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Abstract
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investments of two competing communications networks, and show
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achieved with a �xed access tari¤, simple instruments such as banning
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1 Introduction

Access regulation and investment. Over the last decades, one of the
main goals of economic regulation has been to increase competition in mar-
kets that have traditionally been less competitive. At the same time, tech-
nological progress has come to be seen as a fundamental driving force of
economic performance. In telecommunications, plans for the introduction of
advanced networks generate such high expectations about new or improved
services, and acceleration of economic growth and competitiveness, that not
discouraging the necessary investments should be among regulators�primary
concerns.
Regulators thus need to manage a trade-o¤ between the two objectives

of static and dynamic e¢ ciency, which are often con�icting. While regu-
lation for static e¢ ciency aims to reduce market power based on existing
infrastructure, it also reduces the rents on future investment. Hence, regu-
lators face the di¢ cult task of determining how to encourage operators to
invest optimally without lessening competitive intensity.

In recent years, telecommunications markets have seen high rates of tech-
nological progress. Several substitutes for existing copper networks have been
developed, all allowing the creation of new broadband services: bi-directional
cable networks, �xed wireless local loops (FWA or WiMax), and upgraded
cellular mobile networks. Most of these alternatives continue to involve large
sunk costs and economies of scale, which makes it di¢ cult for many �rms to
invest immediately.
One of the main instruments used by regulators to reduce the temporary

monopoly power of existing networks is to force them to give access. The idea
is that rivals can �rst compete as service-based competitors, before they build
their own networks and turn into facility-based competitors. This regulatory
instrument has gained an important role since it started to be promoted
more strongly in the United States after 1996 with the Telecommunications
Act and in the European Union after the 1998 liberalization, especially in
the form of the �unbundling of the local loop�. According to the European
Commission, service-based competition is a pre-requisite for future facility-
based competition. The achievement of the latter is desirable since it creates
a high scope for product di¤erentiation and innovation.

The relation between access regulation and investment can be a highly
controversial issue, as recent headlines show. For instance, in 2006 there was a
dispute between the European Commission on the one hand, and the German
government and Deutsche Telekom on the other, about mandating access to
the VDSL network that Deutsche Telekom plans to build in �fty German
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cities. Deutsche Telekom claimed the right to an access holiday to this future
network, and the government o¤ered its support. The European Commission
counter-argued that existing ex-ante regulation had to be extended also to
this network, since the lack of competition in the German market could lead
to the re-emergence of monopoly. Similarly, telecommunications companies
that invest in �new generation networks�, which involve �bre as close to the
home as possible and transmission of all data using the IP protocol, claim
that they should be subject to fewer access obligations.

Model and results. In our model there are two ex-ante symmetric �rms
that intend to operate in a market, and new infrastructure must be built to
allow these �rms to o¤er new services. Investment costs decline over time
because of technological progress, and the construction of a second network,
bypassing the �rst one, will be viable and socially desirable at some point in
time, since it allows �rms to o¤er more di¤erentiated services. The second
�rm (the �follower�) can access its rival�s (the �leader�s�) infrastructure at
a regulated two-part access tari¤ before it builds its own network. The
follower�s choice of investment will depend on the conditions of access.
Firms generally have two incentives for the �rst investment, a stand-

alone incentive and a preemption incentive. The stand-alone incentive stems
directly from the increase in pro�ts after investment. In the absence of
strategic e¤ects, �rms would choose investment timing by trading o¤ earlier
gains in pro�t against lower investment costs later on. The second incentive
to invest is related to the advantage of being the �rst to invest. In fact,
if a �rm does not invest, a rival �rm may do so and become the common
provider. If being a leader is more pro�table than being a follower, each �rm
has incentives to preempt the other �rm�s investment. If, on the contrary,
being a follower is more pro�table, both �rms only have the stand-alone
incentive to invest, and there is no race to become the leader.

We �rst determine the equilibrium in terms of investment patterns. In-
deed, two types of equilibria are possible, preemption if there is a �rst-mover
advantage caused by a high access charge, and waiting if there is a second-
mover advantage due to a low access charge. In the preemption equilibrium
the leader invests at the preemption date, while in the waiting equilibrium
it invests at its stand-alone investment date. The follower always invests at
its stand-alone investment date.
Both the leader�s investment in a waiting equilibrium, and the follower�s

investment in both types of equilibria, occur earlier with a higher access
charge. This happens because the stand-alone incentives to invest increase
with the access charge. Yet, contrary to Hori and Mizuno (2006), the e¤ect
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of the access charge on the leader�s investment decision in a preemption
equilibrium is ambiguous. Besides strengthening the stand-alone incentive,
a higher access charge makes being the follower less attractive and therefore
strengthens the preemption motive. On the other hand, since the follower
invests earlier, the duration of service-based competition will be shorter,
which lowers the returns on the �rst investment. This second e¤ect may be
stronger than the �rst two, and investment is delayed.

We then consider whether �rst-best investment can be achieved by a
regulator who controls the conditions of access. Indeed, socially optimal in-
vestment by both leader and follower cannot be achieved by just using a �xed
access tari¤. This is intuitive since one regulatory instrument normally can-
not achieve two independent goals. In principle, access charges that change
over time, as in Bourreau and Dogan (2006) or Vareda and Hoernig (2007),
can be used to transmit correct incentives. The downside of this idea is that
in practice it may be rather hard or outright impossible for a regulator to
commit to a path of access charges even in the medium run.1 Therefore we
consider the simplest possible change from a �xed access price: not allow-
ing access after some point in time, which is essentially equivalent to setting
an in�nite access price, or not forcing the leader to give access during some
period of time. The regulator then only must commit to the date when the
access price is changed.
As with generic time-varying access charges, the point of departure is the

rents that the leader will earn until the follower�s investment. In particular,
access holidays guarantee a period of monopoly pro�ts, which in turn makes
it possible for the regulator to charge lower access price later on while still
giving correct incentives for the leader�s investment.
If the follower�s private incentives for investment are low compared to its

e¤ect on total welfare, the access price that makes the leader invest at the
socially optimal date is too low, and the follower invests too late. Banning
access right after the socially optimal date for a second investment makes
the follower invest optimally, and the �rst-best can be achieved. This one
instance of an increasing path of access prices, as advocated by Cave and
Vogelsang (2003).
On the other hand, if the follower�s business stealing incentives are very

strong, it might invest too early rather than too late. In this case the regu-
lator would like to delay its investment through a lower access price, which
would make the leader invest too late. As mentioned above, a period of �ac-

1For instance, �glide-paths�such as those used by European telecommunications regu-
lators for lowering termination charges typically do not have a duration of more than two
years.
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cess holidays�, where the leader does not have access obligations for some
time after its investment, protects the incentives of the leader. These access
holidays will then be followed by a lower access charge until the follower�s in-
vestment, that is, the access holidays in this case mainly function as a prelude
to these lower access charges. Contrary to the previous case, the �rst-best
cannot be achieved because there will be losses of static welfare and there
may exist a con�ict between the necessary length of the access holiday and
the necessity to avoid early bypass.

Finally, we consider two extensions to our model. First we consider the
case where duplication is either not socially or privately desirable, and show
that our previous conclusions continue to hold. As a second extension, we
brie�y analyze ex-ante asymmetric �rms by assuming that one of the �rms
only needs to upgrade an existing network to supply new services. Sure
enough, this �rm will invest �rst in equilibrium. The main qualitative dif-
ference to the ex-ante symmetric case is that socially optimal investment
timing can be achieved in a waiting equilibrium when the asymmetry is large
enough. Still, if the asymmetry is small enough then the regulator will need
to encourage preemption, just as in the symmetric case.

Related literature. The academic literature on regulation has only
recently started to address the issue of access pricing and investment. For
example, Valletti (2003) claims that this type of problems had not been
studied su¢ ciently. However, he gives some clues towards understanding
it by relating the issue with questions common to the literature on R&D.
Guthrie (2006) provides a survey on the recent literature about the relation-
ship between infrastructure investment and the di¤erent regulatory regimes,
concluding that much has still to be done in this �eld.
Bourreau and Dogan (2005) consider a model of infrastructure investment

in a telecommunications market with access regulation. One of the �rms
already owns an infrastructure, and thus only the other �rm must decide if
it wants to enter as a service-based or facility-based competitor. Therefore,
the regulator simply has the problem of setting an access price such that
the entrant duplicates at the socially optimal investment date. Bourreau
and Dogan (2006) consider a similar model but allow for the use of a time-
variant access price.
Gans (2001) considers a context similar to Katz and Shapiro (1987). Two

�rms compete to invest in a new technology, and there will be only one
investment. In this case the regulator can induce the leader to invest at the
socially optimal date, for which he uses the access charge.
Woroch (2004) provides a formal model of a technology race among net-

work owners and service providers and studies the equilibrium broadband
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deployment pattern, allowing for duplication. He �nds the equilibrium in
terms of investment dates and analyzes the impact of mandatory access on
the investment pattern, as we do in our paper. However he does not con-
sider the presence of a regulator who maximizes social welfare as we do, and
therefore does not consider the choice of a socially optimal access tari¤
Hori and Mizuno (2006) consider a model with two investments, assum-

ing a stochastically and inde�nitely growing demand instead of technical
progress. In their model �ow payo¤s are always symmetric, contrary to ours
where the leader may have higher payo¤s even before taking into account ac-
cess revenue. They obtain an equilibrium in a preemption game, since they
explicitly rule out a waiting equilibrium, and conclude that the incentive for
preemption can be enhanced by an increase in the access tari¤. While we
believe that our assumption of investment costs that are falling to some level
is more realistic than that of demand forever growing at constant rate as in
Hori and Mizuno, the main di¤erence between our paper and theirs is that
we consider the e¤ect of access prices on the type of equilibrium and investi-
gate alternative regulatory instruments that supplement access prices in the
quest for achieving the �rst best.

A second strand of literature that is relevant in this context it that about
races for technology adoption. The underlying assumption in all models is
that investment cost declines over time, for example due to technical progress.
The game is then one of timing of investment, i.e. �rms�only choices are
their respective investment dates.
In Fudenberg and Tirole (1985) two or more �rms adopt a new technology.

Since they assume that it is better to be the �rst to adopt, the equilibrium
outcome in the duopoly case is either preemption or joint adoption. Rent
equalization occurs, i.e., the race for preemption equalizes discounted payo¤s
of leaders and followers at the equilibrium investment date.
Katz and Shapiro (1987) consider a similar model where only one �rm

adopts and then o¤ers a licence to the other �rm. They show that preemption
or waiting may occur in equilibrium. The waiting equilibrium arises due to
a second-mover advantage, and the follower has a higher �rm value.
Riordan (1992) considers the e¤ects of regulation of entry and retail prices

when both �rms can adopt. Since, by assumption, the follower cannot access
the �rst network, access pricing is not an issue. Still, in spirit this paper is
closest to ours in that it analyses how regulation a¤ects investment dates.
Hoppe and Lehmann-Grube (2005) show how equilibria can be analyzed

if the leader�s pro�t as a function of its investment date has multiple local
maxima or is discontinuous.
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The remainder of the paper is organized as follows. We describe the model
in Section 2. In Sections 3 and 4 we obtain the equilibrium investment timing
for both �rms and analyze the impact of the access tari¤. In Sections 5 and
6 we �nd the socially optimal investment timing and solve the regulator�s
problem. In Section 7 we consider some extensions, and in Section 8 we
conclude.

2 The Model

We introduce a model where two �rms compete for the construction of net-
work infrastructure that allows them to o¤er new services. After one �rm
has built the infrastructure, it must give access to its rival at a regulated
price. The regulator sets a two-part access tari¤ which consists of a usage
charge a and an access charge P � 0. These are set ex ante, i.e., when �rms
invest the access rules are already de�ned and known to both.
Here we only analyze the aspects concerning dynamic e¢ ciency, assum-

ing that the regulator has full information about the �rms�technology and
payo¤s. Therefore, we assume that the usage charge a is used to maximize
static e¢ ciency, as in Gans (2001). Hence, we can think of the access tari¤
as just an access charge, and concentrate on its optimal choice.

The two �rms that can build the infrastructure know that if a �rm �wins�
in the provision of the infrastructure it becomes the common provider, and
if it �loses�it either pays for access or builds a bypass network. This setup
can create a �rst-mover advantage which stimulates a preemption process.
However, there may also be a second-mover advantage which will lead to a
game where preemption does not occur. This second case arises since the
follower bene�ts from the �rst investment through access and then invests
later when technological progress has brought down costs.
Depending on the pattern of infrastructure investment, there are di¤erent

market structures over time. When only one �rm has invested, it must give
access to the rival, and there is service-based competition. When both �rms
have invested, we have facility-based competition. Each �rm�s pro�t at a
given point in time only depends on the investment pattern up to this date.

Firms�payo¤s
We assume that �rms are ex-ante symmetric, and that time is contin-

uous. Hence, at the beginning of the game, when neither of the �rms has
invested, each earns �ow pro�ts of �0. When one �rm has invested and gives
access, it obtains the leader�s �ow pro�t �1L + P . If the follower asks for
access it receives �1F � P per period, and otherwise zero. Thus, after the
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leader�s investment, the follower obtains ~�1F (P ) = max f�1F � P; 0g, while
the leader�s pro�ts are:

~�1L (P ) =

�
�1L + P if P � �1F
�1M if P > �1F

; (1)

where �1M is the monopoly pro�t. We assume:

�1F � 0; (2)

�1M � �1L + �1F : (3)

Since pro�ts do not depend on P if P > �1F , the relevant range for P is
the interval [0; �1F ], which is not empty by assumption (2). It follows that
~�1L (P ) � �1M .
When both �rms have invested, the leader�s �ow pro�t is �2L and the

follower�s is �2F , with:
�2L � �2F : (4)

Investment cost
Each infrastructure is built at a single moment, and the investment cost

is decreasing over time due to technological progress. We also assume that
�rms hold on to the technology inde�nitely once they have invested, and that
the infrastructure does not deteriorate over time. This allows us to avoid the
issue of re-investment. Current investment cost at time t is C (t), which
we assume to be a positive, decreasing and convex, and twice continuously
di¤erentiable function:2

C (t) > 0; C 0 (t) < 0; C 00 (t) > 0 8 t 2 R: (5)

This implies that limt!1C (t) = C � 0 and limt!1C
0 (t) = 0. We assume

that both the leader and the follower would want to invest in �nite time. The
follower�s investment is motivated by the possibility of a higher di¤erentiation
of its services from its rival�s. There are decreasing returns to investment, in
the sense that the increase in the leader�s �ow pro�ts exceeds the follower�s:

�1L � �0 > �2F � �1F > �C: (6)

Later, when we analyze a context where a bypass investment may not be
desirable, we allowC to be higher. Let the discount rate be � > 0. Investment
cost discounted to time zero is A (t) = C (t) e��t, which is decreasing in t and
converges to zero.

2We extend the de�nition of investment cost to dates before zero in order to simplify
the exposition below.
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To rule out immediate investment, we assume that investment at time
zero leads to losses:

�C (0) > max f�1M ; �2Lg : (7)

Since A0 (0) = C 0 (0)� �C (0) and A (0) = C (0), we have �A0 (0) > �A (0).

Firms�strategies
Each �rm plays a Markov strategy that is a function of time t; the access

tari¤P , and whether its rival has already invested or not. For each �rm, the
only decision to be made is when to make a unique investment.
We assume that simultaneous investment is not possible. For various

technical implementations of this assumption see Hoppe and Lehmann-Grube
(2005).

3 Investment Timing

Let us start to examine what happens when one of the �rms, say �rm i,
has invested at some time ti. In this case we need to solve the follower�s
investment problem in the continuation game.
Given the leader�s investment at ti and the access tari¤, the discounted

payo¤ of the follower investing at tj � ti is:

~F (ti; tj; P ) =

tiZ
0

�0e
��tdt+

tjZ
ti

~�1F (P ) e
��tdt+

1Z
tj

�2F e
��tdt� A (tj) (8)

=
1� e��ti

�
�0 +

e��ti � e��tj
�

~�1F (P ) +
e��tj

�
�2F � A (tj) :

Before ti no �rm has invested, and pro�ts are �0. Between ti and tj, there is a
period of service-based competition. After duplication, both �rms o¤er their
services through their own infrastructure, and we end up in facility-based
competition.
Now we can determine the follower�s optimal investment date. First de-

�ne, for all t 2 R,

Z (t) = �A0 (t) e�t = �C (t)� C 0 (t) : (9)

This is a continuously di¤erentiable and strictly decreasing function, with
limt!�1 Z (t) = +1 and limt!+1 Z (t) = �C:

The only incentive for investment that in�uences the follower�s decision is
the stand-alone incentive. It weighs the bene�t of higher payo¤s of investing
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today against the cost savings of delaying investment. There is no preemption
motive since its rival has already invested.

Proposition 1 Given the access charge P and the leader�s investment date
ti � 0, the follower invests at:

TF (ti; P ) = max fTf (P ) ; tig ; (10)

where Tf (P ) = Z�1 (�2F � ~�1F (P )) > 0:

Proof. The follower solves

max
tj�ti

�
�2F � ~�1F (P )

�
e��tj � A (tj)

�
;

with �rst-order condition:

�2F � ~�1F (P ) = �A0 (tj) e�tj = Z (tj) :

By assumption (6) the left-hand side is larger than �C, and by assumptions
(4) and (7) we have:

�2F � ~�1F (P ) � �2L < �A0 (0) = Z (0) :

Thus Tf (P ) = Z�1 (�2F � ~�1F (P )) is well-de�ned, unique and positive. The
second derivative of pro�ts is3

@2 ~F (ti; Tf ; P )

@t2j
= � (�2 � ~�1F (P )) e��Tf � A00 (Tf )

= Z 0 (Tf ) e
��Tf < 0;

hence we have a maximum. If Tf (P ) � ti then the optimal choice is to invest
at TF = ti, otherwise it is at TF = Tf (P ) > ti.

Denote the follower�s pro�t at its optimal investment date as F (ti; P ) =
~F (ti; TF (ti; P ) ; P ). Note that Tf (P ), TF (ti; P ) and F (ti; P ) are continuous
functions, and that F (ti; P ) is positive for all ti � 0 and P 2 [0; �1F ].
Note also that for all ti 2 [0; Tf (P )], F (ti; P ) is increasing in ti if �0 >
~�1F (P ) ; or P > �1F � �0; and decreasing otherwise. Since in this case the
follower�s investment date does not depend on ti, if the follower�s �ow pro�t

3Below we omit second-order conditions since they hold and are similar to the present
one.
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decreases after the leader�s investment its discounted payo¤ increases if the
leader invests later.

Now that we have determined the follower�s choice in the continuation
game, we can de�ne the discounted payo¤ of a leader investing at ti as
L (ti; P ) = ~L (ti; TF (ti; P ) ; P ), where

~L (ti; tj; P ) =
1� e��ti

�
�0 +

e��ti � e��tj
�

~�1L (P ) +
e��tj

�
�2L � A (ti) : (11)

We �rst determine the leader�s stand-alone investment date TS (P ). Given
that one �rm must be the leader, the �rst investment will not occur after
this date. Preemption before this date may occur, though.

Proposition 2 Given the access charge P , the leader�s stand-alone invest-
ment date TS (P ) is at either Ts (P ) < Tf (P ) or Ts0 > Tf (P ) ; with

Ts (P ) = Z
�1 (~�1L (P )� �0) ; Ts0 = Z

�1 (�2L � �0) : (12)

If P � �1F � �0 + �2L � �2F then it is at Ts (P ) ; otherwise it can be one or
the other.

Proof. See Appendix A.

There may exist two local maxima in the leader�s discounted payo¤, as
has already been pointed out in Fudenberg and Tirole (1985) in a similar
context. The �rst one, Ts (P ), and which always exists, occurs before the
follower�s investment date Tf (P ), and thus leads to a period of service-based
competition: The second local maximum at Ts0 only arises when P is high,
and leads to immediate bypass by the follower. In this case, there is no
period of service-based competition. In both cases L (TS (P ) ; P ) is positive,
but when its second local maximum exists we cannot determine the location
of its global maximum with our generic speci�cation of investment cost.4

In equilibrium the leader may not invest at TS (P ), since for high values
of P the threat of preemption will induce investment at an earlier date.
Indeed, whenever L (ti; P ) > F (ti; P ) there is a �rst-mover advantage: The
discounted payo¤s of becoming a leader are strictly higher than the payo¤

4Fudenberg and Tirole (1985) show that any one of the two local maxima can be the
global maximum. They argue that L (Ts) > L (Ts0) is typical of new markets, where the
pro�t after the investment in the infrastructure increases strongly. The opposite case,
L (Ts) < L (Ts0) ; arises when the �rst investment simply transfers pro�t from the leader
to the follower. The former �ts better to our model, especially with ex-ante symmetry
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of becoming a follower. In this case �rms will compete to be leaders, each
trying to invest slightly earlier that its rival. In equilibrium, one �rm invests
at the preemption date Tp (P ), which is the earliest date where �rms are
indi¤erent between being a leader or a follower. The following Proposition
shows that the preemption date is well-de�ned:

Proposition 3 Given the access charge P , there is a unique date Tp (P ) 2
(0; Tf (P )] such that for all ti 2 [0; Tf (P )) we have L (ti; P ) Q F (ti; P ) if
ti Q Tp (P ).

Proof. See Appendix B.

Now we need to establish whether or not preemption will arise. The
decisive factor is which of the two dates occurs earlier, the preemption or
the stand-alone investment date. The following result is similar to Riordan
(1992) and Hoppe and Lehmann-Grube (2005).

Proposition 4 For all P 2 [0; �1F ], in subgame-perfect equilibrium the fol-
lower invests at eTF (P ) = Tf (P ), and the leader�s investment eTL (P ) <eTF (P ) falls into two cases:
i) Preemption: If Tp (P ) < Ts (P ), the leader invests at eTL (P ) = Tp (P ).
ii) Waiting: If Tp (P ) � Ts (P ) the leader invests at eTL (P ) = Ts (P ).
This outcome is unique up to relabeling of �rms.

Proof. Similar to the proof of Theorem 1 in Hoppe and Lehmann-Grube
(2005). Note that in our model L (ti; P )�F (ti; P ) = e��ti �2L��2F�

� 0 for all
ti � Tf (P ), thus we do not need to restrict F to be non-increasing to obtain
a unique outcome. Joint adoption equilibria, where both �rms adopt at the
same date ti > Tf (P ), are ruled out by assumption.

Given the generic functional forms that we use and the implicit de�ni-
tion of Tp; there is no explicit parametric condition for the thresholds which
determine the transitions between both equilibria.

We now plot the leader�s and follower�s payo¤s as functions of the leader�s
investment date in order to explain the intuition of this result. We have two
cases, depending on whether the follower�s payo¤ is increasing (Figures 1 and
2) or decreasing (Figures 3 and 4) until Tf (P ).
Remember that the follower�s payo¤ F (ti; P ) is (weakly) increasing in

ti < Tf (P ) if P � �1F � �0. In this case we have

L (Ts (P )) > L (Tf (P )) � F (Tf (P )) � F (Ts (P )) ; (13)
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and there is a �rst-mover advantage. The equilibrium outcome is preemption
at Tp (P ) because any attempt to wait with investment until some later date
will be met with slightly earlier investment.
There are two sub-cases, depending on the leader�s global maximum. In

Figure 1 there is only one local maximum in the leader�s payo¤ function, i.e.
P � �1F ��0+�2L��2F , while in Figure 2 we have P > �1F ��0+�2L��2F
and a second local maximum. If one allow for simultaneous investment, then
if the second maximum is high enough joint adoption equilibria just before
Ts0 may arise, see Fudenberg and Tirole (1985).
On the other hand, F (ti; P ) is decreasing in ti < Tf (P ) if P < �1F � �0.

The leader�s payo¤ has only one local maximum, but now the outcome may
be waiting or preemption. If L (Ts (P )) > F (Ts (P )), as in Figure 3, then
again there is a �rst-mover advantage and the outcome is preemption. On
the other hand, if L (Ts (P )) < F (Ts (P )) ; as in Figure 4, then there is a
second-mover advantage, and we have a waiting equilibrium.
While being a known result in technology adoption games, the possibility

of a waiting equilibrium is a novelty for models of access regulation. In fact,
the existing literature generally obtains a simple preemption equilibrium, or
rules waiting out by assumption (Hori and Mizuno, 2006).5

Figure 1 Figure 2

5Guthrie (2006) considers the possibility of a waiting equilibrium, but in the context
of asymmetric �rms. This will be discussed in the extensions of Section 7.
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Figure 3 Figure 4

4 E¤ects of the Access Tari¤

We can now determine the e¤ect of the access tari¤ on the leader�s and
follower�s investment dates.

Proposition 5 If the access charge P 2 [0; �1F ] increases, the follower in-
vests earlier.

Proof. From Proposition 1, dTf
dP
= (Z�1)

0
(�2F � �1F + P ) < 0.

With a higher access tari¤, the follower makes fewer pro�ts prior to its
investment and, as a result, it invests earlier. Since P = �1F leads to the same
outcome as no access at all, mandatory access at P < �1F always delays the
follower�s investment as compared to the situation without access.

With respect to the leader�s decision, we need to analyze what happens
when it waits or preempts.

Proposition 6 In a waiting equilibrium, a higher access charge P 2 [0; �1F ]
makes the leader invest earlier. In the preemption equilibrium, with a higher
access charge P 2 [0; �1F ] the leader invests earlier (later) if @(L�F )@P

���
ti=Tp(P )

>

(<) 0:

Proof. From Proposition 2, dTs
dP
= (Z�1)

0
(�1L + P � �0) < 0.

The leader�s preemption investment date is determined by the condition
L(Tp (P ) ; P ) = F (Tp (P ) ; P ) with L cutting F from below. Hence, we know
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that at Tp (P ) we have
@(L�F )
@ti

> 0. By the Implicit Function Theorem,
dTp(P )

dP
= �@(L�F )

@P

.
@(L�F )
@ti

: Therefore the stated result follows.

The result for the preemption equilibrium depends on whether an increase
in the access charge bene�ts or hurts the leader. In order to understand the
e¤ects involved, consider

@ (L� F )
@P

����
ti=Tp(P )

=
2

�

�
e��Tp(P ) � e��Tf (P )

�
(14)

+ e��Tf (P )
�
�dTf (P )

dP

�
[�2L � ~�1L (P )] :

The �rst term describes the direct e¤ect on the di¤erence in �ow pro�ts
during service-based competition. A higher access charge bene�ts the leader
and hurts the follower, thus increasing the incentives for preemption. The
second e¤ect, however, an indirect e¤ect caused by the anticipation of the
follower�s investment, may go both ways. If the leader�s pro�ts increase after
duplication, i.e. �2L > ~�1L (P ), then earlier duplication again bene�ts the
leader, and higher P indeed makes the leader invest earlier. On the other
hand, if after duplication its pro�ts decrease substantially, the total e¤ect
may become negative. As a result, the returns from the �rst investment
decrease, and the leader delays investment.

We still need to determine for which values of P we have a waiting or
preemption equilibrium. As we have seen, for P � �1F � �0 we de�nitely
have preemption, thus without the provision of access we would always ob-
tain preemption. For P < �1F � �0 we may have a preemption or waiting
equilibrium, depending on whether Tp (P ) is smaller or larger than Ts (P ).
For our generic functional forms, there may be none, one, or more than one
P̂ 2 (0; �1F � �0) with Tp

�
P̂
�
= Ts

�
P̂
�
, which are the values of the access

charge for which we have transitions between both types of equilibria. As we
will show in the next section, since the leader will only invest at the socially
optimal date if the regulator induces a preemption equilibrium, this possible
multiplicity of transitions between waiting and preemption equilibria poses
no problem.
For completeness, we discuss brie�y the possible cases. If there is no

transition then we always have preemption. If there is one transition then
we have a second-mover advantage when the access charge is low and a �rst-
mover advantage for high P , i.e., there is a waiting equilibrium for P 2h
0; P̂

i
and preemption for P 2

�
P̂ ; �1F

i
. The leader�s investment date is a
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continuous function of the access charge:

eTL (P ) = � Ts (P ) if 0 � P � P̂
Tp (P ) if P̂ < P � �1F

: (15)

This function decreases on the �rst branch, but may be increasing for high
P > �2L � �1L on the second branch.
On the other hand, there may be more than one P such that Tp (P ) =

Ts (P ). The reason is that both the stand-alone and preemption investment
dates may decrease in parallel with a higher access charge. In fact, if P
increases we have a transition from a waiting to a preemption equilibrium if
and only if Tp (P ) falls below Ts (P ), i.e. if

dTs (P )

dP

����
Tp=Ts

� dTp (P )

dP

����
Tp=Ts

> 0: (16)

The �rst term is always negative, pointing towards a transition to wait-
ing, while the second term can be either positive or negative. We can sign
the whole expression unambiguously only in the case where a higher access
charge delays preemptive investment, which forces a transition to a waiting
equilibrium.

5 Socially Optimal Investment Timing

Social welfare is de�ned as the present value of the intertemporal stream of
social bene�ts (pro�ts and consumer surplus) minus discounted investment
costs. Let S0 be consumer surplus per period when neither �rm has invested.
S1 is consumer surplus per period when one �rm has invested in a new
infrastructure, and the other has access to it. S2 is consumer surplus per
period when both �rms have invested. Note that S1 is independent of P
since it is a lump-sum payment from the follower to the leader. We assume
that consumer surplus does not decrease after the �rst investment:

S1 � S0: (17)

Total welfare per period for each of the three cases is:

w0 = 2�0 + S0

w1 = �1L + �1F + S1 (18)

w2 = �2L + �2F + S2:

We assume that total welfare (before investment cost) increases with both
investments, and that both eventually are socially desirable, though only
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after date zero. Furthermore, we assume that total welfare increases more
with the �rst investment than with the second one:

Z (0) > w1 � w0 > w2 � w1 > �C: (19)

Note that this assumption does not follow from the previous ones, because
it also includes the possible reductions in payo¤s by the �rm which does not
invest.
With investment dates ti � tj, discounted net social welfare is given by:

W (ti; tj) =
�
1� e��ti

� w0
�
+
�
e��ti � e��tj

� w1
�

(20)

+ e��tj
w2
�
� A (ti)� A(tj):

The socially optimal investment dates are easily characterized:

Proposition 7 Socially optimal investment occurs at dates T soF > T soL > 0,
with

T soF = Z�1 (w2 � w1) ; T soL = Z�1 (w1 � w0) : (21)

Proof. The regulator maximizes W over ti � tj, with �rst order condi-
tions

w1 � w0 = Z (T soL ) ;

w2 � w1 = Z (T soF ) :

The left hand sides of both conditions are larger than �C by assumption
(19). Thus T soL = Z�1 (w1 � w0) and T soF = Z�1 (w2 � w1) are well de�ned
and unique. Assumption (19) also guarantees that T soL > 0 and T soL < T soF .

6 Optimal Regulation

Having determined the socially optimal investment dates, we now consider
how a regulator can induce a socially optimal investment pattern using ex-
ante regulation.
For a start, we �nd the access charge such that each �rm invests at the

corresponding socially optimal date.

Proposition 8 The follower invests at the socially optimal date with the
access charge P �F � S2 � S1 + �2L � �1L if 0 � P �F � �1F .
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Proof. Immediate from Tf (P
�
F ) = T

so
F .

When a follower invests, it changes its payo¤ but also consumer surplus
and the leader�s payo¤. However, in its decision it does not take the latter
into account. Hence, the regulator needs to make it internalize these e¤ects
through the access charge.

Proposition 9 Let P �L be a solution of Tp (P
�
L) = T

so
L . If 0 � P �L � �1F , then

the leader invests at the socially optimal date: This access charge results in
preemption, while socially optimal investment by the leader cannot be achieved
through a waiting equilibrium (with a time-invariant access charge).

Proof. Suppose P is such that we have a waiting equilibrium, which
implies P < �1F � �0. If T soL � Ts (P ) then by de�nition of these two dates
P � �1F � �0 + S1 � S0, which contradicts P < �1F � �0 by (17). Therefore
for this P we have T soL < Ts (P ). In other words, if there is to be socially
optimal investment by the leader it must be in a preemption equilibrium.

The leader always invests too late in waiting equilibria, because it con-
siders only its private gains. As a result, the regulator needs to induce a
preemption equilibrium, using an access charge that is high enough, if he
wants to achieve socially optimal investment by the leader.

Now let us assume that both P �L and P
�
F belong to the interval [0; �1F ] ;

similar to Gans (2001), while we leave open which of the two is larger. Con-
trary to the latter paper, where a two-part tari¤ achieves socially optimal
investment, in our model the regulator generically cannot achieve socially
optimal investment by both �rms using the access charge. In fact, he only
has one instrument and two objectives. Hence, the second-best access charge
P so 2 argmaxP W (Tp (P ) ; Tf (P )) is somewhere between P �L and P

�
F , with

one �rm investing too early and the other too late as compared to the �rst
best.

A further problem is that this second-best access charge lacks time con-
sistency. If the regulator does not commit to this price, and revises it after
the leader�s investment, he would change it to P �F . If the leader foresees this
it would invest at eTL (P �F ), and ex-ante welfare would be lower.
Given that in our model access is priced using a two-part tari¤, if the

regulator only aims for dynamic e¢ ciency and ignores static e¢ ciency, he
could try to use the usage charge a as an instrument to induce a �rst-best
investment pattern with a time-consistent access charge P . He would have
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to choose ea such that P �L (ea) = P �F (ea). Unfortunately, there is no simpler or
explicit condition describing this level of usage charge, so that it is hard to
tell whether such ea even exists.
According to De Bijl and Peitz (2004), with full participation and inelastic

demand, static welfare is independent of the usage charge. In this case,
the increase in the usage charge is totally passed on to consumers by the
follower, while the leader takes all the bene�ts from this increase. This
implies that a regulator has some freedom to set the usage charge for dynamic
objectives. However, for new services, we do not have full participation, and
thus there will be a usage charge which maximizes static welfare. In this
case, a regulator has to sacri�ce static welfare if he wants to use the usage
charge for dynamic objectives.

The regulator could use instead a time-variant access charge, as in Bour-
reau and Dogan (2006) or Vareda and Hoernig (2007), an earlier version of
this paper. In principle, the path of access charges could de�ne a di¤erent
value for each moment in time, resulting in an in�nite number of instruments.
We will not consider this case here because commitment by regulators to such
access charge paths is problematic. Regulatory pricing decisions usually are
valid for a few years only, after which new prices are set. Furthermore, the
regulators�directors are changed at regular intervals, which makes long-term
commitment more di¢ cult.
In order to ease problems of commitment, we will discuss some simpler

regimes that can be seen as particular cases of time-variant access charges,
where the price is changed only once, either from or to in�nity (or some other
value above �1F ). The �rst is a banned access regime where the regulator sets
a date after which the follower can no longer ask for access to the leader�s
infrastructure. Note that this banned access regime does not correspond
to a �sunset clause�. Sunset clauses specify ex ante a period of time after
which the leader�s network is no longer regulated. In our case, the regulator
continues to intervene by banning service-based competition. In fact, if the
regulator just withdrew from market intervention the leader might continue
to give access to the follower for some time in order to delay its investment,
as in Bourreau and Dogan (2006).
The second regime is one of access holidays, where there is no access

obligation for a certain period of time right after the leader�s investment.
The new point in our analysis is to not consider access holidays in isolation,
but to link them to lower access prices afterwards. The decision variable in
this case is the exact length of these access holidays. Note that during the
access holidays the leader, while not being subject to an access obligation,
can opt to give access to the follower. However, it has no incentive for doing
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so since, as we will see, it would not be able to delay the follower�s investment
date and because its pro�t is higher with monopoly.

In a banned access regime, the regulator, besides setting an access tari¤
as before, also �xes a date TBA after which access is banned.
Since the leader�s stand-alone investment date Ts (P ) does not change

if the follower invests at T soF instead of Tf (P ), the same argument as in
Proposition 9 applies, and e¢ cient investment can only be achieved in a
preemption equilibrium.
Let us de�ne P ��L as the access charge that induces preemption at the

socially optimal �rst investment date when �rms know that the second in-
vestment will also occur optimally: ~L (T soL ; T

so
F ; P

��
L ) =

~F (T soL ; T
so
F ; P

��
L ), or

P ��L =
� (A (T soL )� A (T soF ))� (�2L � �2F ) e��T

so
F

2 (e��T
so
L � e��T soF ) � �1L � �1F

2
: (22)

Thus the di¤erence between P �L and P
��
L is that the former supposes that the

second investment is at the non-optimal date Tf (P �L). We now consider two
cases, depending whether at access price P ��L the follower would invest too
late or too early.

Proposition 10 If 0 � P ��L � P �F , with P = P ��L and TBA = T soF both �rms
invest at their socially optimal dates.

Proof. At time t � T soL the follower solves:

max
tj�t

�
e��t � e��minftj ;TBAg

�
~�1F (P

��
L ) +

e��tj

�
�2L � A (tj)

�
:

Taking the �rst-order condition we obtain:

�1F � �2F � P ��L + Z (tj) > 0 for tj < TBA
��2F + Z (tj) < 0 for tj > TBA

Hence, the follower invests at TBA = T soF , and since P
��
L � P �F � �1F the

follower asks for access before T soF .
Since the leader receives P ��L during the whole duration of service-based

competition, the �rst investment will occur at the socially optimal investment
date T soL .

Thus if P ��L � P �F the follower can be induced to invest at T soF simply by
ending access to the leader�s network at the date when investment is meant to
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occur. This regime is time-consistent and corresponds to the recommendation
in Cave and Vogelsang (2003) of access pricing that are increasing over time.

Still, if P ��L > P �F then the above regulatory regime does not lead to the
�rst best: the follower will invest too early at Tf (P ��L ). This case arises if the
follower�s payo¤ increases very strongly after duplication, while total surplus
increases little, i.e. the follower�s gains are mainly due to business stealing.
If the regulator wants the follower to invest at T soF he needs to set the lower
access charge P �F . However, an access charge at this level, and for the whole
time interval between the �rst and second investments, will induce the leader
to invest later than T soL . In this case, a regime of banned access is useless,
since anyway the follower invests earlier than optimal. Therefore, we suggest
the adoption of access holidays.
�Access holidays�consists of a �xed time period after the leader�s invest-

ment during which the leader is not subject to mandatory access, see e.g.
Gans and King (2004). In our model the leader would earn the monopoly
pro�t �1M during this period. Since this is higher than ~�1L (P ) for all P
at which the follower asks for access, access holidays provide an additional
means for the regulator to guarantee rents to the �rm making the �rst in-
vestment.
Indeed, when there exists an unresolved con�ict between the necessity

of high access charges to make the leader invest optimally, and low access
charges to keep the follower from investing too early, access holidays can help
solve this problem, to some extent, by raising the leader�s payo¤s right after
investment. The core of our argument is that the higher is the length of the
access holiday the higher is the regulator�s degree of freedom to set a lower
access price after ending the �holidays�. Therefore, he will at least be able
to induce both �rms to invest closer to socially optimal. Naturally, since
the follower receives zero pro�ts without access, it would like to invest even
earlier if the access holiday lasts too long and the leader opts to not give
access during that period. This limits the additional rents that can be given
to the leader.
Moreover, there is an additional downside: By granting access holidays,

the regulator is sacri�cing static welfare, and the �rst-best cannot be achieved
even if the restriction we have just mentioned is not binding. Thus these
holidays should have the minimum duration needed to yield the necessary
increase in rents given that some PH < P ��L is charged afterwards. In fact,
paths of access prices that decrease towards P �F and do not make the follower
invest immediately yield even higher rents to the leader. These would lead
to shorter access holidays and higher welfare, but, as argued above, may be
much more di¢ cult for the regulator to commit to ex ante.
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Formalizing the problem, now the leader�s investment date depends on
both the access charge and the duration of the access holidays. If there still
is a period of service-based competition, the access holidays do not in�uence
the follower�s investment date Tf (P ). Hence, de�ning the duration of the
access holidays as H; we have:

L (ti; P;H)� F (ti; P;H) =
�
e��ti � e��(ti+H)

� �M
�

+
�
e��(ti+H) � e��Tf (P )

� ~�1L (P )� ~�1F (P )
�

(23)

+ e��Tf (P )
�2L � �2F

�
� A (ti) + A (Tf (P )) :

According to this expression, and given that �M > ~�1L (P ), preemption
occurs earlier the longer is the access holiday period, i.e. @Tp (P;H) =@H < 0:
The leader�s stand-alone investment date also depends on the access holiday
since its problem is now:

max
ti

�
�M��0

�
e��ti + ~�1L(P )��M

�
e��(ti+H) + :::� A (ti) if 0 � ti < Tf (P )

�2L��0
�

e��ti + :::� A (ti) if ti � Tf (P )
;

from where we obtain

Ts (P;H) = Z
�1 �~�1L (P )� �0 + (�M � ~�1L (P )) �1� e��H�� ; (24)

and thus @Ts (P;H) =@H < 0. We can then conclude that the leader�s equi-
librium investment date eTL (P;H) is decreasing in the length of the access
holiday.
The regulator�s problem is:

max
H;P

n�
1� e�� eTL(H;P )� w0

�
+
�
e��

eTL(H;P ) � e��(eTL(H;P )+H)� wM
�

+
�
e��(

eTL(H;P )+H) � e�� eTF (P )� w1
�
+ e��

eTF (P )w2
�

�A
�eTL (H;P )�� A(eTF (P ))o ;

subject to the condition that the follower will not invest before eTL (H;P )+H.
The optimum will involve a trade-o¤ between optimal investment by the
leader, given by the terms

e��
eTL(H;P )w1 � w0

�
� A

�eTL (H;P )� ; (25)

and the loss in static welfare

e��
eTL(H;P ) �1� e��H� wM � w1

�
: (26)
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Therefore the access holidays will be shorter than needed to make the leader
invest optimally in order to limit the loss in static welfare. In order to at
least partially make up for this, and since welfare is �at at the follower�s
�rst-best investment date, the access prices charged to the follower later on
will be somewhat above P �F , and the follower will invest too early.
The optimal duration of the access holidays cannot be such that the

follower invests before they end, since in this case the follower would be
investing too soon and there would be welfare losses resulting from monopoly.
Indeed, this solution is dominated by a regime where the regulator sets the
access holiday to end right before inducing investment by the follower, and
then P < �1F ; as both the leader and the follower would invest closer to
optimal. This, together with higher �ow pro�ts during monopoly, implies
that the leader will not o¤er access during the access holidays period.

If the regulator cannot commit to the access charge set in this regime, he
will revise it to P �F < PH immediately after the end of the access holidays,
in order to induce the follower to invest optimally. However, this will make
the leader delay its investment if it foresees this. In this case, when the
regulator sets the access holiday period, he must take into account that the
access charge will be P �F . If he is able to commit to the length of the access
holidays, these will have to be longer than with commitment to length and
access price. Thus, there clearly is a social cost of not being able to commit.

7 Extensions

7.1 Undesirable bypass

Until now we have assumed that a bypass investment is desirable both for
the follower and the regulator, see assumptions (6) and (19). In this section
we change both assumptions.

Case 1: Socially desirable but privately undesirable bypass
This situation corresponds to the following assumption:

w2 � w1 > �C > �2F � �1F (27)

Here the regulator would like to encourage the follower to invest. This he
can only achieve with a su¢ ciently high access charge:

P > P = �C � (�2F � �1F ) : (28)
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Thus, if �2F > �C; for P > P the follower duplicates at some t < +1, and
for P � P the follower does not duplicate. By (27), we have:

P �F = (w2 � w1)� (�2F � �1F ) > P: (29)

That is, the regulator cannot only induce the follower to invest at all, but even
to invest at the optimal date. Therefore, the regulatory regimes discussed in
the previous section can equally be applied.

Case 2: Socially undesirable bypass
We continue to assume that the �rst investment is socially desirable, but

that the second one is not:

w1 � w0 > �C � w2 � w1: (30)

Again, the stand-alone and optimal investment dates of the leader remain
the same. Thus the regulator needs to induce investment in a preemption
equilibrium, for example by choosing a constant access charge P �L such that
~L (T soL ;1; P �L) = ~F (T soL ;1; P �L). This condition is equivalent to

P �L =
1

2

�
�A (T soL ) e

�T soL � �1L + �1F
�
: (31)

At this access charge the follower will not invest if �2F � ~�1F (P �L) � �C,
i.e. P �L � �C � �2F + �1F . If P �L is larger than this value, the regulator
must set the access charge at most at this level such as to avoid inducing
investment by the follower. Similar to what we discussed above, in this case
the regulator can again use access holidays in order to guarantee the rents
which make the leader invest at (or at least closer to) the optimal date, while
later being able to charge a lower access price.

7.2 Ex-ante asymmetry

In this section we extend our model to the case where �rms are ex-ante
asymmetric. This portrays the situation when there is an incumbent �rm
owning a network which can be used for providing the new services. This
�rm just needs to upgrade its existing network to start supplying the services,
while its competitor would have to build an entire new network.
This asymmetry is modeled by assuming that one of �rms has a lower cost

of investing in the new network infrastructure than the other. For simplicity,
let the investment cost of one of the �rms, say �rm B; be CB (t) = C (t)+K;
while the investment cost of �rm A is C (t). Investment K > 0 corresponds
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to the duplication of the necessary parts of the incumbent�s network. We
assume here

K <
min f�2F � �1F ; w2 � w1g

�
� C; (32)

so that a bypass investment is privately and socially desirable.
According to this formulation, �rm A�s stand-alone and preemption in-

vestment dates (TAf (P ) ; T
A
S (P ) ; T

A
p (P )) are the same as the ones found in

previous sections, but �rm B�s investment dates will change.

Proposition 11 Given the access charge P , �rm B�s stand-alone invest-
ment dates as a follower and as a leader, TBf (P ) ; T

B
S (P ) ; and preemption

date, TBp (P ) ; occur later than �rm A�s, and are all delayed with increases
in K:

Proof. See Appendix C.

Since future pro�t �ows of �rm B are reduced by the annuity �K, it
has fewer incentives to invest, whatever is the position it assumes in the
investment race. Therefore, its investment dates are all delayed in comparison
with �rm A; being this delay higher, the higher is the degree of asymmetry:

In this case, the equilibrium investment timing becomes similar to Rior-
dan (1992):

Proposition 12 For all P 2 [0; �1F ] ; in the unique subgame-perfect equilib-
rium, �rm B is the follower and invests at eTF (P ) = TBf (P ), while �rm A is
the leader and invests at eTL (P ) = min�TBp (P ) ; TAs (P )	 :
Proof. See Theorem 1, part (i) of Riordan (1992).

Again we can have a preemption or a waiting equilibrium, according to
which of TBp (P ) and T

A
s (P ) occurs earlier. According to Proposition 11, if

K is big then TBp (P ) occurs very late, and thus even for high P we have
TAs (P ) < T

B
p (P ) : In this case, the leader invests at its stand-alone invest-

ment date, but contrary to previous sections it has a �rst-mover advantage.
Therefore we say, according to the terminology of Riordan (1992), that �rm
A is a strong leader. If K is small, things will be qualitatively similar to the
previous sections, but �rm A de�nitely becomes the leader, in the terminol-
ogy of Riordan (1992), a weak leader. What is di¤erent from the symmetric
case is that �rent equalization� does not occur: A�s discounted pro�ts as
leader at its investment date are strictly higher than what it would earn as
a follower if �rm B invested at this date.
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The e¤ect of the access tari¤ on the leader�s and follower�s investment
dates is similar to Propositions 5 and 6, since dates are de�ned similarly.
Still, for the regulator it is better to have �rm A as the leader and �rm B
as the follower, in order to delay the investment cost of K by �rm B: This
preference is met in equilibrium, therefore the regulator does not need to be
concerned with the order of investments, only with the respective investment
dates.

Proposition 13 The socially optimal investment timing by the leader can
be achieved in a waiting game with the access charge PwL = S1�S0+�1F ��0
if TBp (P

w
L ) � TAs (PwL ) and 0 � PwL � �1F . If TBp (PwL ) < TAs (PwL ) then the

regulator can achieve optimal investment only in a preemption game (at least
with a �xed access price).

Proof. Immediately from Proposition 12 and TAs (P
w
L ) = T

so
L :

With asymmetry between �rms, it is possible to make the leader invest
at the socially optimal date in a waiting equilibrium when K is high enough,
since in this case, and contrary to the previous sections, �rm A invests at
its stand-alone investment date also for high P: Indeed, when �rm A is a
strong leader, the regulator just needs to make it internalize the e¤ects of its
investment on consumer surplus and follower�s payo¤ to induce it to invest at
the �rst best. If �rm A is a weak leader, then the regulator needs to induce
a preemption equilibrium to achieve socially optimal investment. In both
cases the regulator�s options are similar to the symmetric case. In particular,
banning access or granting access holidays will have the same functions as
discussed above.

8 Conclusions

This paper demonstrates how mandatory access in�uences the investment
dates of two �rms that want to build new infrastructures. As known from
the literature on technology adoption, there are two types of equilibria. In
the �rst type there is a �rst-mover advantage and �rms preempt each other.
In the second type there is a second-mover advantage, leading to a waiting
equilibrium. We show that in the context of access pricing, low access charges
may lead to waiting, while high access charges lead to preemption.

While higher access charges make the follower invest earlier, and also the
leader in a waiting equilibrium, its e¤ects are ambiguous under preemption.
If the stand-alone incentives for investment are strong enough then also under
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preemption the leader�s investment will occur earlier. If on the other hand the
reduction in payo¤s caused by the anticipation of the follower�s investment
is the determinant factor, then the leader�s investment will be delayed by a
higher access charge.

Since the regulator needs to induce two �rms to invest optimally, the �rst
best cannot be achieved with a �xed two-part access tari¤. We show that
banning access after some date may lead to �rst-best investment if the fol-
lower�s private incentives for investment are small. On the other hand, if the
follower�s private incentives are dominated by business-stealing, it would in-
vest too early, and banning access after a period of service-based competition
is counterproductive. The introduction of access holidays after the leader�s
investment can alleviate this problem, apart from their more usual role of
encouraging the leader�s investment.

In case of a large ex-ante asymmetry between �rms, socially optimal in-
vestment timing can be achieved in a waiting equilibrium. Yet, if the asym-
metry is small enough then the regulator needs to encourage preemption, just
as in the symmetric case. Finally, no essentially new problems arise if bypass
needs to be elicited by the regulator, or if no bypass investment occurs at all.

Appendix A - Proof of Proposition 2

Given the investment decision of the follower, the leader solves

max
ti

(
~�1L(P )��0

�
e��ti � A (ti) +

h
�0
�
+ �2L�~�1L(P )

�
e��Tf (P )

i
if 0 � ti < Tf (P )

�2L��0
�

e��ti � A (ti) + �0
�

if ti � Tf (P )

Pro�ts are continuous at ti = Tf (P ). On the branch ti < Tf (P ), the �rst-
order condition for an interior maximum is Z (ti) = ~�1L (P ) � �0. By as-
sumptions (3) and (6), the following inequalities hold:

P � �1F : �1L + P � �0 > �2F � (�1F � P ) ;
P > �1F : �1M � �0 � �1L + �1F � �0 > �2F :

Thus ~�1L (P ) � �0 > �2F � ~�1F (P ) and Ts (P ) = Z�1 (~�1L (P )� �0) <
Tf (P ). Furthermore Ts (P ) > 0 because by assumption (7) we have ~�1L (P )�
�0 < �1M < Z (0). Therefore, on the �rst branch there is a unique interior
maximum at Ts (P ), and pro�ts on the �rst branch are decreasing at ti =
Tf (P ).
As concerns the second branch, the �rst-order condition for an interior

maximum is Z (ti) = �2L � �0, with solution Ts0 = Z�1 (�2L � �0). If �2L �
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�0 � �2F � ~�1F (P ) ; or P � �1F � �0 + �2L � �2F ; then Ts0 � Tf (P ), and
the maximum on the second branch is at Tf (P ), where it is dominated by
Ts (P ). If, on the other hand, P > �1F � �0 + �2L � �2F then Ts0 > Tf (P ),
and we cannot decide whether the global maximum is at Ts (P ) or Ts0.

Appendix B - Proof of Proposition 3

We have

L (ti; P )� F (ti; P ) =
�
e��ti � e��TF (ti;P )

� ~�1L (P )� ~�1F (P )
�

+ e��TF (ti;P )
�2L � �2F

�
� A (ti) + A (TF (ti; P )) ;

which is continuous by continuity of L (ti; P ) and F (ti; P ). Since TF (Tf (P ) ; P ) =
Tf (P ),

L (Tf (P ) ; P )� F (Tf (P ) ; P ) = e��Tf (P )
�2L � �2F

�
� 0;

by assumption (4). We also �nd that L (0; P ) < F (0; P ) 8P 2 [0; �1F ]
since F (0; P ) � 0 and by assumption (7) L (0; P ) < 0. Thus there is a
Tp (P ) 2 (0; Tf (P )] such that L (Tp (P ) ; P ) = F (Tp (P ) ; P ). We will now
show that there is at most one such date with L (ti; P ) < F (ti; P ) for all
ti 2 [0; Tp (P )), and L (ti; P ) > F (ti; P ) for all ti 2 (Tp (P ) ; Tf (P )).
Maximizing or minimizing L�F with respect to ti in the interval [0; Tf (P )],

we obtain the �rst-order condition

@ (L� F )
@ti

= e��ti (~�1F (P )� ~�1L (P ))� A0 (ti) = 0:

Whenever it holds,

@2 (L� F )
@t2i

= ��e��Ti (~�1F (P )� ~�1L (P ))� A
00
(ti)

= ��A0 (ti)� A
00
(ti)

= Z 0 (ti) e
��ti < 0;

so that (L� F ) is strictly quasi-concave on [0; Tf (P )]. This implies that L�
F cuts the horizontal axis from below exactly once, and that any additional
cut from above occurs only at Tf (P ) and if �2L = �2F (In this case we have
L = F also at Tf (P ), but this does not upset the statement).

Appendix C - Proof of Proposition 11
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Given the leader�s investment date ti � 0, if �rm B is the follower it
solves the following maximization problem

max
tj�ti

�
�2F � ~�1F (P )� �K

�
e��tj � A (tj)

�
;

and therefore, following the proof of Proposition 1, its investment date be-
comes:

TBF (ti; P ) = max
�
TBf (P ) ; ti

	
;

with TBf (P ) = Z
�1 (�2F � ~�1F (P )� �K) > 0.

Firm B�s stand-alone investment date as a leader results from solving

max
ti

�
~�1L(P )��0��K

�
e��ti + :::� A (ti) if 0 � ti < TAf (P )

�2L��0��K
�

e��ti + :::� A (ti) if ti � TAf (P )
;

which, following the proof of Proposition 2, gives:

TBs (P ) = Z�1 (~�1L (P )� �0 � �K)
TBs0 = Z�1 (�2L � �0 � �K) :

From these it is easy to see that:

@TBf (P )

@K
> 0;

@TBS (P )

@K
> 0:

Therefore, as �rm A�s investment dates are obtained with K = 0; TAf (P ) <
TBf (P ) and T

A
S (P ) < T

B
S (P ) :

Finally, we show that B�s preemption date occurs later than for �rm A:
If at TAp (P ) �rm A is indi¤erent between being a leader or a follower, then
�rm B is better o¤ being a follower:

LB
�
TAp (P ) ; P

�
� FB

�
TAp (P ) ; P

�
= �K

�
e��T

A
p (P ) � e��TBF (TAp (P );P)

�
< 0;

since TAp (P ) � TAf (P ) < TBf (P ) � TBF
�
TAp ; P

�
: Hence, following the proof

of Proposition 3, its preemption date must occur after TAp (P ).
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