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Abstract

We show that three location models on the Salop circle, involving
linear or quadratic transport cost, and asymmetric locations or fixed
benefits, are equivalent: they lead to the same demand functions and
consumer surplus. The only exception is the case of asymmetric lo-
cations with an even number of firms, which has one less degree of
freedom. These models are also fully equivalent to a normative rep-
resentative consumer whose indirect utility is given by the standard
Salop consumer surplus. This result provides a further unification of
location and representative consumer models.
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1 Introduction

In this paper we compare three types of circular-city Salop models, all of
which are generalizations of the original model of Salop (1979). These models
contain a different mix of assumptions about transport cost, locations and
fixed benefits:

• linear transport cost, symmetric locations, and asymmetric fixed ben-
efit to consumers;

• quadratic transport cost, symmetric locations, and asymmetric fixed
benefit to consumers;

• linear transport cost, asymmetric locations, and symmetric fixed ben-
efit to consumers;1

It is well-known that the first two models, with linear and quadratic trans-
port costs, both lead to linear demand functions. Thus they are equivalent
from this restricted (positive) point of view. But are the implied expres-
sions for consumer surplus comparable in any way? In other words, while
the models are equivalent at a descriptive level, are they also equivalent at a
normative level? This seems rather unlikely, given that functional forms of
transport costs are so different.
On the other hand, it seems at first sight that a model with asymmetric

locations leads to demand functions and consumer surplus that are again
rather different from those in a model with symmetric locations and asym-
metric benefits. Thus the latter model appears to be both descriptively and
normatively different.
The first purpose of this paper is to show that these three Salop models

are indeed both descriptively and normatively equivalent for a given set of
locations. We derive a common expression for consumer surplus and show
how these models map bijectively into each other. There is one exception,
though: For an even number of firms, the model with asymmetric locations
has one degree of freedom less than the other models discussed here.
The main practical lesson one can draw from these equivalences is that

the informational content of these three models is the same (up to the caveat
just mentioned); and that one can use the formulation which responds better
to one’s modeling aims. In particular, some formulation may lead to simpler
expressions depending on the context in which the model is applied. What
will differ, though are the comparative statics with respect to fundamental

1With some more notation, the latter case can be extended to asymmetric fixed benefits,
too. Our point in the paper is to show how fixed benefits and locations map into each.
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market parameters such as benefits or locations: Changing benefits of one
single firm, for example, maps into global changes in locations, and vice versa.
On a somewhat deeper level, our result is a useful step towards unifying

the "zoo" of available models for applied work. It is often a concern that
the results of the modeling exercise might not be robust to how exactly the
underlying market model is specified. Here we show when the choice between
the three models discussed in this paper does not matter.

The second main point of the paper is that the standard Salop consumer
surplus, made up of consumption utility minus "transport cost", represents
a valid (quasi-linear) indirect utility function of a representative consumer.
Thus, following the concepts discussed in Mas-Colell et al. (1995, ch. 4),
consumer surplus portrays a normative representative consumer: Not only
can aggregate demand be derived from maximizing his utility (this would
be a positive representative consumer), but this single consumer’s surplus
can be used for welfare evaluation.2 Thus apart from having shown that the
above three Salop location models are equivalent to each other, they are also
all fully equivalent to a specific representative consumer model, providing a
further unification of location and representative consumer models.
Anderson et al. (1992, ch. 5) provide a random utility formulation for

the Hotelling duopoly model and derive a (direct) utility function from which
the standard Hotelling demand can be determined. That is, they construct
a positive representative consumer for the Hotelling model. Still, they make
no attempt to show that this utility is in any way related to the standard
consumer surplus in the Hotelling model, nor that their utility can lead to
a valid representation of aggregate welfare. In our paper we show that for
the Salop model the standard consumer surplus contains such a valid repre-
sentation. It would be a simple exercise to show the corresponding result for
the Hotelling model following the procedure in our paper.

As a last step we also point out that the Salop model with asymmetric
locations and quadratic transport cost is not equivalent to the three models
discussed before. The main reason for this is that the quadratic transport
cost formulation makes the asymmetric location parameters appear in the
slopes of the demand function, so that every firm potentially has a different
slope of demand for each of its own and neighbors’prices. This is ruled out
in the above models, and thus indicates that their equivalence is not at all
obvious.

2The latter holds true because a quasi-linear indirect utility is automatically of the
Gorman form, which allows this aggregation without having to worry about how welfare
of individual consumers is weighted.
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2 Example: The Hotelling Model

The Hotelling model (Hotelling, 1929) and its reformulation by d’Aspremont
et al. (1979) are widely used building blocks for applied work. Two firms
are located at the opposite ends of line of length 1, over which a mass 1 of
consumers is uniformly distributed. The location x ∈ [0, 1] of each consumer
indicates his ideal variety, consumption of which yields him a utility of v. If
he buys from firm 1 at location 0, or firm 2 at location 1, then he suffers
a disutility ("linear transport cost") of tx, or t (1− x), respectively, where
t > 0. D’Aspremont et al. changed this formulation to a quadratic transport
tx2, or t (1− x)2.3 Given prices p1 and p2 for the firms’goods, the market
will divide at the indifferent customers y and ỹ given by (utility is assumed
to be quasi-linear in money)

v − p1 − ty = v − p2 − t (1− y)⇐⇒ y =
1

2
+
p2 − p1

2t

v − p1 − tỹ2 = v − p2 − t (1− ỹ)2 ⇐⇒ ỹ =
1

2
+
p2 − p1

2t
.

Thus from a descriptive perspective both models are identical: They lead to
the same demand functions. Let us compare consumer surplus:

CS = v − yp1 − (1− y) p2 −
∫ y

0

txdx−
∫ 1−y

0

txdx,

C̃S = v − ỹp1 − (1− ỹ) p2 −
∫ ỹ

0

tx2dx−
∫ 1−ỹ

0

tx2dx.

These terms differ in transport cost. Surely, CS will be quadratic in prices,
and C̃S of third order? Actually, after some simplifications we obtain

CS = v − p1 + p2
2

+
(p1 − p2)2

4t
− 1

4
t,

C̃S = v − p1 + p2
2

+
(p1 − p2)2

4t
− 1

12
t,

i.e. the two consumer surplus measures only differ in a constant. Moreover,
this consumer surplus is a valid indirect utility function for a representative
consumer, as can be shown by applying Roy’s identity:

−∂CS
∂p1

= −∂C̃S
∂p1

=
1

2
+
p2 − p1

2t
= y = ỹ.

3They did this to avoid discontinuities in demand that occur when firms locate closer
to each other. This issue will play no role in the present paper.
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We have thus shown the following: For fixed locations at the extremes of the
Hotelling lines, the Hotelling models with linear and quadratic transport costs
are equivalent to each other, both from a positive (demand) and normative
(consumer surplus) point of view. Furthermore, the standard expressions for
consumer surplus in these discrete choice models can be interpreted equiva-
lently as the indirect utility of a representative consumer. Below we follow
the same procedure for the different variants of the Salop model mentioned
above.

3 Three Equivalent SalopModels, and a Black
Sheep

In the following we derive the demand function and corresponding consumer
surplus for each of the three models. We show that this consumer surplus
can be interpreted as providing the indirect utility (and thus the preferences)
of a representative consumer. All longer proofs have been relegated to an
Appendix.

3.1 Linear Transport Cost and Asymmetric Benefits

We first present the Salop model with symmetric locations and asymmetric
benefits because it is the simplest to deal with.
A set of n > 0 firms k ∈ {1, ..., n} are located symmetrically at locations

(k − 1) /n on a circle of circumference 1. For notational convenience, we
identify firms k ∈ Z outside this range with firm ((k − 1) modn) + 1, e.g.
firms 0 and n+ 1 are identified with firms n and 1, respectively.
We also assume that a mass 1 of consumers is located uniformly around

the circle. Each consumer’s location describes his ideal good, and he suffers
a disutility or "transport cost" td from buying the good at a firm at distance
d ≥ 0 along the circle, where the parameter t > 0 measures the strength of
preferences.
A consumer buying from firm k obtains surplus (before transport cost) of

wk = βk − pk,

where βk > 0 is an idiosyncratic benefit from consuming firm k’s good, and
pk is firm k’s price.
Here and in the following we will assume that prices pk are low enough as

compared to fixed surplus βk so that all consumers are willing to buy from
some firm. In applications this will usually be guaranteed by enough compe-
tition between neighboring firms. Furthermore, we assume that asymmetries
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are weak enough so that no firm is excluded from the market; this implies
that each firm competes directly only with its two neighbors.4

In order to find firm k’s demand, we follow the standard steps of first
deriving the locations of the consumers that are indifferent between its of-
fer and that of its neighbors, and then determining the mass of consumers
between these indifferent consumers. Denote by xk the location of the indif-
ferent consumer between firms k and k+ 1 relative to the location of firm k,
i.e. xk ∈ [0, 1/n]. Then his location is given by the indifference condition

wk − txk = wk+1 − t
(

1

n
− xk

)
,

and consequently

xk =
1

2n
+
wk − wk+1

2t
.

The demand qk of firm k is given by a mass of xk consumers on its right and(
1
n
− xk−1

)
on its left, or

qk = xk +

(
1

n
− xk−1

)
=

1

n
+

2wk − wk+1 − wk−1
2t

(1)

The consumer surplus in the Salop model is given by the sum of consumption
benefits minus aggregate transport cost, as

CS =
n∑
k=1

(
wkqk −

∫ xk

0

txdx−
∫ 1/n−xk−1

0

txdx

)
(2)

We now restate this consumer surplus in a rather simpler form:

Proposition 1 Consumer surplus in the n-firm Salop model with linear
transport cost, symmetric locations and asymmetric fixed benefits can be
stated as

CS =

n∑
k=1

(
sk
n

+
(sk − sk+1)2

4t

)
,

where
sk = βk − pk −

t

4n
.

4See Hoernig (2014) for a generalized Hotelling model where each firms directly com-
petes with all other firms in the market.
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Interpreting this consumer surplus as a quasi-linear indirect utility func-
tion of a representative consumer, as in (let p = (p1, ..., pn) be the vector of
prices)

v (p, w) = w + CS,

we can apply Roy’s Lemma:

qk = −∂v (p, w)

∂pk

/
∂v (p, w)

∂w
= −∂CS

∂pk

= − ∂

∂pk

(
sk
n

+
(sk − sk+1)2

4t
+

(sk − sk−1)2

4t

)
=

1

n
+

2wk − wk+1 − wk−1
2t

This faithfully reproduces the demand function (1). Since an indirect utility
function contains the same information about a consumer as a direct util-
ity function over consumption bundles, consumer surplus (2) represents the
preferences of a normative representative consumer, as defined by Mas-Colell
et al. (1995)

3.2 Quadratic Transport Costs and Asymmetric Ben-
efits

Now we change the definition of transport from linear (td) to quadratic, τd2

with τ > 0. As we will see immediately, for the purpose of comparison it
is very useful to write the transport cost parameter as τ = nt. Otherwise
the model remains identical to the above linear specification. The indifferent
consumer between firms k and k + 1 is given by

wk − τx2k = wk+1 − τ (1/n− xk)2 ,

i.e.

xk =
1

2n
+
n (wk − wk+1)

2τ
=

1

2n
+
wk − wk+1

2t
.

As above, firm k’s demand is determined as

qk = xk +

(
1

n
− xk−1

)
=

1

n
+

2wk − wk+1 − wk−1
2t

.

We see that the expressions for the indifferent consumers and demands are
identical to those we found above.
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The definition of consumer surplus now must take into account that trans-
port costs are quadratic:

CS =
n∑
k=1

(
wkqk −

∫ xk

0

τx2dx−
∫ 1/n−xk−1

0

τx2dx

)

This expression contains cubic terms and therefore it seems at first sight that
it cannot possibly coincide with consumer surplus (2) in the linear case. We
show that it actually only differs by a constant:5

Proposition 2 Consumer surplus in the n-firm Salop model with quadratic
transport cost, symmetric locations and asymmetric fixed benefits can be
stated as

CS =
n∑
k=1

(
s̃k
n

+
(s̃k − s̃k+1)2

4t

)
,

where
s̃k = βk − pk −

t

12n
.

Again Roy’s lemma applies:6

−∂CS
∂pk

=
1

n
+
s̃k − s̃k+1

2t
+
s̃k − s̃k−1

4t

=
1

n
+

2wk − wk+1 − wk−1
2t

= qk.

Thus, contrary to what one might expect, the Salop models with linear and
quadratic transport costs are perfectly equivalent to each other. The only
necessary change is a shift in fixed consumer surplus so that

s̃k = sk +

(
t

4n
− t

12n

)
= sk +

t

6n
,

implying the same constant difference in aggregate consumer surplus of t/6n.

5One can actually show that this equivalence holds in similar form for higher powers
in the transport cost function: Consumer surplus for transport costs tdm and τdm+1 are
equivalent whenever m is an odd integer (i.e., the terms of power m+ 1 cancel).

6Now that we know that consumer surplus also in this case is just a quadratic and not
a cubic function of individual consumers’surplus, this is to be expected.
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3.3 Linear Transport Cost and Asymmetric Locations

In this section we set out the Salop model with asymmetric locations. In
order to focus on how location asymmetry maps into asymmetric benefits
under symmetric locations, we assume that consumers’ fixed benefits are
symmetric.
Firm k is located at (k − 1) /n + δk, where the |δk| are small enough so

that the order of firms on the circle does not change and that consumers
still choose between their two neighboring firms. The individual consumer’s
surplus from choosing firm k is given by vk = v−pk. We define the indifferent
consumer’s location as relative to (k − 1) /n as above, so that this time it is
given by

vk − t (xk − δk) = vk+1 − t
(

1

n
+ δk+1 − xk

)
,

or

xk =
1

2n
+
δk + δk+1

2
+
vk − vk+1

2t
.

The demand of firm k is given by

qk = xk +

(
1

n
− xk−1

)
=

1

n
+
δk+1 − δk−1

2
+

2vk − vk−1 − vk+1
2t

.

Both expressions indicate that immediately mapping them into (1) is more
diffi cult than in the previous case.
Consumer surplus is again defined as the sum of benefits minus transport

costs, taking into account now the specific locations of individual firms:

CS =

n∑
k=1

(
vkqk −

∫ xk

δk

t (x− δk) dx−
∫ 1/n−xk−1

−δk
t (x+ δk) dx

)
.

In the Appendix, we show the following:

Proposition 3 Consumer surplus in the n-firm Salop model with linear
transport cost, asymmetric locations and symmetric fixed benefits can be
stated as

CS =

n∑
k=1

(
ŝk
n

+
(ŝk − ŝk+1)2

4t

)
,

where
ŝk = v + γk − pk −

t

4n
,
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and (δ̄ ≡ 1
n

∑n
j=1 δj)

γk ≡ t

(
n−1∑
j=1

n− 2j

n
tδk+j −

n∑
j=1

(
δj − δ̄

)2)

satisfies 2γk − γk+1 − γk−1 = t (δk+1 − δk−1).

Thus interpreting the term v+γk as an asymmetric surplus parameter al-
lows us to map this model with asymmetric locations into to the two previous
models with symmetric locations but asymmetric benefits.
We will now show inductively how and when this mapping can be inverted

to a mapping of a model of asymmetric benefits to asymmetric locations.
First take odd n ≥ 3, let δ1 = 0,7 and δk = δk−2 +

(
2γk − γk+1 − γk−1

)
/t for

all k = 3, ..., 2n+1 (intuitively, the δk are determined in two rotations around
the circle). It is easy to see that this set of indices covers all of k = 1, ..., n
once and implies a specific value for δ2n+1 which must be equal to δ1:

δ2n+1 =
1

t

n∑
i=1

(
2γ2i+1 − γ2i+2 − γ2i

)
=

1

t

(
n∑
i=1

2γi −
n∑
i=1

γi −
n∑
i=1

γi

)
= 0.

Thus for odd n the asymmetric location model maps directly back into an
asymmetric benefit model.
We will now see that for even n ≥ 2 the situation is slightly more com-

plicated. A first observation is that since the condition determining the
γk only involves the term (δk+1 − δk−1), the δk with even and odd indices
are determined independently of each other, since already after one rota-
tion we reach the δk we started with. Thus we define δ1 = δ2 = 0,8 let
δk = δk−2+

(
2γk − γk+1 − γk−1

)
/t for all i = 3, ..., n+2, and in the end need

to verify the conditions δn+1 = δ1 and δn+2 = δ2. We have

δn+1 =
1

t

n/2∑
i=1

(
2γ2i+1 − γ2i+2 − γ2i

)
=

2

t

(∑
j odd

γj −
∑
i even

γi

)
.

Thus for δn+1 = δ1 to hold we must have∑
j odd

γj −
∑
i even

γi = 0 (3)

7This starting value is actually arbitrary and has no effect on demand and consumer
surplus.

8Again, δ1 could have any value, and δ2 could differ from δ1. This latter difference must
be small enough, however, so that consumers still choose between their two neighboring
firms.
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(the same condition follows from δn+2 = δ2). This means that for even n
the asymmetric location model can be mapped into the asymmetric benefit
model if and only if condition (3) holds.
From the previous discussion follows:

Proposition 4 For odd n ≥ 3, the asymmetric location Salop model is equiv-
alent to the asymmetric benefit Salop model, while for even n ≥ 2 the asym-
metric location Salop model is only equivalent to the asymmetric benefit Salop
model if condition (3) holds.

In other words, for even n the asymmetric benefit model has one more
degree of freedom and thus allows for slightly less restrictive demand patterns.
This is easily shown for n = 2: In this case the values of δ1 and δ2 have no
influence on demand (remember that the index 0 is identified with n = 2):

q1 =
1

n
+
δ2 − δ0

2
+

2v1 − v0 − v2
2t

=
1

n
+
p2 − p1

t
;

on the other hand, with asymmetric fixed benefits we obtain

q1 =
1

n
+

2wk − wk+1 − wk−1
2t

=
1

n
+
β1 − β2

t
+
p2 − p1

2t
.

Thus with asymmetric benefits there is scope for one additional asymmetry
in market shares.

Our formulation of consumer surplus makes it easy to show that also in
the case of asymmetric locations Roy’s lemma applies:

−∂CS
∂pk

=
1

n
+

2γk − γk+1 − γk−1
2t

+
2vk − vk+1 − vk−1

2t

=
1

n
+
δk+1 − δk−1

2
+

2vk − vk+1 − vk−1
2t

= qk,

so as before aggregate demand in this model can be derived from the utility-
maximizing choice of a representative consumer.

3.4 Non-Equivalence with Quadratic Transport Cost
and Asymmetric Locations

Here we point out that if one joins the assumptions of quadratic transport
cost and asymmetric locations then one obtains a model that is not equivalent
to those discussed above. Thus the equivalence results from above are non-
trivial in the sense that it is easy to find a model, using the same assumptions,
that is different at a fundamental level.
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We adopt the notation of the previous sections, so that the indifferent
consumer now is defined by

vk − τ (xk − δk)2 = vk+1 − τ
(

1

n
+ δk+1 − xk

)2
,

or, with τ = nt,

xk =
1

2n
+
δk+1 + δk

2
+

vk − vk+1
2t (1 + n (δk+1 − δk))

.

Demand becomes

qk = xk +

(
1

n
− xk−1

)
=

1

n
+
δk+1 + δk−1

2

+
vk − vk+1

2t (1 + n (δk+1 − δk))
+

vk − vk−1
2t (1 + n (δk − δk−1))

.

The latter expression reveals a fundamental difference from the above three
models: The slope of demand with respect to the price of firm k and its
neighbors depends directly on the location parameters, while in the previous
three models these slopes were all constant with absolute value 1/2t. Thus in
the present model demand elasticity depends directly on the relative location
of firms.
A variant of this model, with three firms and only one degree of free-

dom in locations, has appeared in Brito and Pereira (2010). Our treatment
shows that this model is not equivalent to formulations of the Salop model
with either symmetric locations or linear transport cost, which implies that
predictions derived from these models can differ.
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Appendix: Omitted Proofs

Proof of Proposition 1:
In the following we transform the expression (2) of Salop consumer surplus

in various steps. First we need to simplify the transport cost terms (remember
the naming convention that indices k outside the range 1, ..., n are mapped
back into it in the obvious manner):

CS =
n∑
k=1

(
wkqk −

∫ xk

0

txdx−
∫ 1/n−xk−1

0

txdx

)

=
n∑
k=1

(
wkqk −

t

2
x2k −

t

2

(
1

n
− xk−1

)2)

=
n∑
k=1

(
wk
n

+
w2k − wkwk+1

t
− t

2

(
1

2n
+
wk − wk+1

2t

)2
− t

2

(
1

2n
+
wk+1 − wk

2t

)2)

=

n∑
k=1

(
wk
n
− t

4n2
+

3

4t
w2k −

1

2t
wkwk+1 −

1

4t
w2k+1

)
=

n∑
k=1

wk − t/4n
n

+
n∑
k=1

(wk − wk+1)2

4t

Note that in the last step we freely used
∑n

k=1w
2
k =

∑n
k=1w

2
k+1. Letting

sk = wk − t/4n then leads to the result in the Proposition.

Proof of Proposition 2:
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We now simplify the expressions for consumer surplus under quadratic
transport cost, shifting terms containing k − 1 to k:

CS =
n∑
k=1

(
wkqk −

∫ xk

0

τx2dx−
∫ 1/n−xk−1

0

τx2dx

)

=

n∑
k=1

(
wkqk −

nt

3
x3k −

nt

3

(
1

n
− xk−1

)3)

=
n∑
k=1

(
wk
n

+
w2k − wkwk+1

t
− nt

3

(
1

2n
+
wk − wk+1

2t

)3
−nt

3

(
1

2n
+
wk+1 − wk

2t

)3)

=
n∑
k=1

(
wk
n
− t

12n2
+

3

4t
w2k −

1

2t
wkwk+1 −

1

4t
w2k+1

)
=

n∑
k=1

wk − t/12n

n
+

n∑
k=1

(wk − wk+1)2

4t

Thus defining s̃k = wk − t
12n

= wk − τ
12n2

leads to the above result.

Proof of Proposition 3:
Consumer surplus can be reformulated as, again shifting the last term:

CS =
n∑
k=1

(
vkqk −

∫ xk

δk

t (x− δk) dx−
∫ 1/n−xk−1

−δk
t (x+ δk) dx

)

=
n∑
k=1

(
vkqk −

t

2
(xk − δk)2 −

t

2

(
1

n
− xk + δk+1

)2)

=
n∑
k=1

(
vk
n

+ vk

(
δk+1 − δk−1

2
+

2vk − vk−1 − vk+1
2t

)
− t

2

(
1

2n
+
δk + δk+1

2
+
vk − vk+1

2t
− δk

)2
− t

2

(
1

n
−
(

1

2n
+
δk + δk+1

2
+
vk − vk+1

2t

)
+ δk+1

)2)

=
n∑
k=1

(
vk
n
− t

4n2

+
1

2t

(
v2k − vkvk+1 + (tδk+1 − tδk−1) vk −

1

2
(tδk − tδk+1)2

))
13



Writing ŝk = vk + γk − t
4n
for as-yet-to-be determined terms γk, we obtain

CS =

n∑
k=1

(
ŝk
n

+
(ŝk − ŝk+1)2

4t

)

=

n∑
k=1

(
vk
n
− t

4n2
+
γk
n

+
1

2t

(
v2k − vkvk+1 +

(
2γk − γk+1 − γk−1

)
vk +

1

2

(
γk − γk+1

)2))
.

Matching the coeffi cients on the vk and the constant, we obtain the conditions

2γk − γk+1 − γk−1 = tδk+1 − tδk−1 ∀ k ∈ {1, ..., n} ,
n∑
k=1

(
γk
n

+
1

4t

(
γk − γk+1

)2)
= − 1

4t

n∑
k=1

(tδk − tδk+1)2

It is straightforward (though cumbersome) to verify that the solutions to the
first set of conditions are given by

γk =
n−1∑
j=1

n− 2j

n
tδk+j +K + Ck,

for some constants K,C ∈ R.9 First, the identification of index k with index
k + n implies that C = 0. We now determine the constant K from the
remaining condition. From the expression for γk it follows that γk − γk+1 =
tδk+1 + tδk − 2tδ̄, where δ̄ ≡ 1

n

∑n
j=1 δj, and

n∑
k=1

γk
n

= K +
n−1∑
j=1

n− 2j

n
tδ̄ = K.

Then we obtain, shifting indices from k + 1 to k in the last step,

K = − 1

4t

n∑
k=1

((
γk − γk+1

)2
+ (tδk − tδk+1)2

)
= −t

n∑
k=1

(
δk − δ̄

)2
.

Thus the final expression for γk becomes

γk = t

(
n−1∑
j=1

n− 2j

n
tδk+j −

n∑
j=1

(
δj − δ̄

)2)
.

9The roots of the characteristic equation of this second-degree difference equation are
both equal to 1, so this is indeed the general solution.
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