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Resumo

Esta dissertação tem como objetivo a implementação de uma Rede Neuronal Convolucional, numa
plataforma FPGA.

Atualmente, as redes neuronais são o tipo de algoritmo mais usado em aprendizagem com-
putacional profunda. Este tipo de rede foi originalmente concebido para lidar com problemas que
involvam imagens, adicionando técnicas de processamento de imagem ao algoritmo original.

O sistema escolhido foi a maxeler, pois este possibilita a escrita de código de alto nivel, liber-
tando tempo para testes e simulações e também porque só existe uma outra implementação com ar-
quitetura configurável que seja capaz de treino usando este sistema. A solução proposta resolve
alguns problemas existentes, nomeadamente em termos de configuração de rede, parallelismo e
recursos do equipamento apresentando ao mesmo um speed-up de ×1.4. Adicionalmente, uma
arquitetura de treino que usa o todo o sistema é proposta.
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Abstract

The objective of this dissertation is to implement a Convolutional Neural Network in an FPGA
platform.

Neural Networks are, at the time of writing, the most used algorithm in machine learning
and deep learning. This particular type of network was originally created to deal with problems
regarding images and includes some techniques from image processing.

The maxeler system was chosen because it allows for higher level code to be written which in
turn means more time is free for system simulations and also because there’s only been one other
implementation capable of training using this system. The implemented solution extends on the
only other realization, which had some limitations , provides a ×1.4 speedup over the previous
design and proposes training dataflow to use available DFE’s and the CPU in parallel. Further-
more, the design is fully customizable including network architecture, parallelism and hardware
resource usage, via a created API.
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“We can only see a short distance ahead,
but we can see plenty there that needs to be done.”
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Chapter 1

Introduction

In this document, a hardware implementation of a Convolutional Neural Network (CNN) is

presented, with fully customizable architecture and hardware resource usage, using the maxeler

dataflow system.

1.1 Background

Neural Networks are, at the time of writing, the most popular algorithm in Machine Learning
(ML) and were inspired by the main element of the human brain - neurons. They are capable of

human level performance in a variety of problems. Despite this, they have a few shortcomings,

particularly when it comes to training, due to the amount of parameters involved when using large

networks, and architecture design, because there is no way to know exactly what configuration is

best to tackle a problem.

This issue can be mitigated by reducing the desired range of applications and only considering

problems that deal with images. By applying some techniques from image processing, such as

convolutions, which use a reduced number of parameters, and pooling, to reduce spatial dimen-

sions, in 1999, one of the first CNN’s was created [1]. A deeper architecture was proposed in 2012

[2], which won the ImageNet competition, proving the relevance of not only this type of neural

network, but also of Deep Learning (DL). Ever since then, various different types of CNN’s have

been state of the art methods for any type of problem dealing with images, as attested in chapter

3.

1.2 Motivation

At current time and as far as one can tell from literature, there’s only one implementation of

CNN’s with customizable architecture using maxeler’s dataflow system [3], and there are no Field
Programmable Gate Array (FPGA) based implementations which are focused on training and

have not only a fully customizable architecture, but also fully customizable resource usage.

Therefore, it is necessary to study and evaluate how good the maxeler technology is compared
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Introduction 2

to other realizations. Software implementations are limited by how many threads can be ran

on each CPU core. Because of the parallelizable nature of most required operations, hardware

solutions can increase performance, but are limited by chip size, resulting in either small networks

or external memory usage. Furthermore, mapping to a Graphics Processing Unit (GPU) or to

an FPGA requires coding in specific languages, CUDA/OpenCL and HDL respectively, both very

low level languages. Therefore, frameworks that allow for configuration and automatic mapping

on demand are very useful and are one the leading points in current research.

1.3 Objectives

As mentioned in section 1.2, the main objective is training acceleration. Secondary objectives

are network customization, resource customization and energy efficiency. Area efficiency is

not as much of a concern, since the design is not meant for embedded systems.

1.4 Document Overview

In chapter 2, the groundwork is explained in detail, starting with Machine Learning in section 2.1,

followed by Artificial Neural Networks (ANN) and CNN’s.

In chapter 3, previous research is examined, as a means to infer some design choices to ease

the implementation.

In chapter 4, the strengths and weaknesses of the maxeler system are described ( section 4.1).

Section 4.2 describes the entire hardware implementation, including details of each constituent

module ( section 4.2.7 ) and memory management in section 4.2.8.

Chapter 5 presents the results achieved by using the created system.

Finally, chapter 6 presents an overview of the entire architecture, as well as some future work

suggestions.



Chapter 2

Theoretical Background

2.1 Machine Learning

Machine Learning is a field of Computer Science and subfield of Artificial Intelligence focused

on exploring and studying algorithms which allow computers to learn procedures from data. The

main objective is feature extraction from sample data. These features are then used for the

creation of an adaptive mathematical model, constantly improving with time, later used to make

predictions on real data.

Considering a practical example, such as a system that correctly predicts the name of an animal

in a given image. One way a system like this could be built is by creating a set of rules it would

check for in every image - paws, wings, tail, among others. This approach is not scalable, because

as the number of animals the system is expected to detect increases, so do the features and rules.

ML approaches the problem in a different way. A dataset, of arbitrary size N ( the larger the

better) x = [x1,x2, . . . ,xn], is created, from several images of all the animals the model is expected

to detect. When creating the dataset, it’s important to have the name of the animal present in each

image, which are called labels y = [y1,y2, . . . ,yn]. Upon completion of this step, depending on the

problem, it can be useful to apply some preprocessing on the data to extract features from it. In

this particular problem, some examples could be edge detection or histogram equalization. Now,

the system is ready to be created and trained.

The only remaining question is how does the system learn or, in other words, how does the

model evaluate its performance and make improvements. The most usual answer to this question

is a cost function. This function measures the cost of each classification done by the model. A

high cost means the prediction was way off, while a low cost means the prediction was close.

The objective of training is to minimize the cost function, so that the model’s predictions are as

accurate as possible. This problem is what’s known as a classification problem, which is a subset

of the problems ML tries to address, because, for each input , the model tries to fit it into the most

appropriate class (discrete output). One can also address regression problems, where the output

is instead a continuous interval, such as the prediction of the price of a house.

Summarizing, the problems ML tackles are characterized by having a large amount of data

3



Theoretical Background 4

which is used to train a model so that the quality metric, the cost function, is minimized. There are

several algorithms, each with certain strengths and weaknesses, used in ML and this work focuses

on one of the most important algorithms - ANN’s (section 2.2), as a contextual introduction to the

main theme, CNN’s (section 2.3). More specifically, the latter is an improvement over the original

algorithm, which is especially tailored for dealing with problems involving images. This type of

network is very used in DL problems, where the extracted features are more abstract, requiring

more complex models than average ML problems.

2.2 Artificial Neural Networks

2.2.1 Introduction

ANN’s are systems inspired by the human brain that try to reproduce its way of operation. Their

main building block, the perceptron, is a high-level model of the biological neuron. Every neu-

ron in the brain is connected by dendrites, which of course means that an ANN also has several

perceptrons connected by synapses, which make for a more accurate system.

2.2.2 Forward Propagation

Mathematically, the perceptron takes in the sum of weighted inputs and outputs this sum sub-

ject to an activation function.

y = f (x ·wT +b) (2.1)

In the above equation x = [x1,x2, . . . ,xn] is the input vector to the node, w = [w1,w2, . . . ,wn] is

the input weight vector, b is the bias factor and f (.) is the chosen activation function.

Figure 2.1: Neuron model
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Figure 2.2: 3 Layer ANN

1 - Activation Function

There are several possible choices for activation functions. The first option is the step function,

which outputs 0 if the input is below a certain threshold and 1 otherwise. This function’s output

is binary, but there can also be activation functions with real value outputs, such as the sigmoid
or the Hyperbolic Tangent(Tanh), used in [1]. The fact that these functions are differentiable

is very important, because the training phase involves derivatives of these functions. As seen

in figure 2.3, these functions have a very small gradient outside of the center area, which gives

rise to the vanishing gradient problem ( further described below in the discussion regarding

Weights). As such, a new activation function - Rectified Linear Unit (ReLu) was created. It

outputs 0 if the input is negative and x if the input is positive. This fixes problem with the

gradient being low for large inputs, but not for negative inputs. As a further improvement,

a small modification was made, regarding the output when x is negative which is now 0.01x

instead of 0. This allows the gradient to never vanish and allows for training to continue, which

in turn improves convergence. Furthermore, in recent research, instead of 0.01x, kx is now

applied when the input is negative, where k is a parameter learned by the network along with

rest.

Table 2.1: Activation functions

Function Definition Derivative

Step f (x) =

1, if x≥ 0

0, otherwise
f ′(x) = 0

ReLu f (x) =

x, if x≥ 0

0, otherwise
f ′(x) =

1, if x≥ 0

0, otherwise

Leaky ReLu f (x) =

x, if x≥ 0

0.01x, otherwise
f ′(x) =

1, if x≥ 0

0.01, otherwise

Sigmoid f ′(x) = 1
1+e−x f (x) = 1

1+e−x · (1− 1
1+e−x )

Tanh f (x) = tanh(x) f ′(x) = 1− tanh(x)2
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Figure 2.3: Activation Functions

2 - Weights

When initializing a model, the weights are set randomly. However, there are several ways of

doing this, the most common way being just taking random numbers from a normal distribution,

which can lead to 2 different potential issues - vanishing gradient and exploding gradient.

Vanishing gradient happens when the input to a neuron is such that the gradient of the acti-

vation function is very small, which in turn causes the weight update to be very close to zero,

resulting in very slow convergence. On the other hand, exploding gradient happens when the

gradient of the activation function is large, which causes the weight update to be larger than it

should be, resulting in oscillation around the local minimum of the cost function.

[4] proposes another way of randomly initializing the weights. Instead of random numbers, a

heuristic is used, depending on the activation function, which eliminates both of the problems

described above. The numbers are drawn from a normal distribution with variance k
sizel

, where

k is a parameter depending on the activation function, and sizel is the size of layer l. This is

defined as follows:

Wi = random∗

√
k

sizel−1
(2.2)

For Tanh and Sigmoid, k = 1.

For ReLu and its variants, k = 2.
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2.2.3 Training

The main objective of training, as said previously, is to minimize the cost function, or in other

words, to change the network parameters so that the error is minimized. Mathematically, this is

achieved by calculating the gradient, equaling it to 0 and solving for the parameters. This is a

viable approach only for very small networks. For networks with any sort of practical use, this

method is unfeasible as there are too many parameters. As such, a different approach is used,

named Gradient Descent (GD). The local minimum is reached by moving slowly, in the direction

of the negative gradient until the cost is either low enough or not changing. Equation 2.3 is the

main building block of GD.

w = w−η∇E(w) (2.3)

Training can be divided in 2 major steps - a feed forward process where the network is ran,

with an input from the used dataset, resulting in a prediction and a feed backward process, where,

in each layer, from output to input, the error of each neuron is calculated ( δ on equation 2.8) and

the update for each weight present in the layer. Afterwards, δ is used as the error for the previous

layer and the process repeats itself, updating every parameter in every layer. The feed forward step

is self-explanatory, and follows equation 2.1 for all the neurons present in the network. During this

step, its important that each neuron stores its input, because this value is used during calculations

for backpropagation. The output of the network, ŷ, and a cost function to calculate the error at

the output layer are also needed. The two most commonly used functions are Mean Squared
Error(MSE) and Cross Entropy(CE).

(MSE) Error =
1
N

N

∑
n=1

(ŷ− y)2 (2.4)

(CE) Error =
1
N

N

∑
n=1

y log(ŷ) (2.5)

The backpropagation step, however, is not quite as simple. Because of this, to review what’s

been said so far and to make notation a bit less confusing, below is a list of all the notation used.

1. δli - the delta value of neuron i at layer l

2. dE
dy - derivative of the cost function.

3. dActli
dy (y) - derivative of the activation function of neuron i at layer l, evaluated at y.

4. wli j - weight at layer l connecting neuron i of the current layer to neuron j of layer l +1

5. η - learning rate

6. yli - output of neuron i at layer l.
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The first calculation in a generic network composed by N layers is the delta of the output layer,

given by

δNi =
dE
dy

dActNi

dy
(yNi) (2.6)

After this and for every layer except the output layer:

wli j = wli j−η(yli ·δl+1, j) (2.7)

δli =
dActli

dy
(yli)∑

j
δl+1, j ·wli j (2.8)

Mathematically, GD, as described above, would be the most correct approach and would yield

the best results. In practice, however, this is not a good method, because, when the dataset is large,

too much computation is required for each update, which would make training really slow. This

is because of the fact that the entire procedure would have to be repeated for the entire dataset

and only then could the updates be applied to each parameter (averaged, of course). [5] presents

a solution to this problem, Stochastic Gradient Descent (SGD). Before each training iteration, a

mini-batch xtrain = [x1,x2, . . . ,xk] consisting of K is selected from the dataset. This mini-batch has

significantly reduced size and is used to train the network.

Both of these methods work well and, if given enough time, converge to a local minimum of

the cost function. However, there are two main problems with these methods - slow convergence
and overfitting. Slow convergence has been improved with other training algorithms which will be

described below and still remains as the biggest problem faced when trying to optimize a training

method. Overfitting can happen in one of two scenarios - the model is too complex for the given

problem (figure 2.4a), which can be resolved by attempting several models with different designs

and choosing the one that performs best, or the model is trained for too many iterations (figure

2.4b). In either situation, performance is very good on any input in the training dataset and not

nearly as good on real data that the model hasn’t yet seen - the model doesn’t generalize.

(a) Overfitting shown by the models’ function (b) Overfitting shown by comparing errors

Figure 2.4: Both images show why overfitting can be a very serious problem when used in appli-
cations where the error needs to be as low as possible.

Source:StackExchange

https://stats.stackexchange.com/questions/131233/neural-network-over-fitting
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Figure 2.5: Dropout applied to a standard ANN. Usual values for dropout probability are within
the 50-75 % range

Source:Deep Learning

There are a few solutions to this problem, the two most common ones being dropout a con-

cept originally described in [2] applied during training, where neurons are randomly "turned off",

setting the respective output to 0 regardless of input, with probability p, as shown in figure 2.5,

forcing the network to learn different paths to each output and early stopping, described in [6],

which, as the name implies, means training is stopped before the model gets too used to training

data, as demonstrated in figure 2.4b.

It’s possible to achieve faster convergence by adding more hyperparameters and changing the

training equations slightly, requiring more computation per iteration but reducing overall time

spent training until convergence is reached. The first method created using these extra parameters

is an extension of SGD, and its name is that of the added parameter, momentum. The only change

this has is in equation 2.7. updatei = (yli · δl+1, j) is how wli j was updated at training iteration i.

The new update rule for the weights is defined below, where γ represents momentum.

wli j = wli j−η ·updatei− γ ·updatei−1 (2.9)

This update rule was originally experimented with because of the fact that, if the gradient is

pointing in the same direction 2 iterations in a row, faster movement could be done in that same

direction. If it points in different directions, a local minimum has been reached and oscillation

is happening around said value, so slower movement is required. In both cases it’s favorable to

use and reduces the overall time required to reach convergence. Despite all this, momentum also

has a few drawbacks, the main one being during initial iterations the model might make really big

jumps, missing the global minimum and converging into a local minimum instead.

Recently, there’s been a lot of research revolving around training algorithm optimization and

there have been discoveries which fix these problems and even some that introduce a new concept

of altering the Learning Rate and Momentum dynamically. [7] presents a concise overview of

training algorithms, the most commonly used ones beeing Adam, AdaDelta and AdaGrad.

https://www.safaribooksonline.com/library/view/deep-learning-for/9781788295628/assets/d4d20bd7-192c-48e7-9da2-6d3ddc7929e7.png


Theoretical Background 10

(a) Fcon layer with ReLu, followed by Softmax

(b) Fcon layer with Tanh, Fcon layer with ReLu, followed by Softmax

Figure 2.6: Training Algorithms compared, with two different ANN architectures

Source:Training Algorithm Comparison

https://int8.io/comparison-of-optimization-techniques-stochastic-gradient-descent-momentum-adagrad-and-adadelta/#Optimization_techniques_8211_experiments
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2.3 Convolutional Neural Networks

2.3.1 Introduction

A Convolutional Neural Network ( CNN ) is an extension of a regular ANN especially tailored

for dealing with high dimension data. This type of networked was theorized by expanding on a

concept called "sparsity", which means each neuron is only connected to a few neurons in the

next layer or, in other words, each neuron is only locally connected. With this technique, a new

layer called the convolutional layer was adopted into the model. In addition, to reduce spatial

dimensions, pooling was also adopted into these networks. Although originally a technique from

image processing, it works well in CNN’s, to reduce training time. In section 2.3.2, all the layers

used to compose a CNN will be be explained in detail.

2.3.2 Layers

1 - Activation Layer

This layer is responsible for the activation function. There are usually many of these in a CNN,

and the most common activation functions are the same as described 2.2.2. Although each

activation layer can have a different activation function and even each neuron in each layer, due

to the increased complexity in network structure, ReLu and its variants gain more popularity

and are used the most, not only because of simplicity but also to decrease training time. In

addition, another activation function, SoftMax is used, only once, on the last layer, to convert

the final feature vector into a normalized N dimensional vector, where each position contains

the probability of the input corresponding to a certain class.

Softmax is defined as follows:

yi =
exi

∑i exi
(2.10)

with respective derivative

dyi

dxk
=

yi(1− yi), i = k

−yiyk, i 6= k
(2.11)

This result can be combined with any cost function, but is usually combined with CE, since the

expression becomes a lot simpler:

dyi

dxk
= yi− li (2.12)

[8] elaborates further on each of these definitions, with practical examples, as well as complete

derivation of these expressions.
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2 - Convolutional Layer

This layer is one of the most important in CNN architectures, as it’s responsible for feature

extraction. This is achieved through the convolution operation. Usually, there are many of

these layers in a CNN and they are almost always followed by an activation layer.

The main building block of a convolutional layer are kernels, which function as the weights of

a CNN. Each convolutional layer has many kernels, each with different values. Each one has

dimensions C×N×N, where C represents the amount of channels the input has ( 3 in the case of

an RGB image, for example) and N represents the kernel size which is usually an odd number,

so the kernel has a center. Each kernel then goes through the entire input like a "flashlight",

multiplies its values by the input values in the highlighted area, sums them and generates an

output, as seen in figure 2.7. The output of each kernel is usually called a feature map.

Early layers usually detect lower level features, which are then combined by later layers into

higher level features, which are used by fully connected layers to classify the image. Alternate

classifiers can also be used instead of the chain of fully connected layers usually present at the

end of the network. Some examples are Support Vector Machines or Random Forest.

Figure 2.7: Convolution Operation

Source:Convolution

This first consequence of doing convolutions regards forward propagation - the output does not

have the same spatial dimensions as the input. More precisely, the number of channels will be

equal to the number of kernels associated with the specific layer and the output size goes from

C×Ninput ×Ninput to 1+(Ninput −N + 2 ∗Pad)/Stride, where Pad is the amount of padding

introduced to the input and stride is how many pixels to the right and down the kernel moves

each time. For example, if Pad = 2, as shown in figure 2.8 and Stride = 2 the top left corner of

the kernel begins at position (x1,y1) of the padded input, the next positions will be (x1,y3).

https://www.researchgate.net/figure/Convolution-Operation-over-the-height-and-width-of-an-Image_fig2_312935261
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Figure 2.8: Zero Padding operation with Pad = 2

Source: Padding

The second consequence regards backward propagation - the output needs to be scaled up, be-

cause it was scaled down during forward propagation. This is achieved by a different kind of

convolution, the Full Convolution, shown in figure 2.10. This however, is only the case if stride

= 1. Otherwise, yet another type of convolution is needed, the Fractionally Strided Convolu-
tion, also known as the Transposed Convolution, shown in figure 2.9. Both convolutions are

done with the kernels flipped and the δ from the next layer. Both Input and Output sizes follow

the same rules as they do in forward propagation.

Figure 2.9: Fractionally Strided Convolution. Blue squares are values from Delta. Green squares
represent Padded Delta. White squares are zero and are present because Stride = 2.

Source: Fractionally Strided

https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks-Part-2/
https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
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Figure 2.10: Full Convolution. Yellow squares are kernel weights, blue squares are delta values.

Source: Full Convolution

3 - Dropout Layer

This layer works exactly like dropout, previously described in section 2.2.3 and is used to

prevent the model from overfitting, which can be an even bigger problem in CNN’s, because of

the increased model complexity. They are generally only used in after fully connected layers,

due to the fact that almost all parameters in the network are present in these. p usually has

values around 50%.

4 - Fully Connected Layer

Once again, this layer works exactly like a regular ANN, previously described in section 2.2. It

receives an input and multiplies it by the weight matrix. Usually, these layers are present after

all convolutional and pooling layers and are always followed by an activation layer as their role

is not only feature extraction, but also classification with the SoftMax activation function.

https://medium.com/@2017csm1006/forward-and-backpropagation-in-convolutional-neural-network-4dfa96d7b37e
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5 - Pooling Layer

This layer is responsible for reducing spatial dimensions, thus reducing the amount of needed

computational power, and are usually present after a chain of convolutional layers.

Forward propagation is mostly done with one type of pooling - Max Pooling, which selects the

maximum value in a certain window. There are others, like Average Pooling and L2-Norm
Pooling, but these are not used too often. Figure 2.11 illustrates both Max Pooling and Average

Pooling. Similarly to the convolutional layer, this layer also scales the image dimensions down,

from C×Ninput ×Ninput to 1+(Ninput −WindowSize+2∗Pad)/Stride.

Backward propagation involves upscaling. If max pooling is used, the position of the maximum

needs to be recorded. Usually this is named "mask" and is set with 1 on the positions where

the maximum was found and 0 otherwise. Then, when performing backpropagation, this mask

is used and the corresponding elements are multiplied by the gradient computed from the next

layer, as shown in figure 2.12. The only change when other types of pooling are considered is

the configuration of the mask array.

Figure 2.11: Pooling Forward propagation Operation. Stride = 2 and Window Size = 2

Figure 2.12: Pooling Back propagation Operation. Stride = 2 and Window Size = 2

Source:Pooling

https://nb4799.neu.edu/wordpress/?p=246
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6 - Overview

Summarizing, the simplified Mathematical functions for each layer are described in table 2.2.

Table 2.2: Mathematical definitions of each layer

Layer Forward Backward

Act y = f(X) δ = error ×d f
dx (X)

Conv y = conv(Kernels, X)
error = conv(flip(Kernels), X)

Kernels -= η× conv(delta, AvgX)

Drop

if(p > random())

y = 0

else

y = X

Nothing

Fcon y = X ×W T error = δ ×W T

W -= η× X ×δ

Pool y = pool(X) delta ×= Mask

2.3.3 Architecture

Architecture is the most important part of a CNN. The first layer is always convolutional. From

here on out, there are a lot of choices:

The first choice is to have an activation layer after each convolutional and fully connected

layer. This is almost always the case, because after feature extraction, it’s important to separate

true features from falsely detected ones. A small optimization can be done when a convolutional

layer is followed by a pooling layer, by having the activation layer after the pooling layer, so less

calculations are required.

The second choice aims to answer the question "How deep should the network be". Largely,

this choice is problem dependant, because for small applications even moderately small architec-

tures have good enough performance. [9] and [10] experimented with deeper networks than [2]

which resulted in better classification accuracy, but this approach is not scalable, because network

complexity increased more than computational power in the same time span. [11] provides a solu-

tion with a new module which allows for networks with large amounts of layers (more than 100)

to be less computationally complex than previous architectures.

The final choice regards fully connected layers. How many should be added and how many

neurons each layer should have. At least one has to be present, to be used with SoftMax for

classification. By looking at networks that perform well, [2] and [9] show that around 1-4 fully

connected layers is a reasonable amount, with neuron counts that are powers of 2. This is because

networks are usually trained on GPU’s or FPGA’s and having powers of 2 as the number of neurons

helps increase parallelism.
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Figure 2.13: The Architecture of the VGG network. The Softmax layer with 1000 nodes at the
output is omitted at the end, for simplicity.

Source:VGG-Arch

Figure 2.13 shows the architecture of the VGG-16 CNN [9]. The input is a 3× 224× 224

image, and the output is a 1×1000 vector of probabilities corresponding to the probability of the

input image being of that class. There are a lot of interesting design choices present.

The first one is that all kernels are 3×3 in size and increase in amount the later layers. Another

curious fact is that the output size of convolutional layers stays the same as the input, which means

padding is beeing used to preserve dimensions. A lot of numbers are powers of 2, such as all

Kernel amounts and amount of neurons in fully connected layers.

This network was originally created to discover how to best design network structure and what

values should be used for the different layers. The results are obvious - the smallest kernel size, 3,

is the one used for all convolutional layers, as well as window size 2 with stride 2 beeing used on

all the pooling layers. The network has 21 layers total, assuming activation and dropout layers are

built into the 3 types which result in roughly around 151 million parameters( 136 million in the

last 3 layers), making it very computationally expensive to train. This design choice, making the

network deep and using simple convolutions and pooling was one adopted by future designs.

2.3.4 Training

Training a CNN is the same as training an ANN, which was described in section 2.2.3, with

the exception of the new layers, convolutional and pooling, whose backpropagation process was

specified in section 2.3.2.

https://www.quora.com/What-is-the-VGG-neural-network


Chapter 3

State of the Art

In this chapter, implementations of neural networks will be discussed, with specific emphasis on

ones that use the maxeler system. Several choices will be made, such as network architectures

used for design validation and testing and the training algorithm of choice. Furthermore, some

weak points from previous designs will be discussed, as well as possible improvements.

3.1 Convolutional Neural Networks

3.1.1 Network architecture

One of the main applications for a CNN is image recognition, classification and segmentation.

ImageNet holds one of the largest image classification competitions each year and, since 2012,

every winning model has been a CNN variant.

[2] is first instance of a CNN winning the competition. The network architecture is reasonably

small when compared to today’s standards. The results achieved were far better than any other

previously state of the art models, with a top-5 error rate of 15.3%, compared to 26.2% achieved

by the second best entry. The entire training took around 1 week using 2 GPU’s. The used training

algorithm was SGD, with momentum set to 0.9 and learning rate 0.01, which was lowered three

times during the entire training process.

Both [9] and [10] expand on the previous design, the first focusing mainly on exploring deeper

network architectures with simple parameters and smaller filter sizes, such as 3× 3 filters for all

convolutional layers and 2× 2 windows with stride 2 for all pooling layers, while the second

focuses on optimizing computing resources, by implementing local connections between neurons

of each layer. Both are trained using SGD with momentum.

Both implementations are combined in [11], which uses both simple network parameters and

sparse connections between neurons of each layer. This results in very deep networks, of up to 200

layers, with less complexity than [2], resulting in faster training and better accuracy. The chosen

training algorithm is, once again, SGD with momentum.

18

http://www.image-net.org/
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3.1.2 Maxeler Implementations

[3] is the first CNN implemented on a maxeler system. There are several strong points in this

design, such as the customizable network architecture, energy efficiency, performance and data

transfer scheme. Although the variable architecture is a strength which should be adopted into

other implementations focused on providing frameworks for CNN creation, this is also the main

drawback, because the final design uses a layer by layer architecture, introducing a lot of unnec-

essary overhead when computing. The data transfer scheme works well, due to the fact that the

design bottleneck is not computation, but data transfer bandwidth between off-chip memory and

the FPGA.

There are still a few unanswered questions, mostly regarding hardware configuration. While

[12] only considers inference, the solution provided has variable bitwidth, as well as some insight

on computation to communication ratios, to help maximize performance. [13] presents a hardware

implementation of a long short-term memory neural network, with a way to customize resource

usage at compile time. This is done by computing in parallel according to a user parameter, which

is parameterizable.

3.2 Design Implementation

Guven all of the available information and considering the design goals, there are a few design

choices that can be made beforehand.

The main bottleneck of the design in [3] is the layer by layer implementation. One possible

workaround is to have more than one layer in each module, or in other words, making each module

contain a block of layers instead of a single layer. The presented system dataflow scheme is

one of the design strengths and will be used, with slight modifications to account for the block

architecture. The easiest way to allow for user customization is to create a framework which

allows the user to specify network architecture, bitwidth and parallelism as design parameters

which will then be used to create blocks to be mapped onto hardware. These parameters will then

be accessed by the compiler and be used as ways to completely customize the system, depending

on user requirements and available hardware.

Another takeaway from [3] is that the weights are updated on the Central Processing Unit
(CPU), while the next module is beeing loaded. This means that nonblock functions are available

and that the CPU can be freed while the FPGA is computing. Depending on the available CPU,

it can be worth it to also perform forward and backward propagations entirely on the CPU, in

parallel with the FPGA. As such, implementing a software version of a CNN may increase overall

performance and will also be explored when testing the entire system.

The chosen training algorithm is SGD with momentum, due to the fact that [2], [9], [10] and

[11] all use it with great results. Finally, regarding architectures used for design validation, [2]

and [9] have the simplest architectures and were chosen, because [10] and [11] use more complex

layer connections which would complicate the design.
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3.3 Overview

As one could attest from this small literature survey, although there are CNN implementations

using the maxeler system, there is a great deal of room for improvement, mostly regarding flexi-

bility. Some key design choices were also made, based on strengths and weaknesses from previous

designs.



Chapter 4

Proposed Architecture

Over the course of this chapter, a small introduction to the Maxeler system is presented in section

4.1, with respective strengths and weaknesses. Subsequently, in further sections, the CNN design

will be explained in detail including the full system overview and design implementation.

4.1 Maxeler

The maxeler system, whose architecture is illustred in figure 4.1, was created to accelerate appli-

cations, by using atleast one Dataflow Engine (DFE), which consists of an FPGA with some addi-

tional external memory named Large Memory (LMem), and the concept of Multiscale Dataflow
Computing. In these applications, each program is considered as a dataflow graph of executable

actions, which are performed as soon as all required inputs are ready and outputs forwarded to the

next action in the graph. This process is repeated until every action has been executed. Further-

more, the CPU also plays an important role in the system architecture.

Figure 4.1: The Maxeler System

21
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Figure 4.2: Maxeler system used for this thesis

Source: Maxeler

Figure 4.2 shows the system used during this work. It’s composed by a Desktop running

CentOS 7 and one DFE, more specifically the Galava model.

4.1.1 Hardware Resources

Before going into details about the CNN implementation, it’s valuable to know the available re-

sources in the Galava card, as a means to understand some of the design choices made. There are

3 ways to move data to the DFE:

1. FMem - fastest available memory, not only because of the fact that it’s implemented on the

FPGA, but also because it’s single cycle access. However, it’s limited to only 5.6 MB. To

access, one must call either read or write with an address.

2. LMem - slowest available memory, with a peak data transfer rate of 32GB/s. The tech-

nology is DDR3 and the main limitation is not size, unlike the FMem, as there are 12 GB

available. When configuring the manager, no more than 15 Input/Output (I/O) streams to

the LMem can be created. In addition, the LMem has a BurstSize (192 Bytes) - any stream

created has to either read or write in multiples of the BurstSize. To access, one must call

input or output on a certain stream, which will return one value in memory every tick.

3. Interconnect - slowest way to send data to the DFE, with a peak transfer bandwith of only

2GB/s. In an efficient design, it’s important to minimize the amount of data sent through this

connection. When sending data, one can choose to send streams or scalars. When sending

streams, they behave the same way as an LMem stream. When sending scalars, the data

value will be the same for all ticks.

http://maxeler.com/
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Regarding computation resources, there are 490000 logic elements and 512 multipliers (signed

18×18 bit) available. In reality however, since MaxelerOS uses a small amount in the manager,

there are a few less resources than said.

4.1.2 MaxelerOS

The Manager orchestrates data movement within the DFE, such as I/O data streams from/to the

CPU or LMem, any type of multiplexing between said streams and connections between these and

existing kernels. In addition, it’s also responsible for creating any interfaces between the CPU and

the DFE which can be used to perform any DFE operation, such as running kernels or accessing

the LMem. Kernels run computations, using data from the CPU, the LMem and the FMem.

The CPU has access to any interfaces created by the manager, which require certain parameters

to be ran. As a result of this, in advanced designs, an Application Programmable Interface (API)

is usually created, which allows the user to customize the design and automatically configures all

required parameters for DFE runs and obviously, allows for DFE runs. The interfaces created by

the manager can be ran in two modes - blocking, which holds the CPU while the DFE is running

and non-blocking, which instead frees the CPU.

4.1.3 Data Streams

Data on the DFE, with the exception of the FMem, is handled via streams. Considering an input

stream of N data points x = [x1,x2, . . . ,xn], reading during tick t returns xt . As said in section

4.1.1, scalar streams work the exact same way as an input stream, with the exception that every

point in the stream has the same value. By the same logic, an output stream of N data points

y = [y1,y2, . . . ,yn], writing during tick t places the write value on point yn.

If multiple points of a data stream are required to perform a specific computation, for example

the addition of xn and xn+3, they can be easily be accessed by using offsets, which can be either

positive (stream values from the future) or negative (stream values from the past). In this case,

using an offset of 3, which requires the DFE to store 4 points [xn,xn+1,xn+2,xn+3], solves the

problem. This means that, no matter how many points are required per tick, the amount of

points stored by the DFE is |MaxOffset|+1.

In most applications, some kind of input control and output control is required. This kind

of control can be used on streams. Data streams can be stopped, by reading or writing with
an enable signal. Reading returns the next point in the data stream if enabled, or the same

point if not. For example, if enable alternates between 1 and 0, the resulting input stream is

x = [x1,x1,x2,x2, . . . ,xn,xn], requiring twice as many ticks to reach the end. This must also be

taken into account when using offsets, because the input stream if modified. Considering the pre-

vious example, offset would now have to be 6. Writing with an enable signal simply determines

ticks where data is written and ticks where data isn’t written.
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4.2 CNN Design

4.2.1 Resource Usage

In accordance with the defined objectives, one of the main goals is a highly configurable system.

As such, there must be a way to use more or less resources, depending on how many are available

on the used DFE and also depending on the Network Architecture.

4.2.1.1 Runtime Reconfiguration

The maxeler system allows for the reconfiguration of any DFE’s used in the system as many times

as required during execution. As said in chapter 3, [3] uses a layer by layer approach, which is

extremely limited, in spite of the fact that every layer has access to every available DFE resource

to run which makes layer propagation extremely fast, because the DFE has to reconfigure itself

for every layer. The reported reconfiguration time is anywhere between 100ms and 1 second.

Figure 4.3 shows measured reconfiguration times for the Galava DFE. The amount of time spent

reconfiguring the DFE can be very costly, especially when dealing with deep networks. This fact

instantly rules out the maxeler system when low latency CNN’s are required, unless there’s one

DFE available per layer. Furthermore, the LMem is reset every time the DFE is reconfigured,

requiring the output to be read before a layer is unloaded and rewritten when the next layer is

loaded

Figure 4.3: Reconfiguration times for Galava
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The DFE efficiency of a maxeler system can be described by equation 4.1.

DFEEfficiency =
ExecutionTime

ExecutionTime + ReconfigurationTime
(4.1)

Computation times reported for LeNet5 in [3] are approximately 18.4 ms for single inference.

Obviously, running single inference would result in an efficiency, TIn f erece
TIn f erece+NLayers×TRecon f ig

, of only

0.57%. Fortunately, in an environment when inference latency isn’t important, like training a

CNN, where the main objective is speed, there’s a simple way to increase efficiency - run more

than one inference each time a layer is loaded. This is usually already the case when using SGD,

as mini-batch of size BS is ran each iteration, which means efficiency is BS×TIn f erece
BS×TIn f erece+NLayers×TRecon f ig

=

68.8% , considering BS = 384, as reported.

4.2.1.2 Network Block Architecture

To improve on the layer by layer implementation of [3], an API was created, in C, which allows

for the creation any CNN or ANN architecture in blocks of layers, as shown in figure 4.4. Each

block can contain any combination of layers with any valid parameters. During propagation, the

output of each block serves as input to the next block.

Figure 4.4: Network Block Architecture when performing forward propagation

When using the DFE for computation, blocks are loaded sequentially, one at a time, allowing

for both shallow networks where all layers can be in one block and for deep networks using mul-

tiple blocks. Furthermore, there are two extra parameters, to increase customization - BurstMult
and Parallelism. BurstMult allows more or less data to be written by the DFE each time the kernel

is ran, in multiples of 192, to respect the burst size, meaning the Kernel has to be ran less times

for the computation to finish. Parallelism allows convolutional layers and fully connected layers

to have access to more or less resources for computation, which in turn makes computation faster

or slower.
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4.2.2 Data Transfer

In order to minimize CPU to DFE data transfer, a memory scheme similar to [3] was chosen:

Figure 4.5: CPU/DFE data movement

There are two ways of having large amounts of input data available to the kernel, either the

interconnect PCI-e link or the LMem, the latter beeing the logical choice, because of superior

speed. Furthermore, the interface used to run the kernel is simplified as the LMem configurations

are done with minimal CPU parameters, because of the fact that, if memory streams were an input

parameter, the function used to run the kernel would change according to the number of layers in

the block. One consequence of using the LMem is that burst size has to be taken into account. [3]

uses a clever strategy, specifically for training, by making BS a multiple of 192. This means each

layer has input dimensions BS×NChannels× InDims× InDims and also means single inference

is very inefficient. There are drawbacks when considering the block architecture, because 12GB

of LMem isn’t enough to store all the required data on large blocks. Another option is to pad data

until the input stream length is a multiple of the BurstSize, resulting in a layout shown in figure

4.6. The 15 I/O stream restriction also has to be taken into account, to allow for at least three

layers to be present in each block.

Figure 4.6: LMem layout

Regarding the interconnection link, the amount of parameters has to be minimized. The

weights need to be available for the kernel, and the FMem is not large enough to contain all

weights. Contrary to expectations, this is not a problem, due to the fact that, even if every weight

were available at once, the DFE would not have enough resources to perform that many multipli-

cations. Furthermore, in order for the interface to not vary in definition, the weights are limited to

only 1 array, which can, at most, contain 65535 values. When performing backpropagation, weight

updates are streamed through the interconnection link, to avoid using an extra LMem stream.
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4.2.3 Data Control Modules

4.2.3.1 Data Control

There are two data control modules, shown in figures 4.7 and 4.8 with the only difference being

the fact that one involves weights and the other does not. They are used in every layer and are

the main computation block present in the overall design. Input is the current data point in the

data stream. Weights are in the FMem. If more than one layer with weights is computing, the

weights are in the same array, one after another. This is dealt with by calculating the total amount

of weights present in the previous layers that are enabled and using that number as the start of the

weights referring to the current layer. Both Offsets are calculated differently depending on which

layer uses the module.

Figure 4.7: DataOffset module

Figure 4.8: DataWeightOffset module
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4.2.3.2 Input Control

Figure 4.9 shows the input data control module. Input is a value coming from the LMem, while

DataInEnable is a simple enable signal and is calculated using different logic for each layer.

a is used to accomplish different tasks, depending on the layer, mostly coming down to stream

manipulation.

4.2.3.3 Output Control

The output data control module is shown in figure 4.10. Input is the computed value, for example,

the output of matrix multiplication on fully connected layer. Activation function is configurable by

the user and is set when configuring the network. ActEnable is set to 1 when the output value has

been fully accumulated and is ready to be passed through the activation function. It’s calculated

differently depending on which layer uses the module. PadEnable is a simple enable signal used

to deal with the LMem burst size, is only active after the last output point is calculated and is also

calculated in a different way for each layer.

Figure 4.9: Input control module

Figure 4.10: Output control module
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4.2.4 Convolutional Layer Modules

4.2.4.1 Forward Propagation

When designing the forward propagation module, there are a few restrictions that must be con-

sidered. These are the LMem burst size and FMem dimensions. Furthermore, the design must

include a way to customize computation resources.

Algorithm 1 Convolutional Layer Forward Propagation
Require:

In (NChannels × InDims × InDims)
Weights (NKernels × NChannels × KSize × KSize)

Ensure:
Out (NKernels × OutDims × OutDims)

1: function CONVOLVE(In,W, inY, inX)
2: Sum = 0
3: for y← 0:KSize do
4: for x← 0:KSize do
5: Sum += In[inY + y][inX + x] * Weights[y][x];
6: end for
7: end for
8: return Sum
9: end function

10: function CONVOLUTION()
11: for k← 0:NKernels do
12: for c← 0:NChannels do
13: for inY ← 0:InDims - KSize do
14: for inX ← 0:InDims - KSize do
15: Out[k][inY][inX] = Convolve(In[c], Weights[k][c], inY, inX);
16: end for
17: end for
18: end for
19: end for
20: end function

By carefully analyzing algorithm 1, one can realize that there are only two options when it

comes to running computation in parallel, lines 11 and 12. Assuming with no parallelism each

output point is calculated in time t, the first option means calculating p points in time t, while

the second means calculating one point in time t
p - both options are equally good. However,

calculating multiple points has disadvantages, one beeing that the calculated output would have

to be summed with results already present in memory, because of the accumulation in line 5,

requiring one additional LMem stream. As such, for this layer, the parallelism parameter, capped

at NChannels
2 , previously mentioned in section 4.2.1 determines how many channels are calculated

in parallel, meaning NChannels
Parallelism has to be an even number. Regarding the LMem burst size, this was

resolved by adding one parameter from the CPU used to control when the layer outputs, be it real
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data or padding. The restriction with FMem dimensions was dealt with by splitting computation,

using at most two kernels each time the DFE is ran. As such, considering two 512×7×7 kernels,

an extreme case, means the FMem contains at most 50176 values, an amount well under the 65536

limit. The reason two were chosen instead of one is due to the burst size - if weights from only one

kernel were available, padding would be necessary in between output channels, involving either

complex logic when reading data in the next layers, require the CPU to read and re-write data

correctly between the computation of each layer or make data in the LMem not be organized as

shown in figure 4.6.

Figure 4.11: Conv layer FProp module

The module is composed of several simpler modules and components. Going from top to

bottom, the input LMem stream is connected to an input control block. For this layer, a is used

in conjunction with DataInEnable to handle both types of padding. LMem padding is controlled

by using one counter to disable computation on ticks where the memory input is padded and
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parameter padding is controlled by making a = 0 and using nested counters CurY and CurX,

which contain the value of the current input position. If the input position is within bounds, data

is read from LMem, otherwise, the enable signal is set to 0 and the output is set to 0.

The data is then connected into a customizable amount of DataWeightOffset modules given by

equation 4.2. The weights are configured by the CPU, accessed using the FMem and are different

for each DFE run, changing as each kernel finishes computing. The offsets are calculated as

shown in equations 4.3 and 4.4. Kernel is either 0 or 1, since, as mentioned above, at most 2

kernels are computed per DFE run. Channel, y and x are nested counters, exactly as algorithm 1.

The only difference is the increment of channel is NChannels
Parallelism . As an example, if NChannels = 8

and Parallelism = 4, channels 0,2,4,6 are calculated in parallel, followed by channels 1,3,5,7 -

computation is finished as soon as channel 1 is calculated. Each (Channel,y,x) combination goes

into one of the modules.

The output from every module is summed and the result is fed into both a carry circuit and

an output control block. The carry circuit, is composed of one delay node set to (InDims+ 2 ∗
Padding)2 and one multiplexer used to filter false carried values when computing the first chan-

nel. Its role is to carry computation results from previous ticks, more specifically, the previous

channel, as evidenced by the delay node. The output control module works exactly as described

in section 4.2.3, with ActEnable being set to the same as DataOutEnable, because any time the

module writes to the LMem, computation for each output point is already finished. The output

data is then written to the LMem, when DataOutEnable is set to 1. Output control is achieved

by using counters which control the input position, updating every tick, and one CPU parameter,

FirstOutput, described further in 4.2.9. During the last iteration, padding is started as soon as the

last output point is calculated, so the output stream is aligned faster. Furthermore, stride control

is accomplished by only considering every nth output point, where n = stride and discarding the

rest.

NConvDataWeightOffsetModules = Parallelism×KernelSize2 (4.2)

DataOffset =Channel× InDims2+

y× InDims+ x
(4.3)

WeightOffset =Kernel× InChannels×KernelSize2+

Channel×KernelSize2+

y×KernelSize+ x

(4.4)

The module uses only two LMem streams and has to be ran
⌈

NKernels×OutDims2

BurstSize×BurstMult

⌉
times

for the entire output to be calculated.
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4.2.4.2 Backward Propagation

The restrictions faced are the same as in the forward propagation module, with the addition of

trying to minimize LMem streams, to allow for the maximum number of layers in each block,

because two operations are required, the error calculation and the weight update.

Algorithm 2 Convolutional Layer Backward Propagation
Require:

FwdOut (NKernels × OutDims × OutDims)
Error (NKernels × OutDims × OutDims)
FwdIn (NChannels × InDims × InDims)
Weights (NKernels × NChannels × KSize × KSize)

Ensure:
Out (NKernels × OutDims × OutDims)

1: function CALCERROR() . Same as FProp, with kernels and channels switched
2: for c← 0:NChannels do
3: for inY ← Padding:DeltaDims - KSize - Padding do
4: for inX ← Padding:DeltaDims - KSize - Padding do
5: for k← 0:NKernels do
6: Out[c][inY][inX] += Convolve(Delta[k], Weights[k][c], inY, inX);
7: end for
8: end for
9: end for

10: end for
11: end function
12: function UPDATEWEIGHTS() . Same as a Normal convolution, using Delta as Weights
13: for k← 0:NKernels do
14: for c← 0:NChannels do
15: for inY ← 0:PrevInDims - DeltaDims do
16: for inX ← 0:PrevInDims - DeltaDims do
17: W[k][c][y][x] -= η×Convolve(FwdIn[k], Delta[k][c], inY, inX);
18: end for
19: end for
20: end for
21: end for
22: end function
23: function CONVBACKPROP()
24: Delta = Error × f’(FwdOut) . Element Wise pass through Act Func derivative
25: CalcError(); . Calculate Error to backprop onto next layer
26: UpdateWeights(); . Update Weights. KSize is now DeltaDims.
27: end function

Analyzing algorithm 2 reveals one big problem - two convolutions are required, which would

use a total of 4 streams if the forward propagation module were used for both. Since there are

3 total inputs required for both convolutions, this would total 7 LMem streams, which would

mean each block could have no more than one convolution layer. Furthermore, since the weight
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update convolution uses delta as the kernels, the total amount of weights would exceed the FMem

dimensions and the DFE would not have enough multipliers to perform so many multiplications.

As such, this approach is not feasible.

Taking all these problems in consideration, a new module was designed. Before its introduc-

tion, the weight update block will be presented, as it constitutes a large part of the overall module.

Figure 4.12: Conv layer WeightUpdate module

This module computes the weight updates not directly as a convolution, because, as said above,

the DFE does not have enough resources to do so. Instead, the update for each weight referent

to one delta position is calculated. The sum of all updates is the final result. To avoid one extra

LMem stream, each part of the weight update calculation is streamed directly to the CPU as a

vector of size KSize2. The vector has an enable stream WUpdateEnable, which simply filters out

incorrect results, streaming zero to the CPU when not enabled, because of the fact that the CPU

will sum all updates to the weights, meaning wrong values would result in incorrect updates. The

amount of DataOffsetBlocks is KSize2.

The overall module is described in figure 4.13. There are two LMem data streams at the top,

which contain FwdOutput and Error. They are both fed into input control blocks, to control

padding. Similarly to forward propagation, this is controlled by making a = 0 and using DFE

counters to control the input position. The activation function block simply calculates delta, ex-

actly as in algorithm 2.
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The delta value is fed into one WeightUpdate Block, described above, and a chain of blocks re-

sponsible for the convolution calculation, which works almost exactly as forward propagation, the

only difference beeing offset calculation, which simply switches InDims for DeltaDims because

computation is done with input and output dimensions flipped and switches Channel for Kernel,

because the innermost loop is now done per output channel, instead of input channel, which also

implies parallelism is now capped at NKernels
2 . In addition, the module does not calculate the acti-

vation function before outputting, because it’s calculated before computation on the next layer.

The module uses four LMem streams and has to be ran
⌈

NChannels× InDims2

BurstSize×BurstMult

⌉
times for

the entire output to be calculated.

Figure 4.13: Conv layer BProp module
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4.2.5 Pooling Layer Modules

4.2.5.1 Forward Propagation

When designing the pooling module, the only restriction is the burst size, handled by outputting

values from different channels, similarly to the convolution module. Both max pooling and mean

pooling are shown in algorithm 3.

Algorithm 3 Pooling Layer Forward Propagation
Require:

In (NChannels × InDims × InDims)
Wsize

Ensure:
Out (NChannels × OutDims × OutDims)

1: function MEANPOOLWINDOW(In,c, inY, inX) . Calculate average of window
2: Sum = 0
3: for y← 0:WSize do
4: for x← 0:WSize do
5: Sum += In[c][inY + y][inX + x];
6: end for
7: end for
8: return Sum/WSize2

9: end function
10: function MAXPOOLWINDOW(In,c, inY, inX) . Calculate max value inside window
11: Max = -∞;
12: for y← 0:WSize do
13: for x← 0:WSize do
14: if In[c][inY + y][inX + x] > Max then
15: Max = In[c][inY + y][inX + x];
16: end if
17: end for
18: end for
19: return Max
20: end function
21: function POOL() . Calculate Out
22: for c← 0:NChannelsSize do
23: for inY← 0:InDims - WSize do
24: for inX← 0:InDims - WSize do
25: Out[c][inY][inX] = PoolWindow(In, c, inY, inX); . Either Max or Mean
26: end for
27: end for
28: end for
29: return Out
30: end function

Since there are no accumulations, this module was chosen not to be parallelized, because the

only option would be calculating multiple points per tick, requiring multiple LMem streams.
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The overall architecture for max pooling is shown in figure 4.14. For mean pooling, the only

different component is the max calculator, which is changed for a sum and divide.

Figure 4.14: Pooling layer FProp module

DataOffset = y× InDims+x (4.5)

NPoolDataOffsetModules = WindowSize2 (4.6)

Going from top to bottom once again, the input data stream incoming from the LMem is fed

into an input control block. The value of a doesn’t matter, since DataInEnable is only used to

control when the layer is computing or not, as no other control is necessary, because padding was

not implemented for the pooling layer.

The data then goes into an amount of data offset blocks given by equation 4.6, to select the

pooling window from the input stream. Once again, the offset calculation uses nested counters y
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and x, exactly as in algorithm 3, with each combination y, x used for each module. Each point is

then fed either into a max node or an average node, depending on the pooling type.

The output control block works the exact same way as in the convolutional layer (section

4.2.4.1). DataOutEnable controls the layer output by using two counters, which update every tick,

to control the input position and the same CPU parameter, FirstOutput, previously mentioned in

section 4.2.4.

The module uses two LMem streams and has to be ran
⌈

NChannels×OutDims2

BurstSize×BurstMult

⌉
times for

the entire output to be calculated.

4.2.5.2 Backward Propagation

Similarly to forward propagation, the only design restriction is the burst size, handled in the exact

same way. Regardless of the type of pooling the module stays the same, because of the fact that

values in the mask calculated during forward propagation depend on the type used.

Algorithm 4 Pooling Layer Backward Propagation
Require:

Delta (NChannels × OutDims × OutDims)
Mask (NChannels × InDims × InDims)
WSize

Ensure:
Out (NChannels × InDims × InDims)

1: function MASKMULT(c,Y,X) . Multiply by mask
2: Sum = 0
3: for y← 0:WSize do
4: for x← 0:WSize do
5: MaskY = Y*WSize + y;
6: MaskY = Y*WSize + x;
7: Out[c][MaskY][MaskX] = Mask[c][MaskY][MaskX] * Delta[c][Y][X][
8: end for
9: end for

10: end function
11: function POOL() . Calculate Out
12: for c← 0:NChannels do
13: for Y← 0:OutDims do
14: for X← 0:OutDims do
15: Out[c][inY][inX] = MaskMult(c, Y, X);
16: end for
17: end for
18: end for
19: return Out
20: end function

For the same reasons as forward propagation, this module doesn’t have parallelism.
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Figure 4.15: Pooling layer BProp module

DataOffset = YStrideTicks× InDims (4.7)

There are two input data stream incoming from the LMem, the output from forward propaga-

tion and the error from the next layer. Both are used to calculate delta. Since both have the same

dimensions, the calculation is simply Error× f ′(Out put), element wise. The value of a doesn’t

matter, because, in this module, DataInEnable is only used to control stride.

Delta then goes into a data offset block. The offset calculation is shown in equation 4.7, which

simply selects the correct delta value for the mask window. YStride is a counter which takes

values from 0 : Stride, depending on which row the input data stream is currently at. The offset

value is then multiplied by the Mask value, which is also present in the LMem.

Output control is achieved using DataOutEnable to not only make sure wrong values aren’t

written into memory, but also to align the output stream and.PadEnable simply changes the output

value to 0 when padding.

The module uses four LMem streams and has to be ran
⌈

NChannels× InDims2

BurstSize×BurstMult

⌉
times for

the entire output to be calculated.
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4.2.6 Fully Connected Layer Modules

4.2.6.1 Forward Propagation

The restrictions faced when designing the fully connected layer are the LMem burst size and

FMem dimensions. Similarly to the convolutional layer, a suitable way to customize computation

resources also has to be developed. The algorithm used in the fully connected layer is matrix

multiplication, between the input as weights, which is calculated as follows:

Algorithm 5 Matrix Multiplication
Require:

In (InDims)
W( InDims × OutDims)

Ensure:
Out (OutDims)

1: function MATRIXMULTIPLY() . Calculate Out
2: for y← 0:OutDims do
3: for x← 0:InDims do
4: Out[y] += In[x] * W[x][y];
5: end for
6: end for
7: end function

Before discussing parallelism strategies, FMem dimensions must be discussed, as fully con-

nected layers have a lot more weights than convolutional layers. Ideally, the weights for every

input point and burst size output points would be loaded - only two streams would be required.

However, considering VGG16 as an example network quickly rules this option out. The pooling

layer before the fully connected layer has output dimensions 512×7×7. Considering BurstMult

= 1, burst size is 24. This means the FMem would have to contain a total of 600000 weights, a

value well above the 65535 limit in the weight array. As such, a different solution was adapted -

burst size is considered for both the input and the output, resulting in a total amount of weights

equal to (BurstMult×BurstSize)2. This comes at the cost of one additional LMem stream, making

this module require one more than other layers. Furthermore, additional output logic is required,

to add the computed value to the one already in memory, since only part of the output is beeing

calculated each time the kernel is ran. This is achieved by using the CPU parameter, First Output

already mentioned previously to control the input memory stream position.

Regarding parallelism, there are, again, two options, the inner loop or the outer loop. For

the same reason presented in the convolutional layer (section 4.2.4.1), the inner loop was chosen.

Therefore, for this layer, the parallelism parameter, capped at BurstMult×BurstSize
2 , determines how

many inputs are used per DFE run. For example, if BurstMult = 1 and Parallelism = 12, for each

of the 24 outputs, inputs 0,2,4,6,8,10,12 are used in parallel, followed by inputs 1,3,5,7,9,11,13.

As an added bonus, the LMem burst size issue is automatically resolved, because of the fact

that every LMem stream present in the module has its size defined in multiples of the burst size.
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Figure 4.16: Fully connected layer FProp module

The overall architecture is shown in figure 4.16. Going from top to bottom once again, the

input data stream incoming from the LMem is fed into an input control block. The value of

a is the previous value from the input stream, since, for each input stream point, each output

point needs to be calculated before moving on to the next input stream point. DataInEnable is

used for this exact purpose and is calculated by using an output counter, which takes values from

0:(BurstMult×BurstSize), the size of the output stream.

The data then goes into a configurable amount of data weight offset blocks given by equation

4.8, to select points from the input stream. The data offset calculation, shown in equation 4.9 is

simple, selecting input point CurIn from the stream. The weight offset, shown in equation 4.10 is

also simple, selecting an input point in the same way as data offset and selecting the output point
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by simply summing the index of the current output point.

The data is the multiplied by the corresponding weight and all the outputs are summed. This is

then forwarded into the same carry circuit as described in the convolutional layer (section 4.2.4).

Delay is instead set to BurstSize × BurstMult, to carry results from the previous input point. The

output from the previous run, already present in memory is summed, but only when calculation

for the current run is complete. The output control block works exactly as the other layers, with

DataOutEnable beeing controlled by the CurIn counter, which contains the index of the current

input. When input BurstMult×BurstSize
Parallelism is reached, computation is done and the signal is set to one.

NFconDataWeightOffsetModules = Parallelism (4.8)

DataOffset =CurIn×BurstSize×BurstMult (4.9)

WeightOffset =CurIn×BurstSize×BurstMult+

CurOut
(4.10)

The module uses three LMem streams and has to be ran
⌈

InDims * OutDims
(BurstSize×BurstMult)2

⌉
times

for the entire output to be calculated.

4.2.6.2 Backward Propagation

The restrictions taken in mind when designing backpropagation are the same as forward propaga-

tion, with the addition of trying to minimize LMem streams.

Algorithm 6 FconBackProp
Require:

FwdOut (OutDims)
Error (OutDims)
FwdIn (InDims)
Weights (InDims × OutDims)

Ensure:
Out (InDims)

1: Delta = Error × f’(FwdOut) . Element Wise pass through Act Func derivative
2: for x← 0:InDims do
3: for y← 0:OutDims do
4: Out[x] += Delta[y] * W[x][y]; . Calculate Output
5: W[x][y] -= η× Delta[y] × FwdIn[x] . Update Weights
6: end for
7: end for



Proposed Architecture 42

Figure 4.17: Fully connected layer BProp module

Similarly to backpropagation on other layers, there are two LMem streams containing FwdOut

and Error, which are used to calculate Delta.

This value is then multiplied by FwdIn, present in the LMem. The corresponding value repre-

sents the weight update and is streamed directly to the CPU, to avoid using another LMem stream.

The remaining blocks are used to calculate the output, in the same way as forward propagation,

with a few differences regarding offset calculation - input and output counters are flipped, because

input and output dimensions are flipped. No activation function block is necessary, for the same

reasons previously explained in other backpropagation modules.

The module uses five LMem streams and has to be ran
⌈

InDims×OutDims
(BurstSize×BurstMult)2

⌉
times for

the entire output to be calculated.
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4.2.7 Kernel

Kernels are responsible for computation, run for a certain number of ticks configured in the man-

ager and must be designed in accordance with resource limitations described in section 4.1.1.

4.2.7.1 Bitwidth Configuration

When performing computation on a DFE, a number representation system must be chosen. In

compliance with the defined objectives, the bitwidth can be set by the user, with two restrictions

beeing in place - only floating point systems are allowed and rules in table A.1, which are implicit

by maxeler must be followed.

There are several reasons choosing floating point versus fixed point, which include the fact

that neural networks are very sensitive to small changes, so high computation accuracy is desired.

Furthermore, the design becomes simpler when only one number system is chosen and the maxeler

API is considerably simpler for floating point systems.

4.2.7.2 Activation Function Calculation

Since the weights are initialized as mentioned in 2.2, overflow from multiplications and accu-

mulations should not be a problem. However, in certain training scenarios, when using ReLu,

depending on network architecture and used bit width, this output might overflow. Therefore,

a threshold T was implemented, limiting the output value, which was set to 10, because, from

experimentation with the C API, it was attested that computation values seldom exceed this value.

Regarding sigmoid and TanH, these functions involve calculation with the exponential func-

tion. Maxeler provides a math API which allows for simple ex computation, but, once again,

overflow problems can occur. One possible solution is presented in [14], which defines compu-

tational regions for the TanH function - once x is larger than 12.5ln(2) ≈ 8.66 (for 32 bit floats),

computation can be skipped. Since TanH uses e2x, this result means ex computation can be skipped

whenever x >= 17.32. This can be extended to the sigmoid function, which requires e−x, so com-

putation is skipped if x < 17.32, countering any overflow that might occur.

Concluding, the hardware calculation for each of the implemented activation functions is pre-

sented below:

(ReLu) f (x) =

0, x≤ 0

min(x,10), x > 0
(4.11)

(Sigmoid) f (x) =

0, x≤−17.32
1

1+e−x , x >−17.32
(4.12)

(Tanh) f (x) =

1, x≥ 8.66

2× (0.5− 1
e2x+1), x < 8.66

(4.13)
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4.2.7.3 Forward Propagation

Figure 4.18: Kernel FProp module

As evidenced in figure 4.18, every layer runs in parallel. Naturally, computation can only

occur if each layer is enabled and correct input data is present in the respective input stream. This

information is streamed from the CPU in the form of one parameter, MemControl, which the

kernel uses as an enable signal. Data correctness is implicit, due to the fact that the parameter is

automatically to 0 by the CPU for DFE runs where the data present in the LMem is not correct.

4.2.7.4 Backward Propagation

Figure 4.19: Kernel BProp module

The backpropagation module is very similar to the forward propagation module. The only two

differences are the extra CPU connection and the fact that layers are ran in backward order.
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4.2.8 Manager

The Manager configures the entire DFE dataflow, be it LMem streams, FMem or CPU streams, as

well as clock frequency, LMem access frequency and also generates interfaces, which can then be

called by the CPU to run the Kernel.

4.2.8.1 Customization

Before addressing anything else, in order to make both the network architecture and parallelism

options fully customizable, there has to be a way for the manager to access these values at compile

time. However, the manager is always compiled before the CPU, so the respective interfaces can

be created for the CPU to use. As such, a way for the manager to have access to these parameters

must be devised.

From digging through the maxeler documentation, this is apparently not possible, which would

mean multiple modules would have to be created for each desired combination of parameters,

an unfeasible approach. A workaround was found however, by implementing a scheme which

consists of writing the chosen network configuration to a file in the CPU code and reading that

file before anything else is done in the manager. The end result means running the CPU code

once, with the chosen network configuration, compiling the manager and running the CPU code

a second time, with the manager interface now correctly configured. There are 20 files, 10 for

forward propagation and 10 for backward propagation, each reading the block configuration file

prepared by the CPU and creating one block, if the file exists, with respective read, write and run

interfaces.

There is only 1 kernel, which runs all layers of a block every tick, depending on the Mem-
Control signal streamed from CPU, as mentioned in section 4.2.7. This proved to be the simplest

approach, versus running multiple kernels, each running a single layer, which would require much

more complex interface and dataflow configurations.

Furthermore, using the single kernel approach, LMem streams could be multiplexed in order

to allow very deep networks to be compiled entirely in one block, albeit with minimal parallelism,

depending on the available hardware. This strategy is implemented by default in [3] in order to

increase single layer performance, not to allow for deep networks.

This was not explored because the parallelism parameter already allows for hardware resource

configuration and yields better results versus compiling deep networks in one block. This is also

the reason why there are specific blocks for forward propagation and backward propagation. The

maximum amount of LMem streams is 15, where 2 are used by Write and Read, which are required

on every block. If both types of propagation were configured, the maximum amount of layers

in a block would be 2, largely invalidating the block architecture approach. Another unwanted

consequence of this stream multiplexing strategy is that fact that the C API call would change

depending on how many layers are present, because extra parameters are necessary from the CPU

to be used as the select parameter for the stream multiplexers.
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4.2.8.2 Interfaces

Each block has 3 total interfaces, created and configured by the manager:

1 - Write

Uses one LMem stream for writing data from the CPU directly to the LMem. Required in all

Blocks, because the LMem resets every time a new block is loaded. There are two required

parameters, the position to begin writing in and the size, which must be managed by the CPU

in order to comply with the Burst Size.

2 - Read

Uses one LMem stream, for reading data from the LMem and streaming it directly to the CPU.

Required in all Blocks, because the LMem resets every time a new block is loaded. There

are two required parameters, the position to begin reading from and the size, which must be

managed by the CPU in order to comply with the Burst Size.

Figure 4.20: LMemWrite interface

Figure 4.21: LMemRead interface

3 - Run

Runs either forward propagation (figure 4.22) or backward propagation (figure 4.23), depending

on the block.

Uses a variable amount of LMem streams, with the maximum beeing 13, because 2 are used by

Write and Read. Stream management is done automatically without any user input, with two

required parameters, streamed directly from the CPU, MemControl and First Output. Mem-
Control serves as both an enable and as output memory control, so that values are written into

the correct place in the LMem. First Output is only used in the manager on fully connected

layers, as input memory control, so correct inputs are read. This is not necessary in convolu-

tional or pooling layers due to the fact that computation requires the entire input volume. The

Kernel runs for a certain number of ticks, also using both parameters, as mentioned in section

4.2.7. This value is set to the maximum possible amount, but doesn’t reflect the actual amount

of ticks the kernel runs for, because computation stops as soon as every output data stream is

aligned. For example, if one output point is written every tick and 24 points need to be written,

the kernel only runs for 24 ticks, despite beeing configured to run for more.
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Figure 4.22: FProp Interface

Figure 4.23: BProp Interface
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4.2.9 CPU

The CPU is responsible for network creation, DFE parameter configuration and overall model

control.

4.2.9.1 Network Creation

As mentioned previously, an API was written, to allow for a customizable network architecture.

Listing 4.1 shows an example of a very shallow network. Parameters like the Learning Rate,

BatchSize and ErrorFunction are set with specfic functions, described in A. If, at any point in the

design, invalid parameters are selected, the API informs which layer had wrong parameters and

why those are invalid.

1 void CreateTestNetwork(Net)

2 {

3 int InDims[3] = {3, 28, 28};

4

5 // Init Network

6 InitCNN(Net, InDims);

7

8 // First Block

9 AddBlock(Net);

10 AddConv(16, 3, 1, 1);

11 AddActi(ReLu);

12 AddConv(16, 3, 1, 1);

13 AddActi(ReLu);

14 AddPool(2, MaxPool, 2);

15

16 // Second Block

17 AddBlock(Net);

18 AddFcon(1000);

19 AddActi(Sigmoid);

20 AddDrop(0.5);

21 AddFcon(10);

22 AddActi(Soft);

23

24 // Frequency

25 SetDesignFreq(150);

26 }

Listing 4.1: Network Creation example using the C API

4.2.9.2 DFE Setup

Just like network creation, the created API makes DFE setup extremely simple (listing 4.2). The

user must provide values for BurstMult and Parallelism, for forward and backward propagation.

These values are automatically written to specific files, which are read by the manager when blocks
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are compiled to hardware and are also used by the CPU in order to automatically setup the required

parameters by the kernel and manager.

1 void SetupDFE()

2 {

3 Network* Net = malloc(sizeof(Network));

4

5 CreateTestNetwork(Net);

6

7 // Burst Multipliers

8 int** FBM = malloc(Net->TotalBlocks * sizeof(int*));

9 int** BBM = malloc(Net->TotalBlocks * sizeof(int*));

10

11 // Parallelism

12 int** FP = malloc(Net->TotalBlocks * sizeof(int*));

13 int** BP = malloc(Net->TotalBlocks * sizeof(int*));

14

15 for(int i = 0; i < Net->TotalBlocks; ++i)

16 {

17 int BS = Net->Blocks[i].BlockSize;

18

19 FBM[i] = malloc(BS * sizeof(int));

20 BBM[i] = malloc(BS * sizeof(int));

21 FP[i] = malloc(BS * sizeof(int));

22 BP[i] = malloc(BS * sizeof(int));

23 }

24

25 // Setup parameters as desired

26 FBM[0][0] = 15;

27 FP[0][1] = 8;

28

29 // Configure Require parameters for Kernel computation

30 DFECompile(Net, FBM, BBM, FP, BP);

31 }

Listing 4.2: DFESetup example using the C API

After running the CPU code once like this, the user is then free to compile any number of

blocks for forward or backward propagation and run one of two functions, DFEInference() or

DFETrain(), which do exactly what is expected. Usage examples are shown in chapter A.

Parameter setup is done automatically when the user calls DFECompile. Before any parame-

ters are calculated, the amount of times the kernel needs to be called for each block run is calcu-

lated. This value is always less than the sum of required calls for each layer, because layers start

computing as soon as data becomes available. For each call where one or more layers are active,

the following parameters are calculated: (c - kernel call, l - layer)
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(FProp) FOc,l =


0,c = 0 or layer inactive

(FOc−1,l +BurstSize×BurstMult) mod OutDims2,Conv/Pool

(FOc−1,l +1) mod OutDims
BurstMult2

,Fcon

(4.14)

(FProp) MCc,l =


1,c = 0 or layer inactive

MCc−1,l +1,Conv/Pool

MCc−1,l +1× (FOc,l == 0),Fcon

(4.15)

(BProp) FOc,l =


0,c = 0 or layer inactive

(FOc−1,l +BurstSize×BurstMult) mod InDims2,Conv/Pool

(FOc−1,l +1) mod InDims
BurstMult2

,Fcon

(4.16)

(BProp) MCc,l =


1,c = 0 or layer inactive

MCc−1,l +1,Conv/Pool

MCc−1,l +1× (FOc,l == 0),Fcon

(4.17)

The weight setup varies depending on the layer and is calculated before computation starts

to avoid overhead. For convolutional layers, in forward propagation, there are two kernels with

every channel loaded in the FMem for each run - the one linking the input to the current output

channel and the next one. As the output is calculated, the current and next kernels are updated

with relation to the current output channel. For backpropagation, the process is the same, with

the exception that every kernel of two error channels is loaded instead. When it comes to fully

connected layers, the weight array contains every value connecting the current inputs and outputs,

updating whenever different values are required. For backpropagation the process is the same,

with inputs and outputs switched.

Regarding computation, convolutional layers are the least efficient, because they require the

entire input to be written in memory before computation can start. Assuming BurstMult is setup

optimally, pooling and fully connected layers finish computation one call after the previous layer

finishes, requiring only one extra kernel call per layer added.

4.2.9.3 Forward Propagation

Algorithm 7 describes forward propagation. Each block is loaded, followed by the respective

input beeing written. Computation is then issued, for the required number of calls, with the output

beeing read when computation is finished. This cycle is repeated until every block runs once,

leaving only the softmax calculation which is done by the CPU.
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Algorithm 7 Network DFE Forward Propagation
Require:

Input
Ensure:

Output

1: for i← 1:NBlocks do
2: LoadBlock(i); . Load current Block
3: WriteToLMem(BlockInput); . Write Input Data
4: for j← 1:NCalls[i] do . Compute Block Output
5: RunKernel(Params[i][j], Weights[i][j]);
6: end for
7: BlockOutput← ReadFromLMem(); . Read Result
8: end for
9: return Softmax(BlockOutput); . Run Softmax

4.2.9.4 Backward Propagation

Backpropagation works mostly the same way as forward propagation. Blocks are instead ran

in backward order and there is one additional parameter in the kernel call to contain the weight

updates, which is used by the CPU to update the network weights after each block is ran. In

addition, the softmax calculation is not mentioned in algorithm 8, as it’s done automatically when

the error is calculated, which is used as the input to the last block.

Algorithm 8 Network DFE Backward Propagation
Require:

Error

1: for i← NBlocks:1 do
2: LoadBlock(i); . Load current Block
3: WriteToLMem(BlockInput); . Write Input Data
4: WriteToLMem(FwdInputs[i]); . Write required data for layer computation
5: for j← 1:NCalls[i] do . Compute Block Output and Weight Updates
6: RunKernel(Params[i][j], Weights[i][j], WUpdates[i][j]);
7: end for
8: BlockOutput← ReadFromLMem(); . Read Result
9: UpdateWeights(WUpdates[i]); . Update Weights

10: end for

4.2.9.5 Training

Before training, as shown in equation 4.1, the BatchSize parameter is extremely important in over-

all system performance.

The maximum amount of memory required for one block forward propagation is estimated to

never be more than 40MB, using the VGG-16 network as reference and considering an extreme
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case. Similarly, one block backward propagation is also estimated to never use more than 40MB

of LMem, because, although more data is necessary per layer, the increased number of streams

in the computation modules means each block must contain less layers. Since Galava LMem can

hold up to 12 GB of data, BatchSize can be set to a maximum of 300.

Figure 4.24: Training flow

Figure 4.24 describes the overall training flow. The chosen algorithm, as mentioned in chapter

3 is SGD.

In compliance with the algorithm, BatchSize samples are picked at random from the training

dataset. Afterwards, the first block is loaded, inputs are written to memory and forward propaga-

tion starts. The CPU can be freed up while the DFE is computing by using nonblock functions to

run the kernel, provided directly by the hardware compiler with no extra configuration. Naturally,

because the DFE is faster than the CPU, only a few propagations can be performed while the DFE

is running, which helps increase overall performance nonetheless. After each propagation com-

pleted by the CPU, the DFE completion status is checked. Finally, the outputs are read, saved and

the next block is loaded. This process is repeated until all blocks have been used.

Continuing, the error is computed by the CPU using the chosen error function and the masks

are calculated for pooling layer backpropagation. From here on, backpropagation starts is started,

which follows what was said in section 4.2.9.4, with only one exception - weight updates are stored

and each weight is only updated, with the average value, after every backpropagation is finished.
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Once backpropagation is complete, the network is tested using a validation dataset. If goal

accuracy is reached, training is complete and the model is saved for future use. Otherwise, the

same process is repeated.



Chapter 5

Results

The design was tested using two popular CNN designs, AlexNet and VGG-16.

5.1 Validation

The first tests were done only with the C API. Each layer was tested separately at first, verifying

correctness by comparing with the tensorflow python library. Afterwards, AlexNet and VGG-16
were tested, with correctness once again beeing verified by comparing with tensorflow. Valgrind

was also used, to make sure there were no memory problems with the code.

Once the previous tests were complete, the hardware code was devised. Starting with forward

propagation, each layer was implemented separately at first and tested both in simulation, using the

provided simulation tool, and hardware, by building the project to the DFE, with correctness was

verified by comparing with the C API. In order to test an entire block, the manager was designed,

with correctness beeing verified in the same way. Finally, forward propagation for entire networks

was tested by running each block sequentially and validated using the same method as above. This

entire process was repeated for backward propagation.

5.2 Network Configurations

The network configuration for both networks was done by using the C API.

Various values for both Parallelism and Burst Mult were tested, which are specified in section

5.3. Total execution time, as shown in equation 5.1, depends on layer execution time, TExecute and

FPGA reconfiguration time, TRecon f ig of each block.

ExecutionTime =
TotalBlocks

∑
i=0

TReconfigi +TExecutei (5.1)

TRecon f ig has been previously discussed, in section 4.2.1.1, while TExecute varies on how large

computationally intensive each block is.

54
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Table 5.1: Network Configurations used for testing

Block Validation Network AlexNet VGG

1 Conv, Conv, Pool Conv, Pool, Conv Conv, Conv, Pool

2 Fcon, Fcon Pool, Conv, Conv Conv, Conv, Pool

3 N.A Conv, Pool, Fcon Conv, Conv, Conv

4 N.A Fcon, Fcon Pool, Conv, Conv

5 N.A N.A Conv, Pool, Conv

6 N.A N.A Conv, Conv, Pool

7 N.A N.A Fcon, Fcon

8 N.A N.A Fcon

5.3 Resources

5.3.1 Forward Propagation

Synthesis was performed with very high effort and maxcompiler configured to optimize speed.

Various frequencies were tested, but with frequencies higher than 150 MHz, it was significantly

harder for the system to meet timing restrictions, regardless of effort, even with resource usage

well below maximum.

Table 5.2: AlexNet DFE configuration and Resource usage

Block BurstMult Parallelism Multipliers Logic FMem

1 125, 1000, 30 1, 1, 48 38.98% 76.91% 64.25%

2 1803, 7, 7 1, 64, 64 57.01% 79.30% 83.49%

3 5, 1, 6 48, 1, 24 53.40% 61.75% 86.14%

4 5, 4 12, 12 62.78% 53.63% 91.50%

Table 5.3: VGG16 DFE configuration and resource usage

Block BurstMult Parallelism Multipliers Logic FMem

1 2000, 2000, 2200 1, 32, 1 49.21% 67.64% 54.82%

2 520, 520, 555 64, 64, 1 48.82% 72.90% 95.53%

3 130, 130, 130 64, 32, 32 65.43% 81.83% 92.70%

4 33451, 33, 33 1, 64, 64 52.36% 68.23% 96.14%

5 33, 2000, 8 64, 1, 64 54.67% 64.87% 94.52%

6 8, 8, 2000 64, 64, 1 38.79% 63.34% 92.90%

7 5, 4 12, 12 36.10% 52.62% 90.23%

8 6 24 26.78% 34.56% 88.52%
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5.3.2 Backward Propagation

Synthesis was performed with medium effort and maxcompiler configured to optimize speed.

Table 5.4: AlexNet 1 sample backward propagation.
F = 100 MHz, all times in ms.

Block BurstMult Parallelism Multipliers Logic FMem

1 1, 1, 1 1, 1, 1 11.34% 30.93% 10.54%

2 1, 1, 1 1, 1, 1 8.61% 20.76% 13.67%

3 1, 1, 1 1, 1, 1 7.09% 14.23% 16.23%

4 1, 1 1, 1 4.56% 5.97% 14.03%

5.4 Performance

5.4.1 Forward Propagation

To prove design validity, the first comparison made was agaisnt an Intel(R) Xeon(R) E5-2630 v3

@ 2.40GHz CPU, using both AlexNet and VGG.

Table 5.5: AlexNet 1 sample forward propagation.
F = 150 MHz, all times in ms.

Block CPU This work Speed-Up

1 2058.94 143.25 × 14.37

2 1727.20 347.97 × 4.96

3 1638.62 81.98 × 19.99

4 139.12 523.31 × 3.74

Total 5948.07 712.32 × 8.35

Table 5.6: VGG16 1 sample forward propagation.
F = 150 MHz, all times in ms.

Block CPU DFE Speed-Up

1 12358.22 855.24 × 14.45

2 31934.66 1710.48 × 18.67

3 16373.57 1496.67 × 10.94

4 9099.75 997.78 × 9.12

5 12487.85 783.92 × 15.93

6 21810.05 926.51 × 23.54

7 1918.66 285.09 × 6.73

8 253.58 71.23 × 3.56

Total 106236.34 7126.92 × 14.91
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For AlexNet, [3] only shows times for convolutional layer forward propagation, which were

compared with the first three blocks of this work, including three pooling layers and one fully

connected layer. Furthermore, only the DFE is used on both designs, meaning the nonblocking

functionality is not used.

When not considering reconfiguration time, the achieved speed-up is ×0.02. This mostly due

to the extra layers computed, implementation differences and hardware differences. Naturally,

computation in [3] is faster, because each layer has access every DFE resource available. Even

so, the majority of the loss in performance can be attributed to hardware differences. [3] uses a

station containing 8 DFE’s, 38.4 GB/s LMem bandwidth and 8 GB/s PCI-E bandwidth, which

is approximately ×38 faster when compared the system used for this work, described in 4.1.1.

However, considering not all of these factors are bottlenecks, a better estimation is around ×30,

which means the actual speed-up is actually closer to ×10.72∗30
573.20 ≈ 0.56.

When reconfiguration time is considered, even with slower hardware, the designed system

pulls ahead when it comes inference. Values for the reconfiguration times were discussed previ-

ously in section 4.2.1.1.

Table 5.7: AlexNet 1 sample forward propagation.
F = 150 MHz, all times in ms.

F-CNN

All convolutional Layers

This work

First 3 blocks
Speed-Up

Computation 10.72 573.20 × 0.02

Total

Best (100ms) 510.72 873.20 × 0.59

Average (500ms) 2510.72 2073.20 × 1.21

Worst (1000ms) 5010.72 3573.20 × 1.40

5.4.2 Backward Propagation

[3] does not provide backpropagation results, so results were compared with the available CPU.

Table 5.8: AlexNet 1 sample backward propagation.
F = 100 MHz, all times in ms.

Block CPU DFE Speed-Up

1 4325.17 567.27 × 7.62

2 3393.54 1407.09 × 2.41

3 1638.62 354.21 × 4.63

4 567.83 512.60 × 0.90

Total 9925.16 2841.17 × 3.49
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Conclusion

The presented hardware implementation of a CNN using the maxeler system outperforms [3], the

only other CNN training system using maxeler, by, at best×1.40 and×1.21 on average, even with

slower hardware. When it comes to training, while [3] can be faster for small networks, depending

on the used batchsize, the proposed system is a much more scalable solution for deep networks,

due to the reduced amount of reconfigurations required. Furthermore, the architecture is fully

customizable and there is also a software implementation of a CNN which can run solely on CPU.

The DFE has fully customizable parallelism by the user, which allows for different DFE models

to be used, without any redesign effort beeing needed.

There are plenty of possible improvements, because the maxeler system has a broad range of

capabilities, namely regarding system design. Since the system cannot be used for fast inference

unless there is 1 DFE available per block, removing LMem padding and using the BatchSize as a

means to make LMem streams align, as done in [3] might be a good way to improve performance,

if only training is desired. Stream multiplexing might also be another possible improvement point,

because the number of LMem streams is very limiting, expecially when it comes to backpropa-

gation. Lastly, memory management can be improved, by splitting the kernel design into all the

specific modules and using multiple kernels for each module, which could possibly allow for more

parallelism.

Given the results, this work is current state of the art regarding convolutional neural networks

using the maxeler system.
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Bitwidth Configuration table

Table A.1: Allowable bitwidth configurations

Exponent Width Maximum Mantissa Size

4 5

5 13

6 29

7 61

8-16 64
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Appendix B

User Manual

B.1 Network Creation

1 // ------------------------ //

2 // ---- Network Struct ---- //

3 // ------------------------ //

4

5 typedef struct

6 {

7 Block* Blocks; // Network Blocks

8

9 int TotalBlocks; // Size of Blocks

10

11 int BatchSize; // How many inputs considered each time while training

12 double LearningRate; // How fast Network Learns

13 double Momentum; // How much previous changes to Weights influence current

iteration

14 char EFunc; // Error function used to calculate error;

15

16 } Network;

17

18

19 // ----------------------- //

20 // ---- Init and Free ---- //

21 // ----------------------- //

22

23 /*

24 Initialize Network

25

26 Net - Net to init

27 InputDims - Dimensions of Input Volume for the Network

28

29 return value - nothing

30 */

31 void InitCNN(Network* Net, int* InputDims);

60
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32

33 /*

34 Free Network

35

36 Net - Network to be freed

37

38 return value - nothing

39 */

40 void FreeCNN(Network* Net);

41

42

43 // --------------------------- //

44 // ---- Blocks and Layers ---- //

45 // --------------------------- //

46

47 /*

48 Add a Block to the Network

49

50 Net - Network to add a block to

51

52 return value - nothing

53 */

54 void AddBlock(Network* Net);

55

56 /*

57 Adds a Conv Layer to the Current Block

58

59 NKernels - Amount of Kernels in this Layer

60 KernelSize - Size of Kernels in this Layer

61 Stride - Amount of Pixels Kernel Moves at a time

62 Padding - Amount of Pixels Added to Input Volume

63

64 return value - nothing

65 */

66 void AddConv(int NKernels, char KernelSize,

67 char Stride, char Padding);

68

69 /*

70 Adds a Pooling Layer to the Current Block

71

72 FilterSize - Size of Pooling Window

73 Type - Type of Pooling

74 Stride - Amount of Pixels Kernel Moves at a time

75

76 return value - nothing

77 */

78 void AddPool(char FilterSize, char Type, char Stride);

79

80 /*
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81 Adds an Fcon Layer to the Current Block

82

83 Output Size - Amount of Output Neurons

84

85 return value - nothing

86 */

87 void AddFcon(int OutputSize);

88

89 /*

90 Adds an Activation Layer to the Current Block

91

92 Func - Activation function

93

94 return value - nothing

95 */

96 void AddActi(char Func);

97

98 /*

99 Add a Dropout to the Current Block

100

101 DropP - Dropout Probability

102

103 return value - nothing

104 */

105 void AddDrop(double DropP);

106

107

108 // ------------------------- //

109 // ---- Edit Parameters ---- //

110 // ------------------------- //

111

112 /*

113 Set Batch Size

114

115 Net - Network to consider

116 Efunc - Batch Size

117

118 return value - nothing

119 */

120 void SetBatchSize(Network* Net, int Bs);

121

122 /*

123 Set Learning Rate

124

125 Net - Network to consider

126 Efunc - Learning Rate

127

128 return value - nothing

129 */



B.1 Network Creation 63

130 void SetLearningRate(Network* Net, double Lr);

131

132 /*

133 Set Momentum

134

135 Net - Network to consider

136 Mom - Momentum

137

138 return value - nothing

139 */

140 void SetMomentum(Network* Net, double Mom);

141

142 /*

143 Set Error Func

144

145 Net - Network to consider

146 Efunc - Error Function

147

148 return value - nothing

149 */

150 void SetErrorFunc(Network* Net, char Func);

151

152 /*

153 Set Design Frequency

154

155 Freq - Frequency in MHz

156

157 return value - nothing

158 */

159 void SetDesignFreq(int Freq);

160

161

162 // ---------------------------- //

163 // ---- Pre-Defined Models ---- //

164 // ---------------------------- //

165

166 /*

167 Sets Network to AlexNet configuration

168

169 Net - Network that gets configured

170

171 return value - nothing

172 */

173 void CreateAlexNet(Network* Net);

174

175 /*

176 Sets Network to VGG16 configuration

177

178 Net - Network that gets configured
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179

180 return value - nothing

181 */

182 void CreateVGG16(Network* Net);

Listing B.1: Network Creation Documentation

B.2 Inference and Training

1 // ------------------- //

2 // ---- Inference ---- //

3 // ------------------- //

4

5 /*

6 Classifies an Input with a given Network.

7 Only uses the CPU.

8

9 Net - Network to use

10 Input - Input to classify

11

12 return value - Classification Index

13 */

14 int ClassifyCPU(Network Net, double*** Input);

15

16 /*

17 Classifies an Input with a given Network

18 Only uses the DFE.

19

20 Net - Network to use

21 Input - Input to classify

22

23 return value - Classification Index

24 */

25 double* ClassifyDFE(Network Net, double*** input);

26

27

28 // ------------------ //

29 // ---- Training ---- //

30 // ------------------ //

31

32 /*

33 Train Network with a given Dataset.

34 Only uses the CPU.

35

36 Net - Network to be used

37 Inputs - Training DataSet. Dimensions need to be {DataSize, InDims}

38 Labels - Labels. Dimensions need to be {DataSize, NClasses}

39 DataSize - How many Inputs the Training DataSet contains

40 MaxEpochs - Maximum Amount of Epochs to run Training for

41 GoalError - Target Error
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42 GoalAccuracy - Target Accuracy

43

44 return value - Nothing

45 */

46 void CNNTrainCPU(Network Net, double**** Inputs, double** Labels, int DataSize,

int MaxEpochs, double GoalError, double GoalAccuracy);

47

48 /*

49 Train Network with a given Dataset.

50 Only uses the DFE.

51

52 Net - Network to be used

53 Inputs - Training DataSet. Dimensions need to be {DataSize, InDims}

54 Labels - Labels. Dimensions need to be {DataSize, NClasses}

55 DataSize - How many Inputs the Training DataSet contains

56 MaxEpochs - Maximum Amount of Epochs to run Training for

57 GoalError - Target Error

58 GoalAccuracy - Target Accuracy

59

60 return value - Nothing

61 */

62 void CNNTrainDFE(Network Net, double**** Inputs, double** Labels, int DataSize,

int MaxEpochs, double GoalError, double GoalAccuracy);

Listing B.2: Network Usage Documentation
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