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A B S T R A C T 

 

Associations between indoor air quality (IAQ) and health in sport practise environments are not well 

understood due to limited knowledge of magnitude of inhaled pollutants. Thus, this study assessed 

IAQ in four health clubs (HC1–HC4) and estimated inhaled doses during different types of activities. 

Gaseous (TVOCs, CO, O3, CO2) and particulate pollutants (PM1, PM4) were continuously collected 

during 40 days. IAQ was influenced both by human occupancy and the intensity of the performed 

exercises. Levels of all pollutants were higher when clubs were occupied (p < 0.05) than for vacant 

periods, with higher medians in main workout areas rather than in spaces/studios for group activities. 

In all spaces, TVOCs highly exceeded legislative limit (600 μg/m3), even when unoccupied, indicating 

possible risks for the respective occupants. CO2 levels were well correlated with relative humidity 

(rs 0.534–0.625) and occupancy due to human exhalation and perspiration during exercising. Clubs 

with natural ventilations exhibited twice higher PM, with PM1 accounting for 93–96% of PM4; both PM 

were highly correlated (rs 0.936–0.995) and originated from the same sources. Finally, cardio classes 

resulted in higher inhalation doses than other types of exercising (1.7–2.6). 
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1. Introduction 

 

Environmental pollution is a major cause of disease, disability, and premature death 

worldwide. Annually, 9 million of deaths (i.e. 16% of all deaths worldwide) are caused by 

environmental pollution alone [1], which is approximately three times more that combined 

mortalities from severe diseases such as tuberculosis, AIDS and malaria [2]. Out of 

these, 6.5 million of deaths are annually caused by air pollution alone [2]. Apart from 

respiratory and cardiovascular diseases, air pollution has been associated with various 

adverse health effects (cancers of different organs, impaired neuro- and cognition 

development, diabetes – type 2) [3]. Air pollution might be also a risk factor for obesity 

[3,4], which is relevant for nowadays sedentary society [5,6]; in western European 

countries more than half of current adult population (≥20 years) is overweight or even 

obese [7]. Due to the high exposure risks even at low concentrations of pollutants [8], air 

pollution effects are especially relevant in indoor environments, where people spend 90% 

of their daily time. The prolonged duration and lesser degree of dilution and/or pollutant 

dispersion indoors may eventually lead to indoor exposures of several magnitudes larger 

than those from ambient air [[9], [10], [11]]. Furthermore, humans and their activities are 

significant factor indoors [12]. Several studies have reported or even quantified human 

contribution to indoor concentration of various pollutants [9,12]. Thus, it is particularly 

relevant to assess levels of indoor air quality (IAQ) in places, such as fitness centres or 

gyms, where a significant part of pollution is assumingly caused by the occupants [9,13], 

yet simultaneously, increased ventilation rates (due to physical exertion) expose body to 

much great amount of pollution; inadequate IAQ in these places can easily counteract 

the well-being benefits of physical exercise [14,15]. 

 

During last years many studies have produced information regarding IAQ, with specific 

attention to indoor microenvironments (pre- and primary/elementary schools, homes, 

offices, hospitals and etc. [[16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], 

[28]]), as well as some specific occupational settings [[29], [30], [31]]. However, indoor 

sport environments have been studied considerably less. The main scientific focus was 

on particulate matter (namely PM10, PM2.5, PM1), with data coming either from 

educational settings (elementary/primary schools gymnasiums, university sport facilities; 

[9,[12], [13],[32], [33], [34], [35], [36], [37], [38], [39], [40]]) or from sport facilities 

(gymnastic and sport halls; [[41], [42], [43], [44], [45]]); health or fitness clubs have been 

addressed considerably less [15,[46], [47], [48], [49]]. World Health Organization (WHO) 

recommends 150 (at least) – 300 min (for additional benefits) of moderate-intensity 

physical activity per week [50], which translates approximately to 1 h/day on 5 

days/week. Time and frequency spent in these places indicate the need of further 



assessment of IAQ and its impacts on human health in order to develop strategies to 

control and reduce the respective risks. 

 

This study evaluated IAQ in indoor fitness clubs and estimated potential inhalation doses. 

Concentrations of gaseous (total volatile organic compounds – TVOCs, ozone – O3, and 

carbon dioxide – CO2) and particulate (PM4 and PM1) pollutants, and comfort 

parameters in indoor air of four health clubs were evaluated. Secondly, inhalation doses 

for the respective occupants (exercising subjects and fitness instructors) were assessed 

considering three different age categories of males and females, under various types of 

physical activity (individual training and group classes). 

 

 

2. Materials and methods 

 

2.1. Sampling 

 

Indoor air quality sampling was done in four health clubs (HC1–HC4) in spring 2014 

(May–June) during 40 consecutive days (weekdays, weekends). All clubs were situated 

in urban zones of Oporto Metropolitan Area; road traffic and local industry were the 

main emission sources of the respective sites [51,52]. HC1–HC2 were smaller and 

simpler local gyms. HC3–HC4 were large, sophisticated health clubs (internationally 

recognized) that accommodated ∼400 up 1000 clients/day. Detailed descriptions of all 

clubs and their facilities are summarized in Table 1S of the Supplementary material. 

Samplers were mounted on supports (∼1.4 ± 0.2 m), and at least 1.5 m from walls to 

minimize the influence on pollutant dispersion [53,54]; location of samplers was chosen 

in order to avoid any direct influence (opened windows/doors, 

mechanical ventilation systems, cleaning product emissions, and etc.). Gaseous 

pollutants (TVOCs, CO, O3, and CO2) were sampled by a multi-gas sensor probe (model 

TG 502; GrayWolf Sensing Solutions, Shelton, USA; accuracy ±2% reading for CO and 

TVOCs; ±3% reading for CO2 and O3). PM4 and PM1 were monitored by TSI DustTrak 

DRX photometer (model 8533; TSI Inc., MN, USA; flow rate of 3.0 L/min). Temperature 

(T) and relative humidity (RH) were recorded by Testo mini data-logger (model 174 H; 

Testo AG, Lenzkirch, Germany) (Fig. 2S). All equipment was calibrated (at the 

manufacturers) prior to the sampling campaign. Additionally, readings of multi-gas sensor 

probe were weekly checked using calibration standards (difference <5%) and adjusted 

according to the manufacturer´s instructions. In order to minimize the occurrences of 

sudden artefact jumps in PM concentrations [55], photometer was daily zeroed (using 

external zeroing module). 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/road-traffic
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/emission-source
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https://www.sciencedirect.com/science/article/pii/S0304389418305260?via%3Dihub#bib0260
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/pollutant-dispersion
https://www.sciencedirect.com/science/article/pii/S0304389418305260?via%3Dihub#bib0265
https://www.sciencedirect.com/science/article/pii/S0304389418305260?via%3Dihub#bib0270
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/ventilation
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/gaseous-pollutant
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https://www.sciencedirect.com/science/article/pii/S0304389418305260?via%3Dihub#bib0275


Air quality sampling was done continuously (with 1 min logging interval); each day 

approximately 1400 values were recorded. In each club, sampling was consecutively 

conducted in various places (Fig. 1): (i) main workout areas (MWA; a joint space with 

free weights, bodybuilding machines and cardiovascular training-related equipment), (ii) 

rooms/studios for group classes (SGA); technical areas (receptions, storage rooms, 

locker rooms, or spa centers for HC3 and HC4; Table 1S) were not considered. 

 

 

Fig. 1. Visualizations of indoor spaces at health clubs (HC1−HC4): (a–d) main workout 

areas; (e–h) rooms/studios for group classes. 

 

All pertinent information in regards to indoors and outdoors of the clubs (cleaning schedules, club 

occupancy, ventilations, ambient emission sources and etc.) was collected by a team member who 

was continuously present on site; staff of each club provided further information regarding any 

untypical occurrence/situations. Information regarding ambient air quality during the respective period 

is summarized in Table 2S. 

 

2.2. Inhalation dose calculations 

Inhalation doses calculation was determined according to the previous methodology [37,56,57], but for 

readers convenience details are summarized in SM (Text 1S). Considered scenarios included: (i) 

workout training (60 min; in MW), and classes (50 min; SGA) either “mind or body” or with “dynamic 

cardiovascular exercising”. Gender/weight specific parameters were adapted from USEPA [58] 

considering four age categories and also occupational exposure (instructors; Table 3S). 

 

2.3. Statistical analysis 

https://www.sciencedirect.com/science/article/pii/S0304389418305260?via%3Dihub#fig0005


Statistical analysis was performed by Microsoft Excel 2013 (Microsoft Corporation), SPSS (IBM SPSS 

Statistics 20), and Statistica software (v. 7, StatSoft Inc., USA). As Shapiro − Wilk’s test did not confirm 

normal distributions of the obtained data, nonparametric Mann − Whitney U test was used to compare 

the respective medians (threshold of statistical significance set at p <  0.05). 

 

3. Results and discussion 

3.1. Gaseous pollutants 

Over the sampling campaign, the levels of TVOCs (Fig. 2a) highly varied. Concentration ranges were 

especially large in HC1 and HC2, with values, respectively, between 14 μg/m3 – 21.8 mg/m3 (median 

of 1.4 mg/m3), and 2 μg/m3 – 20.4 mg/m3 (median of 1.1 mg/m3). In HC3 and HC4, i.e. clubs 

equipped with controlled ventilations (Table 1S), obtained concentration ranges were approximately 2–

3 times lower: 73 μg/m3 – 12.4 mg/m3 at HC3, and 3 μg/m3 – 8.0 mg/m3 at HC4. Considering different 

spaces of each club (MWA vs. SGA), the highest TVOCs medians were observed in HC3 (MWA: 2.6–

5.0 mg/m3, SGA: 2.3–2.8 mg/m3) whereas the lowest were in HC4 (236–386 μg/m3 and 600–1090 

μg/m3 in MWA and SGA, respectively). Overall, TVOCs levels (both medians and ranges) were higher 

in MWA rather than SGA. These findings were understandable considering larger use and scope of 

this type of indoor space (in terms of number of exercising subjects, conducted activities, respective 

emissions, etc.). Considering harmful health effects of these compounds, WHO provides guidelines for 

some individual VOCs in indoor air (such as benzene, trichloro- and tetrachloroethylene; [59]), 

whereas the Portuguese legislation on IAQ in public buildings [60] defines a protection limit expressed 

as total VOCs (600 μg/m3; 8–h; Table 4S). This limit value was highly exceeded (3–5 times) in 88% of 

the analysed indoor spaces (both MWA and SGA) even when considering, more restrictively, median 

concentrations (Figs. 2a, 1Sa). It is alarming that concentrations exceeded (up to 8 times) the limit, 

even during off-hours (i.e. when unoccupied). From the limited available information, it should be 

noted that in general, the TVOCs obtained in the four characterized HC were higher than in other 

published works [32,86,103,104]. Alves et al. [32] reported TVOCs in a range of 35–2318 ppb (means 

of 53–82 ppb) in university sport facility (Léon, Spain), but that setup (a court, partly opened 

construction) was very different from a typical health club setting; opening doors and windows results 

in lower TVOCS [103]. From a national perspective, TVOCs in the four HC were still higher than in 

other indoor environments, including primary schools in Porto (range: 2–820 μg/m3 [86]) or in Lisbon 

(range 100–500 μg/m3 [104]), and in home bedrooms (range: 0.20–1.47 μg/m3 [103]). As VOCs are 

released from various personal-care products (perfumes, hair sprays, hand disinfectants; [61]), 

increased VOCs (monoterpenes) have been reported in confined spaces due to occupant’s activity 

[62]. Furthermore, VOCs are directly emitted from humans themselves (exhaled breath, perspiration; 

[[63], [64], [65]]), but secondary oxidation reactions between ozone and human skin lipids (with 

squalene being the major precursor) can be a relevant VOCs source [66,67]. In agreement, in HC1–

HC2 TVOCs concentrations were higher (p < 0.05) when occupied (Figs. 3a, 3S). However, in HC3–



HC4, this trend was opposite, with increased (20–90%) TVOCs during unoccupied periods. These 

elevated concentrations most likely resulted from pollutants accumulation (Fig. 3a), as ventilation 

systems were off during night. In addition, in HC3 (exhibited the highest levels both during occupied 

and off-hours), rooms layout (central swimming pool area surrounded by spaces to exercise; 

separated only by glass panel; Fig. 1c, g; Table 1S) led to direct connection between the spaces. Use 

of cleaning and sanitation products, as well as maintenance processes to disinfect pool water/the 

respective area can generate VOCs [68] that consequently infiltrated to exercise spaces. Thirdly, the 

main cleanings were conducted during off-hours, which might also elevate the respective TVOCs 

(when unoccupied), as previously reported [32]. Finally, in regards to intra-space comparison, HC4 

was the only club where TVOCs in MWA were ∼3 lower than at SGA (Fig. 2a). The respective MWA 

room volume was significantly (∼11 times) larger (vs. HC1–HC3: MWA room volume ∼2 times larger 

than SGA; Table 1S), which might resulted in emissions dilution in the respective room. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Levels of gaseous pollutants (■ median; □ 25–75%, and  range) at health clubs (HC1−HC4) 
during occupied and non–occupied periods: (a) TVOCs; (b) CO2; and (c) O3. Horizontal dashed lines 
represent limit values set by Portuguese legislation (Decret 



 

Fig. 3. Temporal variations of gaseous pollutants: (a) examples of continuous 

evolution (4 weekdays) of levels of total volatile organic compounds levels (main 

workout areas) of HC1 and HC3 (grey scale indicates unoccupied periods; (b) mean 

daily variations of CO2 at four clubs (HC1−HC4) and the respective occupancies 

(note: occupancy profile of HC4 is not presented due to the proprietor restrictions. 



CO2 median concentration across HC was 1558 mg/m3, with values ranging between 733–

8122 mg/m3 at HC1, 697–5299 mg/m3 at HC2, 1046–7649 mg/m3 at HC3, and 252–49007 mg/m3 at 

HC4. In all HC, CO2 were significantly higher (up to 2 times) when occupied; these differences were 

especially obvious in clubs with natural ventilations (60–120% in HC1–HC2 vs. 20–80% in HC3–HC4). 

Temporal CO2 maxima exceeded standard of 2250 mg/m3 set in Portuguese standard in all analysed 

spaces (Fig. 2b) as well as the stricter recommendation of the American Society of Heating, 

Refrigerating, and Air-Conditioning Engineers (ASHRAE; 1800 mg/m3) [69]. Furthermore, when 

occupied, median concentrations were higher than the limit in 75% of all analysed spaces, indicating 

insufficient ventilation. Similarly to TVOCs, higher levels were observed in MWA (higher number of 

subjects), presenting the highest median concentrations (4537 mg/m3; ∼2 higher than limit value) at 

MWA of HC3. In this club, medians CO2 (MWA) exceeded limit even when unoccupied, indicating 

overall inadequate air quality. Whereas CO2 is not a hazardous pollutant at the levels detected in HC 

[69], exposure to moderate concentrations of CO2 can cause changes in human performances and 

influence decision-making [70]. CO2 daily profiles (Fig. 3b) exhibited two maxima: typically around 

midday (approx. at 12–13 h) and at early evening hours (approx. at 20–21 h). The lowest CO2 levels 

were observed during early mornings and early afternoons (approx. at 8–9 and 15–16 h). Indoors, 

respiration of the respective occupants is the primary CO2 source, and CO2 profiles well 

corresponded with occupancies of the clubs (Fig. 3b). The mean concentrations of CO2 (that were 

estimated in relation l to room occupancy; Table 5S) ranged between 143 and 284 mg/m3 per 

occupant in SGA and 284–735 mg/m3 per occupant in MWA. While high variations of the obtained 

values were observed, it is possible to highlight that in all HC, MWA always exhibited higher (2–4 

times higher) levels than in SGA, mostly likely due to higher occupancy of the respective spaces. 

Taking into consideration the dimensions and sizes of the spaces, CO2 factors ranged 0.6–

1.4 mg/occupant in SGA and 0.5–1.5 mg/occupant in MWA; the intra-space comparison being similar 

in a given club (Table 5S). However, it is important to emphasize that the indoor CO2 concentrations 

are also influenced by metabolic activity of occupants [48] and physical parameters of the room (air 

exchange rates), which were not assessed in this work. 

 

Overall, levels and distributions of ozone (Figs. 2c; 1Sc, Supplementary material) varied among HC 

(p < 0.05), with the following ranges: 20–118 μg/m3 at FC1, 20–1660 μg/m3 at FC2, 20–1100 μg/m3 at 

FC3, and 20–2490 μg/m3 at FC4. Over that period, the daily concentrations of ozone (maximum 8–h 

mean) in ambient air ranged between 39.8–119 μg/m3 (Table 2S), being below the indicated limit of 

120 μg/m3 [105]. These levels need to be implicated carefully, once the concurrent measurements of 

ozone in outdoor air were not conducted directly in the HC vicinities; data were retrieved from the 

national monitoring network, for each HC considering a station that was situated the closest to it and 

with characteristics similar to those of health club site. Similarly to TVOCs and CO2, the highest 

medians were observed in spaces of HC3 (occupied periods SGA: 138 μg/m3; MWA: 158 μg/m3). 

Thus HC3 spaces (both MWA and SGA) were the most polluted ones; increased levels of gaseous 



pollutants (often exceeding the guidelines even during unoccupied periods) indicate the need to 

improve the respective IAQ. Once again, ozone showed temporal variations and exhibited significantly 

higher levels (p < 0.05) during occupied periods. Indoor sources of ozone include equipment 

(photocopiers, printers, or air cleaners [71,72]), but the major source of ozone is the ambient air and 

the majority of ozone indoors results from infiltrations (due to ventilation) [106]. Consequently, the use 

of exhaust ventilation systems may produce lower concentrations of ozone indoors than would have 

occurred when using natural ventilation systems (considering the same air-exchange rate) [107]. In 

agreement, in clubs with natural ventilations HC1–HC2, the differences of ozone levels during 

occupied vs. unoccupied were approximately twice higher (65–120%) than in clubs that were equipped 

with mechanical ventilation (∼20–80%). Though there are no regulation for ozone indoors (Table 4S), 

its negative health impacts have been recognized, with recommendation to mitigate indoor ozone to 

ALARA levels (i.e. as low as reasonably achievable [73]). It is rather difficult to compare the obtained 

results with other studies, as information regarding indoor ozone in sport facilities is very limited (Table 

6S). Some authors [48] reported fitness clubs with ozone concentrations of 0–0.17 mg/m3, being 

somewhat similar to this study. Nevertheless, due to different study design (45–60 min long 

measurements conducted when the most occupied, i.e. late afternoon/night), the attained findings 

need to be implicated carefully. Additional information on ozone was reported for sport halls [44], with 

mean levels of 8–19 μg/m3 (depending on the event happenings). Obviously, these concentrations 

differed due to their dissimilar characteristics. Furthermore, both these studies also included VOCs 

and CO2 assessments. Information concerning these pollutants (though still limited for fitness/health 

clubs) consists of more data mainly from evaluations of sport halls [42,43] and educatory environments 

(primary/elementary school gymnasiums, university centres, etc.) [9,32]. Considering specifically 

fitness clubs [48], the reported means (CO2: 524–4418 mg/m3; TVOCs 0–3.3 mg/m3) were in similar 

ranges as in presented work. In all HC, ozone was positively moderately (rs: 0.487–0.643 at HC1–

HC2, HC4) to highly (rs: 0.835 at HC3) correlated with TVOCs, indicating associations between these 

pollutants. Ozone is a reactive pollutant and its indoor chemistry (i.e. ozone-initiated reactions) can 

create gaseous products, which may be even more reactive and/or heath-hazardous [[74], [75], [76], 

[77], [78]]; insufficient air exchange rate can then increase levels of ozone-reactive VOCs [79]. These 

processes may be influenced by room occupancy [77,80] as humans are significant sinks for ozone 

indoor concentrations due to skin lipids that react with ozone to produce characteristic oxidation 

products [67]. 

 

Finally, 59–68% of the registered values for CO were below LODs (mainly in HC1, HC2, HC4). Thus, 

this pollutant was not further analysed. However, the obtained levels across four HC (median 

0.181 mg/m3 at HC1 – 1.26 mg/m3 at HC3) were well below guideline limit of 10 mg/m3, indicating that 

CO was not a concern in the respective environments. Nevertheless, as this pollutant is toxic to human 

health, its presence should be monitored. 

 



3.2. Particulate matter 

Similarly to gaseous pollutants, PM levels highly varied. At HC1 and HC2, PM4 ranged, respectively, 

5–368  μg/m3 (median 38 μg/m3) and 6–829  μg/m3 (median 21  μg/m3). The corresponding 

PM1were: 5–328  μg/m3 (36  μg/m3) at HC1 and 6–638  μg/m3 (20  μg/m3) at HC2. In the larger HC, 

PM varied considerably less: PM4 of 11–78  μg/m3 (median 20  μg/m3) and PM1 of 11–75  μg/m3 (19 

 μg/m3) at HC3; at HC4 the respective levels were 3–105  μg/m3 (15  μg/m3) for PM4 and 3–102 

 μg/m3 (14  μg/m3) for PM1 (Fig. 4S, Supplementary material). These results showed that at HC1–

HC2, the respective PM ranges were significantly higher (p < 0.05) although these clubs daily 

accommodated fewer clients (118–265 per day vs. up to 410–1000 clients/day in HC3–HC4). Apart 

from natural ventilation, these clubs were situated directly on a street level (ground floor; Table 1S) 

with windows facing busy roads (414–1338 vehicles/day; Fig. 5S). Thus, indoor PM might result from 

infiltrations of ambient emissions. Similarly, previous studies [81,82] reported higher infiltrations of 

ambient particulate emissions under natural ventilation conditions (i.e. windows opening) than when 

using mechanical systems. During the respective period, PM levels in ambient air were on lower-end 

(Table 2S), ranging between 6–41 μg/m3 and 1–9 μg/m3 for PM10 and PM2.5 (24-h means), 

respectively. These ranges fulfilled the regulatory guidelines (24–h PM10 average <50 μg/m3 [105]). 

The concentrations of fine particles seemed particularly low for urban environments, however, on 

European scale, Portugal exhibits relatively low PM2.5 levels [108]; the estimated average (4 ± 2 

 μg/m3) fulfilled EU annual limit of 25 μg/m3 but also the more stringent recommendation of WHO of 

10 μg/m3 [109]. Although there is more data on PM in sport environments (compared to gaseous 

pollutants), the majority comes from educational sport facilities [9,12,13,[32], [33], [34], [35], [36],[38], 

[39], [40]]. Fitness/health clubs though have different goals than school/university gyms, and thusly 

represent different indoor environment (in terms of design, occupancy and conducted activities, 

available facilities, construction and used materials; [83]). Only few IAQ studies were conducted in 

fitness clubs. The main information comes from series of works [15,48,84] conducted in Lisbon 

(Portugal), with PM1 means in a range of 0.9–18  μg/m3 (PM2.5:1.5–23  μg/m3). These levels were 

fairly similar to those in HC3–HC4 (i.e. with ventilation systems) considered in the present study. 

 

In majority of places (HC1–HC3), levels of both PM were lower (p < 0.05) when clubs were vacant (Fig. 

4). The difference between PM concentrations during both periods was especially distinctive at HC2 

where, when occupied, PM temporarily reached levels 13–42 times higher than when closed (means: 

31 and 28 μg/m3 for PM4 and PM1 when occupied vs. 20  μg/m3 and 19 μg/m3 for non-occupied; 

p < 0.05). Thus, it is assumed that high indoor PM levels obtained in HC2 were greatly influenced by 

human occupancy. However, because of the high traffic density in streets surrounding HC2 (Fig. 5S), it 

is likely that indoor PM patterns were influenced by the infiltrations of outdoor emissions due to use (or 

absence, i.e. – closed windows when unoccupied) of natural ventilations. Therefore, in future studies 

on assessment of air exchange rate would be important to clarify these findings. Finally, apart from 

human activities [13,85], the characteristics of the built environment (i.e. layout, used materials, type of 



ventilation, indoor sources and etc.; [20,81,85,86]) may strongly impact the respective indoor 

concentrations. The highest PM levels were observed in HC1. When occupied, PM1 medians at both 

spaces of HC1 even exceeded the PM2.5 WHO indoor air quality guideline (25  μg/m3 for 24 h; [59]) 

but also the Portuguese norm (25  μg/m3 over 8 h; [60]), thus indicating possible risks. Exercising in 

areas with increased PM concentrations may increase adverse health effects, as deposition of 

particulates doubles with increased intensity of exercise [35]. Moreover, PM deposition into respiratory 

tract may be up to five times higher during moderate activity than at rest [9]. Maintenance works 

(construction and consequent cleaning) that was repeatedly carried out in SGA of HC1 during the off-

hours (i.e. late at night; Fig. 5a), probably caused the reoccurring events of elevated PM (up to 6–7 

times) and resulted in overall increased PM4 and PM1 medians (25 and 30% higher for PM4 and PM1, 

respectively) during unoccupied periods. HC4 was the only club where PM levels were always higher 

during off-hours (13 vs. 24  μg/m3 for both PM). These results were somewhat unexpected. However, 

previously increased PM when the respective places were unoccupied were reported [33,87], resulting 

either from secondary formations of aerosols (due to VOC emissions from cleaning products;[88]) 

and/or accumulation of PM indoors due to motionless air conditions that prevented mixing [87]. The 

intra-space comparisons also demonstrated a greater range of PM levels during occupied periods than 

when vacant. PM medians were statically different (p < 0.05) between two spaces; in agreement with 

gaseous pollutants, higher PM4 and PM1 medians (p < 0.05) were observed in MWA rather than in 

SGA. 

 



 

Fig. 4. Levels of particulate pollution (■ median; □ 25–75%, and  range) at health clubs 

(HC1−HC4) during occupied and non–occupied periods: (a) PM4; and (b) PM1. 

Horizontal dashed lines represent 8-h limit value for PM10 (50 μg/m3) and PM2.5 (25 

μg/m3) set by Portuguese legislation (Decreto-Lei 118/2013). PM data (distributions 

and medians) of both fractions were significantly different (p < 0.05) across four clubs, 

across different places, and between both occupied and non- occupied periods. Note: 

for better visualization vertical axes y are shown in logarithmic scales; MWA identifies 

main workout areas; SGA are spaces for group activities. 

 

 

 



 

 

 

 

 

 

Fig. 5. Example of temporal variations of PM in rooms/studios for group activities 

(SGA): (a) representation of PM1 profiles collected during the same weekdays at 

HC1, with both profiles being relatively similar except for the concentration increase 

due to the maintenance works (blue / dashed line: 22:30-23:15); (b) PM1 and PM4 

concentration profiles at HC4. Between midnight and ∼7 a.m. profiles of both PM 

are very flat with almost no variation (noticeable drop of PM levels occurs at 6:50 

when clubs opened and mechanical ventilation system were in use). (For 

interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article). 

 



 



PM1/PM4 mass ratios were relatively high and ranged 0.78–1.00 (median of 0.94) at 

HC1, 0.64–1.0 (0.95) at HC2, 0.84–1.0 (0.93) at HC3, and 0.83–1.0 (0.96) at HC4. 

Whereas in HC1 and HC2 the large contribution of coarse fraction (PM4–1) was 

occasionally observed (36–46%) due to outdoor infiltrations, overall PM1 composed 

>90% of indoor particulates, which may be relevant considering the possible health 

impacts of small sized PM [89,90]. PM4 vs. PM1 daily profiles showed similar trends (Fig. 

5b), being highly (and positively) correlated (Spearman correlation coefficients rs: 0.936 

at HC3 – 0.995 at HC4). In SGA, maxima of PM temporal variations were typically higher 

than in MWA, and occurred during high intensity cardio activities (Fig. 5a): HC1: 328–368 

μg/m3 during zumba; HC2: 638–829 μg/m3 during spinning; HC3: 53–58 μg/m3 during 

cardio muscular class; and HC4: 51–52 μg/m3 during body combat. Concerning HC4, it 

is necessary to remark that although PM levels were higher during off-hours (p <  0.05), 

the trends of concentration profiles during that time were stable with almost no variations 

(particularly during midnight–7 a.m.; Fig. 5b). 

 

3.3. Comfort parameters 

T and RH are among parameters that affect thermal comfort of the respective occupants. 

In general, RH levels recommended by different organizations range from 30 to 60%. For 

RH of 30 and 60%, ASHRAE recommends indoor T ranges 23.0–26.6 °C and 23.0–

25.8 °C, respectively [91]. However, specifically for gyms, RH 55–75% and T range 18–

25 °C (summer) are advised [92]. Typically, higher levels of RH were observed in all 

spaces when occupied (Fig. 6a). When exercising, breathing and perspiration generate 

substantial amount of water vapour, which impacts measured RH [13]. Furthermore, RH 

levels were moderately and positively correlated with CO2 (rs 0.534 at HC3–0.625 at 

HC1) pointing towards human activities contribution and exhalation during exercising. 

Whereas indoor conditions of HC1 and HC4 were within the recommended range (55–

68%; Fig. 6a); in MA of C2 and C3, RH were somewhat lower (44–48%), which can 

cause some discomfort (drying nose, throat, mucous membranes and skin) [93,94]. 

 

 

Fig. 6. Comfort parameters (■ median; □ 25–75%, and range) at health clubs 



(HC1−HC4) during occupied and non–occupied periods: (a) relative humidity (RH); 

(b) temperature (T). Horizontal dashed lines represent indicated ranges for indoor 

spaces for sport practising (SEJD, 2008). Distributions and medians of parameter 

were significantly different (p < 0.05) across four clubs. Note: MWA identifies main 

workout areas; SGA are spaces for group activities. 

 

In general, during occupied periods (Fig. 6b) T was within the recommended guidelines [95]. Higher 

exceedance (maxima value of 33 °C) was observed in MA of C2, which occurred during the later-

afternoon period. As human body adds to room heat, accumulation of larger number of room 

occupants can increase air temperature [13]. However, considering the position and orientation of the 

rooms in HC2, T increase was most likely caused by sun shining; the room walls almost entirely 

consisted of glass panels (Table 1S) and entering heat power might warm up room air by few degrees 

[13]. As regular exercising in environmental conditions such as elevated T and increased RH can 

cause various health consequences [94,96,97], comfort parameters should be maintained within the 

recommended ranges (by proper use of air conditioning systems, room insulating, sun/heat reductions, 

and etc.). 

 

3.4. Inhalation dose assessment 

Total age- and gender-specific inhalation doses for different levels of physical activities are presented 

in Fig. 7, whereas doses estimated for each pollutant (gaseous, PM4 and PM1) are summarized in 

Table 7S. In agreement with the previous results, the highest magnitude of inhaled total doses (all 

ages and both genders) were in HC3 (1.6–3.5 times), which was the club with the poorest IAQ (Fig. 2, 

Fig. 4). Type of the conducted activities is relevant for the inhaled dose. More intense exercising 

(cardio classes) were associated with the highest doses (due to increased breathing); inhaled doses of 

cardio classes were approximately 1.7–1.9 (males) and 1.9–2.6 (females) times higher than for mind 

and body activities. Exercise duration is also important. As individual training lasts longer (approx. 20% 

in this study), cardio vs. individual training doses comparison was much lower (1.0–1.17 for females, 

1–1.12 for males). Furthermore, under this scenario, individual training included 20 min of warm-up 

session (high intensity breathing) and 40 min of body building (moderate inhalation), which also 

influenced the estimated doses. A comparison between both genders shows that women exhibited 

higher magnitude of inhaled doses (approx. 10–23% more than males), most likely due to larger 

limitation of expiratory flow in females and, simultaneously, increased efforts to breath when intensely 

exercising [15]. However, gender specific parameters were retrieved from existent records [58] with 

higher variations of ventilatory patterns between different age categories of females than males [58]. 

Results summarized in Table 7S showed that CO2 accounted for majority (∼ 98%) of the estimated 

inhaled doses. Nevertheless, CO2 is also a pollutant directly produced by human respiration [98]. 

Overall inhalation intakes of particulates (∼ 0.3–1.3 μg/kg) well corresponded to data (0.2–2.1 μg/kg) 

published by other authors [48,99]. Size of particles governs the deposition and removal rate within 



respiratory system. Type of respiration (i.e. nasal vs. oral) is also relevant as particle penetration into 

the lower respiratory tract is dependent on breathing route [100]. Secondly, elevated air flow velocity of 

breathing during exercising may cause transport of pollutants into the deepest part of the respiratory 

system, increasing the risk to human health [14]. Ozone inhaled doses were in similar ranges to PM 

(0.7–3.1 μg/kg) whereas inhalation dose of TVOCs ranged between 11–90  μg/kg. For gaseous 

compounds, their solubility affects the inhaled uptake [101]. Apart from that, it is necessary to point out 

that pollutants studied within this work pose adverse health effects. Potentially synergic interactions 

between these pollutants seem to be indispensable factor when considering relationship between 

human exposure to air pollutants and adverse health effects. Despite the existing limitations for 

epidemiologic studies, synergism effects between ozone and other pollutants have been demonstrated 

in animal studies, and in limited capacity in human studies as well [102]. 

 

 

 

 

 

 

Fig. 7. Total gender- and age-specific inhaled doses (μg/kg) during different levels of 

physical activities. 



Inhalation doses of staff and instructors (male and female combined) who oversee the main 

workout area were also estimated. Obviously, large occupational duration (8–h) led to 

increased inhalation intakes (3–9 times higher than those who exercised). However, 

exposures to harmful pollutants in work places [110] represent just one microenvironment 

frequented on a daily basis. Therefore, other relevant microenvironments should be 

considered. 

 

4. Conclusions 

This study provides information on air quality in indoor environments for sport practise. 

Across four health clubs, concentrations of gaseous (TVOCs, O3, CO2) and particulate 

pollutants (PM4 and PM1) exhibited large temporal spatial variations. TVOCs highly 

exceeded limit of 600 μg/m3 designated by Portuguese legislation in all health clubs [60], 

even when these were unoccupied, thus indicating magnitude of potential risks for the 

respective occupants. The highest levels of all gaseous pollutants were observed in HC3, 

where CO2 levels exceeding the given standard of 1800 μg/m3 (even when the club was 

empty) indicate insufficient ventilation. In all analyzed clubs, CO2 was well correlated with 

relative humidity (rs 0.534 – 0.625) and its daily profiles well agreed with occupancies, thus 

suggesting contribution of human activities (due exhalation during exercising). Overall, levels 

of gaseous and particulate pollutants were higher when clubs were occupied (p < 0.05) than 

for vacant periods, with larger medians observed in main workout areas rather than in 

spaces/studios for group exercise. Regarding PM, higher (∼2 times) concentrations were 

observed at clubs with natural ventilations. PM1 accounted approximately for 93–96% of 

PM4; both PM were highly correlated (rs 0.936–0.995) pointing towards originating from the 

same emission sources. 

 

Indoor chemistry of individual pollutants is complex. Additionally, during physical exercise, 

IAQ is influenced by human occupancy and intensity of exercise. Inhalation dose of subjects 

in more demanding classes (cardio) resulted in 1.7–1.9 (males) and 1.9–2.6 (females) higher 

than in other types of exercising. Furthermore, female subjects inhaled during exercising 

about 10–23% higher doses than male ones, thus demonstrating the need to consider the 

differences between both genders in exposure studies. As knowledge regarding the 

associations between IAQ and health in indoor environments used for physical exercise is not 

well characterized yet, further assessments of potential exposure impacts and magnitude of 

inhaled pollutants are needed. 
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