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A B S T R A C T  

Geobacter species are frequently the most abundant Fe(III)-reducing microorganism in soils and 

sediments. They can also reduce other metals in the same type of environments and, in addition, 

make electrical connections with electrodes to produce electricity from waste organic matter or to 

drive anaerobic process with electrical energy. Proteomic and genetic studies have identified several 

multiheme cytochromes as essential for Fe(III) reduction. From all the cytochromes that were shown 

to be involved in the reduction of Fe(III), the best characterized to date are five periplasmic triheme 

cytochromes from Geobacter sulfurreducens, which constitute the so-called PpcA-family. The 

members of this family are designated PpcA, PpcB, PpcC, PpcD, PpcE. A similar family was found in 

Geobacter metallireducens (PpcA, PpcB, PpcC, PpcE and PpcF) but none of these proteins was 

characterized to date. When compared to the other homologs found in G. sulfurreducens, PpcF 

differs the most and for this reason was targeted in the present work. To characterize this 

cytochrome, PpcF was firstly expressed and purified. The yield obtained was approximately 1 mg/L 

of cell culture. The molecular mass of the protein was confirmed by mass spectroscopy (9737.13 

Da). The molar extinction coefficient was determined (87.4 mM-1cm-1). The UV-visible spectral 

characteristics of PpcF are consistent with low-spin heme groups with His-His axial coordination, a 

feature that was further confirmed by Nuclear Magnetic Resonance spectroscopy. The assignment 

of the heme substituent signals of PpcF in both reduced and oxidized states together with  the 

analysis of their NOE connectivities showed that the heme core structure is similar to those of the 

PpcA family cytochromes in G. sulfurreducens. The reduction potentials of PpcF were determined at 

pH 7 and 8 (-56 mV and – 64 mV versus the standard hydrogen electrode, respectively). Lastly 2D-

1H NMR exchange spectroscopy was used to determine the order of oxidation of the heme groups 

in PpcF: IV-I-III. 

In the second part of this thesis it was analyzed the possible molecular interaction between 

cytochromes PpcA, PpcB and PpcE from G. sulfurreducens and Fe(III) citrate. This molecule can be 

utilized as terminal electron acceptor by this bacterium and PpcA, PpcB and PpcE were shown to be 

crucial in this electron transfer pathway. For these purpose isotopic 15N-labeled cytochromes were 

expressed and purified. NMR spectroscopy enabled us to assign the protein NH backbone and heme 

methyl proton signals, as well as to probe the interaction regions between each cytochrome and 
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Fe(III) citrate. The chemical shift perturbation studies showed that in all cytochromes the interaction 

region is located in the vicinity of heme IV.  
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R E S U M O  

 Os microrganismos redutores de Fe(III) da espécie Geobacter são frequentemente os mais 

abundantes em solos e sedimentos. Estes podem também reduzir outros metais no mesmo meio 

de crescimento sendo ainda capazes de transferir eletrões para superfícies de elétrodos com 

concomitante produção de corrente elétrica a partir de matéria orgânica. Estudos genéticos e 

proteómicos mostraram que alguns citocromos multihémicos são fundamentais nas cadeias 

respiratórias envolvidas na redução de Fe(III). Destes, os melhor caracterizados até à data são cinco 

citocromos trihémicos periplasmáticos de Geobacter sulfurreducens. Estes citocromos são 

designados PpcA, PpcB, PpcC, PpcD e PpcE. Uma família semelhante foi encontrada em Geobacter 

metallireducens (PpcA, PpcB, PpcC, PpcE e PpcF). Nenhum destes citocromos foi caraterizado até ao 

momento. PpcF é o citocromo que mais difere em homologia quando comparado com os membros 

da família PpcA em G. sulfurreducens e por essa razão foi escolhido para ser estudado neste 

trabalho. De forma a caracterizar este citocromo, a proteína foi primeiramente expressa e 

purificada. O rendimento desta expressão foi de aproximadamente 1 mg por litro de cultura celular. 

A massa molecular desta proteína foi confirmada por espectrometria de massa (9737.13 Da). O 

coeficiente de extinção molar foi determinado (87.4 mM-1cm-1). O espectro UV-visível deste 

citocromo apresenta as características espectrais típicas de grupos hemo de baixo spin com 

coordenação axial His-His, uma particularidade que foi confirmada por espectroscopia de 

Ressonância Magnética Nuclear. A atribuição dos sinais dos substituintes hémicos do PpcF no estado 

reduzido e oxidado, em conjunto com a análise das suas conectividades NOE, mostrou que a 

disposição espacial dos grupos hemo é semelhante à dos citocromos da família PpcA de G. 

sulfurreducens. Os potenciais de redução do PpcF foram determinados a pH 7 e 8 (-56 mV e -64 mV 

versus o elétrodo padrão de hidrogénio, respetivamente). Por último, experiências de RMN de 

permuta química foram efetuadas para determinar a ordem de oxidação dos grupos hemo nesta 

proteína: IV-I-III. 

 Na segunda parte desta tese foi analisada a possível interação entre os citocromos PpcA, 

PpcB e PpcE de G. sulfurreducens e o citrato de Fe(III). Esta molécula pode ser utilizada como 

aceitador final de eletrões nesta bactéria, tendo sido demostrado que os citocromos PpcA, PpcB e 

PpcE desempenham um papel crucial nesta via respiratória. Para este propósito os referidos 

citocromos foram expressos e purificados marcados isotopicamente em 15N. A espectroscopia de 

RMN permitiu atribuir os sinais NH da cadeia principal da proteína e dos protões dos grupos metilo 

hémicos. Em conjunto, as perturbações observadas nestes sinais permitiram determinar as regiões 

de interação entre cada citocromo e o citrato de Fe(III). O estudo das perturbações nos desvios 

químicos demonstrou que em todos os citocromos a região de interação está localizada na 

vizinhança do hemo IV. 
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1 .  I N T R O D U C T I O N  

1.1 Main features of the Geobacter bacteria 

 Geobacter species are Gram-negative bacteria that are capable to sustain their growth by using 

extracellular compounds as terminal electron acceptors, such as Fe(III), U(VI) or Mn(IV) oxides [1]. 

This contrasts with the more frequent bacterial respiratory processes that utilize both soluble 

electron donors (e.g. acetate) and acceptors (e.g. fumarate). Some of the referred extracellular 

compounds are toxic or radioactive, which makes Geobacter bacteria very appealing for 

biotechnological and bioremediation applications.  The bioremediation strategies where these 

bacteria are involved include, for example (i) the stimulation of Geobacter growth by addition of an 

electron donor to the groundwater surfaces and encompasses, for example, the reduction of soluble 

U(VI) to insoluble U(IV) for the immobilization of uranium in contaminated ground waters [2, 3] or 

(ii) the anaerobic benzene degradation in petroleum-contaminated aquifers [4].  

 Furthermore, Geobacter species are highly effective in completely oxidizing organic compounds 

from aquatic sediments and waste organic matter to carbon dioxide under anaerobic conditions 

with the concomitant electron transfer to metals or to graphite electrodes in microbial fuel cells 

from which electricity can be harvested [2–4, 16]. Geobacter species produce higher current 

densities than any other known organism [1, 6]. However, at present, the power output of 

Geobacter-based microbial fuel cells is too low for most envisioned applications. Therefore, efforts 

toward the understanding of the Geobacter respiratory chain are expected to provide valuable 

information to improve the current-production by these bacteria [10].  

 

1.2 Geobacter sulfurreducens 

 The genome of Geobacter sulfurreducens was fully sequenced  and a genetic system developed  

[8, 9]. For these reasons G. sulfurreducens serves as a model to study the extracellular electron 

transfer mechanism in Geobacter spp [12, 13]. It was demonstrated by genetic studies that G. 

sulfurreducens synthesize a large number of c-type cytochromes, most of which are multiheme [6–

8, 19]. These metalloproteins are involved in the control and coordination of important chemical 

events in cellular metabolism in bacteria and are particularly abundant in Geobacter species, 

suggesting that the electron transport pathways in these bacteria are extremely versatile, allowing 
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a precise and adequate physiological response to the diverse metal ions in the natural environments 

[17].  

 

1.3 Extracellular electron transfer 

 Many of the terminal electron acceptors that can be used by G. sulfurreducens are insoluble and, 

thus, unable to diffuse inside the cells. Also, since these bacteria requires direct contact for 

reduction of the insoluble electron acceptors [18], it is not surprising that some of the most 

important proteins are located on the outer surface of the G. sulfurreducens cells and that electron 

transfer across the outer membrane is required once it cannot occur in the periplasm as in the case 

of soluble acceptors [13, 14]. In fact, besides the presence of multiheme cytochromes in the inner 

membrane and in the periplasm space, as in the majority of the microorganisms, multiheme 

cytochromes in G. sulfurreducens were also identified in the outer membrane [21]. Combining all 

this information, a model for the electron transfer to the extracellular acceptor Fe(III) in G. 

sulfurreducens was proposed (Figure 1).  

 

Figure 1. Proposed model for extracellular electron transfer pathway to Fe(III) oxides in G. sulfurreducens. 

The white path represents the proposed electron transfer pathway. The membrane associated cytochrome 

MacA receives electrons from the menaquinol (MQH2)/menaquinone (MQ) pool at the inner membrane and 

reduces the periplasmic triheme cytochromes (PpcA-E). These cytochromes mediate the electron transfer 

from the periplasm to the outer membrane associated cytochromes (OmcB, OmcE and OmcS) that are likely 

to be directly involved in the reduction of insoluble Fe(III) oxides. OmcS was shown to be localized along the 

pili when G. sulfurreducens. Adapted from [22]. 
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 Although some of the cytochromes involved in the extracellular electron transfer in G. 

sulfurreducens were already identified, it is essential to obtain detailed characterization on such 

electron transfer components in order to not only elucidate these electron transfer mechanisms but 

also to promote new strategies to be explored in the improvement of the electricity production and 

in the design of optimal biotechnological applications [23]. 

 

1.4 Geobacter metallireducens  

 The bacterium Geobacter metallireducens was the first Geobacter species to be isolated and 

identified. This bacterium is capable of using different electron acceptors and donors, as described 

for G. sulfurreducens. It is an obligate anaerobic Fe(III)-respiring  bacterium and was the first 

organism identified to be capable of: (i) conserve energy in order to support growth from the 

oxidation of organic compounds coupled with the reduction of Fe(III), Mn(IV) or U(VI); (ii) utilize 

humic substances as electron acceptors; (iii) remediate environments contaminated with aromatic 

compounds; (iv) more efficient Fe(III) reduction rates compared to G. sulfurreducens [24]. In 

contrast with G. sulfurreducens, G. metallireducens do not use fumarate as final electron acceptor. 

This latter is also able to convert nitrate to ammonia and to metabolize aromatic compounds [25]. 

Furthermore, the motility of G. metallireducens is one of the reasons that explain their high 

efficiency in the reduction of Fe (III) oxides compared to G. sulfurreducens. Nonetheless, as in G. 

sulfurreducens, the c-type cytochromes are important players in all these respiratory pathways [26]. 

 

1.5 Periplasmic triheme cytochromes from G. sulfurreducens and G. metallireducens 

 Despite the lack of information regarding the precise extracellular electron transfer mechanisms 

in both G. sulfurreducens and G. metallireducens, it is consensual that c-type cytochromes play a 

crucial role in those processes. These cytochromes contain at least one heme group, which is formed 

by a tetrapyrrole porphyrin ring coordinated to an iron atom. Cytochromes can be classified as type 

a, b, c or d according to the type of substituents at the periphery of the porphyrin ring [27]. In a c-

type cytochrome the heme group, is covalently bound through thioether bonds to cysteine residues 

of the polypeptide chain arranged in a typical CXXCH motif (where X corresponds to any amino acid) 

and is composed by 20 proton-containing groups (four methyl groups, four meso proton, two 

thioether protons, two thioether methyl and two propionate groups – see Figure 2) [20, 21]. 
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Figure 2.  Representative structure of the c-type heme group accordingly to the IUPAC nomenclature [29]. 

The thioether bonds with the sulfur atom of cysteine residues in the heme binding motif are established with 

the carbons atoms harboring 31H and 81H groups. Adapted from [30]. 

 

 A family composed by five triheme periplasmic c-type cytochromes with approximately 10 kDa 

each, designated by PpcA, PpcB, PpcC, PpcD, and PpcE was identified in G. sulfurreducens. It is 

believed that these five periplasmic proteins play an important role in the reduction of extracellular 

acceptors by bridging the electron transfer between the cytoplasm and cell exterior [23]. These 

periplasmic proteins, containing approximately 70 residues, show a high structural homology and 

share 77% (PpcB), 62% (PpcC), 57% (PpcD) and 65% (PpcE) amino acid sequence identity with PpcA 

[31]. A sequence alignment of these proteins is depicted in Figure 3A and shows that of the 21 highly 

conserved residues, only nine are not cysteine or histidine residues directly involved in heme 

binding. The five cytochromes have high isoelectric points (pI ≥ 9), due to the considerable content 

in lysine residues and all the heme groups are covalently linked to the polypeptide chain by two 

cysteine residues in a conserved CXXH binding motif. 
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Figure 3. Alignment of the amino acid sequences and NMR (1) and crystal (2-5) structures of triheme 

cytochromes PpcA-E from G. sulfurreducens. (A) Sequence identity for each cytochrome of PpcA family from 

G. sulfurreducens in relation to PpcA. The conserved residues in the proteins are boxed: heme attached (gray) 

and non-heme attached residues (black). The specific heme and the respective attached residues are indicated 

on the bottom of the last cytochrome amino acid sequence. (B) 1) PpcA (PDB code 2LDO [32]); 2) PpcB (PDB 

3BXU [33]); 3) PpcC (PDB 3H33 [34]); 4) PpcD (PDB 3H4N [34]); 5) PpcE (PDB 3H34 [34]). The molecules are all 

in the same orientation. 

 

 The crystal structures of these cytochromes have been determined and are indicated in Figure 

3B. As depicted, the tertiary structure of all the proteins is similar, although local variations were 

observed. The spatial arrangement of the hemes in triheme cytochromes is superimposable with 

those of the structurally homologous tetraheme cytochromes c3, with the sole difference being the 

absence of heme II and the corresponding polypeptide segment. For this reason, the heme groups 

have been numbered as I, III and IV. In these cytochromes all heme groups are axially coordinated 

by two histidine residues and are low-spin in both the reduced and oxidized forms. Therefore, they 
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are diamagnetic (Fe(II) and S = 0) and paramagnetic (Fe(III) and S = ½) in the reduced and oxidized 

states, respectively (Figure 4A). This feature is reflected in their UV-visible spectrum, here 

exemplified for PpcA in Figure 4B.  

 

Figure 4. Electronic and spectroscopic properties of the heme iron in triheme cytochromes from G. 

sulfurreducens. (A) Spin-states of octahedral F(III) and Fe(II) at low spin state, where crystal field, Δo, is higher 

than the energy repaired to pair electrons in the same orbital, P (Δo>P). (B) Typical UV-visible absorption 

spectra. The oxidized form is represented by a solid line and is characterized by the Soret band with a 

maximum at 406 nm. In the reduced form (dashed line), three bands are observed: Soret band at 417 nm, β 

band at 522 nm and α band at 552 nm [35]. 

 

 The thermodynamic properties of G. sulfurreducens PpcA family members, except for PpcC,  have 

been determined showing that the redox potentials are negative and different for each cytochrome 

[26, 27]. A summary of these properties is indicated in Table 1.  

 



9 
 

Table 1. Midpoint heme reduction potentials (eapp) of PpcA, PpcB, PpcD and PpcE from G. sulfurreducens at 

pH 7.5 [26, 27]. Microscopic potentials are determined for each heme (I, III and IV). The redox potential values 

are relative to the standard hydrogen electrode (SHE). 

 

Cytochrome 
Reduction potentials (mV) 

Heme I Heme III Heme IV 

PpcA  -152 -108 -126 

PpcB -150 -155 -130 

PpcD -156 -102 -162 

PpcE -158 -158 -100 

 

 Similarly to the G. sulfurreducens, a family of five triheme periplasmic cytochromes, designated 

PpcA, PpB, PpcC, PpcE and PpcF was also found in G. metallireducens [24]. As depicted in Table 2, 

PpcF has relative little homology with PpcD, in fact it has the highest identity percentage with PpcA 

from G. sulfurreducens. For this reason, a new designation for this cytochrome was needed - PpcF. 

It was suggested that, as the PpcA family from G. sulfurreducens, the family of triheme cytochromes 

found in G. metallireducens is also involved in extracellular electron transfer [24]. However, none of 

these cytochromes were functional or structurally characterized to date. 

Table 2. Sequence identity (%) between PpcA-family cytochromes from G. sulfurreducens and G. 

metallireducens [38]. 

 G. sulfurreducens 

G
. m

et
a

lli
re

d
u

ce
n

s  A B C D E 

A 80 73 64 68 62 

B 68 72 57 68 63 

C 59 56 79 42 51 

E 54 61 52 55 69 

F 62 58 57 55 57 
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1.6 NMR basic principles  

 In general terms nuclear magnetic resonance spectroscopy (NMR) studies the absorption of 

electromagnetic radiation of a specific frequency by an atomic nucleus placed in a strong magnetic 

field. In fact, nuclei have positive charges and many behave as little spin bars. As known, anything 

that is charged and moves has a magnetic moment (µ) and produces a magnetic field (B). Therefore, 

a spinning nucleus acts as a magnet oriented along the spin rotation axis, called nuclear spin. In the 

presence of a much larger magnetic field the orientation of the spin will be no longer random, but 

the most favorable would be the low-energy state and the less favorable orientation the high-energy 

state.  

Nuclei are characterized by a quantum spin number (I), which can be determined by its atomic 

mass. When I = 0, there is no nuclear spin and it is NMR silent. Most nuclei of biologic interest (e.g. 

1H, 13C, 15N, 19F and 31P) have nuclear spin quantum I = ½. The value of the quantum spin number 

determines the number of energy spin states that a nucleus may assume in presence of an external 

uniform magnetic field in accordance with the formula 2I+1. For a nuclei with I = ½, in the absence 

of an applied magnetic field (B0) the two energy states are degenerated and the number of atoms 

in each state will be equal to the thermal equilibrium. On the other hand, in the presence of an 

external magnetic field the energy difference (ΔE) between the energy states α (mI=+1/2, with the 

field) and β (mI=-½, against the field) gives rise to the frequency of the spectra, whereas intensities 

of the signals are proportional to the population difference between α and β states. The ratio of the 

populations in the states is quantitatively described by the Boltzmann equation (Equation 1): 

𝑁∝

𝑁𝛽
= 𝑒∆𝐸/𝑘𝐵𝑇 

where Nα and Nβ represents the number of nuclei in each possible spin orientation, kB the Boltzmann 

constant and T the temperature. 

The energy needed to induce the mentioned transitions between the states is the energy 

difference between the two states and depends of the magnetic field that is applied to the nuclei 

(Equation 2): 

∆𝐸 =  
𝛾ℎ𝐵0

2𝜋
 

(Equation 1) 

(Equation 2) 
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where γ represents the gyromagnetic constant, which is constant to each nuclei and h represents 

the Planks constant. 

Furthermore, in the presence of an external magnetic field, nuclei have an intrinsic frequency, 

which is known as the Larmor frequency (ν0), which is given by Equation 3. For instance, in a 

molecule, all protons have the same Larmor frequency. However, the signals of interest are those 

processing at frequencies slightly different from the Larmor frequency, an effect caused by the 

electron density surrounding each individual proton.  

𝑣0 =
𝛾𝐵0

2𝜋
 

In a sample, not all the nuclei are subject to the same chemical environment and that is reflected 

in a different chemical shift (δ), expressed in ppm (parts per million). The resonance frequencies are 

expressed in terms of an empirical quantity called chemical shift, which is related to the difference 

between the resonance frequency (ν) of a nucleus in question and that of a reference standard (νref), 

Equation 4: 

𝛿 =  
𝑣 − 𝑣𝑟𝑒𝑓

𝑣𝑟𝑒𝑓
106 

 

 The approach to any structural or mechanistic problem will invariably start with the acquisition 

of one dimensional (1D) spectra, since these provide the foundations for further work. In a 1D 

experiment, the FID (free induction decay) is acquired after a radio frequency pulse or pulses, called 

the preparation period. A plot of the frequencies of the nuclei versus the signal intensities 

constitutes the 1D NMR spectrum. In the case of small molecules, the 1D spectrum can be sufficient 

to obtain the required information. Although, for a macromolecule this kind of spectra are too 

complex to be interpreted. In order to improve the spectral resolution for further studies, an 

additional dimension can be introduced to disperse the signals over two frequency dimensions, 

forming a multi-dimensional NMR spectrum. In the case of 2D NMR spectra, which were the most 

used in the current work, they include one additional period called the evolution time, which 

contains a variable time delay t1, and is introduced between the preparation and acquisition periods. 

Moreover, the second dimension can be frequency for 1H, which results in a square spectrum with 

diagonal peaks, or a heteronuclear acquisition, which gives asymmetric spectra. 2D experiments can 

also contain other periods in addition to the evolution time, such as a mixing time, tm. 

(Equation 3) 

(Equation 4) 
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 Finally, at the end of each experiment, all the FIDs are transformed with the same phase 

parameters followed by the calibration of the spectra. In the case of biological samples, it is common 

to calibrate the NMR spectra through the proton signal of the water (Equation 5): 

𝛿𝐻2𝑂 = 5.11 − 0.012 𝑇 

where T represents the temperature of the experiment in degrees Celsius. The calibration of the 

other nuclei, such as 13C and 15N, is obtained by indirect referencing as described by Wishart and co-

workers [39]. 

 

1.7 Functional and structural characterization of a triheme cytochrome: an overview 

 NMR is powerful technique in what concerns to the structural and functional characterization of 

a protein. However, in the particular case of multiheme cytochromes, the assignment of the protein 

signals is not a straightforward task, namely in the oxidized state. In fact, the paramagnetic effect 

of the unpaired electrons at the heme iron causes the spread and broadening of the signals of the 

heme groups, as well as those of the amino acid residues located in their neighborhoods, all over 

large spectral widths. In order to assist the solution structure determination and identification of 

molecular interactions the assignment of the protein signals, including those of the heme 

substituents is crucial.  

The functional characterization of multiheme cytochromes typically encompasses the 

determination of their macro and microscopic redox properties, a task that benefits from the 

assignment of the heme methyl proton signals in the fully reduced and oxidized states. Therefore, 

the determination of the redox properties is also much more complex in multiheme cytochromes. 

In fact, in a monoheme cytochrome the variation of the protein reduced fraction with the solution 

potential can be calculated by the direct application of the Nernst equation (Equation 6)  

𝐸 = 𝐸0 +
𝑅𝑇

𝑛𝐹
𝑙𝑛

[𝑜𝑥]

[𝑟𝑒𝑑]
 

This is possible because only two states co-exist in solution, the fully reduced and the fully oxidized 

(Figure 5). In this case, the solution redox potential for which the reduced and oxidized fractions of 

the protein are equal corresponds to the Eapp value and therefore, to the reduction potential of the 

heme group. 

 

(Equation 5) 

(Equation 6) 
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Figure 5. Electronic distribution scheme for monoheme and triheme cytochromes, showing the possible 

microstates in solution. The elliptic forms represent the cytochrome and the inner circles the heme groups, 

which can be either reduced (black circles) or oxidized (white circles). P represent the microstates and the 

followed number the hemes that are oxidized in that particular microstate. 

 

 In contrast, in the case of a triheme cytochrome, three consecutive reversible steps with the 

transfer of one electron convert the fully reduced state to the fully oxidized state (Figure 5). 

Therefore, four macroscopic redox stages are defined, and the relative populations of the four 

stages at equilibrium and three macroscopic reduction potentials (E1
o, E2

o and E3
o) can be defined. 

These parameters can also be obtained by fitting the experimental variation of the total reduced 

fraction of the protein with the solution potential, as described below.  It is worth noting that the 

macroscopic reduction potential values do not necessarily correspond to any of the heme groups. 
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C O N T E X T U A L I Z A T I O N  

 G. metallireducens is a dissimilatory iron reducing bacterium that has the ability to utilize 

extracellular electron transfer acceptors, a feature that is shared by G. sulfurreducens. Tremblay and 

co-workers [26] identified a very important role for pili in the Fe(III) reduction and in the transfer of 

electrons to electrodes in G. metallireducens. The motility is one of the reasons why these bacteria 

are more efficient in the reduction of Fe (III) oxides compared to G. 

sulfurreducens. However the c-type cytochromes are important to this process as well [26]. To date, 

the components and mechanisms underlying the extracellular electron transfer in G. 

metallireducens are not yet fully elucidated [40]. This is a crucial step to contribute to the 

development of future applications in biofuel production and bioremediation. 

 Genetic and proteomic studies revealed that some c-type cytochromes appear to be 

overexpressed when the cells utilize nitrate as terminal electron acceptor. Such respiratory process 

was not observed for G. sulfurreducens. The nitrate reductase activity of G. metallireducens is 

attributed to the narGYJI genes. The gene ppcF (annotation number Gmet0335) of nar operon 

encodes a periplasmic triheme c-type cytochrome, designated PpcF, which is involved in this 

electron transfer pathway [24]. In fact, PpcF may permit the transfer of electrons to the nitrate 

reductase from extracellular electron donors such as humic substances or graphite electrodes [24]. 

 As previously mentioned, PpcF is the one in the PpcA family from G. metallireducens that has 

little homology with the cytochrome PpcD from G. sulfurreducens the reason why it is not 

denominated PpcD. The lack of a homologous protein to PpcF in G. sulfurreducens makes PpcF more 

appealing to be studied. In order to contribute to the understanding of PpcF role we performed for 

the first time a biochemical characterization of this cytochrome. 
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2 . 1  M A T E R I A L S  A N D  M E T H O D S  

2.1.1 Protein expression 

 Escherichia coli BL21(DE3) cells were used to express the triheme cytochrome PpcF from G. 

metallireducens. E. coli cells, harboring the plasmid pEC86, which is a derivative from the pACYC184 

containing the gene cluster needed to the cytochrome c, ccmABCDEFGH, [41] were transformed 

with the plasmid pCS0335, the expression vector containing the gene sequence encoding for PpcF. 

Transformed E. coli cells were grown aerobically in 2xYT rich media supplemented with 34 µg/mL 

chloramphenicol (CLO) and 100 µg/mL ampicillin (AMP), both from NZYTech. Colonies were selected 

and grown in 50mL 2xYT medium (also supplemented with 34 µg/mL CLO and 100 µg/mL AMP) to a 

1.8<OD600nm<2, at 30 C, 200 rmp, overnight. 20% of this culture was transferred to 1L of 2xYT media 

(34 µg/mL CLO and 100 µg/mL AMP) and grown till they reach an OD600nm>1.5, at 30 C and 200 rpm. 

At this stage, protein expression was induced with 10 µM isopropyl β-D-1-thiogalactopyranoside 

(IPTG) from NZYTech and incubated overnight at 30 C and 160 rpm. Then, cells were harvested and 

centrifuged at 6400 g for 20 min at 4 C, to isolate the periplasmic fraction. The cell pellet was gently 

resuspended in 30 mL of lysis buffer, per liter of initial cell culture, constituted by: 20 % sucrose 

(VWR), 100 mM Tris-HCl (NZYTech) pH 8, 0.5 mM EDTA (Amresco) and 0.5 mg/mL lysozyme (Fluka). 

The suspension was incubated at room temperature during 15 min, then 15 min on ice with gently 

shaking and finally centrifuged at 14700 g, 20 min, at 4 C. The resulting supernatant was 

ultracentrifuged at 44000 g, 1 h, at 30 C. The resulting supernatant was dialyzed (MWCO 3500) 

against 10 mM Tris-HCl pH 8. 

 

2.1.2 Protein purification 

 PpcF was purified using first a cation exchange chromatography and then a molecular exclusion 

chromatography. Dialyzed protein was injected in a cation exchange 2x5 mL GE Healthcare HiTrap 

SP HP column equilibrated with 10 mM Tris-HCl pH 8 and the cytochrome was eluted with a 0-300 

mM NaCl, 150 mL length, gradient in 10 mM Tris-HCl, at a flow rate of 1 mL/min. The collected red 

fractions were concentrated to 1 mL and injected in a Superdex 75 molecular exclusion column (GE 

Healthcare) of 120 cm, equilibrated with 100 mM sodium phosphate buffer, pH 8, and eluted at a 

flow rate of 0.5 mL/min. Both chromatography steps were performed on an ÄKTA Prime Plus FPLC 
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System (GE, Amersham). Protein purity was evaluated by sodium dodecyl sulfate polyacrylamide 

gel electrophoresis (15%), stained with Coomassie brilliant blue (Sigma).  

 

2.1.3 UV-visible analysis, quantification and molar extinction coefficient determination 

 UV-visible absorption spectra were acquired for the obtained purified cytochrome on a UV-

visible scanning spectrometer Thermo scientific Evolution 201 with quartz cuvettes with 1 cm path 

length (Helma), at room temperature. Fully sample reduction was achieved by adding sodium 

dithionite (Sigma) in small increments. Protein concentration was determined by measuring the 

absorbance of the reduced PpcF α-band at 552 nm, using the extinction coefficient of 87.4 mM-1cm-

1 determined in this work by the Pierce BCA Protein Assay Kit (Thermo Scientific). This method 

consists in a detergent-compatible formulation based on bicinchoninic acid (BCA) for the 

colorimetric detection and quantification of total protein. It combines the well-known reduction of 

Cu+2 to Cu+ by protein in an alkaline medium, known as the biuret reaction, with the highly sensitive 

and selective colorimetric detection of the cuprous cation (Cu+). Then the chelation of two 

molecules of BCA with one cuprous ion results in purple-colored reaction product. This water-

soluble complex exhibits a strong absorbance at 562nm that is nearly linear with increasing protein 

concentrations over a broad working range (20-2000µg/mL). As standard it was used PpcA from G. 

sulfurreducens. Afterwards UV-visible spectra of PpcF was recorded in the range 350-700 nm, at 

room temperature for both oxidized and reduced samples and used to determine the molar 

extinction coefficient of the cytochrome. 

 

2.1.4 Molecular mass determination 

 The theoretical molecular mass of cytochrome PpcF was calculated taking into account the amino 

acid composition of the mature protein and the molecular mass of three heme c groups. The 

experimental mass of cytochrome PpcF was determined by matrix-assisted laser desorption-

ionization time-of-flight mass spectrometry (MALDI-TOF-MS) using a Voyager-DETM PRO 

Biospectrometry Workstation equipped with a nitrogen laser radiating at 337 nm from Applied 

Biosystems (Analysis laboratory Requimte – LAQV/UCIBIO). A matrix solution of sinapinic acid in 

70:30 water/acetonitrile with 0.1% TFA (final concentration) was used. The measurements were 
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performed in triplicated in positive ion mode using ProteoMassTM cytochrome c MALDI-MS from 

Sigma-Aldrich (MW 12361.96 Da) as internal calibration.  

 

2.1.5 Heme quantification  

Heme quantification of cytochrome PpcF was performed using the pyridine hemochrome 

method described by Berry and Trumpower [42]. 5 µM of purified PpcF in aqueous solution was 

incubated with 50mM NaOH and 20% v/v pyridine at room temperature for 15 minutes. The solution 

was separated in two fractions. One fraction was reduced with sodium dithionite (pyridine 

ferrohemochrome form) whereas the other was oxidized with potassium ferricyanide (pyridine 

ferrihemochrome form). UV-visible spectra were acquired between 350-700 nm for both fractions. 

The number of hemes was calculated using the absorption coefficient of 21.84 mM-1cm-1 for the α-

band in the pyridine ferrohemochrome sample, using Equation 7 [42],  

𝐴 = [𝐻𝑒𝑚𝑒] × 𝑙 × 𝜀550𝑛𝑚  

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑒𝑚𝑒 = 
[𝐻𝑒𝑚𝑒]

[𝑃𝑝𝑐𝐹]
 

where A represents the visible absorption, l the length of the light path in cm and ε the absorption 

coefficient. 

 

2.1.6 Redox titrations followed by visible spectroscopy and determination of reduction potentials 

 Redox titrations of PpcF were followed by visible spectroscopy at 15 ᵒC inside an anaerobic glove 

box (MBraun) with oxygen conditions <1 ppm. 30 µM samples of the protein in 20 mM NaCl were 

prepared in 80 mM sodium phosphate with NaCl (250 mM final ionic strength). Each redox titration 

was performed in the reductive and in the oxidative direction, allowing inferring about the 

occurrence of hysteresis. Sodium dithionite and potassium ferricyanide solutions were used to 

reduce and oxidize the samples, respectively. The following mixture of redox mediators was added 

to the solution with a final concentration of approximately 1.5 µM, as described in the literature 

[43], to ensure the equilibrium between the redox center of the protein and the working electrode: 

methylene blue, gallocyanine, indigo trisulfonate, indigo tetrasulfonate, indigo disulfonate, 

anthraquinone-2,6-disulfonate, 2-hydroxy-1,4-naphthoquinone, safranine O, diquat, benzyl 

viologen, neutral red and methyl viologen. These mediators cover the potential range of 280 to -120 

(Equation 7) 
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mV (relative to standard hydrogen electrode, SHE). A combined Pt/Ag/AgCl electrode was used for 

measuring the solution potential. The redox potential of the solution was measured after each 

addition of reductant or oxidant agent, and once stable, a visible spectrum was recorded.  

The experiments were performed at least twice at each pH value, and the reduction potentials were 

found to be reproducible within +/- 5 mV. The reduced fraction of the protein was determined by 

integrating the area of the α-peak (552 nm) above the line connecting the flanking isosbestic points 

(545 and 559 nm) to subtract the optical contribution of the redox mediators, as described 

previously [33]. Each measured solution redox potential value were corrected to the standard 

hydrogen electrode reference by the addition of 207 mV. The macroscopic reduction potential 

values for cytochrome PpcF were determined by fitting the observed reduced fraction to the 

Equation 8 (section 2.2.5). 

  

2.1.7 NMR studies 
 

 NMR spectra were acquired in a Bruker Avance III 600 spectrometer equipped with a triple-

ressonance cryoprobe (TCI). All NMR spectra were processed using TOPSPIN (BrukerBiospin, 

Karlsruhe, Germany) and analyzed with Sparky (TD Goddard and DG Kneller, Sparky 3, University of 

California, San Francisco, USA). 1H chemical shifts were calibrated using the water signal as internal 

reference and the 15N and 13C chemical sifts were calibrated through indirect referencing [39]. 

 

2.1.7.1 Determination of the heme core architecture 

 Cytochrome PpcF samples with approximately 0.5 mM for 2D NMR studies were prepared in 80 

mM sodium phosphate pH 8 and pH 7 buffer with NaCl (250 mM final ionic strength) in 2H2O. To 

assist the heme signal resonance assignments 2D-1H NOESY (nuclear overhauser effect 

spectroscopy) with 80 ms mixing time and spectral width of 14 kHz and 2D-1H TOCSY NMR spectra 

with 60 ms mixing time and spectral width of 14 kHz, were acquired for the fully reduced 

cytochrome (pH 7 and 8, 15 ᵒC). The fully reduction of cytochrome PpcF was achieved by first 

flushing out the air from the oxidized sample with argon. NMR sample was reduced directly in the 

NMR tube with gaseous hydrogen in the presence of catalytic amounts of hydrogenase from 

Desulfovibrio vulgaris, as previously described [33]. For the fully oxidized cytochrome 2D-1H NOESY 
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with 80 ms mixing time and spectral width of 41 kHz, 2D-1H TOCSY (total correlation spectroscopy) 

with 45 ms mixing time and spectral width of 41 kHz and 2D-1H,13C HMQC (heteronuclear multiple 

quantum coherence) with spectral width of 41 kHz in F2 and 250 in F1 NMR spectra were acquired 

(pH7, 15 and 25 ᵒC). The spectra were acquired by collecting at 4k and at least 256 scans per 

increment.  

 

2.1.7.2 Assignment of the heme substituents in the reduced and oxidized states 

 In the reduced state, the first step to assign the heme substituents signals is the analysis of the 

connectivities between a thioether methine (31H or 81H) and a thioether methyl group (32CH3 or 

82CH3) in the 2D-1H TOCSY NMR spectrum, as depicted in Figure 6. Indeed, these are the only protons 

that are part of the same spin system and, therefore can be easily detected in such NMR 

experiments.  

 On the other hand, 2D-1H NOESY experiments allow detecting spatial correlation between nuclei 

that are typically closer than 5 Å. Thus, as also depicted in Figure 6, meso protons present a 

characteristic pattern of short-range intraheme connectivities: protons H15 are not connected to 

either methyl groups or thioether substituents; protons H20 are connected to two heme methyls 

(21CH3 and 181CH3); and the only ambiguity arises from H5 and H10 protons, which both present 

connectivities with a thioether methine, a thioether methyl and one heme methyl group. This 

ambiguity was solved by observing the connectivities between one of the heme methyls near the 

H20 protons (21CH3 and 181CH3) with the closest tioether methyl (32CH3), which were unequivocally 

assign in the 2D-1H TOCSY. This allowed connecting H20 and H5 faces of each heme. The heme 

methyls 71CH3 are part of H5 faces and also show connectivities with thioether groups (81H and 

82CH3), which are in H10 faces. After the identification of these three heme faces, H15 protons were 

identified by observing the connectivities between cross-peaks that connect H15 and 121CH3 or 

181CH3 protons (Figure 6). 
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Figure 6. Diagram of heme c numbered according to the IUPAC-IUB nomenclature [29]. The typical through 

bond connectivities are indicated by solid arrows, whereas the dashed ones indicate the typical NOE 

connectivities used to assign the heme substituents. Adapted from [30]. 

 

 In the paramagnetic oxidized state, in addition to the ring-current effects, the intrinsic (from own 

heme) and the extrinsic (from neighboring hemes) paramagnetic contribution due to the presence 

of unpaired electrons strongly contributes to the final observed chemical shift of the heme 

substituents, making their assignment more complex. In fact, in the oxidized form the same type of 

signals are differently affected by the paramagnetic centers, show different levels of broadness and 

are spread all over the entire NMR spectral width. Therefore, the chemical shifts of the heme 

substituents in the oxidized form are completely different in comparison with those observed in the 

fully reduced proteins. Consequently, a different NMR assignment strategy was used to assign the 

heme signals in the oxidized form. In this case, 2D-1H,13C HMQC NMR experiment is very useful to 

map some of the heme substituent signals because typical 1H,13C regions can be identified. The 

propionates CH2 protons (171CH2 and 131CH2) are identified in 1H,13C HMQC NMR spectrum, 

whereas the intraheme connectivities with the propionates βCH2 (172CH2 and 132CH2) are obtained 

from the analysis of 2D-1H TOCSY spectrum and then confirmed in 2D-1H,13C HMQC NMR spectra at 

the typical region of propionates βCH2. Afterwards, in 2D-1H NOESY spectra we identified the cross 

peaks of each propionate proton with those of the closest heme methyl (181CH3 and 121CH3). 
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2.1.7.3 Identification of the order of oxidation of the heme groups 

 The oxidation patterns of the heme groups of PpcF in 80 mM sodium phosphate with NaCl (250 

mM final ionic strength) in 2H2O were monitored by acquiring a series of 2D-1H EXSY (exchange 

spectroscopy) NMR experiment at pH 7 and 16 ᵒC, with the sample poised at several degrees of 

oxidation. All spectra were acquired with a mixing time of 25 ms and 256 scans per increment. 

In a triheme cytochrome, three consecutive reversible steps of one-electron transfer convert the 

fully reduced state (stage S0) in the fully oxidized state (stage S3), as described in Figure 5. Therefore, 

four different redox stages can be defined that comprise 8 microstates. When the intramolecular 

electron transfer exchange (between microstates within the same oxidation stage) is fast on the 

NMR time scale and the intermolecular exchange (between microstates belonging to different 

oxidation stages) is slow, on the NMR time scale,  the individual heme NMR signals can be 

discriminated [33, 34]. In this case, the heme oxidation fractions can be determined from the 

chemical shifts of their heme substituents in the different oxidation stages. In fact, the distribution 

of paramagnetic shifts observed for each oxidation stage is governed by the relative microscopic 

reduction potentials of the heme groups, and thus provides information on the relative order of 

oxidation of the hemes. 

 The heme methyl resonances are the easiest identifiable NMR signals amongst the heme 

substituents, making them ideal candidates to monitor the stepwise oxidation of the hemes. Indeed, 

as show below in sections 2.2.7 and 2.2.8, the chemical shift of the heme signals are considerably 

different in the reduced and oxidized states, shifting from crowded regions in the fully reduced to 

relatively empty regions in the fully oxidized spectra. Therefore, as the oxidation of the multiheme 

cytochrome proceeds, the heme methyl signals become much shifted from the diamagnetic region 

of the spectra and the signals can be followed during a redox titration monitored by 2D-1H EXSY 

NMR spectra. 
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2 . 2  R E S U L T S  A N D  D I S C U S S I O N  

2.2.1 Purification of PpcF from G. metallireducens 

 After the expression of PpcF, the protein was sequentially purified by cation exchange 

chromatography and molecular exclusion chromatography. The elution profiles obtained for both 

chromatographic steps are represented in Figures 7 and 8, respectively. 

 

Figure 7. Elution profile for the cation exchange chromatography of PpcF from G. metallireducens. Cation 

exchange chromatography column equilibrated with 10 mM Tris-HCl pH 8. Elution at 1 mL/min flow rate. Solid 

line corresponds to the variation of absorbance at 280 nm. Dashed line reports the NaCl gradient profile. 

 

 Based on the amino acid sequence of PpcF an isoelectric point of 8.96 was determined using the 

pI/Mw tool program on the ExPASy Server. Taking into consideration this value, the cytochrome was 

purified using a cation exchange chromatography column previously equilibrated with 10 mM Tris-

HCl pH 8. In these conditions the cytochrome binds to the column and was eluted by the linear 

increase of the buffer ionic strength. As indicated in the Figure 7, the protein of interest, which 

presents a red characteristic color typical for proteins containing heme groups, was eluted at 

approximately 46% (138.9 mM) of the ionic strength gradient.  



28 
 

 With this first purification step the majority of the contaminants were removed. However it was 

necessary to complement it with a molecular exclusion chromatographic step. The elution profile 

obtained in the molecular exclusion chromatography is represented in Figure 8.  PpcF was eluted at 

approximately 88 mL. 

 

Figure 8. Elution profile for the molecular exclusion chromatography of PpcF from G. metallireducens. 

Molecular exclusion chromatography column equilibrated with 100 mM sodium phosphate buffer, pH 8, with 

a flow rate of 0.5 mL/min. 

 

 The fraction corresponding to the PpcF band were analyzed by SDS-PAGE electrophoresis (Figure 

9) and MALDI-TOF-MS (Figure 10) to infer about its purity. The SDS-PAGE electrophoresis gel (Figure 

9) shows one intense band in the expected MW region (≈10 kDa), after the final purification step. 

Also, the second and highest band observed in the cation exchange chromatography (Band II, see 

Figure 7) which presents a brownish color was analyzed by SDS-PAGE electrophoresis and 

corresponds to proteins with lower molecular weight compared to PpcF.  
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Figure 9. Purity analysis by SDS-PAG electrophoresis of PpcF from G. metallireducens. Obtained results of 

SDS-PAGE gel, 15% acrylamide, stained with Coomassie brilliant blue. Lane 1) Band II obtained in the cation 

exchange chromatography; Lane 2) Protein marker (Protein Plus Protein Dual Xtra Standards, Bio-Rad, 

appendix A1; Lane 3) Purified fraction after molecular exclusion chromatography. The molecular weights of 

the protein markers are in indicated on the left of lane 2.  

 

 

2.2.2 Molecular weight determination  

 The mass spectrum obtained for the purified fraction of PpcF (Figure 10) indicates a molecular 

mass of 9737.13 ± 0.002 Da, which is in excellent agreement with the calculated one using the 

Compute pI/Mw tool [46] (7886.21 Da from the mature protein plus three times 616.5 Da from the 

three heme groups, yielding a total molecular mass of 9735.71 Da). This result also confirms that 

PpcF has three heme groups. 
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Figure 10. Mass spectrum obtained by MALDI-TOF method of PpcF from G. metallireducens. Analysis of the 

sample was performed in a Voyager-DETM Pro Workstation, with positive ionization mode, using sinapinic acid 

as matrix. Pattern CC (M+H)+ represents a sample of horse cytochrome c that was used as internal calibration. 

 

2.2.3 Molar extinction coefficient determination 

The molar extinction coefficient of cytochrome PpcF was determined with the BCA Protein Assay 

(Thermo Scientific Piece). The calibration curve obtained is indicated in Figure 11, using cytochrome 

PpcA from G. sulfurreducens as standard. The value  of ε552nm = 97.5 mM-1cm-1  [36] was used to 

calculate the concentration of PpcF samples in the reduced form. From this study it was possible to 

determine a value of ε552nm = 87.4 mM-1cm-1 for the PpcF molar extinction coefficient. 
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Figure 11. Calibration curve obtained for cytochrome PpcA from G. sulfurreducens using the BCA method. 

The parameters correspondent to the calibration line are indicated as an inset together with its accuracy (R2). 

 

2.2.4 Heme quantification 

 Pyridine hemochrome method was used to further confirm the number of hemes present in PpcF 

cytochrome. An absorbance of 0.330 at 550 nm was obtained in presence of sodium dithionite. 

Based on the molar extinction coefficient correspondent to this wavelength (30.27 mM-1cm-1 [42]) 

it was possible to determine a heme content of 3.1 per cytochrome and confirm that PpcF has three 

heme groups.   

 

2.2.5 Redox titrations of cytochrome PpcF followed by UV-visible spectroscopy 

The redox titrations followed by UV-visible take advantage of the spectroscopic properties of 

heme proteins. In Figure 12, the UV-visible spectra of PpcF in both oxidized and reduced states are 

shown. In the oxidized state only a prominent band is observed at 410 nm, whereas in the reduced 

state three bands 419 nm (Soret), 523 nm (β) and 553 nm (α) are observed. For this reason the α-

band was selected to monitor the reduction fraction of the protein in the redox titrations. 
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Figure 12. UV-visible absorption spectra of triheme cytochrome PpcF. The oxidized spectrum is represented 

by a solid line and the Soret band appears at 410nm. In the reduced spectrum (dashed line), three bands are 

observed: Soret at 419nm, β at 523nm and α at 553nm. 

 

 The redox titrations of PpcF from G. metallireducens were performed at two different pH values 

(pH 7 and 8) and are indicated in Figure 13. 

Soret 

β 
α 
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Figure 13. Redox titration curves for PpcF from G. metallireducens (15 ᵒC and pH 7 and 8). The circles and 

triangles represent the oxidation and reduction directions, respectively. The grey line represents the fitting 

curve resulting from Equation 8. The insets represent an expansion of the α-band region. In these insets each 

line represents a different experimental measurement. The isosbestic points were 559 and 544 nm for pH 7 

and 560 and 545 nm for pH 8. 
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 The values of the macroscopic reduction potentials (E1
o, E3

o and E4
o) were determined by fitting 

the Equation 8 (see appendix 2) to each experimental data set. In this equation it was considered 

one electron exchange between the different redox states (n = 1) and the following values: F = 96500 

Cmol-1, R = 8.314 JK-1mol-1 and T = 288.15 K.  

 

 

 The adjustment of the experimental reduced fraction values were obtained using the Solver tool 

from Microsoft Excel software and the three macroscopic reduction potentials, as well as the 

apparent midpoint potential value (Eapp), for both pH values are indicated in Table 3. The values 

obtained for the PpcA family members from G. sulfurreducens are also included in Table 3 for 

comparison. 

 

Table 3. Macroscopic reduction potentials (versus SHE) and apparent midpoint potentials for PpcF from G. 

metallireducens (this work) and for PpcA family cytochromes from G. sulfurreducens (PpcA, PpcB, PpcD and 

PpcE).  

 

Cytochrome 
pH 7 pH 8 

Eapp 
(mV) 

E1
0 

(mV) 
E2

0 
(mV) 

E3
0 

(mV) 
Eapp 

(mV) 
E1

0 
(mV) 

E2
0 

(mV) 
E3

0 
(mV) 

PpcF  -56 -108 -59 10 -64 -125 -66 6 

PpcA [27, 32] -117 -171 -119 -60 -138  -182 -139 -93 

PpcB [27, 32] -137  -185 -140 -84 -143  -192 -145 -103 

PpcD[37] -132 -181 -133 -78 -148 -191 -152 -94 

PpcE [37] -134 -191 -133 -82 -139 -194 -138 -85 
 

 Overall, the reduction potential values obtained for PpcF are clearly more positive than the ones 

observed in the PpcA family from G. sulfurreducens. There are several factors that control the 

reduction potentials in multiheme cytochromes [47]. From these factors, heme solvent accessibility, 

charge distribution and redox-interactions between the heme groups are the most important ones 

[48]. Unfortunately, the solution structure of PpcF is not available and therefore the structural 

features that explain the observed differences could not yet be identified. Once available, the 

𝑅𝑒𝑑𝑢𝑐𝑒𝑑 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =  
3 + 2𝑒

  𝐸−𝐸1
𝑜  × 

𝐹
𝑅𝑇

 
+ 𝑒

  2𝐸− 𝐸1
𝑜− 𝐸3

𝑜  × 
𝐹
𝑅𝑇

 
 

3 ×  1 + 𝑒
  𝐸−𝐸1

𝑜  × 
𝐹
𝑅𝑇

 
+ 𝑒

  2𝐸− 𝐸1
𝑜− 𝐸3

𝑜  × 
𝐹
𝑅𝑇

 
+ 𝑒

  2𝐸− 𝐸1
𝑜− 𝐸3

𝑜− 𝐸4
𝑜  × 

𝐹
𝑅𝑇

 
 

 

(Equation 8) 
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structure of PpcF will allow us to determine the heme solvent accessibilities, map the spatial 

distribution of the charged residues that can possibly influence the reduction potential of the 

protein and measure the distances between the heme irons. 

 The difference in the apparent midpoint reduction potential (Eapp), obtained from the visible 

redox titrations carried out at pH 7 and 8 for PpcF (Table 3) also indicates that the properties of the 

individual redox centers are affected by the pH of the solution (redox-Bohr effect). This might be 

important and provide a role for PpcF in the energy transduction processes in G. metallireducens. 

  

2.2.6 1D-1H NMR spectral features of PpcF 

 As mentioned above, the 1D-1H NMR spectra of PpcF show important differences in the reduced 

and in the oxidized states (Figure 14). Both spectra present well dispersed and narrow signals which 

indicate the correct fold of the protein. NMR is a very powerful technique to identify the spin state 

of the heme groups, since the signals appear in quite distinct spectral regions for cytochromes with 

hemes in the high- or low-spin state. High-spin cytochromes in the oxidized state show 1D-1H NMR 

spectra with extremely broad signals above 40 ppm, which typically correspond to the heme methyls 

substituents. On the other hand, in low-spin cytochromes, the methyl signals are mostly found in 

the 8-35 ppm region. In the reduced form, 1D-1H NMR spectra are also distinct in both spin states, 

since cytochromes in high-spin show wider spectral regions (commonly from -15 up to 30 ppm) in 

comparison with the low-spin ones (frequently from -5 to 10 ppm). Therefore, 1D-1H NMR spectra 

of PpcF in both oxidation states shows typically patterns of low-spin hemes. In fact, in the oxidized 

state, the spectrum covers the region between -5 e 25 ppm, while in the reduced state, the spectrum 

only covers the region between -2 and 11 ppm. Therefore, the protein is diamagnetic when reduced 

(Fe(II), S = 0) and paramagnetic when oxidized (Fe(III), S = ½).  
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Figure 14. 1D-1H NMR spectra of cytochrome PpcF from G. metallireducens (15 ᵒC and pH 7) in the reduced 

(A) and oxidized (B) states. 

 

 

2.2.7 Assignment of the heme substituents of cytochrome PpcF in the reduced state 

 The heme substituent proton signals of PpcF from G. metallireducens in the reduced state were 

assigned through the strategy previously described (see section 2.1.7.2) and their chemical shifts 

are listed in Table 4. 
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Table 4. Chemical shifts (ppm) of PpcF heme protons in the reduced state (15 ᵒC and pH 7). The values 

obtained at pH 8 and 15 ᵒC are indicated in parenthesis. 

Heme substituent 
Chemical shifts (ppm) 

Heme I Heme III Heme IV 

5H 9.42 (9.41) 9.77 (9.73) 9.06 (9.01) 

10H 9.41 (9.39) 9.78 (9.75) 9.33 (9.29) 

15H 9.42 (9.30) 9.51 (9.54) 9.58 (9.53) 

20H 9.64 (9.60) 10.26 (10.23) 9.57 (9.53) 

21CH3 3.42 (3.39) 4.42 (4.39) 3.73 (3.70) 

71CH3 3.56 (3.55) 3.46 (3.92) 3.06 (3.02) 

121CH3 3.07 (3.09) 3.51 (3.48) 3.80 (3.75) 

181CH3 3.61 (3.58) 4.00 (3.98) 3.45 (3.42) 

31H 5.85 (5.81) 6.68 (6.63) 6.01 (5.96) 

81H 6.52 (6.48) 6.47 (6.43) 6.24 (6.21) 

32CH3 2.18 (2.16) 2.52 (2.48) 2.04 (2.01) 

82CH3 1.94 (1.92) 3.00 (2.97) 1.49 (1.46) 

 

 The observed cross peaks between the heme signals in the 2D-1H NOESY spectra allowed to infer 

about the heme core architecture of PpcF. As mentioned above, PpcF shows the highest degree of 

sequence homology with PpcA from G. sulfurreducens (Table 2). Therefore, taking as reference the 

heme core of PpcA (Figure 15), the NOE connectivities observed between the PpcF heme signals 

indicates that the heme core architectures of both proteins are similar. 
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Figure 15. NOE connectivities observed between the heme proton signals of PpcF from G. metallireducens. 

The NOE connectivies are indicated by the dashed lines. The heme core represented corresponds to that of 

PpcA from G. sulfurreducens (PDB code: 2LDO). 

 

 

2.2.8 Assignment of the heme substituents of cytochrome PpcF in the oxidized state 

 The heme propionate and methyl signals of PpcF from G. metallireducens in the oxidized state 

were assigned through the strategy previously described (section 2.1.7.2). The chemical shifts of the 

assigned signals are listed in Table 5. 
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Table 5. 1H and 13C chemical shifts (ppm) of the heme propionate and methyl groups of PpcF in the oxidized 

state (pH 7 at 25 ᵒC and 15 ᵒC). The resonances not detected are indicated by “n.d.” The blue numbers 

indicates the lowest and the highest 13C shift for the heme propionate groups. 

 

T (ᵒC) Group Heme I Heme III Heme IV 

  13C 1H 13C 1H 13C 1H 

25 21 -36.26 17.97 -25.13 12.40 -22.88 11.85 

 71 -18.08 6.86 -36.36 15.37 -29.50 13.56 

 121 -52.41 22.70 -30.04 17.93 -32.96 14.22 

 131 -15.07 8.08 -60.53 21.21 -17.90 7.44 

   0.70  20.10  2.72 

 132 88.09 -0.93 166.50 -1.88 95.10 -0.34 

   -1.79  -2.51  -0.88 

 171 -7.17 2.48 -13.68 4.98 -19.92 4.86 

   0.94  3.09  4.50 

 172 73.90 -0.92 84.59 -2.08 95.81 -0.52 

   -1.29  -2.67  -1.47 

 181 -38.30 16.08 -2.84 1.71 -35.57 15.50 

15 21 -38.43 18.42 -26.71 12.63 -24.21 11.91 

 71 -18.93 6.49 -36.50 15.51 -30.89 13.62 

 121 -54.98 23.28 -31.42 18.19 -34.38 14.30 

 131 -16.91 8.22 -63.83 21.39 -19.66 7.23 

   0.34  20.76  2.49 

 132 89.47 -1.08 171.4 -2.05 97.34 -0.58 

   -2.03  -2.79  -1.05 

 171 -8.15 2.03 -15.23 2.711 -21.30 4.38 

   0.33  n.d.  n.d. 

 172 73.65 -1.16 85.79 -2.30 97.35 -0.64 

   -1.54  -2.93  -1.71 

 181 -39.64 15.96 -2.91 1.12 -37.74 15.53 
 

 As in the reduced state, the analysis of the NOE connectivities between the heme substituents 

signals corroborates the conserved heme core architecture in PpcF and PpcA from G. sulfurreducens. 

This was further confirmed by the unusual high and low value of the 13C chemical shift observed for 

the C and Cβ from 131CH2
III propionate group, respectively (see blue numbers in Table 5). In fact, 

for all members of PpcA family triheme cytochromes in G. sulfurreducens, only the 131CH2
III 
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propionate groups show these quite distinct chemical shifts for C and Cβ [38, 39], a feature that 

arises from the particular heme core architecture that is conserved in this family of cytochromes 

(see Figure 3). 

 

2.2.9 Order of oxidation of the heme groups  

 The chemical shift of the heme proton methyl groups obtained for PpcF in the oxidized and 

reduced state are possible starting points to monitor the oxidation profiles of the individual hemes 

as the protein oxidation progresses. This is possible when the intra- and inter-molecular electron 

transfer exchange rates are fast and slow, on the NMR scale, respectively (see section 2.1.7.3). This 

was the case of PpcF and, therefore several 2D-1H EXSY NMR spectra were acquired with samples 

in intermediate levels of oxidation (examples of these spectra are indicated in Figure 16). The heme 

oxidation order can be obtained by the oxidation profile of one methyl per heme [44]. However, the 

selected methyls should point to the surface of the protein in order to minimize the extrinsic 

contribution due to the oxidation of neighboring hemes to the observed paramagnetic shift [44]. 

Therefore, the oxidation of the hemes in PpcF is monitored by the oxidation profiles displayed by 

methyls 21CH3
I, 121CH3

III and 181CH3
IV. 

 



41 
 

 

Figure 16. 2D-1H EXSY NMR spectrum of PpcF obtained at intermediated oxidation levels (15 ᵒC and pH 7). (A) 

Early stages of oxidation. (B) Later stages of oxidation. Cross peaks connecting the chemical shifts of heme 

methyls in different oxidation stages are indicated by dotted lines. The Roman numbers indicate the heme group. 

A 

B 
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 For the spectra acquired in early stages of oxidation only the connectivities connecting the 

chemical shifts of the heme IV methyls in oxidation stages 0 and 1 could be observed (Figure 16A). 

This is illustrated by the chemical shift of the heme methyl 121CH3
IV in Table 6 and the correspondent 

oxidation fractions in Table 7. In this case, heme IV oxidizes by approximately 80% in the first 

oxidation step, which indicates that this step is dominated by the oxidation of heme IV. Such 

significant amount of oxidation also explains why exchange connectivities for the other hemes could 

not be observed. The exchange connectivities for the signals of heme I and III are only observable 

at higher stages of oxidation, as illustrated in Figure 16B. Since the level of oxidation is too high to 

permit the observation of the connectivities with the stage 0 signals, the assignment of exchange 

connectivities for hemes I and III was carried out using the assignment of the heme methyls in the 

fully oxidized state (Table 5). The chemical shifts connecting the heme methyl signals 21CH3
I and 

121CH3
III of PpcF in different oxidation stages are listed in Table 6 and the corresponding oxidation 

fractions in Table 7.  

Table 6. Chemical shifts of the heme methyl 21CH3
I, 121CH3

III and 121CH3
IV of PpcF in the four oxidation 

stages (15 ᵒC and pH 7). The resonances not detected are indicated by “n.d.”. 

Oxidation 
stage 

Heme I Heme III Heme IV 

21CH3 121CH3 121CH3 

0 3.42 3.51 3.80 

1 n.d. n.d. 13.68 

2 15.48 6.11 15.20 

3 18.42 18.19 14.30 
 

 

Table 7. Oxidation fractions, xi, of the PpcF heme groups (16 ᵒC and pH 7). The oxidation fraction resonances 

not determined are indicated by “n.d.”. 

Oxidation 
stage 

xi 
Σ xi 

21CH3
I 121CH3

III 121CH3
IV 

0 0.0 0.0 0.0 0 

1 n.d. n.d. 0.804 n.d. 

2 0.804 0.177 0.920 1.901 

3 1.0 1.0 1.0 3 
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 As indicated in Table 7, the first stage of oxidation is dominated by heme IV (approximately 80%). 

On the other hand, the last step of oxidation is dominated by the oxidation of heme III (approximately 

80%). Since both hemes I and III can oxidized at maximum 20% in the second oxidation step, this is 

dominated by the oxidation of heme I. Therefore, the order of oxidation of the heme groups in PpcF is 

IV-I-III. 
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2 . 3  C O N C L U S I O N S  

In order to characterize the triheme cytochrome PpcF from Geobacter metallireducens the 

protein was firstly successfully heterologously expressed and purified with a protein yield of 0.94 

mg per liter of culture.  

The molecular weight of PpcF was determined by MALDI-TOF spectrometry and the results were 

in agreement with the expected theoretical mass of 9737 Da. The number of hemes present in the 

cytochrome was also quantified and the expected number of heme groups per protein (3) was 

confirmed. 

The UV-visible spectra of PpcF displayed the typical features of c-type cytochromes containing 

low-spin heme groups. In the oxidized state the spectra showed one intense band at 410 nm, 

whereas for the reduced form, three bands are observed: Soret (419nm), β (523nm) and α (553nm). 

Furthermore, the molar extinction coefficient of PpcF was determined (87.4 mM-1cm-1).  

The apparent midpoint macroscopic potential (Eapp) of PpcF was determined at pH 7 (-56 mV) 

and pH 8 (-64 mV). The values obtained are considerably higher compared to the ones observed for 

the PpcA family from G. sulfurreducens. These differences can be probably attributed to structural 

and residue content differences, resulting in different heme solvent accessibility and nearby charge 

distribution. Also, the differences observed in the values obtained at pH 7 and 8 indicates that the 

protein displays a redox-Bohr effect at physiological pH. 

The 1D-1H NMR spectra of PpcF further confirmed the spin state of the cytochrome. In both 

states, the dispersion of the signals covered regions that are typical for low-spin cytochromes. 

Hence, the cytochrome is diamagnetic when reduced (Fe(II), S = 0), and paramagnetic when oxidized 

(Fe(III), S = ½). 

The assignment of PpcF heme substituent signals was carried out in both reduced and oxidized 

states. The analysis of the NOE connectivities between the assigned signals indicated that the 

architecture of the heme core is conserved in PpcF and PpcA family in G. sulfurreducens. 

The individual heme oxidation profiles were studied via 2D-1H EXSY NMR experiments and the 

obtained data allowed us to establish the order of oxidation of the heme groups: IV – I – III.  
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C O N T E X T U A L I Z A T I O N  

As previously mentioned, the Geobacteracea family display a considerable respiratory versatility. 

Beyond, the most common soluble electron acceptors such as fumarate, these bacteria have the 

ability to reduce soluble toxic metal oxides of Cr(VI) and radioactive contaminants like U(VI) to the 

corresponding insoluble forms, which has an important impact in the bioremediation field. 

Geobacter multiheme cytochromes have been implicated in the extracellular electron transfer 

pathway used by the microorganism to reduce soluble or insoluble iron complexes. Previous studies 

demonstrated that PpcA, PpcB and PpcD were found in both Fe(III) citrate and Fe(III) oxide cultures, 

but PpcA abundance was statistically similar under both culturing conditions, while PpcB was more 

abundant during growth on Fe(III) citrate [51]. In contrast, PpcD was the only showing higher 

abundance in the Fe(III) oxide supplanted cultures. PpcE was only detected in cultures with Fe(III) 

citrate. Also, genetic studies have suggested that PpcA is an important component in Fe(III) citrate 

reduction [52]. 

The fact that three triheme cytochromes (PpcA, PpcB and PpcE) are involved in the G. 

sulfurreducens Fe(III) citrate respiratory pathways, constitute a good model to understand how 

multiheme cytochromes can possible interact with this electron acceptor [9–11]. In the present 

work we used NMR measurements to investigate whether Fe(III) citrate interacts with each 

cytochrome and to fingerprint the regions involved in the interaction between the two molecules. 

The results of these experiments allow us to present for the first time structural evidence for 

molecular interaction between Fe(III) citrate and PpcA, PpcB and PpcE, which constitutes an 

important step to understand this respiratory pathway in G. sulfurreducens. 
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3 . 1  M A T E R I A L S  A N D  M E T H O D S  

3.1.1 Protein expression 

The triheme cytochromes PpcA and PpcB from G. sulfurreducens, both unlabeled and isotopic 

labeled, and PpcE unlabeled, were already available expressed and purified in the laboratory prior 

to the start of this thesis. As previously described in the section 2.1.1 for the expression of PpcF, 

PpcE from G. sulfurreducens was heterologously expressed in Escherichia coli BL21(DE3) cells.  

To 15N isotopic labelling PpcE the followed protocol has some differences from the one used to 

produce unlabeled PpcF (section 2.1.1). After the cells reach the mid-exponential phase 

(OD600nm>1.5), cultures were harvested by centrifugation at 6400 g, 30 min. The resultant cell pellet 

was washed twice with 250 mL of a salt solution containing 43 mM NaCl (Panreac), 240 mM Na2HPO4 

(VWR Chemicals) and 110 mM KH2PO4 (Riedel-de-Haën). Afterwards, cells were resuspended in 250 

mL minimal media composed by 34 µg/mL CLO, 100 µg/mL AMP, 8.6 mM NaCl, 48 mM Na2HPO4, 22 

mM KH2PO4, 20 mg/L biotin (Fagron), 20 mg/L vitamin B1 (Fluka), 2 mM MgSO4·7H2O (Panreac), 0.1 

mM CaCl2 (Sigma-Aldrich), 5 µM MnCl2·4H2O (VWR), 10 µM FeSO4·7H2O (Merck), 1 mM of the heme 

precursor δ-aminolevulinic acid (Merk), 0.4 g/L 12glucose (VWR) as carbon source and 0.2 g/L 15NH4Cl 

(Cambridge Isotope Laboratories, Inc.) as nitrogen source. Then, the cultures were incubated at 30 

ᵒC and 180 rpm, during 1h. Protein expression was induced with 100 µM IPTG. After induction, both 

unlabeled and labeled protein expression protocols remain the same. 

 

3.1.2 Protein purification 

The expressed 15N isotopic labelled cytochrome PpcE was purified with resource of the same 

methods used for PpcF G. metallireducens purification (see section 2.1.2). However dialysis was 

made in 10 mM Tris-HCl pH 8.5 and cation exchange chromatography also in 10 mM Tris-HCl pH 8.5. 

Protein purity was evaluated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (15%), 

stained with Coomassie brilliant blue (Sigma). 
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3.1.3 Protein expression yield 

To the determination of the yield of the expressed cytochrome, the UV-visible spectra of PpcE in 

the reduced form was obtained using the same steps described is section 2.1.3. The PpcE 

concentration was determined by measuring the absorbance of the reduced PpcE α-band at 552 

nm, using the extinction coefficient of 97.4 mM-1cm-1 determined for PpcA from G. sulfurreducens 

[36]. 

 

3.1.4 NMR studies 

 All the NMR experiments were acquired at pH 7 and 25 °C in a Bruker Avance III 600 MHz 

spectrometer equipped with a triple-ressonance cryoprobe. The water signal (4.81 ppm at 25 °C) 

was used to calibrate the 1H chemical shifts and the 13C and 15N shifts calibrated through indirect 

referencing [39]. The obtained spectra were processed using software TOPSPIN (Bruker Biospin, 

Karlsruhe, Germany) and analyzed with program Sparky (TD Goddard and DG Kneller, Sparky 3, 

University of California, San Francisco, USA) and all the 1D-1H NMR spectra referred in this work 

were acquired by collecting at 64k and at least 64 scans.  

 The backbone NH and heme methyl signals were previously assigned for PpcA [38, 39, 42]. Heme 

assignment were also assigned for PpcB and PpcE [50]. In the present work, the backbone signals 

for PpcB and PpcE were assigned using the methodology described in section 3.1.4.2.  

 

3.1.4.1 Determination of interacting sites 

 The effect of the Fe(III) citrate addition was analyzed both on the backbone NH and on the heme 

methyl proton NMR signals using 15N-labeled and natural abundance samples, respectively. Labeled 

cytochrome samples (0.5 mM) were prepared in 45 mM sodium phosphate buffer pH 7 with NaCl 

(100mM final ionic strength) in 92%H2O/8% 2H2O. The natural abundance samples were prepared 

in the same buffer but containing only pure 2H2O. 

Fe(III) citrate solution was prepared in 45 mM sodium phosphate buffer pH 7 with NaCl (100mM 

final ionic strength) and consecutive additions of 5M NaOH were made until the solution reach pH 

7. 
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The effect of Fe(III) citrate on the backbone NH signals was monitored by the analysis of a series 

of 2D-1H,15N HSQC NMR spectra acquired for 15N-labelled samples in the presence of increasing 

amounts of Fe(III) citrate in the following ratios of cytochrome:Fe(III) citrate: 1:0, 1:0.5, 1:1, 1:1.5, 

1:2 and 1:3. The same experimental conditions were used to monitor the effect of Fe(III) citrate on 

the heme methyl signals via 2D-1H,13C HMQC (spectral width of 37 kHz in F2 and 250 kHz in F1)and 

2D-1H NOESY (spectral width of 37 kHz, mixing time of 80 ms) NMR spectra acquired with natural 

abundance samples. The pH of each cytochrome sample was measured before and after each series 

to confirm that pH of the solution is maintained. 1D-1H NMR spectra were obtained before and after 

each 2D spectrum to confirm protein integrity.  

 

3.1.4.2 NH backbone signals assignment methodology 

 The 2D-1H,15N HSQC spectra is the one where the magnetization is transferred from the 1HN atom 

to the attached 15N atom, via the J-coupling (Figure 17). In this type of spectra is possible to identify 

the N-H correlations of the sample, as well as the NH groups of the lateral chains of the residues 

(Appendix 3) such as Trp, His, Asn and Gln. This spectra constitutes a fingerprint of the sample. 

 

Figure 17. Scheme representing magnetization transfer in HSQC NMR experiment. In the HSQC experiment 

the magnetization (black arrow) is transferred from the hydrogen to the 15N nuclei, as represented. Then, the 

magnetization is transferred back to the hydrogen for detection. 

 

 The quickest and safe way to assign the signals corresponding to the NH groups in the 2D-1H,15N 

HSQC spectra is to acquire a set of four experiences designated: 3D-HNCA, 3D-HNCACB, 3D-

HN(CO)CA and 3D-HN(CO)CACB. 



54 
 

 In a HNCA experiment, at first, the magnetization is passed from 1HN to 15N and then, via N-Cα J-

coupling, to the 13Cα. Then, the magnetization is passed back to 15N and 1HN respectively, 

therefore the signal is finally detected (Figure 18A). The chemical shift is evolved for 1HN as well 

as the 15N and 13Cα, resulting in a three dimensional spectrum. Since the amide nitrogen is 

coupled to the Cα of its residue (Ci) and that of the preceding residue (Ci-1), both these 

transfers occur and the signals for both Cα are visible in the spectrum.  

 In the HN(CO)CA experiment we can visualize a single signal for each amino acid, corresponding 

to the Ci-1. In this particular experiment, the magnetization is passed from 1HN to 15N and then 

to the 13C from the carbonyl group of the peptide bond. From there, the magnetization is 

transferred to 13Cα and the chemical shift is evolved. The magnetization is then transferred back, 

via 13CO (the carbon from the carbonyl group of the peptide bond), to 15N and 1HN for detection 

(Figure 18B). The chemical shift is only evolved for the 1HN, 15N and 13Cα, but not for the 13CO. This 

results in a spectrum with similar results to the HNCA, being selective for the Ci-1. 

 

Figure 18. Schemes representing magnetization transfer in HNCA and HN(CO)CA NMR experiments. (A) 

HNCA experiment. The magnetization (black arrows) is transferred from the 1H to 15N and then, via N-Cα J-

coupling, to the 13Cα. Then, the magnetization is transferred back to 15N and 1H respectively, therefore the 

signal is finally detected. (B) HN(CO)CA experiment. The magnetization (black arrows) is passed from 1H to 15N 

and then to the 13C from the carbonyl group of the peptide bond. From there, the magnetization is transferred 

to 13Cα and the chemical shift is evolved. The magnetization is then transferred back, via 13CO (the carbon from 

the carbonyl group of the peptide bond), to 15N and 1H for detection. The chemical shift is only evolved for the 
1H, 15N and 13Cα, but not for the 13CO. This results in a spectrum with similar results to the HNCA, being selective 

for the Cα of the preceding residue. 
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 The HNCACB experience is less sensitive (low signal-to-noise ratio) and is generally used as a 

complementary way to verify the signals, especially the Cβ from each 1H,15N HSQC signal. On a 

HNCACB experiment, the magnetization is transferred from 1Hα and 1Hβ to 13Cα and 13Cβ, 

respectively, and then from 13Cβ to 13Cα. From here it is transferred first to 15N and then to 1HN for 

detection. The transfer from Cαi-1 can occur both to 15Ni-1 and 15Ni or, viewed the other way, 

magnetization is transferred to 15Ni from both 13Cαi and 13Cαi-1 (Figure 19A). Thus, for each NH group 

there are two Cα and Cβ peaks visible. The chemical shift is evolved simultaneously on 

13Cα and 13Cβ, therefore these appear in one dimension. The chemical shifts evolved in the other 

two dimensions are 15N and 1HN. 

 In the HN(CO)CACB experiment, both 13C from the previous amino acid are visualized (Cαi-1 and 

Cβi-1). This experiment also has a low signal-to-noise ratio. In this particular experiment (Figure 

19B), the magnetization is transferred from 1Hα and 1Hβ to 13Cα and 13Cβ, respectively, and then 

from 13Cβ to 13Cα. From here it is transferred, at first, to 13CO, then to 15N and, finally, to 1H for 

detection. The chemical shift is evolved simultaneously on 13Cα and 13Cβ, therefore both appear in 

one dimension. The chemical shifts evolved in the other two dimensions are 15N and 1H. The 

chemical shift is not evolved on 13CO. 

 

Figure 19. Schemes representing magnetization transfer in HNCACB and HN(CO)CACB NMR experiments. 

(A) HNCACB experiment. The magnetization (black arrows) is transferred from 1Hα and 1Hβ to 13Cα and 13Cβ, 

respectively, and then from 13Cβ to 13Cα. From here it is transferred first to 15N and then to 1H for detection. 

The transfer from 13Cαi-1 can occur both to 15Ni-1 and 15Ni or, viewed the other way, magnetization is transferred 

to 15Ni from both 13Cαi and 13Cαi-1. The chemical shift is evolved simultaneously on 13Cα and 13Cβ, therefore these 

appear in one dimension (B) HN(CO)CACB experiment. The magnetization (black arrows) is transferred from 
1Hα and 1Hβ to 13Cα and 13Cβ, respectively, and then from 13Cβ to 13Cα. From here it is transferred, at first, to 
13CO, then to 15N and, finally, to 1H for detection. 
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 In the protein assignment, at first, a random signal from the general HSQC spectrum was chosen, 

and using the 15N and 13C chemical shifts, its path was followed into the 3D spectra. All the 3D spectra 

recorded were aligned with the HSQC and between themselves, so that all 15N, 13C and 

1H chemical shifts variations could be followed simultaneously. For the assignment of the C of 

each amino acid, the HNCA spectra were used to find the Cαi and Cαi-1 chemical shifts, and to 

distinguish between them, the HNCOCA was used, since only the Cαi-1 appears in this spectrum. 

This assignment can be also confirmed in the HNCACB and HNCOCACB. At the same time, for 

the assignment of the Cβ, the HNCACB spectra were used to find the Cβ and Cβi-1 chemical shifts, 

and to distinguish between them, the HNCOCACB was used, since only the Cβi-1 appears in this 

spectrum. After getting all the possible information from a single HSQC signal, we then navigated 

either to its following amino acid or to its previous one. In order to navigate to any following amino 

acid, we used the HNCOCA spectra and by fixing the Cαi, and varying the 15N dimension, it was 

possible to find correspondent peaks (peaks with similar 13C chemical shift, but different 15N and 1H 

chemical shift). This new signals corresponded to an amino acid, placed on the right from the one 

we started from. That means that the signals founded were actually the Cα from the first amino acid 

being seen as a previous Cα.  

 A similar strategy can be followed in order to navigate to any previous amino acid. For that, we 

used the HNCA spectra and fixed the chemical shift of Cαi-1. The new signals founded 

corresponded to the previous amino acid itself, meaning that the Cα previously seen as a Cαi-1, 

was now seen as a Cα belonging to the amino acid itself. 

 By continuously using the method above described (peaking a HSQC peak, and navigate to its 

previous and following amino acids), the assignment of the protein backbone was 

obtained (Figure 20). 
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Figure 20. Scheme of the observable signals in 3D-HNCA, 3D-HNCACB, 3D-HNCOCA and 3D-HNCOCACB NMR 

spectra in 1H and 13C coordinates for a given 15N chemical shift. 
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3 . 2  R E S U L T S  A N D  D I S C U S S I O N  

3.2.1 Protein expression 

After the isolation of the periplasmic fraction, the expressed 15N PpcE from G. sulfurreducens was 

purified by cation exchange and molecular exclusion chromatography. The elution profiles obtained 

from both chromatographic methods are shown in Figures 21 and 22, respectively. 

 

Figure 21. Elution profile for the cation exchange chromatography of PpcE from G. sulfurreducens. Cation 

exchange chromatography column equilibrated with 10 mM Tris-HCl pH 8.5. Elution at 1 mL/min flow rate. 

Solid line corresponds to the variation of absorbance at 280 nm. Dashed line reports the NaCl gradient profile. 

 

Based on the amino acid sequence of PpcE an isoelectric point of 9.51 was determined using the 

pI/Mw tool program on the ExPASy Server. Considering this, PpcE was purified using a cation 

exchange column equilibrated with 10 mM Tris-HCl pH 8.5. The elution of the cytochrome and other 

column-bound proteins were achieved by increasing the buffer ionic strength. The bound proteins 

are eluted with a sodium chloride gradient of 150 mL, between 0 and 300 mM. The protein of 

interest, which presents a red characteristic color, typical for proteins containing heme groups, was 

eluted at 75% (225 mM) of the gradient, as depicted in Figure 21.  

This purification step allowed the removal of the bulk of the contaminants and the remaining 

ones were removed by a molecular exclusion chromatography step, whose chromatogram is 
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indicated in Figure 22. The molecular weight of PpcE is 9661 Da (theoretical value determined with 

Compute pI/Mw tool [46] and was eluted at 93 mL, with 100 mM sodium phosphate buffer (pH 8). 

 

 

Figure 22. Elution profile for the molecular exclusion chromatography of PpcE from G. sulfurreducens. 

Molecular exclusion chromatography column equilibrated with 100 mM sodium phosphate buffer, pH 8, with 

a flow rate of 0.5 mL/min. 

 

The purity of PpcE was accessed by SDS-PAGE electrophoresis (Figure 23). The analysis of the 

resulting gel shows a single intense band at approximately 10 kDa, which agrees with the actual 

molecular weight of the cytochrome. The protein yield was 1.31 mg per liter of cell culture 

determined as described in section 3.1.3.  



61 
 

 

Figure 23. Purity analysis by SDS-PAG electrophoresis of PpcE from G. sulfurreducens. Obtained results of 

SDS-PAGE gel, 15% acrylamide, stained with Coomassie brilliant blue. Lane 1) Purified fraction after molecular 

exclusion chromatography; Lane 2) Protein marker (Protein Plus Protein Dual Xtra Standards, Bio-Rad, 

appendix 1); The molecular weights of the protein markers are in indicated on the left of lane 1. 

 

 

3.2.2 NH backbone signals assignment of PpcB and PpcE 

As previously mentioned, the NH backbone signals of PpcA (Figure 24) have been previously 

assigned [54]. The NH signals of PpcB and PpcE were assigned in the present work (Figure 24) as 

described in section 3.1.4.2, except for Ala1, Asp2, Gly42 and Cys51 for PpcB and Ala1, Asp2, Gly42 and 

Thr62 for PpcE. The backbone NH signals at the N-terminal residues (Ala1, Asp2) are usually not 

observable due to fast exchange. The backbone NH signal of Gly42 were not observable, most 

probably due to signal broadening caused by the nearby hemes I and IV paramagnetic irons. This 

signal was also not observable in PpcA. Therefore, taking into consideration the similar location of 

this residue in PpcA and the other members of the PpcA family from G. sulfurreducens (Figure 3) the 

proximity to the paramagnetic centers is also probably the explanation for the excessive line 

broadening of the NH signal of Gly42. On the other hand, the backbone amide signals of Cys51 and 

Thr62 were not observed most probably due to their rapid solvent exchange at pH 7. 
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Figure 24. Overlay of the 2D-1H,15N HSQC NMR spectra of 15N-enriched PpcA, PpcB and PpcE samples 

obtained in the absence and in the presence of Fe(III) citrate. The contours of the signals in the absence and 

in the presence of Fe(III) citrate are indicated in black and orange, respectively. The assignments of NH signals 

are indicated.  

 

3.2.3 Interaction between the triheme cytochromes PpcA, PpcB and PpE and Fe(III) citrate 

The effect of the addition of increasing amounts of Fe(III) citrate on the backbone NH signals of 

the cytochromes were monitored by recording a series of 2D-1H,15N HSQC NMR spectra. Figure 25 

exhibits a partial area of the spectra obtained for each cytochrome in the absence and in presence 

of Fe(III) citrate in a ratio 1:3, whereas the full spectra are indicated in Figure 24. Sensible line 

broadening is observed upon addition of Fe(III) citrate to the cytochromes. In the case of PpcA, the 

residues whose amide resonances showed a decrease in the peak data height loss above 80% are 

placed in polypeptide segments Lys9-Gly11 and Lys64-His69, as well as residues Glu44 and Lys71. All the 

most affected residues in PpcA are located near heme IV. For PpcB the most affected residues are 

Ala8-Val13, His31, Lys43-Ala46, Gly48, Lys49, Lys52, Gly53, Glu56, Thr63-Lys71. As in the case of PpcA, in PpcB 

the most affected residues are also located near heme IV, except residue His31 that is near heme I. 

Finally, the residues that showed considerably line width broadening upon addition of Fe(III) citrate 



64 
 

in PpcE are located in the polypeptide segment Lys63- Leu66, which is also placed at the vicinity of 

heme IV. The analysis of the line width broadening on the backbone NH and heme methyl signals of 

each cytochrome enabled us to map the interaction region in each Fe(III)-citrate:cytochrome redox-

complex. The observed increase in the line width broadening, as a function of Fe(III) citrate 

concentration, is attributable to the presence of the iron ion in the Fe(III) citrate molecule. In fact, 

Fe(III) is a d3 ion, generally six-coordinated, with three unpaired electrons (S=3/2). It possesses 

negligible magnetic anisotropy and, therefore does not contribute to the hyperfine shifts of 

neighbor nuclei. Instead it broadens the NMR lines because of its short electronic relaxation times.  
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Figure 25. Selected spectral regions of 2D-1H,15N HSQC NMR spectra acquired for 15N-enriched PpcA (A), 

PpcB (B) and PpcE (C) in the absence and in the presence of Fe(III) citrate. Full spectra are indicated in Figure 

24. The assignments of NH signals are indicated.  

The residues experiencing significant line width broadening upon addition of Fe(III) citrate in the 

three cytochromes are highlighted on the three-dimensional structure of the proteins (Figure 26). 

In all cytochromes, the most affected residues are located in polypeptide regions that enwrap heme 

IV. The location of the complex interface in a similar region in all cytochromes is not surprising since 

the three proteins have high sequence and structural homology [34]. 



66 
 

 

Figure 26. Line width broadening effects on the PpcA, PpcB and PpcE backbone NH signals and respective 

surface mapping. The peak height of the signals (%) measured for each cytochrome in the presence of Fe(III) 

citrate (1:3 ratio) is indicated in the left handed panels (A) PpcA; (B) PpcB and (C) PpcE). Asterisks indicate 

proline or non-assigned residues. Residues whose signals showed a decrease in the peak data height loss in 

the range 100% - 80% and 80% - 60% are represented in red and orange, respectively in the corresponding 

right-handed panels (D) PpcA; (E) PpcB and (F) PpcE). In each surface map the hemes are shown in black. The 

molecular surface was generated in PyMOL [40] by using structures of PpcA (PDB code, 2LDO [32]), PpcB (PDB 

code, 3BXU [33]) and PpcE (PDB code, 3H34 [34]). 

 

 Owing the reduction potentials of the heme groups of PpcA, PpcB and PpcE (Table 1) and that of 

Fe(III) citrate (+ 372 mV versus SHE [55]) the reduction of the latter is clearly thermodynamically 

favorable and can be achieved via any of the hemes. Moreover, to the electron transfer occur at 

physiologically relevant rates between each cytochrome and Fe(III) citrate at least one heme group 
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and the acceptor must be in close proximity to warrant for an effective electron transfer. If this is 

the case, any perturbation caused by binding of Fe(III) citrate is expected to affect the NMR signals 

of the heme substituents. In order to investigate this, we further study the effect of the addition of 

Fe(III) citrate on the heme methyl signals in each cytochrome.   

 Each heme has four methyl groups (21CH3, 71CH3, 121CH3 and 181CH3, see Figure 27) and their 1H 

NMR signals are found typically in less crowded regions of the 1D-1H NMR spectrum. For this reason, 

they constitute excellent probes for monitoring the effect of the addition of Fe(III) citrate on PpcA, 

PpcB and PpcE heme groups. The heme methyl signals of the cytochromes were previously assigned 

[47, 54] and both 1D-1H and 2D-1H NOESY NMR spectra were used to further evaluate the 

interactions between Fe(III) citrate and each protein. The low-field regions of the 1D-1H NMR 

spectra, acquired during the titration of each cytochrome with increasing amounts of Fe(III) citrate 

are indicated in Figure 27. In this spectral window 11 out of 12 heme methyls can be easily followed. 

The signal of the heme methyl 181CH3
III appears at 0.76 ppm, 1.54 and -0.14 ppm, in PpcA, PpcB and 

PpcE, respectively and therefore cannot be easily probed by 1D-1H NMR titrations. In order to 

evaluate the effect of the addition of Fe(III) citrate on the complete set of heme methyl signals, 2D-

1H,13C HMQC NMR spectra were recorded for each cytochrome in the absence and in the presence 

of Fe(III) citrate (Figure 28A). The analysis of both 1D-1H NMR titrations (Figure 27) and 2D-1H,13C 

HMQC NMR spectra obtained in the presence of Fe(III) citrate (Figure 28A) clearly shows that there 

is a dramatic increase in the line width of the heme IV methyl signals. Another strong evidence that 

further confirms the complex interface in this region is provided by the significant line width 

broadening observed for heme IV methyl signals, whereas those from hemes I and III are essentially 

unaffected with the increasing addition of Fe(III) citrate (Figure 27). Interestingly, the most solvent-

exposed methyl groups of heme IV (21CH3
IV and 181CH3

IV) clearly show a more pronounced effect 

than the other methyl groups of heme IV (71CH3
IV and 121CH3

IV), which are buried in the protein 

core. The effect becomes more evident as the titration progresses (Figure 27). Heme IV methyls 

21CH3
IV and 181CH3

IV are clearly the most affected ones compared with 71CH3
IV and 121CH3

IV. All the 

other heme resonances remained essentially unchanged in terms of line width broadening. These 

observations were further confirmed by analysis of the heme methyl NOE connectivities in the 2D-

1H NOESY NMR spectra obtained for each cytochrome in the absence and in the presence of Fe(III) 

citrate (Figure 28B). In fact, only the heme IV methyls, in particular (21CH3
IV and 181CH3

IV) showed 

considerable decrease in the NOE connectivities, as a result of the significant line width broadening 

of their signals in the presence of Fe(III) citrate. Overall, the line width broadening on the heme IV 
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methyl signals reinforces the observation that there is binding of Fe(III) citrate to each cytochrome 

near this heme. 

 

Figure 27. Line broadening effects on heme methyl 1H signals of PpcA, PpcB and PpcE cytochromes. 

Expansions of the low-field region of 1D-1H NMR spectra obtained for PpcA, PpcB and PpcE in presence of 

increasing amounts of Fe(III) citrate: (A) PpcA, (B) PpcB and (C) PpcE. The heme methyl signals (21CH3, 71CH3, 

121CH3 and 181CH3) following the IUPAC nomenclature [39] are labeled, with exception of heme methyl 

181CH3
III whose signal appears at a chemical shift of approximately 1 ppm (see Figure 28). The protein:Fe(III) 

citrate ratio used in each experiment is indicated on the left of each spectrum. D) The heme core architecture 

of the cytochromes is illustrated by that of PpcA (PDB code 2LDO, [32]). The IUPAC nomenclature for 

tetrapyrroles [29] is illustrated in heme I. 
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Figure 28. Selected regions of 2D-1H,13C HMQC (A) and 2D-1H NOESY (B) NMR spectra of PpcA, PpcB and 

PpcE cytochromes in the absence (black) and presence (orange) of Fe(III) citrate. The dashed rectangles show 

the NOE connectivities of heme methyls 21CH3
IV and 181CH3

IV whose signals show significantly broadening 

upon addition of Fe(III) citrate. 

 

PpcE 
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 The heme groups of each cytochrome are considerably exposed to the solvent, with heme I 

showing the largest exposure [43, 44]. Therefore, the selective interaction between Fe(III) citrate 

and the cytochromes in the region of heme IV must be driven by other factors than simple heme 

exposure. In fact, the analysis of the structures showed that the cytochromes have the highest 

degree of conservation around heme IV [34]. The protein surface around this heme is positively 

charged due to the presence of several lysine residues, thus all cytochromes could interact with 

similar molecules involving this region. Therefore, considering the net positive charge of the 

cytochromes around heme IV and the negative nature of Fe(III) citrate, electrostatic interactions are 

expected to contribute favorably to the formation of the cytochrome:Fe(III) citrate redox 

complexes. However, the detailed analysis of the residues experiencing significant line width 

broadening in the three cytochromes (see panels D-F in Figure 26) shows that in PpcE fewer residues 

experienced broadening compared to PpcA and PpcB, resulting in a less extensive interaction site 

and thus suggesting the formation of a more specific complex between Fe(III) citrate and PpcE. A 

possible explanation for this observation relies on the specific geometry of the two most affected 

lysine residues (Lys64 and Lys66) in PpcE. In fact, the two lysine residues enwrapped Cys65 that forms 

the heme IV binding motif, a feature that is not observed in the other two cytochromes (Figure 29) 

and can be responsible for the specific driving of Fe(III) citrate to this region of PpcE.  
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Figure 29. Structural map of the most affected lysine residues in PpcA, PpcB and PpcE in the presence of 

Fe(III) citrate. The images were generated in PyMOL [40] by using the structures of PpcA (PDB code: 2LDO 

[32]), PpcB (PDB code: 3BXU [33]) and PpcE (PDB code: 3H34 [34]). 

file:///C:/Users/Stern/Desktop/Citrato_6Sept.docx%23_ENREF_40
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3 . 3  C O N C L U S I O N S  

In this work PpcE labelled in 15N was heterologously expressed in Escherichia coli and purified 

with a yield of 1.31 mg per liter of cell culture. The NH backbone signals of this cytochrome, as well 

as those of PpcB were successfully assigned.  

The study described in this chapter provides a clear picture of the molecular interaction between 

cytochromes PpcA, PpcB and PpcE with Fe(III) citrate. The results obtained constitute an important 

step toward the rationalization of the G. sulfurreducens iron compounds respiratory chains that 

utilize iron compounds as terminal electron acceptors, in particular those involved in the reduction 

of Fe(III) citrate. Previous structural and thermodynamic studies carried out on the three targeted 

cytochromes showed that the reduction potentials of the heme groups redox are negative covering 

the redox potential window of -100 to -158 mV [37]. Therefore, in a thermodynamic point of view, 

Fe(III) citrate can be putatively reduced by any heme group in each cytochrome. However, the NMR 

experiments carried out in the present study showed that this is not the case, as Fe(III) citrate binds 

to the three cytochromes in a well specific and defined patch containing positively charged lysine 

residues close to the more solvent-exposed heme IV methyl groups. The presence of positive 

residues in the vicinity of heme IV methyl groups promotes favorable electrostatic docking to each 

cytochrome. The present results obtained for Fe(III) citrate become quite relevant beyond the scope 

of periplasmic cytochromes and can be also used as working-models for the Geobacter outer 

membrane cytochromes for which structural data are still currently unavailable. 
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4 .  F U T U R E  P E R S P E C T I V E S  

The NMR and the partial thermodynamic characterization of PpcF performed in this work 

constitute the building blocks to determine the structure of this cytochrome, which is yet unknown. 

The data obtained will also allow a more detailed thermodynamic characterization that will include 

the determination of the microscopic potentials and the properties of the redox-Bohr center, as a 

first step to elucidate the extracellular electron transfer pathways in G. metallireducens. These 

pathways are slightly better understood in G. sulfurreducens and within this context, the work 

developed on chapter 3, that included the assignment of the backbone NH NMR signals of the 

periplasmic triheme cytochromes and the mapping of their interaction regions with the terminal 

electron acceptor Fe(III) citrate, constitutes an important foundation to assist in new interaction 

studies with different electron acceptors or redox partner proteins. 
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5 .  A P P E N D I X  

Appendix 1. Molecular weight marker (Protein plus ProteinTM Dual Xtra Standards, Bio-Rad) used in the 

different electrophoresis performed throughout this work.  

 

 

Appendix 2. Deduction of the equation used to fit the variation of the experimental reduced fraction with 

to solution potential in the redox titrations followed by UV-visible spectroscopy 

 As previously stated, a triheme cytochrome has different microstates that can be grouped into 

four macroscopic oxidation stages that are connected by three redox steps of one electron each 

(Figure 5). The different oxidation stages are related by three one-electron transfer equilibria as 

depicted in the scheme below 
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Accordingly to this scheme three Nernst equations can be defined: 
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where E, corresponds to the experimental measured potential and E1
0, E2

0 and E3
0 to the standard 

potential for each oxidation step; F represents the Faraday constant; T represents the temperature 

in Kelvin; and R, the gas constant. P0, P1, P2 and P3 macroscopic population in oxidation stages 0, 1, 

2 and 3, respectively. 
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Each macroscopic population can be expressed as a function of the solution potential (E) and 

macroscopic redox potential (E1
0, E2

0 and E3
0) as follow: 
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Appendix 3. Amino acid structures and designations. 

 

 

 

 

 

 

  

 

 

 


