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ITR Inverted terminal repeat
LacO Lactose operator
LacR Lactose repressor
LacZ p-galactosidase gene
Mdcl Mediator of DNA damage checkpoint 1
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M rell Meiotic recombination 11 protein
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MRN Mrel 1-Rad50-Nbsl
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Nbsl Nijmegen breakage syndrome 1 (nibrin)
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ONPG o-nitrophenyl-D-galacto-pyranoside
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PCNA Proliferating nuclear antigen
PCR Polymerase chain reaction
PNK Polynucleotide kinase
pSR Plasmid Super-Retro
qPCR Quantitative polymerase chain reaction
rAAV Recombinant adeno-associated virus
Rad50 Rad52 epistatic group protein number 50
Rad52 Rad52 epistatic group protein number 52
rAdE4orf6 Recombinant Adenovirus vector coding for E4orf6 protein
RBS Rep binding site
RCR Rolling circle replication
Rep AAV non-struetural Rep proteins
Rep40 AAV Rep isophorm 40
Rep52 AAV Rep isophorm 52
Rep68 AAV Rep isophorm 68
Rep78 AAV Rep isophorm 78
RFC Replication factor C
RLU Relative light units
RNA Ribonucleic acid
ROS Reactive oxygen species
RPA Replication protein A
shRNA Short hairpin RNA
siDNA-PKcs Short interference RNA against DNA-PKcs
siH2AX Short interference RNA against H2AX
siLuc Short interference RNA against Luciferase
siMdcl Short interference RNA against Mdcl
siNbsl Short interference RNA against Nbsl
siRad52 Short interference RNA against Rad52
siRNA Short interference RNA
ss Sigle-stranded
SSA Single strand annealing
ssDNA Single stranded DNA
TNNT1 Slow skeletal troponin
trs Terminal resolution site
UL29 ssDNA binding protein, also known as ICP8
vgp Viral genome particles
WRN Werner syndrome protein



2. ABSTRACT

Adeno-associated virus type 2 (AAV-2) is a nonpathogenic, replication 

defective parvovirus containing a single-stranded DNA genome of 4.7 kb. 

Despite the increasing utilization of recombinant vectors derived from this virus 

(rAAV) in gene transfer applications, several aspects of the biology of both the 

wild type virus and of its vectors remain poorly understood. Here we developed a 

technique to visualize the conversion of rAAV vector genomes from single

stranded (ss) to double-stranded (ds) DNA in real time. We report that rAAV 

DNA accumulates into discrete foci inside the nucleus. These rAAV foci are 

defined in number, increase in size over time after transduction, and their 

presence correlates with the efficiency of cell transduction. These structures 

overlap with, or lie in close proximity to, the foci in which proteins of the MRN 

(Mrell-Rad50-Nbsl) complex and Mdcl accumulate after DNA damage. 

Silencing of Nbsl or Mdcl by RNA interference markedly increases the 

formation of rAAV foci, the extent of rAAV transduction, and AAV Rep 

dependent site-specific integration at chromosome 19q.l3.3-qter, so called 

AAVS1 locus. The adenovirus E4orf6 and ElB55k proteins-mediated 

degradation of the MRN complex also correlated with high levels of rAAV 

transduction and foci formation. Taken together, these observations indicate that 

the MRN complex plays an inhibitory role at the level of rAAV ss to double

stranded DNA (dsDNA) genome conversion, vector transduction, and site- 

specific integration. On the other hand, similar experiments using siRNAs against 

histone H2AX, Rad52, and DNA-PKcs indicated that these factors are required 

for effective rAAV transduction and site-specific integration.
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3. INTRODUCTION

3.1. The Adeno-Associated Virus Type 2 (AAV-2).

Adeno-Associated Virus type 2 (AAV-2) was first discovered as a 

contaminant of Adenovirus stocks produced in African green monkey kidney cells 

(Hoggan et al., 1966). In fact, AAV-2 is unique among human viruses because its 

productive replication in cell culture is strictly dependent on the concomitant 

superinfection of the host cells by another non-related helper virus (Adenovirus or 

Herpes Simplex Virus) (Buller et al., 1981; Hoggan et al., 1966). The helper 

functions can also be provided by a wide variety of genotoxic agents, in which 

case AAV can replicate at low levels (Yakobson et al., 1987). In the absence of 

helper functions, AAV establishes a latent infection in the host cell by integrating 

site specifically on the long arm of human chromosome 19 (19ql3.3-qter) (Kotin 

et al., 1992; Kotin et al., 1991; Kotin et al., 1990; Samulski et al., 1991). Once 

integrated, the provirus is passively replicated along with cellular DNA, until a 

new helper stimulus is provided (Cheung et al., 1980; Hoggan et al., 1966). In 

this case, the integrated provirus can be rescued from its chromosomal state and 

start replicating again (Cheung et ah, 1980) (see Figure 3.1).

Given the need for viral helper functions for its fully replication activity, 

and since it is one of the smallest DNA viruses known so far, AAV was originally 

classified as a member of the Parvoviridae family, genus Dependovirus (Siegl et 

al., 1985). Furthermore, more recently it was possible to isolate different AAVs 

based on their serological properties (from AAV-1 to AAV-9, for a review see 

(Gao et al., 2005; Wu et al., 2006)). Nonetheless, AAV-2 is the one that has been 

studied more extensively, thus we will focus our attention on this serotype, except 

where explicitly mentioned. Another very peculiar feature of this virus is that, 

despite several attempts to demonstrate a possible pathogenic role for AAV, it has



been impossible to correlate infection with any known disease, despite 90% of the 

adult population known to have antibodies against this virus and thus been in 

contact with it (Blacklow et al., 1971). More than ten years ago, a couple of 

reports showed the presence of AAV DNA in 40% of the samples obtained from 

spontaneous abortions. No follow up has been provided for this indication, and no 

conclusion from these data can therefore be drawn (Botquin et al., 1994; Tobiasch 

et al., 1994).

In summary, AAV-2 cannot be considered pathogenic in humans and it 

can site specifically integrate at high frequency in a specific locus of the human 

genome.

For these reasons, and for its ability to transduce post-mitotic tissues like 

skeletal muscle and nervous cells, AAV-2 has emerged as one of the most 

promising viral vectors for gene therapy. In addition, AAV-2 is considerably less 

immunogenic than other viruses, such as Adenovirus, which are used in gene 

therapy. Thus, in recent years much of the interest in the AAV field has been 

devoted to the development and production of safer and more efficient rAAV 

vectors for the treatment of a wide array of diseases (for a recent review see 

(Flotte, 2004)). On the other hand, these practical applications in the Molecular 

Medicine field have also fuelled researchers’ interest in studying AAV-2 

molecular biology to get new insight into the basic mechanisms that govern its 

infection of the host cell.
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Figure 3.1. The Adeno-associated virus life cycle.
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3.1.1. The Adeno-associated virus genome.

The AAV genome is a single stranded DNA molecule of 4,679 nucleotides 

(Srivastava et al., 1983), and contains three main genetic elements: two 145 base- 

pair (bp) inverted terminal repeats (ITR) that are present at each end of the 

genome and two open reading frames, called Rep and Cap (Lusby et al., 1980) 

(see Figure 3.2).

The ITRs are formed by a palindromic sequence of 125 nucleotides (A) 

(nucleotides 1-41 and 85 to 125) interrupted by two shorter palindromes (B and 

C) (nucleotides 42 to 84) (see Figure 3.3). To maximize base pairing and 

thermodynamic stability, each ITR can fold on itself forming a T shaped closed 

hairpin. Furthermore, one of the ITR in its closed, base paired conformation 

provides a free 3’ OH for the start of DNA replication. In addition, the ITR 

contains three DNA sequences that are important for binding of the large Rep 

proteins: the Rep binding site (RBS), which is a tetrad-repeat of the GAGC 

sequence (Chiorini et al., 1994a; Chiorini et al., 1994b; Owens et al., 1993); the 

RBS’, in one of the two bulges of the T hairpin (Brister and Muzyczka, 2000), 

and the terminal resolution site (trs) between nucleotides 124 and 125, which is 

site and strand specifically nicked by Rep during the process of AAV replication 

(Im and Muzyczka, 1990). All these features make the ITR the only in cis signal 

necessary for AAV replication, transcription, site-specific integration and rescue 

of the provirus from the dsDNA integrated state.

The AAV genome is transcribed from three promoters, p5, p i9 and p40 

that produce several polyadenylated mRNAs (Green and Roeder, 1980; Laughlin 

et al., 1979) (See Figure 3.2). Rep 78 and Rep68 are produced by alternative 

splicing of a single immature mRNA that is transcribed from the p5 promoter 

(Green and Roeder, 1980). The same gene is transcribed from a downstream
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promoter, p i9, and an alternative start site is used to produce Rep52 and Rep40 

by alternative splicing. It is worth mentioning that all these four proteins are 

colinear and thus the two shorter isoforms represent the C-terminus of the larger 

ones.

The Cap ORF is transcribed from the p40 promoter and produces two 

alternatively spliced mRNAs, from which the three capsid proteins (VP1, VP2 

and VP3) are generated, due to the presence of a non canonical ATG start site for 

translation in one of them (Becerra et al., 1988).

Originally, the left ORF was named Rep because several mutations in this 

region led to the generation of a replication incompetent AAV (Hermonat et al., 

1984). Later on, these initial results could be rationalized by considering that 

these mutations affected the two larger Rep proteins (Rep78 and Rep68). On the 

contrary, viruses in which the AUG start site of the shorter Rep proteins (Rep52 

and Rep40) was mutated to GGG were still proficient in replication but did not 

form infectious particles (Chejanovsky and Carter, 1989). This phenotype was 

similar to the one observed in some cap mutants, which in fact were still able to 

replicate but failed to accumulate ssDNA viral genomes, a process associated with 

packaging (Hermonat et al., 1984).

Recombinant AAV (rAAV) vectors can be easily produced by replacing 

all the coding regions with an expression cassette for the gene of interest flanked 

by the ITRs of the wild type virus (Hermonat and Muzyczka, 1984; Tratschin et 

al., 1984). Their natural replication incompetence, the lack of identified 

pathogenicity, the simplicity of their genetical manipulation, as well as the 

possibility to produce viral vectors that do not contain any gene from the wild- 

type virus, make the rAAV vectors one of the most attractive viral vectors in the 

gene therapy arena.
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3.1.2. AAV-2 Rep proteins and their biochemical activities.

Rep78, Rep68, Rep52 and Rep40 were named according to their apparent 

molecular weight on SDS-PAGE gels. Various biochemical activities have been 

ascribed to the Rep proteins and now a great deal of information has been 

gathered on their function (Figure 3.4).

Rep68 and Rep78, which are 536 and 621 amino-acids (aa) long, are 

endowed with specific dsDNA binding activity toward the ITR (Ashktorab and 

Srivastava, 1989; Im and Muzyczka, 1989; Im and Muzyczka, 1990; Owens et al., 

1993; Snyder et al., 1993), while Rep52 and Rep40 are not (Im and Muzyczka, 

1992). Several residues have been shown to be fundamental for the DNA binding 

activity of Rep. These include Arg 107 and Arg 138, which make contacts with 

DNA bases, and Lys 136, which forms a salt bridge with the phosphate backbone 

of DNA (Hickman et al., 2004). The RBS is the minimal requirement for Rep 

binding to the ITR, however, in the presence of the hairpin that contains the RBS 

sequence, the efficiency of nicking increases up to 100 fold, (Brister and 

Muzyczka, 2000; Chiorini et al., 1994b; Ryan et al., 1996). Rep78 and 68 also 

possess site- and strand-specific nicking activity toward the trs sequence (Im and 

Muzyczka, 1990). This activity can be mapped to the first 208 aa of Rep78, 

which are sufficient when the trs sequence is in single-stranded conformation 

(Yoon-Robarts and Linden, 2003). In particular, Tyrl56 of Rep is actively 

involved in the catalysis through a trans-esterification reaction. As a result of the 

DNA cleavage, this residue remains covalently linked to the 5’ end of the cut 

DNA (Smith and Kotin, 2000; Snyder et al., 1990). The cutting of the trs is also 

dependent on metal binding, probably through two histidines (His90 and His92), 

Glu83 and Asp412 (Gavin et al., 1999; Hickman et al., 2002; Urabe et al., 1999; 

Yoon-Robarts and Linden, 2003). More recently, structural studies on the
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crystallized first 197 aa of AAV-5 Rep (alone or in the presence of RBS and RBS’ 

oligonucleotides) have provided new insight into these two biochemical activities 

(Hickman et al., 2002; Hickman et al., 2004). These studies have determined that 

the N-terminus of Rep proteins belongs to the RCR (Rolling Circle Replication) 

family, which includes several viral replication proteins that use a catalytic 

tyrosine, such as SV40 T antigen and BPV El (Hickman et al., 2002). These and 

other studies also confirmed what had been observed in the past: Rep proteins 

bind RBS DNA as an hexamer (Hickman et al., 2002), and the oligomerization is 

stimulated by ATP and DNA (Li et al., 2003; Smith et al., 1997). The region 

important for oligomerization can be mapped to aa 164-484, and in these 321 aa 

two regions are important: a putative alpha-helix bearing a 3,4-hydrophobic 

heptad repeat reminiscent of those found in coiled-coil domains, and the 

previously recognized nucleoside triphosphate-binding motif (aa 334-349) (Smith 

et al., 1997).

The domain comprised between aa 224-526 (the residues shared by all the 

four isoforms) is endowed with ATP-dependent helicase activity (Im and 

Muzyczka, 1990; Im and Muzyczka, 1992). Mutation K340H, which disrupts 

ATP binding, completely inhibits helicase activity and acts as dominant negative 

in AAV replication when inserted in the context of Rep78 (Chejanovsky and 

Carter, 1990). In contrast, the same mutation in Rep52 does indeed disrupt the 

ATPase activity of the protein but does not inhibit replication, probably reflecting 

differences in the capability of forming holocomplexes between the long and the 

short isoforms of Rep (Smith and Kotin, 1998). Rep K340H is also unable to 

inhibit transcriptional activation from the AAV p5 promoter (Kyostio et al., 

1995). ATP-dependent helicase activity is also important for Rep nicking of the 

trs, when the latter is in a double-stranded conformation (Brister and Muzyczka,
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1999; Im and Muzyczka, 1990). This last observation suggests that Rep is 

capable of cutting only a single stranded trs substrate, which is probably formed 

by DNA melting achieved through the action of the helicase domain. The two 

short isoforms (Rep40 and Rep52) retain ATPase and 3’-5’ helicase activity 

(Smith and Kotin, 1998), and through these two activities they are able to 

encapsidate replicated AAV genomes into preformed capsids by forming a 

complex with the two largest Rep proteins (King et al., 2001).

The C-terminal region of Rep78 and Rep52 consists of a Zinc-Finger 

domain that is not present in Rep68 and Rep40. This domain is not essential for 

any of the Rep activities (Im and Muzyczka, 1990; Ni et al., 1994). Nevertheless, 

this domain is involved in the G2 /M cell cycle arrest and hyper-phosphorylation of 

Rb caused by the expression of Rep78 (Saudan et al., 2000). The Zinc Finger 

domain is also required for the interaction between Rep78 and the 

Serine/threonine-protein kinase X-linked (PRKX) and the inhibition of CREB- 

dependent transcription (Di Pasquale and Stacey, 1998).

3.1.3. Adeno-associated virus 2 transcription.

Regulation of AAV transcription has been widely studied and it appears 

that many layers of regulation are involved, depending on the cellular context in 

which AAV is present. Briefly, when the helper functions are not provided, p5, 

p i9 and p40 are silenced. The inhibition of p5 depends on several in cis 

sequences that have been mapped; including an RBS upstream of the start site, a 

TATA box and a binding site for the cellular factor YY1 (McCarty et al., 1994). 

In the latent state, Rep78, which is produced in small amounts, actively represses 

p5 in an ATP-dependent manner (Kyostio et al., 1995). At the same time Rep78 

can also inhibit transcriptional activity from the p i 9 promoter, even if there is no
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strong consensus RBS sequence in this region. Thus it appears that Rep 

repression of promoters depends in part on its binding to the RBS, but also on its 

interaction with cellular transcription factors.

When Adenovirus infects the cell, the transcriptional regulation of AAV 

promoters is profoundly modified. By interfering with YY1 (Shi et al., 1991), 

Adenovirus El A protein contributes to activate p5, which in turn produces 

transcripts that encode for Rep78 and Rep68 (Chang et al., 1989). In the presence 

of co-infecting Adenovirus and a functional p5, RBS can activate the p i9 and p40 

promoters, thus producing Rep52, Rep40 and the capsid proteins (Pereira et al.,

1997). Rep78 and Rep68 are necessary for the Adenovirus-dependent activation 

of the p i9 promoter, since through protein-protein interactions they promote the 

formation of a DNA loop that brings transcriptional activators present on p5 into 

the proximity of p l9  (Lackner and Muzyczka, 2002); this event requires an intact 

p5 RBS and an intact Spl site upstream of p i9. In the same conditions, Rep78 

and Rep68 continue to repress the p5 promoter, in a sort of feedback loop (Pereira 

et al., 1997). The role of HSV-1 genes in the reactivation of AAV transcription 

has been studied less. More recent experimental evidence highlights a role for 

HSV-1 ICPO in the activation of Rep transcription from a chromatin embedded p5 

promoter (Geoffroy et al., 2004). Interestingly, this activity is dependent on an 

intact RING domain present in ICPO (that possesses E3 ubiquitin ligase activity) 

and on the proteasome pathway.
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3.1.4. Adeno-associated virus 2 replication.

AAV replicates through a strand displacement mechanism that was first 

proposed by Tattersall and Ward (Tattersall and Ward, 1976). The AAV genome 

enters into the infected cell as hairpinned ssDNA. The 3’ OH of one of the ITRs 

provides a free end for the initiation of replication of the second strand by cellular 

replication enzymes. The linear dsDNA molecule generated in this way is closed 

at one end and it must be opened to replicate all the AAV genome (Figure 3.5). 

This operation is carried out by Rep78 or Rep68 that bind the ITR and cut the trs 

at position 124 only on the original strand, thus generating a free 3’ OH on the 

same strand and transferring the “old” hairpin onto the newly formed DNA 

filament. The resulting gap in the complementary strand is filled by cellular 

polymerases and a complete blunt ended double stranded AAV molecule is 

formed. At this point the newly generated ITR at the end of the original strand is 

displaced by the helicase activity of Rep and can fold on itself again, thus giving 

rise to another origin of replication. A closed dsDNA molecule is produced, 

resembling the intermediate generated at the first step, thus providing a substrate 

for subsequent rounds of replication. At the same time, a single stranded AAV 

genome is formed, ready to be packed into newly formed virions. Larger double 

stranded AAV replication intermediates corresponding to the size of dimers, 

trimers and tetramers are observed both in vivo and in vitro (Ni et al., 1998; Ni et 

al., 1994; Straus et al., 1976; Ward et al., 1998). They are the product of missing 

terminal resolution nicking by Rep when a new double-stranded AAV template is 

produced.

Several factors affect AAV replication. Either Rep78 or Rep68 must be 

present (Ni et al., 1994), whereas isolated Rep52 is not functional. This 

demonstrates that both DNA binding and trs endonuclease activities are requires.



Furthermore, a cell extract of uninfected HeLa cells is not capable of supporting 

replication, demonstrating the need of helper functions provided by Adenovirus 

(Ni et al., 1994; Ward et al., 1994). In particular, it seems that these functions are 

not involved in increasing the efficiency of initiation of replication, but they rather 

augment the processivity of the reaction (Ni et al., 1994; Ward et al., 1994). 

Interestingly, extracts from HeLa cells that are grown at high density support 

replication as much as the ones obtained from Adenovirus infected cells (Ni et al.,

1998). Replication is also dependent on the presence of ATP and Mg’*-1- (Ni et al.,

1994), a fact that mirrors the need of these factors for Rep helicase and 

endonuclease activity (Im and Muzyczka, 1990). The fact that cells under stress 

are permissive for replication strongly indicates that, beside Rep, all the factors 

involved in AAV replication are of cellular origin (Ni et al., 1998). The same set 

of studies, however, failed to reconstitute AAV replication in vitro entirely with 

purified cellular proteins. Nevertheless, it was possible to establish, by 

immunodepeletion of nuclear extracts, that the ssDNA binding protein 

Replication Protein A (RPA), Proliferating nuclear antigen (PCNA), the 

Replication Factor C (RFC) are necessary for AAV replication (Ni et al., 1998; 

Ward et al., 1998). In fact, RPA binds Rep78 and Rep68 and enhance their DNA 

binding and endonuclease activities (Stracker et al., 2004).

So far, the only experimental approach that supported AAV in vitro 

replication only using recombinant proteins is the one described by Ward et al., 

who used recombinant Rep and a subset of purified HSV-1 proteins (UL5, UL8, 

UL29, UL30, UL42, and UL52) (Ward et al., 2001).
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3.1.5. Adeno-associated virus 2 integration.

AAV replicates and undergoes lytic infection only in the presence of a 

helper stimulus. Site-specific integration, on the other hand, is the mechanism 

that AAV employs to establish latent infection of the host cell when such helper 

functions are absent (Hoggan et al., 1966).

AAV is unique among human viruses because it can integrate in a specific 

region of the genome on chromosome 19ql3.3-qter (Samulski et al., 1991). This 

process is strictly dependent on the presence and the activity of Rep proteins, 

since rAAV vectors that are devoid of viral genes integrate at random and at a 

lower efficiency compared to wt AAV. The region of site-specific integration in 

chromosome 19 was sequenced and named AAVS1 (Kotin et al., 1992). 

Furthermore, Dutheil et al. have shown that AAVS1 is in the same locus as a 

muscle specific gene coding for slow skeletal Troponin (TNNT1), which maps to 

chromosome 19.ql3.4 in humans (Dutheil et al., 2000). The mouse ortholog of 

AAVS1 has also been identified in the mouse genome but there is still no 

evidence that AAV integration can occur site-specifically at this region (Dutheil et 

al., 2004). Sequencing of the junctions between cellular and viral DNA also 

showed that the integration process causes deletion, amplifications and 

rearrangements of viral and cellular sequences. The presence of an RBS in 

AAVS1 and the fact that Rep can bind both this sequence and the RBS present in 

the virus ITR suggests that Rep complexes might bridge together cellular and 

AAV sequences in the process of integration (Weitzman et al., 1994). In the same 

region a trs sequence is also present, and in fact Rep can nick DNA at this 

chromosomal site and asymmetrically replicate only one of the two strands, thus 

explaining the existence of extensive sequence rearrangements following AAV 

integration into AAVS1 (Linden et al., 1996b). Integration probably involves
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some degree of replication of the chromosomal DNA, as shown by the presence 

of head to tail concatamers, but, surprisingly, the RBS present in the ITR of the 

viral genome is not necessary for this process (Young and Samulski, 2001).

The mechanisms influencing AAV site-specific integration are poorly 

understood. Approximately 2x105 RBS are present throughout the genome 

(Young et al., 2000). Given that Rep binds all these sites with the same affinity, 

the presence of RBS and trs sequences in the proper orientation and at the proper 

distance only in AAVS1 (and not in other regions of the human genome) might 

explain the target region selectivity (Young et al., 2000). Moreover, the AAVS1 

region seems to be embedded in a transcriptional competent region (possibly 

determined by the presence of an enhancer element) and in an open chromatin 

conformation, thus providing accessibility to the action of Rep proteins in 

integration (Lamartina et al., 2000).

It is worth noting that the vast majority of rA W  vectors used in gene 

therapy applications do not contain the Rep ORF and thus do not integrate site- 

specifically

There is a growing concern that the use of viral vector in gene therapy 

may generate, as previously observed in clinical cases (Dave et al., 2004; Hacein- 

Bey-Abina et al., 2003), insertional mutagenesis in the treated patient leading to 

eventual cell transformation and carcinogenesis (Baum et al., 2004; Nakai et al., 

2003). For this reason, understanding the mechanism of AAV Rep site-specific 

integration will be invaluably useful for the future development of new 

generations of viral and non-viral vectors that could target specifically their site of 

integration into the host genome.



3.1.6. Viral helper functions.

As mentioned earlier, AAV gene expression and productive replication are 

strictly dependent on helper functions provided either by other co-infecting 

viruses or various insults to the host cell. As far as Adenovirus is concerned, four 

of its proteins have been shown to provide helper functions to AAV. The product 

of the Adenovirus El A gene is required for relieving Rep inhibition of the p5 and 

p l9  promoters (Chang et al., 1989). Adenovirus VA1 RNA, instead, is probably 

involved in facilitating the initiation of protein translation. An Adenovirus 

deleted in the E2A gene (coding for the Adenovirus ssDNA binding protein) is 

still able to provide helper functions to AAV replication (Carter et al., 1992). 

Nevertheless, Adenovirus E2A seems to help AAV replication by increasing the 

processivity of DNA replication, by directly increasing Rep78 and Rep68 DNA 

binding and endonuclease activities (Stracker et al., 2004), thus possibly 

substituting for cellular RPA (Ward et al., 1998).

The most compelling evidences for an Adenovirus helper function have 

pointed toward the complex ElB55kD/E4orf6. In fact, this complex might 

influence the AAV replication cycle at many steps, for example by enhancing 

transport of mature AAV from the nucleus to the cytoplasm (Samulski and Shenk, 

1988). It has been also reported that ElB55k and E4orf6 form a complex that 

degrades the MRN complex components and p53 protein (Stracker et al., 2002). 

The degradation of the MRN complex severely impairs the capacity of the cell to 

elicit a DNA damage response that would otherwise limit adenovirus replication 

(Carson et al., 2003). Furthermore, E4orf6 and ElB55k increase the transduction 

levels of a rAAV vector, probably by enhancing the efficiency of the second 

strand synthesis (Ferrari et al., 1996). Also, Weitzman and collaborators showed 

that Cyclin A is degraded upon E4orf6 expression, and that this correlates with an
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intra S-phase arrest. This observation was correlated to rAAV transduction by 

demonstrating that over-expression of Cyclin A inhibited E4orf6 helper activity 

(Grifman et al., 1999).

As for HSV, four genes provide helper functions to AAV: the UL5/8/52 

(helicase primase complex) and UL29 (ssDNA binding protein, also known as 

ICP8) are able to support AAV replication in vivo (Stracker et al., 2004; Weindler 

and Heilbronn, 1991) and in vitro (Plus UL30, the HSV polymerase) in the 

presence of recombinant Rep68 (Ward et al., 2001).

3.1.7. Effects of Rep proteins on transcription, cell cycle and cell 

transformation.

Besides playing a direct role in AAV biology, the Rep proteins are also 

capable of influencing the state of the host cell and to inhibit the replication of 

helper viruses.

First, Rep proteins induce arrest of cell proliferation that can be reversed 

by eliminating their expression (Yang et al., 1994). Second, it has been proven 

that Rep can interfere with the DNA replication of SV40 (Becerra et al., 1988), 

HPV16 (Marcello et al., 2000) and HSV-1 (Kleinschmidt et al., 1995). Third, 

Rep are able to suppress cellular transformation caused by oncogenes like c-H-ras 

(Batchu et al., 1994) and by oncoviruses like Adenovirus (de la Maza and Carter, 

1981) and HPV16 (Human Papillomavirus 16) (Walz et al., 1997). Two possible, 

not mutually exclusive, explanations can be invoked for these observations.

First, Rep cytostatic activity can be correlated with the ability of inducing 

either a S-phase (Rep78) or a G2 /M (Rep68) cell cycle arrest by increasing the 

levels of phosphoryated pRb and p21 (Hermanns et al., 1997; Saudan et al.,

2000). Second, it is likely that Rep anti-oncogenic and anti-proliferative



properties on such different biological systems are due to the inhibitory activity of 

Rep on transcription. In fact, Rep does not only regulate transcription from its 

own promoters but it also inhibits transcriptional activity from several 

heterologous cellular and viral promoters such as c-fos, c-myc (Hermonat, 1994), 

c-H-ras (Batchu et al., 1994), HIV-1 LTR (Horer et al., 1995) and HPV URR 

(Horer et al., 1995; Marcello et al., 2000). Rep transcriptional regulation is likely 

achieved by different mechanisms. Promoters containing strong RBS, like AAV 

p5 (McCarty et al., 1994) and c-H-ras (Batchu et al., 1994), are directly bound by 

Rep and then actively inhibited by it. Nonetheless, Rep binding to DNA elements 

in the regulatory regions of these genes cannot be invoked as the sole mechanism 

to explain transcriptional inhibition. In fact some of these genes, like the HPV 18 

URR and the HIV-1 LTR, do not contain an RBE in their promoter (Horer et al.,

1995). In these cases it is conceivable that Rep regulates transcription through 

protein-protein interactions either with basal components of the transcriptional 

apparatus like TBP (Hermonat et al., 1998) and Spl (Hermonat et al., 1996), or 

with transcriptional co-activators like PC4 (Weger et al., 1999) and HPV16 E2 

(Marcello et al., 2000).

It has been also recently reported that Rep78 inhibits Cdc25 A activity by a 

novel mechanism, in which binding between the two proteins stabilizes Cdc25A, 

thus increasing its abundance, while at the same time preventing access to its 

substrates cyclin-dependent kinase (Cdk) 2 and Cdkl. This effect alone does not 

induce a complete S phase block. In addition, Rep78, as well as Rep68, produces 

nicks in the cellular chromatin, inducing a DNA damage response mediated by 

ataxia telangiectasia mutated (ATM) leading to G1 and G2 cell cycle arrest 

(Berthet et al., 2005).
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3.2. Genome stability -  Recognition and repair of DNA Double strand 

breaks

In eukaryotic cells, efficient surveillance mechanisms have evolved to 

rapidly recognize DNA damage and to signal its presence. DNA damage can 

dramatically impair cell function, leading to cellular transformation and 

carcinogenesis, or inducing cycle arrest and eventually cell death (van Gent et al., 

2001). Of the various forms of damage that can be inflicted, probably the most 

dangerous is represented by DNA double-strand breaks (DSBs). These are created 

when a DNA lesion is composed of two or more strand breaks at approximately 

the same nucleotide pair simultaneously cuts a DNA molecule into smaller 

fragments. (Jackson, 2002; Khanna and Jackson, 2001; Rich et al., 2000). DSBs 

can be generated after cell exposure to endogenous or exogenous agents. Some of 

the exogenous agents that can produce DSBs are: ionizing radiation (IR), 

genotoxic, and radiomimetic or chemotherapeutics drugs like hydroxyurea, 

camptothecin, etoposide, and bleomycin, (Povirk, 1996). Among the principal 

endogenous agents that can lead to the formation of DSBs are the Reactive 

Oxygen Species (ROS), typically produced during normal metabolic reactions 

(Barzilai and Yamamoto, 2004; Storz, 2005). Double strand breaks can also be 

produced during recombination processes like meiotic recombination and, V(D)J 

and immunoglobulin isotype class switch recombination (Khanna and Jackson,

2001), as well as during cellular DNA replication through damaged or nicked 

DNA (Robison et al., 2004) or during aberrant processing of telomeres (Reaper et 

al., 2004)
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3.2.1. Early events after DNA DSB breaks and sensing.

Detection of DNA double-strand breaks involves sensor proteins that 

become activated and trigger several signaling cascades. This signaling leads to 

the recruitment of specialized proteins to the site of damage that contribute to the 

subsequent repair of the damaged DNA. One of the first described events after 

DNA DSBs is the phosphorylation of the histone H2AX (y-H2AX). The 

phosphorylation of H2AX on serine 139 occurs very rapidly and depends on 

ATM, ATR and DNA-dependent protein kinase (DNA-PK) (Burma et al., 2001; 

Mukherjee et al., 2006). y-H2AX foci are typically visible by 

immunofluorescence few minutes after induction of DSBs upon treatment of cells 

with ionizing radiation, but they are also formed at sites of stalled replication 

forks (Furuta et al., 2003; Rogakou et al., 1998).

In particular, DNA double-strand breaks in chromosomal DNA elicit a 

signaling response through the ataxia-telangiectasia mutated (ATM) protein 

kinase, which coordinates cell-cycle arrest, DNA repair and apoptosis (reviewed 

in Shiloh, 2003; Stucki and Jackson, 2004).

Mdcl, 53BP1 and the MRN complex, constituted by the M rell, Rad50, 

and Nbsl proteins localize at nuclear foci in response to double-strand breaks. 

MRN complex have been implicated in DNA end-processing during homologous 

recombination (Trujillo et al., 1998) and possibly, but still controversially, during 

non-homologous end-joining (Di Virgilio and Gautier, 2005; Yang et al., 2006). 

In vitro as well as in vivo experiments suggest that the MRN complex may 

function as a bridge between double-strand break ends through interactions 

between the coiled-coil domains of RAD50 (Aten et al., 2004; de Jager et al., 

2001; Hopfner et al., 2002).
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Recent evidence indicates the MRN complex is an essential mediator of ATM 

recruitment to and activation by DSBs, both by forming multiple protein-protein 

contacts with ATM (Falck et al., 2005; Lee and Pauli, 2005) and by tethering 

damaged DNA, thereby increasing its local concentration (Dupre et al., 2006). 

The retention of MRN at the D SB sites requires direct binding of its Nbsl 

component to the Mediator of DNA damage checkpoint protein 1 (Mdcl) (Lee 

and Pauli, 2005; Lukas et al., 2004). Thus, both MRN complex and Mdcl, are 

crucial for the efficient activation of the intra-S phase checkpoint through the 

activation of ATM (Lukas et al., 2004; Stucki and Jackson, 2004). Mdcl proteins 

is known to increase the retention of Nbsl and 53BP1 to the sites of damage 

(Bekker-Jensen et al., 2005; Lukas et al., 2004). It is also known that Mdcl binds 

yH2AX at the site of DSBs and that the two proteins appear to function in a 

common pathway of regulation of the cellular response to DNA DSBs (Lee et al., 

2005; Stucki et al., 2005).

ATM- and Rad3-related (ATR) kinase activity is stimulated upon binding 

of the ATR-ATRIP complex to an RPA-ssDNA complex, thus making single

stranded DNA its primary DNA damage lesion. ATR can subsequently 

phosphorylate and activate the checkpoint kinase Chkl, allowing further 

amplification of the checkpoint signal. The ATR and Chkl kinases then modify a 

variety of factors that can lead to stabilization of stalled DNA replication forks, 

inhibition of origin firing, inhibition of cell cycle progression, mobilization of 

DNA repair factors, and induction of apoptosis. It is believed that ATR is 

essential for cell survival due to its role in surveillance of DNA replication (Dupre 

et al., 2006; Zou and Elledge, 2003).

ATM and ATR are known to regulate parallel damage response signaling 

pathways. While ATM is normally activated by DNA double strand breaks, ATR



31

is thought to be recruited to regions of single-stranded regions and its activation 

has been associated to the stalled replications forks (Zou and Elledge, 2003). 

Even though the two signaling pathways have been considered to function 

independently, recent studies have demonstrated that ATM functions upstream of 

ATR following exposure to ionizing radiation (IR) in S/G2 (Jazayeri et al., 2006; 

Myers and Cortez, 2006; Stiff et al., 2006).

In response to DNA damage, several components of the DNA damage 

response, which are normally found diffuse through the nucleus, are rapidly 

relocalized and concentrated into nuclear complexes that are microscopically 

detected as foci (Seno and Dynlacht, 2004; van den Bosch et al., 2003). Although 

the exact nature of the molecular processes occurring at these foci is still not 

completely understood, experimental evidence indicates that at least some of these 

foci form in correspondence or in close proximity to the sites of actual DNA 

damage and that the increase of their local concentration is beneficial for genome 

surveillance and repair (Raderschall et al., 1999; Tashiro et al., 2000). It is worth 

noting that, among the diverse modes of protein redistribution after DSB 

formation, only the proteins assembled in the DSB-flanking chromatin region on 

the ssDNA compartments has been readily detected to form intranuclear foci, thus 

foci formation cannot be used as the only criteria for the direct involvement of a 

given protein in the DSB response (Bekker-Jensen et al., 2006).

3.2.2. DNA Double stand break repair pathways

The eukaryotic cell has evolved two main mechanisms for the repair of 

DSBs: the potentially error-free homologous recombination (HR) pathway and the 

error-prone non-homologous end-joining (NHEJ) pathway (Jeggo and Lobrich,
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2006; O'Driscoll and Jeggo, 2006). A third pathway called single-strand annealing 

(SSA) is considered to be a variant of HR (van den Bosch et al., 2002). The 

choice of which pathway should be activated may depend on whether the 

damaged DNA region has already been replicated and on the precise nature of the 

break. NHEJ functions at all stages of the cell cycle, but plays the predominant 

role in both the G l- and in S-phase in regions of DNA that have not yet been 

replicated. HR functions primarily in repairing both one-sided DSBs that arise at 

DNA replication forks and two-sided DSBs arising in S or G2-phase in chromatid 

regions that have been replicated (O’Driscoll and Jeggo, 2006; Rothkamm et al., 

2003)

3.2.2.I. DNA repair by homologous recombination

Homologous recombination (HR) repair acts on DSBs occurring within 

replicated DNA (replication-independent DSBs) or on DSBs that are generated at 

broken replication forks (replication-dependent DSBs). This pathway involves 

processing of the ends of the DNA double-strand break, homologous DNA 

pairing, strand exchange, repair DNA synthesis, and resolution o f the 

heteroduplex molecules. A large number of proteins are known to be involved in 

this process; among them there are, Rad51B, Rad51C, Rad51D, Rad52, Rad54B, 

Rad54L, XRCC2, XRCC3, BRCA1, and BRCA2 (Symington, 2002).

One of the first events during homologous recombination repair is the 

resection of the DNA around the break point. This process generates tracks of 

ssDNA overhangs. It is believed that Mrel 1 nuclease activity is required in this 

process; however, there is not a general agreement about this point, since in vitro 

studies have shown that the Mrel 1 protein posseses a 3' to 5' nuclease activity,
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while the resection would require nuclease activity working in the opposite 

direction (from 5' to 3'). These findings, however, do not rule out the possibility 

that M rell may show a different enzymatic activity in vivo or that the MRN 

complex may recruit other nucleases with a suitable activity (Wyman et al., 2004). 

Rad51 protein binds to the DNA overhangs, probably after displacing RPA 

proteins. This initial binding is followed by the recruitment of other proteins such 

as Rad52 and Rad54 and by searching for homologous sequences to be used as 

template for the repair of the damaged region. This process is followed by 

invasion of the damaged strand into the homologous sequence. The 3' end then 

works as primer for DNA synthesis that makes a copy of the template. The last 

step requires the resolution of a so called, Holliday junction, with or without a 

crossover (Sung and Klein, 2006; Symington, 2002) (see Figure 3.6).

3.2.2.2. Non-homologous end-joining.

The NHEJ pathway is initiated in response to the formation of a DNA 

double-strand break (DSB) induced by a DNA-damaging agent such as ionizing 

radiation. First, the Ku70/80 heterodimer binds the ends of the DSB. The 

catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) is then 

recruited to DNA-bound Ku protein to form the DNA-PK holoenzyme. The ends 

of the break are brought together as soon as two molecules of DNA-PK (one at 

each end of the break) are joined in a synaptic complex. Other factors, such as 

polynucleotide kinase (PNK), Artemis, the MRN complex, hTdpl or the Werner 

Syndrome protein (WRN) may be required for processing the DNA ends prior to 

end rejoining (Collis et al., 2005; Jeggo and Lobrich, 2005); however, the precise 

timing of these events is not known. Following the formation o f the synaptic



34

complex, the XLF/Cernunnos (Ahnesorg et al., 2006; Revy et al., 2006), XRCC4, 

DNA ligase IV proteins are recruited. Prior to end rejoining, protein factors must 

be removed from the DNA. This may involve DNA-PK autophosphorylation. At 

the final stage, the DNA ends are ligated and the DNA is repaired. (Cahill et al., 

2006; Sekiguchi and Ferguson, 2006) (see Figure 3.7).

3.2.2.3. Single strand annealing.

Single strand annealing (SSA) is a process that is initiated when a double 

strand break is made between two repeated sequences oriented in the same 

direction. It requires a first step of 5' to 3' resection of both the DSB ends to 

generate long single strand overhangs, so that the complementary strands can 

anneal to each other. MRN complex is believed to be involved in this process of 

extensive resection. SSA is typically defined as a Rad51 independent, Rad52 

dependent variant of HR.

A question that is often raised is why would organisms evolve a repair 

mechanism that deletes genetic material that might be essential for survival?. One 

possible explanation is that SSA is well suited to repair DSBs that occur within 

tandem arrays of sequences. A DSB would initiate SSA resulting in a deletion 

event of redundant genes. Another consideration is that SSA is only one out of 

several mechanisms that can seal a DSB, and offers a chance to a cell to survive if 

it can not repair a DNA damage using other repair pathways (Harrison and Haber, 

2006).
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3.3. Adeno-associated virus and the DNA Repair machinery.

Despite the growing utilization of rAAV vectors for pre-clinical and 

clinical gene transfer applications, several aspects of the life cycle of both wild 

type virus and, most notably, of the recombinant vectors still remain largely 

obscure. In particular, little information is available about the processing of 

recombinant AAV DNA once the viral particles have been internalized. This is a 

topic of particular relevance considering that a relatively small number of tissues 

are permissive to rAAV transduction, despite the receptors for AAV 

internalization are widespread in most cell types in vivo (Ding et al., 2005; Perabo 

et al., 2006; Wu et al., 2006).

In cultured cells, a marked increase in rAAV transduction efficiency is 

obtained by treating cells with agents that affect genomic DNA integrity or 

metabolism, such as UV irradiation, hydroxyurea (HU), topoisomerase inhibitors 

and several chemical carcinogens (Alexander et al., 1994b; Russell et al., 1995; 

Yang et al., 1994; Zentilin et al., 2001; Zhou et al., 1999). It is believed that, a 

major effect of these treatments is the improved conversion of the input vector 

ssDNA genome into dsDNA (Ferrari et al., 1996; Fisher et al., 1996), an essential 

requisite for gene expression.

It has been reported that cells harboring mutations in genes that participate 

in DNA repair, modify wt and recombinant AAV permissivity and the way its 

genomes are processed intracellularly. In mouse smooth muscle cells defective 

for DNA-PKcs rAAV genomes do not form circular episomes, and remain mainly 

as linear monomers or form only linear concatamers (Song et al., 2001); however, 

in this study, the authors did not show a significant change in the total levels of 

gene expression when infecting mice harboring the mutation. In vitro studies
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have suggested a possible inhibitory role of DNA-PKcs on Rep dependent site- 

specific integration (Song et al., 2004).

The single-stranded nature of DNA of the AAV genomes, the presence of 

encapsidated genomes of either positive and negative polarity, and the secondary 

structure of the ITRs, make us believe that like other viruses (Sinclair et al., 2006; 

Weitzman et al., 2004), AAV genomes may be recognized by the cell as aberrant 

forms of DNA. Indeed, AAV genomes elicit a DNA damage response that does 

not depend on the expression of any viral protein (Raj et al., 2001) and resembles 

the response to an aberrant cellular DNA replication fork (Jurvansuu et al., 2005).

Human cells mutated for ATM are dramatically more permissive to rAAV 

transduction (Sanlioglu et al., 2000; Zentilin et al., 2001), suggesting that the 

DNA damage response, or at least part of it, may exert a negative effect on viral 

transduction. Another very interesting observation is that adenovirus proteins 

E4orf6 and ElB55k, which are known to increase AAV replication and rAVV 

transduction, specifically degrade p53 protein and the MRN complex (Stracker et 

al. , 2002), events that dramatically impair the capacity of the cell to activate ATM 

and to mount an effective response after DSBs induction by ionizing radiations 

(Carson et al., 2003). Herpes simplex virus 1 (HSV-1), another well recognized 

AAV helper virus has been reported to deregulate the DNA damage signal 

transduction pathway (Hadjipanayis and DeLuca, 2005; Lilley et al., 2005; 

Wilkinson and Weller, 2006).

AAV Rep proteins are also known to interact with several cellular 

proteins, possibly affecting how the cell reacts to the presence of the AAV 

genomes. One example of this interaction is the reported direct binding between 

Rep78 and Cdc25A. This interaction presumably increases Cdc25A abundance



and prevents access to its substrates cyclin-dependent kinase (Cdk)l and Cdk2 

(Berthet et al., 2005). It has also been reported that Rep68 and 78 expression 

induces DSBs that trigger the formation of y-H2AX foci (Berthet et al., 2005). 

This observation has raised the possibility that permissivity to rAAV transduction 

might be related to the induction of cellular DNA damage response (DDR) 

mechanisms. Consistent with this notion, a few years ago we observed that, after 

transduction, rAAV genomes physically interact with some proteins involved in 

the DNA double strand break (DSB) repair, in particular Rad52 and Ku86 

(Zentilin et al., 2001). The presence of Rad52 protein in the rAVV genomes 

correlated with increased vector transduction efficiency. Recent reports have 

clearly demonstrated the participation of the homologous recombination 

machinery during rAAV mediated gene targeting, a process that may be 

mechanistically similar to AAV site-specific integration (Vasileva and Jessberger, 

2005; Vasileva et al., 2006).

Recent work exploiting self-complementary AAV vectors (which bypass 

the single-stranded to dsDNA conversion step) has shown that ATM and MRN 

proteins are required for genome circularization (Choi et al., 2006). Thus, it 

might be envisioned that some cellular proteins may exert different roles after 

AAV genomes are converted to dsDNA. At this stage, resolution of the secondary 

structures in the ITRs by promoting circulation or multimerization might be 

essential to allow stable maintenance of the viral genomes inside the nucleus.

The finding that the cellular DDR machinery is involved in rAAV genome 

processing is equally compatible with the possibilities that some of the DDR 

proteins might exert either a positive or a negative role on single-stranded to 

dsDNA conversion and genome processing. If cells are treated with DNA 

damaging agents, it is possible that factors, that may be positive or negative for
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AAV genome processing, transduction and site-specific integration are diverted 

from the incoming viral genomes to repair the cellular DNA.
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4. AIMS OF THE STUDY

Various experimental evidence indicate that the cellular machinery 

controlling the DNA damage response to double strand breaks has an important 

impact in the life cycle of recombinant and wild-type Adeno-associated virus.

The first aim of this study was to determine the role of the cellular factors 

involved in the DSB damage response in the process of conversion of the 

recombinant AAV genomes from single-stranded to double stranded DNA, a very 

well known limiting step for an efficient vector transduction. For this purpose, we 

developed a microscopic visualization technique that allowed us to observe and 

characterize the nuclear sites of conversion and/or accumulation of rAAV double

stranded genomes. We used this methodology to evaluate the possible association 

of cellular factors that form repair foci upon DNA damage induction with the 

nuclear foci where dsDNA rAAV genomes accumulate

The second aim of this study was to characterize the role of the cellular 

proteins observed to colocalize with the rAAV foci, as well as of other proteins 

that participate in the homologous recombination and non-homologous end- 

joining repair pathways, in the process of efficient gene expression after 

transduction. The characterization of the cellular factors influencing this process 

could help us to understand the mechanism of cells permissivity to rAAV vectors.

The last but not the least aim of this study was to identify the cellular 

factors involved in the DNA damage response that may influence the process of 

AAV Rep dependent site-specific integration into an specific region of human 

chromosome 19.q.l3.3qter, called AAVS1. Understanding this process is of great 

relevance for the future development of viral gene therapy vectors with genome 

targeting capacity, since this property could reduce the potential risk of insertional 

mutagenesis associated with gene transfer.
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5. MATERIALS AND METHODS

5.1. Cell culture and transfection.

HeLa, MRC5 and AT5, HeLa pSuper-Retro-Mdcl and HeLa pSuper- 

Retro-LacZ cell lines were cultured in Dulbecco’s modified Eagle’s medium 

(DMEM) supplemented with 10 % of fetal bovine serum. HeLa GFP-LacR and 

MRC5 GFP-LacR stably transfected cell lines were cultured as mentioned above 

in the presence of 300 pg/ml and 100 pg/ml of hygromycin. HeLa GFP- 

LacR/ElB55k and HeLa GFP-LacR/H3 54 cells clones were cultured in the 

presence of 1 pg/mL of puromycin.

Cell were transfected with siRNAs using Gene Silencer reagent 

(Genlantis, San Diego, CA, USA) according to the manufacturer’s procedure. 

DNA was transfected using Effectene transfection reagent (QIAGEN) following 

manufacturer’s protocol.

5.2. Plasmids and production of stably transfected cell line.

To produce the pAAV-Lac0.14 vector the following procedure was 

followed: the plasmid p3’ssdEGFP, which expresses GFP linked to the Lac 

repressor (LacR) and containing a nuclear localization signal, and pSV2dhfr 8.32 

which contains 10 kb of 292-bp lac operator repeat (LacO) were kindly provided 

by A.S. Belmont (University of Illinois at Urbana-Champaign). The plasmid 

pCMV-MCS (Stratagene, La Jolla, CA, USA) was digested with Not I to excise 

the multiple cloning site and substitute it with a multiple cloning site containing 

Not I, Sal I, Eco RI, Xho I, Bam HI, and Not I to obtain plasmid pMCS3’. The 

292 LacO repeat, obtained digesting pSV2dhfr 8.32 with Eco RI, was cloned into 

the Eco RI site of pMCS3’; the 8-mer repeat was then amplified by directional



cloning (Robinett et al., 1996) to obtain a vector containing 14 LacO repeats, for a 

total of 112 LacR binding sites. The 14 LacO repeats were cloned into the Not I 

site of pAAV-MCS to generate pAAV-LacO.14. To obtain stable clones 

expressing the LacR fused to GFP, HeLa and MRC5 cells were transfected with 

polyfect transfection reagent (Qiagen GmbH, Hilden, Germany) and clones were 

selected with hygromycin (300 pg/ml for HeLa cells; 100 pg/ml for MRC5 cells).

pRep-GFP plasmid was constructed as follows: AAV wild type (wt) Rep 

gene was amplified by PCR from the wtAAV molecular clone pSub201 plasmid 

(kindly provided by J. Samulski, Chapel Hill, North Carolina, USA) (Samulski et 

al., 1987). Forward primer contained the original found restriction enzyme site for 

Xba I cleavage, reverse primer was synthesized to introduce a new Sma I and Xba 

I sites, required for the following step of cloning. The primer sequences are the 

following: forward primer R201F 5VCTAGACCCGGGGTCTTATTCCTTCAC 

AGAGAGTGTCC-3' and reverse primer R201R 5' -T CG AGGAC ACT C 

T CT GT G AAGG AAT AAG ACCCCGGGT -3'. PCR amplified fragment 

containing the Rep genes was purified and cut with Xba I restriction enzyme and 

cloned in a pUG7 cloning vector previously digested with the same restriction 

enzyme. DNA sequencing of the insert was conducted to verily its fidelity in 

comparison to the pSub201 sequence provided by J. Samulski. pUG7 containing 

wtAAV Rep gene was digested with Sma I restriction enzyme and blunted (using 

T4 DNA polymerase) Ase I and Afl II excised DNA fragment from pEGFP-Nl 

was inserted (Strategene, Accession number U55762). The excised fragment 

contained the Cytomegalovirus (CMV) promoter, the Enhanced Green 

Fluorescent proteins (EGFP) and the SV40 polyadenylation site. Orientation of 

the EGFP expression cassette was verified by digestion with Xba I and Nde I 

restriction enzymes. pUG7 vector containing wt AAV Rep and EGFP expression
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cassette was digested with Xba I restriction enzyme, the 3.7 kbp fragment 

containing Rep and EGFP genes was cloned in place of the Rep-Cap sequence 

(flanked by Xba I sites) of pSub201. In this way we generated a plasmid 

containing the sequence of the inverted terminal repeats (ITRs) of wt AAV and a 

wt Rep and EGFP expression cassette. We named this plasmid pRep-GFP.

GFP-LacR/ElB55k and GFP-LacR/H354 HeLa derived cells lines were 

kindly provided by M.D. Weitzman (San Diego, California, USA).

5.3. Production of rAAV stocks.

The rAAV vectors used in this study were produced from pTR-UF5 

(AAV-GFP), kindly provided by N. Muzyczka (University of Florida, 

Gainesville, FL), pAAV-LacZ (Stratagene), pRep-GFP, and pAAV-LacO.14. 

Cloning and propagation of AAV plasmids was carried in XL-10 Gold E. coli 

strain (Stratagene, La Jolla, CA, USA). Infectious AAV vector particles were 

generated in 293 cells, using a dual plasmid cotransfection procedure with pDG as 

packaging helper plasmid (kindly provided by J.A. Kleinschmidt, Heidelberg, 

Germany) and the viral vector plasmid as previously described (Zentilin et al.,

2001). Titration of AAV-GFP and AAV-LacZ viral particles was performed by 

real time PCR quantification of the number of viral genomes, as described 

(Zentilin et al., 2001); the viral preparations used in this work had titers between 

lx l0 11 and lx l 012 viral genome particles (vgp) per ml. The titers of AAV- 

LacO.14 were measured by Southern blotting using serial dilutions of the input 

pMCS3Tac0.14 plasmid as a standard; the preparations of this vector had titers
O Q

between 1x10 and 1x10 viral genome particles (vgp) per ml.



5.4. Vector transduction.

Transduction with AAV-GFP was performed by plating 4x10s cells in 24- 

well plates. In the experiments with AAV-LacO.14, 2xl04 cells were seeded 24 h 

before vector addition in 8-well chamber slides (Labtech International, Woodside, 

UK) or in 6-cm glass bottom slides. Transduction with AAV-LacZ was 

performed in 96-well plates with 3x10 cells per well. Cell treatment with HU, 

when indicated, was performed by incubating cells for 12-16 h with 1 mM HU 

(Sigma-Aldrich, St. Louis, MO, USA) before the addition of vector. Transduction 

with the different vectors was performed in DMEM additioned with 10% FCS. 

After 3 h incubation, cells were washed in PBS and fresh culture medium was 

added. Cellular GFP fluorescence was analyzed by flow cytometry using a 

FACSCalibur (Becton Dickinson, San Jose, CA, USA) 36 h after AAV-GFP 

addition. In the case of AAV-LacZ transduction p-galactosidase activity was 

determined 36 h post-infection by measuring o-nitrophenyl-D-galacto-pyranoside 

(ONPG) cleavage using a photometric assay, as described elsewhere (Brown et 

al., 2000). Relative light units (RLU) were expressed as the ratio between ONPG 

absorbance at 405 nm divided by the amount of proteins used in the assay (in 

ng/ml), multiplied by an arbitrary factor of 1,000. Protein content was determined 

using a BCA assay kit (Pierce Chemical. Montlucon, France)

5.5. Confocal microscopy.

Live or fixed cultures were analyzed by confocal microscopy using a 

Leica TCS-SL or Zeiss LSM 510 laser scanning microscopes. The different 

channels were detected sequentially, and the laser power and detection windows 

were adjusted for each channel to exclude overlap between different
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fluorochromes. rAAV foci location was monitored through a z-series of images. 

For live cell recording, cells plated on 6-cm glass bottom dishes were placed in a 

humidified Plexiglas chamber and maintained at 37°C and 5% CO2  throughout the 

experiment.

5.6. Immunofluorescence.

At the indicated time points post infection, cells were washed twice with 

PBS and fixed and permeabilized either with 2% paraformaldehyde in PBS for 15 

min at room temperature followed by two washes with 0.1% Triton X-100 in PBS 

or with 100% methanol at -20°C for 20 min followed by treatment with 100% 

acetone at -20°C for 20 seconds. After fixing, the cells were washed twice, and 

incubated with primary antibody for 1 h and 30 min in PBS plus 0.15% glycine 

and 0.5% BSA (PBS4) in a moist chamber at room temperature. The following 

antibodies were used: mouse anti-human Rad50 (GeneTex, San Antonio, TX, 

USA, ab89) diluted 1:200; mouse anti-human Mrel 1 (GeneTex, ab214, 12D7) 

and rabbit anti-human Nbsl (Novus Biologicals, Littleton, CO, USA, ab398, NB 

100-143), rabbit anti-Phospho-Nbsl (Ser343) (Novus Biologicals, 100-284A3) 

diluted 1:500 and, anti-Mdcl rabbit polyclonal serum (kindly provided by S.P. 

Jackson) a diluted 1:200. Cells were incubated with the secondary antibodies for 1 

h in PBS+ in a moist chamber at room temperature. The secondary antibodies 

used were goat anti-rabbit Alexa 594-conjugated and goat anti-mouse Alexa 594- 

conjugated (Molecular Probes, Eugene, OR, USA) both diluted 1:1000. Chamber 

slides were mounted in Vectashield Mounting Medium (Vector Laboratories, 

Burlingame, CA, USA) containing 4’ -6’-diamino-2-phenylidole (DAPI). Fixed



cells were analyzed by fluorescence microscope with a Leica DMLB connected to 

Leica DC camera or by confocal microscopy.

5.7. RNA interference.

Cells (4x105) were plated in 35 cm dishes and transfected using 

GeneSilencer (Gene Therapy Systems, San Diego, CA, USA) according to the 

manufacturer’s recommendations. The sequence of the siRNAs against H2AX, 

Mdcl, Nsbl, Rad52, DNA-PKcs and Luciferase are indicated in table MM1. All 

siRNA duplexes were ordered from Dharmacon (Dharmacon, Lafayette, CO, 

USA).

Twenty-four hours after siRNA transfection, cells well trypsinized and 

replated in 24-well plates, 96-well plates or 8 well-chambered slides and 

transduced with rAAV.

The pSR-Mdcl cell line is a HeLa cell derivative transduced with the 

pSUPER-retro retroviral vector (pSR) (Brummelkamp et al., 2002) stably 

expressing an anti-Mdcl shRNA (insert sequence: GATCCCCGTCTCC 

C AGAAG AC AGT GATT C AAG AG AT C ACT GT CTT CT GGGAGACTTTTT GG 

AAA). The control pSR-LacZ cell line expresses an anti-(3-galactosidase shRNA 

(insert sequence: AGCTTTTCCAAAAAGTCTCCCAGAAGACAGTGATCTCT 

TGAATCACTGTCTTCTGGGAGACGGG) from the same vector. Both cell 

lines were kindly provided by Y. Shiloh (Tel Aviv, Israel)
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Table 5.1. List of synthetic siRNAs

Targeted gene Sequence Reference

H2AX C AACAAG AAG ACG CG AAU C(dTdT) (Lukas et al., 2004)

Mdcl CAACAAGAAGACGCGAAUC(dTdT) (Stewart et al., 2003)

Nbsl GGAAGAAACGUGAACUCAA(dTdT) Provided by J. Falck*

Rad52 AGACUACCUGAGAUCACUA(dTdT) (Lau et al., 2004)

DNA-PKcs GAUCGCACCUUACUCUGUU(dTdT) (Peng et al., 2002)

Firelfy Luciferase CGUACGCGG AAUACUU CG A(dT dT) Dharmacon, Inc

* Institute o f Cancer Biology, Copenhagen, Denmark

5.8. Western blotting

Total cell lysates were prepared from cells treated with siRNA. Cells were 

lysed with sample buffer (20 mM TrisHCl pH8, 20 mM NaCl, 10% glycerol, 1% 

NP40, 10 mM EDTA, 2 mM PMSF, leupeptin 2.5 pg/ml, pepstatin 2.5 pg/ml) 

followed by heating to 100°C for 5 min. Protein concentration was determined by 

the Bradford method (BioRad, Richmond, CA); 10 pg of protein per lane were 

loaded on 12% SDS-PAGE minigels, and transferred to nitro-cellulose 

(Amersham Biosciences, Bucks, UK). Immunoblots were blocked in 5% non-fat 

dry milk in TBST (50 mM TrisHCl pH 7.4, 200 mM NaCl, 0.04 % Tween 20). 

Primary antibodies anti-a-tubulin (Sigma) (diluted 1:10,000), rabbit anti-Mdcl 

(diluted 1:10,000), and anti-Nbsl (Novus Biologicals), 100-143 (diluted 1:5,000), 

rabbit and Rad52 (Santa Cruz Biotechnology, Santa Cruz, CA, USA), sc-8350 

(diluted 1:5,000), and mouse monoclonal antibody against DNA-PKcs (Santa 

Cruz Biotechnology), sc-5282 (diluted 1:5,000), mouse monoclonal anti-M rell 

(Genetex, San Antonio, TX, USA) 12D7 (diluted 1:2,000), mouse monoclonal 

anti-Rad50 (Genetex), 13B3 (diluted 1:4,000), mouse monoclonal Elb55K (gift 

from A. Levine), B-6 (diluted 1:5,000)
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Secondary antibodies were goat anti-rabbit-IgG and goat anti-mouse-IgG 

horseradish peroxidase-labeled (DAKO, Glostrup, Denmark), 1:1,000. Secondary 

antibody detection was performed using ECL chemiluminescence system 

(Amersham Biosciences).

5.9. Real-time PCR quantification of AAV site-specific integration.

Targeted integration of AAV-Rep-GFP into AAVS1 of human 

chromosome 19 (chr-19) was detected by real-time PCR at virus-cellular 

junctions. A two-step PCR assay was established as follows. Purified genomic 

DNA samples (1 pg) were preamplified (13 cycles in Applied Biosystems 

GeneAmp PCR System 2700), in a final volume 50pL in IX polymerase buffer 

containing 2.5 U of Platinum Taq polymerase (Invitrogen, Carlsbad, CA, USA), 

200pM of each of the four deoxynucleoside triphosphate, 1.5 mM MgCl2 , 200 nM 

of primer PAAVS1 (S’-TCAGAGGACATCACGTG-S ’) (1593-1609nt of AAVS1 

accession , # S51329) and 200 nM of primer PITR (5'-

TTAACTACAAGGAACCCCTA-3') previously described by (Huser et al.,

2002). These primers are located outside the sequence region where the majority 

of published junction breakpoints have been mapped (Huser et al., 2002)Thus, 

most integration events should be detected. Assay conditions were as follows: 

95°C for 5 min (hot start); 13 cycles at 94°C for 1 min, 56°C for 1 min, and 72°C 

for 3 min; and then a final elongation step of 72°C for 15 min. A real-time 

Taqman PCR was then performed with 2 pL aliquots from the first PCR diluted in 

a final reaction volume of 25 pL. The reaction mixture included Taq polymerase 

(SIGMA JumpStart Taq ReadyMix, Sigma-Aldrich, Steinhelm, Gemamy), 1.5 

mM MgCh, 500 nM primer PAAVS1, 500 nM primer PITR, 400 nM of Taqman
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probe 6-FAM-CACTCCCTCTTCCC-MGB) complementary to AAVS1 sequence 

1513-1526nt (AAVS1 accession number S51329). Amplification conditions were 

50°C for 2 min, and 95°C for 10 min, and 45 cycles of 95°C for 1 min, 56°C for 1 

min, and 60°C for 3 min (ABI Prism 7000 Sequence detection System). The 

number of integration events was calculated by linear regression of the Threshold 

Cycle (CT) and the concentration (expressed as number of molecules) of a 

standard curve of known concentrations of the plasmid pAAVSl-TR (kindly 

provided by R. Heilbronn, Berlin, Germany)

5.10. Cell cycle profiling

All of the cells in the plates including cells floating in the medium and 

released during PBS washes were collected and analyzed. Adherent cells were 

released from the plastic by mild treatment with trypsin. Cells were washed in 

twice with PBS and resuspended in PBS containing 0.1% of NP40, RNase A (2 

pg/ml) and propidium iodide (5 pg/ml) were added and incubated for 30 minutes 

at 37°C. Samples were analyzed with a FACScan (Becton Dickinson). Data were 

analyzed with ModFit LT software (Verity Software House, Topham, ME).
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6. RESULTS

6.1. Interaction between recombinant Adeno-associated virus (rAAV) and 

cellular DNA proteins: effect on vector transduction.

The single-stranded DNA nature of recombinant AAV entails that the 

incoming genomes, once in the nucleus, must be converted into a transcriptionally 

competent double-stranded template. This process relies on the molecular 

machinery of the host cell.

Despite several recent advances, the molecular determinants that govern 

AAV genome processing are still not completely understood. Since this step 

represents one of the major roadblocks that limit the vector efficiency (Ferrari et 

al., 1996; Fisher et al., 1996), the comprehension of the biological events that 

determine the fate of rAAV DNA in the target host cells is fundamental for future 

technical improvement of AAV based gene delivery vector technology.

6.1.1. Visualization of the nuclear sites of double-stranded AAV DNA 

formation in live cells.

To better address the study of the kinetics of cell transduction with rAAV 

and, most notably, to visualize the dsDNA vector genomes in living cells, we 

constructed a recombinant AAV vector (AAV-LacO.14), carrying 112 Lac 

repressor (LacR) binding sites (LacO repeats) cloned between the viral ITRs (see 

Materials and Methods section 5.2); this vector was used to infect HeLa and 

MRC5 cell lines that stably express a GFP-LacR fusion protein with a C-terminal 

nuclear localization signal (HeLa/GFP-LacR and MRC5/GFP-LacR cells). The 

rationale of this approach is that the fluorescent sequence-specific DNA binding 

protein only binds its target sites when these are present in a dsDNA form, thus



52

allowing the dynamic visualization of dsDNA formation over time (Figure 6.1 A). 

We found that the generation of double-stranded rAAV DNA was not diffuse 

throughout the nucleus but appeared restricted to specific nuclear sites, 

resembling the AAV foci originally detected by FISH by our group (data not 

shown) and other groups (Weitzman et al., 1996; Wistuba et al., 1997). Snapshots 

of a live imaging time courses of MRC5/GFP-LacR cells infected with AAV- 

LaO.14 are shown in Figure 6.IB. These foci were detected as early as 3 hours 

post infection as tiny bright spots within the diffuse GFP-LacR background signal 

inside the nucleus and then expanded into larger structures over time. The 

percentage of cells showing AAV foci increased during the first 24 hours post

infection in both untreated and HU-treated cells and decreased at later time points 

(Figure 6.1C); at all times, the percentage of cells with AAV foci was higher after 

HU treatment (25.1±9.2% and 11.9±0.6% in HU-treated and untreated cells 

respectively at 24 hours).

The number of AAV-LacO.14 foci per nucleus was also determined in 

3D-images from 30 to 60 nuclei observed over time (Figure 6.ID). The maximum 

number of foci was detected at 24 hours post-infection in HU-treated cells 

(23.9±19.1 foci per nucleus) and at 8 hours in the untreated ells (12.1±9.6). 

Interestingly, the number of AAV foci was only modestly increased at these times 

as compared to the earlier time points, most likely suggesting that their number 

per cell was determined very early after infection. Finally, AAV foci 

progressively disappeared at longer time points, even if some foci were found to 

persist as long as 6 days in both HU-treated and untreated cells (data not shown).
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6.1.2. Characterization of dsDNA recombinant AAV foci.

Detailed characterization about the fluorescence intensity and relative 

movement of this newly identified rAVV foci was conducted by Tiziana Cervelli 

(Scuola Normale di Pisa, Pisa, Italy) and is described in a coauthored manuscript 

submitted for publication (Cervelli, et al, manuscript under review, Journal of 

Cell Science).

6.1.3. rAAV foci form in close proximity with cellular M rell-Rad50-N bsl 

(MRN) complex repair foci.

Given the single stranded nature of AAV genomes and the existence of 

regions of secondary DNA structure such as the viral ITRs within the vectors, we 

wanted to establish whether a relationship existed between the formation of AAV 

foci and the localization of cellular proteins involved in the recognition and repair 

of DNA damage. One of the cellular factors that are first recruited to the site of 

DNA damage and that can bind hairpin-structured DNA is the MRN complex, 

composed by the M rell, Rad50 and Nbsl proteins. This complex binds single

stranded and dsDNA and has a pivotal role in sensing, processing and repairing 

DSBs (D'Amours and Jackson, 2002; Petrini and Stracker, 2003; van den Bosch et 

al., 2003). To study the spatial relationship between MRN proteins and rAAV 

foci in the nucleus of transduced cells, we simultaneously visualized GFP 

fluorescence and immunostained the MRN proteins in MRC/GFP-LacR and 

HeLa/GFP-LacR cells at different times after transduction with AAV-LacO.14.
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Figure 6.2. Colocalization of AAV foci Nsbl and Phospho-Serine 343 Nsbl foci.
M RC/GFP-LacR cells were transduced with AAV-LacO.14 and then im m unostained at the indicated 
time points with anti-Nbsl (A), and anti-P-S343-N bsl (B). HU: cells were treated with hydroxyurea (1 
mM overnight) prior to AAV-LacO.14 transduction. NT: non treated
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Figure 6.3. Colocalization of AAV foci with M rell and Rad50 foci.
Hela/GFP-LacR or M RC/GFP-LacR cells, as indicated, were treated with 1 mM HU, transduced with 
AAV-LacO.14 and then immunostained at the indicated tim e points with anti-M rel 1 (A), anti-Rad50 
(B). HU: cells were treated with hydroxyurea (1 mM overnight) prior to A AV-LacO.14 transduction .
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In the absence of DNA damaging agents, MRN complex proteins had a 

predominantly diffused nuclear localization; MRN repair foci were detectable 

only in a few cells (<3%). The presence of repair foci in the cells not treated with 

HU may be associated with spontaneous and cellular DNA replication damage 

(Bekker-Jensen et al., 2006; Robison et al., 2004). However, when repair foci 

was present, we observed colocalization or close proximity of the Nbsl foci and 

the AAV-Lac.014 foci (Figure 6.2). After HU treatment, the number of cells 

with both AAV and Nbsl foci was greatly increased and the two nuclear 

structures partially co-localize also at earlier time points after transduction (shown 

at 8 and 24 hours in Figure 6.2). Notably, in both untreated and HU-treated cells, 

rAAV foci co-localized with Nbsl phosphorylated at serine 343, a marker of 

protein activation after DNA damage (Figure 6.2B) (Gatei et al., 2000; Lim et al., 

2000; Wu et al., 2000).

The same visualization experiments were also performed to detect Mrel 1 

and Rad50 proteins. In both MRC5 and HeLa cells, the vast majority of the foci 

formed by M rell and Rad50 proteins after HU treatment were found to co- 

localize or to be spatially juxtaposed to AAV foci at both 8 and 24 hours after 

transduction for M rell and, 4 and 24 hour after transduction for Rad50 (Figures 

6.3A and 6.3B).

6.1.4. Nbsl inhibits the formation of dsDNA rAAV foci.

In order to understand the functional relevance of the MRN colocalization 

with the rAAV foci, we performed silencing of Nbsl proteins using siRNA 

technology. Nbsl protein levels were decreased to less than 20% in HeLa/GFP- 

LacR cells transfected with an siRNA against the Nbsl mRNA (siNbsl) (Figure
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6.4A), when compared with cells treated with a control siRNA against Luciferase 

(siLuc) or Mock transfected cells. After effective siRNA mediated silencing of 

Nbsl, we infected cells with the AAV-LacO.14 vector (see Materials and Methods 

section 5.4 for detailed experimental procedure) and counted the number of cells 

containing rAAV foci and the number of foci per cell at 16 and 24 hours post 

infection (p.i) with or without HU treatment.

After Nbsl silencing, the number of cells with rAAV foci was markedly 

increased as compared to control cells treated with an unrelated siRNA against 

luciferase. This increase in the number of cells with foci was evident at both 16 h 

and 24 h after transduction and in the presence or absence of HU treatment 

(Figure 6.4C). At 24 h after transduction and in the absence of HU treatment, 

there were 41.08±9.93% of cells with foci when treated with anti-Nbsl siRNA, in 

comparison with 10.35±4.75% of cells with foci when treated with the control 

siRNA (representative images are shown in Figure 6.4B). Of interest, the effect 

of HU on the number of cells with rAAV foci was less pronounced at 24 h after 

transduction as compared to 16 h (1.26 fold increase in the number of foci upon 

HU treatment at 24 h, 3.19 fold increase at 16 h), indicating that the mechanism 

by which HU induces rAAV foci formation is saturable when Nbsl is knocked 

down.

In contrast to the number of cells showing rAAV foci, the total number of 

foci per cell, which had quite an ample range similar to that observed in MRG5 

cells (Figure 6.ID), was less sensitive to either HU treatment or Nbsl knock down 

(7.85±7.78 and 4.05±8.17 foci in the Nbsl and luciferase silencing, respectively, 

in the absence of HU; 4.88±4.35 and 3.05±3.34 foci in the Nbsl and luciferase 

silencing respectively, in the presence of HU at 24 h post-infection). These 

results reinforce the notion that both Nbsl and HU act by increasing the efficiency
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and kinetics of rAAV formation but do not significantly alter the frequency at 

which these structures are formed and that Nbsl play an inhibitory role at the 

level of single-stranded to dsDNA conversion and accumulation into the rAAV 

foci.

6.1.5. Nbsl inhibits rAAV transduction.

HeLa and MRC5 cell lines were infected with a rAAV vector coding for 

B-galactosidase (AAV-LacZ) and transduction efficiency was determined by 13- 

galactosidase enzymatic activity. In both cases, HeLa and MRC5 cells in which 

the Nbsl gene was silenced were significantly more permissive to AAV 

transduction at all tested MOIs (Figure 6.5). Cells treated with HU showed a 

higher level of transduction when compared with control siLuc transfected cells. 

In particular, in the case of MRC5 cells, there was a gradual increase in the 

relative difference or fold increase between cells where Nbsl was silenced in 

comparison with control cells at higher MOIs. This observation indicates that 

Nbsl plays an inhibitory role at the level rAAV transduction and that permissivity 

to functional AAV transduction correlates with the number of cells with AAV 

foci, and thus with the level of dsDNA genomes inside the cell's nucleus.

6.1.6. Nbsl inhibitory role on rAAV transduction requires ATM function.

AT5 cells, that do not express a functional ATM protein, are known to be 

highly permissive to rAAV transduction and thus to respond only minimally to 

hydroxyurea treatment (Zentilin et al., 2001) (see also Figure 6.6A). We 

hypothesized that the high permissivity to rAAV of ATM(-/-) cells, that we 

previously described, may be due to an intrinsic inability of these cells to activate
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cellular target proteins downstream ATM, like Nbsl, that may exert an inhibitory 

effect on AAV transduction. In AT5 cells, Nbsl silencing had minimal or no 

effect on the efficiency of rAAV transduction, using a broad range of MOIs of the 

AAV-LacZ vector (Figure 6.6B). These results suggest that the negative role of 

Nbsl protein on AAV transduction might require functional ATM activity.

6.1.7. Adenovirus E4orf6 and ElB55k mediated degradation of MRN 

complex increases rAAV transduction.

Productive AAV replication and rAAV transduction requires an unrelated 

helper virus, such as Adenovirus. Adenovirus ElB55k and E4orf6 proteins are 

known to enhance rAAV vector transduction and wild-type AAV replication by 

increasing the rate of conversion of the AAV genomes from single-stranded to 

dsDNA (Ferrari et al., 1996; Fisher et al., 1996), although the mechanism is 

unclear. It has been recently shown that ElB55k and E4orf6 form a complex that 

possess ubiquitin ligase activity in conjunction with cellular proteins (Harada et 

al., 2002; Querido et al., 2001) to promote degradation of cellular p53 and MRN 

complex (Carson et al., 2003; Stracker et al., 2002). Here we show that 

adenovirus ElB55k/E4orf6 mediated degradation of MRN complex correlates 

with augmentation of rAAV transduction.

We used a recombinant adenoviral vector coding for the E4orf6 to infect a 

series of HeLa stable cell clones expressing: the wild-type ElB55k and GFP- 

LacR (HeLa wtElB55k/GFP-LacR); a mutant form of ElB55k that is unable to 

associate with E4orf6 and to effectively degrade the MRN complex and GFP- 

LacR (HeLa H354/GFP-LacR); and only GFP-LacR (HeLa/GFP-LacR).
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Figure 6.4. Silencing of Nbsl increases rAAV foci formation.
A. Western blotting showing the levels o f  Nbsl in HeLa cells after treatment with siRNAs against Nbsl 
or luciferase (Luc) a t 60 h after siRNA transfection (corresponding to 24 h p.i.). The western blotting 
against tubulin is used as a loading control.
B. Representative images o f  cells treated with anti-Nbsl or anti-Luc siRNAs followed by transduction 
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C. Percentage of  HeLa cells with detectable AAVLacO.14 foci after silencing o f  Nbsl or treatment with 
control siRNA against Luc.
D. Number o f  AAVLacO. 14 foci per cell after silencing o f  N bsl or treatment with control siRNA 
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As expected, degradation of M rell protein and partial degradation of 

Rad50 was only observed when wtElB55k and E4orf6 proteins were expressed in 

the same cells (Figure 6.7A). When these cells were additionally infected with 

rAAV-LacZ and B-galactosidase activity was measured, we observed a dramatic 

increase in the level of transduction in the cells where MRN complex was 

degraded (Figure 6.7B). This increase in transduction was not observed in cells 

infected with rAd-E4orf6 and expressing the H354 mutant ElB55k. These results 

correlate Mrel l degradation with enhanced rAAV transduction, and suggest that 

the Mrel l complex negatively impacts rAAV transduction. A more detailed 

characterization of this correlation is shown in a coauthored manuscript with the 

M.D. Weitzman group (Schwartz et al, manuscript under revision, EMBO 

reports).

6.1.8. ElB55k/E4orf6 mediated degradation of MRN complex correlates with 

increased num ber of cells with dsDNA rAAV foci.

In order to see if transduction efficiency of rAAV correlates with the 

formation of double stranded rAAV DNA genomes, we treated wtElB/GFP- 

LacR, H354/GFP-LacR, and GFP-LacR HeLa cell clones with rAd-E4orf6 and 

then infected them with AAV-LacO 14 vector. As expected, cells expressing 

simultaneously wtElB55k and E4orf6 showed an increase in the number of cells 

with rAAV foci, that represent sites of accumulation of vector dsDNA, when 

compared with the same cell lines not infected with rAd-E4-orf6 (from 7.9±0.8% 

to 59.3±5.6%). HeLa H354/GFP-LacR cell line infected rAdE4orf6 showed a 

higher number of cells with foci in comparison to the same cell line not infected 

with rAd (from 6.4±1.3% to 19.5±5.8%) (Figures 6.8A and 6.8B). On the
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contrary, in the cell line expressing just GFP-LacR we detected only a basal 

number of cells with AAV foci, that were about 4.4±2.0% and 3.8±1.3% in the 

presence or absence of infection with rAdE4orf6 respectively. These results 

together show, that ElB55k/E4orf6-mediated degradation of the MRN complex 

increases rAAV foci formation and transduction, suggesting again that the MRN 

complex may play an inhibitory role at the level of single-stranded to dsDNA 

rAAV genome conversion. ElB55k/E4orf6-mediated degradation of the MRN 

complex did not affected in a statistically significant manner the number of rAAV 

foci per cell (Figure 6.8C).

6.1.9. AAV foci form in close proximity of Mdcl foci.

The Mdcl protein is known to control cellular responses to DNA damage, in part 

by interacting with the MRN complex and, more specifically, by mediating the 

transient interaction of Nbsl with DSBs and its phosphorylation by ATM 

(Goldberg et al., 2003; Lukas et al., 2004; Stewart et al., 2003; Xu and Stem, 

2003). In our experimental settings, AAV-LacO.14 foci were also found in close 

proximity with the foci at which the Mdcl protein accumulates, in both untreated 

cells and in cells treated with camptothecin before infection (Figure 6.9A). This 

colocalization suggests a possible role of Mdcl in the recruitment of MRN 

complex to the site of accumulation of rAAV dsDNA.

6.1.10. Silencing of Mdcl decreases rAAV transduction.

In order to quantify the extend of rAAV transduction in the absence of the 

Mdcl protein, we took advantage of the availability of stable HeLa cell clones 

containing retroviral vectors expressing a short-hairpin RNAs (shRNA) against
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Mdcl or against a control protein LacZ (Lukas et al., 2004). These cells were 

infected with a rAAV viral vector coding of the EGFP gene (AAV-GFP) and the 

efficiency of transduction was measured by FACS analysis. The cell clone in 

which Mdcl was silenced was significantly more permissive to AAV-GFP 

transduction, both in the absence or following HU treatment (Figure 6.9C). 

Similar results were obtained when HeLa cells where transiently transfected with 

synthetic siRNA against Mdcl (Figure 6.9E). The complete silencing of the 

Mdcl protein was obtained in both cases. (Figures 6.9B and 6.9D). Again, the 

increase in rAAV transduction after Mdcl silencing is in concordance with the 

idea that Mdcl may play a role in the inhibitory action of the MRN complex at 

the level of rAAV transduction.

6.1.11. Rad52 silencing results in decreased rAAV transduction efficiency.

Previous results from our laboratory indicated that the protein Rad52 binds 

to rAAV genomes and that Rad52 (-/-) fibroblasts are less permissive than wild 

type to rAAV transduction (Zentilin et al., 2001). In order to deeply investigate 

the role of this protein in determining the fate of rAAV genomes inside the 

infected cells, we transfected HeLa cells with and siRNA against Rad52. Western 

blot analysis revealed that 70-80% of reduction of the protein was obtained 48 

hour after siRNA transfection (inset of Figure 6.10A). Under these conditions, 

cells treated or untreated with HU, showed a maximum of 2,1 fold reduction in 

the fi-galacatosidase activity at a MOI of 10,000 vgp/cell, when compared with 

the cells transfected with the control siRNA against Luciferase (Figure 6.10A). 

Contrary to the effect observed after silencing of Nbsl and M dcl, Rad52 

silencing resulted in a significant decrease in vector transduction, this
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independently of HU treatment. This observation is in concordance with the 

results obtained previously and suggests a possible involvement of Rad52 protein 

in the processing or stabilization of transcriptionally active rAAV genomes.

6.1.12. DNA-PKcs silencing results in decreased rAAV transduction 

efficiency.

DNA-PKcs, a key protein in the process of double-strand break repair by 

non-homologous end-joining, has been also implicated in the determination of the 

molecular fate of rAAV genome in vivo. Studies of gene delivery on mouse 

muscle have shown that, in the presence of DNA-PKcs, rAAV DNA form circular 

episomes, while in its absence, rAAV gemomes remain as linear monomers or 

form linear concatamers (Song et al., 2001). Nevertheless, in these studies the 

levels of transgene expression in this system remained unchanged over time. In 

order to better characterize the possible role of DNA-PKcs in rAAV transduction, 

we transfected a specific siRNA in HeLa cells obtaining more than 80% reduction 

of the DNA-PKcs protein at 48 hours after treatment (inset of Figure 6.1 OB). 

Then, these cells were either treated or not with HU and infected with an AAV- 

LacZ vector. Interestingly, a significant reduction in vector transduction was only 

observed when cells were treated with HU. On the contrary, no statistically 

significant differences were observed between DNA-PKcs silenced and control 

cells when HU was not added (Figure 6.1 OB). These results suggest a possible 

participation of DNA-PKcs in rAAV processing in HeLa cells but only in the 

presence of HU induced cell damage.
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Figure 6.10. rAAV transduction after Rad52, DNA-PKcs and H2AX siRNA mediated silencing.
A. B-gal enzymatic activity measured as relative light units (RLU) in lysates from HeLa cells after 
treatment with siRNAs against Rad52 (siRad52) or against the control gene luciferase (siLuc), followed 
by transduction with AAV-LacZ (MOIs o f 10,000, 5,000, 2,500, 1,000, or non-infected -  NEG). Where 
indicated, cells were treated with hydroxyurea (overnight).
B. Same as panel A with siRNA against DNA-PKcs (siDNA-PKcs) at MOIs o f 8,000, 5,000, 4,000, 
2,500, 1,000, or non-infected- NEG)
C. Same as panel A with siRNA against H2AX (siH2AX)
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6.1.13. H2AX silencing results in decreased rAAV transduction efficiency.

We silenced histone H2AX in HeLa cells by means of siRNA technology, 

before infecting them with an AAV-LacZ vector. In this case we observed results 

similar to those obtained after silencing DNA-PKcs. A significant reduction in 

transduction efficiency was observed specifically in the cells that were treated 

with HU (Figure 6.IOC). In cells that were not treated with HU there was only a 

slight reduction in rAAV transduction, with respect to the cells transfected with 

the control siRNA against Luciferase, but only at infection MOI of 10,000 

vgp/cell,. Decreasing the levels of H2AX may impair the capacity o f the cell to 

elicit a cellular response to DNA damage (Lukas et al., 2004). These results 

suggest that HU treatment in cells with decreased levels of H2AX or DNA-PKcs 

may induce the activation of pathways that play an inhibitory role on rAAV at the 

level of transduction.

6.2. Interaction between AAV Rep containing recombinant Adeno-associated 

virus (rAAV) and cellular DNA machinery: effect on vector transduction 

and site-specific integration.

In the absence of a helper virus infection, wild-type AAV, as well as viral 

vectors containing the AAV Rep gene, mainly integrate in a site-specific fashion 

in human cells (McCarty et al., 2004). Both AAV DNA replication and site- 

specific integration require the large nonstructural Rep proteins (Rep68/78) and 

specific motifs within the viral ITRs. The cellular proteins participating in the 

process of Rep-mediated site-specific integration and the molecular mechanism of 

integration itself are still largely elusive. In this task we will explore the
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hypothesis that the process might involve the cellular proteins that participate in 

the cellular DNA repair.

6.2.1. Establishment of a quantitative real-time PCR procedure for the 

determination of rAAV site-specific integration.

We have established a highly sensitive method to quantify the events of 

site-specific integration of AAV DNA into chromosome 19ql3.3qter, in the 

region named AAVS1 (Linden et al., 1996a). The system is based on a two-step, 

real-time quantitative PGR assay with primers located in the AAVS1 region on 

Chl9ql3.3qter and in the AAV ITR, as originally described by Huser, et al. 

(2002). Only the samples that contain the flanking sequences of the 3’ ITR of the 

virus and a downstream sequence of the AAVS1 region are amplified in the first 

PCR reaction and then quantified using a TaqMan probe in the second PCR 

reaction (schematic representation shown in Figure 6.11 A). Standardization of 

the protocol was carried out using control plasmid pAAVSl-ITR, constructed for 

this purpose, and genomic DNA extracted from a cell line containing site- 

specifically integrated AAV genomes. The developed technology showed a wide 

range of linearity in the determination of the number of AAV Rep-dependent site- 

specific integration events from 45 to 45x105 copies/pg of genomic DNA, as 

shown in Figure 6.1 IB. In order to rule out the possibility of unspecific 

amplification of rAAV and genomic sequences in the absence of integration at the 

AAVS1 locus, we transfected HeLa cells with a plasmid coding for the Rep68 

proteins or a control plasmid, and then infected these cells with the AAV-GFP 

(not expressing Rep) viral vector, as already suggested by others (Huttner et al., 

2003). As expected, PCR amplification was observed only in the infected cell 

samples where Rep68 protein was expressed; mock infected cells or samples
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infected with the AAV-GFP alone did not show any detectable amplification 

(Figure 6.12A).

Site-specific AAV integration requires the presence of the wtAAV Rep68 

or 78, proteins that are typically not included in the rAAV vector used in gene 

therapy and many biotechnological applications. We constructed a rAAV viral 

vector that contains the wild-type Rep open reading frame (ORF) and the EGFP 

gene in the place of the Cap ORF (AAV-Rep-GFP) (see Materials and Methods 

for detailed explanation of the construct). In this way we can evaluate the level of 

vector transduction and site-specific integration in the same samples.

Using this technology, we demonstrated that the AAV-Rep-GFP vector 

DNA integrated site-specifically into the host cell DNA at the AAVSl locus at 

frequencies that were comparable with those of the wt virus (6-7% of cells with 

site-specific integration) (Huser et al., 2002). The integration frequency was 

observed to increase in a dose-dependent manner at increasing MOIs (Figure 

6.12B). Non-detectable integration events were observed in the absence of AAV- 

Rep-GFP or after infection with AAV-GFP.

6.2.2. Silencing of Nbsl increases frequency of Rep-dependent site-specific 

integration.

We evaluated the transduction efficiency of AAV-Rep-GFP in HeLa cells 

after transfection with siRNAs against either Nsbl or Luciferase in the presence 

and absence of HU treatment.

Interestingly, we observed a small but statistically significant increase in 

transduction of AAV-Rep-GFP at a MOI of 5,000 vgp/cell with or without HU 

treatment (from 29.2±1.6% to 32±0.7% after HU, and from 22.8±0.2% to 

28.9±2.3% in the absence of HU) (Figure 6.13 A); this in agreement with the data
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already described. A remarkable finding was observed when we looked at the 

levels of vector integration at the AAVS1 region. We detected a dramatic 

increase in the level of site-specific integration after silencing of Nbsl at both 

MOI of 5,000 (8.3 fold) and 1,600 vgp/cell (15.8 fold) (Figure 6.13B). 

Interestingly, the Rep-dependent AAV site-specific integration appears to more 

closely rely on the presence of the Nbsl protein than the transduction process. 

Nevertheless, Nbsl exerts an inhibitory role at both levels.

6.2.3. Silencing of M dcl increases frequency of Rep dependent site-specific 

integration.

The same experimental procedure was used to evaluate the involvement of 

the Mdcl protein in the process of Rep-mediated AAV site-specific integration. 

HeLa cells were transfected with the siRNAs against Mdcl, or Luciferase as 

control, and then infected with AAV-Rep-GFP vector in the presence and absence 

of HU treatment. As expected, silencing of the Mdcl protein determined an 

increase in vector cell permissivity, measured as percentage of infected cells 

expressing the GFP reporter gene (from 32.8±1.0 to 37.7±0.7 with HU treatment 

at MOI=5,000, from 22.8±0.2 to 25±3 without HU treatment at MOI=5,000, and 

from 7.6±0.4 to 13.0±0.1 with HU treatment at MOI=T,600). Also in this case, the 

effect of Mdcl silencing was slightly blunted by the presence of the Rep protein 

(compare figure 6.14A and 6.9C). Nevertheless, similarly to what observed after 

Nbsl silencing, Mdcl silencing resulted in a dramatic increase (39.4 fold increase 

at MOI=5,000 and 2,649 fold increase at MOI=1,600) in the number of 

integration events at the AAVS1 locus (Figure 6.14B). All these data suggest the 

Mdcl may inhibit AAV transduction in the presence of Rep protein but more 

remarkably it inhibits AAV site-specific integration.
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Figure 6.11. Establishment of real-time PCR for the quantification of AAV site-specific 
integration: Real-time PCR quantification wide range of linearity of detection in the amplification 
of pAAVSl-TR
A. Schematic representation o f  the real-time PCR quantification experimental procedure.
B. Cycle  number versu s Delta Rn from a representative experiment o f T  aqman real-time PCR 
amplification of  pA A VSl-TR plasmid serial dilutions (from 45 to 45x1 05 copies/ug o f  genomic DNA). 
Insert: Scattered plot o f  the number of  copies per pg o f  genomic DNA as a functions o f  the Cycle of 
threshold (CT). The number o f  copies is represented in logarithmic scale. Minimum scares fitting curve 
is plotted in red.
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Figure 6.13. Effect of Nbsl silencing on AAV-Rep-GFP transduction and site-specific integration.
A. Flow cytometry analysis o f  HeLa cell after transduction with AAV-GFP. Cells were transfected with 
siRNA against N bsl (siNabsl)  or with a control siRNA against Luciferase (siLuc) and either with our 
without hydroxyurea (HU).
B. Quantification of  Rep mediated site-specific integration. Cells were transfected with siRNA against 
Nbsl (siNabsl) or with a control siRNA against Luciferase (siLuc), 48 hrs before infection with AAV- 
Rep-GFP. Number o f  integration events per ixg o f  genomic DNA is expressed in logarithmic scale. 
Transduction and s ite-specific integration experiments were conducted at M 01 o f  1,600 and 5,000 
vgp/cell.
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Figure 6.14. Effect of Mdcl silencing on AAV-Rep-GFP transduction and site-specific integration.
A. Flow cytometry analysis o f  HeLa cell after transduction with AAV-GFP. Cells were transfected with 
siRNA against Mdcl (siM dcl) or with a control siRNA against Luciferase (siLuc) and either with our 
without hydroxyurea (HU).
B. Quantification o f  Rep mediated site-specific integration. Cells were transfected with siRNA against 
Mdcl (siM dcl) or with a control siRNA against Luciferase ( s iL u c) , 48 hrs before infection with AAV- 
Rep-GFP. Number o f  integration events per pg o f  genomic DNA is expressed in logarithmic scale. 
Transduction and s ite-specific integration experiments were conducted at M 01 o f  1,600 and 5,000 
vgp/cell.
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6.2.4. Silencing of Rad52 decreases the frequency of Rep dependent site- 

specific integration.

We have shown that silencing of Rad52 protein resulted in significant 

decrease in cell permissivity to rAAV transduction (Figure 6.10A); this trend was 

also reproduced for the AAV-Rep-GFP vector (from 2.1 to 2.3 fold decrease in 

the percentage of GFP positive cells with HU pre-treatment, and from 1.7 to 1.9 

fold decrease without HU treatment), at MOIs of 5,000 and 1,600 vgp/cell (Figure 

6.15 A).

The striking observation was that we were not able to detect any 

integration of the AAV vector by real-time PCR technique at the MOIs of 5,000 

and 1,600 vgp/cell in samples in which the Rad52 protein was silenced (Figure 

6.15B). A similar reduction in integration was observed when cells where 

transfected with a pSuper plasmid coding for a hairpin siRNA against Rad52 

(pSuper-Rad52) (Figure 6.15C). Previous chromatin immunoprecipitation 

experiments conducted in our laboratory indicating that Rad52 protein interacts 

physically with rAAV genomes (Zentilin et al., 2001) prompted us to hypothesize 

that Rad52 may be directly required during AAV site-specific integration.

6.2.5. Silencing of DNA-PKcs decreases frequency of Rep-dependent site- 

specific integration.

Similar to the results obtained after evaluating the effect of Rad52 

silencing in the presence and in the absence of Rep protein, transduction of 

rAAV-Rep-GFP vector was significantly reduced after siRNA-mediated silencing 

of DNA-PKcs in HeLa cells (Figure 6.16A). This reduction was observed in cells 

both treated or not with HU at MOI=5,000 (from 32.8±0.7% to 19.5±9.3% with 

HU treatment, and from 22.8±0.2% to 15.3±0.8% without HU treatment).
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Figure 6.15. Effect of Rad52 silencing on AAV-Rep-GFP transduction and site-specific 
integration.
A. Flow cytometry analysis o f  HeLa cell after transduction with AAV-GFP. Cells were transfected with 
siRNA against Rad52 (siRad52) or with a control siRNA against Luciferase (siLuc) and either with our 
without hydroxyurea (HU). Infections were conducted at MOIs o f  1,600 and 5,000 vgp/cell.
B. Quantification o f  Rep mediated site-specific integration. Cells were transfected with siRNA against 
Rad52 (siRad52) or with a control s iRNA against Luciferase (siLuc) , 48 hrs before in fection with 
AAV-Rep-GFP. Number o f  integration events per pg o f  genomic DNA is expressed in logarithmic 
scale. <100 stands for Non-detectable. Infections were conducted at MOIs o f  1,600 and 5,000 vgp/cell.
C. Quantification of  Rep mediated site-specific integration. Cells were transfected with pSuper-Rad52 
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Figure 6.16. Effect of DNA-PKcs silencing on AAV-Rep-GFP transduction and s ite-specific 
integration.
A. Flow cytometry analysis o f  HeLa cell after transduction with AAV-GFP. Cells were transfected with 
siRNA against DNA-PKcs (siDNA-PKcs) or with a control siRNA against Luciferase (siLuc) and either 
with our without hydroxyurea (HU).
B. Quantification o f  Rep mediated site-specific integration. Cells were transfected with siRNA against 
DNA-PKcs (siDNA-PKcs) or with a control siRNA against Luciferase (siLuc) , 48 hrs before infection 
with AAV-Rep-GFP. Number of  integration events per pg o f  genomic DNA is expressed in logarithmic 
scale. <100 stands for Non-detectable.
Transduction and s ite-specific integration experiments were conducted at M OI o f  1,600 and 5,000 
vgp/cell.
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Previous studies have shown that DNA-PKcs may play an inhibitory role 

at the level of site-specific integration (Song et al., 2004). In disagreement with 

these findings, our results show that the siRNA-mediated silencing of DNA-PKcs 

produced a decrease in site-specific integration (Figure 6.16A). This discrepancy 

could be due the fact that Song and collaborators conducted their experiments 

using an in vitro integration assay, while additional levels of complexity might 

well be present in living cells.

6.2.6. Silencing of H2AX decreases frequency of Rep-dependent site-specific 

integration.

Parallel to what has been previously described for Rad52 and DNA-PKcs, 

silencing of the H2AX histone decreased the permissivity of the cells to AAV- 

Rep-GFP transduction, both in the presence and absence of HU treatment at a 

MOI of 5,000 vgp/cell (Figure 6.17A). At lower MOIs a difference in cells 

permissivity was not observed.

Site-specific integration at the AAVS1 locus was also reduced to the point 

of becoming undetectable, both in the cells infected with a MOI of 5,000 as well 

at a MOI of 1,600 (Figure 6.17B).

6.3. Cell cycle profile after silencing of Nbsl, Mdcl, H2AX, Rad52 and DNA- 

PKcs.

The knocking down of the proteins that are the subject of this study could 

affect the normal progression of the cell cycle. Since there is still some 

controversy about the dependence of rAAV transduction efficiency in cell culture 

on the cell cycle (Alexander et al., 1994a; Alexander et al., 1996; Russell et al., 

1995; Russell et al., 1994; Yakobson et al., 1987), we analyzed the possible
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association between a specific cell cycle profile and the differences in 

transduction of rAAV observed after silencing. There are no studies indicating 

whether AAV site-specific integration may be favored during any particular phase 

of the cell cycle, however, AAV mediated gene targeting which depends on the 

HR machinery is favored, as expected, during S-phase (Trobridge et al., 2005).

To rule out the possibility that the differences in transduction efficiency 

that we observe are due to cell cycle arrest after RNAi silencing, we transfected 

HeLa cells with siRNAs against Nsbl, Mdcl, H2AX, DNA-PKcs, and Rad52 and 

determined their cell cycle profile by FACS analysis at the moment of maximum 

silencing. The results shown in Figure 6.18 indicate that only very minor changes 

were observed after RNA silencing of any of the investigated proteins; no 

correlation could be detected between the observed cell cycle profiles and the 

extent of rAAV transduction. Cells treated with HU, irrespectively of the siRNA 

used, showed cell cycle arrest in Gl/S, as expected.
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Figure 6.17. Effect of H2AX silencing on AAV -Rep-GFP transduction and site-specific 
integration.
A. Flow cytometry analysis o f  HeLa cell after transduction with AAV-GFP. Cells were transfected with 
siRNA against H2AX (siH2AX) or with a control siRNA against Luciferase (siLuc) and either with or 
without hydroxyurea (HU).
B. Quantification o f  Rep mediated site-specific integration. Cells were transfected with siRNA against 
DNA-PKcs (siDNA-PKcs) or with a control siRNA against Luciferase (siLuc) , 48 hrs before infection 
with AAV-Rep-GFP. Number o f  integration events per pg o f  genomic DNA is expressed in logarithmic 
scale. <100 stands for Non-detectable.
Transduction and s ite-specific integration experiments were conducted at M OI o f  1,600 and 5,000 
vgp/cell.
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1, DISCUSSION

7. 1. DNA Repair machinery and its influence on rAAV transduction and 

genome processing:

Despite the valuable properties of rAAV vectors for in vivo gene transfer, 

the molecular correlates of rAAV transduction are still poorly understood. Due to 

the single-stranded nature of the AAV genome, its processing into a double- 

stranded, transcriptionally active molecular species clearly represents a 

fundamental event. This notion is nourished by in vivo studies that showed that 

long-term transgene expression mediated by rAAV vector correlates with the 

formation of double-stranded, circular and concatamerized vector genomes (Duan 

et al., 1998; Schnepp et al., 2005; Yang et al., 1999).

In this study, we have exploited live imaging microscopy to assess the 

kinetics of double-stranded rAAV DNA accumulation in the nucleus of 

transduced cells, in the absence of viral replication or expression of any helper 

virus gene product. The developed system takes advantage of the interaction of a 

EGFP-LacR fusion protein, expressed at low levels in the nucleus of the 

transduced cells, with 112 repeats of the cognate LacO sequence cloned into a 

rAAV vector. Since LacR specifically binds dsDNA, this approach permits the 

visualization of rAAV genomes once converted from ssDNA to dsDNA inside the 

nucleus. By using this approach in different cell types, we observed that rAAV 

dsDNA accumulation does not occur diffusely in the nucleoplasm, but is confined 

to specific rAAV foci, which become detectable as early as 3 h after cell infection 

and progressively increase in size and intensity of fluorescence over the first 12 h 

after infection, suggestive of a progressive accumulation of viral dsDNA genomes 

into these structures. A detailed biophysical analysis of rAAV foci by time lapse 

imaging studies indicates that these nuclear structures are rather stable over time
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and are relatively immobile. Moreover, these fluorescent foci do not appear 

associated with the insoluble chromatin compartment of the nucleus, since they 

completely disappear when AAV-LacO.14 transduced cells are treated with mild 

detergents before fixation (data not shown). Given the sensitivity threshold of 

conventional fluorescence microscopy, as well as the fluorescent behavior of 

single EGFP molecules (Cinelli et al., 2000), it is clear that each of the rAAV foci 

comprises several dsDNA molecules, which might well correspond to 

multimerized rAAV genomes, as shown by a number of studies that analyzed the 

molecular nature of transcription-competent AAV genomes in the transduced cells 

(Afione et al., 1996; Flotte, 2004; Yang et al., 1999).

Cell treatment with HU is known to significantly boost the efficiency of 

rAAV transduction (Russell et al., 1995; Zentilin et al., 2001). In our 

experiments, we observed that the same treatment also increased the number of 

cells with rAAV foci, thus showing that the formation of rAAV foci positively 

correlates with the transgene transduction. Both in the presence or absence of HU 

treatment, the number of cells with rAAV foci peaked between 24 and 48 h post 

infection, and then gradually decreased. This decrease may be well due to the 

slow degradation of some rAAV genomes or to their migration out of the foci to 

the nucleoplasm.

Previous studies with wt AAV in Adenovirus-infected cells have shown, 

by immunofluorescence and in situ hybridization, that, during infection, wt AAV 

DNA replication occurs in discrete nuclear compartments (Weitzman et al., 1996; 

Wistuba et al., 1997). Similar findings have been also confirmed in live cells 

infected with HSV-1 or transfected with HSV-1 DNA, by using a rAAV vector 

containing only 40 tandem repeats of a LacO binding sites and a reporter protein 

similar to ours (Fraefel et al., 2004). The presence of these AAV foci has been
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interpreted as an indication of the existence of nuclear compartments in which 

AAV DNA replication takes place. The observation that both the Rep proteins 

and helper virus DNA also co-localized with these foci is fully consistent with this 

interpretation (Fraefel et al., 2004; Glauser et al., 2005; Weitzman et al., 1996). 

The rAAV foci we detect in our experiments might well be coincident with the 

nuclear compartments where AAV and Adenovirus replication occurs. However, 

it should be pointed out that the rAAV foci we observe are not determined by the 

presence of any expressed viral protein normally involved in replication. Instead, 

our experiments indicate the existence of specific nuclear compartments that have 

strong affinity for rAAV DNA in the absence of viral or helper proteins, and thus 

suggest that rAAV DNA is specifically recognized by cellular factors.

Indeed, we found that rAAV foci partially colocalize or are closely 

juxtaposed to the nuclear compartments where MRN complex proteins 

accumulate upon treatment of the transduced cells with HU or other DNA 

damaging agents (UV and camptothecin, data not shown). In support of the 

notion that these proteins are actively involved in a DNA repair process, we 

observed that rAAV foci associated with foci of a DNA damage-activated form of 

Nbsl, phosphorylated at serine 343, (Gatei et al., 2000; Lim et al., 2000; Wu et 

al., 2000). MRN complex is known to bind both ss and dsDNA and to possess a 

pivotal role in sensing damaged or hairpin-structured DNA (DAmours and 

Jackson, 2002; Petrini and Stracker, 2003; van den Bosch et al., 2003). In 

keeping with the possibility that the DNA double strand break repair machinery is 

involved in rAAV genome processing, we found that an upstream mediator, 

Mdcl, known to increase the retention of Nbsl at the sites of DNA damage 

(Lukas et al., 2004), also formed foci that partially colocalized with the rAAV 

foci.
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What might be the role of the MRN proteins and of Mdcl in rAAV 

genome processing? Our RNAi experiments clearly suggest that the overall effect 

of these proteins is inhibitory in rAAV dsDNA formation. Silencing of Nbsl by 

RNAi increased the number of cells containing rAAV foci and significantly 

improved the permissivity of both HeLa and MRC5 cells to transduction, again 

indicating that generation of dsDNA, and thus formation of rAAV foci, positively 

correlates with cell permissivity to transduction. Similar considerations also 

apply to the silencing of Mdcl. Interestingly, Nbsl silencing had a marked effect 

in increasing the number of cells with AAV foci; even if it modified only 

modestly the average number of foci that were present per cell.

Over the last few years, we and others have reported that cells lacking 

functional ATM are markedly more permissive to rAAV transduction (Sanlioglu 

et al., 2000; Zentilin et al., 2001). The observation that Nbsl silencing has no 

apparent effect on the level of transduction in ATM-defective cells is consistent 

with the possibility that the ATM protein might mediate the negative regulation of 

MRN protein activity on the incoming rAAV genomes. In this respect, it is worth 

noting that ATM and Nbsl have been recently shown to be essential in the 

formation of the replication protein A-coated ssDNA microcompartments 

following cell irradiation with ionizing radiations (Bekker-Jensen et al., 2006). It 

might thus be envisioned that these proteins also participate in the processing of 

the ssDNA AAV genomes. It is worth noting that the increase in transduction 

efficiency after Nbsl silencing was observed both in the absence and presence of 

HU. Indeed, the major effect of the HU treatment is to enhance the outcome of 

Nbsl silencing on AAV cell transduction. This suggests that the formation of 

MRN foci is not a pre-requisite for the accumulation of rAAV into nuclear foci
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and that they are not necessarily associated with the positive effect on AAV 

transduction observed upon Nbsl silencing.

Productive AAV replication requires coinfection with unrelated helper 

virus, such as Adenovirus or transfection of its helper genes. It is known that 

adenovirus ElB55K and E4orf6 proteins enhance rAAV transduction and wt 

AAV replication, by facilitating the conversion of the single stranded to second 

stranded viral genome synthesis through a mechanism that is not yet fully 

described (Ferrari et al., 1996; Fisher et al., 1996). Elb55K and E4orf6 form a 

complex that has been recently shown to possess ubiquitin ligase activity in 

conjunction with cellular proteins, and to promote degradation of host targets p53 

and the MRN complex (Harada et al., 2002; Querido et al., 2001; Stracker et al., 

2002). Adenovirus proteins promote MRN degradation to prevent DNA damage 

signaling and viral genome processing (Carson et al., 2003; Stracker et al., 2002).

Here we have shown that AAV is a target of MRN, and, therefore, the 

degradation of these proteins by Elb55K/E4orf6 creates a more permissive 

cellular environment for AAV replication and transduction (Figure 6.7). 

Consequently, it is conceivable to suppose that AAV may have evolved to rely on 

Adenovirus functions in order to get rid of the DNA repair proteins that hinder its 

infection process. In the present work, in collaboration with M.D. Weitzman 

(Salk Institute, La Jolla), we have also shown that the degradation of MRN by the 

Adenovirus proteins E4orf6/ElB55k results in an increase in rAAV transduction 

efficiency. Moreover, we have shown that this effect occurs independent of the 

degradation of p53 (Schwartz et al, 2006, manuscript under revision, EMBO 

Reports).

As expected, E4orf6/ElB55k-mediated degradation of MRN also 

increases the number of cells with rAAV foci. These findings, together with the
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results obtained after siRNA mediated silencing of Nbsl, further confirm that the 

MRN complex plays an inhibitory role at the level of rAAV genome processing 

and cell transduction.

Recent studies have shown that wild-type and recombinant adeno- 

associated virus (AAV and rAAV) genomes persist in human tissue 

predominantly as double-stranded (ds) circular episomes derived from input linear 

single-stranded virion DNA (Duan et al., 2003; Song et al., 2001). These data 

strongly suggest that wt and recombinant AAV genomes utilize similar host 

recombination pathways. While the correlation between long-term persistence of 

rAAV genomes and conversion to circular and concatameric forms has been noted 

in numerous studies, there is no clear consensus about the fate of the linear rAAV 

genomes. These molecular species are likely to represent a transient episomal 

phase due to the recombinogenic nature of the free DNA ends. It is therefore 

important to understand how the mammalian DNA repair and recombination 

machinery participate in the conversion of linear rAAV genomes to more stable 

structures. Undoubtedly, persistence of the vector genome in the host cell is a 

critical parameter for successful use of rAAV for gene delivery.

The homologous recombination (HR) as well as non-homologous end joining 

(NHEJ) DNA repair machineries have been implicated in different steps of rAAV 

transduction (Choi et al., 2006; Jurvansuu et al., 2005; Song et al., 2001; Song et 

al., 2004; Vasileva et al., 2006; Zentilin et al., 2001).

Previous experiments conducted in our laboratory have shown that, direct 

interaction of Rad52 with rAAV genomes, evaluated by quantitative chromatin 

immunoprecipitation, correlates with higher transduction efficiency (Zentilin et 

al., 2001). As expected, siRNA mediated silencing of Rad52 resulted in a 

decrease in transduction efficiency (Figure 6.10A).
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On the other hand, several previous studies have demonstrated that NHEJ 

repair proteins associate with the rAAV genomes and affect their molecular fate 

in different ways. It has been shown that the catalytic subunit of DNA-PK (DNA- 

PKcs) affects the efficiency of rAAV genome circularization. In mice lacking 

DNA-PKcs (SCID mice), rAAV vector DNA recovered from muscle contains a 

significant fraction of linear molecules, which are not seen in normal mice (Duan 

et al., 1998; Song et al., 2001). Our experiments show a dependence of rAAV 

(Rep-) transduction on DNA-PKcs only when cells are treated with HU, 

suggesting that the requirements of this factor would be essential in a particular 

phase of the cell cycle (i.e. Gl/S) or in the presence of cellular DNA damage 

response. Further characterization in this respect will be necessary.

Phosphorylation of histone H2AX at serine 139 (y-H2AX) is one of the 

first events after DNA damage response (Riballo et al., 2004; Rogakou et al., 

1998). Previous studies have suggested that the cell surveillance machinery may 

recognize AAV genomes as stalled replication forks (Jurvansuu et al., 2005). The 

well recognized involvement of H2AX phosphorylation in DNA repair after 

collapse of the replication fork (Furuta et al., 2003; Mirzoeva and Petrini, 2003) 

makes us think about the possible participation of H2AX in the rAAV genome 

processing. Interestingly, silencing of H2AX produces a decrease in rAAV 

transduction in the presence and absence of HU treatment; however, when DNA 

damage is induced by HU, the reduction on rAAV transduction was more 

pronounced (Figure 6.10C). Nevertheless, it is important to mention that it is not 

known what might be the chromatin structure of rAAV genomes once inside the 

cell nucleus.
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7. 2. DNA Repair machinery and AAV site-specific integration.

One of the most intriguing aspects of AAV biology is represented by the 

unique ability of this virus to integrate site-specifically into the human genome, at 

C hi9 (Bems and Linden, 1995; Linden and Bems, 2000). Several strategies have 

been used to evaluate the efficiency of AAV site-specific integration into Chi 9. 

Initial estimates of the efficiency of this process were based on the number of 

rescue-competent, latent infections that could be derived from a pool of infected 

cells (McCarty et al., 2004). In these studies, the AAV integration efficiencies 

achieved in infected cells were typically of 20%-80%. Similar results have been 

obtained using Rep-containing vectors (McLaughlin et al., 1988; Mendelson et 

al., 1988; Samulski et al., 1989). More recently, Huser et al. (2002) have 

developed a rapid and efficient assay for Chi 9 specific integration, based on 

polymerase chain reaction (PCR) amplification using primers specific for the 

AAV and flanking chromosomal sequences. Using this technique, they reported 

values of integration frequency that are consistent with earlier results and with the 

frequencies we have observed in our experiments. The use of quantitative PCR 

(qPCR) to quantify the number of site-specific integration has several advantages 

as well as some limitations that are inherent to the method and the nature of the 

AAV integration process. The technique used by us as well as the one described 

by Huser et al. (2002) have the advantage to be highly sensitive, fast and easily 

adaptable to high throughput applications. It allows us to detect and quantify the 

number of integration events in the absence of selective pressure against the cell 

that harbor the integrated viral genomes, and to collect the samples at any time 

point during the experiment without the requirement of enrichment of any cell 

population. However, the exact number of integration events needs to be 

analyzed carefully. It is important to mention that even if  the Rep-mediated
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integration of AAV genome occurs at high frequency along the AAVS1 locus, 

the break point is not identifiable and fixed. As a consequence, every single 

integration event may be potentially different from cell to cell, and eventually the 

length of the fragments produced after PCR amplification is variable (Huser et al.,

2002). Therefore, the possibility always exists that shorter PCR amplified 

fragments may be favored during the amplification reaction, resulting in a 

possible underestimation of the totality of the integration events in a given 

sample. Even in the light of these considerations, this experimental approach is 

considered the most flexible and convenient for the kind of experiments 

conducted in this study and many other biotechnological applications (McCarty et 

al., 2004).

It is known that the Rep protein is necessary for AAV site-specific 

integration into Chi 9, but the reason why this event takes place selectively at the 

AAVS1 locus, the mechanism of integration, and the role of cellular factor in this 

process remain elusive (Hamilton et al., 2004; Vasileva and Jessberger, 2005). In 

this study we attempt to identify cellular factors that may participate directly or 

indirectly in the process of Rep-dependent AAV site-specific integration. The 

remarkable inhibitory role of the proteins of the MRN complex at the level of 

rAAV genome processing and transduction prompted us to explore its possible 

participation also in the process of genome integration. Interestingly, silencing of 

Nbsl as well as Mdcl dramatically increased the frequency of integration events, 

suggesting that these proteins may interfere with the processing of the AAV 

genomes required for chromosomal integration. This line of thought is favored by 

the observation that the transduction efficiency of the AAV-Rep-GFP vector, after 

silencing of these proteins, was not dramatically affected (Figures 6.13 and 6.14).

One possible explanation for the above findings could take into account
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the known property of the Rep protein to induce DNA breaks into the host cell 

genome. The MRN complex would be eventually recruited at these sites and 

possibly titered out from the AAV genomes (Berthet et al., 2005). Alternatively, 

it is tempting to speculate that the Rep proteins would establish interactions with 

proteins involved in the repair of double strand breaks and acting as sensors, 

effectors or signal transducers and modulators of the cell cycle. In this respect, 

two examples of such interactions are the reported binding between Rep68 and 

Topors, a p53 and topoisomerase I binding protein (Weger et al., 2002), and 

between Rep68 and Replication protein A (RPA) (Stracker et al., 2004).

On the other hand, H2AX, Rad52 and DNA-PKcs silencing have shown to 

markedly decrease, in our experimental conditions, the integration efficiency. In 

the case of Rad52, a decrease in site-specific integration was also accompanied by 

a reduction in AAV-Rep-GFP transduction efficiency, measured as the percentage 

of cells positive for EGFP. Recent publications have indicated that the HR 

machinery participates in the process of AAV-mediated gene targeting, a process 

that could be, from a mechanistically point of view, similar to the Rep dependent 

site-specific integration (Vasileva et al., 2006). As previously discussed, Rad52 

proteins are know to physically interact in vivo with rAAV vector genomes 

(Zentilin et al., 2001). In light of these results, the Rad52 protein may directly 

participate in the process of integration or may be necessary for a molecular 

modification prior the integration event, such as strand annealing between AAV 

genomes of positive and negative polarities or annealing with homologous 

genomic regions.

It has been observed, however, that no large regions of homology are 

found between the AAVS1 and the wtAAV, and it has been thus suggested that 

integration occurs through a non-homologous end-joining pathway (Russell,
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2003). Small (4-5-bp) homologies at the junctions between host cell and viral 

DNA are consistent with illegitimate recombination products. Partial deletion of 

sequences within the AAV ITRs, as well as large-scale rearrangements of the host 

sequences around the integration site, suggested that the process is both complex 

and imprecise (Hamilton et al., 2004).

Transduction and site-specific integration efficiency of the Rep-containing 

AAV vector were significantly reduced after siRNA mediated silencing of both 

Rad52 and DNA-PKcs, suggesting a very complex interplay between different 

cellular factors. As already discussed (See section D.l), transduction efficiency 

of AAV-LacZ (Rep-) showed only dependence on DNA-PKcs after treating the 

cells with HU; this observation suggests a potentially differential usage, by AAV, 

of the cell machinery depending on the cell environment and its position in the 

cell cycle.

Y-H2AX foci formation has been observed in cells expressing wt AAV 

Rep protein (Berthet et al., 2005). Since the insertion of the AAV genome into the 

AAVS1 locus would require the cleavage of the chromosomal DNA, probably 

mediated by the Rep protein (Hamilton et al., 2004), in the absence of H2AX, the 

recruitment of the DNA repair machinery required for sealing the broken ends 

created during, may be impaired.

This could explain our observed decrease in site-specific integration after 

H2AX silencing. However, further studies would be necessary to clarify the 

actual role of H2AX in this process.
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7.3. Final considerations

On the basis of the results presented in this thesis, we would like to 

propose a model that explains the fate of rAAV DNA once inside the host cell 

nucleus, which entirely depends on the host cell machinery (Figure 7.1). 

According to this model, rAAV genomes, by virtue of both their ssDNA nature 

and the presence of secondary DNA structures in the viral ITRs, are recognized 

by cellular proteins involved in the DNA damage response; including MRN, 

Mdcl and components of the HR and NHEJ machinery. MRN complex proteins 

and Mdcl are inhibitory of ssDNA to dsDNA genome conversion, and, thus, are 

detrimental for efficient transduction. Only once this inhibition is eluded, the 

genomes might be converted to dsDNA by either second strand DNA synthesis 

utilizing the hairpin ITRs in a self-priming replication mechanism, or by the direct 

annealing of the complementary DNA strands of the incoming vectors (Fisher et 

al., 1996; Hauck et al., 2004). Cell treatment with DNA damaging agents might 

divert the inhibitory proteins away from the rAAV genomes, and this would 

explain the positive effects of genotoxic agents on rAAV transduction. 

Consequently, degradation of MRN complex by means of Adenovirus 

ElB55k/E4orf6 complex exerts a positive effect on AAV transduction similar to 

the one observed after HU treatment.

After ssDNA to dsDNA conversion, the vector genome is known to 

undergo additional changes, which are mediated by host cell factors acting on the 

AAV ITR ends. These changes involve circularization of the vector DNA, or the 

formation of end-to-end concatamers (reviewed in McCarty et al., 2004). Cellular 

proteins that participate in HR and NHEJ may either play a role at this level or, 

more likely as in the case of Rad52, in the process of annealing of rAAV genomes 

of positive and negative polarity.
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It is possible to speculate that histone H2AX may get phosphorylated at the 

moment of concatamer formation and/or at the moment of integration.

H2AX may be assembled into the AAV dsDNA genomes, as well as 

present in the target genomic AAVS1 locus. Phophorylation of either viral or 

AAVS1 H2AX may be required to trigger a DNA damage response that will end 

with the integration of the viral DNA into the host chromosome. Further studies 

about the structure and composition of the rAAV chromatin may help to explain 

these findings.

A recent work that exploited self-complementary AAV vectors, which 

bypass the ssDNA to dsDNA conversion step, because their genomes are already 

dsDNA, has shown that ATM and MRN proteins participate in AAV genome 

circularization (Choi et al., 2006). Thus, it might be envisioned that these 

proteins, while being inhibitory on the input single-stranded viral genome either 

by impeding dsDNA synthesis or by routing the genomes to aberrant processing 

or nucleolytic degradation, might become positive factors when dsDNA synthesis 

has already occurred. At this stage, resolution of the secondary structures in the 

ITRs by promoting circulation or multimerization might be essential to allow 

stable maintenance of the viral genomes inside the nucleus.

Does genome integration require the formation of dsDNA AAV genomes? 

The clarification of the exact nature of the substrate required for site-specific 

integration is of fundamental importance; in this respect the used of self- 

complementary Rep containing AAV could give some valuable information.

H2AX, Rad52 and DNA-PKcs proteins may be required for the processing 

of the AAV in order to generate multimerized genomes competent for 

transcription or/and suitable substrate for Rep dependent site-specific integration.
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On the other hand, the proteins of the MRN complex and Mdcl exert inhibitory 

roles both at transcription and at site-specific integration.

Finally, we wish to emphasize that one of that one of most challenging but 

still unanswered questions related to rAAV vectors is the explanation, in 

molecular terms, of their exquisite efficiency in post-mitotic tissues in vivo, such 

as brain, retina and heart (Carter et al., 2004). Our findings prompt the 

investigation of the levels and activity of MRN complex proteins, HR and HHEJ 

pathways in these tissues.
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