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Abstract

Forest literature uses both continous and discrete time models to study
forest management problems, and when carbon sequestration benefits are
considered, the results obtained in both approaches are not always equiv-
alent. This issue is relevant from a policy point of view if credits are
to be allocated to forest owners within the implementation of the Kyoto
Protocol. This note explores the impact of different carbon sequestration
accounting methods on both settings. It studies the specific conditions for
optimal rotation period and the value of a marginal unit of bare land on a
one stand model and compare them with the long run optimal stationary
steady state of a forest vintage model.
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1 Introduction

The implementation of the Kyoto Protocol and the important role that may

be played by forests in the global carbon cycle to limit the impact of GHGs

emissions, has brought the consideration of carbon sequestration benefits to the

center of recent developments in the context of forestry literature.

Two alternative frameworks to model forest management problems have been

typically considered: the one stand optimal rotation model à la Faustmann,

based on a continuous time framework and the multi-vintage age class model

leading to the fully regulated or normal forest, using a discrete time model.

For the multiple vintage forest model, Salo and Tahvonen [1], [2] and [3],

were able to provide a full proof for the optimality of the long run equilibrium

of a normal forest based on the Faustmann rotation period, that is, the one that

maximizes present value from timber production. The results are based on a

strictly concave utility function for timber harvesting and positive discounting,

as well as on the possibility of allocating part of the land to other uses. Following

their approach, Costa-Duarte, Cunha-e-Sá and Rosa [9] extend the results on

the existence of optimal stationary steady-states to the case where optimal use

of land also considers the benefits from carbon sequestration. In fact, when

introducing carbon sequestration benefits in a multi-vintage model, the long

run equilibrium is again the normal forest based on the Faustmann rotation

period.

The approach based on a one stand continuous time rotation model has also

been considered in the literature. In particular, Van Kooten, Binkley and Del-

court [4] modeled a scheme to allocate carbon credits, under which the carbon

credit cash flows are a function of the annual change in the forest carbon stock

(carbon flow regime), Spring, Kennedy, and Nally [6] study the effect of carbon

sequestration, fire frequency and water scarcity in tree harvest decision, while
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in Cunha-e-Sá and Rosa [5] different carbon accounting methods are introduced

in the model of the private forester with constant and rising carbon prices.

The results obtained in both approaches are not easily comparable not only

because the assumptions differ significantly, but also due to the continuous ver-

sus time discrete analytical setting.

This note studies the impact of carbon sequestration benefits on both set-

tings. The one stand model is formalized both as a discrete and continuous time

one, to make results more easily comparable.

In order to compare forest carbon sequestration with avoided emissions the

IPCC Special Report on Land Use, Land-Use Change and Forestry [7] considers

different accounting methods to apply to forest or land use change investment

projects, namely, the stock change method, the average stock method and the

tonne yearly crediting. Different versions of these three carbon sequestration

accounting methods are used in this note to model carbon credit regimes and

to study their impact on the models referred above.

The remainder of the paper is organized as follows. In section 2, three

formalizations of forest models are presented, the one-stand continuous and the

one-stand discrete time models and the multi-vintage model. In section 3, 4

and 5 we introduce carbon sequestration benefits in the models, using carbon

flow, tonne year crediting and average storage accounting methods, respectively.

Finally, conclusions are presented.

2 Forest Models

2.1 One-Stand Continuous Time Model

The one stand model is an extension of the Faustmann rotation model where

the main assumptions are a continuous timber growth function, constant timber

prices, constant technology and a constant discount rate, r. The main results
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are summarized in Aronsson and Lofgren [8] ,Theorem 1- ”A Forest stand should

be harvested when the change in its value with respect to time is equal to the

interest on the value of the stand plus the interest on the value of the bare land”.

Let us assume that the timber price is constant and given by P, the biomass

content in timber per unit of land is a continuous function depending on the age

trees s, and is given by f(s), s = ]0, n[ , where n represents the age class where

timber growth is maximum and e−rt is the continuous time discount factor.

By extending the typical one stand multiple rotation model to the presence

of carbon sequestration benefits, the optimal rotation period is the one that

maximizes the present value of net benefits from timber production and carbon

sequestration, as follows:

V (T ) =Max
T

∙
Pf(T )

e−rT

1− e−rT + S(T )
1

1− e−rT

¸
(1)

where S(T ), represents the present value of net carbon sequestration benefits

during a rotation period.

The value of S(T ) depends not only on the accounting method considered,

in this note, the carbon flow method, the tonne-year crediting and the average

carbon storage, respectively, but also, on the specific payment schedule, namely,

whether the payments are due continuously or only at harvest time and how

payments are defined.

For the moment, let us assume S(T ) = 0. The forest owner’s problem consists

of choosing the optimal rotation period T , for all possible age trees.The optimal

rotation period is given by the usual first order condition:

f 0(T )

f(T )
=

r

1− e−rT

and the value of a unit of bare land given by:

V (T ) =
Pf(T )e−rT

1− e−rT (2)
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2.2 One stand Discrete Time Model

Let us now formalize a similar one stand model as a discrete time model. We

assume that the timber price is constant and given by P , and fs represents

the biomass content in timber per unit of land with trees of age class s, where

0 ≤ f1 ≤ .... ≤ fn. As in [9], n represents the age class where timber growth is

maximum and b is the discrete time discount factor.

Under these assumptions, the one stand multiple rotation model can be

rewriten as a dynamic programing model. Let Vs(fs) represent the value of one

stand with trees of age s

Vs(fs) =Max {Pfs + Ss + V0(f0); b(Pfs+1 + Ss+1 + V0(f0))} (3)

that is, the maximum between the value of the timber plus carbon benefits that

the forest owner receives if he decides to cut, and the maximum amount that

he could get if he decides to delay the cutting time for one period.

Here again, the carbon benefits received by the forest owner in a one stand

model will depend not only on the accounting method but also on the specific

payment procedures, that is, whether the payments are due in an yearly basis

or only at harvest. In all cases presented in the next section, Ss represents the

value received by a forest owner with trees of age s. For the moment, let us

assume Ss = 0, for all s.

The forest owner’s dynamic programing problem consists of choosing the

optimal cutting time m, from all possible age trees.

Given (4) and b < 1, at n it is always optimal to cut, meaning that no tree

of that age will remain.

Vn(fn) =Max {Pfn + V0(f0); b(Pfn + V0(f0))} (4)

Therefore, the optimal cutting time (also, the optimal rotation period) must

satisfy 1 < m < n, and at m it has to be the case that the forest owner has
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neither incentive to postpone harvest nor to cut earlier. Thus, it has to be the

case that given

Vm(fm) =Max {Pfm + V0(f0); b(Pfm+1 + V0(f0))}

and

Vm−1(fm−1) =Max {Pfm−1 + V0(f0); b(Pfm + V0(f0))}

the two following conditions (5) and (6a) must hold simultaneously at m,

Pfm + V0(f0) ≥ b(Pfm+1 + V0(f0) (5)

Pfm−1 + V0(f0) ≤ b(Pfm + V0(f0)) (6a)

Let us assume that m is unique. Then, if it is optimal to cut at m, it is optimal

to delay harvest for all age trees s < m, and the maximum value of a unit of

bare land is given by:

V0(f0) =Max {V0(f0); bm(fm + V0(f0))} =
bmPfm
1− bm (7)

which is the same as the one resulting from the optimal solution of the multi-

vintage model (20), and is also the same solution that we obtain in the usual

one stand continuous time model (2).

Substituting (7) in (5) and (6a), and rearranging terms we have:

Pfm(
1− bm+1
1− bm ) > bPfm+1 => fm> fm+1(

b− bm+1
1− bm+1 ) (8)

Pfm(
b− bm
1− bm ) > Pfm−1 => fm> fm−1(

1− bm
b− bm ) (9)

Conditions (8) and (9) are together sufficient conditions for optimality. Adding

both inequalities and rearranging terms leads to a necessary condition that

provides interesting insights:

1

b
≥ fm+1 − fm
fm − fm−1

(10)
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2.3 The Multi-vintage Model

The model used follows closely the multiple vintage forest model developed in

Salo and Tahvonen [3], which can be summarized as follows. The model assumes

multi vintages forest land, where s = 1, ..., n represents the age of trees, xs,t the

area of forest land allocated to the age class s in period t, fs the biomass content

in timber per unit of land with trees of age class s, and 0 ≤ f1 ≤ .... ≤ fn. Land

allocation must satisfy

0 ≤ yt = 1−
nX
s=1

xs,t (11)

that is, total land area equals 1, and yt is the area of land allocated to an

alternative use (agriculture or urban use).

Let us denote by U(ct) =
R
D(c)dc the social utility from timber consump-

tion, where D(.) is the inverse demand for timber, and assume U(.) is a con-

tinuous, twice differentiable, increasing and strictly concave function. Also,

W (yt) =
R
Q(y)dy , where W (.) is a continuous, twice differentiable, increasing

and concave function. Finally, St represents current carbon sequestration ben-

efits at t and depends on the way the benefits from carbon sequestration are

accounted for.1

Thus, the problem of optimal forest harvesting with carbon sequestration

benefits and allocation of land is obtained by maximizing the present value of

social utility from the use of land as follows:

v(x1,0 , ....xn,0) = Max
{xs,t+1,s=1,...n,t=0,...}

∞X
t=0

bt [U (ct) + St +W (yt)] (12)

subject to

ct =
n−1X
s=1

fs (xs,t − xs+1,t+1) + fnxn,t (13)

1This definition of St implicitly assumes that payments to each individual stand owner are
scheduled on a yearly basis.
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yt = 1−
nX
s=1

xs,t (14)

xs+1,t+1 ≤ xs,t, s = 1, .......n− 1 (15)

nX
s=1

xs,t+1 ≤ 1 (16)

xs,t ≥ 0, s = 1, ...., n (17)

for all t = 0, 1..., where St is given by (53), (67), or (108), respectively, depending

on the particular carbon benefits accounting method used. Finally, the initial

land distribution satisfies

xs,0 ≥ 0, s = 1, ...., n,
nX
s=1

xs,0 ≤ 1 (18)

Therefore, given the discount factor b, the problem is to choose the next period

state, that is, the land allocation between different vintages and competing uses

of land for all t = 1, ....

The necessary conditions for optimal solutions can be obtained from the

following Lagrangian problem. For (12-18) it can be stated as :

L =
∞X
t=0

bt [U (ct) + St +W (yt)] + λt

Ã
1−

nX
s=1

xs,t+1

!
+
n−1X
s=1

[ps,t (xs,t − xs+1,t+1)]

(19)

where ps,t and λt are the Lagrangian multipliers. While ps,t can be interpreted

as the value of marginal changes in forest land area of vintage s at the beginning

of period t + 1, λt represents the value of marginal changes in land allocation

between forest and alternative uses.

Salo and Tahvonen [3] provide a full proof on the long-run optimality of the

normal forest steady-state for the above problem. When St = 0 , the steady

state optimal condition is given by:

W 0(y∞)
b

1− b −
bmfm
1− bmU

0(
(1− y∞)fm

m
) = 0 (20)
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where m is the Faustmann rotation period satisfying the condition:

bmfm
1− bm ≥

bsfs
1− bs for s = 1, ...., n (21)

3 Carbon flow regime

The carbon flow regime considers that an increase in the forest standing biomass

corresponds to an increase in the carbon stock, and that harvest reduces the

carbon stock. Notice that once carbon has been sequestered, no further carbon

benefits will be obtained. Thus, in this case, what is relevant when modeling

carbon sequestration benefits in a standing forest is the change in the per period

carbon uptake. Finally, carbon released at harvest depends on the final use of

timber and to take into account different uses of timber we introduce a parameter

θ which measures the fraction of timber that is harvested but goes into long-term

storage in structures and landfills.

Two alternative payment procedures will be considered for this accounting

method, whether the carbon net payments are evaluated and due every period

or only at harvest time.

3.1 Continuous time

Case1-Payments are due continuously and are equal to the increase in the value

of carbon sequestration net benefits.

In the continuous time one stand model, S(T ) represents the present value of

net carbon sequestration benefits for one rotation period. Here S(T c), is given

by:

S(T c) = Pcβ

Z T c

0

f
0
(s)e−rsds− Pcβ(1− θ)f(T c)e−rT

c

(22)

We derive the first-order condition of (22) with respect to T c, as follows:

f 0(T c)

f(T c)
=

r

1− e−rT c +
r

1−e−rTc Pcβ
hR T c
0
f 0(s)e−rsds− (1− θ)f(T c)

i
− Pcβθf 0(T c)

Pf(T c)
(23)
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When θ = 0, that is, when no carbon is released at harvest, (23) can be restated

as:

f 0(T c)

f(T c)
=

r

1− e−rT c +
r

1−e−rTc Pcβ
R T c
0
f(s)e−rsds− Pcβf(T c)
Pf(T c)

(24)

Since f(t) is increasing, if it is also strictly concave, the term in square brack-

ets, which can be denoted by carbon balance, is always negative.2 Therefore,

the optimal rotation period may increase relatively to the case without carbon

sequestration benefits, T c > T .

When θ = 1, and all carbon is released at harvest, (23) can be restated as:

(P + Pcβ)f
0(T c)

Pf(T c)
=

r

1− e−rT c +
r

1−e−rTc Pcβ
R T c
0
f 0(s)e−rsds

Pf(T c)
(25)

Here, both sides of the equality increase and the final result on the optimal

rotation period is undeterminate. Numerical examples suggest that rotation

period still increases.

In this case, the value of a unit of bare land is given by:

V (T c) = (P + Pcβθ)f(T
c)

e−rT
c

1− e−rT c + Pcβ(
Z T c

0

f
0
(s)e−rsds− f(T c)e−rT c) 1

1− e−rT c
(26)

The optimal rotation period may increase due to financial gains from pay-

ment schedules. The value of land increases due to long run carbon storage and

to the increased finantial gains.

Case2-Payments are due at harvest and are equal to the value of carbon

sequestration net benefits at harvest time

Assuming now that the payments due to the forest owner are undertaken and

evaluated at harvest, instead of being delivered in a yearly basis, the results are

different. Here S(T c), representing the present value of net carbon sequestration

benefits for one rotation period, is given by:

S(T c) = (Pcβ

Z T c

0

f
0
(s)ds− Pcβ(1− θ)f(T c))e−rT

c

= Pcβθf(T
c)e−rT

c

(27)

2 see Theorem 5 in Aronsson et al, [8]
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In this case, the first-order condition for 0 < θ < 1 becomes:

(P + Pcβθ)f
0(T c)

(P + Pcβθ)f(T c)
=

r

1− e−rT c (28)

which holds for T c = T .

The value of a unit of bare land is:

V (T c) = (P + Pcβθ)f(T
c)

e−rT
c

1− e−rT c (29)

The optimal rotation period is the same as without carbon benefits and the

value of land is increased only if θ > 0.

3.2 Discrete time

Case 1- Payments due every year and are equal to the yearly increase in the

value of carbon sequestration benefits.

Here Ss given by :

Ss =
sX
i=1

bi−sPcβ(fi −
fi−1
b
)− Pcβ(1− θ)fs (30)

Let us define Vs(fs) for Ss given by (30), as follows:

V cs (fs) =Max

(
Pfs + Pcβ

Ps
i=1 b

i−s(fi − fi−1
b )− Pcβ(1− θ)fs + V

c
0 (f0);

b(Pfs+1 + Pcβ
Ps+1

i=1 b
i−1−s(fi − fi−1

b )− Pcβ(1− θ)fs+1 + V
c
0 (f0))

)
(31)

Let

Vn(fn) = Max{Pfn + Pcβ
nX
i=1

bi−n(fi −
fi−1
b
)− Pcβ(1− θ)fn + V

c
0 (f0);

b(Pfn + Pcβ
nX
i=1

bi−1−n(fi −
fi−1
b
)− Pcβ(1− θ)fn + V

c
0 (f0))}

Given that b < 1, and that at n no additional carbon intakes will take place, it

is always optimal to cut.

Letmc be the optimal rotation period for the carbon flow accounting method

case, then for 0 ≤ θ ≤ 1, mc is given by:

Pfmc + Pcβθfmc > b(Pfmc+1 + Pcβθfmc+1)− (1− b)V c0 (f0) (32)
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Pfmc−1 + Pcβθfmc−1 < b(Pfmc + Pcβθfmc)− (1− b)V c0 (f0) (33)

If it is optimal to cut at mc, it is optimal to delay harvest for all age trees

s < mc. Therefore, the maximum value of a unit of bare land is given by

V c0 (f0) =Max

(
V c0 (f0); b

mc

(Pfmc + Pcβ
mcX
i=1

bi−m
c

(fi −
fi−1
b
)− Pcβ(1− θ)fmc + V c0 (f0))

)

=
bm

c

Pfmc

1− bmc +
bm

c

Pcβ
Pm

i=1 b
i−mc

(fi − fi−1
b )

1− bmc − b
mc

Pcβ(1− θ)fmc

1− bmc =

=
bm

c

Pfmc

1− bmc +
Pcβ

Pmc

i=1 b
i(fi − fi−1

b )

1− bmc − b
mc

Pcβ(1− θ)fmc

1− bmc =

=
Pbm

c

fmc

1− bmc +
Pcβθb

mc

fmc

1− bmc = (P + Pcβθ)
bm

c

fmc

1− bmc (34)

as all the other terms cancel out. Taking equation (34) and substituting in (32)

and (33) we have:

(P + Pcβθ)fmc > b(P + Pcβθ)fmc+1 − (1− b)(P + Pcβθ)
bm

c

fmc

1− bmc (35)

(P + Pcβθ)fmc−1 < b(P + Pcβθ)fmc − (1− b)(P + Pcβθ)
bm

c

fmc

1− bmc (36)

Rearranging terms:

(P + Pcβθ)fmc(
1− bmc+1

1− bmc ) > b(P + Pcβθ)fmc+1 => f
c
m> fmc+1(

b− bmc+1

1− bmc+1
)

(37)

(P + Pcβθ)fmc(
b− bmc

1− bmc ) > (P + Pcβθ)fmc−1 => fm> fm−1(
1− bmc

b− bmc ) (38)

We conclude that the sufficient conditions for optimality, (37)and (38), are

the same as (8) and (9), therefore mc = m. If it is optimal to cut at m without

carbon benefits it is also optimal to cut at when they are accounted for.
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Just by comparing (34) with (7) we may conclude that mc = m. In fact, in

this case, the value of a unit of bare land increases the present value of timber

biomass by a constant amount of (Pcβθ).

Alternatively, by rearranging (32) and (33), adding up both inequalities and

collecting terms, we obtain:

fmc+1 − fmc

fmc − fmc−1
<
1

b

∙
P + θPcβ

P + θPcβ

¸
(39)

and the necessary condition (39) is the same condition as (10).

The optimal rotation period is the same with or without carbon benefits and

the value of land is increased only if θ > 0.3

3These results are different from the ones obtained with the continuous time version. They
will be equivalent if Ss is defined as

Ss =
sX
i=1

bi−sPcβ(fi − fi−1)− Pcβ(1− θ)fs (40)

Here we assume that the benefits from carbon sequestration are payed in an yearly basis, but
the discount is applied to the discrete change in the the production value of timber at each
time period. In this case, Vs(fs) for Ss given by (40) can be stated as

V cs (fs) =Max

½
Pfs + Pcβ

Ps
i=1 b

i−s(fi − fi−1)− Pcβ(1− θ)fs + V c0 (f0);

b(Pfs+1 + Pcβ
Ps+1
i=1 b

i−1−s(fi − fi−1)− Pcβ(1− θ)fs+1 + V c0 (f0))

¾
(41)

For 0 ≤ θ ≤ 1, we have

Pfmc − bPcβ(fmc+1 − fmc)− Pcβ(1− θ)(fmc − bfmc+1) ≥ bPfmc+1 − (1− b)V c0 (f0)
(42)

Pfmc−1 − bPcβ(fmc − fmc−1)− Pcβ(1− θ)(fmc−1 − bfmc) ≤ bPfmc − (1− b)V c0 (f0)
(43)

Adding both inequalities and collecting similar terms, we obtain:

fmc+1 − fmc

fmc − fmc−1
≤ 1

b

∙
P + θPcβ − Pcβ(1− b)

P + θPcβ

¸
<
1

b
(44)

where the term in square brackets is lower than one, implying that there may exist a mc > m
for which the optimal cutting time is delayed.
Taking the derivative of the term inside the square brackets with respect to θ, we obtain:

∂
h
P+θPcβ−Pcβ(1−b)

P+θPcβ

i
∂θ

=
P 2c β

2(1− b)
(P + θPcβ)

2
> 0 (45)

Therefore, the term in square brackets increases with θ =c0, 1b

P − Pcβ(1− b)
P

<
P + Pcβb

P + Pcβ
(46)

The delay is larger the lower is θ, as costs of carbon release upon harvest increase.
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Case 2 Payments are due at harvest and are equal to the value of carbon

sequestration net benefits at harvest time.

Here Ss is given by:

Ss =
sX
i=1

Pcβ(fi − fi−1)− Pcβ(1− θ)fs = Pcβθfs (48)

For Ss given by (48), V cs (fs) can be stated as:

V cs (fs) =Max {Pfs + Pcβθfs + V c0 (f0); b(Pfs+1 + Pcβθfs+1 + V c0 (f0))}
(49)

When θ = 0, that is, when no carbon is released at harvest, (49) is the same as

in the Ss = 0 case, and the equivalence result between the two models holds. In

this case, the carbon flow accounting method has no impact, neither in forest

management nor in land allocation.

For 0 < θ ≤ 1, mc must satisfy simultaneously:

Pfmc + Pcβθfmc + V c0 (f0) ≥ b(Pfmc+1 + Pcβθfmc+1 + V
c
0 (f0) (50)

and

Pfmc−1 + Pcβθfmc−1 + V
c
0 (f0) ≤ b(Pfmc + Pcβθfmc + V c0 (f0)) (51a)

If mc is unique, it is optimal to delay harvest for all age trees s < mc. Therefore,

the maximum value of a unit of bare land is given by:

V c0 (f0) =Max
n
V c0 (f0); b

mc

(Pfmc + Pcβθfmc + V c0 (f0))
o
= (P + Pcβθ)

bm
c

fmc

1− bmc

(52)

Alternatively, if mc is unique, it is optimal to delay cutting for all age trees s < mc.
Therefore, the maximum value of a unit of bare land is given by:

V c0 (f0) = Max

⎧⎨⎩V c0 (f0); bmc
(Pfmc + Pcβ

mcX
i=1

bi−m
c
(fi − fi−1)− Pcβ(1− θ)fmc + V c0 (f0))

⎫⎬⎭
= (P + Pcβθ)

bm
c
fmc

1− bmc +
Pcβ

Pmc−1
i=1 bi(1− b)(fi − fi−1)

1− bmc (47)

Here, as in (26) even for θ = 0, the crediting regime has a positive impact on both forest
management and the value of forest land.
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Also, rearranging (50) and (51a), adding both inequalities and collecting similar

terms, we obtain again necessary condition (39), meaning that (mc = m), for

0 ≤ θ ≤ 1.

The optimal rotation period is the same as without carbon benefits and the

value of land is increased only if θ > 0.

3.3 Multi vintage model

Under similar assumptions, the current net benefits from carbon sequestration

at any period t, St, for the multi-vintage model, can be represented as follows:

St = Pcβf1x1,t +
nX
s=2

Pcβ(fs −
fs−1
b
)xs,t − Pcβ(1− θ)ct (53)

where the first two terms represent the value of the carbon stock increase in

forest standing biomass, in period t, for all the area of forest land, and the last

term represents the value of the decrease in the carbon stock due to timber

harvesting.

This model formalizes the social planner’s perspective and it is equivalent

to a situation where in the stationary steady state payments are done yearly to

forest owners of all vintages age classes.

Assuming that m is unique, for a stationary state, we have that ps,t = ps,∞,

ct = c∞, yt = y∞, λt = 0, and xm,t = x∞, where c∞, y,∞, x∞, and ps,∞, for

s = 1, ..., n− 1, are constant. From Costa-Duarte et al [9]:

ps =W
0(y∞)

s−1X
i=0

b−i − fs [U 0(C∞) + βpcθ] , s = 1, ..., n (54)

for s = 1, ..., n,.

From s = m, and given that, pm,∞ = 0, with some more algebra, we can

write the following steady-state condition:

W 0(y∞)
b

1− b −
bmfm
1− bmU

0(
(1− y∞)fm

m
)− bmfm

1− bmβpcθ = 0 (55)
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The rotation period and the value of a unit of bare forest land in the long

run optimal stationary steady state of a forest vintage model is equivalent to

both cases of the discrete single-stand rotation model. The optimal rotation

period is the same as without carbon benefits and the value of land is increased

only if θ > 0. The one stand continuous time model has additional financial

gains derived from the fact that payments are due continuously.

4 Tonne-year crediting

The tonne-year accounting method consists of crediting a forestry project with

a fraction of its total yearly GHG benefit. This fraction is based on the stock of

carbon stored each year, which is then converted, using (Ef ), to its equivalent

amount of preventing effect.4

The aim of this accounting method is to provide an yearly revenue for the

forest owner. Therefore, only this case will be considered.

4.1 Continuous time

Under these assumptions, S(T t), the present value of the continuous net benefits

from carbon sequestration during a rotation period, can be represented by:

S(T t) = PcβEf

Z T t

0

f(s)e−rsds (56)

where we consider that the payments due to the forest owner are undertaken

continuously. The first-order condition for the forest owner problem, with S(T t)

given by (56), can be stated as follows:

f 0(T t)

f(T t)
=

r

1− e−rT t +
r

1−e−rTt PcβEf
R T t
0
f(s)e−rsds− PcβEff(T t)
Pf(T t)

(57)

4Here, we consider Ef constant. This assumption is consistent with Moura-Costa and
Wilson’ [10] approach, and also with Fearnside et al. [11], if in this last case we assume
that the equivalence factor measures only the benefit of storing carbon in the forest for one
additional year. To be fully consistent with Fearnside et al. [11], the equivalence factor should
be different for each age class s, that is, Ef (s).
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Similarly, using the result in Aronsson et al [8], we conclude that the carbon

balance is negative. Therefore, the optimal rotation is increased T t > T .5

In this case the maximum value of a unit of bare land is given by:

V (T t) =

"
Pf(T t)

e−rT
t

1− e−rT t + (PcβEf
Z T t

0

f(s)e−rsds)
1

1− e−rT t

#
(58)

The optimal rotation period is increased and also the value of land due to

the accounted carbon benefits.

4.2 Discrete time

Under the above assumptions, the current net benefits from carbon sequestra-

tion for a stand of tree with age s, Ss can be represented by:

Ss = PcβEf

s−1X
i=1

bi−sfi (59)

Let us define Vs(fs) for Ss given by (59) as follows:

V ts (fs) =Max

½
Pfs + PcβEf

Ps−1
i=1 b

i−sfi + V
t
0 (f0);

b(Pfs+1 + PcβEf
Ps

i=1 b
i−1−sfi + V

t
0 (f0))

¾
(60)

Let mt be the optimal rotation period in the ton-year accounting method case.6

In this case, mt must satisfy simultaneously:

Pfmt − PcβEffmt ≥ bPfmt+1 − (1− b)V t0 (f0) (61)

and

Pfmt−1 − PcβEffmt−1 ≤ bPfmt − (1− b)V t0 (f0) (62)

Again, if mt is unique, it is optimal to delay cutting for all age trees s < mt.

Therefore, the maximum value of a unit of bare land is given by:

V t0 (f0) =Max

⎧⎨⎩V t0 (f0); bmt

(Pfmt + PcβEf

mt−1X
i=1

bi−m
t

fi + V
t
0 (f0))

⎫⎬⎭ =

5With this accounting method, and if carbon sequestration benefits are high compared to
timber value, it may be optimal to never cut or to cut trees at an age greater than n.

6With this accounting method, and if carbon sequestration benefits are high compared to
timber value, it may be optimal to never cut or to cut trees at an age greater than n.
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=
Pbm

t

fmt

1− bmt +
PcβEf

Pmt−1
i=1 bifi

1− bmt (63)

Equation (63) is equivalent to the optimal solution of the multi-vintage model

(69), and similar to (58) of the continuous time model..

Taking (63) and substituting in (61) and (62), and rearranging terms, we

have the following sufficient conditions:

Pfmt≥Pfmt+1(
b− bmt+1

1− bmt+1
) + PcβEffmt(

1− bmt

1− bmt+1
)− ( 1− b

1− bmt+1
)(PcβEf

mt−1X
i=1

bifi)

(64)

Pfmt ≥ Pfmt−1(
1− bmt

b− bmt )−PcβEffmt−1(
1− bmt

b− bmt ) + (
1− b
b− bmt )(PcβEf

mt−1X
i=1

bifi)

(65)

It is not possible to infer directly from (64) and (65) if the optimal cutting time

is delayed or advanced. Alternatively, adding up(61) and (62), and rearranging

terms we obtain the following necessary condition for optimality:

fmt+1 − fmt

fmt − fmt−1
≤ 1
b

∙
P − PcβEf

P

¸
<
1

b
(66)

Here, the term in square brackets in (66) is positive, and smaller than one.

Therefore, it provides a clear signal that it may be optimal to postpone harvest,

mt > m.

Finally, from (63), if mt > m, the first term is lower than at m, but there

may exists an additional term that compensate for the loss in the first term. If

there exists a mt > m for which

Pbm
t

fmt

1− bmt +
PcβEf

Pmt−1
i=1 bifi

1− bmt >
Pbmfm
1− bm +

PcβEf
Pm−1
i=1 b

ifi
1− bm

the optimality at mt > m is guaranteed.

The optimal rotation period may increase and also the value of land due to

the accounted carbon benefits.
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4.3 Multi-vintage model

In this case, St can be defined as follows:

St = Pc(Efβ
n−1X
s=1

fsxs+1,t+1) (67)

where the term in brackets represents the equivalent amount of emissions avoided

in year t due to the amount of carbon stored in forest during year t.7

Assuming again that m is unique, for a stationary state, we have that ps,t =

ps,∞, ct = c∞, yt = y∞, λt = 0, and xm,t = x∞, where c∞, y,∞, x∞, and ps,∞,

for s = 1, ..., n− 1, are constant. From From Costa-Duarte et al[9]:

ps =W
0(y∞)

s−1X
j=0

b−j − fsU 0(C∞)− b−sβpcEf

⎛⎝mt−1X
i=1

bifi −
mt−1X
i=s

bifi

⎞⎠ (68)

Again with some more algebra, we can write for s = mt given that, pmt,∞ =

0,the optimal steady state is defined by:

W 0(y∞)
b

1− b −
bm

t

fmt

1− bmt U
0(
(1− y∞)fmt

mt
)− βpcEf

1− bmt

mt−1X
i=1

bifi = 0 (69)

The rotation period and the value of a unit of bare forest land in the long

run optimal stationary steady state of a forest vintage model are equivalent to

both the discrete and continuous single-stand rotation models. The optimal

rotation period is increased when carbon benefits are accounted for according

to this method.

5 Average Carbon Storage

The average storage accounting method consists of crediting a forestry project

with the amount of carbon benefits that the land allocated to forest generates,

on average, at the end of each rotation. For the one stand model, different

alternatives can be considered. Either the payments are only due at harvest
7By considering fsxs+1,t+1, this formalization excludes from benefits’ accounting all pos-

sible harvesting of younger age classes, in period t.
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time, or are undertaken every year, and in each case, the payment can be either

based on the effective amount of carbon sequestered by the forest during a

rotation period, or on an estimated average (constant amount).

5.1 Continuous time

Case1-Payment at harvest are equal to the value of the average amount of

carbon sequestered by the forest during a rotation period

The first case considered assumes that the forest owner is payed at harvest

time the current value of the average amount of carbon sequestered by the

forest during the rotation period. In this case, the present value of carbon

sequestration benefits in one rotation period is given by:

S(T a) = Pcβ

R Ta
0
f(s)ds)

T a
e−rT

a

(70)

The corresponding first-order condition is given by:

f 0(T a)

f(T a)
=

r

1− e−rTa +
1

T a

r
1−e−rTa Pcβ

R Ta
0
f(s)ds− Pcβf(T a) +

Pcβ
R Ta
0

f(s)ds

Ta

Pf(T a)
(71)

where the sign of the second term on the right-hand side is undeterminate.

Therefore, we cannot say if optimal rotation period the increases or decreases.

In this case the maximum value of a unit of bare land is given by:

V (T a) = Pf(T a)
e−rT

a

1− e−rTa + (Pcβ
(
R Ta
0
f(s)ds)

T a
)
e−rT

a

1− e−rTa (72)

The optimal rotation period changes but the sign is undeterminate. The

value of land increases due to the accounted carbon benefits.

Case 2- Continuous payments are based on the average value of the amount

of carbon sequestered

Alternatively, we may consider that the payments due to the forest owner

are also based on the average value of the amount of carbon sequestered by the
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forest during a rotation period, but are undertaken in a continuous basis. In

this case, the present value of the carbon sequestration benefits in one rotation

period is given by:

S(T a) =

Z Ta

0

Pcβ(

R Ta
0
f(s)ds

T a2
)e−rtdt (73)

and the corresponding first-order condition is:

(P f́(T a)

Pf(T a)
=

r

(1− e−rT ) −
Pcβ

∙R Ta
0

(f(Ta)

Ta2
e−r(t−T

a)dt−
R Ta
0
(
2
R Ta
0

f(s)ds

Ta3
)e−r(t−T

a)dt

¸
Pf(T a)

−

−
Pcβ

∙ R Ta
0

f(s)ds

Ta2
− r

(1−e−rT )
R Ta
0

R Ta
0

f(s)ds

Ta2
e−rtdt

¸
Pf(T a)

= 0 (74)

Again, the sign of the additional term is undeterminate.

In this case the maximum value of a unit of bare land is given by:

V (T a) = Pf(T a)
e−rT

a

1− e−rTa +
Z Ta

0

Pcβ(

R Ta
0
f(s)ds

T a2
)e−rtdt

1

1− e−rTa(75)

= Pf(T a)
e−rT

a

1− e−rTa +
Pcβ(

R Ta
0

f(s)ds

Ta2
)

r
(76)

The optimal rotation period is changed but the sign is undeterminate. The

value of land increases due to the accounted carbon benefits, the increase is

equal to a perpetuity equal to the value of average optimal storage.

Case 3-Constant payment at harvest

Another case consists of considering that the payments are due at harvest,

but based on a average amount of carbon that is assumed to be sequestered

during a rotation period, k =
µR Te

0
f(s)ds

Te

¶
. Here:

S(T a) = e−rT
a

Pcβk
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The corresponding first-order condition is given by

f 0(T a)

f(T a)
=

r

1− e−rTa −
Pcβk

Pf(T a)
+

rT a

1− e−rTa
Pcβk

Pf(T a)
(77)

As r
1−e−rTa >

1
Ta by inspection, we conclude the additional terms are negative

and that T a < T , i.e. optimal rotation period decreases.

In this case the maximum value of a unit of bare land is given by:

V (T a) = Pf(T a)
e−rT

a

1− e−rTa + (Pcβk)
e−rT

a

1− e−rTa (78)

The optimal rotation period is shortened. The value of land increases due to

the accounted carbon benefits.

Case 4- Continuous constant payments

Finally, if the payments due to the forest owner are either a continuous

lump-sum value or a perpetuity, represented by:

S(T a) =

Z Ta

0

Pcβke
−rsds

the corresponding first-order condition is given by:

f 0(T a)

f(T a)
=

r

1− e−rTa (79)

As, T a = T , the equivalence holds.

In this case the maximum value of a unit of bare land is given by:

V (T a) = Pf(T a)
e−rT

a

1− e−rTa +
Z ∞
0

Pcβke
−rtdt = Pf(T a)

e−rT
a

1− e−rTa +
Pcβk

r
(80)

The optimal rotation period is the same as without carbon benefits. The

value of land increases by the value of the perpetuity.

5.2 Discrete time

Case1-Payment at harvest are equal to value of the average amount of carbon

sequestered by the forest during a rotation period
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The first case considered assumes that the forest owner is payed at harvest

time the average value of the amount of carbon sequestered by the forest during

a rotation period. This average is calculated using a constant weight, which

corresponds to the average amount of the carbon stock stored, which is applied

to every class s. Thus, Ss can be defined as follows:

Ss = (Pcβ

Ps−1
i=1 fi
s

) (81)

Let us define Vs(fs) for Ss given by (81):

V as (fs) =Max

(
Pfs + Pcβ

Ps−1
i=1 fi
s

+ V a0 (f0); b(Pfs+1 + Pcβ

Ps
i=1 fi
s+ 1

+ V a0 (f0))

)
(82)

Letma represent the optimal harvest time. In this case, the sufficient conditions

for optimality are

Pfma + Pcβ

Pma−1
i=1 fi
ma

+ V a0 (f0) ≥ b(Pfma+1 + Pcβ

Pma

i=1 fi
ma + 1

+ V a0 (f0)) (83)

and

Pfma−1 + Pcβ

Pma−2
i=1 fi
ma − 1 + V a0 (f0) ≤ b(Pfma + Pcβ

Pma−1
i=1 fi
ma

+ V a0 (f0))

(84)

Again, if ma is unique, it is optimal to delay cutting for all age trees s < ma.

Therefore, the maximum value of a unit of bare land is given by:

V a0 (f0) =Max

(
V a0 (f0); b

ma

(Pfma + Pcβ

Pma−1
i=1 fi
ma

+ V a0 (f0))

)

=
Pbm

a

fma

1− bma +
bm

a

Pcβ
Pma−1

i=1 fi
ma

1− bma (85)

Taking equation (85), substituting in (83) and (84), and rearranging terms, we

have the following sufficient conditions:

Pfma ≥ Pfma+1
b− bma+1

1− bma+1
+ (Pcβ

Pma

i=1 fi
ma + 1

)
b− bma+1

1− bma+1
− Pcβ

Pma−1
i=1 fi
ma

(86)
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and

Pfma ≥ Pfma−1
1− bma

b− bma + (Pcβ

Pma−2
i=1 fi
ma − 1 )

1− bma

b− bma − Pcβ
Pma−1
i=1 fi
ma

(87)

The sign of the additional terms in (86) and (87) is undeterminate. Therefore,

in this case it is not possible to determine if the rotation period increases or

decreases. Alternatively, by adding and rearranging equations (83) and (84) we

obtain the following necessary condition:

Pfma − Pfma−1
Pfma+1 − Pfma

≥ b+
b(Pcβ

Pma

i=1 fi
ma+1 − Pcβ

Pma−1
i=1 fi
ma ) + (Pcβ

Pma−2
i=1 fi
ma−1 − Pcβ

Pma−1
i=1 fi
ma ))

Pfma+1 − Pfma

(88)

Again, the sign of the additional term on the right is undeterminate and it is

not possible to determine whether rotation period is increased or decreased.

The optimal rotation period may change but the sign of the change is unde-

terminate. The value of land increases due to the accounted carbon benefits.

Case 2- Yearly payments are based on the average value of the amount of

carbon sequestered until harvest

Alternatively, we may consider that the payments due to the forest owner

are still based on the average value of the amount of carbon sequestered by the

forest during a rotation period, but are undertaken in a yearly basis. In this

case, Ss can be defined as follows:

Ss =
sX
i=1

bi−s(Pcβ

Ps−1
i=1 fi
s2

) (89)

Let us now define Vs(fs) for Ss given by (89), as follows:

V as (fs) =Max

(
Pfs +

Ps
i=1 b

i−s(Pcβ
Ps−1

i=1 fi
s2 ) + V a0 (f0);

b(Pfs+1 +
Ps+1

i=1 b
i−1−s(Pcβ

Ps
i=1 fi
s+1 ) + V a0 (f0))

)
(90)

Let ma be the optimal rotation period. Therefore, in this case, we have:

Pfma +
maX
i=1

bi−m
a

(Pcβ

Pma−1
i=1 fi
(ma)2

) ≥ b(Pfma+1 +
ma+1X
i=1

bi−1−m
a

(Pcβ

Pma

i=1 fi
(ma + 1)2

))− (1− b)V a0 (f0)

(91)
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Pfma−1 +
ma−1X
i=1

bi−m
a+1(Pcβ

Pma−2
i=1 fi

(ma − 1)2
) ≤ b(Pfma +

maX
i=1

bi−m
a

(Pcβ

Pma−1
i=1 fi
(ma)2

))− (1− b)V a0 (f0)

(92)

Independently of the value of ma, it is optimal to delay cutting for all age trees

s < ma. Therefore, the maximum value of a unit of bare land is given by:

V a0 (f0) =Max

(
V a0 (f0); b

ma

(Pfma +
maX
i=1

bi−m
a

(Pcβ

Pma−1
i=1 fi
(ma)2

) + V a0 (f0))

)

=
bm

a

Pfma

1− bma +

Pma

i=1 b
i(Pcβ

Pma−1
i=1 fi

ma2
)

1− bma =

=
bm

a

Pfma

1− bma +
b(Pcβ

Pma−1
i=1 fi

ma2
)

1− b (93)

Taking equation (93), substituting in (91) and (92) and rearranging terms, we

have the sufficient conditions:

Pfma ≥ Pfma+1
b− bm+1
1− bm+1 +

m+1X
i=1

bi−1−m(Pcβ

Pm
i=1 fi

(m+ 1)2
)) +

b− b−m
1− bm

maX
i=1

bi(Pcβ

Pma−1
i=1 fi
ma2

)

(94)

Pfma ≥ Pfma−1
1− bm
b− bm +

m−1X
i=1

bi−m+1(Pcβ

Pm−2
i=1 fi

(m− 1)2
)− 1− b

−m+1

1− bm
maX
i=1

bi(Pcβ

Pma−1
i=1 fi
ma2

)

(95)

The sign of the additional terms in (94) and (95) is undeterminate.Ttherefore,

in this case, it is not possible to establish if rotation period is increased or

decreased.

The optimal rotation period may change but the sign is undeterminate. The

value of land increases due to the accounted carbon benefits the increase is equal

to the perpetuity equal to the value of average optimal storage.

Case 3- Constant payment at harvest time

25



Finally, we may consider that, instead, the estimated average (or a constant

amount) is due at harvest time. In this case, the carbon sequestration benefits

are given by:

Ss = Pcβk (96)

Let us now define Vs(fs) for Ss given by (96)

V as (fs) =Max {Pfs + Pcβk + V a0 (f0); b(Pfs+1 + Pcβk + V a0 (f0))} (97)

Let ma be the optimal rotation period in this case. Therefore, we have the

following sufficient conditions

Pfma + Pcβk + V
a
0 (f0) ≥ b(Pfma+1 + Pcβk + V

a
0 (f0)) (98)

and

Pfma−1 + Pcβk + V
a
0 (f0) ≤ b(Pfma + Pcβk + V

a
0 (f0)) (99)

Again, if it is optimal to cut at ma, it is optimal to delay cutting for all age

trees s < ma. Therefore, the maximum value of a unit of bare land is given by:

V a0 (f0) =Max
n
V a0 (f0); b

ma

(Pfma + Pcβk + V
a
0 (f0))

o
=

=
bm

a

Pfma

1− bma +
bm

a

Pcβk

1− bma (100)

Taking equation (100), and substituting in (98) and (99) and rearranging terms,

we have:

Pfma ≥ Pfma+1
b− bma+1

1− bma+1
− Pcβk

1− b
1− bma+1

) (101)

and

Pfma ≥ Pfma−1
1− bma

b− bma + Pcβk
1− b
b− bma (102)
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By inspection, we may conclude that ma < m. However, by adding and rear-

ranging (98) and (99), we obtain (10), that is the same necessary condition as

without carbon benefits.

The optimal cutting time may decrease comparing with the forest without

carbon benefits . If k =
Pm
i=1 b

i−m(
Pm−1

s=1 fs
m2 ), the results are equivalent to Case

4 and to the multi-vintage steady state solution (110).

Case 4 -Yearly payment of a constant average estimate of sequestered carbon

Another case consists of considering that the payments are only due at har-

vest, but are based on the amount of carbon that is estimated to be sequestered

during a rotation period, k. In this case, the carbon sequestration benefits are

given by:

Ss = Pcβ
sX
i=1

bi−sk (103)

Let us now define Vs(fs) for Ss given by (103):

V as (fs) =Max

(
Pfs + Pcβk

sX
i=1

bi−s + V a0 (f0); b(Pfs+1 + Pcβk
s+1X
i=1

bi−s−1 + V a0 (f0))

)
(104)

Let ma represent the optimal harvest time. In this case, we have

Pfma + V a0 (f0) ≥ b(Pfma+1 + Pcβk + V
a
0 (f0)) (105)

and

Pfma−1 + V
a
0 (f0) ≤ b(Pfma + Pcβk + V

a
0 (f0)) (106)

Again, if it is optimal to cut at ma, it is optimal to delay cutting for all age

trees s < ma. Therefore, the maximum value of a unit of bare land is given by:

V a0 (f0) = {MaxV a0 (f0); bm
a

(Pfma + Pcβk
maX
i=1

bi−m
a

+ V a0 (f0)} =

27



=
bm

a

Pfma

1− bma +
bPcβk

Pma−1
i=0 bi

1− bma =

=
bm

a

Pfma

1− bma +
bPcβk

1− b (107)

By rearranging (105) and (106), we obtain conditions (8) and (9) that, together,

are sufficient conditions for optimality in the case without carbon, and ma = m.

The optimal rotation period is Faustmann rotation. The value of land in-

creases due to the accounted carbon benefits. The increase is equal to a per-

petuity equal to the constant payment. If k =
Pm−1

s=1 fs
m2 , (107) is the same as

(110).

5.3 Multi-vintage model

In this case, St can be defined as follows:

St = Pcβ

Pm−1
s=1 fs
m2

nX
s=1

xs,t (108)

Assuming again that m is unique, for a stationary state, we have that ps,t =

ps,∞, ct = c∞, yt = y∞, λt = 0, and xm,t = x∞, where c∞, y∞, x∞, and ps,∞,

for s = 1, ..., n− 1, are constant. From [9]:

ps =W
0(y∞)

s−1X
j=0

b−j − fsU 0(C∞)−
s−1X
j=0

b−jD (109)

for s = 1, ..., n,,

With some more algebra, we can write for s = m, given pm,∞ = 0

W 0(y∞)
b

1− b −
bmfm
1− bmU

0(
(1− y∞)fm

m
)− b

1− bD = 0 (110)

The rotation period and the value of a unit of bare forest land in the long

run optimal stationary steady state of a forest vintage model are equivalent to

both the discrete and continuous single-stand rotation model when payments

are made on a yearly basis. The optimal rotation period may decrease when

carbon benefits are accounted for.

´
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6 Conclusion

Typically, the one stand model setup consists of a multiple rotation model à la

Faustmann, in continuous time. In this note, we introduce carbon sequestration

benefits and solve both for the continuous and the corresponding discrete time

problems, and compare the results also with the multi-vintage case.

In general, we conclude that the results are very sensitive to the carbon

accounting method chosen as well as to the payment schedule used.

In the carbon flow accounting method, two cases are considered. Either

payments of carbon sequestration benefits are undertaken in a yearly basis or

only at harvest time. In both cases, the equivalence of results can be established

in the sense defined before, that is, both in what concerns the optimal rotation

period and the value of bare land in the steady-state. In order to make it

comparable with the typical continuous version of the one stand model, we

assume that the benefits from carbon sequestration are payed in an yearly basis,

but the discount is applied to the discrete change in the production value of

timber at each time period. In this case, no equivalence result holds, and it

is always optimal to postpone harvest. The cost of carbon release is what is

driving this result, and the larger the costs (lower θ) the greater the incentive

to cut later.

In the case of the tonne-year crediting regime, the optimal rotation period

is postponed in all cases.

Finally, in the average carbon storage method, different alternatives are

considered. Either the payments are undertaken in a yearly basis or at harvest

time. In both, we consider two cases: the payment is based on the effective

sequestered carbon average value, or it is based on an estimated average of the

sequestered carbon. In this last case, the equivalence results holds for the cases

of continuous payments.
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