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Summary 

Process analytical technology (PAT) methodologies are being increasingly 

adopted by drug products manufacturing companies for products and processes’ 

monitoring and control. PAT aims at improving and updating outdated pharmaceutical 

manufacturing practices where quality control is based more on compliance with product 

specifications rather than on process understanding. As the vast majority of drug products 

today are manufactured relying on a sequence of batch or semi-continuous unit 

operations, PAT tools have been implemented by focusing on specific production process 

stages. As continuous manufacturing of drug products becomes a reality (increasing 

investment of industry in this manufacturing paradigm), many established approaches for 

process monitoring, tracing and control must be reevaluated to adjust to the new 

requirements of this manufacturing mode. PAT methods are core in this context, 

specifically in what concerns product quality assessment. Consequently, quality 

assessment in continuous manufacturing forces PAT tools implementation to reach 

another level. These new implementation requirements must be effectively identified and 

solved in order to reduce risks associated with inefficient assessment of products quality. 

This thesis intended to provide a deep insight on the implementation of PAT tools in the 

context of continuous manufacturing of solid dosage forms, paving the way to a more 

effective migration from the traditional batch-wise production paradigm.  

Chapter 1 defines the general objectives that this thesis aimed at accomplishing 

while Chapter 2 serves the purpose of introducing the concepts and tools utilized to reach 

those goals. 

The need for real-time quality assessment of processing materials during 

continuous manufacturing while complying with the regulatory agencies requirements is 

especially challenging. For instance, particle size distribution is a critical quality attribute 

(CQA) in many unit operations such as blending, granulation, spheronization or 

crystallization. Currently available tools for in-process particle size distribution monitoring 

utilize dissimilar working principles complicating the task of validation against well-

established techniques such as laser diffraction and sieving. This problem was 

investigated by comparing particle size of several batches of Cellets™ and granules, 

determined with in-process techniques versus size obtained by laser diffraction and 

sieving and explaining the observed differences in results (Chapter 3). 

In Chapter 4 and Chapter 5, PAT tools were investigated in the context of 

processes monitoring and supervision. In these chapters, PAT tools implemented in 
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specific sections of different manufacturing processes were used to generate process 

localized fingerprints that combined with multivariate data analysis (MVDA, e.g., principal 

component analysis (PCA), partial least squares (PLS) and some extensions of these 

methods) were utilized to ensure that steady state conditions were kept. Multivariate 

statistical process control concepts are applied.  Chapter 4 provides a comparison 

between PLS and Orthogonal-PLS (OPLS) for batch statistical process control (BSPC) of 

a cocrystallization process considering near-infrared spectra acquired in-situ and in real-

time. A systematic analysis of the operation of the granulation and drying stages of the 

continuous manufacturing line is described in Chapter 5 (ConsiGma-25™). Univariate 

data acquired from sensors spread in multiple locations of the line was analyzed with 

MVDA methods (PLS, PCA and OPLS). Multivariate statistical process control (MSPC) 

concepts were applied to guarantee that the process was kept in a state of control. Two 

different wet granulation processes were examined. In the first two studies, a formulation 

containing two Active Pharmaceutical Ingredients (API) was granulated with distilled 

water, and in the third study, a second placebo formulation consisting of milled lactose 

monohydrate was granulated using a 20% (w/w) PVP solution as a binder.  

Differences in particle size results of in-process versus offline techniques were 

found, examined and explained. A thorough overview of the different equipments is 

provided which can be used as a tool for selection of the best instrument for a specific 

application. Both PLS and OPLS-based BSPC approaches were successful in terms of 

detecting process imposed disturbances in the studied cocrystallization process. The 

MVDA methods generated important process knowledge about the operation of the 

ConsiGma™-25 line. The developed MSPC approaches are a step toward a monitoring 

approach that links measured variables, process parameters, together with raw material 

properties, in a manner to predict, and ultimately control the critical product quality 

attributes. 

Chapter 6 frames this dissertation in a board international context, describes its 

relevance, and sheds light on the future perspectives as a continuation of the developed 

work. Chapter 7 presents the general conclusion of this work. 

The developed tools consolidate PAT in terms of the added-value to 

pharmaceutical manufacturing, especially when industry is gradually migrating towards 

continuous manufacturing. Implementation of this technology directly in the process 

stream will allow to obtain fundamental process knowledge, and open up the possibility to 

establish better control strategy, better process performance and, ultimately, improving 

product quality.  
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Resumo 

As metodologias de Tecnologia Analítica de Processos (PAT) são cada vez mais 

utilizadas pela industria farmacêutica na monitorização e controlo de produtos e 

processos. As metodologias PAT visam melhorar e atualizar as práticas obsoletas de 

fabrico de produtos farmacêuticos em que, o controle de qualidade se baseia mais na 

conformidade com as especificações do produto final, em detrimento da compreensão do 

processo em si. Como a grande maioria dos produtos farmacêuticos são atualmente 

fabricados com base numa sequência de operações unitárias em lote, ou semi-contínuas, 

as ferramentas PAT têm sido implementadas focando etapas específicas do processo de 

produção. À medida que a fabricação contínua de medicamentos se torna uma realidade, 

(resultado de um investimento crescente da indústria farmacêutica neste paradigma de 

fabrico), muitas das abordagens de monitorização de processos, rastreamento e controle 

devem ser reavaliadas de modo a se ajustarem às exigências deste novo modo de 

produção.  A necessidade de avaliar a qualidade de materiais e produtos durante o 

fabrico contínuo promove a implementação de ferramentas PAT. Os requisitos de 

implementação destas metodologias têm de ser eficazmente identificados e resolvidos, a 

fim de reduzir os riscos associados a uma avaliação ineficaz da qualidade dos produtos. 

Esta tese pretende fornecer uma visão detalhada sobre a implementação de ferramentas 

PAT no contexto da fabricação contínua de formas sólidas orais, abrindo o caminho para 

uma migração mais eficaz do tradicional paradigma de produção em lote para a produção 

contínua.  

No Capítulo 1 são definidos os objetivos gerais que esta tese se propôs a realizar, 

enquanto o Capítulo 2 serve o propósito de introduzir os conceitos e ferramentas 

utilizados para alcançar esses objetivos. 

É essencial avaliar em tempo real a qualidade dos materiais a serem processados 

durante a fabricação contínua, mas fazê-lo cumprindo os requisitos das agências 

reguladoras, é uma tarefa exigente. A distribuição de tamanho de partícula é um exemplo 

de um atributo crítico de qualidade (CQA) em muitas operações unitárias tais como 

mistura, granulação, esferonização, cristalização, entre outras. As ferramentas 

atualmente disponíveis para a monitorização da distribuição de tamanho de partícula 

durante o processo utilizam princípios de medição distintos, o que dificulta a tarefa de 

validá-los por comparação com técnicas bem estabelecidas, tais como a difração a laser 

e análise granulométrica utilizando tamises. Nesta dissertação, esta questão foi abordada 

experimentalmente, determinando o tamanho de partícula de diferentes lotes de Cellets™ 
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e grânulos utilizando simultaneamente, as novas tecnologias destinadas a monitorização 

durante o processo, e técnicas tradicionais de difração a laser e análise granulométrica. 

Os resultados obtidos foram comparados e as diferenças observadas explicadas 

(Capítulo 3). 

No Capítulo 4 e no Capítulo 5, as ferramentas PAT foram investigadas no 

contexto da monitorização e supervisão de processos. Nestes capítulos, ferramentas PAT 

implementadas em segmentos específicos de diferentes processos de fabricação foram 

utilizadas para gerar impressões digitais que, quando combinadas com análise de dados 

multivariada (MVDA, e.g. análise de componentes principais (PCA), mínimos quadrados 

parciais (PLS) e algumas extensões destes métodos) foram empregues para assegurar 

que o processo permanecia num estado estacionário. Para este fim foram utilizados 

conceitos de controle estatístico multivariado de processos (MSPC). No Capítulo 4 é feita 

uma comparação entre PLS e PLS ortogonal (OPLS) no controle estatístico multivariado 

em lote (BSPC) de um processo de co-cristalização monitorizado com espectroscopia de 

infravermelho próximo in situ, e em tempo real. No Capítulo 5 é feita uma análise 

sistemática do funcionamento dos estágios de granulação e secagem da linha de 

produção contínua (ConsiGma-25 ™). Dados univariados adquiridos a partir de sensores 

espalhados em múltiplos locais da linha foram analisados com métodos MVDA (PLS, 

PCA e OPLS). Foram aplicados conceitos de controle estatístico multivariado de 

processos para garantir que o processo permanecia em controlo. Dois diferentes 

processos de granulação a húmido foram estudados. Nos dois primeiros estudos, 

granulou-se uma formulação contendo duas substâncias ativas com água destilada e, no 

terceiro estudo, granulou-se uma segunda formulação placebo consistindo em 

monohidrato de lactose com uma solução de PVP a 20% (m/m) como aglutinante. 

Foram encontradas, examinadas e explicadas as diferenças entre os resultados 

de tamanho de partícula obtidos pelas técnicas em processo versus as metodologias 

tradicionais off-line. É fornecida uma visão geral dos diferentes equipamentos que pode 

ser usada como uma ferramenta para seleção do melhor instrumento a ser usado numa 

aplicação específica. Ambos as abordagens baseadas em PLS e OPLS foram capazes 

de detetar os distúrbios impostos no processo de co-cristalização estudado. Os métodos 

MVDA forneceram informação relevante relativamente ao funcionamento da linha de 

produção contínua ConsiGma ™ -25. As abordagens MSPC apresentadas são um passo 

na direção de uma abordagem de monitorização mais abrangente capaz de conectar 

variáveis e parâmetros de processo, juntamente com as propriedades da matéria-prima, 

de forma a prever e controlar os atributos críticos da qualidade do produto final. 
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O Capítulo 6 enquadra esta dissertação no contexto internacional e descreve a 

sua relevância, apresentado também perspetivas futuras para a continuação do trabalho 

desenvolvido. O Capítulo 7 apresenta as conclusões gerais deste trabalho. 

As ferramentas desenvolvidas reforçam o valor das metodologias PAT aplicadas 

ao fabrico de produtos farmacêuticos numa altura especialmente relevante, em que a 

indústria está no processo de migração gradual para um modo de fabrico contínuo. A 

implementação desta tecnologia diretamente no fluxo dos processos permitirá obter 

conhecimento essencial acerca do processo em si e abre a possibilidade de se 

estabelecerem estratégias de controlo mais eficazes, contribuindo para um melhor 

desempenho do processo, resultando num produto final de qualidade superior. 

 

 

Palavras-chave: Produção contínua; Tecnologia analítica de processos; 

Espectroscopia de infravermelho próximo; Análise de dados multivariada; Controle 

estatístico multivariado de processos.  
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Samenvatting  

Proces Analytische Technologie (PAT) wordt steeds meer toegepast door 

geneesmiddel producerende bedrijven voor het monitoren en de controle van de 

producten en het productieproces. PAT heeft als doel het verbeteren en updaten van 

verouderde farmaceutische manufacturing toepassingen waarbij kwalitet eerder 

gegarandeerd wordt op basis van controle op het eindproduct dan op basis van 

proceskennis. Aangezien een grote meerderheid van de geneesmiddelen vandaag de dag 

aangemaakt worden via een opeenvolging van verschillende batch of semi-continue 

processen, werden PAT toepassingen tot nu toe vooral ingebouwd in specifieke 

processtappen. Nu continue productie van geneesmiddelen werkelijkheid wordt (meer 

investeringen door de industrie), moeten veel gevestigde methodes voor procesbewaking, 

foutopsporing en controle opnieuw worden geëvalueerd en worden aangepast. PAT 

toepassingen zijn van groot belang in deze context, zeker wanneer het over de controle 

van productkwaliteit gaat. Dit zorgt er voor dat een verschillende aanpak voor PAT 

implementatie nodig is met betrekking tot kwaliteitscontrole in continue processen dan bij 

batch processen. Deze nieuwe implementatiemethodes moeten ontwikkeld en 

geëvalueerd worden om risico’s geassocieerd met ondoelmatige controle van 

productkwaliteit te vermijden. Deze thesis is bedoeld om een dieper inzicht te verkrijgen in 

de implementatie van PAT toepassingen in de context van continue productieprocessen 

van vaste doseringsvormen, het pad effenend voor een meer effectieve migratie van het 

traditionele batchgewijze productiepatroon naar continue productiewijzen 

Hoofdstuk 1 definieert de algemene doelstelling van deze thesis terwijl Hoofdstuk 

2 een introductie geeft tot de concepten en toepassingen gebruikt om deze doelstelling te 

bereiken. 

De nood aan real-time kwaliteitsbeoordeling van de verwerkte materialen tijdens 

de continue productie, de eisen van de regelgevende instantie in acht genomen, is 

bijzonder uitdagend. Zo zal deeltjesgroottedistributie een kritische kwaliteitseigenschap 

(CQA) zijn in veel eenheidsoperaties zoals menging, granulatie, sferonisatie of 

kristallisatie. De huidig beschikbare toepassingen voor inline deeltjesgrootte monitoring 

maken gebruik van verschillende meet- en rekenprincipes, wat de validatie ten opzichte 

van gevestigde offline technieken zoals zeven en laserdiffractie moeilijk maakt. Dit 

probleem werd onderzocht door de deeltjesgrootte van verschillende batchen Cellets™ en 

granules, verkregen door inline technieken te vergelijken met de deeltjesgrootte verkregen 

met behulp van offline technieken (Hoofdstuk 3). 
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In Hoofdstuk 4 en Hoofdstuk 5, werden PAT toepassingen onderzocht in de 

context van procescontrole en –toezicht.  In deze hoofdstukken werden PAT 

toepassingen geïmplementeerd in welbepaalde secties van verschillende 

productieprocessen, hierdoor werden proces-gelokaliseerde vingerafdrukken gegenereerd 

die, gecombineerd met multivariate data-analyse (MVDA zoals principale componenten 

analyse (PCA), partiële kleinste kwadraten regressie (PLS) en enkele uitbreidingen op 

deze methodes ) gebruikt werden om te verzekeren dat steady-state condities 

aangehouden werden. Multivariate statistische procescontrole begrippen werden 

toegepast. Hoofdstuk 4 geeft een vergelijking tussen PLS en Orthogonale-PLS (OPLS) 

voor batch statistische procescontrole (BSPC) van een co-kristallisatieproces, vanuit 

nabije infrarood spectra die inline werden verkregen tijdens het proces. Een 

systematische analyse van de granulatiestap en de droogstappen in een continue 

productielijn (ConsiGma™-25) werd beschreven in Hoofdstuk 5. Univariate data 

verkregen uit sensoren verspreid over verschillende locaties in de productielijn werden 

geanalyseerd door middel van MVDA methodes (PCA, PLS en OPLS). Het multivariate 

statistische procescontrole (MSPC) concept werd toegepast om er voor te zorgen dat het 

proces onder controle bleef. Twee verschillende granulatieprocessen werden onderzocht. 

In de eerste twee studies werd een formulatie bestaande uit twee actieve farmaceutische 

ingrediënten (API) gegranuleerd met gedestilleerd water en in een derde studie werd een 

placeboformulatie bestaande uit gemalen lactose monohydraat gegranuleerd met een 

PVP oplossing (20%(w/w)) als granulatievloeistof. 

Er werden verschillen gezien tussen de deeltjesgrootte gemeten met inline en 

offline methodes. Deze verschillen werden onderzocht en verklaard. Een volledig en 

grondig overzicht van de gebruikte toepassingen werd voorzien, welke gebruikt kan 

worden als hulpmiddel om te selecteren welke toepassing het beste gebruikt wordt in een 

bepaalde situatie. Zowel PLS en PLS-gebaseerde BSPC benaderingen konden succesvol 

gebruikt worden om verstoringen, opgelegd aan het systeem, te detecteren in een 

bestudeerd co kristallisatie proces. De MVDA methodes genereerden belangrijke 

proceskennis over de ConsiGma™-25 lijn. Met de ontwikkelde MSPC aanpak staan we 

een stap dichter tot een controlemethode die gemeten variabelen, proces parameters en 

eigenschappen en de ruwe materialen linkt op een manier dat de CQA’s voorspeld en 

uiteindelijk ook gecontroleerd kunnen worden. 

Hoofdstuk 6 plaatst dit proefschrift in een bredere context, beschrijft de relevantie 

en werpt licht op de toekomstplannen in de vorm van een vervolg op het bestaande werk. 

Hoofdstuk 7 geeft de algemene conclusie van dit werk weer. 
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De ontwikkelde toepassingen maken PAT tot een toegevoegde en onmisbare 

waarde voor farmaceutische productie, zeker nu de industrie geleidelijk meer overstapt 

naar continue processen. Wanneer deze technologie direct in de processtroom wordt 

geïmplementeerd, zal het mogelijk zijn fundamentele proceskennis te verschaffen en 

maakt het het ontwikkelen van een betere controlestrategie en betere proces performance 

mogelijk, uiteindelijk leidend tot een betere productkwaliteit. 

 

  

Kernwoorden; Continue productie; Proces analytische technologie; Nabije 

infrarood spectroscopie; Multivariate data-analyse; Multivariate statische proces 

controle. 
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This thesis aims at demonstrating the usefulness of the use of Process Analytical 

Technology (PAT) concepts to supervise batch and continuous pharmaceutical processes 

in order to achieve an in-depth level of process understanding. The ultimate goal of PAT is 

to provide a better process understanding, monitoring the process and, ultimately, 

allowing to steer it. A PAT environment includes real-time monitoring of the process 

including at-line, on-line and in-line measurements. Even with the most elementary 

application of PAT, one can gain a deeper knowledge, enabling the possibility of applying 

changes during manufacture to keep the process running within the desired operating 

space. Better control is the prime objective, as it will improve product quality, resulting in 

less waste, increase safety of operations, and thus increase profitability. It is a step 

forward in the direction of implementation innovative tools for process supervision in the 

pharmaceutical industry.  

Particle size in one of the most important quality attributes in the manufacturing of 

solid dosage forms. To be able to apply PAT concepts to monitor this quality attribute it is 

necessary to have techniques capable of measuring particle size in real-time during 

processing. One of the objectives of this thesis is studying several in-process techniques 

and compare the results to well-established off-line methods to determine particle size.  

 A central topic throughout the work developed for this thesis is applying 

multivariate statistical process control (MSPC) strategies to monitor batch and continuous 

manufacturing processes. Data collected from in-process analyzers such as, near infrared 

spectroscopy, as well as, data from univariate sensors (e.g., temperatures, pressures, 

etc.) is analyzed with multivariate data analysis methods, for instance, principal 

component analysis (PCA), partial least squares (PLS). 

  Chapter 1
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The development of these technologies provides scientific-based solutions with 

applications in the pharmaceutical industry, resulting in the substitution of off-line 

reference methods and attaining an improved process knowledge. The work developed in 

this thesis aims at supporting the transition of the manufacturing paradigm from batch to 

continuous production. A shift that is highly beneficial to the pharmaceutical industry from 

the economic and the product quality point of view. 
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2.1 Pharmaceutical industry: need for innovation 

The pharmaceutical industry is continuously confronted with the challenge to 

improve product quality while lowering production costs. As in any other industry, the 

fundamental aim is to produce an efficient, and safe product, satisfactory to the customer 

(i.e. within prescribed quality specifications), and at a minimum cost.  

Pharmaceutical industry lived profitable years in the 1980s and 1990s. The many 

breakthroughs in medicines, high product margins and favorable and growing global 

economy were the main contributing factors [1]. However, in the last decades, the overall 

economic downturn, the rising cost of healthcare and costs associated with the 

development and sales of pharmaceuticals and the competition with generic medicines, 

generated a marked profitability gap between the increasing costs and decreasing market 

prices [2].  

A successful and continuous introduction of new drugs is essential to sustain 

competitive advantage for the firms. However, new drugs are complex to create. This a 

laborious, long-lasting, and expensive process with very uncertain outcomes. One in 

every 5,000 to 10,000 potential compounds investigated by the US-based pharmaceutical 

companies is granted Food and Drug Administration (FDA) approval. The odds of a 

promising drug to make it through the sequential stages of the drug development process 

are about one in five. To FDA approval, and the rights to market a drug takes in average 

about 15 years, most of which dedicated to clinical trials. At the time of obtaining FDA 

approval, the clock on market exclusivity starts ticking [1], and currently, patent protection 

times are decreasing, due to longer development times [3]. The pharmaceutical industry 

  Chapter 2
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needs to find alternatives to strengthen its position on other than drug discovery through 

cost control and, on the other hand, through innovation, brand promotion and services [2]. 

Pharmaceutical companies must create new ways and bring new ideas. In addition to 

profits, innovation brings added value by contributing significantly to the economy, and 

society, by creating highly‐skilled jobs and increasing scientific knowledge. Innovation in 

medicines brings also significant value in terms of the population’s health, increasing 

survival rates and bettering quality of life which reduces the of costs related with diseases. 

Powerful, diversified, influential and globalized the pharmaceutical industry plays a crucial 

role in the economy [4]. 

2.2 Pharmaceutical Manufacturing: from Batch to Continuous 

Production 

The pharmaceutical industry is showing increasing interest in switching from 

traditional batch manufacturing to continuous production [5]. This change is mainly driven 

by two highly compelling reasons, fortified by the current legislative and economical 

conjecture: improvement of guaranteed product quality and reduction of production costs 

[5].  

Today, pharmaceutical production plants of active pharmaceutical ingredients 

(API’s) and drug products are still mostly batch manufacturing plants [6]. In batch 

manufacturing, all materials are charged before the start of the process, and discharged at 

the end (Figure 1). On the other hand, in continuous manufacturing materials follow the 

“first-in-first-out” (FIFO) principle, being continuously charged and discharged from the 

process. FIFO is a concept of lean manufacturing [7] an idea developed by Toyota which 

aims at simultaneously reducing waste and boosting productivity. A manufacturing line 

can work in more than one mode, multimode processes also exist [8].  

In a traditional batch pharmaceutical manufacturing process, raw materials, 

intermediates and final products are usually tested off-line and stored before they are sent 

to the next step. In continuous manufacturing, raw materials are fed continuously to the 

process and intermediate products are sent continuously to the next step for further 

processing. Therefore, continuous manufacturing, requires a higher level of design and in-

process control to ensure a product of quality. A fully integrated continuous installation 

includes continuous unit operations, connected in an integrated manufacturing process. In 

a fully integrated line, PAT concepts are utilized to provide real-time data for process 

monitoring and control, and engineering process control systems are implemented to 

mitigate the impact of raw material and process variability on the finished products’ quality 
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[9]. This comes in line with Quality-by-Design (QbD) paradigm for pharmaceutical 

processes development framed by the International Conference on Harmonization (ICH) 

Q8 guideline [10-12]. 

 

 

Figure 1 – Batch manufacturing: the material(s) is charged before the start of processing and the 
product is discharged at the end of processing. (b) Continuous manufacturing: material(s) and the 
product are simultaneously charged and discharged from the process, respectively. Adapted from 
[13]. 

 

Batch manufacturing offers the advantage that a batch can be accepted or rejected 

simplifying quality control. However, this fact should not pose a barrier to implementing 

continuous manufacturing. According to the FDA, the definition of a batch is not 

dependent on the manufacturing mode (batch or continuous), and is instead demarcated 

by the quantity of manufactured drug. A batch is ‘a specific quantity of a drug or other 

material that is intended to have uniform character and quality, within specified 

acceptance limits, and is produced according to a single manufacturing order during the 

same cycle of manufacture’ [14]. From a regulatory point of view, this definition does not 

pose at all an obstacle to adoption of continuous manufacturing, as a batch in a 
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continuous setting can simply be defined by a fixed quantity of product, or the amount 

produced in a predefined time interval [15].  

Continuous manufacturing is being more commonly used in the pharmaceutical 

industry, and therefore, more attention is being paid to it. Several reasons can be 

attributed to this, among them are the possibility of product quality improvement, an 

enhanced cost-efficiency and reduced environmental impact. 

 Batch manufacturing plants operate intermittently and often, some or all process 

units are shut down and started up. Oppositely, continuous production plants are 

designed to work for twenty-four hours a day, seven days a week through the year. Down 

time is required for maintenance and, for some types of processes, catalyst regeneration. 

In a continuous process, materials are continuously processed and transferred thorough 

the system which, after a startup period, works at a steady state condition. How to operate 

start-up and shutdown as fast as possible with minimal waste is essential [16] and a smart 

sequencing of unit operations during both, start-up and shutdown, was suggested to 

decrease losses. PAT systems can gather real-time data for process and product 

monitoring, and ultimately, process steering an product quality control. When implemented 

in a continuous setting, PAT reduces or even eliminates the need of storage times of 

intermediates and final product. The alternative, which is an off-line quality control 

strategy, would entirely eliminate the advantage of producing continuously. PAT makes 

continuous processing more cost-efficient than batch processing, and leads to faster 

response times, and a faster final product release. A faster time-to-market is especially 

important for breakthrough therapies, for the treatment of life-threatening conditions, in 

preliminary clinical trials.  

In continuous manufacturing, it is also potentially easier to scale up/down. The 

flexibility of a continuous process relies on the fact that, to obtain higher product 

throughput, there is only the need to increase the process time thus avoiding costly and 

time-expensive scale-up studies. This flexibility and robustness allows the same 

equipment to be used for both, small-scale batches for development and clinical trials, and 

for large-scale production. Being able to produce more or less product, in such 

straightforward manner, also allows to easily adapt to market demands, avoiding both 

drug shortages and overstock.  

In continuous production, steps occur sequentially without the need of isolated or 

dedicated modules, greatly reducing plant footprint, and resulting in considerable saving in 

invested capital and operating expenses. A complete raw material to final product 

continuous manufacturing process can be installed in a single facility, rendering transport 

between several installations for further processing unnecessary. Labor costs due to 
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storage and handling of intermediates, stockpiling and handling of materials are hence 

also reduced.  

Regardless of the numerous advantages of continuous manufacturing, there are 

still some challenges related to its employment. For many years, the pharmaceutical 

industry has been reluctant to adopt continuous manufacturing due to the strict regulatory 

environment. Once a process was approved, changes were avoided, hindering the 

introduction of new technologies. Companies with an established batch asset-base, 

wherein a huge capital was invested during the 80s and 90s, were also not willing to 

invest time and money in this new manufacturing concept without sufficient proof. 

Moreover, continuous technologies were not widely available, unlike batch equipment, 

and no one wanted to be the first to deal with the technology and regulatory hurdles that 

this change would bring [6, 17-19]. The required initial investment in the construction of 

facilities, new generation of equipment, sensors and automation, and generation of 

process knowledge were, and still are, unappealing to companies. It is also an important 

challenge that accurate process operation models of the steps in a continuous process 

need to be developed, together with powder characterization and handling, especially for 

low-dose production, with several solutions already proposed to this end [16]. Engineers, 

scientists and regulators need to adopt a new mindset and upskill in statistics to better 

analyze and understand process data [16]. 

Despite the challenges, they are resolvable, and clearly outweighed by the 

advantages offered by manufacturing continuously (Table 1). This was recognized by 

several big pharmaceutical companies. Johnson and Johnson aims to manufacture 70% 

of its highest-volume products continuously within 7 years from now [20]. Eli Lilly will 

invest €35 million in a purpose-built continuous API production facility in Ireland, for 

products in the company’s late-stage pipeline [21]. GlaxoSmithKline has a continuous 

processing plant underway at its site in Jurong, Singapore, to make API’s for its 

respiratory drugs. AstraZeneca has also recently invested in a continuous wet granulation 

unit [22]. The FDA recently approved two continuous manufacturing processes [23, 24]. 

The first approval ever of a production method change from “batch” to continuous 

manufacturing was conceded to Janssen: Pharmaceutical Companies of Johnson & 

Johnson. This approval is for manufacturing medication for the treatment of HIV-1 

infection, Prezista™ (Darunavir), a direct compression product, at Janssen's Gurabo, 

Puerto Rico, plant. The second FDA approval was to Vertex, for producing their 

breakthrough cystic fibrosis therapy Orkambi™, a continuous wet granulation product. 

Approval was received by FDA in July 2015. 
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Table 1 – Advantages and challenges to the implementation of continuous manufacturing. 

Advantages Challenges 

Product quality 

 PAT implementation: constant raw 
material and process monitoring and an 
improved control 

 Reduced variability: better 
reproducibility  

 Improved robustness 

 Compliant with Quality-by-Design 

 Faster release of breakthrough products 

Cost-effectiveness 

 Improved flexibility 

 Reduced production times 

 Elimination of intermediates and 
product storage times 

 Reduced intermediates and product 
handling 

 Shorter downtimes 

 Faster response times 

 Easier to scale-up 

 Reduction of time for product 
development 

 Reduced time-to-market (competitive 
advantage)  

 Adaptability to market demands 

 Capital savings on installation and 
operating expenses 

Environmental impact 

 Reduced footprint 

 Reduced energy consumption 

Product quality 

 Simpler quality control (accept or reject 
an entire batch)  

Business and organizational 

 Previous large investment in batch 
processes in the 80’s and 90’s is a 
hurdle for introduction of CM 

 Shift the mindset of process and 
formulation scientists, quality units 
within companies and regulators  

Economic 

 Initial investment in facilities 

 Acquisition of equipment, sensors, 
automation and systems’ integration 
and control 

 Investment on the creation of process 
knowledge (process phases, raw 
materials, quality and environmental 
conditions) 

2.3 Process Analytical Technology (PAT) 

PAT is defined as “a system for designing, analyzing, and controlling 

manufacturing through timely measurements of critical quality and performance attributes 

of raw and in-process materials and processes, with the goal of ensuring final product 

quality” [9]. The goal of PAT is to acquire a fundamental understanding of the 

manufacturing process and the manufactured product.  

In the pharmaceutical industry, for many decades, quality and quality management 

activities were focused on compliance rather than on process understanding. As a result, 

business practices aim at minimizing regulatory risks. Additionally, the pharmaceutical 

industry is highly regulated and in the past, strict regulatory practices obliged processes to 
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operate under pre-defined and fixed operating conditions, disregard of variability of raw 

materials, and processing conditions. In some cases, this ended with out-of-specification 

products that had to be discarded causing major losses. Such stringent regulations, with 

little room for change, hindered innovations in this industry’s manufacturing models and 

quality assurance [25].  

The introduction of FDA’s Pharmaceutical Quality for the 21st Century shifted that 

mindset by promoting a more efficient, agile, flexible pharmaceutical sector, that 

consistently and reliably produces high-quality drugs without an extensive regulatory 

burden. In August 2002, the FDA announced the “Pharmaceutical current Good 

Manufacturing Practices (cGMP’s) for the 21st Century—a risk-based approach” [26]. 

Published later in 2004 these document aims at enhancing and modernizing 

pharmaceutical processes and product quality for veterinary and human drugs and 

selected human biological products such as vaccines.  

The FDA Center for Drug Evaluation and Research (CDER) firstly proposed the 

creation of the PAT initiative with the goal of achieving significant health and economic 

benefits by applying modern process control and tests in pharmaceutical manufacturing. 

Shortly after, in 2001 the PAT subcommittee was formed, consisting in the four working 

groups with representatives from the FDA, experts from the industry and academic 

representatives: 1) PAT applications working group; 2) PAT products and the process 

development working group; 3) PAT process and analytical validation working group and 

4) PAT chemometric working group. The comments and recommendations suggested by 

this subcommittee lead the FDA to release its PAT guidance. The introduction by the FDA 

of the PAT initiative [27] initiated a change in the pharmaceutical industry, toward a risk-

and science-based approach for pharmaceutical processing. Real-time process 

monitoring and control, continuous improvement of processes and quick product 

technology transfer are now the focus and concepts like QbD, Design Space, Control 

Strategy, PAT, Process Signature became and remain hot topic for the pharmaceutical 

industry [28].  

Following the PAT initiative, the ICH issued a guidance in which the concept of 

QbD was introduced. The QbD approach states that “quality should not be tested into 

products, it should be built-in”. The introduction of the QbD concept opened the 

opportunity to design and validate processes, to run not only at one set of fixed 

processing conditions, but instead in a range of processing conditions known as the 

“design space”. The delineation of a design space offered the possibility of responding to 

process disturbances, such as the variability in the raw materials, by establishing 

appropriate control loops, maintaining the process operation under optimal conditions with 
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a satisfactory product quality, without the need to revalidate the process when certain 

process parameters are manipulated. This greatly relieved the burden by discarding the 

necessity of regulatory post-approval changes.  

Quality is built into pharmaceutical products through a comprehensive 

understanding of:  

 The intended therapeutic objectives; patient population; route of administration; 

and pharmacological, toxicological, and pharmacokinetic characteristics of a drug. 

 The chemical, physical, and biopharmaceutical characteristics of a drug. 

 Design of a product and selection of product components and packaging based on 

drug attributes listed above. 

A process is generally considered well understood when: 

 All critical sources of variability are identified and explained; 

 variability is managed by the process and; 

 product-quality attributes can be accurately and reliably predicted over the design 

space established for materials used, process conditions, manufacturing, 

environmental, and other conditions [29]. 

PAT is ideal to new products and processes development and R&D technology 

transfer, especially the ones in Phase I, II, and III of the clinical trials, since validation is 

simpler as the product and process are completely understood [27, 29]. 

The PAT initiative been supported by the European Medicines Agency (EMA) [30], 

that set up a PAT team in November 2003 to support the activities in the European Union, 

by the Japanese Ministry of Health, Labor, and Welfare, and by the ICH [10, 31].  

From an implementation perspective, PAT can be visualized as the three-step 

process illustrated in Figure 2 [31]: 

 Design phase - starts early in process development when the given unit operation 

is being designed and then later optimized and characterized. The critical quality 

attributes (CQA) that are being affected by the process step are identified along 

with the critical process parameters (CPP) that have been defined to affect the 

CQA. This type of knowledge is the essence of PAT and critical for the subsequent 

two phases.  

 Analyze phase - in this phase a suitable analyzer is identified monitoring of CQA 

and CPP. PAT application can be implemented at-line (sample is removed, 

isolated from the process stream and analyzed close to it), on-line (sample 

removed for analysis from process stream and returned again), in-line (sample 

analyzed in place), and off-line (sample removed and analyzed away from process 

stream, normally later) [8, 18, 19]. For a PAT application, it is necessary for the 
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analytical results to be available in the time-frame necessary to allow real-time 

decision making. 

 Control phase – this phase involves designing a control scheme based on 

process understanding. The data from the analyzer can be utilized for making real-

time process decisions, allowing consistent process performance and product 

quality. 

 

 

Figure 2 – Steps for PAT implementation, and the objective(s) of each step. Adapted from [31]. 

 

PAT tools can be categorized into the following categories [31]:  

 Tools for design, data acquisition and analysis;  

 Process analyzers;  

 Process control tools and  

 Continuous improvement and knowledge management tools. 

 Process analyzers are essential PAT tools enabling real-time product monitoring 

and they have advanced from simple univariate measurements such as pH and 

temperature to more complex information such as particle size and even multivariate 

information such as that extracted from spectroscopic techniques (e.g. Near Infrared and 

Raman spectroscopy) providing information related to biological, physical and chemical 

attributes of the materials being processed  

For a more comprehensive reading, Rathore et al. [31] have made a compilation of 

PAT and QbD activities during the past decades.  

Some issues remain in the implementation of process analyzers. An appropriate 

location of the sensor is necessary in order to accomplish representative sampling and to 
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minimize the influence of the analyzer on the process. When probes are present, fouling is 

also a recurring issue therefore, systems with purging gases or mechanical removal of 

material disturbing the measurements were developed. 

The PAT framework includes not only the implementation of novel sensors and 

analyzers, but also the utilization of other fundamental tools for understanding increasing 

and for implementation of risk management strategy such as, design of experiments 

(DoE), advanced data analysis techniques, first-principles-based process modeling and 

control, and fundamental material characterization together with molecular modeling [32]. 

Modern industrial processes typically perform a large number of measurements. It is clear 

that to enable understanding, monitoring and control of those processes, multivariate data 

analysis techniques are required. Process data (temperatures, pressures, etc.) together 

with real-time analyzers provide valuable information about events that may not only affect 

the final quality, but also give early warnings for potential equipment failure. 

2.4 Multivariate Statistical Process Control 

Multivariate Data Analysis (MVDA), as detailed by its name, is the analysis of 

multiple variables at once. The FDA in the Guidance on PAT has stated the importance of 

this methodology. MVDA has seen its implementation strive with the development of fast 

and inexpensive computers, together with powerful analytical software. 

Using MVDA tools for process monitoring is often called Multivariate Statistical 

Process Control (MSPC) [33, 34]. MSPC allows monitoring the wellness of both product 

and process in real-time by getting a reduced summary of all variables simultaneously, as 

they are collected. By the application of this concept, several industries managed not just 

to assure product quality, but at the same time improve performance by gathering 

knowledge about the process [35].  

Sometimes it is not possible to characterize a product based only on end product 

quality measurements, since normally, not all quality properties can be measured. Also, 

these properties may differ, if dissimilar process trajectories are attained. In order to 

guarantee consistency, process conditions must be kept under control [36]. 

During production, various process and product variables are collected by 

implemented process analyzers and in-built sensors, often under the supervision of 

control loops. These loops utilize Proportional-Integral-Derivative (PID) and other 

controllers to compensate for many types of disturbances and keep the process at the 

defined setpoints. Despite these being able to handle many types of disturbances, there 



 

Process analytical technology for batch and continuous pharmaceutical processes’ supervision 

43 

  

are some types (faults) that cannot be handled in this way and therefore still need to be 

adequately detected, diagnosed and removed. MSPC helps to fill this gap. 

2.4.1 Latent Variable Projection Methods 

Latent variables (LV) projection models provide the means for obtaining 

fundamental process understanding by compressing information in a few variables and 

allowing its visual representation. They can be used for process monitoring and 

troubleshooting. A LV model will adequately deal with specific characteristics of process 

data such as low rank and high collinearity [37]. Methods such as PCA and PLS are often 

used to perform MSPC [38]. MSPC based on PCA or PLS is robust to redundancy, highly 

correlated, and noisy data, also at some extent to missing data; furthermore, it can be 

applied to data obtained from all modes of manufacturing (batch, continuous, etc.). 

Collinear variables in a system can be combined in latent LVs describing the 

underlying structure of the data. LV models are generally used in the pharmaceutical 

industry, and can be helpful tools in acquiring process knowledge as discussed in detail 

by Kourti in 2006 [36].  

2.4.1.1 Principal Component Analysis 

The most common LV projection method is PCA [39-41]. In PCA a data matrix X is 

decomposed into a number of LVs (or principal components, PC) in two steps. Firstly, the 

first PC is found in the direction of the largest variance. Secondly, further PC’s are 

calculated each PC under the constraint of being orthogonal (and hence independent) to 

the previous one. This results in a bilinear model, a product of T scores and P loading 

matrices (Eq. 1): 

𝑋 =  𝑇𝑃 𝑇 +  𝐸 =  𝑡1𝑝1
𝑇  +  𝑡2𝑝2

𝑇  +  … . + 𝑡𝐴𝑝𝐴
𝑇 +  𝐸 (𝐸𝑞. 1) 

where, X is a N x K matrix consisting of N observations/samples (rows) with K 

measured X variables (columns). M is the number of Y variables. T is a M x A matrix and 

PT is a A x N matrix, where A is the number of PC that were calculated. T and P consist 

on orthogonal and orthonormal vectors, respectively. E is an M x N matrix containing 

residuals, the variance which is not explained by the calculated PCs.  

 PCA is a technique for data compression and visualization. Each observation is 

attributed a score value on each PC. Plotting scores together can be utilized to reveal 

patterns in data such as clusters and outliers. Plotting the loadings for a PC reveals how 
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the original variable contributes to the PC, i.e. their collinearities. Together scores and 

loadings map the covariance structure of the data.  

 The number of components fitted in a model can be up to the number of original 

variables, but fitting that many principal components would annul the compression 

capabilities of PCA, and worse, noise would definitely be fitted. Only the PCs that capture 

the general variation in the data should be kept and the remaining (noise) should be left in 

the residuals (i.e. unmodeled). 

2.4.1.2 Partial Least Squares  

PLS is a regression technique, i.e. it aims at establishing a relationship between a 

set or predictor variables (X) and a set of responses (Y) and reveal how the later can be 

explained by the first [42-44]. If the number of X variables is reduced, if they are 

independent and contain little noise a Multiple Linear Regression (MLR) model is enough 

however, in most pharmaceutical problems X data is correlated. This happens for 

example when spectral data is analyzed. An approach to solve the collinearity problem is 

to regress the PCA scores from that data (which are independent) with Y, a procedure 

known as Principal Component Regression (PCR). This however can provide complex 

models since the relevance of the data compressed in the PCs might not be of relevance 

to the Y variables. To solve this issue PLS was finally suggested. In PLS a set of new 

variables/PC is calculated just like in PCA but the criteria for optimization is now the 

maximum covariance between X and Y data. Given the X matrix of predictor data and Y 

responses the model can be summarized by (Eq. 2 and 3): 

𝑋 =  𝑡𝑃𝑡  +  𝐸 =  𝑡1𝑝1
𝑇  +  𝑡2𝑝2

𝑇  +  … . + 𝑡𝐴𝑝𝐴
𝑇  +  𝐸 (𝐸𝑞. 2) 

𝑌 =  𝑢𝑄𝑡  +  𝐹𝐸 =  𝑢1𝑞1
𝑇 + 𝑢2𝑞2

𝑇 +  … . + 𝑢𝐴𝑞𝐴
𝑇 +  𝐹 (𝐸𝑞. 3) 

The information related to the observations are contained in the score matrices, T 

and U. Information related to variables is stored in loading matrix P, and the Y weight 

matrix Q. Variation in the data that is left out (noise) is on the X and Y residual matrices, E 

and F. 

2.4.1.3 Other Approaches 

Since their development, PCA and PLS have been subject to various modifications 

to suit multiple purposes and applications. Multiway PCA was proposed by Nomikos and 

MacGregor [45] to deal with the monitoring of three-dimensional batch process data, as 

was multiway PLS [46]. Multiblock PCA and PLS [47, 48] allowed to model datasets with 
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large number of variables and made the models more interpretable. In multiblock models, 

variables are divided into a number of blocks containing different information, the relative 

importance of the blocks can be defined, i.e. the weights of each block, leading to an 

improved interpretability of the model. Dynamic PCA and PLS methods allow to account 

for variable cross- and auto-correlation, i.e. process dynamics, by introducing time-lagged 

versions of the original variables in the X data [49-51]. Non-linear PCA and PLS 

algorithms have surged to deal with non-linear relationships, common in many chemicals 

and practical situations [52]. Johan Trygg and Svante Wold proposed the OPLS method in 

2002 [53]. The difference between OPLS and a regular PLS models is that in OPLS the 

predictive and uncorrelated information captured by the PLS model are separated in 

different components [54, 55]. 

Other than PCA, PLS and their numerous extensions one can find in literature 

many other data-driven methods for building models from process data. Independent 

Component Analysis (ICA) [56], Artificial Neural Networks (ANN) [57, 58] and Support 

Vector Machines (SVM) [59-62] are some of these approaches. According to Kourti et al. 

[28] these fall within the class of regression methods that do not model the X-space and 

thus assume data to be full rank. These methods can be useful in some cases, even with 

process data however, they do not provide unique models, or allow for an easy 

interpretation. They also have limited ability to handle missing data, or test for outliers in 

new data. Methods for addressing the problem of utilizing future multivariate observations 

with missing data have been presented by Arteaga and Ferrer [63, 64] 

2.4.2 MSPC for continuous and batch manufacturing 

 LV models are empirical, therefore, to develop a model for process monitoring, the 

first step is to acquire data that represents “normal” process behavior, i.e. obtain historical 

data from when the process was performing as expected, resulting in a product that is 

within specification. For the development of a monitoring model, multiple runs are 

performed, which should include as much variability during normal operation as possible 

(different seasons, different operators, etc.). Generally, the variables of interest are 

recorded through the production of a large number of batches under normal operation. If 

the objective is only to detect and diagnose process faults, a PCA model is enough, if in 

addition the objective is to predict process performance variables or critical quality 

attributes in real-time, multivariate regression models are then necessary (e.g. PLS). 
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MSPC for the case of continuous processing, works under the assumption that the 

system must be at a steady state of operation during the time of production i.e. the 

process mean and standard deviation remain time invariant. 

During continuous processes, raw materials are continuously transformed 

throughout all the manufacturing steps until the final product is obtained. This is achieved 

by linking different processing units into a single manufacturing line [6]. Process 

parameters, and consequently end product quality, are kept constant over the whole 

production run and the system achieves, mostly after a startup period, a steady state of 

operation that will keep on until the process is stopped. Disregarding startup and 

transitions historical data collected from a continuous process is a bi-dimensional data 

array X with K variables measured at N time points.  

  BSPC is the batch approach to MSPC. Differently from the continuous case, 

batch processes possess a time-varying trajectory and a delimited duration. Batch 

process data is three-dimensional with K variables, measured at N time points for each 

one of B batches. To deal with these particularities of batch data, Nomikos and 

MacGregor in a series of landmark papers presented a new BSPM strategy suitable for 

three-dimensional batch data, the Multiway PCA/PLS [45, 46, 65, 66].  

Another alternative for monitoring batch processes generating three-dimensional 

data is for example PARAFAC [67, 68]. Comparisons between different methods for 

multivariate statistical analysis of batch process data have been established by 

Westerhuis et al. [69] Chiang et al. [70] and Louwerse et al. [71]. 

 Batch data can be made two-dimensional by unfolding. There are multiple ways to 

unfold batch data [72]. Westerhuis et al. [69] compare several ways to unfold the data 

matrix and discuss their effects for the monitoring of batch processes. Once the three-way 

data structure is unfolded the new two-way array can be modeled by regular PCA or PLS. 

The two most prevalent unfolding methods are batch-wise unfolding (BWU) and 

observation-wise unfolding (OWU). In BWU batch direction is preserved and the 

information of one batch is contained in a single row of the resulting matrix [73] while in 

OWU the variable direction is preserved. A critical discussion on other batch process 

modelling and monitoring procedures and other issues related to batch process analysis 

can be found in the papers of Kourti [49, 74]. All of these allow deciding on the rejection or 

acceptance of the product generated from a certain batch based on the information 

collected from the process in real-time.  

 Before modelling batch process data, it might be necessary to proceed to the 

alignment or synchronization of the trajectories. With alignment or synchronization, we 

look to obtain common start points for each of the phases of the run and match the shape 
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of the variable trajectories. Once shapes match the length of the batches is no more 

required to be the same. There are multiple approaches that have been reported for batch 

data synchronization such as the use of an indicator variable [35, 75] and dynamic time 

warping [76, 77]. If an indicator variable exists (or can be constructed by nonlinear 

transformations from other variables and/or process knowledge), the indicator variable 

approach is usually chosen as it is the simplest and most convenient for industrial 

applications. 

Data other than batch process data can be modelled by the BSPM methodology. 

For example, data collected from transitions of continuous processes such as grade-to-

grade transitions, startups, restarts, etc. It is appropriate to do so given that just as in a 

batch process these transitions possess a time-varying trajectory and delimited duration. 

A detailed discussion can be found in references [49, 78]. Several industrial applications 

of LV projection methods for multivariate statistical process control of transitions have 

been reported [79]. 

2.4.3 On-line Implementation of a MSPC LV model 

Before being implemented in an on-line application a monitoring model should be 

comprehensively tested off-line and challenged by utilizing historical data with faults in 

order to assure that they can be detected. The performance of the new LV model should 

be compared with the previously employed monitoring scheme by running the two in 

parallel for some time. When an operator is familiar and comfortable with the new 

monitoring approach the shift to the new methodology can be completed. During real-time 

monitoring of processes the data being acquired is projected on the model for the 

calculation of the scores and the detection of deviations is from then on possible by 

means of different control charts where sudden changes, slow process drifts, etc. can be 

readily observed. Examination of loadings and/or score contribution plots provide the 

means for interpretation of the observed deviations and changes. Commonly, Hotelling’s 

T2 and Squared Prediction Error (SPE) are charted. SPE can be also called as Q 

residuals statistic. Alternatively, the Distance to the model in the X-space (DModX) is 

charted [33]. Control charts are essential tools to detect process upsets, equipment 

malfunctions, or other special events as early as possible and then to find and remove the 

factors causing those events. 

 

 



 

Process analytical technology for batch and continuous pharmaceutical processes’ supervision 

48 

  

2.4.3.1 Multivariate control charts 

A monitoring statistic to be charted should be helpful in the identification of the 

process trends. When out-of-control moments occur, the cause for the deviation from 

normal behavior should be easy to determine resorting to contribution plots. Additionally, 

small process changes should be detected. 

 Various multivariate statistics and charts have the potential to be utilized for 

monitoring new process runs or batches during real-time being Hotelling’s T2 and DModX 

the most common. These two charts (Hotelling’s T2 and DModX are complementary 

indices; together they provide a picture of the state of the system. Hotelling’s T2 Charts 

are used to detect deviations from normal operation that are explained by the current 

model and within the overall variability but represent unusually high variation compared to 

the average process behavior. This means the observation is projected into the model 

plane but far from its center. The Hotelling’s T2 statistic for scores derived from latent 

variables models for A latent variables is calculated as follows (Eq. 4): 

𝑇𝑗
2 = ∑

𝑡𝑗,𝑎
2

𝑠𝑎
2     (𝐸𝑞. 4)

𝐴

𝑎=1

 

In (Eq. 4) 𝑠a
2 is the estimate of variance of the corresponding latent variable 𝑎. 

The Q residuals statistic is used for process deviation detection when events are 

not explained by the model. When these values fall out of the control values this means 

that there is a change in the underlying correlation structure of the data and the 

observation falls out of the normal variability observed in the reference runs utilized for 

model development (Eq.5).  

𝑄𝑗 =  ∑(𝑥𝑗,𝑘− �̂�𝑗,𝑘)2 (𝐸𝑞. 5)

𝑘

𝑘=1

 

 

Alternatively, the DModX can be calculated (Eq 6.): 

𝐷𝑀𝑜𝑑𝑋𝑎𝑏𝑠 =  √
∑  (𝑥𝑗,𝑘− �̂�𝑗,𝑘)2 𝑘

𝑘=1

𝐾 − 𝐴
 (𝐸𝑞. 6) 

 

where, 𝑥𝑗,𝑘  is the data estimation using the model with A components for sample j 

and variable k. DModX values are generally normalized by dividing them by the pooled 

relative standard deviation of the model in the X space 𝑠0 . (Eq.7). 

𝑠0 =  √
∑ ∑  (𝑥𝑗,𝑘− 𝑥𝑗,𝑘)2 𝑘

𝑘=1

( 𝑁 − 𝐴) ∗ ( 𝐾 − 𝐴)
 (𝐸𝑞. 7) 
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where 𝑁 represents the number of observations included in the model. 

Moreover, score control charts allow monitoring the process performance at each 

model dimension separately differently from Hotelling’s T2 which allows monitoring all the 

model dimensions over the course of a batch run by using a single statistic calculated 

from all scores [33, 37]. 

In general, Shewhart type control charts are utilized. These charts use the 

information only from the current sample and they are relative insensitive to small and 

moderate shifts in the mean vector. Multivariate Cumulative Sum (CUSUM) control charts, 

and Multivariate Exponentially Weighted Moving Average (EWMA) control charts were 

developed to overcome this problem [33]. The calculation of the control limits for the 

charts is discussed in reference [28]. 

Minimizing the amount of false alarms is very important given that if during the 

process alarms occur very frequently, operators start disregarding the control system or 

even end up switching it off. In practice, control limits can be adapted to the current 

knowledge about the process and its characteristics in order to reduce the amount of false 

alarms. A method for false alarm reduction was proposed by Chen in 2010 [80]. 

2.4.3.2 Contribution Plots 

In classical SPC, where only quality variables are monitored, it is up to process 

operators to diagnose a probable cause for an out-of-control event using their process 

knowledge and a one-at-a-time inspection of the process variables time-series charts. 

Alternatively, when PLS or PCA models based on process data are used to construct the 

multivariate control charts, they provide the user with the tools to diagnose assignable 

causes. 

If the points in a process are within their respective limits everything is in order. If 

an out-of-limit point occurs, it means that some variables or a variable is deviating from 

the historical average behavior. To inspect which variables are contributing to the inflated 

statistic, contribution plots can be derived and will help clarifying the underlying cause. 

Miller et al. [81] and MacGregor et al. [47] were the ones to propose the idea of 

contribution plots for the first time. Other authors as Westerhuis et al. [82] also addressed 

this kind of plots. 

The variable contribution plots provide a powerful tool for fault identification. 

However, care should be taken about its interpretation as it will help designate a variable 

or a group or variables that will numerically contribute to the out of the control signal but 

causality cannot be established. Variables with high contributions simply reveal the 
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signature of the fault, but it is the role of the operator or process engineer with knowledge 

about the process in question to try and attribute a probably cause and proceed to correct 

it in case of necessity.  

2.4.4 Advantages of MSPC 

Multivariate charts have superior detection capabilities when compared to 

univariate charts. Experience in industrial cases of MSPC reveals that ‘in most cases in 

practice, changes in the covariance structure precede detectable deviations from nominal 

trajectories [36]. This indicates that in the event of an upset the correlation structure 

among the variables is broken in first instance before the problem becomes more evident 

and a clear deviation of the variables from their normal trajectories is observed. There 

have been reports of cases where a process upset changes the correlation between 

variables not causing the variables themselves to differ significantly from their normal 

trajectory. These cases are rare but they can continue unnoticed for very long periods 

until they are finally detected generally due to a complaint [83]. 

2.4.5 MSPC Model Maintenance and Update 

LV model maintenance is often underrated and even forgotten about. However, a 

continued evaluation of the control system’s behavior is vital and should it be necessary 

action has to be taken in the direction of ensuring proper performance. If a monitoring 

strategy is no longer found suitable for a specific application after a period of time after its 

implementation it means that it has become invalid due to the introduction of new sources 

of variability in the process that need now to be taken into account. Off-line updating or 

even rebuilding of models may be necessary in order to ensure that the empirical models 

maintain a high degree of fidelity to the process [84]. 

2.4.6 Examples from Industry Practitioners of the use of LV models 

for MSPC/BSPC 

Since their appearance numerous examples of the application of the concepts of 

MSPC in various industries have surged, for both batch and continuous applications. 

Table 2. presents a literature summary of some of these applications that make use of 

PCA, PLS and their multiway extensions for monitoring purposes. Many reports can be 

found about of fermentation processes. Metallurgical and chemical are two other 

industries where the use of MSPC is often reported.  
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In the pharmaceutical industry the amount of case-study reports for process 

overview, monitoring and control has tremendously increased after the introduction of the 

QbD initiative and of the PAT framework [85]. Examples of these applications for process 

monitoring have been extensively reviewed by different authors [86, 87].  

Nevertheless, few reports exist for MSPC/BSPM of pharmaceutical production 

processes. In 2009, Garcia-Muñoz et al. proposed a real-time process monitoring and 

fault detection tool for the continuous quality assurance of a spray drying application [88]. 

In 2011, Burggraeve et al. developed a BSPM methodology for a fluid bed granulation 

process based on in-line particle size distribution measurements (using spatial filter 

velocimetry) combined with continuous product temperature registration [89]. 

In 2011 Rosas et al. [90] proposed an approach for determining the composition of 

a pharmaceutical gel and assess the temporal changes in major physical factors affecting 

the quality of the product (specifically, viscosity and pH) using NIR spectroscopy. Kona et 

al. (2013) [91] brought together in-line NIR spectroscopy and temperature and relative 

humidity data for developing PLS and PCA models allowing the statistical process 

monitoring of fluid bed granulation. In 2014 Barla et al. [92] proposed a PCA method to 

obtain qualitative information during real-time monitoring of a fluid bed dryer using NIR 

spectroscopy. They also proposed a PLS methodology for real-time monitoring of 

moisture content using the same NIR data. Sarraguça et al. have recently proposed a 

batch statistical process control approach based on PCA to monitor a cocrystallization 

process between  furosemide and p-aminobenzoic acid [93]. 

Given the much-reduced number of reports of the monitoring of processes by 

means of LV models in pharmaceutical manufacturing applications in comparison to the 

other industries one can recognize that these tools are still to be explored by the 

pharmaceutical industry and can be of great added value in the near future. 

 

Table 2 – Summary of publications regarding the application of Multivariate statistical process control for different 
applications 

Field Application 
Multivariate Monitoring 

based on 
Reference 

Alarm systems 
Early fire warning 

detection 
PCA [94] 

Analytical methods Chromatography PCA [95] 

Analytical methods HPLC 
Window Factor Analysis 

(PCA extension) 
[96] 

Analytical methods 
Particle size analysis in 

wet processes 
PCA [97] 

Analytical methods Chromatography PCA [98] 

Analytical methods Chromatography PCA [99] 

Automotive industry 
Autobody Assembly 

Process 
PCA [38] 

Biodiesel production 
Monitoring 

transesterification 
reactions 

PCA 
PLS 

[100] 



 

Process analytical technology for batch and continuous pharmaceutical processes’ supervision 

52 

  

Table 2 – Summary of publications regarding the application of Multivariate statistical process control for different 
applications 

Field Application 
Multivariate Monitoring 

based on 
Reference 

Bioprocessing Fed-batch Fermentation 
PCA 
PLS 

Neural Networks 
[101] 

Bioprocessing Batch Fermentation PCA [102] 

Bioprocessing Fermentation 
Multiway PCA 
Multiway PLS 

[103] 

Bioprocessing Fed Batch Fermentation Multiway PCA [104] 

Bioprocessing Fed Batch Fermentation 
PCA 
PLS 

[105] 

Bioprocessing 
Continuous Stirred Tank 

Reactor 
PCA [106] 

Ceramic industry 
Liquid fed ceramic 

melting 
PCA [107] 

Ceramic industry 
Production of melt 

polycarbonate 
PCA [108] 

Chemical industry 
Continuous product 

recovery 
PLS [35] 

Chemical industry 
Titanium dioxide 
manufacturing 

PLS [109] 

Chemical industry Electrolysis PCA [110] 

Chemical industry Fluidized bed reactor 

PCA 
PLS 

Canonical Variates 
Analysis 

[72] 

Chemical industry Alcohol precipitation Multiway PCA [111] 

Chemical industry Resin Production PLS [72] 

Culture cell monitoring 
Chinese hamster ovary 

cell culture 
PCA [112] 

Culture cell monitoring Complex cell cultures Multiway PCA [113] 

Food industry Sugar crystallization 

Batch Dynamic PCA 
Moving Window PCA 

Batch Observation Level 
Analysis 

Time-varying State 
Space Modelling 

[114] 

Geoengineering Carbon Dioxide Removal PCA [115] 

Metallurgical industry Grinding PCA [116] 

Metallurgical industry Steel casting 
PCA 

Multiway PCA 
[117] 

Metallurgical industry Continuous slab casting PCA [118] 

Metallurgical industry Desulfurization Adaptative PCA [118] 

Metallurgical industry Sulfite pulp digestion PCA [118] 

Metallurgical industry Continuous slab casting Multiway PCA [119] 

Metallurgical industry Aluminum smelting Multiway PCA [120] 

Nanomaterials 
Ultrasonic Attenuation in 
Nanomaterial Processing 

PCA [121] 

Paper industry 
Paperboard 

manufacturing 
PCA [118] 

Paper industry 
Paperboard 

manufacturing 
PCA [122] 

Petrochemical industry Petroleum refining 
PCA 

Multiblock PCA 
Recursive PCA 

[123] 

Pharmaceutical industry 
Crystallization and solid 

state analysis 
PCA 
PLS 

[124] 

Pharmaceutical industry Cocrystallization PCA [125] 

Pharmaceutical industry Crystallization 
PCA 
PLS 

[124] 

Pharmaceutical industry Fluid bed granulation PLS [89] 

Pharmaceutical industry Fluid bed granulation Multiway PCA [91] 
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Table 2 – Summary of publications regarding the application of Multivariate statistical process control for different 
applications 

Field Application 
Multivariate Monitoring 

based on 
Reference 

Pharmaceutical industry Gel manufacturing PLS [90] 

Pharmaceutical industry Fluid bed drying 
PCA 
PLS 

[92] 

Pharmaceutical industry Spray-drying PLS [88] 

Polymer industry Emulsion polymerization 
Multiway PCA 
Multiway PLS 

[75] 

Polymer industry 
Semi-batch 

polymerization 
Multiway PLS [35] 

Polymer industry Injection molding Multi-stage sub PCA [126] 

Polymer industry Injection molding Dynamic PCA [127] 

Polymer industry 
Polypropylene catalyzer 

reaction 

PCA 
Independent Component 

Analysis (ICA) 
PCA with KDE (KPCA) 
ICA with KDE (KICA) 

[128] 

Printing 
Fault Diagnosis Method 

of Feeding Mechanism in 
Printing Machine 

PCA [129] 

Processing industry Batch product drying 
PLS 

Multiway 
PLS 

[130] 

Safeguarding 
pharmaceuticals, 

diagnostic and clinical 
safety 

Quality Monitoring of 
Isoniazid and Rifampicin 

PCA [131] 

Safeguarding 
pharmaceuticals, 

diagnostic and clinical 
safety 

Monitoring 
pharmacokinetics, 

clinical 
and pharmacological 

studies 

PCA 
PLS 

[132] 

Safeguarding 
pharmaceuticals, 

diagnostic and clinical 
safety 

Purity analysis of 
biopharmaceuticals 

PCA [133] 

Safeguarding 
pharmaceuticals, 

diagnostic and clinical 
safety 

Monitoring captopril 
stability 

PCA [134] 

Structural assessment Damage identification 
PCA 

Multiway PCA 
Multiway PLS 

[135] 

Water supply 
Detect anomalous 

behaviors in a water 
supply system 

PCA [136] 

Water supply 
Burst detection in water 

networks 
PCA [137] 

Waste management Wastewater treatment 
Multiway PCA 

PLS 
[138] 

Waste management Wastewater treatment PCA [139] 

Waste management Wastewater treatment Adaptative PCA [140] 

Waste management Wastewater treatment PCA [141] 

Waste management 
Solid waste moving 

grate-type incineration 
PCA 
PLS 

[142] 

Wood industry Wood Pelletizing 
PCA 
PLS 

[143] 
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3.1 Abstract 

 It has been previously described that when a sample’s particle size is determined 

using different sizing techniques, the results can differ considerably. The purpose of this 

study was to review several in-process techniques for particle size determination (Spatial 

Filtering Velocimetry, Focused Beam Reflectance Measurements, Photometric Stereo 

Imaging and the Eyecon™ technology) and compare them to well-known and widespread 

off-line reference methods (laser diffraction and sieve analysis). To start with, a theoretical 

explanation of the working mechanism behind each sizing technique is presented, and a 

comparison between them is established. Secondly, six batches of granules and pellets 

(i.e. spherical particles) having different sizes were me-asured using these techniques. 

The obtained size distributions and related D10, D50 and D90 values were compared using 

                                                
1
 This chapter has been adapted: from: A.F.T. Silva, A. Burggraeve, Q. Denon, P. Van der Meeren, 

N. Sandler, T. Van Den Kerkhof, M. Hellings, C. Vervaet, J.P. Remon, J.A. Lopes, T. De Beer, Particle sizing 
measurements in pharmaceutical applications: Comparison of in-process methods versus off-line methods, 
European Journal of Pharmaceutics and Biopharmaceutics, 85 (2013) 1006-1018 
(http://dx.doi.org/10.1016/j.ejpb.2013.03.032).  
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the laser diffraction wet dispersion method as reference technique. As expected, each 

technique provided different size distributions with different D values. These dissimilarities 

were examined and explained considering the measurement principles behind each sizing 

technique. The particle property measured by each particle size analyzer (particle size or 

chord length) and how it is measured as well as the way in which size information is 

derived and calculated from this measured property and how results are presented (e.g. 

volume or mass distributions) are essential for the interpretation of the particle size data. 

3.2 Introduction 

Building quality into pharmaceutical products is the leading purpose of the PAT 

initiative [9]. Particle size is a critical quality parameter in a number of pharmaceutical unit 

operations such as pre-mixing/mixing, granulation, drying, milling, roller compaction, 

spray-drying, coating and compression. An adequate particle size distribution (PSD) is 

essential to ensure optimal manufacturability which will have an important impact on the 

end product’s safety, efficacy and quality. Therefore, monitoring and controlling particle 

size via in-process particle size measurements is essential to the pharmaceutical industry.  

The application of in-process particle sizing tools for the assessment of the 

influence of process and formulation parameters upon critical product quality attributes 

has been studied for several pharmaceutical processes such as fluid bed granulation [89, 

144, 145], hot melt granulation [146], spheronization [147] and crystallization [148-150]. 

However, differences between the measurement mechanisms and principles of the 

particle size analyzers (both off-line and in-process) make the direct comparison between 

them a challenging task [148, 151]. The aim of this study is to review different in-process 

particle sizing techniques and compare them to acknowledged off-line techniques (laser 

diffraction (LD) and sieve analysis). To establish this comparison six batches of granules 

and pellets (i.e. spherical particles) having different sizes were measured with the different 

equipment. The evaluated in-process techniques include Focused Beam Reflectance 

Measurements (FBRM), Spatial Filtering Velocimetry (SFV), Photometric Stereo Imaging 

(PSI) and the Eyecon™ technology. Table 3 provides a comparison between the assayed 

equipment. It discloses the underlying theoretical assumptions behind each instrument’s 

measurement mechanism, unveils the way in which size is acquired and presented by 

each instrument, describes their applicability, known capabilities and drawbacks. The 

choice of an appropriate analyzer for measuring particle size in a specific case has to take 

into consideration these listed characteristics. In an industrial environment, when a new 

particle size analyzer is implemented in a process environment, an often-executed 
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procedure is to attempt to correlate the data from the traditionally used off-line analyzer 

with the data from the new in-process analyzer. However, due to the different 

measurement principles behind each sizing technique, it is obvious that this is not an 

accurate and reliable procedure as mostly very different particle properties are measured 

by each sizing technique, hence providing uncorrelated results. A particle size distribution 

is usually depicted by a histogram where the size-related property measured by the 

analyzer (total particle volume, number of particles or counts, total particle length, total 

particle area, etc.) is plotted as a function of demarcated size classes. D values are 

parameters often used in the characterization of a PSD, a Di value of x indicating that 

particles with a size smaller or equal to x account for i% of the measured size-related 

property. 
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Table 3 – Comparison between the different studied particle size analyzers (CL – chord length; CLD – chord length distribution; N/A – non-applicable; PS – 
particle size; PSD – particle size distribution; LD – laser diffraction; SFV – spatial filtering velocimetry; PSI – photometric stereo imaging). 

Instrument 
Mastersizer™ S 

(LD) 
Sieve Analysis Parsum™ IPP70 (SFV) FBRM™ C35 

FS3D™ 
(PSI) 

Eyecon™ 

       

Assumptions 

Mie’s theory: 
Assumes particles to 

be spherical | Assumes 
scattered light is 

measured before it is 
re-scattered by other 

particles | Optical 
properties of the 
particles and the 

medium surrounding 
them are supposed to 

be known [13] 

Particles will pass through 
the mesh when the second 
largest dimension is less 
than the mesh size, i.e. at 

least two dimensions of the 
particle must be smaller 

than the sieve size 

No assumptions about 
particle shape are made 

No assumptions about 
particle shape are 

made | Particle 
velocity is small 

compared to the laser 
rotational velocity [16, 

29, 30] 

Samples are positioned 
against a straight glass 

and therefore the surface 
is assumed to be 

approximately straight. 
Linear integration in a 

horizontal direction which 
allows the obtention of a 

3D surface. Peaks on this 
surface are assumed to 

be particles 

An ellipse is fitted to the 
particle edges in order to 

obtain an average 
particle diameter | 

Assumes particle as 
being spherical to allow 

the calculation of its 
(relative) mass from the 
average diameter, this 

mass is used in the 
calculation of D values 

Size 
Distribution 

type 
Volume-based PSD Mass-based PSD 

Volume or number-based 
PSD (obtained by 

conversion from a CLD) 

Chord length 
distribution (possible 

to apply different 
weighting methods) 

Volume-based PSD Number-based PSD 

PS Interval 0.05-3500 µm > 38 µm [10] 50-6000 µm 3-3000 µm 
> 20 µm (maximum size 

depends on the 
performed calibration) 

50-3000 µm 

Particle velocity N/A N/A 0.01 – 50m/s N/A N/A N/A 

Destructive 

Sample can be 
retrieved but sample 

dispersion by means of 
pressurized air may 

cause particle 
breakage [3] 

Yes No No No No 

In-process 
measurements 

Not with Mastersizer™ 
S. 

Possible with some 
equipments (Insitec™ 
by Malvern, UK; Mytos 

™ by Sympatec™, 
Germany) but 

N/A 
Yes (bench-top version also 

available) 
Yes 

On-line measurements 
are possible with 

appropriate feeder 
(however the measured 
sample has to be static) 

Yes (bench-top version 
also available) 
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Table 3 – Comparison between the different studied particle size analyzers (CL – chord length; CLD – chord length distribution; N/A – non-applicable; PS – 
particle size; PSD – particle size distribution; LD – laser diffraction; SFV – spatial filtering velocimetry; PSI – photometric stereo imaging). 

Instrument 
Mastersizer™ S 

(LD) 
Sieve Analysis Parsum™ IPP70 (SFV) FBRM™ C35 

FS3D™ 
(PSI) 

Eyecon™ 

difficulties on 
presenting the sample 

in the appropriate 
concentration [11] 

Suitable for 

Non-fragile particles 
(powders or liquid 

suspensions or 
emulsions) 

Powder or granular solid 
particles > 38µm 

Solid particles suspended in 
an air stream 

Solid particles 
suspended in a liquid 

or in an air stream 
Solid particles Solid particles 

Advantages 

Ease of use | Little 
maintenance | Rapid 

measurements | Highly 
repeatable | 

Allows background 
subtraction | No 

calibration required [13] 

Cheap 

Ease of use | Little 
maintenance | Rapid 
measurements | No 

calibration required | Shape 
is taken into consideration 
[18, 21] | Probe fouling is 
prevented by means of a 
pressurized air system | 
Clip-in accessories are 

available for measurements 
under difficult process 

conditions 

Ease of use | Little 
maintenance | Rapid 

measurements | 
Shape is taken into 

consideration | In this 
model a window 
scrapper allows 

measurements in 
highly concentrated 

particle systems 

Ease of use | Little 
maintenance | Rapid 

measurements | Provides 
particle size alongside 

with important 
morphological information 

| Able to image 
overlaying, wet particles 

and extract PSD 

Ease of use | Little 
maintenance | Rapid 

measurements | 
Provides both size and 

morphological 
information under 

dynamic conditions 

Disadvantages 

Relatively large amount 
of sample required for 
dry dispersion method 
(depending on the size 

of the particles) 

Cohesive and 
agglomerated materials 
are difficult to measure | 
Low resolution due to the 
limited amount of sieves 

that can be fitted| 
Measurement times and 

operating methods have an 
influence on the results | 
Particle shape has a big 
influence on the results | 

Laborious and time-
consuming| Requires large 

amount of sample [10] 

Property being measured is 
CL and not PS (conversion 
to PSD by the instrument’s 
software) | Not suitable to 
measure sizes < 50 µm | 

Probe may be susceptible 
to fouling [20] |Accessories 
are adequate only within a 

particle size range, if 
particles are outside this 

range they are not 
measured thus providing 

biased results 

Property being 
measured is CL and 

not PS [30, 45, 48, 49] 

Samples have to be static 
|Shades caused by 
irregularities in the 

surface of a 
particle may trick the 

instrument in detecting 
multiple particles [42] | 
Transparent particles 
cannot be measured | 

Coverage of the 
measurement window by 

fines at the moment of 
sampling may lead to 

particle size 
underestimation [42, 47] 

At the moment, no 
information available 
about performance 

during in-line 
measurements 
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3.2.1 Off-line particle sizing methods 

3.2.1.1 Laser Diffraction 

LD is the most applied technique for the particle size measurement of 

pharmaceutical powders and granules. It can be used as an in-process method [152] or 

as an off-line method. A dispersed sample passes through a beam of monochromatic light 

causing light scattering which is measured as a function of scattering angle by a multi-

element detector. As the scattering pattern, i.e. scattered intensity as a function of 

scattering angle, is largely particle size dependent, it follows that particle size information 

can be extracted from the experimentally determined pattern. Older instruments mainly 

rely on the Fraunhofer approximation to derive particle size information from the scattering 

pattern, while recent LD particle size analyzers are based on Mie’s theory [151]. The 

Fraunhofer approximation is based on a number of assumptions: it assumes that particles 

are opaque discs, that light is scattered at only narrow angles and that all particle sizes 

scatter with the same efficiency. Furthermore, it does not take into consideration the 

optical properties of the measured material, and therefore its use is recommended when 

measuring mixtures of different materials. Differently, Mie’s theory predicts the scattering 

intensity induced by particles, irrespective of the fact whether they are transparent or 

opaque. It is based on the assumptions that the measured particles are spherical, that the 

dispersion is dilute, so that light is scattered by one particle and detected before it 

interacts with other particles, that the optical properties of the particles and the medium 

surrounding them are known and that particles are homogeneous i.e. uniform in 

composition. Nowadays, the ISO13320 standard for LD particle size analysis 

acknowledges the superiority of Mie’s theory [153, 154]. LD particle size analyzers that 

use Mie’s theory (e.g. Mastersizer™ S) base their particle size calculation on the 

assumption that particles are spherical, which is rarely true. This is a solution to deal with 

the fact that the only shape that can be described by a single dimension is the sphere. LD 

results are generally presented as a volume-weighted particle size distribution. Thus, in 

LD results reporting that the median value (D50) of a volume-based PSD is 100 µm means 

that particles with a size up to 100 µm account for 50% of the measured sample volume. 

Alternatively, a number-weighted distribution can be extracted, depending on the 

analyzer’s software.  
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3.2.1.2 Sieve analysis  

Before the introduction of LD, sieving used to be the most commonly applied sizing 

method, and it is still widely used for the determination of particle size because of its 

inexpensiveness. It is described in the European Pharmacopoeia [155] that sieve size is 

the “size of the aperture measured perpendicular to the wire through the center of the 

opening”. The mass of material that is retained on a specific sieve is weighted and 

presented as a percentage of the total assayed material. Therefore, a mass-based PSD is 

generated. The results are generally presented as a cumulative mass distribution. In this 

case a median (D50) of 100 µm indicates that 50% of the total weight of the measured 

material is constituted by particles that would pass through a sieve with 100 µm apertures. 

It is acknowledged that for a particle to pass through a sieve it must have two dimensions 

smaller than the sieve size. This is why it can be assumed that sieve analysis separates 

particles according to their second largest dimension. Some of the described 

disadvantages of sieve analysis are as follows: test sieves require regular care in order to 

maintain their performance, their cleaning must be careful as vigorous brushing may 

distort sieve openings, it is not possible to perform sieve analysis on sprays or emulsions, 

measurement of dry powders with sizes under 38 µm is very difficult as electrostatic 

charges may cause loss of material (wet sieving may be a solution but this technique 

provides very poor reproducibility and is difficult to carry out) and cohesive or 

agglomerated materials are problematic to measure as they form aggregates that will not 

pass through the sieve’s aperture [151, 156]. Sieve analysis also requires a relatively 

large amount of sample and, as a consequence, is not appropriate for costly materials or 

materials of which only small quantities are available. Samples can be eroded due to 

attrition during the analysis making sieving unsuitable for these materials. Measurement 

times and operating methods (e.g. shaking) need to be standardized as the longer the 

measurement is performed, the smaller the obtained particle size is as particles have time 

to orient themselves to fall through the sieve. This is particularly important when dealing 

with odd-shaped particles which are difficult to sieve and may generate peculiar results. 

For instance, measuring the particle size of needle-like or rod-like particles by means of 

sieve analysis might not be the best choice. Additionally, there is an increase in the risk of 

particle erosion as sieving time increases. These and further disadvantages of this 

method are described in Table 3. 
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3.2.2 In-process particle sizing method 

3.2.2.1 Methods based on chord length measurements 

There are in-process particle size analyzers that measure chord length instead of 

actual particle size such as SFV and FBRM. A particle’s chord length can be defined as a 

geometric line segment whose endpoints both lie on the surface of the particle. These 

analyzers utilize a laser beam that crosses the particle randomly acquiring a chord length. 

The number of times a given chord length is measured takes the form of a probability 

density function. In case of spherical particles, the diameter is the largest chord possible 

and the probability of the measured chord length is independent of the particle orientation 

towards the laser beam (Figure 3 1.) while for irregular and odd-shaped particles, shape 

and orientation will influence the measured chord lengths (Figure 3 2a. and 2b.). Hence, 

the chord length distribution (CLD) depends on both the PSD and the particle shape. 

Presenting the results as particle size is easier to interpret than chord length as particle 

size is often directly related to product quality, and it allows the comparison to particle size 

measured by other instruments [157]. Both SFV and FBRM utilize a laser beam for their 

measurements: SFV calculates the chord length from the shadows cast by the particles 

that cross the laser beam, FBRM calculates it from the laser light that is reflected back 

from the particle and propagated back through the probe.  

 

Figure 3 – Examples of the measured chord length (bold line) when a laser beam crosses (1) a 
spherical particle and (2a. and 2b.) an irregular particle in different positions – illustration of the 
effect of particle orientation on the obtained chord length.  

 Spatial filtering velocimetry 

A system based on the SFV principle is the Parsum™ IPP70 probe which was 

utilized in this study. The working principle of the Parsum™ IPP70 SFV probe is 

presented in Figure 4. When passing in between the two sapphire windows of the probe, 

the laser beam hits the particles. These particles cast then a shadow on a detector array 

of optical fibers generating two burst signals (burst a and burst b). The difference between 
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these two bursts is obtained (“BURST”) and its frequency calculated. This frequency (f) is 

then multiplied by the spatial filter constant (g), which corresponds to the distance 

between the detector arrays, and the particle’s velocity is obtained (v). When the particle 

travels through the probe, a secondary signal (“PULSE”) is also acquired by a single 

optical fiber, and the duration of this pulse is measured (tp). The chord length (x) of the 

particle is then calculated by multiplying the particle’s velocity with the pulse signal’s 

duration [158-160]. The Parsum™ IPP70 system is able to report size after converting the 

raw CLD to a number or volume-based PSD performed by an algorithm in the system’s 

software. Some of the algorithms that have been described to convert from a CLD to a 

PSD are addressed later in this section. Furthermore, the user is allowed to define the 

different size classes. In this way, the percentage of particles with sizes in-between the 

user-defined values is calculated. Fouling is a recurrent problem during in-process 

measurements and for that reason the sapphire windows of the Parsum™ IPP70 probe 

are kept clear by feeding compressed air through the probe itself, though this is not 

always efficient [161]. Additionally, a range of different clip-in accessories is available. 

Two different flushing cells: SZ11 (an open flow cell slit) and SZ20-4 (a cell with a front 

side aperture of 6mm), both designed to protect and keep the probe’s windows clear. 

According to the manufacturer’s specifications, the SZ11 is appropriate for the 

measurement of free-falling particles with sizes between 100 and 4000 µm and a very low 

percentage of fines, whereas the SZ20-4 is suitable for measuring free-falling particles 

with sizes from 50 to 2500 µm and a low to average content of fines. A disperser 

accessory with a ring injector, diluter, and a back flush function aperture of 4mm (D23) 

with both an external and internal air connection is also available and is particularly fit for 

the measurement of small particles (50 to 2000 µm), especially in processes with high 

particle concentrations in the measurement volume, i.e. high particle loadings. Parsum™ 

IPP70’s software enables the monitoring of particle loading during measurements 

expressed as a percentage of the measurement volume. By the use of the disperser D23 

particles are accelerated, and consequently the distances between them become larger 

ensuring that they are presented to the instrument’s detector in a suitable concentration 

for an accurate measurement. The choice of the appropriate accessory to utilize depends 

on the characteristics of the particles being analyzed. For instance, the measurement of a 

sample containing particles outside the appropriate size range for a certain accessory will 

result in biased results. SFV has already been suggested for particle size monitoring in 

fluidized bed processes [144], mixing and coating, high-shear wet granulation, dry 

granulation and spray drying [162]. 
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Figure 4 – Working principle of the Parsum™ IPP70 probe. 
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 Focused Beam Reflectance Measurements 

FBRM is another process analytical tool designed for measuring chord lengths. It 

measures the light that is reflected and propagated back through the probe when a tightly-

focused laser beam, rotating at a high speed (2 - 8 m/s), hits a particle (Figure 5). The chord 

length is then calculated by multiplying the duration of reflection with the laser beam’s scan 

speed.  

 

Figure 5 – Working principle of the FBRM™ technology [163]. 

 

FBRM has already been successfully applied for suspensions and crystallization 

processes [148-150, 164-166] and has also been studied for fluid bed granulation in 

comparison with other PAT tools [167]. Polymorphic transition monitoring [168], control of 

particle disruption [169], and solubility measurements [170] are some other applications 

where the use of FBRM has already been reported. FBRM™ C35 measurements can be 

performed in highly concentrated particle systems as a scraping system is installed on the 

probe’s sapphire window, keeping it clean and preventing probe fouling during in-process 

measurements. FBRM™ C35 is a count-based technique which means that the sizing results 

are presented by the FBRM™ C35 software (iC FBRM™) as a number-based chord length 

distribution (number of particles measured within a chord length class). This software also 
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allows the extraction of D values from these distributions and of size (chord length) classes. 

As mentioned previously, size results are usually presented as a number, length, area or 

volume-based distribution. However, the FBRM™ C35 system results are presented as a raw 

chord length frequency distribution and can be transformed into a 1/length-weighted, length-

weighted, square-weighted or cubic-weighted chord length frequency distribution. The 

weighing method to use depends on the aim of the measurement. If there is the necessity of 

detecting slight changes in the fraction of smaller particles, no weighing or length-weighing 

will emphasize these rather than the larger ones. On the other hand, if the interest lies on 

detecting small changes in the larger particles square and cubic weighing emphasize the 

coarser particles at the same time making the detection of changes in the smaller size range 

more difficult. It is described that the raw chord length data are similar to a length-based PSD 

since the probability of a certain chord length being detected is proportional to the linear 

dimension of a particle. 

SFV and FBRM both measure chord length, but their measuring principles differ 

substantially. For the FBRM™ C35 system, it is necessary for particles to flow over the 

sapphire window. Particles that are positioned a few hundred micrometers away from the 

sapphire window will most likely not be measured, hence making the placement 

(implementation in the process environment) of the FBRM™ C35 probe of utmost 

importance. Dispersing and measuring the sample in a liquid in which it is insoluble is a highly 

suitable solution for the FBRM™ C35 system. However, the sample has to be diverted from 

the process and is not reusable. Parsum™ IPP70 or any other SFV system cannot be applied 

in suspensions. FBRM™ C35 is capable of measuring smaller particle sizes (i.e. 3 – 3000 

µm) while SFV is adequate for the measurement of particle systems sized 50 – 6000 µm. The 

main advantages of using these systems include the fact that no calibration is needed and 

the capability of measuring in-line at high particle concentrations (loadings) due to the use of 

purging systems [171, 172].  

As a particle chord length is not identical to the generally used particle size, several 

authors have presented their solutions to express the relationship between PSD and CLD. 

The Parsum™ IPP70’s software performs this CLD-PSD conversion itself, while for the 

FBRM™ C35, the results are expressed as chord lengths. The easiest way to convert a CLD 

into its corresponding PSD is by developing a PSD-CLD model to calculate CLD 

corresponding to a known PSD and shape and afterwards invert it to obtain a PSD from the 

CLD (CLD-PSD model) [157]. For two-dimensional spherical particles, the translation from 
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PSD to CLD is based on different methods such as the probability apportioning method and 

Bayes’ Theorem [173-177]. The probability apportioning method can also be used to 

calculate CLD from PSD for two-dimensional ellipsoidal particles [177-180]. For non-spherical 

two-dimensional and three-dimensional particles, little has been described [177, 181]. In 

2001, Langston and Jones [181] presented a method in which for a certain PSD of non-

spherical particles, the chord length probability distribution is determined by simulating 

random cuts in the particles. This method is highly dependent on assumptions made during 

the calculation, and the resulting data is not accurate. On the other hand, Ruf et al. [172] 

presented another procedure in which, for a three-dimensional ellipsoidal particle, the chord 

length probability distribution is obtained from two-dimensional projections at every 

orientation. The conversion of a PSD from a CLD is an inversion problem and the most 

utilized methods to solve this problem include the Least Squares and Constrained Least 

Squares algorithms [173, 175, 176, 179, 180, 182]. However, these might provide negative 

numbers of particles when the CLD measurements are noisy, and therefore, an interactive 

apportioning method utilizing Bayes’ Theorem has been developed to overcome this limitation 

[173, 176]. For most processes, however, a good precision is often more important than 

accuracy as the interest relies on the monitoring of process dynamic changes such as particle 

shape and/or concentration of the suspensions [157, 172].  

3.2.2.2 Photometric Stereo Imaging 

Another studied technique was Photometric Stereo Imaging. The Photometric Stereo 

Imaging unit Flashsizer3D™ (FS3D™) consists of a monochrome CCD camera connected to 

a metal cuvette with a glass window and a computer. The tool is equipped with a sampling 

unit that allows on-line measurements. Two light sources, positioned relative to each other at 

an angle of 180˚, illuminate the sample, and two digital images of the sample are obtained. A 

grey-scale value between 0 (black) and 255 (white) is attributed to each individual pixel, and 

the shading effects expose the topography of the surface (Figure 6).v 

The gradient fields are subjected to line integration in a horizontal direction to obtain a 

3D surface. This surface is assumed to be approximately straight as the samples are placed 

against a straight glass surface during measurement. Therefore, peaks on the 3D surface are 

assumed to be particles, and the projected volume-based (V) particle size is then calculated 

from the area of the peaks in the xy direction:  

𝑑 =  √(𝑎𝑟𝑒𝑎) . 𝑐 (Eq. 8)                                                                         
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𝑉 = 𝑑3 (Eq. 9)                                                                              

where d is the diameter of the particle, area is the area of the peaks and c a 

calibration constant, calibrated by default with pellets [183]. If the shape of the particles to be 

measured differs significantly from spherical, the calibration constant can be changed 

accordingly to the particles to be measured [26]. This imaging unit allows the acquisition of a 

volume-based PSD and related D values of the particles captured in each image. The size 

classes can be defined by the user. The FS3D™ system has been used for the measurement 

of powders [184] , granules [183], and pellets [147] showing the potential of this technique as 

a fast particle size analyzer for various types of material.  

 

 

Figure 6 – A typical example of a surface visualized in 3D that is used in particle sizing with the 
photometric stereo imaging approach.  

3.2.2.3 Eyecon™ 

The Eyecon™ particle sizing technology was also tested. This is a very recent 3D-

imaging system that allows the determination of the PSD for moving particles using a flash 

imaging technique (Figure 7).  

The equipment can either be used off-line or in-process. During measurements, a 

powerful short light pulse is created and provided that the particle movement during this pulse 

is negligible a sharp image without blurring is captured. The particles are illuminated with red, 

green, and blue LEDs from different angles. The color on the surface of the particle is 

captured in an image, and for each individual pixel, a map of the surface height is built. 

Furthermore, using image gradient data an ellipse is fitted on the particle edges and its 
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maximum and minimum diameters are obtained. These are used to calculate the average 

aspect ratio (AAR) of particles as an indicator of their sphericity by means of the following 

equation: 

𝐴𝐴𝑅 =
𝐷𝑚𝑎𝑥 

𝐷𝑚𝑖𝑛
 (Eq. 10)                                                                  

where Dmax represents the maximum measured diameter and Dmin the minimum 

measured diameter. Also, the average diameter can be assessed according to the following 

equation:  

𝑑 =  
𝐷𝑚𝑎𝑥+ 𝐷𝑚𝑖𝑛  

2
 (Eq. 11)                                                               

Posteriorly, the particle is modeled as a sphere and its mass is obtained by means of 

the following equation: 

𝑀𝑎𝑠𝑠 =  
𝜋 .𝑑3.𝜌

6
 (Eq. 12)                                                                  

where ρ represents the density of the particles. As it is an unknown value, all the 

particles are assumed to have the same density, and therefore, it is a constant that can be 

eliminated, as can π and 6 and Eq. (13) is obtained: 

𝑀𝑎𝑠𝑠 = d3 (𝐸𝑞. 13)                                                                  

  The obtained mass value is then a relative mass value, not a true mass. Each 

captured image is analyzed by Eyecon™ resulting in a group of ellipses. Results can either 

be computed using only the current image or also include data from previous images and are 

presented as a histogram. 

The D values are calculated by ordering particles in order of ascending relative mass. 

Firstly, the total mass is computed, and then, an iterative algorithm adds up starting with the 

smallest of the particles. As the running total reaches 10%, 25%, 50%, 75% and 90% of the 

total mass, the diameter of the last added particle is recorded as being the D10, D25, D50, D75 

and D90 diameter, respectively.  
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Figure 7 – Working principle of the Eyecon™ equipment.  

 

3.3 Materials and methods 

3.3.1 Materials 

Six different batches of particles were used in this study. Three of them were granules 

of different sizes prepared in a laboratory-scale fluid bed granulator (GPCG 1, Glatt, Binzen, 

Germany). These batches consisted of 700 g of dextrose monohydrate (Roquette Frères, 

Lestrem, France) and 277.5 g of unmodified maize starch (Cargill Benelux, Sas van Gent, 

The Netherlands) and were granulated with an aqueous binder solution of 20 g HPMC (Dow 

Chemical Company, Plaquemine-LA, USA) and 2.5 g Tween 20 (Croda Chemicals Europe, 

Wilton, United Kingdom), sprayed as a 4% (w/w) solution. The three granulations were 

performed varying the process parameters: inlet air temperature during the spraying phase, 

spray rate and inlet air temperature during the drying phase, in order to obtain batches with 

different granule sizes (Table 4). The remaining three batches consisted of commercially 

available microcrystalline cellulose spherical pellets of different sizes commonly known as 

Cellets™ (Cellets™, Pharmatrans Sanaq Pharmaceuticals, Basel, Switzerland). The selected 

pellet sizes were Cellets™ 350 (350 to 500 µm), Cellets™ 500 (500 to 710 µm) and Cellets™ 

1000 (1000 to 1400 µm). Images of the three granule and three pellet batches were obtained 

using the FS3D™ equipment (Figure 8). 
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Table 4 – Process parameters varied on the performed granulations. 

 

Inlet air 
temperature during 
the spraying phase 

(°C) 

Spray 
rate 

(rpm) 

Inlet temperature 
during the drying 

phase (°C) 

Median particle size 
(D50) obtained with 

Mastersizer™ S (µm) 

b1 30 22 50 193 

b2 30 36 70 383 

b3 40 29 60 207 

 

 

Figure 8 – Pictures of the assayed granules and Cellet™ batches taken with the FS3D™ equipment. 

3.3.2 Methods 

3.3.2.1 Off-line methods 

 Malvern Mastersizer™ S  

Samples from each batch were measured twice using the LD equipment 

(Mastersizer™ S long bench, Malvern Instruments, Malvern, UK) by means of three different 

methods: dry dispersion, wet dispersion, and free fall experiments. In all cases, the 1000F 

lens was utilized, the particle size analysis of each sample was performed using 10000 

sweeps and the obtained particle obscuration was comprehended between 10 and 30%. 
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In the dry method, the MS-64 sample dispersion analyzer was utilized. Two air stream 

pressures to aid with sample dispersion were tested (1 and 3 bars). For the wet method, 

Miglyol 812 (Fagron, Capelle aan den IJssel, The Netherlands) was chosen as dispersant 

given that both types of particles are insoluble in this liquid. The diluted dispersion was 

recirculated from the small volume sample adaptor through a flow cell using a peristaltic 

pump. In the free fall method, the sample was fed by a vibratory feeder (DR100, Retsch, 

Haan, Germany) to an in-house free fall controlled flow unit. At the end of this unit a vacuum 

cleaner (GS80, Nilfisk, Brøndby, Denmark) was placed to collect the sample and so avoid 

repeated measurements of the same particles. 

PSD was estimated using standard reference indexes and by way of an algorithm 

based on Mie’s theory, provided with the diffractometer. The granule batches were analyzed 

as polydisperse and pellet batches as monomodal. When measuring the pellet particles with 

sizes around 1000 µm and larger (Cellets™ 100) via the wet dispersion method, the 

background signal was already very high due to the combination of the lens and the use of 

Miglyol as the dispersant. In order to overcome this experimental difficulty, the signal at the 

first channels was discarded with minimal influence in the accuracy of the results. 

 Sieve Analysis 

Sieve analysis was performed, in triplicate, on 20 g of sample from each batch. Nine 

sieves with mesh sizes of 2000, 1400, 1000, 500, 315, 250, 180, 100 and 50 µm were 

stacked. A collector pan was placed below the sieve with the smallest mesh size. The 

samples were placed on the top sieve (2000 µm) and a lid was placed on it. The assembly 

was vibrated on an automatic sieve shaker (VE 1000, Retsch, Haan, Germany) for 5 min with 

an amplitude of 2 mm. Such gentle conditions were chosen to prevent breakage of the 

granule samples. After shaking each sieve was weighted individually and the mass 

percentage of material retained on each sieve was calculated. 
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3.3.2.2 In-process methods 

 Parsum™ IPP70 

The six different particle batches were fed to the measurement zone of the SFV probe 

(Parsum™ IPP70; Gesellschaft für Partikel-, Strömungs- und Umweltmesstechnik, Chemnitz, 

Gemany) by means of a vibratory feeder (DR100, Retsch, Haan, Germany) to simulate in-line 

measurements of a process’s particle flow stream. The disperser accessory with a ring 

injector (D23) was employed during the size determination of the three granule batches in 

order to facilitate the measurement of the smaller particles. This cell was operated with an 

internal (15 L/min) and external (3 L/min) pressurized air connection. The open flow cell 

(SZ11) was used for the measurement of the pellet batches, working with a pressurized air 

stream of 4 L/min. SFV measurements were taken every 10 s for a period of 5 min. Six 

replicate measurements were performed for each batch, on six different days. After the 

analysis of the acquired size distributions and D values, it was found necessary to perform an 

extra series of measurements where the particle loadings were controlled (see section 5.3.3 

Results and discussion). Six replicate measurements of each batch were performed. Data 

was acquired every 10 s for a period of 5 min.  

 FBRM™ C35 

A small quantity of granules (2.5 g) or pellets (3.5 g) was added to a beaker 

containing 40 ml of Miglyol 812 (Fagron, Capelle aan den IJssel, The Netherlands). The 

FBRM probe (FBRM™ C35, Mettler-Toledo AutoChem, Columbia, MD, United States) was 

immersed in the suspension at an angle of approximately 45˚ to allow optimum sample 

presentation [185]. A magnetic stirrer was used to gently agitate the suspension without 

breaking down the granules. FBRM measurements were performed every 10 s, during a 

period of 3 min. The six batches were measured in triplicate, on three different days. The size 

information was extracted through the iC FBRM™ 4.0 software (Mettler-Toledo AutoChem 

Inc., Columbia, MD, United States). 

 FlashSizer™ 3D 

The particle size of the six batches was assessed six times on six different days. The 

samples were filled into a petridish and positioned on top of the imaging instrument’s 
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(Flashsizer 3D™, FS3D™, iPAT Ltd., Turku, Finland) glass window. Two digital images were 

captured during each measurement and combined to obtain a 3D surface from which the 

relevant particle size information was calculated.  

 Eyecon™ 

The Eyecon™ 2D and 3D particle imager (Eyecon™, Innopharma Labs™, Dublin, 

Ireland) was used off-line. As particle movement during the light pulse is negligible, in theory, 

results obtained off-line will be similar as when the measurements were performed in-

process. One sample was collected from each batch and placed on a petri dish. Twenty 

images were taken from each individual sample, and an average of the PSD parameters of 

interest was calculated.  

3.3.2.3 Acquired particle size parameters 

As mentioned previously, from sieve analysis, mass-based sieve fractions were 

obtained. On the other hand, FS3D™, Parsum™ IPP70 and FBRM™ C35 equipments 

allowed the definition of size or chord length classes. Sieve fractions were first chosen for 

sieve analysis and afterwards the same sieve sizes were introduced in each instrument’s 

software (with the exception of Eyecon™ where this feature is not available). The selected 

sieves (size classes) 50 µm, 100 µm, 180 µm, 250 µm, 315 µm, 500 µm, 715 µm, 1000 µm, 

1400 µm and the related D values D10, D50 and D90 were acquired from each individual 

instrument’s software. For sieve analysis, D values were calculated from the sieve 

distributions by linear interpolation of the obtained cumulative mass percentage curve, while 

for the other techniques, the instrument’s software directly provided these results. 

3.4 Results and discussion 

The comparison between the particle size information obtained from the different 

studied particle sizing techniques is not straightforward since each technique is unique in its 

way of measuring and calculating size. Not only the underlying measurement method might 

have an influence on the acquired particle size (or chord length), but also the algorithms used 

for obtaining particle size information from the measured particle properties and the way in 

which size results are presented are essential. Sieving results are mass-weighed, while 
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volume-weighed data are obtained from Mastersizer™ S and FS3D™. Eyecon™’s D values 

are based on relative mass values. The chord length measurements performed with 

Parsum™ IPP70 are converted by the instrument’s software to a volume-weighed particle 

size distribution. Square-weighted chord length distributions were obtained through FBRM™ 

C35 as it has been previously described by Heath et al. (2002) [163] that this data presents 

the best agreement with the particle size distribution obtained from LD measurements. FBRM 

measures the first diameter weighing of the chord distribution and it is then effectively a cube 

(volume) weighing which is comparable to the volume-based distribution obtained from laser 

diffraction. The sieve size distributions of each batch are represented in Figure 9a to f and the 

related D values in Figure 10. 
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Figure 9 – Particle size distributions of the assayed batches obtained with the different equipment. 
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Figure 10 – D values of the assayed batches obtained with the different methods. 
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3.4.1 Choice of the reference method (Mastersizer™ S) 

Laser diffraction is often utilized as a reference for comparison with other sizing 

techniques [153, 186] . Figure 11 displays the D50 value of the six studied batches, obtained 

with Mastersizer™ S using the different measurement methods.  

 

Figure 11 – Comparison between the D50 values of the assayed batches obtained with the 
Mastersizer™ S equipment by means of the dry dispersion (Dry disp), wet dispersion (Wet disp) and 
free fall (FF) methods. 

 

It was observed that particle sizes obtained from dry dispersion measurements of the 

granule batches were significantly smaller than the ones attained from the wet dispersion and 

free fall methods. When air pressure was augmented from one to three bar, this reduction in 

size was more pronounced. Therefore, we believe that the use of pressurized air as the 

dispersing agent damaged the fragile granules. In contrast, for the pellet batches (particles 

with a low friability) no meaningful size differences were observed between all methods. 

Measurements in air dispersion and free fall presented similar results for all batches. All in all, 

the results obtained for all batches for wet dispersion, and free fall experiments are very 

similar but the wet dispersion method presented a better precision. For that reason, 

Mastersizer™ S wet dispersion method was used as the reference sizing technique for the 

rest of this study. 
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3.4.2 In process methods and sieve analysis versus reference method 

3.4.2.1 Parsum™ IPP70 

Both Mastersizer™ S and Parsum™ IPP70 present their results as volume-based 

particle size distributions. Nevertheless, it is important to always keep in mind that, differently 

from Mastersizer™ S, Parsum™ IPP70 does not measure particle size but chord, converting 

it afterwards into a PSD by means of the instrument's software. The comparison between the 

D values obtained from the initial Parsum™ IPP70 measurements and from the 

Mastersizer™ S measurements is depicted in Figure 12. 

 

 

Figure 12 – D values of the assayed batches obtained with Mastersizer™ S and Parsum™ IPP70. 

  

The D values attained with both techniques, Parsum™ IPP70 and Mastersizer™ S, for 

granule batches b1 and b3 (the batches with the smallest granule size) are perfectly in 

agreement. Differently, for batch b2 particularly the obtained D90 value was larger for 

Parsum™ IPP70 than for Mastersizer™ S. Looking into the results for pellet batches, it is 

observed that the D90 values are also larger when measured with Parsum™ IPP70 and that 

this difference is more obvious with a larger particle size. All things considered the D90 values 

obtained with Parsum™ IPP70 are mostly larger than the values obtained with Mastersizer™ 

S which strongly suggests that these results could be a result of particle coincidence. If 
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occasionally two particles cross the laser beam at the same time, the Parsum™ IPP70 probe 

is not able to make the distinction between the two shadows of the different particles hence 

detecting as one large particle. Therefore, a falsely increased number of larger particles might 

be reported hence shifting the distribution towards larger sizes. The average particle loadings 

registered for this initial set of measurements (Figure 12) are depicted in the first column of 

Table 5. It is observed that there are high loadings, which means that a high percentage of 

the measuring volume is at any time occupied with particles and, as these particles might 

overlap, the probability of errors by coincidence of particles is higher. To prove that high 

particle loadings might cause size overestimation in this system, two different measurements 

of each batch with a different average particle loading were performed. The different loadings 

per batch are depicted in the second column of Table 5. The obtained corresponding D 

values are portrayed in Figures 11a and 11b. Batches b1 and b3 did not reveal a significant 

influence due to the increase in particle loading (Figure 13). 

 

Table 5 – Average particle loadings for each batch in the performed Parsum™ IPP70 measurements. 

 
Average loadings of the first set 

of measurements (%) 
Low/high average loadings of 

the repeated measurements (%) 

b1 6.84 3.65/11.38 

b2 6.79 2.94/9.76 

b3 7.09 2.6/9.05 

Cellets™ 350 16.57 3.1/13.7 

Cellets™ 500 16.09 2.6/16.71 

Cellets™ 1000 17.7 2.2/17.43 

 

However, as the size of particles increases (batch b2 and pellet batches, Figures 11a 

and 11b), and with the increase of particle loading, the overestimation becomes more 

noticeable, especially for the D90 values. Particle coincidence due to high loadings is a 

complication which needs to be taken into account when performing measurements with the 

Parsum™ IPP70 system. In the instrument’s software, several settings can be altered in 

order to prevent this type of errors. For instance, a maximum loading level can be established 

and if at a certain time the particle loading exceeds the set maximum value, these data are 

not recorded. Also, a search for coincidence and removal can be activated by defining a 

coincidence level. This coincidence level is a user-set percentage of the highest size class of 
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the acquired number distribution and, notionally, it should be as low as possible in order to 

achieve the maximum sensitivity. 

 

Figure 13 – D values of the Parsum™ IPP70 measurements performed at different particle loadings 
(see Table 5 for further information on loadings).  

 

Concerning the Parsum™ IPP70 equipment itself, especially in processes with small 

particles and high particle loadings, the use of the in-line disperser D23 is important and 

recommended in order to keep the loading low enough avoiding coincidence errors. Finally, 

Parsum™ IPP70 and Mastersizer™ S were compared utilizing the data acquired with the 
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lowest recorded particle loading (Figure 9a to f and Figure 10a to c) to discard the differences 

that could arise from coincidence. Batches b1 and b3 presented similar size distributions 

when measured with both instruments (Figure 9 a and c) and, hence, also very similar D 

values (Figure 10a to c). Regarding batch b2, all obtained Parsum™ IPP70 D values were 

larger compared to the corresponding Mastersizer™ S values (Figure 10a to c). In the size 

distribution, a shift of the Parsum™ IPP70 distribution towards larger sizes is observed when 

comparing to the Mastersizer™ S’s distribution (Figure 9b). This shift is most probably related 

to a sampling difficulty rather than to an instrumental dissimilarity. Batch b2 presented a very 

broad size distribution and it was possible to observe that the larger particles were the first to 

be directed from the feeder to the probe’s measurement zone and into the aluminum tray, 

while some of the batch’s fines were retained in the feeder not being measured. Concerning 

Cellets™ 350 the D values (Figure 10a to c) and size distributions obtained with Parsum™ 

IPP70 and Mastersizer™ S (Figure 9d) are similar. Regarding Cellets™ 500 and Cellets™ 

1000 size distributions from Parsum™ IPP70 and Mastersizer™ S are identical (Figure 9e 

and f) as are the D90 values (Figure 10c). However, D10 and D50 are slightly larger for 

Mastersizer™ S (Figure 10a and b), specially for Cellets™ 1000. 

3.4.2.2 FBRM™ C35 

The size distribution curves of the batches with the smallest granules, b1 and b3, 

obtained with Mastersizer™ S (volumetric particle size) and with FBRM™ C35 (square 

weighted chord length) (Figure 9a and c) and the D values obtained from both techniques are 

very similar (Figure 10a to c). This was expected as volume-based PSDs measured by LD, 

and square-weighted CLDs are predicted to be in good agreement for spherical particles 

[163]. However, in comparison to Mastersizer™ S, the PSD measured using FBRM™ C35 of 

the granule batch b2 is smaller (Figure 9b) as are the D values (Figure 10a to c). When 

looking at the obtained particle size distributions (Figure 9b), a major shift towards smaller 

sizes is visible. The agitation needed and used to keep the particles in suspension (see 

materials and methods) might have been responsible for their breakage. Pellet batches 

Cellets™ 350 and Cellets™ 500 were overestimated by FBRM™ C35 when comparing to 

Mastersizer™ S (Figure 9d and e) resulting in larger D values, particularly D90 (Figure 10a to 

c). It is possible that when performing the measurements for this batches particles were too 

close together causing a phenomenon of chord concatenation i.e. an error by coincidence of 

particles. This type of error occurs when two particles cross the laser beam so close together 
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that the analyzer cannot individualize them and counts two particles as one. For batch 

Cellets™ 1000, the distributions from both analyzers are in good agreement though, as 

expected, the square-weighted CLD obtained from FBRM™ C35 is wider than the volume-

based PSD acquired with Mastersizer™ S (Figure 9f) resulting in a smaller D10 and a larger 

D90 (Figure 10a and c). One must always keep in mind that no perfect correspondence 

between an unweighted or weighted CLD and PSD is achievable and converting from CLD to 

PSD (as in the case of the Parsum™ IPP70 equipment) by assuming a certain particle shape 

might be a suitable solution for simultaneous comparison of results from instruments that 

measure chord length with instruments that determine particle size. 

3.4.2.3 Flashsizer™ 3D 

Both FS3D™ and Mastersizer™ S present their results as volume-based PSDs 

though they possess distinct underlying methods for calculating the particle size. In 

comparison to the Mastersizer™ S results, the particle size of granule batches measured with 

FS3D™ was underestimated (Figure 9a to c), presenting slightly smaller D10, D50 and D90 

values (Figure 10a to c). The irregularities of the particles that present a rough surface (as is 

the case for the granules), may cast shades which are interpreted by the instrument as being 

the edges between two particles, consequently causing particle size underestimation. This 

phenomenon has been previously described [184]. Another possible explanation for the 

observed underestimation is that, when there is a relatively large amount of fines, during the 

sampling procedure these can cover the measurement window preventing the measurement 

of the larger particles [187]. Cellets™ 350 size distributions (Figure 9 d) and D values (Figure 

10a to c) for both instruments were in good agreement but, for the Cellets™500 and Cellets™ 

1000, an overestimation of the larger particles was observed in comparison with 

Mastersizer™ S (Figure 9 e and f) with significantly larger D90 values obtained for FS3D™ 

(Figure 10a to c). An explanation for this phenomenon is that as particle size increases fewer, 

and fewer particles are measured per image, and statistically, a reduced number of large 

particles can greatly influence a volume-based particle size distribution shifting it towards the 

larger end of the distribution.   
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3.4.2.4 Eyecon™ 

 Eyecon™ and Mastersizer™ S use different measurement principles and algorithms 

for the calculation of particle size. From Eyecon™, it is possible to extract a number-based 

size distribution (number of particles versus the average diameter) divided into several 

classes. However, the user cannot set these classes himself and, consequently, it was not 

possible to plot the results altogether with the size distributions obtained with the other 

equipments. Therefore, the comparison between Eyecon™ and Mastersizer™ S is 

established regarding the acquired D values (Figure 10a to c). It is difficult to affirm if the 

acquired D values are significantly different, as the Eyecon™ does not allow the presentation 

of the standard deviation values between the several measurements of a single sample. 

Nevertheless, assuming that the standard deviation between measurements with this 

technique is approximately as large as the standard deviations obtained with the other 

techniques, it is possible to observe a good agreement between the D10 and D50 values 

measured for the smaller granule batches b1 and b3 (Figure 10a and b). Differently, the D90 

values obtained with Eyecon™ are slightly smaller than the ones obtained with Mastersizer™ 

S (Figure 10c). On the other hand, the granule batch with the largest size, batch b2, had its 

size overestimated by Eyecon™ (Figure 9b) presenting larger D10, D50 and D90 values (Figure 

10a to c). These differences of granule size may arise from the fact that, if particles are not 

conveniently separated, Eyecon™ is not capable of individualizing them and provides 

erroneous results. This demonstrates the importance of a good sampling procedure. 

Granules need to be efficiently separated to allow the correct identification of the individual 

particles, hence avoiding errors during the measurement, especially during off-line 

measurements. During on-line measurements, the distance created between the particles 

due to their movement should be enough for an accurate detection. In contrast, as pellets are 

spherical particles with a smooth surface Eyecon™ easily can identify the well-defined 

particle edges successfully individualizing them. The D values for the pellet batches ( 

Figure 10Figure 10a to c) obtained with Eyecon™ and Mastersizer™ S revealed a 

good agreement and are comparable. 

3.4.2.5 Sieve Analysis 

Sieve analysis is a mass-based technique while Mastersizer™ S is volume-based. 

Assuming that all particles have the same density, there should not be significant differences 
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between the size data obtained with both techniques. When looking at both size distributions 

(Figure 9a to f) and D values (Figure 10a to f) resulting from sieve analysis, a lack of 

consistency emerges, especially for pellet batches. As can be observed in the size 

distributions from pellet batches (Figure 9 d to f) those obtained with the Mastersizer™ S are 

broader than those resulting from sieve analysis and, therefore, larger D10 and smaller D90 

values were expected for sieve analysis in comparison to Mastersizer™ S, but this was not 

the case (Figure 10a and c). Commonly, D values are estimated from sieve analysis mass 

percentage distributions by linear regression. This method is not the most adequate as these 

distributions do not present a linear profile. Given this, it may become difficult to obtain 

reliable estimates of D values located in the left (D10) or right (D90) ends of the distribution 

curve. This is also why, from the three interpolated D values, D50 values appear to be the 

most reliable and, therefore the only one that will be discussed. In comparison to the results 

provided by Mastersizer™ S, the size distributions of granule batches b1 and b3 obtained 

with sieve analysis shift towards smaller sizes (Figure 9a and c) and, in accordance, the 

obtained D50 values are also smaller (Figure 10b). We believe that this might be a result of 

the erosion of granules during the analysis, even though gentle conditions were used to 

prevent granule breakage. Sieve analysis is not a method fit for fragile particles as the friction 

generated during the analysis may deteriorate the sample. Batch b2 was not as similarly 

affected by erosion and thus the shift towards the left end of the distribution is less evident 

than for the other granule batches (Figure 9b) and, also the obtained D50 value is not 

significantly different (Figure 10b). On the distributions obtained for pellet batches no shift is 

perceived when comparing the distributions (Figure 9d to f) though D50 differ slightly (Figure 

10b). 

3.5 Conclusions 

In this work, several in-process particle sizing methods and two of the most commonly 

used off-line methods (sieve analysis and laser diffraction) were reviewed and compared. At 

first, the differences between all methods were explored theoretically and a table was made 

in order to facilitate the comparison between the different assessed methods. Further on, the 

particle size of three batches of granules and three different types of pellets was measured. 

The laser diffraction Mastersizer™ S (wet dispersion method) was utilized as the reference 

technique. Significant dissimilarities in the measured particle size were observed when 

comparing all the assayed techniques with the reference method. These differences were 
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elucidated taking into account previous knowledge about the assessed instruments and 

aimed to simplify the not forthright task of comparing particle size information from different 

instruments, exposing the reasons for the observed differences rather than finding a 

correlation between obtained results. The two types of particles that were tested were either 

homogenous and nearly perfectly spherical (pellets) or porous, almost perfectly spherical 

aggregates (obtained via a wet granulation method). The effect of particle shape on the 

estimation of particle size distribution is also of great interest and should be focus of attention 

if the future [188-191]. 
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4.1 Abstract 

Orthogonal partial least squares regression (OPLS) is being increasingly adopted as 

an alternative to PLS regression due to the better generalization that can be achieved. 

Particularly in multivariate BSPC, the use of OPLS for estimating nominal trajectories is 

advantageous. In OPLS, the nominal process trajectories are expected to be captured in a 

single predictive principal component while uncorrelated variations are filtered out to 

orthogonal principal components. In theory, OPLS will yield a better estimation of the 

Hotelling’s T2 statistic and corresponding control limits thus lowering the number of false 

positives and false negatives when assessing the process disturbances. Although OPLS 

advantages have been demonstrated in the context of regression, its use on BSPC was 

seldom reported. This study proposes an OPLS-based approach for BSPC of a 

cocrystallization process between hydrochlorothiazide and p-aminobenzoic acid monitored 
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on-line with near infrared spectroscopy and compares the fault detection performance with 

the same approach based on PLS. A series of cocrystallization batches with imposed 

disturbances were used to test the ability to detect abnormal situations by OPLS and PLS-

based BSPC methods. Results demonstrated that OPLS was generally superior in terms of 

sensibility and specificity in most situations. In some abnormal batches, it was found that the 

imposed disturbances were only detected with OPLS. 

4.2 Introduction 

The industrial production of drug substances and dug products is very often achieved 

as a sequence of batch operations [192]. Statistical process monitoring proposes a strategy 

to detect deviations from normal process trajectories. It was firstly developed for continuous 

processes operating in steady state [192]. Batch processes present challenges for modelling 

and monitoring due to time changing dynamics, variable duration, non-linear intrinsic nature 

and batch-to-batch variability [49, 192]. Latent variable methods such as PCA and PLS, 

applied in the context of batch statistical monitoring, provide a possible way to overcome 

some of the difficulties. To establish a multivariate BSPC scheme, PCA or PLS methods rely 

on batches produced under normal operating conditions (NOC). A BSPC model structure is 

optimized projecting unseen NOC and abnormal batches. The goal is to ensure that the 

BSPC model can effectively detect abnormal conditions in non-NOC batches (true positives) 

while preventing NOC batches to be signaled as faulty batches (false positives). Optimization 

of these models relies on multiple factors: appropriate selection and pre-processing of 

process variables, effective selection of the number of latent variables and optimized 

definition of control limits and models’ tolerance. Multivariate statistical control charts based 

on Hotelling’s T2 and squared residuals (Q) are often used to monitor the process [193]. 

Batch data can usually be arranged in a tree-way array encompassing the batch, 

process variable and time dimensions. Multiple methods can be used to analyze three-way 

arrays without the need of unfolding (conversion to two-way matrices). Parallel factor analysis 

(PARAFAC) [194] or n-way partial least squares regression (N-PLS) are two methods 

designed to handle n-way data [195]. However, to analyze data with PCA or PLS, the three-

way matrix needs to be unfolded [196]. Unfolding can be done batch-wise (BWU), preserving 

the batch direction. Information of one batch is contained in a single row of the resulting 

matrix [73]. Alternatively, a second type of unfolding, called observation-wise unfolding 

(OWU), in which the variable direction is preserved, can be used. For this purpose, several 
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methods are available [77, 197-199]. There is an important difference between these two 

types of unfolding methods. In OWU, the PLS method using batch time as the response (Y-

block) will yield components that best approximate the average trajectories. In BWU, the PLS 

method using a quality attribute of the final product as Y-block will yield components that best 

capture the variability among batches. In BSPC, the components of a PLS-OWU model are 

rotated to maximize their relationship to batch time or maturity. In PLS-OWU models, the 

systematic variation in the predictors (X-block) that is not related with the batch time can 

impair the interpretation of the model [73]. 

An alternative to PLS regression is the orthogonal partial least squares (OPLS) 

method [53]. OPLS is an adaptation of the orthogonal signal correction (OSC) method [200] 

and differs from PLS by removing systematic variation in X that is orthogonal to Y. The 

advantage is to reduce models’ complexity (by concentrating the predictive information in one 

component) and increase interpretability due to the decreasing of confounding effects stored 

in model components [201]. 

Since it was first proposed in 2002 [53] OPLS and its extensions (e.g. OPLS-

Discriminant Analysis, K-OPLS, etc.), have been utilized in distinct contexts for multiple 

applications [201-204]. On the other hand, a single application of OPLS for BSPC has been 

reported so far [73]. The study in question utilized OPLS for modeling a batch chemical 

hydrogenation process comparing it with PLS and PCA. OPLS demonstrated a superior 

ability to detect deviations and provided an easier root cause analysis for these deviations. 

Pharmaceutical cocrystals are defined as a multicomponent crystalline structure 

formed by one drug substance and one or more coformers. These compounds have 

enhanced pharmaceutical properties such as solubility, bioavailability, stability, among others 

[205]. Cocrystallizations are typically operated in batch-mode even at the industrial scale. The 

ability to monitor on-line the cocrystallization process is relevant to ensure that the final 

product is consistently delivered within target specifications [93]. This is especially important, 

giving the increasingly adopted QbD paradigm for pharmaceutical processes development 

framed by the ICH-Q8 guideline [10]. 

Previously, PCA-OWU was reported as a BSPC strategy to monitor on-line the 

cocrystallization between furosemide and nicotinamide using near infrared spectroscopy 

(NIRS) [125]. In this work, a cocrystallization process between hydrochlorothiazide (HTZ) and 

p-aminobenzoic acid (PABA) by solvent evaporation was monitored with NIRS. The major 

aim is to investigate whether OPLS is consistently more adequate for BSPC than PLS. 
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4.3 Experimental 

4.3.1 Materials and methods 

HTZ (>98% purity), PABA (>99.5 % purity) and methanol (>99.5% purity) were 

acquired from Sigma-Aldrich (St. Louis, MO, USA).  

Cocrystallization of HTZ and PABA (Figure 14) was performed by the solvent 

evaporation method using methanol. The process consists on weighting HTZ and PABA 

followed by dissolution in methanol at room temperature. The solution is then stirred at 150 

rpm, in an orbital stirring table during 10 h also at room temperature. A total of nine batches 

were designed: five nominal and four abnormal batches. Nominal batches use previously 

optimized conditions for this cocrystallization [125]. From the nominal batches, four were 

chosen to calibrate models (B#1 to B#4) and one was used for testing (B#5). The abnormal 

batches were designed by imposing multiple disturbances as described in Table 6 (B#8 to 

B#11). 

 

Figure 14 – Structure of a) hydrochlorothiazide (HTZ) and b) p-aminobenzoic acid (PABA). 
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Table 6 – Summary of the produced cocrystallization batches. 

 

Batches 
# 

Methanol 
(ml) 

HTZ 
(mg) 

PABA 
(mg) 

HTZ: 
PABA 
(molar 
ratio) 

Type of 
batch 

Formation 
of the 

cocrystal 

Calibration 
B#1 to 

#4 
20 416.42 383.58 1:2 Nominal Yes 

Test 

B#5 20 416.42 383.58 1:2 Nominal Yes 

B#8 20 416.42 191.79 1:1 
Non-

nominal 
No 

B#9 15 416.42 383.58 1:2 
Non-

nominal 
No 

B#10 20 832.84 575.37 2:3 
Non-

nominal 
No 

B#11 40 416.42 767.16 1:4 
Non-

nominal 
Yes 

4.3.2 On-line monitoring 

A Fourier transform near-infrared analyzer (FTLA2000, ABB, Québec, Canada) was 

used to monitor on-line the cocrystallization process. The spectrophotometer is equipped with 

an indium-gallium-arsenide (InGaAs) detector. The measurements were made in diffuse 

reflectance mode using a stainless steel diffuse reflectance probe (SabIR, ThermoNicolet, 

Madison, USA) with a 1 cm diameter sapphire window enabling a 0.20 cm2 illumination area. 

Each spectrum was acquired with a resolution of 8 cm-1 over a wavenumber interval between 

10000 cm-1 and 4000 cm-1. Each stored spectrum is an average of 64 scans. The instrument 

is controlled via the Grams LT software (version 7, ABB, Québec, Canada). A background 

was made before each batch, by placing a PFTE certified material (Labsphere North Sutton, 

NH, USA) over the probe tip. To monitor the process, the probe was set 1 cm over the 

cocrystallization medium in order to avoid interference with the process. One spectrum was 

stored every 5 min during 10 h, totalizing 121 spectra per batch. All spectra were pre-

processed with the Savitzky-Golay algorithm (29 points width filter fitted with a second-order 

polynomial followed by a first derivative) to reduce unwanted baseline variations and standard 

normal variate (SNV) to compensate for scale variations. In total, a three-way array consisting 

on nine batches, 1556 spectral variables and 121 time points was produced.  
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4.3.3 Product characterization 

Crystallized products were vacuum dried over 1.5 h to remove any free residual 

solvent. The dried products were characterized by X-ray powder diffraction (XRPD), 

differential scanning calorimetry (DSC) and near infrared spectroscopy (NIRS). 

4.3.3.1 X-ray powder diffraction 

XRPD analyses were performed on a powder diffractometer (MINIFlexII, Rigaku, The 

Woodlands, USA) with Cu Ka radiation (l = 1.5418 Å) operating at 40 kV/30 mA fitted with a 

glass sample holder. Diffraction patterns were obtained with a 0.02º (2θ) step size and 3 s per 

step in the range 3–45º (2θ). 

4.3.3.2 Differential scanning calorimetry  

DSC measurements were performed using a thermal analyzer (DSC 200 F3 Maia™, 

Netzsch, GmbH, Germany) with an automatic sample changer (ASC, Netzsch, GmbH, 

Germany). Approximately 2-3 mg were weighed in aluminum pan and then sealed. The 

reference pan was left empty. Heating curves for the samples were recorded with a heating 

rate of 10°C min-1 from 25°C to 300°C. The onset temperature was calculated using the 

software provided by the DSC equipment (Proteus, version 6.1081, Netzsch, GmbH, 

Germany). For each sample, three thermograms were taken and the average onset 

temperature considered. 

4.3.3.3 Near infrared spectroscopy 

The same FT-NIR spectroscopy equipment described before was used off-line for final 

product characterization. The difference was the use of a powder sampling accessory 

(ACC101, ABB, Québec, Canada) featuring a 2 cm diameter window enabling diffuse 

reflectance measurements on a 0.28 cm2 illumination area. Each spectrum was acquired with 

a resolution of 8 cm-1 as an average of 64 spectra in the wavenumber range between 10000 

cm-1 and 4000 cm-1. A background was taken by using a PTFE certified material (SKG8613G, 

ABB, Québec, Canada). For each sample, three spectral replicates were required and the 

average spectrum considered. 
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4.3.4 Data analysis 

Pre-processed NIR spectra obtained on-line organized in a three-way matrix (batch x 

observation x time) was firstly unfolded in a two-way structure by means of the OWU 

approach. After unfolding, data from batches B#1 to B#4 yielded a two-way (4x121x1556) 

matrix (calibration X-block). Testing data encompassing batches B#5 (NOC) and B#8 to B#11 

(abnormal) were organized in a (5x121x1556) matrix (testing X-block).  

Two approaches to BSPC were tested considering different models: PLS and OPLS. 

The response variable was the batch time (Y-block). Spectral data (X-block) and the 

response (Y-block) were mean-centred prior to modelling. Hotelling’s T2 and Q control charts 

were used to detect the deviations from the NOC. Deviations from the Hotelling’s T2 reveal 

differences, which can be explained by the model. On the other hand, the Q residuals statistic 

estimates the distance to model and therefore highlights differences that cannot be explained 

by the modelled component. By monitoring the residuals, new unexplained disturbances, 

different from the ones in the model, can be detected and action can be taken [83]. Both 

metrics are described in section Multivariate control charts (Chapter 2). 

OPLS differs from PLS because it filters the variation in X correlated to Y in a single 

predictive component while variation uncorrelated to Y is captured in the orthogonal 

component(s). Apart from this filtering step, PLS and OPLS models for a single Y and the 

same total number of latent variables are identical and thus the Q statistic for both models is 

the same. The control charts were normalized by dividing the Hotelling’s T2 and Q residuals 

statistics by their 95% confidence limit. This procedure will lead to a control limit equal to 1. 

These two control charts are complementary and together they give a representation of the 

system [193]. A description of both Hotelling’s T2 and Q residuals statistic is found in section 

Multivariate control charts (Chapter 2). 

The multivariate projection models based on PLS and OPLS were generated using the 

SIMCA 14.1 software (MKS Data Analytics Solutions, Umeå, Sweden). 

4.4 Results 

4.4.1 Final products characterization 

The final product obtained after each batch was characterized with XRPD, DSC and 

NIRS. XRPD patterns of the crystals obtained from NOC batches and a prepared physical 
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mixture of the initial components were analyzed to investigate the actual formation of 

cocrystals (Figure 15). The formation a new crystalline form (a possible cocrystal), is 

observed by the appearance of non-existing peaks in the physical mixture, specifically at 

12.9º, 14.9º, 25.4º, 26.0º, 27.3º, and 42.0º (2θ) marked in the figure by a dashed line.  

 

Figure 15 – XRPD patterns of the cocrystal obtained in the batch B#1 and from a physical mixture of 
HTZ and PABA (PM). 

 

The proof that a single crystalline form was obtained was confirmed by DSC. The 

thermograms of a NOC batch final product and of the initial components are shown in Figure 

16. The average onset temperature for the NOC batches final product is 175.30±0.71ºC. This 

value is remarkably close to that reported by Sanphui et. al. of 175.9ºC [206], and different 

from the onset temperature of the two initial components: 268.2±0.71ºC for HTZ and 

187.1±0.23ºC for PABA.  
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Figure 16 – DSC thermograms for the cocrystal obtained in batch B#1, pure hydrochlorothiazide (HTZ) 
and pure p-aminobenzoic acid (PABA). 

 

The differences between NIR spectra of the crystals physical mixture and cocrystals 

obtained from the NOC batches are mainly visible in wavenumber regions associated with 

primary and secondary amides (around 6950 cm-1, 6780 cm-1 and between 5000 cm-1 and 

4450 cm-1) (Figure 17). The wavenumber region around 5000 cm-1 is also associated with the 

carboxyl acid group. Other differences are located at 9800 cm-1 and 6530 cm-1 due to the 

amine group. From the NIR spectral analysis it can be established that the groups 

responsible by cocrystal hydrogen bonds are the sulphonamide groups of HTZ and the 

carboxyl and amide group of PABA as previously reported by Sanphui et al. [206]. 
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Figure 17 – NIR spectra of the cocrystal obtained in batch B#1 and from a physical mixture of HTZ and 
PABA (PM). 

 

By combining the information obtained by these techniques, it can be concluded that 

the NOC batches produced a single crystalline phase different from the initial components, 

therefore a cocrystal was obtained.  

These methods were additionally employed to analyze the product obtained at the end 

of the non-nominal batches (B#8 to B#11) revealing that batch B#11 was the only producing 

a cocrystal, although with an excess of PABA (supplementary material (Figure 18 to Figure 

21).  
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Figure 18 – NIR spectra of the cocrystal obtained in batches B#1 and B#8 and from a physical mixture 
of HTZ and PABA (PM). 

 

Figure 19 – NIR spectra of the cocrystal obtained in batches B#1 and B#9 and from a physical mixture 
of HTZ and PABA (PM). 
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Figure 20 – NIR spectra of the cocrystal obtained in batches B#1 and B#10 and from a physical 
mixture of HTZ and PABA (PM). 

 

Figure 21 – NIR spectra of the cocrystal obtained in batches B#1 and B#11 and from a physical 
mixture of HTZ and PABA (PM). 



 

Process analytical technology for batch and continuous pharmaceutical processes’ supervision 

98 

  

4.4.2 Batch statistical process control 

Table 7 summarizes the PLS and OPLS models developed for the monitoring of the 

cocrystallization process. The models’ components were chosen by maximizing the variance 

in Y while minimizing the detection of false deviations (false positives) in the calibration 

batches. Two components were fitted on the PLS model, explaining 90.0% of the variance in 

Y. The OPLS model also contains two components, one predictive and one orthogonal. As 

expected the overall performance of the models is the same with the OPLS explaining also 

90.0% of the variance in Y. The advantage in the use of OPLS comes from its capability to 

partition the variance in X. Variance in X correlated with Y is retained in the predictive 

component and the variance in X uncorrelated with Y is captured by orthogonal component. 

Therefore, in the OPLS, the predictive component explains 90% of the variance in Y and the 

orthogonal 0%. The amount of explained variance in X in the first PLS component and in the 

OPLS predictive component are similar. In both models, most of the variation related to the 

process evolution is already captured by the first component. 

 

Table 7 – Summary of the PLS and OPLS models based on batches B#1 to B#4. 

Model Component R2X (%) Cumulative R2X (%) R2Y (%) 
Cumulative R2Y 

(%) 

PLS 
1 51.6 51.6 85.5 85.5 

2 22.1 73.7 4.5 90.0 

OPLS 
Predictive 48.2 48.2 90.0 90.0 

Orthogonal 25.6 73.7 0.0 90.0 

  

It can be observed that the loading for the first PLS component is almost equivalent to 

the same loading obtained with OPLS. The second PLS component is very similar to the 

orthogonal component of the OPLS model with some exceptions in the region between 5100 

cm-1 and 4550 cm-1 (Figure 22). 
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Figure 22 – Loadings for PLS and OPLS models. 

 

The first PLS and OPLS predictive component scores (Figure 23) are similar. In both 

models, the first 100 min (20 spectra) are related with the rapid evaporation of methanol. The 

vanishing of the methyl group bands at 8500 cm-1 (Figure 24) proves this. After 250 min (50 

spectra) there is a slight inflection on the scores that is related with the beginning of the 

appearance of bands related with the cocrystal, between 5000 cm-1 and 4000 cm-1 and the 

disappearing of methanol related bands at 7000 cm-1 (OH vibration) and 6150 cm-1 (methyl 

group). After 440 min the scores remain constant which means that the cocrystal is formed 

and there is no longer any methanol present. The scores corresponding to the second PLS 

component and for the orthogonal component of OPLS show the evaporation of the methanol 

until the bands related with the cocrystal appear after 250 min. After 440 min, the scores 

remain constant and the cocrystallization is finished (Figure 23). The trajectories of the PLS 

and OPLS scores are very similar. The slight differences that can be observed can be 

attributed to the fact that while in the PLS model the information regarding batch evolution is 

split between the two components, in the OPLS model the predictive component already 

captures all process-related variation (48.2%) filtering the orthogonal variation to the second 

component (25.5%).  
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Figure 23 – PLS and OPLS scores for the four calibration batches (batches B#1 to B#4). 

 

Figure 24 – Contour plot for the NIR spectra preprocessed with the Savitzky-Golay algorithm (29 points 
width filter fitted with a second-order polynomial followed by a first derivative) obtained for a nominal 
cocrystallization process (batch B#1). A – End of the rapid solvent evaporation; B – Beginning of the 
cocrystallization; C – End of solvent evaporation, only cocrystal present. 
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BSPC control charts for the Hotelling’s T2 and Q show very similar trends when 

considering the four calibration batches. Additionally, no false positives were detected (Figure 

25 and Figure 26).  

 

Figure 25 – Hotelling’s T
2
 control charts generated with PLS and OPLS for the calibration batches. 

 

Figure 26 – Squared residuals control chart for the calibration batches (PLS/OPLS). 
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Comparing the PLS and OPLS scores for the test batches the same conclusions can 

be drawn as for the calibration batches (Figure 27). The scores for the first PLS component 

and the scores for the predictive OPLS component are similar for the five test batches as well 

as the scores for the second PLS component and for the orthogonal OPLS component. The 

evolution of batch B#11 is the most dissimilar in both components compared with the NOC 

batches since the scores of both components capture the methanol evaporation and this 

batch has the highest content of methanol (40 ml). 

 

Figure 27 – PLS and OPLS scores for the testing batches (B#5 and B#8 to B#11). 

 

In Figure 28, the Hotelling’s T2 control chart for the test batches for the PLS and OPLS 

models is shown. Batch B#5, as expected, is always below the control limit. However, 

differences between the Hotelling’s T2 from the PLS and OPLS models can be seen 

especially at the beginning and end of the process. For batch B#8 (molar ratio of 1:1), after 

400 min, i.e. after the solvent evaporated, the process is out-of-control in the OPLS but not in 

the PLS control chart. For this batch, the final product is not the cocrystal but a mixture 

between HTZ and PABA, so it is expected that the Hotelling’s T2 for the final product will be 

signaled as out-of-control.  

The OPLS model is capable of capturing this deviation while the PLS was not. Batch 

B#9 is out-of-control in the beginning of the process in both PLS and OPLS control charts. 
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This corresponds to the first phase of the process when solvent is evaporating. This batch 

started with less solvent (15 ml) than the nominal runs which explains the deviation. The final 

product of this batch was also a mixture between the two components and not the cocrystal 

(Figure 19). However, both models failed to detect this deviation in the final part of the 

process. For batch B#10, the amount of solvent is the same as in the nominal batches (20 

ml), however the initial mass is higher (molar ratio 2:3), leading to undissolved particles 

present in the beginning of the process and therefore to differences in the NIR spectra due to 

scattering effects. This effect can be seen in the Hotelling’s T2 control chart in which the first 

part of the process is out-of-control for both models. However, in the OPLS case there is a 

part of the process’ that is out-of-control (around 500 min of process time), which is an 

indication that the final product was not a cocrystal. B#11 has the highest amount of solvent 

(40 ml) and a molar ration of 1:4. The batch product was the cocrystal with an excess of 

PABA. For both models, out-of-control signals were detected in the beginning and end of the 

process, although more evident for OPLS. 

 

Figure 28 – Projection of the testing batches on the normalized Hotelling’s T
2
 control charts generated 

with PLS and OPLS models. 
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Summarizing, after the solvent evaporation, the PLS model gave false positives for 

batches B#8, B#9 and B#10. For the OPLS model, a false positive was detected for batch 

B#9. Therefore, it can be concluded that the two models yield different results for batches 

B#8 and B#10 especially at the end, for which the OPLS is above the 95% limit. 

The Q control chart (Figure 29) is the same for both models as for a single Y the PLS 

and OPLS models’ solutions are identical. Before solvent evaporation (<400 min), batches 

B#5 and B#8 are in control since they have the nominal amount of solvent. Batch B#10 has 

also the nominal amount of solvent but higher amount of solids, which lead to a large 

variation of the NIR spectra leading to the batch being out of control in the beginning of the 

process. For batch B#9 and B#11 both of them had non-nominal amounts of solvent and 

therefore are out-of-control in this part of the process. In the end, only batch B#11 is out-of-

control (as it should). This means that false positives were obtained for batches B#8 B#9 and 

B#10. 

 

Figure 29 – Projection of the testing batches on the normalized squared residuals control charts 
generated with PLS/OPLS models. 

4.5 Conclusions 
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Both PLS and OPLS-based BSPC approaches are suitable to follow the evolution of 

the cocrystallization of hydrochlorothiazide (HTZ) and p-aminobenzoic acid (PABA) monitored 

with NIR spectroscopy. Both approaches can detect deviations from normal trajectory when 

non-nominal batches are projected into the model. Regarding the Hotelling’s T2 control chart 

in the end of the process the PLS model gave false positives for batches B#8, B#9 and B#10. 

For the OPLS model, a false positive was obtained for batch B#9. The main difference 

between the two models were for batches B#8 and B#10. The deviations were only detected 

in the OPLS model based control charts. OPLS also demonstrated to be more sensitive to the 

imposed disturbances. This indicates that the use of OPLS resulted in an improved Hoteling’s 

T2 statistic calculation that allowed a better detection of process disturbances. 

The Q control chart is the same for both models so no comparison can be made. 

However, this chart shows differences mainly in the beginning of the process before the 

solvent complete evaporation. Towards the process end, the Q control chart shows false 

positives for B#8, B#9 and B#10. 

  



 

Process analytical technology for batch and continuous pharmaceutical processes’ supervision 

106 

  

5.1 Continuous granulation 

Approximately 70 to 80% of all pharmaceutical preparations are tablets. They are 

inexpensive and easy to manufacture and they deliver an accurate dose of API. There is also 

a high patient compliance [207, 208].  

The most convenient way to make a tablet is by direct compression of the powder 

blend. This is a rather simple process which does not involve any liquid addition. However, 

80% of pharmaceutical ingredients are not suitable for direct compression due to insufficient 

flowability, tabletability and homogeneity [208]. To avoid content uniformity issues the powder 

mix must be homogeneous. Furthermore, to ensure an uniform die filling during high-speed 

tableting an excellent flowability is essential. Flowability can be improved by resorting to 

agglomeration techniques such as granulation. Granulation can increase bulk density, 

flowability and solubility. It also reduces the risk of size segregation and dust formation [209]. 

Granulation can be defined as a particle size enlargement process whereby small powder 

particles are gathered into larger, permanent structures in which the original particles can be 

distinguished [210]. There are two types of granulation, wet and dry [211]. In wet granulation 

  Chapter 5
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a binder liquid is introduced onto agitated powder particles binding these together through a 

combination of capillary and viscous forces [212]. The wet granules are then dried and more 

permanent bonds are established. The solid bridges formed by hardening of binders and the 

crystallization of dissolved particles are responsible for the strength of a granule. Dry 

granulation is most appropriate to moisture sensitive drugs as it is achieved by compaction of 

a powder mass which is then crushed and fractionated. Granulation is easily transferable to a 

continuous process as blending and feeding can be performed continuously [213].  

Vervaet and Remon reviewed several continuous wet granulation techniques [214]. 

According to these authors continuous granulation is easy to automate, it requires a reduced 

handling of material and in case of a deviation from normal operation, the faulty material can 

be discarded instead of the entire batch being destroyed or reworked. This results in major 

savings.  

Spray-drying, roller compactors, fluid bed granulation, instant agglomerators, 

extrusion and semi-continuous granulators are some of the options presented by these 

authors.  

During spray-drying solutions, suspensions or emulsions are atomized in a drying 

chamber. The liquid evaporates yielding powder particles. This is a continuous process but 

non-agglomerated particles are obtained or, in the best scenario, loosely-bounded 

agglomerates. These products are not suited for tabletting without further agglomeration due 

to they poor flowability. A schematic overview of the spray drying process is shown in Figure 

30.  
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Figure 30 – Schematic overview of the spray drying process [courtesy GEA Pharma Systems]. 

 

Roller compaction, is inherently continuous. However, its most noticeable limitation is 

being a dry granulation technique which relies only on the material compressibility. A lot of 

fine material is generated while milling to the desired particle size. The used of recycling unit 

for fines is not ideal as it is known to cause uniformity issues [214].  

 

 

Figure 31 – Schematic representation of a roller compactor. Adapted from [215]. 

Mill/breaker 

Hopper 

Roller 
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The most widespread continuous fluid bed granulators work horizontally (e.g. Glatt GF 

series, Niro Vibro-Fluidizer, Heinen Drying Technologies) and consist of different functional 

zones where feeding, mixing, spraying, drying, cooling and discharging are achieved. These 

equipments were not specifically designed for pharmaceutical use and they are used mainly 

in chemical, dairy and food industry (Figure 32) [211]. In the pharmaceutical industry, they are 

not popular for the production of solid dosage forms as they can only process high volumes 

(20 kg up to several tons per hour) and are unable to operate at lower volumes. 

 

Figure 32 – Horizontal continuous fluid bed granulator [216]. 

 

Glatt developed the AGT-Series fluid bed to cope with the flow limitation by 

developing a system able to operate in a broader range of production rates. The material is 

confined to a limited space and there is a continuous discharge of granules through a round-

shaped outlet at the bottom of the screen (Figure 33). The existence of a counter current air 

flow through the pipe at the centre of the bottom plate ensures that only particle agglomerates 

exit the fluid bed. A major drawback of this system is the long and uncontrollable residence 

time of granules. 

Continuous granulators are able to create granules in seconds. These systems 

continuous mix powder and liquid using high speed mechanical agitation. The amount of 

powder bring processed is therefore very limited reducing produced waste but also limiting 

product throughput. Some examples of these systems are the Nica M6 mixer/granulator 

(Ivarson mixer) and the Schugi Flexomix (Hosokawa) (Figure 34). 
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Twin-screw granulation in an extrusion process where the shear of mixing paddles 

inside a barrel causes wetted powder to agglomerate. Differently from conventional extrusion, 

no die is placed at the exit of the barrel and the material is discharged as granules. The barrel 

is short as this process is effective. By varying a number of process variables such as barrel 

temperature, powder and liquid feed rate, screw configuration, screw speed, etc., granules 

with very different characteristics at a desirable throughput can be obtained. This is therefore, 

a very flexible process, which allows both developmental work and production to be 

performed in the same apparatus. Monitoring and controlling of process parameters is 

important to keep the process in a state of control. A key advantage of twin-screw granulation 

is the flexibility in design and throughput. A disadvantage toward fluid bed granulation 

techniques is that extrusion yields wet granules this require a continuous drier.  

 

 

Figure 33 – Glatt AGT continuous fluid bed granulator [214]. 
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Figure 34 – A Nica M6 mixer/granulator (Ivarson mixer) on the left and a Schugi Flexomix (Hosokawa) 
on the right [214]. 

 

 

Figure 35 – Glatt Multicell continuous granulation system (Glatt AG, CH-4133 Pratteln): 1. dosing unit, 
2. high-shear mixer, 3. sieve, 4. fluid bed, 5. Pneumatic transport system [217]. 

 

A truly continuous granulation line is the ConsiGma™-25 by GEA Pharma Systems, 

Collette™ (Wommelgem, Belgium) (Figure 36). This is one of the first commercially available 

fully continuous manufacturing lines. The ConsiGma™-25 consists of three main modules: a 

continuous twin-screw granulator, a six-cell segmented fluid bed dryer and a product control 

unit. Attached to the granulator there are also a powder dosing unit (i.e. a feeder) and a liquid 

addition module. In addition, a Modul™ rotary tablet press and an Omega™ coater can be 
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attached to the product control unit, at the end of the line. The continuous pharmaceutical 

granulation and drying work conducted in the ambit of this thesis was completed on two 

similar installations of the ConsiGma™-25 system, and focuses only on the granulator and 

dryer units. 

A ConsiGma™-1, is an easily transportable, reduced version of the ConsiGma™-25 

line which facilitates research and development (Figure 37). An identical granulator barrel as 

the ConsiGma™-25 line is linked to the equivalent to a single segment of the six-cell 

segmented fluid bed dryer from the ConsiGma™-25 line. Drying is performed batch-wise 

because only one cell is present, but due to its similarity to the larger scale line, it allows short 

granulation runs ideal for the earlier research and development work. 

 

 

 

Figure 36 – ConsiGma™-25 continuous from powder-to-tablet line: 1. Powder dosing unit; 2. Twin-
screw granulator; 3. Six-cell segmented fluid bed; 4. Product control unit; 5. Blender (external phase); 
6. Tablet press; 7. Tablet coater (Courtesy of GEA Pharma Systems). 
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Figure 37 – ConsiGma
TM-

1 with: 1. Powder dosing unit, 2. Twin-screw granulator, 3. Fluid bed dryer 
[Courtesy of GEA Pharma Systems]. 

The MODCOS™ line is also based on coupling twin-screw granulation with fluid bed 

dryer and a tablet press. It is the result of a collaboration Glatt with Thermo Fisher™ Scientific 

and Fette™. The Böhle Conti Granulator BCG (by Böhle™ in collaboration with Korsch™) is 

also another line that merged continuous screen granulation and fluid bed drying.  

Granucon™ is composed by a ringlayer mixer and a horizontal fluid bed dryer. This is 

a design by Lödige™. Lödige™ implemented a screw in the dryer to narrow down the wide 

retention times of granules in the dryer, characteristic of continuous fluid bed dryers. 

5.2 ConsiGma™-25 continuous line 

The ConsiGma™-25 (GEA Pharma Systems, Collette™ Wommelgem, Belgium) 

continuous production line contains three units: a continuous twin-screw high-shear 

granulation module, a six-cell segmented fluid bed dryer, and a product control unit (Figure 

38) [161, 218]. Additionally, this type of line also allows for additional blending, tableting and 

coating by coupling a tablet press and coater, however tableting was not in the scope of the 

work described in this dissertation. This system continuously generates univariate data (e.g., 

temperatures, pressures, etc.) during operation acquired from sensors implemented at 

different locations. 

3. 

1. 

2. 
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Figure 38 – ConsiGma™-25 continuous manufacturing line granulator, dryer and product control unit 
modules. 

5.2.1 Continuous twin-screw granulation 

The granulation module has a powder dosing unit, a liquid addition module and the granulator itself ( 

Figure 39). 

The powder dosing unit feeds the dry premix from a container. Alternatively, several 

feeders can act simultaneously, each one dosing a dry ingredient to a continuous feeder 

which homogenizes the preblend before it enters the granulator. The liquid addition module 

adds the granulation liquid at a predefined rate via two injection nozzles into the granulator 

barrel working segment by means of two peristaltic pumps. The powder dosing unit and the 

liquid addition unit both work under the loss-in-weight principle.  

The granulator consists of a twin-screw co-rotating system ( 

Figure 40). The screws are modular and allow for different types processing thorough 

the barrel. The feeding segment consists of conveying elements which transport the powder 

through the barrel and into the working segment. In the working segment, kneading elements 

intensively mix it with the granulation liquid. Screw speed and barrel temperature are user-

set. A temperature control unit is responsible to cool or heat the granulator barrel medium 

(water) to the chosen granulator barrel temperature setpoint. The temperature of the 

granulator is monitored, however, it is not controlled and there is no feedback system toward 

the temperature control unit. 
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The granulation barrel is short, and therefore the residence time is also short, which is 

an advantage during development as a minimal amount of material is necessary to screen 

the different settings. After granulation, wet granules are transported via a vacuum transfer 

line or gravimetrically to the fluid bed dryer. 

 

 

 

 

Figure 39 – Continuous granulation module (Courtesy of GEA Pharma Systems). 
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Figure 40 – Detail of the GEA continuous twin-screw granulator (Courtesy of GEA Pharma Systems). 

5.2.2  Six-cell segmented fluid bed dryer and product control unit 

The segmented dryer (Figure 41) works under the fluid bed principle. The drying 

chamber is divided in 6 identical cells which are sequentially filled and discharged one after 

the other ensuring a continuous flow of incoming wet granules and outcoming dry granules 

(Figure 42). The dryer air temperature (°C), humidity (%RH) and air flow (m3) are user-

defined while the actual temperature inside the individual cell is monitored. When the cell is 

filled the temperature inside the cell corresponds to temperature of the product inside. The 

material inside a cell ranges from 0.5 kg to a maximum of 1.5 kg (for a material throughput of 

25 kg/h). The cells dry for a predefined period, and after discharge, remain inactive until they 

are filled again. To fit the needs of developmental work, the number of cells to be filled can be 

chosen in order to minimize the material used. An air handling unit, prepares the drying air to 

enter the dryer according to the defined setpoints. A push/fan and fan/blower systems 

regulate respectively, air flow and pressure within the dryer. Several HEPA filters were placed 

in the air outlets of the dryer and product control therefore avoiding that particulate material 

exits the system. 
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Figure 41 – Six-cell segmented fluid bed dryer (Courtesy of GEA Pharma Systems). 

 

Figure 42 – View from the inside of the six-cell segmented fluid bed dryer (Courtesy of GEA Pharma 
Systems). 

5.2.3 Product control unit 

The material discharged from the cells goes into a product control unit (Figure 43). In 

the product control unit, there is the possibility to install various probes for PAT monitoring 

and control purposes. A mill is placed at the exit of the control unit but it was not used for the 

specific purpose of the work included in this thesis. After the product control unit, as tableting 

was not in scope, the granules exit the system.  

Wet granule inlet 

Dry granule outlet  
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Figure 43 – Product control unit of the ConsiGma™-25 system.  
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5.3 Understanding and monitoring a continuous pharmaceutical twin-

screw granulation and drying process using multivariate data 

analysis – part I3 

5.3.1 Abstract 

The present work is the first part of a study which focuses on acquiring an in-depth 

knowledge about a granulation and drying process performed on a ConsiGma™-25 

continuous manufacturing line. During operation, the continuous line logs multiple univariate 

process variables, hence generating a large amount of data. Process variables are related to 

process parameters which impact final product quality. Ensuring that process variables are in 

control, reduces the variability on the final product. Three identical five-hour continuous 

manufacturing runs were performed. Multivariate data analysis tools, more specifically, latent 

variable modeling tools such as PCA were utilized to extract information from the generated 

datasets unveiling process trends and drifts. Furthermore, a statistical process control 

strategy based on the simultaneous application of MSPC and BSPC concepts is presented. 

The present study focuses on the use of PCA for MSPC as a possible solution for the 

modelling and monitoring of variables at a steady state i.e. which do not present time-relevant 

trends. A second part of this work will focus on the BSMP modeling of variables with time-

related trends and on the process startup periods of the different units, for which process time 

is a relevant feature. 

  

                                                
3
 This chapter has been adapted from: A.F.T. Silva, J. Vercruysse, M.C. Sarraguça, J.L.F. Costa Lima, C. 

Vervaet, J.P. Remon, J.A. Lopes, T. De Beer, Understanding and monitoring a continuous pharmaceutical twin-
screw granulation and drying process using multivariate data analysis – part I, (Submission in process). 
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5.3.2 Materials and methods 

5.3.2.1 Industrial case study  

A pharmaceutical dry premix containing two API’s, powdered cellulose, maize starch, 

pregelatinized starch and sodium starch glycolate was granulated with distilled water in the 

ConsiGma™-25 system. All pharmaceutical powders were provided by Johnson&Johnson 

(Janssen-Cilag, Italy). Three identical long continuous manufacturing runs (five hours each) 

were completed. 

5.3.2.2 Continuous manufacturing line 

The experiments in question were performed in a ConsiGma™-25 line located at GEA 

Pharma Systems (Wommelgem, Belgium). In this particular assembly granules are 

transported gravimetrically between the different subunits. The continuous production line 

ConsiGma™-25 (GEA Pharma Systems, Collette™ Wommelgem, Belgium) was described in-

depth in subsection ConsiGma™-25 continuous line (ConsiGma™-25 continuous line).  

During these runs, the powder dosing unit fed the dry premix to the granulator at a 

speed of 20 kg/h. The liquid addition module fed the granulation liquid, i.e. water, at a rate of 

50 g/min. The screw speed and barrel temperature were set at 900 rpm and 25°C, 

respectively. The 6 cells were filled for 180 s sequentially after each other ensuring a 

continuous operation. The drying time was set to 790 s in total, including the 180 s cell filling 

time. During the last seconds of drying, granules were gravimetrically discharged to the 

product control unit after which the cell remained inactive for 290 s until new wet granules 

were introduced for drying. After being in the product control unit, granules exited the system. 

The air handling unit, responsible for preparing the air entering the dryer according to the 

defined setpoints, contains a dehumidifier inside which unit removes moisture from the 

incoming air. In addition, a push/fan system regulated the air flow inside the dryer while a 

fan/blower regulated the pressure. Both the air exiting the dryer and the air leaving the 

product control unit had to pass through different HEPA filters in order to avoid carrying 

particulate material out of the system. 
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5.3.2.3 In-process measurements 

The relevant univariate process parameters, continuously measured and logged each 

second in multiple locations of the ConsiGma™-25, are summarized in Table 8. These logged 

parameters include both user-set variables (setpoints) and other (not set but only measured) 

logged variables (open loop variables). Even though setpoints are pre-defined, they still vary 

around their set value due to disturbances. These are then automatically corrected by the 

system itself through independent proportional–integral–derivative (PID) controllers. 

 

Table 8 – Parameters logged by the ConsiGma™-25 during processing;  - Variables included in 
the PCA model for process visualization of the granulator;  - Variables included in the PCA model 
for process visualization of the dryer and product control unit;  - Variables included in the PCA 
model for process visualization of all units together;  - Variables included in the MSPC model 
(PCA) for monitoring the continuous granulator  - Variables included in the MSPC model (PCA) for 
monitoring the dryer and included. 

Description Units Type ConsiGma™-25 unit 

Mass flow - Granulation liquid  g/min Setpoint 
Liquid addition module 

(granulator) 

Mass - Flow powder dosing  kg/h Setpoint 
Powder dosing unit 

(granulator) 

Speed - Granulator screws  rpm Setpoint Granulator 

Temperature sensor - Granulator barrel  °C Setpoint Granulator 

Power - Granulator drive  W Measured Granulator 

Temperature sensor - Granulator barrel refrigeration 
liquid inlet  

°C Measured Granulator 

Torque sensor – Granulator  Nm Measured Granulator 

Flow sensor - Wet granule transfer  m³/h Setpoint 
Wet granule transfer line 

(dryer) 

Pressure sensor - Differential pressure over the wet 
transfer line  

mbar Measured 
Wet granule transfer line 

(dryer) 

Pressure sensor - Wet transfer line  mbar Measured 
Wet granule transfer line 

(dryer) 

Temperature sensor - Air handling unit filter  °C Measured Air handling unit (dryer) 

Temperature sensor - Dehumidifier air outlet  °C Measured Air handling unit (dryer) 

Humidity sensor - Dehumidifier air outlet  % RH Measured Air handling unit (dryer) 

Speed control –Fan/blower  % Measured Fan/Blower system (dryer) 

Speed control - Push/fan  % Measured Fan/Blower system (dryer) 

Flow sensor - Dryer air  m³/h Setpoint Dryer 

Humidity sensor - Dryer air inlet  % RH Setpoint Dryer 

Temperature sensor - Dryer air inlet  °C Setpoint Dryer 

Humidity sensor - Dryer air outlet  % RH Measured Dryer 

Pressure sensor – Atmospheric  mbar Measured Dryer 

Pressure sensor - Differential pressure over the dryer 
filters  

m
bar 

Measured Dryer 

Pressure sensor - Dryer air inlet  mbar Measured Dryer 
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Table 8 – Parameters logged by the ConsiGma™-25 during processing;  - Variables included in 
the PCA model for process visualization of the granulator;  - Variables included in the PCA model 
for process visualization of the dryer and product control unit;  - Variables included in the PCA 
model for process visualization of all units together;  - Variables included in the MSPC model 
(PCA) for monitoring the continuous granulator  - Variables included in the MSPC model (PCA) for 
monitoring the dryer and included. 

Description Units Type ConsiGma™-25 unit 

Pressure sensor - Dryer air outlet (afteHEPA 
filter)  

mbar Measured Dryer 

Pressure sensor - Dryer air outlet (before HEPA filter) 
 

mbar Measured Dryer 

Pressure sensor - Pressure dryer top  mbar Measured Dryer 

Temperature sensor - Dryer air outlet  °C Measured Dryer 

Temperature sensor - Temperature dryer cell 1  °C Measured Dryer 

Temperature sensor - Temperature dryer cell 2  °C Measured Dryer 

Temperature sensor - Temperature dryer cell 3  °C Measured Dryer 

Temperature sensor - Temperature dryer cell 4  °C Measured Dryer 

Temperature sensor - Temperature dryer cell 5  °C Measured Dryer 

Temperature sensor - Temperature dryer cell 6  °C Measured Dryer 

Speed control - Vacuum pump  % Measured Vacuum pump (dryer) 

Pressure sensor - product control unit (after HEPA filter) 
 

mbar Measured Discharger 

Pressure sensor - product control unit (before HEPA 
filter)  

mbar Measured Discharger 

5.3.2.4 Multivariate data analysis 

PCA is a widely used latent variable method, to extract information from large 

multivariate data-sets, and to compress this data enabling better process visualization [219]. 

In this work, PCA was used for multiple purposes as described below. All used data sets 

were first mean centered and scaled to unit variance. All of the below described PCA models 

were developed and evaluated using SIMCA™ 14 (MKS Data Analytics Solutions, Umeå, 

Sweden). For all PCA models an R2 and a Q2 value were calculated. R2 corresponds to the 

variation in the data that is captured by the model while Q2 is the variation predicted by the 

model according to cross validation. For cross-validation every seventh observation was 

assigned to a cross-validation group, each group being excluded at a time in each cross-

validation round. Components were added to the models until both R2 and Q2 were 

maximized. Adding more components to the model would result in overfitting. 
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 Process visualization 

PCA models were fit on the data from the three runs individually for the granulator unit 

data, the dryer data (including transfer lines to and from the dryer) and, the product control 

unit data, with the purpose of unveiling process trends and existing correlations between the 

logged variables within these units. PCA models were also fitted for each performed five-hour 

run, using the data from all units together, with the purpose of unveiling correlations not only 

between the variables logged within the same unit, but also between the variables from 

different units.  

 Multivariate statistical process control approach 

As described earlier, the ConsiGma™-25 is an overall continuous process where 

some sub-steps operate in a continuous way (granulation) while other sub-modules operate 

semi-continuously (drying and product control modules). The segmentation of the fluid bed 

dryer in six identical cells ensures a continuity of the material flow entering and exiting the 

dryer by filling and discharging the cells sequentially. Material within each cell can be 

perceived as a “mini-batch”. The proposed approach combines a MSPC modelling approach 

for the variables at a steady state without any time-relevant trends, and BSPC for those 

variables where time-related features are present and important to monitor. The present 

study focuses only on the MSPC part of the monitoring. 

 Continuous granulator 

During continuous operation, the granulator is expected to run in steady state and 

two-dimensional data is obtained by the monitoring of variables (J) as function of process 

time (K). A reference PCA model was built based on historical data from the continuous 

granulator (including powder dosing and liquid addition units, see Table 8 for further details) 

while running at steady state (startup and shutdown phases were excluded). The data of two 

of the three performed runs (runs 1 and 2) were included in the model (reference runs) while 

the data from run 3 was utilized to test the model’s monitoring performance.  
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 Dryer and product control unit 

The dryer and product control units operate semi-continuously. The package of 

granules discharged from a cell at a certain moment can be considered as a “mini-batch” 

since the cells operate independently and granules are not exchanged between them. 

Despite this, it is important to mention that the six cells physically communicate with each 

other since they are open at the top and therefore, variations in pressure, air humidity and 

inlet air temperature affect all cells.  

Humidities and temperatures measured at locations that are common to all cells 

(outlet of the dehumidifier, inlet and outlet of the dryer) are variables that are expected to 

remain constant during the full processing time (two-dimensional). Hence, despite the fact 

that the drying process occurs independently in each cell, these variables can be monitored 

using a simple MSPC PCA based model. A reference PCA model was built for these logged 

variables (Table 8) from runs 1 and 2 (reference runs), while the data from run 3 was utilized 

to test the model’s monitoring performance. The first 6480 s of each run where excluded from 

this data set due to a lower temperature of the air leaving the dehumidifier unit and a higher 

humidity and temperature of the air leaving the dryer during this period. 

 Fault Detection and Diagnosis 

The individual scores of the calculated principal components of each model were 

plotted in Shewhart control charts providing a useful visual representation of the process 

evolution [220]. Control limits for the score values were set at + and – 2 times the standard 

deviation (i.e. within a 95% confidence interval) corresponding to a warning limit at + and - 3 

times the standard deviation (i.e. within a 99% confidence interval) corresponding to an action 

limit. It is always possible to adjust the control limits however generally these limits are 

utilized. 

Hotelling’s T2 and normalized DModX control charts were also utilized. These statistics 

are thoroughly described in section (Chapter 2). For all models the control limits in the 

Hotelling’s T2 control charts were set at + and – 2 times the standard deviation (i.e. within a 

95% confidence interval) corresponding to a warning limit and + and - 3 times the standard 

deviation (i.e. within a 99% confidence interval) corresponding to an action limit). On the other 

hand, the DModX control limits were set at Dcrit. The significance level for Dcrit was set to 0.95, 

meaning 95% of the observations in the model have a DModX value below Dcrit. Observations 
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with a DModX larger than twice the Dcrit are considered moderate outliers. When any of the 

above described control charts give an out-of-control signal at a certain time point, then 

contribution plots were calculated to unravel the variables contributing to that deviation, 

hence providing a good insight into the causes of the process deviations [82]. 

5.3.3 Results and discussion 

5.3.3.1 Process visualization 

 Continuous granulator 

For the three five-hour runs, a PCA model with two PC was fitted for the logged 

granulator data, capturing 95.5% of the variation in the data (R2). A Q2 of 88.0% was 

obtained. With this model, it is possible to distinguish 3 different process phases: 1) startup, 

2) steady state and 3) shutdown phases (Figure 44). All three runs are identical. 

During steady state, the score values of both PCs remain close to the origin. The PC1 

scores increase during startup and decrease again at the end of the process. According to 

the loadings of this PC (Figure 45), the mass flow of the granulation liquid, the powder mass 

flow, the power, the torque, the screw speed of the granulator and the temperature inside the 

granulator barrel are positively correlated with the scores meaning their values increase 

during startup and decrease at the shut-down. On the other hand, the temperature at the inlet 

of the refrigeration liquid of the granulator barrel presents a negative correlation with the 

scores which means this value decreases during startup. This is expected since once the 

granulator starts operating, its temperature rises and consequently the refrigeration liquid 

starts entering the barrel in order to keep the temperature of the granulator barrel at its 

setpoint. Given this, we can conclude that PC1 depicts the operating status of the granulator, 

i.e. the granulator is working or not. The PC2 scores (Figure 44) are positive during startup, 

sit around the origin at steady state and become negative at shut-down. By looking at the 

loadings of this PC (Figure 45), it can be seen that the main contributing variables are the 

temperature at the inlet of the refrigeration liquid of the granulator barrel and the temperature 

inside the granulator itself, both positively correlated with the scores. The time series charts 

of these two variables are plotted (Figure 46a and b) for clarification. At the beginning of 

granulation, the temperature of the granulator barrel spikes 1°C (up to 26 °C) at the start of 

operation. This slight increase is due to the filling of the barrel resulting in material build up on 
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the barrel walls and consequent increase of friction. At this moment torque and the power of 

the granulator drive also increase suddenly, and then gradually until steady state is reached 

which takes around 2000 s. In this time frame, the barrel temperature was corrected back to 

25°C by the granulator temperature control system that is responsible for the heating/cooling 

of the refrigeration liquid entering the barrel Afterwards, the temperature of the barrel 

remained constant around the set 25°C until the end of the process. When the granulator 

stopped operating, the barrel temperature spiked towards lower values since the material left 

the granulator and hence s no heat by friction was generated anymore. The temperature of 

the refrigeration liquid at the granulator inlet heated the barrel up again to the predefined 

setpoint.  

 

Figure 44 – Process visualization – continuous granulator - a Scores on PC1 versus scores on PC2 
(Run 1 – green; Run 2 – red; Run 3 – blue). 

 

Figure 45 – Process visualization – continuous granulator - Loadings of PC1 (green) and PC2 (blue); 1 
- Mass flow - Granulation liquid; 2 - Mass - Flow powder dosing; 3 - Power - Granulator drive; 4 - 
Speed - Granulator screws; 5 - Temperature sensor - Granulator barrel; 6 - Temperature sensor - 
Granulator barrel refrigeration liquid inlet; 7 - Torque sensor – Granulator. 
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Figure 46 – Process overview – continuous granulator - Evolution during process time of the a) 
Temperature sensor - Granulator barrel refrigeration liquid inlet and the b) Temperature sensor – 
granulator barrel; (Orange dotted line – 95% confidence interval; Red dotted line – 99% confidence 
interval; Green dotter line – variable average value calculated from the calibration set); 
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 Dryer and product control unit 

A PCA model with 3 PCs was fitted for the logged dryer data capturing 55.1%, of the 

variance in the data (R2) and with Q2 of 44.4%.  

Figure 47a shows that the PC1 scores increase as function of processing time. Figure 

47d shows PC1 loadings. Many variables related to pressure contribute to this component. 

The differential pressure over the dryer filters is one of these variables and it increases 

slightly during the whole process time due to accumulation of fine material over the filters 

(Figure 48a). Special attention should be taken to this phenomenon as the blockage of filters 

might reduce fluidization and impact the drying effectiveness. The speed of the fan/blower 

revealed the same increasing trend as to compensate for the increasing pressure (Figure 

48b). If at a certain moment filters would be completely covered with material, the speed of 

the fan/blower would reach 100% and still the air flow in the dryer would not reach the desired 

setpoint. This never happened during the presented experiments. For all runs, the 

temperature at the air outlet of the dryer markedly decreased during the first 1080 s. After 

reaching steady state, this temperature remained constant till the end of the process. Once 

the system is stopped, this temperature increased again to its initial values (Figure 48c). The 

decrease in temperature at the start of processing is probably due to the fact that during the 

first 1080 s the cells are filled for the first time and energy starts to be transferred to the 

granules for drying. This also explains why the temperature increased again when the dryer is 

emptied. Complementary too this, the relative humidity, measured at the same location, 

noticeably increased during the initial 1080 s. After the system is stopped, the humidity 

lowered again to the initial values (Figure 48d). Given that wet granules start being dried, the 

humidity of the air leaving the dryer increased since the moisture of the granules is 

transferred to the air. Correspondingly, when at the end of processing no granules are dried 

anymore, the humidity decreased.  

The PC2 scores versus time show a 790 s startup period, followed by peaks at regular 

intervals of 180 s till the end of the process (Figure 47b). The 790 s of startup phase 

corresponds to the time period before the first cell is discharged. From that moment on, every 

180 s a vacuum pump actuated to discharge the granules from a different dryer cell. The 

loadings (Figure 47d) reveal that this PC is mainly explaining variables related to the vacuum 

pump actuation every 180 s, i.e. to the pressure and air flow related variables inside the dryer 

and product control units. 
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PC3 (Figure 47c) explains how the temperatures and humidities at the outlet of the 

dehumidifier, inlet, and outlet of the dryer relate to the temperatures inside the six dryer cells 

and to the pressure inside the dryer (Figure 47d). 

 

Figure 47 – Process visualization – dryer and product control units - a) Scores on PC1 versus process 
time; b) Scores on PC2 versus process time; c) Scores on PC3 versus process time; (Orange dotted 
line – 95% confidence interval; Red dotted line – 99% confidence interval); d) Loadings of PC1 to PC3 
(PC1 –green; PC2 – blue; PC3 - red); 1 - Flow sensor - Dryer air; 2 - Flow sensor - Wet granule 
transfer; 3 - Humidity sensor - Dryer air inlet; 4 - Humidity sensor - Dryer air outlet; 5 - Humidity sensor 
- Dehumidifier air outlet; 6 - Temperature sensor - Dehumidifier air outlet; 7 - Pressure sensor - 
Differential pressure over the wet transfer line; 8 - Pressure sensor – Atmospheric; 9 - Pressure sensor 
- Dryer air inlet; 10 - Pressure sensor - Dryer air outlet (before HEPA filter); 11- Pressure sensor - 
Dryer air outlet (after HEPA filter); 12 - Pressure sensor - Pressure dryer top; 13 - Pressure sensor - 
product control unit (after HEPA filter); 14 - Pressure sensor - product control unit (before HEPA filter); 
15 - Speed control –Fan/blower; 16 - Speed control - Push/fan; 17 - Speed control - Vacuum pump; 18 
- Temperature sensor - Dryer air inlet; 19 - Temperature sensor - Dryer air outlet; 20 - Temperature 
sensor - Temperature dryer cell 1; 21 -Temperature sensor - Temperature dryer cell 2; 22 - 
Temperature sensor - Temperature dryer cell 3; 23 - Temperature sensor - Temperature dryer cell 4; 
24 - Temperature sensor - Temperature dryer cell 5, 25 - Temperature sensor - Temperature dryer cell 
6; 26 - Temperature sensor - Air handling unit filter; 27 - Pressure sensor - Differential pressure over 
the dryer filters; 28 - Pressure sensor - Wet transfer line.  
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Figure 48 – Process overview – dryer and product control unit - Evolution during process time of the a) 
Pressure sensor - Differential pressure over the dryer filters, b) Speed control – Fan/blower, c) 
Temperature sensor - Dryer air outlet, d) Humidity - Dryer air outlet; (Orange dotted line – 95% 
confidence interval; Red dotted line – 99% confidence interval; Green dotter line – variable average 
value calculated from the calibration set). 

 All units 

By fitting a PCA model on the data from all units together (granulator, dryer and 

product control unit), similar information was obtained as for the separate unit models, 

implying that inter-unit correlations between the measured variables do not exist. In the 

future, by implementing multivariate process analyzers during processing such as particle 

size analyzers and spectroscopic tools, additional production information will be obtained. 

This might enable the visualization of new correlations between the measured variables 

within and between the different units that are critical to the measured quality attributes. 

However, this study only aims at focusing on the univariate sensors, since no other process 

analyzers were implemented during the three experimental runs.   
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5.3.3.2 Multivariate statistical process control approach  

 Continuous granulator 

An MSPC PCA model consisting of one principal component (explaining 32.8% of the 

variation in X and with an explained variance according to cross-validation (Q2) value of 

21.4% was fitted on the granulator reference data from runs 1 and 2.  

The loadings for this PC (Figure 49a) reveal the contribution of 4 variables: power of 

the granulator drive and torque, both negatively correlated to the scores, screw speed and 

temperature at the inlet of the granulator jacket positively correlated to the scores. When the 

torque inside the barrel increases, more input power is supplied to maintain the speed of the 

screws which otherwise tends to decrease. 

At the same time, temperature at the inlet of the granulator refrigeration liquid 

decreases due to the water entering inside the barrel walls which prevents its heating up. The 

developed MSPC model was then used for the monitoring of run 3. The aim was to test the 

performance of this model for the monitoring of future runs and evaluate its ability to detect 

deviations from the normal operation state defined by the reference runs 1 and 2. Scores, 

Hotelling’s T2 and DModX Shewhart control charts were plotted.  

On the scores plot (Figure 49b), a few outliers are visible dispersed over the entire 

steady state processing time (approximately 4.5 h). By analyzing the contribution plots of 

these outliers (Figure 50), it can be observed that the variables contributing to the deviations 

are mainly increased power and torque of the granulator. In the Hotelling’s T2 control chart 

the same strong outliers are observed since only one component was fitted (Figure 49c). 

Even though these strong deviations were detected during processing, a trained operator 

would not feel the need to take action since normality was restored immediately in the 

following second in each outlier case. As alternative, it can also be defined that a deviation 

should only be considered after a certain number of consecutive deviations, or a percentage 

of deviations in a processing time interval. Being able to diagnose the detected deviation and 

make a decision on whether or not to react on is also an important part of an effective 

monitoring system. Data points with a high DModX lie further from the model plane and 

represent moderate outliers (Figure 49d). Overall, a significant number of observations are 

detected as moderate outliers in this plot probably because the reference model was built 

using only two reference runs which is not enough to include all possible normal variations of 

the process. More reference runs should be performed and included in the MSPC model.  
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Figure 49 – MSPC approach – continuous granulator- a) Loadings of PC1; 1 - Mass flow - Granulation 
liquid; 2 - Mass - Flow powder dosing; 3 - Power - Granulator drive; 4 - Speed - Granulator screws; 5 - 
Temperature sensor - Granulator barrel; 6 - Temperature sensor - Granulator barrel refrigeration liquid 
inlet; 7 - Torque sensor – Granulator; b) Predicted scores on PC1 control chart (Orange dotted line – 
95% confidence interval; Red dotted line – 99% confidence interval; c) Hotelling’s control chart 
(Orange dotted line – 95% confidence limit; Red dotted line – 99% confidence limit); c) DModX control 
chart (Red dotted line – Dcrit); Data from Run 3. 

 

Figure 50 – MSPC approach – continuous granulator – average score contribution plot of all points 
outside the action limits; 1 - Mass flow - Granulation liquid; 2 - Mass - Flow powder dosing; 3 - Power - 
Granulator drive; 4 - Speed - Granulator screws; 5 - Temperature sensor - Granulator barrel; 6 - 
Temperature sensor - Granulator barrel refrigeration liquid inlet; 7 - Torque sensor – Granulator. 
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 Dryer and product control unit 

A MSPC PCA model of two PCs was developed for the steady state dryer data from 

runs 1 and 2 explaining 62.3% of the overall variation in the data (Q2 of 36.9%). Adding more 

components to the model would result in a decrease of the Q2 which indicates an overfitting. 

According to the PC1 loadings (Figure 51a), the temperature and humidity at the outlet of the 

dehumidifier and the humidity at the inlet of the dryer are positively correlated with the scores 

and with each other. This PC mainly represents the difference between the two calibration 

runs with all values for these variables being on average lower for run 2. In the PC2 loading 

plots (Figure 51a), it can be observed that the humidity at the outlet of the dryer is positively 

correlated to the scores and negatively correlated with the temperature at the same location. 

This PC represents the correlations during steady state operation of the dryer. When the air 

leaving the dryer carries more moisture removed from the granules, the temperature of this 

air is lower. Monitoring run 3 using the developed MSPC model (developed from runs 1 and 

2) revealed no outliers in the PC1 and PC2 scores and Hotelling’s T2 control charts (Figure 

51b to d). The DModX control chart (Figure 51e) revealed a single moderate outlier. Via a 

DModX contribution plot (Figure 52) it was possible to observe that at this time point the 

temperature at the filter of the dryer air handling unit was lower than during normal operation. 

However, this lasted for only a second and no corrective action was required. 
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Figure 51 – MSPC approach – dryer and product control unit – a) Loadings of PC1 (green) and PC2 
(blue); b) Predicted scores on PC1 control chart (Orange dotted line – 95% confidence interval; Red 
dotted line – 99% confidence interval) chart; c) Predicted scores on PC2 control chart (Orange dotted 
line – 95% confidence interval; Red dotted line – 99% confidence interval); d) Hotelling’s control chart 
(Orange dotted line – 95% confidence limit; Red dotted line – 99% confidence limit); e) DModX control 
chart (Red dotted line – Dcrit); 1 - Humidity sensor - Dryer air inlet; 2 - Humidity sensor - Dryer air 
outlet; 3 - Humidity sensor - Dehumidifier air outlet; 4 - Temperature sensor - Dehumidifier air -  outlet; 
5 - Temperature sensor - Dryer air inlet; 6 - Temperature sensor - Dryer air outlet; 7 - Temperature 
sensor - Air handling unit filter; Data from Run 3. 
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Figure 52 – MSPC approach – granulator dryer and product control unit -); Average DModX 
contribution plot of all points outside the action limits); 1 - Humidity sensor - Dryer air inlet; 2 - Humidity 
sensor - Dryer air outlet; 3 - Humidity sensor - Dehumidifier air outlet; 4 - Temperature sensor - 
Dehumidifier air -  outlet; 5 - Temperature sensor - Dryer air inlet; 6 - Temperature sensor - Dryer air 
outlet; 7 - Temperature sensor - Air handling unit filter. 

5.3.4 Conclusion 

The PCA models on the data from the three repeated runs provided a good overview 

of a granulation and drying process performed in the ConsiGma-25™ system. In the PCA of 

the data acquired in the continuous granulator, three phases were identified: startup, steady 

state and shutdown. Several correlations were found between the variables measured at this 

location. During startup, the attrition generated by the powder filling of the barrel causes a 

slight increase in temperature. Torque and the power of the granulator drive also increase. 

The increased temperature is corrected by the temperature of the water inside the barrel. It 

takes 2000 s until the barrel temperature, torque and power of the granulator drive become 

constant around the setpoint and it remains so, until the end of the process. In the PCA of the 

dryer it was observed that, through the process, there is an increase in the pressure over the 

dryer filters due to the deposition of fines over them which may lead to an inefficient drying. 

To deal with this issue it is possible to set a number of “blow back” air pulses when a cell is 

emptied in order to prevent total blockage of the filters. In this analyses, a 790 s startup 

period is identified, after this startup period the actuation of the vacuum pump each 180 s is 

well observed in all pressure-related variables measured in the system. In the beginning of 

the process, the humidity at the outlet of the dryer increases and the temperature decreases 

due the wet granules entering the dryer, the opposite trend is observed at the end of the 
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process as the dryer is emptied. No correlations between variables from the granulator and 

variables measured at the dryer and product control units were found.  

A PCA model for the MSPC of the continuous granulator was successfully developed. 

During the monitoring of the test run 3, several out-of-control spikes are observed in the 

Hoteling’s T2 and DModX control charts due to an increased power and torque, no actions 

were required as normal operation was immediately re-established (i.e. within 1 s). A PCA 

model for the MSPC of the dryer and product control unit was developed. During the 

monitoring of test run 3, a single moderate outlier was found in the DModX due to a 

temperature at the filter of the dryer air handling unit lower than during normal operation. 

Again, the deviation lasted for only a second and no corrective action was required. 

Contribution plots were found suitable to assign a probable cause for a deviation and allow a 

trained operator to take a corrective action to restore normal operation and prevent future 

complications. 
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5.4 Understanding and monitoring a continuous pharmaceutical twin-

screw granulation and drying process using multivariate data 

analysis – part II4 

5.4.1 Abstract 

The present study is a second part of a work that aims at acquiring an in-depth 

process knowledge about a granulation and drying process performed on the commercially 

available ConsiGma-25™ continuous line. This second part describes not only the steady 

state operation of the line but also the startup of each line submodule. 

Furthermore, the study focuses on the use of batch BSPC principles to model the 

variables logged by the system (e.g. temperatures, pressures, etc.) with a relevant time-

related trajectory. This is a part of a proposed MSPC/BSPC monitoring strategy where, in 

addition to BSPC, MSPC based on principal component analysis is used to monitor variables 

varying around a steady state, i.e. that do not present a time-dependent trajectory. These 

logged variables are related to process parameters and can impact the product quality. 

Ensuring that there are no deviations from the normal process trajectories of their variables is 

a way of minimizing product variability and maximizing quality. A profound process 

understanding regarding the normal operation of the dryer and product control units as well 

as an in-depth description of the startup period of the different units were achieved. An 

approach was developed which allows to monitor the drying process, to detect and diagnose 

deviations from normal operation and assign possible causes for the disturbances. 

  

                                                
4
 This chapter has been adapted form: A.F.T. Silva, J. Vercruysse, M.C. Sarraguça, J.L.F. Costa Lima, C. 

Vervaet, J.P. Remon, J.A. Lopes, T. De Beer, Understanding and monitoring a continuous pharmaceutical twin-
screw granulation and drying process using multivariate data analysis – part II, (Submission in process). 



 

Process analytical technology for batch and continuous pharmaceutical processes’ supervision 

138 

  

5.4.2 Materials and methods 

5.4.2.1 Industrial case study  

Three repeated continuous granulations (five hours each) were completed in the 

ConsiGma™-25 system. A dry preblend of two API’s, powdered cellulose, maize starch, 

pregelatinized starch and sodium starch glycolate was granulated with distilled water. 

Powders were provided by Johnson&Johnson, Janssen-Cilag, Italy.  

5.4.2.2 Continuous manufacturing line 

The experiments in this study were performed in a ConsiGma™-25 line located at 

GEA Pharma Systems (Wommelgem, Belgium). The system was previously described in 

subsection ConsiGma™-25 continuous line (Chapter 5). In this particular assembly, granules 

are transported gravimetrically between the different subunits. A powder feeder working at a 

constant speed of 20 kg/h fed the dry premix to the granulator. Screw speed of the granulator 

screws was set to 900 rpm and barrel temperature was set and 25°C. Granules exiting the 

granulator were transported to the six-cells segmented fluid bed dryer through a vacuum 

transport line. Each cell is sequentially filled after the other for 180 s. Drying time for the 

granules in each cell was set to 790 s in total, including the 180 s filling time. During the last 

seconds, granules followed to the product control unit. After emptying, the cell remained 

inactive for 290 s until wet granules were again loaded in the cell for drying. A mill was placed 

at the exit of the control unit but it was not used for the purpose of this study. The air entering 

the fluid bed dryer is brought to the setpoints by an air handing unit. A dehumidifier inside this 

unit removes moisture from the incoming air. A push/fan and fan/blower system regulated 

respectively air flow and pressure within the dryer. Several HEPA filters were placed in the air 

outlets of the dryer and product control, avoiding that particulate material exits the system.  

5.4.2.3 In-process measurements 

The univariate process parameters relevant to this exercise, that were continuously 

measured and logged each second at multiple locations of the ConsiGma™-25, are 

summarized in Table 9. Both user-set variables (setpoints) and other (not set but only 

measured) logged variables (open loop variables) are logged. Setpoints are pre-defined yet 
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they vary around their set value due to disturbances which are corrected by the system itself 

by means of independent PID controllers. 

 

 

Table 9 – Parameters logged by the ConsiGma™-25 during processing;  -  Variables included in 
the OPLS model for unveiling time-dependency of variables;  - Variables included in the BSPM 
model (PLS) for monitoring the continuous granulator startup;  - Variables included in the BSPM 
model (PLS) for monitoring the dryer startup;  - Variables included in the BSPM model  (PLS) for 
monitoring the dryer and included in the BSPM model (PLS) for monitoring the dryer startup period. 

Description Units Type ConsiGma™-25 unit 

Mass flow - Granulation liquid  g/min Setpoint 
Liquid addition module 

(granulator) 

Mass - Flow powder dosing  kg/h Setpoint 
Powder dosing 
uni(granulator) 

Speed - Granulator screws  rpm Setpoint Granulator 

Temperature sensor - Granulator barrel  °C Setpoint Granulator 

Power - Granulator drive  W Measured Granulator 

Temperature sensor - Granulator barrel refrigeration 
liquid inlet  

°C Measured Granulator 

Torque sensor – Granulator   Nm Measured Granulator 

Flow sensor - Wet granule transfer  m³/h Setpoint 
Wet granule transfer line 

(dryer) 

Pressure sensor - Differential pressure over the wet 
transfer line  

mbar Measured 
Wet granule transfer line 

(dryer) 

Pressure sensor - Wet transfer line  mbar Measured 
Wet granule transfer line 

(dryer) 

Temperature sensor - Air handling unit filter  °C Measured Air handling unit (dryer) 

Temperature sensor - Dehumidifier air outlet  °C Measured Air handling unit (dryer) 

Humidity sensor - Dehumidifier air outlet  % RH Measured Air handling unit (dryer) 

Speed control –Fan/blower  % Measured Fan/Blower system (dryer) 

Speed control - Push/fan  % Measured Fan/Blower system (dryer) 

Flow sensor - Dryer air  m³/h Setpoint Dryer 

Humidity sensor - Dryer air inlet  % RH Setpoint Dryer 

Temperature sensor - Dryer air inlet  °C Setpoint Dryer 

Humidity sensor - Dryer air outlet  % RH Measured Dryer 

Pressure sensor – Atmospheric  mbar Measured Dryer 

Pressure sensor - Differential pressure over the dryer 
filters  

mbar Measured Dryer 

Pressure sensor - Dryer air inlet  mbar Measured Dryer 

Pressure sensor - Dryer air outlet (after HEPA filter) 
 

mbar Measured Dryer 

Pressure sensor - Dryer air outlet (before HEPA filter) 
 

mbar Measured Dryer 

Pressure sensor - Pressure dryer top  mbar Measured Dryer 

Temperature sensor - Dryer air outlet  °C Measured Dryer 

Temperature sensor - Temperature dryer cell 1  °C Measured Dryer 

Temperature sensor - Temperature dryer cell 2  °C Measured Dryer 
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Table 9 – Parameters logged by the ConsiGma™-25 during processing;  -  Variables included in 
the OPLS model for unveiling time-dependency of variables;  - Variables included in the BSPM 
model (PLS) for monitoring the continuous granulator startup;  - Variables included in the BSPM 
model (PLS) for monitoring the dryer startup;  - Variables included in the BSPM model  (PLS) for 
monitoring the dryer and included in the BSPM model (PLS) for monitoring the dryer startup period. 

Description Units Type ConsiGma™-25 unit 

Temperature sensor - Temperature dryer cell 3  °C Measured Dryer 

Temperature sensor - Temperature dryer cell 4  °C Measured Dryer 

Temperature sensor - Temperature dryer cell 5  °C Measured Dryer 

Temperature sensor - Temperature dryer cell 6  °C Measured Dryer 

Speed control - Vacuum pump  % Measured Vacuum pump (dryer) 

Pressure sensor - product control unit (after HEPA 
filter)  

mbar Measured Discharger 

Pressure sensor - product control unit (before HEPA 
filter)  

mbar Measured Discharger 

5.4.2.4 Time series analysis 

A time series can be defined as a succession of observations measured sequentially 

in time. Each of the variables measured by the ConsiGma™-25 can hence be represented as 

a time series. 

In a complex system as the ConsiGma™-25, it is possible that a change or 

disturbance affecting one variable can impact other variable(s) at the same or different time 

points. Therefore, evaluating correlations between pairs of variables being one of them time-

lagged (i.e. delayed) is a method to achieve better process understanding. The intention of 

performing this cross-correlation analysis was to later take into account the found optimal 

time lags in the development of the BSPC strategy in order to account for process dynamics. 

Variables were de-trended and correlations were calculated using the Fast Fourier Transform 

algorithm. All possible pairs of variables were tested either within the same sub-module or 

between the different sub-models of the ConsiGma™-25 system. For each variable pair, one 

of the two variables was kept fixed at its original time point while the other variable was 

shifted up to 1080 s before and after this moment. Therefore, a time lag in this context is 

always a measure of the delay or advance of the second variable in the pair in relation to the 

first variable. The 1080 s period corresponds to the maximum residence time i.e. the 

maximum interval since the moment the material is fed until the dry granules are discharged 

from the product control unit. The 1080 s are the maximum interval possible as a cell needs 

to be empty before being filled again. This cross-correlation analysis was performed using 

SIMCA™ 14 (MKS Data Analytics Solutions, Umeå, Sweden). 
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5.4.2.5 Multivariate data analysis 

Collinear variables in a system can be combined into latent variables called principal 

components (PC), describing the underlying structure of the data. This approach is generally 

used in the pharmaceutical industry, and can be helpful in acquiring process knowledge as 

discussed in detail by Kourti in 2006 [193]. Latent variable methods include for example PCA, 

PLS regression and their various extensions such as multiblock PCA/PLS and OPLS. In this 

work, different latent vari(able approaches were used for multiple purposes as described 

below. All used data sets were first mean-centered and scaled to unit variance. All of the 

below described models were developed and evaluated using SIMCA™ 14 (MKS Data 

Analytics Solutions, Umeå, Sweden). For all PLS models a R2 value and a Q2 value were 

calculated. R2 corresponds to the variation in the data that is captured by the model while Q2 

is the variation predicted by the model according to cross-validation. For cross-validation 

every seventh observation was assigned to a cross-validation group, each group being 

excluded at a time in each cross-validation round. Components were added to the models 

until both R2 and Q2 were maximized. Adding more components to the model would results in 

an overfitting. 

 Time dependency 

In theory, a continuous system is expected to achieve steady operation where 

variables are unchanging in time. In many cases, this steady state is only reached some time 

after the continuous process has been started (startup phase). To unveil only long-term drifts, 

the logged data corresponding to the startup and shut-down phases of the continuous 

process were excluded and only data from the expected steady state phase was used to 

build an OPLS model. These logged variables from all units were regressed against process 

time (Y) to uncover the time-related variables. Table 9 overviews the variables included in this 

analysis. The advantage of OPLS in comparison to regular PLS is that it allows a better 

interpretability of the model while keeping the same predictive ability as regular PLS. In an 

OPLS model, information correlated to Y is separated from the uncorrelated information. 

While the information correlated to Y is captured in the predictive PC, the uncorrelated 

information is captured by the orthogonal PCs [53]. 
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 Batch statistical process control approach 

The ConsiGma™-25 is an overall continuous process where some sub-steps operate 

continuous (granulation) while other sub-modules operate semi-continuously (drying and 

product control modules). Therefore, a BSPC for variables containing relevant time-related 

trends is proposed in a mixed solution to model and monitor this continuous manufacturing 

line. Variables without a time-dependence were described in section 5.3 Understanding and 

monitoring a continuous pharmaceutical twin-screw granulation and drying process using 

multivariate data analysis – part I. Moreover, BSPC is also presented as a solution for 

monitoring the startup phases of each module. 

 Dryer and product control unit  

There are variables in the dryer that present time-related (i.e. drying process related) 

features that are of interest for statistical process control purposes. Such three-dimensional 

data (N batches x J variables x K time points) should be modeled using BSPC PLS based 

models. 

The time-dependent variables in the six-cells segmented dryer are the temperatures 

individually measured inside each drying cell which present a singular drying trajectory. When 

the cell is filled with material, this corresponds to the product temperature. Furthermore, the 

operation of the vacuum pump for granule discharge, due to the pressure overshoot it 

causes, is observable in all variables related to air flow and pressures measured in the 

transfer lines, dryer and product control units. This pressure overshoot occurs every 180 s 

and cannot be monitored using the regular PCA MSPC approach since it is a time-related 

feature. The variables included in the development of the dryer PLS BSPC models can be 

found in Table 9. Individual PLS models were fitted to the data from each cell in order to 

develop a different model for each cell. In addition, to obtain a global model capable of 

monitoring all cells, the data from all cells was included in the development of an overall dryer 

BSPC model. Of the three available runs, runs 1 and 2 were included in the model (reference 

runs) while run 3 was utilized to test the model’s monitoring performance. Since the first cell 

discharges only 790 s after the start of the process and since after that moment a new 

discharge of a cell happens every 180 s, the data measured during the first fill of the first four 

cells (first 720 s of processing) was not included in the model as it can be considered as 

startup of the dryer operation. The three-dimensional batch data matrices were unfolded 
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resulting in two-dimensional matrices where batch and time dimensions were combined, 

creating matrices with N×K observations (rows) and J variables (columns). PLS regression 

was performed relating the data matrix with a vector depicting process time indicative of the 

maturity of the batch [221]. This unfolding methodology was chosen since it is more sensitive 

to the detection of variations and deviations from normality in process monitoring [88]. 

 Continuous granulator, dryer and product control unit 

startup periods  

According to Kourti et al., the BSPC approach is not only useful to monitor batch 

processes but also for transitions such as process startup, restarts, grade to grade 

transitions, etc. [49, 221]. Thus, in addition to the PLS models for the monitoring of the 

operation of each of the dryer cells, additional PLS models were built: one for the monitoring 

of the granulator startup (first 2000 s of operation) and others for the monitoring of the startup 

of each of the dryer cells (including both time invariant and time dependent variables). For the 

latter, the first fill of the first four cells were used. Of the three available runs, the data from 

runs 1 and 2 were used to develop the models (reference runs) while the data from run 3 was 

utilized to test the model’s monitoring performance. 

 Fault detection and diagnosis 

All above described developed models were utilized to monitor run 3. In all cases, run 

3 data was projected into the corresponding models and it was verified whether this run was 

within normal operation conditions.  

Shewhart score control charts provide a valuable visual representation of the process 

evolution [220]. Control limits for the score values were set at + and – 2 times the standard 

deviation (i.e. within a 95% confidence interval) corresponding to a warning limit and + and - 3 

times the standard deviation (i.e. within a 99% confidence interval) corresponding to an action 

limit. Hotelling’s T2 and DModX values can also be utilized for pinpointing deviations and 

summarize the variation across all PCs in the model in a single value per process time point. 

The equations to calculate these metrics can be found in section Multivariate control charts 

(Chapter 2). 

Deviations that are explained by the model (i.e. that are inside the model plane) are 

seen in the Hotelling’s T2 values. For all models the control limits in the Hotelling’s T2 control 



 

Process analytical technology for batch and continuous pharmaceutical processes’ supervision 

144 

  

charts were set at + and – 2 times the standard deviation (i.e. within a 95% confidence 

interval) corresponding to a warning limit and + and - 3 times the standard deviation (i.e. 

within a 99% confidence interval) corresponding to an action limit). Alternatively, DModX 

represents the distance to the model plane and allows to diagnose faults not explained by the 

model i.e. falling out of the model plane.  

Observations with high DModX values indicate for that time point a breakage in the 

correlation structure of the variables. DModX control limits were set at Dcrit. For the PLS 

models, the DModX control limits were set at 3 times the standard deviation (99% confidence 

interval). DModX values were normalized by dividing them by the pooled relative standard 

deviation of the model in the X.  

When any of the above described control charts give an out-of-control signal at a 

certain time point, then contribution plots were calculated to unravel the variables contributing 

to that deviation, hence providing a good insight into the causes of the process deviations 

[82]. 

5.4.3 Results and discussion 

5.4.3.1 Time series analysis 

Within the sub-units of the ConsiGma™-25, several correlated measured variables 

were found as represented in Table 10. Furthermore, correlated variables were also found 

between the dryer and the product control unit. In a complex system as the ConsiGma™-25, 

it is possible that a change or disturbance affecting one variable can impact other variable(s) 

at the same or different time points. Therefore, correlations between pairs of variables being 

one of them time-lagged (i.e. delayed) were also examined allowing to find the optimal time 

lags between variables (Table 10) for the development of the multi-model statistical process 

control strategy in order to account for process dynamics. To include these time-lags in the 

latent variable models, one of the variables should be defined as reference while all other 

lags are to be recalculated according to this reference. However, this was not possible since 

it was observed that the lags do not fit together once recalculated according to this reference. 

For better understanding a practical example is hereby described. According to Table 10, the 

pressure at the product control unit after the HEPA filter- correlates optimally with the flow of 

the incoming dryer air at a lag time value of 2 s (line 2 in Table 10) and the differential 

pressure over the dryer filters correlates optimally with the flow of the incoming dryer air at a 
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lag value of 2 s (line 22 in Table 10). Given this, the pressure at the product control unit after 

the HEPA filter and the differential pressure over the dryer filters should be optimally 

correlated at a lag value of 0 s while in truth the optimal lag (which maximized the correlation 

coefficient) found was of 4 s (line 4 in Table 10). It was also observed that the correlation 

coefficients found between the pairs of variables only changed slightly (few seconds) with the 

change in the lag value. Therefore, it was decided to keep the original time-points for all 

variables. 

 

Table 10 – Correlations between the measured variables (CC - correlation coefficient). 

Fixed variable 1 Lagged variables Lag CC 

Pressure sensor - product control unit (after 

HEPA filter) 

Pressure sensor - product control unit 

(before HEPA filter) 
0 1.00 

Pressure sensor - product control unit (after 

HEPA filter) 
Flow sensor - Dryer air 2 -0.92 

Pressure sensor - product control unit (before 

HEPA filter) 
Flow sensor - Dryer air 2 -0.92 

Pressure sensor - product control unit (after 

HEPA filter) 

Pressure sensor - Differential 

pressure over the dryer filters 
4 0.64 

Pressure sensor - product control unit (before 

HEPA filter) 

Pressure sensor - Differential 

pressure over the dryer filters 
4 0.64 

Pressure sensor - Pressure dryer top 
Pressure sensor - product control unit 

(after HEPA filter) 
2 0.65 

Pressure sensor - Pressure dryer top 
Pressure sensor - product control unit 

(before HEPA filter) 
2 0.65 

Pressure sensor - Differential pressure over 

the wet transfer line 

Pressure sensor - product control unit 

(after HEPA filter) 
2 -0.79 

Pressure sensor - Differential pressure over 

the wet transfer line 

Pressure sensor - product control unit 

(before HEPA filter) 
2 -0.79 

Speed control - Vacuum pump 
Pressure sensor - product control unit 

(before HEPA filter) 
2 -0.98 

Speed control - Vacuum pump 
Pressure sensor - product control unit 

(after HEPA filter) 
2 -0.98 

Temperature sensor - Dryer air inlet 
Humidity sensor - Dehumidifier air 

outlet 
0 0.59 

Pressure sensor - Differential pressure over 

the wet transfer line 

Pressure sensor - Differential 

pressure over the dryer filters 
0 -0.65 

Pressure sensor - Dryer air outlet (before 

HEPA filter) 

Pressure sensor - Dryer air outlet 

(after HEPA filter) 
0 0.66 

Pressure sensor - Pressure dryer top 
Pressure sensor - Differential 

pressure over the dryer filters 
0 0.72 

Pressure sensor - Pressure dryer top Pressure sensor - Wet transfer line 0 0.73 

Pressure sensor - Differential pressure over Pressure sensor - Pressure dryer top 0 -0.87 
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Table 10 – Correlations between the measured variables (CC - correlation coefficient). 

Fixed variable 1 Lagged variables Lag CC 

the wet transfer line 

Pressure sensor - Differential pressure over 

the wet transfer line 
Pressure sensor - Wet transfer line 0 -0.89 

Speed control - Vacuum pump Pressure sensor - Pressure dryer top 1 -0.63 

Speed control - Vacuum pump 
Pressure sensor - Differential 

pressure over the wet transfer line 
1 0.76 

Speed control - Vacuum pump Pressure sensor - Wet transfer line 1 -0.84 

Pressure sensor - Differential pressure over 

the dryer filters 
Flow sensor - Dryer air 2 -0.63 

Pressure sensor - Pressure dryer top Flow sensor - Dryer air 2 -0.83 

Pressure sensor - Differential pressure over 

the wet transfer line 
Flow sensor - Dryer air 2 0.84 

Pressure sensor - Wet transfer line 
Pressure sensor - product control unit 

(after HEPA filter) 
2 0.87 

Speed control - Push/fan Flow sensor - Dryer air 3 0.52 

Pressure sensor - Wet transfer line Flow sensor - Dryer air 3 -0.93 

Speed control - Fan/blower 
Pressure sensor - Dryer air outlet 

(after HEPA filter) 
4 -0.70 

Speed control - Fan/blower 
Pressure sensor - Dryer air outlet 

(before HEPA filter) 
4 -0.84 

Speed control - Vacuum pump Flow sensor - Dryer air 4 0.89 

Speed control - Vacuum pump 
Pressure sensor - Differential 

pressure over the dryer filters 
8 -0.62 

Pressure sensor - Differential pressure over 

the dryer filters 
Speed control - Fan/blower 20 0.77 

Pressure sensor - Differential pressure over 

the dryer filters 

Pressure sensor - Dryer air outlet 

(after HEPA filter) 
25 -0.56 

Pressure sensor - Differential pressure over 

the dryer filters 

Pressure sensor - Dryer air outlet 

(before HEPA filter) 
25 -0.67 

Temperature sensor - Temperature dryer cell 3 
Temperature sensor - Temperature 

dryer cell 4 
175 0.99 

Temperature sensor - Temperature dryer cell 4 
Temperature sensor - Temperature 

dryer cell 5 
178 0.99 

Temperature sensor - Temperature dryer cell 2 
Temperature sensor - Temperature 

dryer cell 3 
180 0.99 

Temperature sensor - Temperature dryer cell 1 
Temperature sensor - Temperature 

dryer cell 2 
182 0.98 

Temperature sensor - Temperature dryer cell 5 
Temperature sensor - Temperature 

dryer cell 6 
184 0.99 

Temperature sensor - Temperature dryer cell 3 
sensor - Temperature dryer 

cell 5 
354 0.98 

Temperature sensor - Temperature dryer cell 2 Temperature sensor - Temperature 354 0.98 
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Table 10 – Correlations between the measured variables (CC - correlation coefficient). 

Fixed variable 1 Lagged variables Lag CC 

dryer cell 4 

Temperature sensor - Temperature dryer cell 1 
Temperature sensor - Temperature 

dryer cell 3 
362 0.97 

Temperature sensor - Temperature dryer cell 4 
Temperature sensor - Temperature 

dryer cell 6 
362 0.98 

Temperature sensor - Temperature dryer cell 2 
Temperature sensor - Temperature 

dryer cell 5 
533 0.98 

Temperature sensor - Temperature dryer cell 1 
sensor - Temperature dryer 

cell 4 
538 0.96 

Temperature sensor - Temperature dryer cell 3 
Temperature sensor - Temperature 

dryer cell 6 
538 0.98 

Temperature sensor - Temperature dryer cell 1 
Temperature sensor - Temperature 

dryer cell 5 
716 0.96 

Temperature sensor - Temperature dryer cell 2 
Temperature sensor - Temperature 

dryer cell 6 
718 0.97 

Temperature sensor - Temperature dryer cell 1 
Temperature sensor - Temperature 

dryer cell 6 
901 0.95 

Torque sensor - Granulator Power - Granulator drive 0 1.00 

5.4.3.2 Time dependency 

By fitting an OPLS model to the expected steady state data (excluding the data 

corresponding to startup and shut-down) from all ConsiGma units but individually for each 

run, it was possible to properly identify the time correlated variables. In each individual OPLS 

model of the different runs, one OPLS component was fit. Thus, the model had a predictive 

component and no orthogonal components. The variance in the logged data (X) captured by 

the model (R2X), the variance in the Y-data captured by the model (R2Y) and the variance 

predicted by the model according to cross-validation (Q2) are overviewed in Table 11. 

 

Table 11 – Fit of the OPLS models developed for the identification of time-related variables (# PC – 
number of principal components, R2X – variance in the X-data captured by the model; R2Y – variance 
in the Y-data captured by the model; Q2 – variance predicted by the model according to cross-
validation). 

Run # PC R2X R2Y Q2 

1 1 27.0 94.7 94.7 

2 1 23.1 92.1 92.1 

3 1 19.6 85.3 85.3 
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The OPLS scores of the predictive component versus time plot for run 1 is depicted in 

Figure 53a)). Similar plots were obtained for the OPLS models of runs 2 and 3 and are 

therefore not depicted. The loadings of the first OPLS component for all developed OPLS 

models (i.e, for runs 1, 2 and 3) are depicted on Figure 53b)). All variables contributing to the 

predictive component of time are variables that follow either an increasing or decreasing 

trend during processing. In this plot is was possible to identify two different groups of time-

related variables: (i) time-related variables that follow the same trend for the three runs and 

(ii) time-related variables which behave differently in the different runs. The temperature of 

the air at the outlet of the dehumidifier increased during time in all three runs probably due to 

the heating up of the stainless-steel cover of the dryer caused by the operation of the line. 

Despite this, there is no visible influence on the temperature of the air entering the dryer cells 

since at the inlet of the air handling unit, the air temperature is corrected back to the setpoint. 

As already reported in part I of this work, the differential pressure over the dryer filters 

increased in all runs due to the deposition of fine powder particles in the filters. In addition, 

the pressure at the air outlet of the dryer, both before and after the HEPA filter, decreases 

over time which is most probably also a consequence of material build up in the filters. On the 

other hand, the speed of the fan/blower, responsible for the control of pressure inside the 

dryer increases its value to compensate for the observed decrease of pressure at the outlet of 

the dryer air. This phenomenon, as explained before, needs attention since it can cause the 

drying step to be inefficient. Lastly, an overall trend observed in all runs is the decrease of the 

temperature at the inlet of the refrigeration liquid in the granulator. Due to the continuous 

operation, heat generated by the friction and movement of material inside the granulator 

causes an increase of the barrel temperature, which is corrected back to its setpoint by the 

temperature control unit. This compensation is achieved by filling the barrel with colder water 

which is seen in the decreasing temperature at the inlet of refrigeration liquid. The 

atmospheric pressure in the production room shifted during processing differently for the 

three runs. In run 1 it followed a decreasing trend with a maximum of 1033 and a minimum 

1024 mbar. In run 2 it also slightly decreased over time but only varied between 1026 and 

1022 mbar. In run out of c3 the pressure remained constant around an average of 1021 mbar 

(with a maximum of 1023 and minimum 1019 mbar). As a consequence, also the pressures 

at the air inlet, top and outlet of the dryer varied differently for all runs. The humidity at the air 

outlet of the dehumidifier presented different trends for all runs, since the humidity of the air 

inside the production room was different during the three runs. Humidities at the air inlet and 
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outlet of the dryer were also influenced and revealed the same trend. The temperature of the 

air exiting the dryer presented the opposite trend: when more moisture is present at the outlet 

of the dryer, its temperature lowers. 

 

Figure 53 –Time dependency - a) Scores on predictive PC1 (Run 1); b) Loadings of PC1 (Run 1 –
green; Run 2 – blue; Run 3 - red); 1 - Flow sensor - Dryer air; 2 - Flow sensor - Wet granule transfer; 3 
- Humidity sensor - Dryer air inlet; 4 - Humidity sensor - Dryer air outlet; 5 - Humidity sensor - 
Dehumidifier air outlet; 6 - Mass - Flow granulation liquid; 7 - Mass - Flow powder dosing; 8 - Power - 
Granulator drive; 9 - Humidity sensor - Dehumidifier air outlet; 10 - Temperature sensor - Dehumidifier 
air outlet; 11 - Pressure sensor - Differential pressure over the wet transfer line; 12 - Pressure sensor – 
Atmospheric; 13 - Pressure sensor - Dryer air inlet; 14- Pressure sensor - Dryer air outlet (before 
HEPA filter); 15- Pressure sensor - Dryer air outlet (after HEPA filter); 16 - Pressure sensor - Pressure 
dryer top; 17 - Pressure sensor - product control unit (after HEPA filter); 18 - Pressure sensor - product 
control unit (before HEPA filter); 19 - Speed control –Fan/blower; 20 - Speed control - Push/fan; 21 - 
Speed control - Vacuum pump; 22 - Temperature sensor - Dryer air inlet; 23 - Temperature sensor - 
Dryer air outlet; 24 - Temperature sensor - Temperature dryer cell 1; 25 -Temperature sensor - 
Temperature dryer cell 2; 26 - Temperature sensor - Temperature dryer cell 3; 27 - Temperature 
sensor - Temperature dryer cell 4; 28 - Temperature sensor - Temperature dryer cell 5, 29 - 
Temperature sensor - Temperature dryer cell 6; 30 - Temperature sensor - Air handling unit filter; 31 – 
Temperature sensor - Granulator barrel; 32 - Temperature sensor - Granulator barrel refrigeration 
liquid inlet; 33 - Torque sensor – Granulator; 34 - Pressure sensor - Differential pressure over the dryer 
filters; 35 - Pressure sensor - Wet transfer line. 
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5.4.3.3 Batch statistical process control approach 

 Dryer and product control unit – individual cell models 

Table 12 summarizes the PLS models fitted on the univariate data from the dryer and 

product control units involved in the monitoring of each individual dryer cell (Table 8; 6 cells = 

6 models).  

 

Table 12 – Fit of the BSPC PLS models developed for the monitoring of the individual dryer cells and 
product control unit (# PC – number of principal components, R2X – variance in the X-data captured by 
the model; R2Y – variance in the Y-data captured by the model; Q2 – variance predicted by the model 
according to cross-validation). 

Cell # # PC R2X R2Y Q2 

1 2 46.9 59.1 59.1 

2 2 45.1 57.3 57.3 

3 2 43.4 57.0 57.0 

4 2 42.4 61.5 61.5 

5 2 42.3 64.5 64.5 

6 2 44.7 58.4 58.4 

 

As previously described on the section Dryer and product control unit, variables from 

both dryer and product control unit variables that cannot be monitored using the regular PCA 

MSPC are included in these models. According to the loadings of PC1 (Figure 54a)) the 

temperature inside the dryer cell is the variable that mostly contributes to this PC. Loadings of 

PC2 (Figure 54b)) reveal that almost all variables included in the model (temperature inside 

the dryer cell and several pressure-related variables) contribute to this PC with the exception 

of the air flow inside the wet granule transfer line and the speed control of the push/fan.  
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Figure 54 – Dryer and product control units – individual cell models - a) Loadings of PC1;  b) Loadings 
of PC2 (cell 1 –green; cell 2 – blue; cell 3 – red; cell 4 – yellow, cell 5 – cyan, cell 6 - purple); 1 - Flow 
sensor - Dryer air; 2 - Flow sensor - Wet granule transfer; 3 -  Pressure sensor - Differential pressure 
over the wet transfer line; 4 - Pressure sensor – Atmospheric; 5 - Pressure sensor - Dryer air inlet; 6 - 
Pressure sensor - Dryer air outlet (before HEPA filter); 7- Pressure sensor - Dryer air outlet (after 
HEPA filter); 8 - Pressure sensor - Pressure dryer top; 9 - Pressure sensor - product control unit (after 
HEPA filter); 10 - Pressure sensor - product control unit (before HEPA filter); 11 - Speed control –
Fan/blower; 12 - Speed control - Push/fan; 13 - Speed control - Vacuum pump; 14 - Temperature 
sensor - Temperature dryer cell; 15 - Pressure sensor - Differential pressure over the dryer filters; 16 - 
Pressure sensor - Wet transfer line. 
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The data from each dryer cell of run 3 was projected into each individual cell model 

and scores, Hotelling’s T2 and DModX control charts were created. Figure 55a) to d) depicts 

these plots for the cell 3 model as an example. It can be observed in Figure 55a) that some of 

the projected PC1 trajectories from other cells deviate at times from the control limits. This is 

caused by the fact that even if the cells follow a similar drying temperature profile there are 

still slight differences from cell to cell. On PC2 no out-of-control moments were visible. 

Deviations from normal operation were also observed in the Hotelling’s T2 and DModX plots. 

According an average Hotelling’s T2 and DModX contribution plots of the moments outside 

the action limit (Figure 56a) and b)), the out-of-control moments are due to the pressure 

inside the wet granules transfer line being higher or lower than expected at the moments of 

the actuation of the vacuum pump. According to the manufacturer and as observed by Jurgen 

et al. [161] the differences between the drying temperature profiles from the different cells are 

small enough not to have an impact on the drying of the granules. Therefore, to simplify the 

monitoring strategy a global model containing information from all cells was also built.  

 

Figure 55 – Dryer and product control units – individual cell models - a) Predicted scores on PC1 
control chart (Red dotted line – 99% confidence interval); b) Predicted scores on PC2 control chart; 
(Red dotted line – 99% confidence interval); c) Hotelling’s T2control chart (Orange dotter line – 95% 
confidence limit, Red dotted line – 99% confidence limit); d) DModX control chart (Red dotted line – 
99% confidence limit); Data from Run 3. 
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Figure 56 – Dryer and product control units – individual cell models - a) Average contribution to the out-
of-control moments observed in the Hotelling’s control charts; b) Average contribution to the out-of-
control moments observed in the DModX control charts; 1 - Flow sensor - Dryer air; 2 - Flow sensor - 
Wet granule transfer; 3 -  Pressure sensor - Differential pressure over the wet transfer line; 4 - 
Pressure sensor – Atmospheric; 5 - Pressure sensor - Dryer air inlet; 6 - Pressure sensor - Dryer air 
outlet (before HEPA filter); 7- Pressure sensor - Dryer air outlet (after HEPA filter); 8 - Pressure sensor 
- Pressure dryer top; 9 - Pressure sensor - product control unit (after HEPA filter); 10 - Pressure sensor 
- product control unit (before HEPA filter); 11 - Speed control –Fan/blower; 12 - Speed control - 
Push/fan; 13 - Speed control - Vacuum pump; 14 - Temperature sensor - Temperature dryer cell; 15 - 
Pressure sensor - Differential pressure over the dryer filters; 16 - Pressure sensor - Wet transfer line. 

 Dryer and product control unit – global model 

A global BSPC model that can be applied for the monitoring of all cells was fitted on 

the data capturing 43.8% of the variability in the X data, 58.9% of the variability in Y and with 

a Q2 value of 58.9%. The loadings of PC1 and PC2 (Figure 57a) are identical to the loadings 

of PC1 and PC2 described for the individual cell models (see section Dryer and product 
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control unit – individual cell models). The data of the operation of the dryer cells from run 3 

was projected into this model and scores (Figures 4a and 4b), Hotelling’s T2 (Figure 4c) and 

DModX (Figure 4d)) control charts were created. Deviations from normal behavior were 

observed in the Hotelling’s T2 and DModX plots. Similar to the individual cell models, 

according to the average Hotelling’s T2 and DModX contribution plots of all out-of-control 

moments (Figure 57b) and c)) these happened mostly because of the pressure inside the wet 

granules transfer line being higher or lower than expected at the moments of the actuation of 

the vacuum pump. 

 

Figure 57 – Dryer and product control unit – global model - a) Loadings of PC1 (green) and PC2 (blue); 
- b) Average contribution to the out-of-control moments observed in the Hotelling’s control charts; c) 
Average contribution to the out-of-control moments observed in the DModX control charts; 1 - Flow 
sensor - Dryer air; 2 - Flow sensor - Wet granule transfer; 3 -  Pressure sensor - Differential pressure 
over the wet transfer line; 4 - Pressure sensor – Atmospheric; 5 - Pressure sensor - Dryer air inlet; 6 - 
Pressure sensor - Dryer air outlet (before HEPA filter); 7- Pressure sensor - Dryer air outlet (after 
HEPA filter); 8 - Pressure sensor - Pressure dryer top; 9 - Pressure sensor - product control unit (after 
HEPA filter); 10 - Pressure sensor - product control unit (before HEPA filter); 11 - Speed control –
Fan/blower; 12 - Speed control - Push/fan; 13 - Speed control - Vacuum pump; 14 - Temperature 
sensor - Temperature dryer cell; 15 - Pressure sensor - Differential pressure over the dryer filters; 16 - 
Pressure sensor - Wet transfer line. 
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Figure 58 – Dryer and product control unit – global model - a) Predicted scores on PC1 control chart 
(Red dotted line – 99% confidence interval); b) Predicted scores on PC2 control chart; (Red dotted line 
– 99% confidence interval); c) Hotelling’s T

2
 control chart (Orange dotter line – 95% confidence limit, 

Red dotted line – 99% confidence limit); DModX control chart (Red dotted line – 99% confidence limit); 
Data from Run 3. 

 Continuous granulator startup  

A BSPC model was developed to monitor the startup operation the granulator unit. 

Two PCs were fit capturing 81.2% of the variability in X and 80.8% of the variability in Y. Q2 

was 80.8%. The PC1 loadings (Figure 59) reveal that the variables contributing to the main 

source of variation are power of the granulator driver and torque, both positively correlated to 

the scores and negatively to the temperatures at the inlet of the granulator’s refrigeration 

liquid and of the granulator barrel. The PC1 scores increase during the entire startup phase. 

Power and torque increase due to the start of operation. The temperature at the granulator 

barrel spikes to 26°C at the beginning of operation. This slight increase is due to material 

build up on the barrel walls and increase of friction. The barrel temperature returns back to its 

setpoint due to the water cooling down the barrel. The PC2 scores decrease during 

processing time. The loadings of PC2 (Figure 59) reveal that the mass flow of granulation 
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liquid, the powder mass flow, the screw speed and temperature of the barrel contribute to the 

variation captured in this PC. With the start of operation, an increase is seen in the values of 

these variables. Inputting the data from run 3 on the developed BSPC model shows that this 

third run followed the same startup since the batch control charts of scores and DModX 

revealed no deviation from normal operation (Figures 5a, 5b and 5c). The Hotelling’s T2 

control charts could not be calculated since only 2 batches (run 1 and run 2) were used to 

build the two component BSPC model and therefore the critical limits could not be calculated. 

Calculation of these limits is only possible when the number of components is lower than the 

number of batches minus one.  

 

Figure 59 – Continuous granulator startup - Loadings of PC1 (green) and PC2 (blue); 1 - Mass flow - 
Granulation liquid; 2 - Mass - Flow powder dosing; 3 - Power - Granulator drive; 4 - Speed - Granulator 
screws; 5 - Temperature sensor - Granulator barrel; 6 - Temperature sensor - Granulator barrel 
refrigeration liquid inlet; 7 - Torque sensor – Granulator 
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Figure 60 – Figure 5 – Continuous granulator startup - a) Predicted scores on PC1 control chart (Green 
– average value; Red dotted line – 99% confidence interval); b) Predicted scores on PC2 control chart; 
(Green – average value; Red dotted line – 99% confidence interval); c) DModX control chart (Green – 
average value; Red dotted line – 99% confidence limit); Data from Run 3. 

 Dryer and product control unit startup period 

For the startup monitoring of the dryer unit, a BSPC model was developed using all 

data collected in each individual cell. A two-component model was fit capturing 47.4% of the 

variance in X, 78.3% of the variance in Y and with an R2 value of 78.3%. 

According to the loadings of PC1 (Figure 61), various variables contribute to this PC, 

however the differential pressure over the dryer filters and the speed of the fan/blower having 

the most important contributions. Both variables have loadings that are positively correlated 

to the scores and their scores increase during processing time. This reveals that the 

differential pressure over the filters increases after startup and that the speed of the 

fan/blower need to increase in order to maintain the pressure inside the dryer constant. As 

previously observed, the differential pressure over the filters of the dryer keeps increasing 

during the whole process time and not just during startup. The PC2 loadings (Figure 61) also 

include the differential pressure over the dryer filters and the speed of the fan/blower which 
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increases to compensate for the increase in pressure. Also, variables like the atmospheric 

pressure, the pressures at the inlet and top of the dryer and the speed of the fan/blower 

system contribute to this component. 

To test the monitoring ability of the BSPC model, the run 3 data from all cells was 

projected on the model. According to the scores, DModX and Hotelling’s T2 control plots 

(Figure 62a) to d)) some moderate outliers were observed corresponding to the pressure 

overshoot caused by the accumulation of material over the dryer filters (see above for 

explanation of this phenomenon). 

 

 

Figure 61 – Dryer and product control unit startup period; Loadings of PC1 (green) and PC2 (blue); 1 - 
Flow sensor - Dryer air; 2 - Flow sensor - Wet granule transfer; 3 -  Pressure sensor - Differential 
pressure over the wet transfer line; 4 - Pressure sensor – Atmospheric; 5 - Pressure sensor - Dryer air 
inlet; 6 - Pressure sensor - Dryer air outlet (before HEPA filter); 7- Pressure sensor - Dryer air outlet 
(after HEPA filter); 8 - Pressure sensor - Pressure dryer top; 9 - Pressure sensor - product control unit 
(after HEPA filter); 10 - Pressure sensor - product control unit (before HEPA filter); 11 - Speed control –
Fan/blower; 12 - Speed control - Push/fan; 13 - Speed control - Vacuum pump; 14 - Temperature 
sensor - Temperature dryer cell; 15 - Pressure sensor - Differential pressure over the dryer filters; 16 - 
Pressure sensor - Wet transfer line. 
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Figure 62 – Dryer and product control unit startup period - a) Predicted scores on PC1 control chart 
(Green – average value; Red dotted line – 99% confidence interval); b) Predicted scores on PC2 
control chart; (Green – average value ; Red dotted line – 99% confidence interval); c) Hotelling’s T

2
 

control chart (Green – average value; Orange dotted line – 95% confidence limit; Red dotted line – 
99% confidence limit); d) DModX control chart (Green – average value ; Red dotted line – 99% 
confidence limit); Data from Run 3 

5.4.4 Conclusion 

The correlations between pairs of variables with and without time were examined in 

order to take into account the process dynamics when developing the BSPC strategy. The 

optimal cross-correlations were found however, the lags were not implemented since it was 

not possible to find a logical manner to do so, and the original time-points for all variables 

were kept.  

An OPLS model fitted to the expected steady state data (excluding the data 

corresponding to startup and shut-down) and regress versus process time allowed to identify 

variables with a trend over process time. Three types of variables with trend were found: (i) 

time-related variables that follow the same trend for the three runs and (ii) time-related 

variables which behave differently in the different runs. These are described in depth in the 

extent of this study. 
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A PLS-based BSPC model was fitted on data from each dryer cell independently and 

also from the product control unit. The predicted batch trajectory from a cell other than the 

one used for the modelling sometimes deviates from the control limits. This occurs because 

even though cells are identical there are still slight differences in the drying temperature 

profiles from cell to cell. The differences between these profiles are considered small enough 

not to have an impact on the drying of the granules. A global model containing information 

from all cells was also built. Deviations seen in the Hotelling’s T2 and DModX plots are mostly 

due to the pressure inside the wet granules transfer line being higher or lower than expected 

at the moments of the actuation of the vacuum pump. 

PLS models for the BSPC of the different unit’s startup operation periods were 

developed. The main aim of this exercise was to obtain knowledge about the current process. 

Several variable correlations were found and are hereby described. 
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5.5 Multivariate statistical process control approach to monitor a 

continuous pharmaceutical twin-screw granulation and drying 

process5 

5.5.1 Abstract 

The present study aims at developing a multivariate statistical process control (MSPC) 

strategy for the innovative ConsiGma™-25 continuous tablet manufacturing line. Thirty-five 

logged variables encompassing twin screw high shear granulator, fluid bed dryer and a 

product control unit processes were used to monitor the process. The MSPC strategy was 

based on PCA considering data acquired under NOC for four process runs. Seven runs with 

imposed disturbances to the NOC were utilized to evaluate the model’s monitoring 

performance and the ability to detect disturbances. The impact of the imposed disturbances 

to the process to the continuity was also evaluated using Hotelling’s T2 and Q residuals 

statistics control charts. The influence of the individual process variables to the statistics was 

also assessed by analyzing contribution plots at specific time points. Results show that the 

provoked disturbances were all detected in both control charts. The imposed disturbance in 

the granulator barrel temperature was more evident to the Hotelling’s T2 statistics. All other 

deviations were observable in the Hoteling’s T2 statistics but, as they could not be explained 

by the model, were diagnosed in the Q residuals statistic. 

  

                                                
5
 This chapter has been adapted from: A.F.T. Silva, M.C. Sarraguça, M. Fonteyne, J. Vercruysse, F. De 

Leersnyder, V. Vanhoorne, N. Bostijn, M. Verstraeten, C. Vervaet, J.P. Remon, T. De Beer, J.A. Lopes, 
Multivariate statistical process control approach to monitor a continuous pharmaceutical twin-screw granulation 
and drying process, (Submission in process). 
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5.5.2 Materials and methods 

5.5.2.1 Materials  

Milled lactose monohydrate (Pharmatose™ 200M, DFE Pharma, Germany) was 

granulated with a 20% (w/w) PVP solution in the ConsiGma™-25 system. 

5.5.2.2 Continuous manufacturing line 

The experiments in question were performed in a line located at the University of Gent 

(Gent, Belgium). In this specific assembly, the wet granules are transported from the 

granulator to the top of the six-segmented fluid bed dryer by the actuation of a horizontal 

vacuum transport line. A second vacuum transport line takes the granules form the dryer to 

the product control unit. The system has been thoroughly described in section ConsiGma™-

25 continuous line (Chapter 5). During operation, the continuous line logs multiple process 

variables including user-set and open loop variables. In the first case, independent PID 

controllers keep the variables around the user-defined set points. From the logged variables, 

thirty-five were chosen to be utilized for the monitoring strategy development (Table 13). 

  

 

Table 13 – Variables logged by the ConsiGma™-25 during processing included in the PCA model. 

Variable 

number 
Name Description Units Type 

Setpoint 

value 

ConsiGma™ -25 

unit 

V1 Flow dry. air Flow sensor – dryer air m
3
/h Setpoint 360 Dryer 

V2 
Flow wet gran. 

trans. 

Flow sensor – wet 

granule transfer line 
m

3
/h Setpoint 3.6 

Wet granule 

transfer line 

(dryer) 

V3 Hum. dry. air in. 
Humidity sensor – dryer 

air inlet 
%RH Setpoint 10 Dryer 

V4 Hum. Dry. air out. 
Humidity sensor – dryer 

air outlet 
%RH Measured N/A* Dryer 

V5 
Mass flow gran. 

liq. 

Mass flow granulation 

liquid 
g/min Setpoint 58 

Liquid addition 

module 

(granulator) 

V6 
Mass flow pow. 

dos. unit 

Mass Flow – Powder 

dosing 
Kg/h Setpoint 25 

Powder dosing 

unit (granulator) 

V7 Pow. gran. drive Power – granulator drive W Measured N/A Granulator 
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Table 13 – Variables logged by the ConsiGma™-25 during processing included in the PCA model. 

Variable 

number 
Name Description Units Type 

Setpoint 

value 

ConsiGma™ -25 

unit 

V8 Press. diff. dry. fil. 

Pressure sensor – 

differential pressure over 

the dryer filters 

mbar Measured N/A Dryer 

V9 
Press. diff. dry. 

hole plate 

Pressure sensor – 

differential pressure over 

the hole plate 

mbar Measured N/A Dryer 

V10 
Press. diff. HEPA 

fil. dry. air out. 

Pressure sensor – 

differential pressure at 

the HEPA filter of the 

dryer air outlet 

mbar Measured N/A Dryer 

V11 
Press. diff. HEPA 

fil. prod. cont. unit 

Pressure sensor – 

differential pressure over 

the HEPA filter at the 

product control unit 

mbar Measured N/A 
Product Control 

Unit 

V12 

Press. diff. HEPA 

fil. wet gran. trans. 

in 

Pressure sensor – 

differential pressure over 

the HEPA filter at the wet 

transfer line inlet 

mbar Measured N/A 
Wet transfer line 

(dryer) 

V13 
Press. diff. wet 

trans. line 

Pressure sensor – 

differential pressure over 

the wet transfer line 

mbar Measured N/A 
Wet transfer line 

(dryer) 

V14 Press. dry. air in. 
Pressure sensor – dryer 

air inlet 
mbar Measured N/A Dryer 

V15 
Press. dry. air out. 

after HEPA fil. 

Pressure sensor – dryer 

air outlet after HEPA filter 
mbar Measured N/A Dryer 

V16 
Press. dry. air out. 

before HEPA fil. 

Pressure sensor – dryer 

air outlet before HEPA 

filter 

mbar Measured N/A Dryer 

V17 Press. dry. top 
Pressure sensor – dryer 

top 
mbar Measured N/A Dryer 

V18 
Press. prod. cont. 

after HEPA fil. 

Pressure sensor – 

product control unit after 

HEPA filter 

mbar Measured N/A 
Product Control 

Unit 

V19 
Press. prod. cont. 

before HEPA fil. 

Pressure sensor – 

product control unit 

before HEPA filter 

mbar Measured N/A 
Product Control 

Unit 

V20 Speed air hand. Speed control – % Measured N/A Fan/blower 
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Table 13 – Variables logged by the ConsiGma™-25 during processing included in the PCA model. 

Variable 

number 
Name Description Units Type 

Setpoint 

value 

ConsiGma™ -25 

unit 

unit fan cont. fan/blower system (dryer) 

V21 Speed gran. 
Speed – granulator 

screws 
rpm Setpoint 700 Granulator 

V22 
Speed motor pow. 

dos. unit 

Speed – motor powder 

dosing 
rpm Measured N/A 

Powder dosing 

unit (granulator) 

V23 
Temp. air hand. 

unit 

Temperature sensor – air 

handling unit 
ºC Measured N/A 

Air handling unit 

(dryer) 

V24 Temp. dry. air in. 
Temperature sensor – 

dryer air inlet 
ºC Setpoint 50 Dryer 

V25 Temp. dry. air out. 
Temperature sensor – 

dryer air outlet 
ºC Measured N/A Dryer 

V26 Temp. dry. cell 1 
Temperature sensor – 

temperature dryer cell 1 

º

C 
Measured N/A Dryer 

V27 Temp. dry. cell 2 
Temperature sensor – 

temperature dryer cell 2 
ºC Measured N/A Dryer 

V28 Temp. dry. cell 3 
sensor – temperature 

dryer cell 3 
ºC Measured N/A Dryer 

V29 Temp. dry. cell 4 
Temperature sensor – 

temperature dryer cell 4 
ºC Measured N/A Dryer 

V30 Temp. dry. cell 5 
Temperature sensor – 

temperature dryer cell 5 
ºC Measured N/A Dryer 

V31 Temp. dry. cell 6 
Temperature sensor – 

temperature dryer cell 6 
ºC Measured N/A Dryer 

V32 Temp. gran. barrel 
Temperature sensor – 

granulator barrel 
ºC Setpoint 25 Granulator 

V33 Temp. out. tcu 1 

Temperature sensor – 

outlet temperature control 

unit 

ºC Measured N/A 

Temperature 

control unit 

(Granulator) 

V34 Temp. tank tcu 1 

Temperature sensor – 

tank temperature control 

unit 

ºC Measured N/A 

Temperature 

control unit 

(Granulator) 

V35 Torque gran. 
Torque sensor – 

granulator 
N/A Measured N/A Granulator 

N/A: not applicable 
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5.5.2.3 Production runs 

Five NOC runs (Table 14) were performed by setting the user-set variables at the 

fixed values specified in Table 13. The total drying time of the granules inside a cell was set 

at 840 s (including a filling time of 180 s and a cell discharging time of 20 s). The product 

control unit emptying time was set at 30 s. The system takes 1080 s (6 x 180s) to finish the 

sequential filling of all 6 cells. For the purpose of this work, this period will be called the “fill” of 

the dryer. Each reference run has a total of three fills with an overall time of 3240 s. Data fed 

to the MSPC model require the system to be in a steady state. It was verified (data not 

shown) that for the first fill of each run, the process was still reaching the steady state. 

Therefore, for all modelling purposes, the first fill of each run was removed resulting in NOC 

runs with a total of 2160 s corresponding to two fills. Four of these runs were used for 

calibration and the one was used to test the model’s performance (see Table 14).  

To challenge the effectiveness of the monitoring strategy seven different runs 

including imposed disturbances of the NOC were performed. In each run, a different setpoint 

was changed when the dryer first cell was filled for the fourth time and changed back to the 

original value when the same cell was filled for the seventh time (Table 14). The time length 

of the disturbance (three fills) was chosen to ensure that the effect of the changes could be 

clearly identified and a new steady state could be reached. 

As explained before, the first fill of each run was removed because the system was 

not yet at steady state resulting in runs with a total of 8640 s (eight fills).  

After each run the system was cleaned. During cleaning, the granulator was 

disassembled and its components washed with water and allowed to dry until the next run. 

The dryer and product control units were thoroughly vacuum cleaned. All runs were 

performed in different days and by different operators to ensure maximum variability. 

 

Table 14 – Calibration and test runs used in the MSPC model. 

Name 
Type of 

run 
Purpose 

Length 

(fills) 
Variable changed 

Setpoint 

change 
Units 

R1 NOC Calibration 3 N/A* N/A N/A 

R2 NOC Calibration 3 N/A N/A N/A 

R3 NOC Calibration 3 N/A N/A N/A 

R4 NOC Test 3 N/A N/A N/A 

R5 NOC Calibration 3 N/A N/A N/A 
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Table 14 – Calibration and test runs used in the MSPC model. 

Name 
Type of 

run 
Purpose 

Length 

(fills) 
Variable changed 

Setpoint 

change 
Units 

F1 Non NOC Test 9 V1 Dryer air flow 360 to 400 m
3
/h 

F2 Non NOC Test 9 V32 
Granulator barrel 

temperature 
25 to 35 ºC 

F3 Non NOC Test 3 N/A Unclean system N/A N/A 

F4 Non NOC Test 9 V24 Dryer air temperature 50 to 60 ºC 

F5 Non NOC Test 9 V55 
Granulation liquid mass 

flow 
58 to 66.7 g/min 

F6 Non NOC Test 9 V6 
Powder dosing unit 

mass flow 
25 to 21.7 kg/h 

F7 Non NOC Test 9 V21 Granulator screw speed 700 to 900 rpm 

*N/A: not applicable 

5.5.2.4 Data analysis 

Process variables of the calibration runs were organized in a three-way array (run x 

variable x time) that was firstly unfolded in a two-way matrix, using the observation-wise 

unfolding method in which the variable direction is preserved [197]. After being unfolded, the 

calibration runs yielded a two-way matrix with a length of 8640 lines (2160 time points x 4 

runs) and 35 columns (variables). This matrix was used to calibrate the PCA [222] model. 

Data were scaled to unit variance prior to modeling. The number of principal components was 

chosen based on the lowest cross-validation error.  

Hotelling’s T2 and Q residuals control charts were used to monitor the process runs. 

Unusually high Hotelling’s T2 (above the 95% confidence level) reveal differences which can 

be explained by the model. On the other hand, the Q residuals estimates the distance to 

model and therefore highlights differences that cannot be explained by the modelled 

components. It also important to identify the individual variables causing out-of-control signals 

in both Hotelling’s T2 and Q residuals statistics. For that purpose, contribution plots were 

generated and examined [82, 223, 224]. Several studies show that the relative size of the 

contributions relatively to the NOC batches should be examined instead of the absolute size 

of the contributions [82, 225]. Some authors used bootstrap as a method to determine 

confidence limits to contribution plots [225, 226].  
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In this work, in order to determine confidence limits, the variable contributions at each 

time point, for the calibration runs, were average and its standard deviation calculated. The 

confidence limit was set as twice the standard deviation.  

Data analysis was performed with Matlab version 8.3 (Mathworks, Natic, MA, WA, 

USA) and the PLS Toolbox version 7.5 (Eigenvector Research Inc., Wenatchee, WA, USA). 

5.5.3 Results and discussion 

A PCA model with seven PC’s encompassing 66.3% of variance was obtained. Each 

of the eight test runs (the NOC run and the seven runs with imposed disturbances) were 

projected onto the model and the Hotelling’s T2 and Q residuals statistics were calculated. 

The equations to calculate these metrics can be found in section Multivariate control charts 

(Chapter 2). Throughout the discussion, the variable number is included after the variable 

name to help results interpretation. A detailed analysis is given for each test run. 

5.5.3.1 Run R4 (NOC) 

As expected, Hoteling’s T2 values for the NOC run R4 are mostly within the control 

limits (Figure 63). In accordance to what happens for the calibration runs, a few values are 

outside the control limits, after which normal operation is promptly restored without any action 

being necessary. In the Q residuals control chart (Figure 63) the same trend is also observed. 
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Figure 63 – Hotelling’s T
2
 (up) and Q residuals (down) control charts obtained by projecting NOC run 

R4 in the developed PCA model. 

5.5.3.2 Runs with imposed disturbances 

 Run F1 (dryer air flow)  

For run F1 the provoked changed was the increase of the dryer air flow (V1) from 360 

to 400 m3/h. The provoked change can be seen in both Hotelling’s T2 (Figure 64) and Q 

residuals (Figure 65) control charts with an increase and posterior decrease of the values of 

both statistics. A Hotelling’s T2 contribution plot versus process time for this period was 

generated (Figure 66) in order to clarify the variables contributing to the change. The air flow 

increase lead to a decrease of the humidity at the dryer outlet (V4) as did pressures at the 

outlet of the dryer before and after the HEPA filter (V15 and V16). On the contrary, differential 

pressure over the dryer filters (V8) and speed of the fan/blower (V20) increased in order to 

maintain the pressure in the dryer constant. 

The Q residuals contribution plot (Figure 69) shows that the dryer air flow was the 

variable responsible for the provoked changed. Consequently, most of the measured air 

flows, pressures, temperatures, humidities were impacted. 
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A second change can be seen around 7000 s in the Hotelling’s T2 and Q residual 

control charts. The Hotelling’s T2 contributions during this period (7000 – 7600s) (Figure 67) 

show a decrease in the temperature of the granulator barrel (V32), power of the granulator 

drive (V7) and torque (V35). These variables were probably increased due to an increase of 

the friction of the material inside the granulator with the granulator walls. The cause of this 

phenomenon is unknown. The same information can be retrieved form the variables 

contribution plot for the Q residuals (Figure 68).  

Another significant point if the fact that the Hotelling’s T2 chart shows deviations from 

the beginning of the process. This is not expected since the process is nominal for the first 

three fills. A contribution plot for the Hotelling’s T2 at time point 2000 s (Figure 66) shows 

which variables are responsible for this apparent deviation. Humidity at the dryer inlet and 

outlet (V3 and V4) are lower which is possibly a consequence of differences in the humidity of 

the production room incoming air. The differential pressure over the dryer filters (V8) and the 

speed of the fan/blower system (V20) responsible for the regulation of the dryer internal 

pressure are also increased in comparison with the calibration runs. Previous studies have 

shown that the differential pressure in the dryer filters (V8) generally increases over time due 

to gradual deposition of fine powder particles in the filters [227]. If the pressure is already high 

from the start, this can be an indication that filters need to be cleaned as it can lead to an 

ineffective drying. 
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Figure 64 – Hotelling’s T
2
 control charts obtained projecting test runs in the developed PCA model. 

 

 

 

 

 

 

 

 

 

 



 

Process analytical technology for batch and continuous pharmaceutical processes’ supervision 

171 

  

 

 

 

Figure 65 – Q residuals control charts obtained projecting test runs in the developed PCA model. 
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Figure 66 – Run F1 – variables contributions for the Hotelling’s T
2
 statistic for time: a) between 2000 

and 2600 s, b) between 5200 and 5800 s, c) 2000 and 2600 s, d) 5200 and 5800 s. 
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Figure 67 – Run F1 – variables contribution for Hotelling’s T
2
 statistic for time: a) between 7000 and 

7600 s, b) 7000 and 7600 s. ´ 
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Figure 68 – Run F1 – variables contribution for Q residuals statistic for time: a) between 7000 and 
7500 s, b) 7000 and 7500 s. 
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Figure 69 – Run F1 – variables contributions for the Q residuals statistic for time: a) between 2000 and 
2600 s, b) between 5200 and 5700 s, c) 2000 and 2600 s, d) 5200 and 5700 s. 

 Run F2 (granulator barrel temperature) 

In this run, the granulator barrel temperature (V32) was changed between 25 ºC to 

35ºC. This disturbance lead to a change in the Hotelling’s T2 (Figure 64) and Q residuals 

(Figure 65) statistics. Contribution plots for the Hotelling’s T2 were built (Figure 70) revealing 

that the temperatures at the control unit outlet (V33) and tank (V34) are the main variables 

contributing for the deviation. With the increase of the temperature setpoint the water in the 

temperature control unit is heated in order to increase the temperature of the barrel causing 

the deviations from normal operation. Contribution plots for the Q residuals (Figure 71) shows 

contributions from variables associated with the granulator operation (V5, V32, V33 and V34) 

and also with the temperature inside the dryer cells (V27, V29, V30 and V31). The control 
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chart of the Q residuals also shows clearly that the process is, from the start, different from 

the calibration runs (Figure 65). The main variables contributing to this difference are the 

humidities at the dryer inlet and outlet (V3 and V4) are lower when compared to the 

calibration runs (Figure 71). Variations in the air humidity of the production room can be a 

possible explanation for these differences captured in the Q residuals statistics.  

Another essential fact was that a closer inspection of the granulator barrel 

temperature (V32) showed that, despite the setpoint being set at 25°C, the logged average 

temperature varied around 30°C. When the setpoint was changed to 35°C, temperature 

increased to 37°C. This occurs because the granulator barrel temperature is controlled by a 

temperature control unit, where the medium that enters the barrel (water) is cooled down or 

heated to the setpoint value in order to change the temperature of the barrel itself. However, 

there is no feedback control implemented toward the temperature control. 

 

Figure 70 – Run F2 - variables contributions for the Hotelling’s T
2
 statistic for time: a) between 2000 

and 3600 s, b) between 5200 and 6600 s, c) 2000 and 3600 s, d) 5200 and 6600 s. 
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Figure 71 – Run F2 - variables contributions for the Q residuals statistic for time: a) between 2000 and 
3600 s, b) between 5200 and 6800 s, c) 2000 and 3600 s, d) 5200 and 6800 s. 

 Run F3 (unclean system) 

In this run, there was not a provoked disturbance, the difference between this run and 

the NOC runs is that the system was no cleaned after the previous run. 

Hoteling’s T2 values for run F3 are within the control limits for the most of the process 

(Figure 74) and the few values outside the control limits thorough the process become within 

control without any action being taken. Q residuals control chart (Figure 74) also shows the 

same trend. 
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Figure 72 – Hotelling’s T
2
 (up) and Q residuals (down) control charts obtained projecting test run F3 in 

the developed PCA model. 

 Run F4 (temperature dryer air) 

The temperature of the air inside the dryer was changed between 50 ºC and 60 ºC. 

Both Hotelling’s T2 (Figure 64) and Q residuals (Figure 65) statistics reflect the provoked 

changed. The contribution plots for the Hotelling’s T2 (Figure 73) shows a large contribution 

from multiple variables related to the dryer and product control units (temperatures, 

humidities, air flow, pressures). The contribution plots for the Q residuals (Figure 74) indicate 

that the main variable contributing to the change is the setpoint variable (V24).  

After the setpoint changed to the reference value the Hotelling’s T2 statistics did not 

return to the initial values (Figure 64). The variables that contribute to this fact are mainly the 

temperature of the granulator barrel (V32) torque (V35) and power of the granulator drive 

(V7) (Figure 73). The reason is probably due to an increase of the friction of material in the 

granulator walls. 
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Figure 73 – Run F4 - variables contributions for the Hotelling’s T
2
 statistic for time: a) between 2000 

and 2600 s, b) between 5200 and 5800 s, c) 2000 and 2600 s, d) 5200 and 5800 s. 
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Figure 74 – Run F4 - variables contributions for the Q residuals statistic for time: a) between 2100 and 
2600 s, b) between 5200 and 5800 s, c) 2100 and 2600 s, d) 5200 and 5800 s. 

 Run F5 (granulation liquid mass flow)  

Another setpoint changed was the granulation liquid mass flow (V5) from 58 to 66.7 

g/min. As expected both Hotelling’s T2 (Figure 64) and Q residuals statistics reveal this 

change (Figure 65).  

In the variable contribution plots (Figure 65) the variables that contribute to the 

change in the Hotelling’s T2 values are mainly the pressures in the HEPA filters (V18 and 

V19) and the temperatures of the granulator temperature control unit (V33 and V34). 

The Q residuals contribution plots (Figure 76) show that the mass flow of the 

granulation liquid (V5) was deviating from normal operation.  
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In the beginning of the process both statistics show an abnormal behavior (Figure 64 

and Figure 65). The variables that contribute to this behavior are mainly the power of the 

granulator drive (V7), temperature of the granulator barrel (V32) and torque (V35) (Figure 77). 

As explained before, this can be due to the friction between material and granulator wall. At 

the end, the process is still out-of-control according to the Q residuals (Figure 65). A 

contribution plot at time point 5600s (Figure 76) shows that several pressures, temperatures 

and humidites contribute to the deviation from the calibration runs’ behavior. The granulator 

drive powder (V7), granulator barrel temperature (V32) and torque (V35) are also visibly out-

of-control.  

 

Figure 75 – Run F5 - variables contributions for the Hotelling’s T
2
 statistic for time: a) between 1800 

and 2600 s, b) between 5200 and 5600 s, c) 1800 and 2600 s, d) 5200 and 5600 s  

.
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Figure 76 – Run F5 - variables contributions for Q residuals statistic for time: a) between 2000 and 
2600 s, b) between 5200 and 5600 s, c) 2000 and 2600s, d) 5200 and 5600s. 
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Figure 77 – Run F5 – variables contribution for Hotelling’s T
2
 statistic for time: a) between 1 s and 

1350 s, b) 1 s, c) 400s, d) 1200s, e) 1350s. 

 Run F6 (powder mass flow) 

For run F6 the powder dosing unit mass flow (V6) was changed between 25 to 

21.7 kg/h. The Hotelling’s T2 (Figure 64) and Q residuals (Figure 65) are affected by the 

change in the setpoint. The plots of the variable contributions for this period reveals that 

multiple variables were contributing to this increase of the Hotelling’s T2 values (Figure 

78). The contribution plots for the Q residuals over the time of the provoked changed 

(Figure 79) show that the variable responsible is, as expected, the powder dosing unit 

mass flow (V6).  
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Figure 78. Run F6 - variables contributions for the Hotelling’s T
2
 statistic for time: a) between 2000 

and 2600 s, b) between 5200 and 5600 s, c) 2000 and 2600 s, d) 5200 and 5600 s. 
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Figure 79. Run F6 - variables contributions for the Q residuals statistic for time: a) between 2000 
and 2600 s, b) between 5200 and 6000 s, c) 2000 and 2600s, d) 5200 and 6000s. 

 Run F7 (granulator screws’ speed) 

The final setpoint changed was the granulator screws speed (V21) that was altered 

between 700 and 900 rpm. Again, both Hotelling’s T2 (Figure 64) and Q residuals (Figure 

65) statistics were affected by the provoked change. Contribution plots show that several 

variables related with the granulator (V7, V32, V33 and V35) contribute to the change in 

the Hotelling’s T2 values as well as pressures at the outlet of the dryer before and after the 

HEPA filter (V15, and V16) (Figure 80). The variable that contribute to the change is the Q 

residuals values was the setpoint variable (V21) (Figure 81). 
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Figure 80 – Run F7 - variables contributions for the Hotelling’s T
2
 statistic for time: a) between 2000 

and 2600 s, b) between 5200 and 5600 s, c) 2000 and 2600 s, d) 5200 and 5600 s. 
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Figure 81 – Run F7 - variables contributions for the Q residuals statistic for time: a) between 2000 
and 2600 s, b) between 5200 and 5600 s, c) 2000 and 2600 s, d) 5200 and 5600 s. 

5.5.4 Conclusions 

The imposed disturbance in the dryer air flow (F1) was the most difficult root cause 

to diagnose based on the variables’ contributions since it affected many pressures, 

temperatures, humidities and flows in both dryer and product control units. The imposed 

disturbance of the temperature of the granulator (F2) was more visibly captured in the 

Hotelling’s T2 chart. All other imposed disturbances from normal operation (temperature of 

the dryer air (F4), mass flow of the granulation liquid (F5), mass flow in the powder dosing 

unit (F6) and speed of the granulator screws (F7) could not be explained by the model 

and thus were more clearly captured in the Q residuals statistic, as expected. Several 

runs deviated from normal operation from the start of operation (even though they were all 

running at the NOC setpoints from the start), mainly due to differences in variables related 

to air flow, temperatures, humidities and pressures. In most cases, after the correction of 

the deviation, by setting the variable back to the setpoint, the process was returned closer 
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to the initial steady state of operation but, sometimes there are clear differences between 

the initial and final steady states. Other important process phenomena were identified 

such as the deposition of powder over the dryer filters over time and increases in the 

temperature of the granulator barrel, torque and power of the granulator drive (F1, F4 and 

F5). Not cleaning the system before a new run showed no significant impact (F3).  

A MSPC strategy based on PCA was successfully developed as the model 

successfully captured the continuous manufacturing line’s operating behavior. All 

deviations were usefully detected and contribution plots were insightful when assigning a 

possible root cause. 
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6.1 Broader international context and relevance 

In 2002 the FDA announced the PAT initiative, shortly followed up by the 

publication of a PAT guidance in September, 2004 [9]. Prior to publishing the guideline, 

the FDA conducted independent research and also worked together with companies such 

as Pfizer and Novartis, and academic institutions like Duquesne University Centre for 

Pharmaceutical Technology (DCPT), the Centre for Pharmaceutical Processing Research 

(CPPR) at Purdue University, and Engineering Research Centre for Structured Organic 

Composites (C–SOC) at Rutgers. This was done to ensure that science and technological 

concepts were incorporated into policy making, training and regulatory aspects in the 

implementation of PAT in the pharmaceutical industry. This initiated a change in the 

pharmaceutical industry in the direction of a risk and science-based approach and 

contributed in delivering the current Good Manufacturing Practices approach [26]. They 

became part of “a regulatory framework that will encourage the voluntary development 

and implementation of innovative approaches in pharmaceutical development, 

manufacturing, and quality assurance” [26]. P PAT is also a methodological 

framework sitting within a cadre of concepts that include, process understanding, QbD, 

risk-based regulatory approaches, CPPs and CQAs, design space, MSPC, process 

control, real-time release testing (RTRT) and continuous improvement. PAT concepts 

started being used to monitor and control processes, warranting process understanding, 

reducing the impact of raw materials and process variability in the final product quality. 

  Chapter 6

 

Broader international context, relevance 

and future perspectives 
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Product quality started being built-in instead of tested. PAT is presently a hot topic 

principally in the pharmaceutical and fine chemical industries and it will remain as such in 

the coming years.  

The PAT initiative has been since supported by the EMA [22] that set up a PAT 

team in November 2003 to support the activities in the European Union. In 2006, the EMA 

PAT team published a reflection on chemical, pharmaceutical and biological information to 

be included in PAT implementations. This document that highlighted specific points on 

manufacturing process development and control of critical steps, intermediates, excipients 

and drug product. Furthermore, risk management, DoE, data acquisition and establishing 

a design space based on a chemometric approach are also addressed, among others 

[228].  

The Japanese Ministry of Health, Labor, and Welfare, the ICH guidelines [23, 24] 

and the STM International Technical Committee E55 have also been supportive of PAT. 

The FDA PAT initiative itself has also grown since and now involves organizations and 

consortia from different parts of the globe that support the interpretation and delivery of 

PAT to real processes [229]: 

 ASTM International Committee E55 (founded in 2003) – focuses on 

standardizing nomenclature, definition of terms, recommending practices, 

guides, test methods, specifications and performance standards for the 

manufacture of pharmaceutical products. Standards from E55 is published in 

the Annual Book of ASTM Standards, Volume 13.01. 

 Center for Process Analytical Chemistry (CPAC, founded in 1984) – 

consortium formed at the University of Washington which includes of members 

from industry, U.S.-based laboratories and government agencies. It has been 

involved on the development of novel measurement approaches, endorsing 

research, communications and partnership in areas related to PAT and 

process control. 

 Centre for Process Analysis and Control Technology (CPACT, founded in 

1997) – currently includes seven universities and eighteen companies in the 

UK. Pursues at enabling discussion between chemical and process engineers, 

analytical chemists, chemometricians, control systems engineers, etc. from 

both academia and industry to produce solutions to common problems in 

process monitoring and control. 

 International Society of Automation (ISA, founded in 1945) – aims at setting 

global standards for automation via certification, education, publication, 

developing standards and hosting conferences and exhibitions. Currently has 
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more than 4000 members, and has published over 150 standards for 

automation and control systems. 

 International Society of Pharmaceutical Engineering (ISPE, founded in 1980) – 

is the world’s largest not-for-profit society in pharmaceutical science and 

manufacturing. They educate and advance pharmaceutical industry and 

professionals. Has over 25000 members among experts, technologists, 

regulators, consultants and students in 90 countries. 

 National Institute for Pharmaceutical Technology and Education (NIPTE) – not-

for-profit organization formed buy ten academic members from North America. 

Together with the U.S. FDA funds research projects related to implementation 

of QbD and produces roadmaps for research and pharmaceutical technology 

education. 

 The ICH of Technical Requirements for Registration of Pharmaceuticals for 

Human Use – collaboration between worldwide authorities and pharmaceutical 

industrial experts from Europe, Japan and the United States. Aims at 

international harmonization through discussions on scientific and technical 

aspects of new medicinal product registration.  

In addition to the presented consortia, pharmaceutical companies worldwide have 

also independently allocated resources in the effort to the inclusion of the PAT concept in 

their daily activities [166, 230-232]. 

The value applying real-time monitoring strategies specifically in the commercial 

manufacture of drug substances has been a topic of great discussion within companies 

and also in various industry consortia. A superior process understanding leads to an 

improved manufacturing. While the savings will depend on the company a PAT program 

can result in major savings in four key areas: reduced cost of quality, reduced capital 

investment, reduced inventory, and increased speed to market [233].  

While there is strong value in the use of PAT concepts in the pharmaceutical 

industry, cost of replacing traditional off-line analyses with real-time monitoring is less 

apparent, while the pharmaceutical industry still relies mainly on a batch manufacturing 

model with few opportunities for feedback control. The multipurpose manufacturing plants 

that produce limited batches of a given product make the cost-benefit proposition less 

captivating and suffering a greater risk from a technical implementation and regulatory 

acceptance perspective [234]. 

However, the pharmaceutical industry worldwide is now evolving from an industry 

that relies on batch processing to a fully-integrated continuous processing model [20-24]. 

PAT tools are an essential part of integrated continuous process. Without PAT to provide 
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process and product knowledge, RTRT would not be possible and this would significantly 

hinder the multiple advantages of producing continuously. Continuous manufacturing 

requires an in-depth process knowledge and also new technologies and equipment’s plus 

a well-defined control strategy. To drive the implementation of the continuous 

manufacturing model and enable scientific discussion several industries and equipment 

manufacturers have come together in a global effort by forming several consortia [19]: 

 Blue Sky vision project – a 65-million-dollar collaboration between Novartis 

and the Massachusetts Institute of Technology (MIT). It supports the 

development of a truly continuous manufacturing line from the primary 

manufacturing stage and as such, involves the development novel new 

synthesis approaches and technologies. 

 Britest – a membership-based consortium including both pharmaceutical 

companies such as Pfizer, Hovione, Abbvie and Astra Zeneca and 

universities (University of Nottingham, Newcastle University, Purdue 

University, University of Limerick). Their main focus is to develop ground-

breaking approaches to manufacturing and process design. 

 Center of Structured Organic Particulate Systems (C-SOPS, 2006) – 

formed by academic partners (Rutgers University, Purdue University, New 

Jersey Institute of Technology and University of Puerto Rico) and funded 

by the National Science Foundation, about fourty industrial member 

companies and several equipment manufacturers. They focus mainly on 

three key areas: manufacturing science, composite synthesis and 

characterization and functionalization.  

 European Consortium for Continuous Pharmaceutical Manufacturing – a 

partnership of the Research Centre Pharmaceutical Engineering (RCPE) 

(Graz, Austria) with several industrial partners such as AstraZeneca (UK), 

Automatic Pelletizing Systems, Bayer Health Care (Germany), GEA 

Pharma Systems (Belgium), Siemens (Austria), UCB Pharma (Belgium) 

and four academic partners (Graz University of Technology, University of 

Eastern Finland, Heinrich Heine University Düsseldorf, Ghent University). 

The main aim of this consortium focuses is the research, development and 

implementation of continuous manufacturing strategies for solid oral 

dosage forms. 

 L. B. Böhle Technology Center – association between equipment 

manufacturers (Korsch, Gericke and Böhle), companies specialized in PAT 

equipment and control strategies (Kaiser Optical Systems, Kraemer 



 

Process analytical technology for batch and continuous pharmaceutical processes’ supervision 

193 

  

Elektronik and Sentronic) and academy (Heinrich Heine University 

Düsseldorf, RWTH Aachen University and RCPE Graz) focusing on the 

development and implementation of a modular production line for 

continuous manufacturing. 

Continuous manufacturing is the future of the pharmaceutical industry which is 

advancing toward this simpler, faster, more efficient, less expensive, and more reliable 

production model. Moving from batch to continuous manufacturing improves final product 

quality, generates more flexibility in terms of product throughput, reduces times of 

processing and requires a lower capital investment. 

6.2 Future perspectives 

The work developed in this thesis open perspectives of future work on the use of 

PAT concepts and tools to supervise batch and continuous processes in the 

pharmaceutical industry.  

Particle size is a paramount CQA in several pharmaceutical processes. In this 

dissertation, several in-process techniques were studied as potential PAT tools for particle 

size determination and compared to well-known, widespread, off-line reference methods. 

In this work, only nearly-spherical or spherical particles were analyzed. The effect of 

particle shape on the estimation of particle size distribution is of great interest and should 

be addressed in future. Ultimately, a future aim is to replace off-line techniques by these 

novel technologies during the process, for monitoring and/or control purposes with the 

objective of simultaneously improving product quality, and reducing manufacturing costs.  

In-process monitoring of cocrystallization CQAs such as particle size and 

crystallinity can be key for ensuring that a cocrystal of desired quality is obtained. This 

dissertation includes the first comparison between PLS and OPLS for the monitoring of a 

batch co-crystallization process, using NIR spectroscopy. Future studies can include the 

implementation of the previously assessed on-line techniques, to obtain particle size 

information as well. This work opens up the possibility to further assess the potential of 

the still unexplored OPLS-based multivariate batch statistical process control to other 

cocrystallization processes as well as to other types of batch processes.  

The ConsiGma™-25 continuous manufacturing line based on twin-screw 

granulation and fluid bed drying was described in this dissertation. An in-depth knowledge 

was acquired about the granulation by using in-process measurements made by 

univariate sensors implemented in the line. MSPC and BSPC concepts were successfully 

applied to this data. The next step is to link the MSPC model to raw material properties 
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and CQAs (e.g., particle size, bulk density, porosity, moisture content, etc.), establishing 

the link with product quality, and opening up the possibility of the implementation of 

control strategies to obtain product of desirable quality. Ultimately, the aim is to achieve a 

real-time release. Acceptable procedures for handling deviations including the removal of 

non-conforming material from the process stream must be investigated. 

To make the adoption of PAT and QbD a reality, and turn continuous 

manufacturing into the industry standard, there are still aspects that need to be overcome 

in the future. The concern over delays on regulatory approval or misuse of data from PAT 

leads companies to use PAT methods in parallel with conventional methods for process 

insight, and control. This leads to duplication and inefficiency, spreading a sentiment of 

mistrust toward PAT and QbD. A systematic approach to education and professional 

development is required in order to make scientists, engineers, academics, regulators and 

suppliers familiar with the concepts and science supporting the PAT/QbD paradigm. In the 

latest years, several dedicated QbD/PAT programs have been introduced in Europe, to fill 

the gap of the undergraduate courses which lack specific knowledge regarding 

pharmaceutical manufacture and product design. Today, several universities across 

Europe provide study programs of different lengths where QbD and PAT are taught [235]. 

As the pharmaceutical industry and regulatory agencies gain more experience with PAT, 

QbD and continuous manufacturing, several regulatory aspects will need to adjusted to 

minimize the gap between principles and reality. To accomplish this, better 

communication channels between scientists, regulators and manufacturers is necessary. 

In the future, investment in PAT equipment and innovative sensors development is also of 

great importance. 
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PAT tools for determining particle size in-line (Spatial Filtering Velocimetry, 

Focused Beam Reflectance Measurements, Photometric Stereo Imaging and the 

Eyecon™ technology) were compared with well-known and widespread off-line 

methodologies (sieve analysis and laser diffraction). Significant dissimilarities were found 

and explained according to previous knowledge about the assessed techniques and used 

instrumentation. Presenting the materials in an appropriate concentration was found 

important for some of the techniques (e.g. SFV, PSI); an accurate sampling technique 

was also one of the impacting factor on the obtained results (e.g. SFV, PSI, Eyecon™).  

PAT tools based on the application of multivariate data analysis to data coming 

from multivariate (NIR spectroscopy) and univariate sensors (pressures, temperatures, 

humidity, etc.) were utilized to extract knowledge from batch and continuous processes. 

Moreover, the use of multivariate statistical process control concepts allowed the 

detection and diagnosis of disturbances imposed to the processes. OPLS and PLS-based 

BSPC methods were found suitable for the supervision of a co-crystallization process, 

monitored on-line, with near infrared spectroscopy. OPLS resulted in a better Hoteling’s T2 

statistic calculation that permitted an improved detection of process disturbances. The 

developed approaches were not perfect since in the Hotelling’s T2 control charts some 

false positives and negatives were found. An in-depth knowledge was obtained about a 

granulation and drying process, performed on a ConsiGma™-25 continuous 

manufacturing line. Three manufacturing phases were identified: a startup-phased, a 

steady state phase and a shutdown phased. Several process phenomena such as the 

deposition of fines on the dryer filters and the material accumulation over the granulator 

barrel walls during startup could be extracted form the univariate data. Latent variable 

  Chapter 7
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models such as PCA, PLS and their extensions were used for the purpose of developing 

MSPC or BSPC strategies for monitoring the different units. Furthermore, a PCA-based 

MSPC approach for a continuous manufacturing line allowed to correctly detect and 

diagnose disturbances in the process. 

Overall, this thesis presents several tools, which are meant to facilitate the 

introduction of PAT in the pharmaceutical industry for batch process monitoring, and as an 

essential part of a fully-integrated continuous manufacturing process.  
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