC-Compliant camera and the Internal Fixation Target Actuators in

the prototype, as the optical alignment presents major impact on image quality, thus it

should be specific for the camera integrated.
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