
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Mining Web Usage to Generate
Regression GUI Tests Automatically

Marta Inês Macedo Vasconcelos

Mestrado em Engenharia de Software

Supervisor: Ana Cristina Ramada Paiva

Second Supervisor: André Monteiro de Oliveira Restivo

July 19, 2019

Mining Web Usage to Generate Regression GUI Tests
Automatically

Marta Inês Macedo Vasconcelos

Mestrado em Engenharia de Software

July 19, 2019

Abstract

Software systems tend to exceed expectations regarding their lifespan. During their time, evolution
and maintenance might be needed, and regression testing must be performed to ensure behaviour
is preserved. Gathering information from execution traces, when a software is in operation, may
be useful in several contexts. In particular, execution traces may be used as a source of data for
regression test case generation. However, selecting a subset of such traces that is representative and
useful to detect problems when implementing changes may be a challenge. This paper presents an
approach where user interactions on a website are automatically captured and analyzed to generate
a test suite that could later be applied in regression testing. It starts by capturing usage data. The
usage data obtained does not include information about the user or any input data to respect current
data protection legislation. Then, the collected sessions are analyzed according to defined criteria
in order to choose the subset of test cases that match the testing purpose of the application. At
the end of the process, automated test scripts are generated. Finally, this paper presents a case
study on a real website and some metrics that evaluate the quality of the generated test suite. The
coverage of the application is also analyzed according to different metrics.

Keywords: regression testing, GUI testing, test case generation, software test automation, soft-
ware testing

i

ii

Resumo

A manutenção e a evolução de um sistema de software é essencial durante o seu tempo de vida.
Para que as suas funcionalidades continuem a ser asseguradas, mesmo com alterações no producto,
os testes de regressão desempenham um papel essencial. Recolher informação de utilização real
do software pode ser útil em contextos diversos, em particular, no contexto de testes de regressão.
A informação sobre a utilização pode ser usada como base para gerar testes de regressão a partir
desses dados. No entanto, pode ser desafiante saber quais os subconjuntos de dados que são impor-
tantes para testar e quais os que são representativos para detectar falhas no sistema. Este trabalho
propõe uma abordagem que recolhe dados reais a partir das interações feitas pelos utilizadores do
website e as analisa de forma a gerar casos de testes para serem usados como testes de regressão.
O processo inicia com a recolha de dados. Os dados recolhidos não contêm informação sensível
sobre o utilizador nem dados introduzidos pelo mesmo, de forma a respeitar as atuais leis de pro-
teção de dados. Depois de recolhidas as sessões e respectiva informação, estas são analisadas de
acordo com alguns filtros e critérios, para tentar encontrar o conjunto de testes que mais se adequa
ao software em causa. O processo culmina na geração de testes automáticos. Para concluir, é apre-
sentado um caso de estudo, baseado num website real. A qualidade dos testes gerados é analisada
segundo diversos factores, utilizando diferentes métricas para avaliar a cobertura da aplicação.

Keywords: Testes de regressão, Testes de interface gráfica, Geração de casos de teste, testes
automáticos de software, testes de software

iii

iv

Acknowledgements

Firstly, I would like to thank my parents, for always supporting and believing in me. To my father,
from whom I inherited the will to make so many things (from all the rest), thanks for showing me
that 24h a day is enough to make more than most of the people do. To my mother, who always
shows me a solution for everything, and who taught me that the most important thing is to give my
best and to be happy. I’m sorry for all the weekends that I didn’t come home. Big thanks, as big
as my morning bad humour.

Thanks to all my friends for the continuous support in every moment of this journey: since the
uncertain beginning to the busy ending. To my master’s colleagues for the friendship during these
two years. To Critical Software, and especially to my team, for the flexibility that made easier to
conciliate everything.

Last but not least, I would like to thank my supervisor, Ana Paiva and second supervisor, André
Restivo for the availability, commitment and pragmatism. Your continuous support was crucial to
the success of this work. Thanks for every lunchtime you spent on meetings with me.

Marta Vasconcelos

v

vi

“It’s what you do in the dark that puts you in the light.
Rule yourself.”

Under Armour Commercial (2016)

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation and Objectives . 2
1.3 Problem and Research Question . 3
1.4 Structure of the Dissertation . 4

2 State of the Art 5
2.1 Automated GUI Testing . 5

2.1.1 Random Testing . 5
2.1.2 Capture and Replay . 7
2.1.3 Scripting . 7
2.1.4 Model-based Testing . 8

2.2 Usage Information . 11
2.3 Regression Testing . 12

2.3.1 Test Case Generation based on Usage Information 13
2.3.2 Test Case Prioritization . 14
2.3.3 Test Case Execution . 16

2.4 Summary . 16

3 Proposed Approach 19
3.1 Proposed Solution . 19
3.2 Implementation . 19

3.2.1 Data collection . 19
3.2.2 Data extract analysis . 24
3.2.3 Test Cases Generation . 34
3.2.4 Technologies . 36

4 Validation and Results 39
4.1 Case Study . 39
4.2 Interactions . 39
4.3 Elements . 40
4.4 Test Suite Reduction . 43

4.4.1 Path ID . 43
4.4.2 URLs . 48

4.5 Summary . 53

5 Conclusions and Future Work 55

References 59

ix

x CONTENTS

A MARTT - UI 63

B Test Case Example 67

C Installation Manual 71
C.1 Server . 71
C.2 Database . 71

C.2.1 Locally . 71
C.2.2 Server . 72

C.3 Collecting Data . 73
C.3.1 Script: client-side . 73
C.3.2 API: Save data . 73

C.4 Data Analysis . 73
C.4.1 Data Analysis UI . 73
C.4.2 API: Retrieve data . 74

List of Figures

3.1 Components diagram of the proposed solution. 20
3.2 Sequence diagram of the proposed solution. 21
3.3 Snapshot of the Neo4j browser. 22
3.4 UI application to analyse the previously collected data. 25

4.1 Relationship between the percentage of URLs order by most visited sessions and
the number of collected interactions . 40

4.2 Relationship between the 1% most visited URLs subset and the percentage of
interactive tested elements . 43

4.3 Relationship between the percentage of the total tests ordered by most common
sessions and the number of total covered Path IDs 44

4.4 Relationship between the percentage of the total tests ordered by most common
sessions and the percentage of total covered Path IDs 44

4.5 Relationship between the percentage of the total tests ordered by Diverse Path ID
and the number of total covered Path IDs . 45

4.6 Relationship between the percentage of the total tests ordered by Diverse Path ID
and the percentage of covered Path IDs . 45

4.7 Relationship between the percentage of the selected tests ordered by Diverse Path
ID and the percentage of covered Path IDs . 46

4.8 Relationship between the percentage of tests randomly chosen and the number of
covered Path IDs . 47

4.9 Relationship between the percentage of tests randomly chosen and the percentage
of covered Path IDs . 47

4.10 Relationship between the percentage of selected tests randomly chosen and the
percentage of covered Path IDs . 47

4.11 Relationship between the percentage of total tests order by most common session
and the number of covered URLs . 49

4.12 Relationship between the percentage of total tests order by most common session
and the percentage of covered URLs . 50

4.13 Relationship between the percentage of total tests ordered by Diverse URLs and
the number of total covered URLs . 50

4.14 Relationship between the percentage of total tests ordered by Diverse URLs and
the percentage of covered URLs . 50

4.15 Relationship between the percentage of the selected tests ordered by Diverse URLs
and the percentage of covered URLs . 51

4.16 Relationship between the percentage of tests randomly chosen and the number of
covered URLs . 52

xi

xii LIST OF FIGURES

4.17 Relationship between the percentage of total tests randomly chosen and the per-
centage of covered URLs . 52

4.18 Relationship between the percentage of the selected tests randomly chosen and the
percentage of covered URLs . 53

A.1 UI application with Diverse filter active on elements. 63
A.2 UI application with Element filter active. 64
A.3 UI application with Action Type filter active . 64
A.4 UI application with Most Common filter active. 65
A.5 UI application combining three filters. 65

C.1 Start Neo4j database in its desktop application. 72

List of Tables

4.1 Most visited URLs . 41
4.2 Elements tested on each URL of the 1% most visited subset 42
4.3 Path IDs tested on each suite generated by the Random approach. 46
4.4 Elements tested on each URL of the 1% most visited set 53
4.5 Percentage of tests to achieve total coverage following different approaches . . . 54

xiii

xiv LIST OF TABLES

Abbreviations and Symbols

ISTQB International Software Testing Qualifications Board
GUI Graphical User Interface
UI User Interface
HTML Hypertext Markup Language
CSS Cascading Style Sheets
UML Unified Modeling Language
XML Extensible Markup Language
DOM Document Object Model
API Application Programming Interface
URL Uniform Resource Locator
JSON JavaScript Object Notation
HTTP HyperText Transfer Protocol
VPN Virtual Private Network
MARTT Mining Automated Regression Testing Tool
x Arithmetic mean
σ Standard deviation

xv

Chapter 1

Introduction

This chapter introduces the context of this work in the first section (1.1). Then, the motivation and

objectives are presented (1.2), followed by the definition of the problem and the research questions

that this work aims to answer (1.3). Finally, the structure of the dissertation is described (1.4).

1.1 Context

Software has become increasingly complex and plays a vital role in our daily basis and in our

society. Quality concerns have become essential in the software development process. In the end,

the goal is to ensure that the system works as expected and provides an excellent experience to its

users.

Web applications are usually composed by a back-end part and a front-end part, consumed by

users through a browser. The back-end is responsible for the business logic and to process and

persist data. Front-end, responsible for showing data and how users interact with the application,

is becoming richer and more dynamic, allowing users to get custom data presentation according

to the input made by them. This dynamic information leads to many challenges when testing Web

applications.

Both parts, back-end and front-end, are usually implemented with different languages, deal-

ing with many different technologies. Testing interaction among components built with different

technologies can be a very challenging task. Nevertheless, this kind of applications became a de-

manding area of testing. They can be accessed from everywhere by a wide range of users: place,

time zone, languages, disabilities, mindsets, cultures and so on. Users are also expecting high per-

formance and reliability of the application. When it does not meet users’ expectations, they look

for another one. This leads to a highly competitive market that makes testing and quality control

important factors of distinguishment [4].

It is estimated that software testing costs around 50% of the total development cost but, in some

cases, it can reaches 80%. Test automation can be substantial to cost reduction, since it is usually

faster, aiming to reduce the cost of testing in long-term, minimizing human error. Automated

testing is more organized, structured and reproducible than manual testing, due to the detailed log

1

2 Introduction

of each test step and each activity, being easy to perceive where is the error, as well as to reproduce

it [53, 47, 20, 39, 51, 4].

Although automated testing saves a lot of time when running test cases, it is important to have

in mind that develop an automated test suite must be faced like a development project, which

has to allocate enough time and resources to do so. The initial investment in automated testing

is higher than on manual testing, either in building the testing scripts and training before using

automated testing tools. However, the return on investment is also higher, saving a lot of time

on a forward phase of the project, allowing to more frequent executions of a test suite, leading

to early defects find. Teams must be available to highly invest in the initial phase of automated

testing implementation, either with time or money. Because people often want immediate results,

there is no availability to invest on that initial work, being automated tests pulled away from the

development life-cycle [4, 20, 15].

Nowadays, to improve the user experience, most systems provide a Graphical User Interface

(GUI) through which users interact with the system. System testing through the GUI is common

and may be automated. However, despite all the benefits, automated GUI testing is not used as

much as it could be. All of the reasons referred before as factors that lead to an automated testing

avoidance also apply to automated GUI testing. However, maintenance has a special impact on

GUI testing since it can be difficult to maintain test cases when minor changes, even only at the

UI level, can lead to test breaking. [20].

Automated GUI testing has been studied, and many approaches have been developed to test

systems through the GUI in the most efficient way. These approaches try to reduce the testing

effort, making the test execution more consistent and test results more reliable. There are several

approaches that try to adapt to each application’s needs.

Automated testing is a good solution especially on regression testing context since previous

features have to be re-tested, usually, with a major part of them without changes. Automating this

process allows executing much more times the tests that would be possible to execute by doing

it manually. Moreover, it is done with less effort and in a more efficient way, making regression

testing easier [15].

1.2 Motivation and Objectives

Test automation has some challenges. Some of those are the lack of testing time, lack of enough

allocated effort to build test scrips, and lack of sufficient test regression automation, which leads

to weak quality control. Having regression testing is especially important when changes are made

in the application or when a new version is deployed. Automated testing can save a lot of time

and effort to make sure that new introduced features and updates did not break previously working

functionalities, avoiding to test manually all the scenarios [20, 19, 9].

Actually, most of the studied automated approaches to generate test cases require some pre-

vious manual work: either model or documentation, test scenarios definition and simulation to be

recorded or scripting development work. However, most of the times, applications are built not

1.3 Problem and Research Question 3

only without automated tests but also without any type of documentation, which prevents from

any kind of test generation from models, specifications or other documentation. Since automated

testing is not a priority for this kind of projects, there is no effort to manually develop test cases.

This lack of documentation and testing do not allow to have proper quality control over the project,

hinder the evolution process and the addition of new features.

Graphical User Interfaces have become very rich, allowing the user to interact with the appli-

cation in many ways, leading to a large number of possible combinations of actions and possible

flows to be executed. Web applications have multiple states, which are constantly changing ac-

cording to user input. Testing this kind of applications became more complex, making the task of

choosing what to test a challenge. Is it not feasible neither realistic to test everything, so priori-

tization is important to select a subset of test cases with maximum possible coverage in order to

reduce the effort and costs of testing.

In addition, some testing approaches do not reflect actual usage of the application. It would be

useful to build a test suite of regression test adapted to the application testing objectives, reflecting

its real usage.

The main motivation of this work is to provide a way of generating automated GUI tests

without effort, properly adapted to the application needs and reflecting real usage.

1.3 Problem and Research Question

This research work presents an approach that intends to generate test cases automatically from real

usage of the Web application under test. MARTT - Mining Automated Regression Testing Tool - is

the result of this work. This tool records user interactions, in a way similar as Web analytics tools

do, and after, such interactions are analysed to generate test cases that may work as a regression

test suite to be run every time an operating software system or its environment changes.

The approach proposed here is focused on already developed applications, built not only with-

out automated tests but also, most of the times, without any type of documentation, what prevents

from any kind of test generation from models, specifications or other documentation. Generating

test cases from usage would allow these applications to have better quality control, even without

formal models, encouraging the evolution, ensuring the previous working behaviour.

Using real usage data provides information about the user behaviour and allows test cases

selection to be more real, ensuring that all tested flows were, at least once, performed by some user.

This process avoids to spent resources and effort in testing impossible and unrealistic scenarios.

Furthermore, there is no need to previously define test scenarios since test cases will be based

on the saved user interactions. The testers only have to define the criteria to select a set of test

cases. This subset is selected according to different filters defined in our tool. The available filters

allow having different types of test suites for the same application just collecting data once. The

set of test cases can be more complete or less, with focus on elements, interaction or pages and

ordered in different ways. This way, the tester can generate the test suite according to the testing

purpose, matching the product needs, selecting a subset from the whole test sessions.

4 Introduction

This approach would allow building a test suite for applications built without automated tests

in an easier way, with less effort than to build the test suite from scratch. MARTT turns every user

into a potential tester.

With this investigation, we aim to answer the following research questions:

• RQ1. Are we able to generate an executable test suite from real usage data?

• RQ2. How much coverage of the application, regarding pages, can we get with all
sessions?

• RQ3. How efficient is the reduction of test cases based on the collected sessions, re-
garding elements and pages coverage?

The case study on a real Web application allows us to get concrete conclusions about this work.

1.4 Structure of the Dissertation

The next chapter (2) presents the state of the art about the automatic generation of GUI test cases,

usage information and regression testing, especially focused on generation from usage informa-

tion. Our proposed approach is presented in Chapter 3. We explain the process to collect data, the

data analysis and the test case generation. Chapter 4 presents a case study over a real existing Web

application. Threats to validity, conclusions and future work are in Chapter 5.

Chapter 2

State of the Art

The purpose of the following sections is to provide context about the state of the art regarding au-

tomated GUI test cases generation techniques, usage information and the techniques that generate

test cases in regression testing context from usage data, going through the three main phases of

the test cases generation process. Firstly, the first section describes Automated GUI Testing and

the types of techniques to perform it (2.1). Then, the second session provides an introduction to

Usage Information (2.2). Finally, the third section presents Regression Testing and the three main

phases associated (2.3).

2.1 Automated GUI Testing

Nowadays, Graphical user interfaces (GUI) have a very important role in software, making the

software friendlier for the users, allowing them to perform tasks in an easier and more intuitive

way [34].

In this context, there are four main approaches that allow automating the generation of GUI

test cases: random testing, scripting, capture/replay and model-based testing.

Each of these techniques can be chosen to be applied in a project according to different factors.

The most suitable approach depends on, for instance, the main purpose and testing objectives,

evaluation criteria, inputs and outputs, and criteria for stopping the test. It always depends on the

testing that needs to be performed in the application and the objectives that testing aims to reach

[29].

These techniques will be addressed in the following topics.

2.1.1 Random Testing

Random Testing is also called Monkey Testing. This type of testing allows performing random

actions, either with the mouse or keyboard. There are three types of random testing. The first one,

the Dumb monkeys, is not aware of which kind of inputs or outputs the systems allows to, neither

of the state of the application under test, being its only goal to crash the application. The Semis-

mart monkeys recognise bugs, while the Smart monkeys have some knowledge about the system,

5

6 State of the Art

retrieving the data needed from a state table or model. In fact, Random Testing has high fault

finding ability, sometimes even more than structured techniques, since the input coverage is very

high and diverse. One advantage of automatic exploration and random testing is the possibility

to explore less frequent paths that would not be tested manually. However, it usually tests unreal

flow, not representing actual possible usage [35].

RVGT (Random Visual GUI Testing) script takes the most out of VGT (Visual GUI Testing).

VGT is supported by tools that interact with the application through its GUI on a bitmap level, what

means that the interaction is made against what is actually shown to the user. Using scripts based

on scenarios and image recognition, the VGT simulates user actions. It can be used to automate

random testing or exploratory testing actions. Automating GUI random testing, combining random

testing and image recognition, RVGT is written using Sikuli, an open source VGT tool, built in

Python, that allows interacting with any bitmap. The first part of the script provides a set of

configuration variables, while the second part contains the GUI bitmap components [2].

Combining UI patterns and reverse engineering, Morgado et al. [38, 36] propose iMPAcT tool

to test recurring behaviour represented by UI patterns in Android mobile applications using test

patterns. This process is fully automatic, executing events chosen randomly. The order which

events are executed may influence the testing results.

Some hybrid approaches are being developed in order to add randomly generated interactions

to the GUI testing cases. In an experiment conducted using a mature open source application, it

was concluded that "on average the added random interactions increased the number of visited

application windows per test by 23.6% and code coverage by 12.9%. Running the enhanced tests

revealed three new defects." [54].

Some approaches explore automatically the Web application using Web crawlers in order to

generate test cases. Web crawlers are tools that systematically visit all pages of a website. How-

ever, since there is no human knowledge involved in knowing which test cases are needed to

assert the application behaviour, generating proper assertions automatically is also a challenge.

[14, 11, 6].

VeriWeb is a tool for automatically and systematically exploring a website, representing all

possible execution paths followed by a user. This tool can also navigate through dynamic compo-

nents as form submissions. VeriWeb is a tool that combines capture/replay capabilities and Web

crawler’ level of automation. Exploring paths implies three main tasks. The first one aims to exer-

cise all possible paths a user might follow in the website. To do that, two different components are

used: one to search all active objects (i.e objects with default actions associated) in all DOM of an

HTML page and another one to explore the state spaces, controlling and observing the execution

of all components. The second task is all about execution of the exploration selected actions by the

Web Navigator. Web Navigator simulates user interaction with a browser. The last task focuses on

error handling, dealing with navigation error and page errors and saving error scenarios in a file,

which can be used for debugging purpose [6].

2.1 Automated GUI Testing 7

2.1.2 Capture and Replay

The Capture and Replay technique aims to record tester’s interactions with the GUI, such as mouse

motions, mouse clicks and keyboard inputs, replaying them afterwards when the system needs to

be tested. The main goal is to be applied as regression testing, asserting expected UI behaviour and

checking if the previously recorded behaviour is kept. Test Scripts are generated from the recorded

actions in order to interact with the DOM when executing them. Despite being automatically

generated, the tester still can change the scripts [20, 6, 42, 35].

Although this method eases the test script construction process, it still requires too much man-

ual effort in defining test scenarios, recording them all, analyzing and, when it is needed, refactor-

ing the generated scripts [20, 6, 42, 35].

This method is most useful at the end of the development testing, due to the relative lack of

robustness of test scenarios, since recorded test scenarios became impossible to use very easily,

with very small GUI changes. In this situation, maintaining test scripts will require a large effort

that usually leads to discarding test cases. On the other hand, this method can also be used in

early-stage prototypes since there are no bugs on implementation interrupting the capturing of test

scripts [35].

Capture and Replay is one of the most popular GUI testing approaches, what leads to a big

number of existent Capture and Replay tools in this field, such as Selenium1, Ranorex2 and Test-

Complete3 between others [20, 6, 42, 35].

One of the most used and known capture/replay tools is Selenium. Selenium is an open-source

set of different tools. Selenium IDE is a prototyping tool that allows to record actions and to build

test scripts accordingly. As a Firefox and Chrome plugin, it is easier and quicker to use and to

develop automated tests.

Ranorex is a full-featured automation framework that allows testing mobile, desktop and Web

applications. It also provides a capture/replay tool, as well as support cross-browser testing and

cross-platform mobile app testing. Furthermore, Ranorex supports image-based recording and

object recording, offering a wide range of possibilities to the tester. Based on Xpath, Ranorex

created its unique expression to identify UI elements: RanoreXPath.

There are some tools trying to improve on some fewer explored fields. For instance, TestCom-

plete is using Artificial intelligence to recognise objects and controls and to improve its capture/re-

play method, through powerful object identification engine, allowing the user to build scripts with

simpler and easier language, almost resumed to keywords. It also provides specific checkpoints

that allow testers to check the application state while test cases are being executed.

2.1.3 Scripting

The scripting approach relies on writing test instructions as code, using one of several possible

programming languages, such as Ruby or Java. To help writing the test scripts, there are several
1https://www.seleniumhq.org/
2https://www.ranorex.com/
3https://smartbear.com/product/testcomplete/overview/

8 State of the Art

APIs such as Selenium4, TestComplete5, CasperJS6 or Protractor7. These object-oriented APIs al-

low interacting with the Web browser by making direct calls and checking the expected behaviour.

Mainly, these APIs expect, in each test command, the object identifier to interact with, as well as

the type of action to perform.

As referred before, Selenium 2.0 is a cohesive object-oriented API to be used in automated

testing, interacting with the Web browser, making direct calls to it, using each browser’s native

support for automation. This tool aims to test automatically Web applications and to verify the

expected behaviour. Providing an easy API, Selenium allows either building, reading and main-

taining test scripts in an easy way. Several different commands are provided in order to interact

with the Web application and test it. In addition, Selenium Grid provides a solution for large-scale

test suites, running test in parallel, in different environments, boosting the performance of the test

suite.

CasperJS is a tool used for scripting and testing, which provides many functions to handle

different interactions with the Web application. CasperJS uses selectors (CSS3 selectors or XPath

expressions) to work with the DOM elements, allowing the tester to build and run several different

scenarios on the browser.

Interacting with the application and performing actions as a user make, Protractor is an end-

to-end test framework for Angular and AngularJS applications. This framework needs two files

to run: a spec and a configuration file. Protractor, as the previously referred tools, interacts with

HTML elements which locators are provided. Supported locators are CSS selector, id or name, as

well as model (ng-model) and binding (element bound to a given variable). The two last types of

locators are only supported on AngularJS applications.

Besides these tools, there are more available, following the same purpose. Maveryx8, Katalon9

and Froglogic10 are examples of tools that provide APIs to build the test scripts and run on the

application under test.

2.1.4 Model-based Testing

Model-based testing comprises three main key elements. The first is the model that contains

information about the structure and behaviour of the application under test. It must be updated

whenever there are changes so that the tests are also updated accordingly. Then, the tool that

generates the infrastructure for the tests, including the output. These tools are fed with a test-

generation algorithm, the criteria that define how to choose the set of test cases and which must be

selected [11, 40].

4https://www.seleniumhq.org/
5https://smartbear.com/product/testcomplete/overview/
6http://casperjs.org/
7https://www.protractortest.or
8https://www.maveryx.com/automated-web-testing/
9https://www.katalon.com/

10https://www.froglogic.com/squish/

2.1 Automated GUI Testing 9

Model-based testing is very useful for systems that often change or that are still under evo-

lution. Although test cases have to be regenerated and the model has to be updated, it is usually

easier to maintain than create test cases from the beginning [40].

Model-based techniques are commonly composed of automated and non-automated steps to

generate test cases. The level of automation affects the cost, time and effort of test cases genera-

tion. An automated approach means less time and effort, thus less cost [40].

Some model-based testing approaches for the user interface of Web applications have been

developed. The approach proposed by Torsel [51] aims to infer a model creation and its main-

tenance. The model must reflect the application structure, its Web pages and their connections.

Structural inspection of the model results in a dependency graph where there is a vertex of every

edge in the application graph. With test case generation purpose, an algorithm selects paths to be

executed from the graph. To transform test cases into actually runnable scripts, implementation

details should be kept in an external UI mapping XML file. Test cases also need to be translated to

the appropriate language, according to the test automation tool that will be used. To do so, Eclipse

Xpand tool is used, transforming provided test cases into the chosen language [51].

Furthermore, path expressions can also be deducted from a website graph. As a starting point

of the previously referred technique is TestWeb, a tool proposed to generate test cases from a set of

path expressions deducted from a website graph. This model is previously computed by the ReWeb

tool, also proposed on the same study along with TestWeb. In this context, a path expression is

an algebraic representation of the paths in the graph. The test cases are generated from the path

expressions, according to defined test criteria [45].

Deriving test cases from UML diagrams is a common process in Model-based Testing. Riebish

et al. [46] propose a technique that transforms use cases (in templates form) into state diagrams and

then, state diagrams into usage graphs from which usage model is derived, using an XML-based

tool. Finally, test cases are generated from usage models. Besides the reduction in testing efforts,

this technique also aims to support requirements engineering by applying use case diagrams.

Another approach was developed with the purpose to combine visual modelling and formal

modelling notations. Combining the visual, based in UML, with the formal specification language,

like Spec# [5], it is possible to convert a subset of UML in Spec#, reducing the effort of GUI

modelling and its following translation. Firstly, UML diagrams must be modelled to test the usage,

structure and behaviour of the GUI. After having the visual model, a formal model in Spec# will be

derived from the UML model, which can be refined after, in order to become an executable model.

Not only test cases can be generated by Spec Explorer from the Spec formal model, but also the

degree of coverage of the UML behavioural diagrams can be analyzed. To finish the process, the

tester should relate the user actions defined in the model with the GUI elements of the application

under test. Finally, test cases can be executed [42].

In the technique proposed by Chen et al. [10], activity diagrams are used to represent the

system behaviour while the elements of the diagram represent requirements attributes. The paths

are then derived from the diagram and each test case takes a specific one with a specific set of data.

A similar technique was proposed by Sanj et al. [16], specifying use cases using activity diagrams

10 State of the Art

and generating test cases from it. Fernandez-Sanz et al. [16] also propose a specification-based

approach to generate test cases from activity diagrams.

Moreover, some approaches focus on the representation of the application state to generate test

cases. Usually, finite state machines are composed by a finite set of states, a finite set of inputs and

a finite set of outputs. Moreover, they are also defined by a transition function, which receiving the

defined input moves to the next state and produces the defined output. A finite state machine can

be represented by a state diagram, a graph that represents states and state transitions by its vertices

and edges, accordingly. The work of Bertolino et al. [7] and Gnesi et al. [18] propose generating

test cases from UML state diagrams [26, 29].

In fact, Web applications are systems in which transitions occur from Web pages to Web pages,

depending on the inputs, in this context represented mainly by user actions, and the current state,

changing the state of the application to another one. There are a few testing techniques based on

finite state machines since they suit the Web applications context, dealing with the states transitions

in an efficient way. However, a Web application can have very large possible states resulting from

the innumerable possible inputs and options. This can lead to the state space explosion problem.

Finite state machines must be balanced in order to achieve an efficient testing coverage without

being too small neither too wide, avoiding the problem of having too much possible states [29].

In addition, the work of Abdurazik et al. [1] generates test cases from collaboration diagrams,

including both static and dynamic testing. The sequence path represented on the diagram must be

executed at least by one generated test case.

Bringing AI to testing context, PATHS (Planning Assisted Tester for grapHical user interface

Systems) is an approach for partially automating testing of GUIs that uses AI planning techniques

to generate sequences of actions. The focus is on specify goals instead of sequences of actions.

The process of test cases generation starts with the generation of an abstract model of the GUI

under test, which is used to generate a set of operators, representing the user interface events.

Preconditions and effects of the operators have to be defined by the tester. On the second phase,

the tester defines the scenarios, specifying the initial and goal states. PATHS generates a set of

test cases for each scenario, allowing the tester to change them. For the same goal, multiple and

alternative plans are generated [32].

Furthermore, also generating test cases based on defined goals, there is an approach called

Pattern-based GUI testing. A UI Test Pattern is defined in the form of: < Goal, V, A, C, P >. The

goal variable is the name or the id of the test. The V parameter is a set of pairs with the possible

input data to each variable, while the A is the sequence of actions to perform, representing how to

execute the test. C is the set of the checks to perform during the testing run, which means the final

purpose of the test (for instance, “check if the title is shown”). These parameters are set by the

developer when implementing the model. The last variable, P, aims to represent when the tests

can be executed and in which application’s states they can run. This model-based testing approach

aims to systematize and automate the GUI testing process, creating generic test strategies. Cur-

rently, UI Patterns are commonly used to solve some UI problems. For instance, the usual login

appearance on most of the websites is mainly composed of two inputs (one for the email and an-

2.2 Usage Information 11

other to the password) as well as a submit button. This solution promotes to reuse test cases, either

within the same project or between other applications, reducing costs and effort [33, 35, 34].

PBGT supporting tool also uses UI Test Patterns, which are defined using PARADIGM, a do-

main specific language developed for this purpose, allowing to specify relations between patterns

and to structure models in different levels of abstraction. PBGT process goes through six main

steps. In the first one, tester drags and drops the elements (Nodes) of the PARADIGM language,

connecting them with connectors (Links). After having the model, the tester needs to configure

the input data and preconditions, as well as checks to perform during the testing run. In this step,

it is possible to adapt common strategies to different applications. Then, fully automatically, test

cases are generated, according to the configurations specified before. All paths, from the initial

node to the end one, are generated. After that, considering that is needed to map the model UI

test patterns to the UI patterns on the application, each pattern must be selected and related with

the GUI controls manually. The test cases are executed next, executing all the testing actions. The

process finishes with a report of the testing results which may be analyzed by the tester [33].

On the other side, there is the opposite approach: produce formal models extracting informa-

tion from the GUI under analysis by a reverse engineering technique. ReGUI is a tool that allows

generating different types of models to represent different types of information. It is possible

to generate graphical representations to check the visual aspect of the GUI, text models to use

in model-based GUI testing and a Symbolic Model Verification represented by computation tree

logic. This tool aims to generate visual and formal models with less effort [37].

A different approach is presented in [14]. In this case, the authors infer a model from existing

test cases and then feed a crawler with those tests in order to generate new test cases. Additionally,

the test suite can be extended for uncovered or unchecked parts of the Web application. This

approach, named Testilizer, can use provided assertions to generate new assertions on the new

generated test cases. The state exploration component is built on top of Crawljax11.

In order to reduce the effort associated with the test cases generation, avoiding to build formal

models from scratch, and to create test cases based on real information, there are some approaches

that generate models from usage information. Next, usage information will be introduced.

2.2 Usage Information

There are two main methods to collect usage data from websites: one is by Web server log file

method and the other one is page tagging method [24].

The first one handles tracking files stored on a Web host server. These files can save infor-

mation about access, like time, place or IP address, as well as which pages were visited [24].

Information gather from server side often have some trouble dealing with user actions identifica-

tion. It is difficult to identify the clickstream as well as the path followed by the user, leading to

some lacks on the tracking. So that, extracting the exact path that a user followed can be a difficult

task [23].

11http://crawljax.com/

12 State of the Art

On the other hand, page tagging methods allow retrieving data by JavaScript. This method

does not rely on log files. Furthermore, even when pages are cached, the user’s behaviour is still

recorded, what does not happen on Web server log file method, since there is no request to the

server [24].

Web server log file method is not able to track events, only downloads. In contrast, page tag-

ging allows tracking events, downloads and page views. However, only focusing on downloads

from the server is not reliable, because they may not be registered, for instance, when the connec-

tion is very slow, the tracking may be lost. Single page applications can also be a limitation to

log file method because only API calls will be recorded, instead of all elements interacted on the

client side. JavaScript methods are more efficient also at visitor tracking because log file method

has some trouble to calculate returning visitors or number of visits [24].

However, on the security context, Web server log file method stays ahead because it does not

need additional files to track data. In contrast, page tagging method could be a security threat if

someone accesses the Web server and inject any code to the website, collecting sensible data [24].

Due to privacy rules, such as the General Data Protection Regulation, usage data must be

processed to avoid retrieving any personal information.

Usage information has been used with multiple purposes: it may be used to understand the

customer in a commercial point of view, which is the main purpose of Web analytics tools. These

tools, such as Google Analytics 12, Clicky 13, Open Web Analytics 14, between others, provide

knowledge to know customers’ preferences in order to personalize the information that is shown

to them.

Moreover, usage information is also important in other fields. For instance, in requirements

context, REQAnalytics, a recommender systems, collects usage information of the software, being

able to relate that information to each requirement. Furthermore, reports are generated in order

to get recommendations for changes to improve the system. This tool uses a Web analytics tool,

called Open Web Analytics, to help to retrieve usage information. This information is analyzed

afterwards, resulting in the recommendations report. The process to generate recommendations

reports is similar to the one used to generate regression testing: collecting, mining and generating.

In an attempt to deal better with input information, to represent real usage or to reduce the

effort to build test cases, usage information has been applied to generate test cases, building test

suites that can be executed as regression testing.

2.3 Regression Testing

Regression Testing is defined by ISTQB as “Testing of a previously tested component or system

following modification to ensure that defects have not been introduced or have been uncovered in

12https://analytics.google.com/analytics/web/
13https://clicky.com/
14http://www.openwebanalytics.com/

2.3 Regression Testing 13

unchanged areas of the software, as a result of the changes made” [8]. During software develop-

ment, regression testing is what verifies that updates did not break previously working functional-

ities [20, 19].

Regression tests are important to ensure that software correctness is not affected by the changes

performed. Any code change is likely to impact features that it is not expected to impact, so run-

ning regression testing is essential to make sure that no features are broken with the change neither

the specifications previously defined. Regression tests can be run at any level: Unit, Integration,

System, or Acceptance [44].

Since regression tests may be run several times, its automation gains more importance. How-

ever, regression test automation has some challenges, such as how to generate test cases, how to

prioritize them and how to execute them.

The process of regression testing goes through three different steps: Test case Generation,

Prioritization and Execution.

2.3.1 Test Case Generation based on Usage Information

The costs with regression testing are high, and because of that, it has been a concern to the newly

developed approaches to generate test cases. In the previous section, different techniques to gen-

erate automated GUI test cases were addressed: random testing (2.1.1), capture and replay (2.1.2),

scripting (2.1.3) and model-based testing (2.1.4). To avoid manual work to build test scripts,

model-based approaches are common in the regression testing context. However, they are useful

when there are models of the system under test. When such specifications do not exist and it is

not trivial to construct them, it is necessary to resort to other techniques to derive test cases. In

particular, there are approaches that gather information about Web applications usage and build

test cases from that information. The main steps of the process are: gather usage information,

analyze such information and generate test scripts.

Focusing on this work’s context, this section will be specifically about test cases generation

from usage information.

Generating test cases from usage information is more common for the Web. However, in

[30], the authors mine the saved interactions, performed in Android apps, to derive execution

scenarios using statistical language modelling, static and dynamic analysis. The data is collected

from developers usage, which origin event logs that are saved. The logs and the source code are

mined to build a vocabulary, which will be used to generate event sequences. These scenarios are

validated executing the app in a real device.

In the Web field, there are more approaches. Some of those approaches use usage models to

generate test cases [21, 52, 25, 11].

Usage models that were previously built based on actual usage scenarios and respective fre-

quencies can help to select, execute and build test cases. Approaches in which test cases are

generated from a graph, where the nodes represent the different application states and the arcs the

transactions between them, help to prioritize test scenarios, focusing on more important features to

14 State of the Art

test. This derivation from usage models are included in Statistical Testing, which aims to sample

data when the data to potentially build test cases is too large [21, 52].

Amalfitano et al. [3] present an investigation about using execution traces for generating test

cases. These execution traces can be obtained either by collecting usage data or by being automat-

ically explored by a Web crawler. Each execution trace is converted in a test case. However, the

generation of test cases depends on solving two problems. The first one is to get the pre-conditions

of each test case, which can be solved by saving the application state before recording the execu-

tion trace. The second problem is regarding the testing oracle and how to assert the test success or

failure. In the referred work, some solutions are presented, however, the authors define the testing

failure by checking the occurrence of Javascript crashes.

One of the problems with collecting usage information is to define test input data since it

should not be collected due to privacy laws. Many approaches still do not deal with input data,

depending on a manual effort to provide it. Also depending on input data provided manually

afterwards by the tester, in [43], test cases are generated from the most frequent interaction paths.

To generate test cases from usage information retrieved from a SaaS under test, the process should

go through four different steps. The process starts with OWA logs collection, followed by the

calculation of the most frequent paths. After that, regression test scripts are generated, following

a set of rules defined in a manual and automated process [43].

User session-based testing techniques retrieve, at the server site, URLs and name-value pairs

that are the result of a sequence of interactions to generate test cases. A user session starts when

a request from a new IP address is received by the server and ends when the user leaves the Web

site or the session times out [13].

Kallepalli et al. [25] propose using log files from the server to build a usage model, using

specific tools, for statistical Web testing and reliability analysis [25].

Based on session data, Elbaum et al. [13] proposed four different ways to generate test cases:

the first one consists in replaying each individual request (formatted into an HTTP request to be

sent); the second method replays a mixture of interactions from different sessions; the third aims to

run sessions in parallel in order to have concurrent requests; the last one is to mix regular sessions

to interactions that may cause some trouble, like backward and forward actions. However, the

approach presented in [13] is only applied in a controlled environment.

It is shown in [13] that the percentage of faults detected increases as the number of user ses-

sions increases. However, the time, effort and the cost associated with collecting the data, analyz-

ing the data and generating the test cases also increase. For most of the applications, an exhaustive

testing approach is infeasible, either technologically and economically. This leads to the need for

test cases prioritization, with the purpose of getting a subset of test cases that can properly cover

the application with a smaller number of test cases.

2.3.2 Test Case Prioritization

Testing user interfaces can be a challenge due to the number of possible combinations of actions

that can be executed on the GUI. Usually, a GUI action can lead to multiple kinds of results,

2.3 Regression Testing 15

depending on the state in which the application is. Even small GUIs have several states and

transactions, which means higher complexity on testing. If you exercise everything, you lose time,

if you do not exercise enough, failures may not be detected. So, prioritization is important to select

a subset of test cases with maximum possible coverage in order to reduce the effort and costs of

testing [20, 32, 4, 19].

Test cases can be prioritized using coverage-based techniques, choosing the subset of test

cases based on the code coverage they provide. These techniques can prioritize test cases based

on statements, branch or functions covered [48].

On the other side, following a black-box approach and not looking into the code, test cases

can be prioritized based on requirements: customer-assigned priority, based on the importance the

customer gives to each requirement; requirements volatility, based on how much times a require-

ment has been changed during the development cycle; implementation complexity, based on how

complex the development team perceives the implementation of the requirement to be and fault

proneness, choosing the requirements that have been failing more [48].

Additionally, another technique of prioritization is observation-based testing, which aims to

filter, from a large set of test cases, the ones that are most likely to match requirements and test

needs. Filtering the test data allows selecting a smaller set of test cases which includes, for in-

stance, interesting events or elements in the context of the application under test. This approach

was already studied by Dickinson [12], clustering the population and sampling those clusters, in

an attempt to find failures in a more efficient way. The filtering can also be used to produce execu-

tion profiles. It is also common to use a multivariate visualization technique that allows the tester

to visualize the distribution of the data, understanding features that can be important to build the

test cases accordingly [12, 27, 49].

Elbaum et al [13] propose two approaches to get a test suit size reduction. The first one is

based on the technique presented by Harold et al. [22], which aims to get a representative set of

test cases, removing redundant test cases and still achieving the intended testing coverage. In [13],

this heuristic is applied to the test suite generated from usage data, reaching big reductions and

keeping the coverage as intending or when it is necessary, compromising it by small margins.

The second approach presented in the study from Elbaum et al. [13] is based on clustering

analysis, grouping similar test cases in clusters. Clustering methods are focused in grouping by

similar properties, like similar browsing patterns or Web pages with semantically related content.

As well as clustering, also statistical analysis, association rules and sequential pattern analysis

help to discover usage patterns that can be used to select a subset of test cases. Statistical Tech-

niques are the most common ones, being able to get, for instance, the most frequently accessed

pages, average visits, viewing time and average navigational path length. Association rule mining

is used to find related pages that are most often accessed together in the same single session, show-

ing that a relationship between items exists. This kind of rules states that in a transaction, if item 1

occurs, the probability of item 2 also being in the transaction is higher than if item 1 did not occur.

Sequential pattern analysis aims to find relevant patterns between data sequences [31, 23, 41].

16 State of the Art

In [55] an attempt to reduce test cases based on URL similarities is presented. Firstly, URLs

are matched between sessions, trying to find whether a URL is the prefix of another URL. Then, if

a URL is contained in another one, it is removed from the test cases since its behaviour is already

being tested by the URL from which it is a prefix. It is important to have in mind that this technique

is applied to session-based testing, in which saved URLs are the request made in the sessions. To

evaluate the similarity between URLs, parameters are also compared.

2.3.3 Test Case Execution

Regarding GUI Testing, there are three generations of tools: coordinate–, element– and image-

based. Coordinate generation is less stable because it expects to get the same element on the same

coordinates of the screen. With the increasing variety of devices and screens, this technique has

become less useful [20].

To replace it, an element-based technique is used, aiming to use references to the elements of

the GUI. This structure-aware technique is more precise than, not only the referred first generation

but also than a human tester. Using, for instance, ID, XPath, type or label, grouped or combined,

this technique can interact and perform several actions on the application. Element-based tools

are more robust to minor layout changes than the other generations. Therefore, who writes the

test needs to know about the GUI structure and its identifiers, which can limit who can write

element-based tests [20].

On the other hand, Web test cases may be fragile when using Web page DOM. Since they are

used to identify GUI objects, any change at this level leads to broken test cases. Whereas DOM

is usually very dynamic, element locators may be a challenge. DOM element locators should be

specific enough to get only the required element(s) [28].

Regarding the third generation, no structural elements are used, just image-processing tech-

niques. This generation of image-based tools are more robust to code changes than element-based

tools and are more useful to test and check changes only on the GUI. This complete black-box

technique allows us to test the screens without knowledge of the application, switching easily

between contexts, without depending on requests or third parties [20].

Despite all the advantages, each generation has its target and its purpose, according to the

application’s needs.

2.4 Summary

It was presented in this chapter the investigation context to automated GUI test cases generation

techniques and regression testing, with main focus on approaches that implement usage informa-

tion to derive test cases. In the first section (2.1), four ways to generate automated GUI tests are

presented - random testing, capture and replay, scripting and model-based testing. Then, in section

2.2, it was introduced how to collect usage information and some of its usages, since Web analyt-

ics tools to requirements analysis and the possibility to implement it in the context of regression

testing, which is described next, in the section 2.3. Regression testing is introduced by passing

2.4 Summary 17

through its main three phases - test case generation (only presenting the techniques focused on

usage information), test case prioritization and test case execution.

Finally, the approach presented in this work is different from the previously presented solutions

and, as far as it was researched, there is no known equal approach. Although there are some

approaches based on collecting usage data, MARTT collects data on the client side, making a

selection of what is important to retrieve. After collecting usage data, we aim to provide a set

of several different filters to select a subset of test cases. Another feature of our work is that,

although we do not capture the input literally, we transform the input information in order to have

information to get a close value to run the test script. In addition, our approach is applied on a real

website, collecting real data in normal usage by its users and analyzing the captured data against

the website’s structure.

Our solution aims to collect the sequence of interactions made by the user to reproduce those

interactions later. When we think on an individual session, this process can have some similarities

with the capture and replay method, considering it is captured when the user performs it and

replayed later, when running the test cases. However, if we look at the whole data set and how

tests are generated, MARTT fits better on model-based testing. In spite of not having a formal

model from which the test cases are generated, our usage data set can be considered as a model

since we analyze that data and select the most important subsets with the purpose of generating

test cases from that. This makes us believe that our approach can be included in model-based

techniques.

18 State of the Art

Chapter 3

Proposed Approach

MARTT proposes an approach to generate test cases automatically from real usage of the Web

application under test.

In this chapter, it is explained deeper how this work was implemented. The explanation is

composed of four sections. In the Data Collection Section (3.2.1), the process of information

capture is explained, as well as the properties of each interaction. The focus of the following

Section (3.2.2) is the analysis process and the application built to analyse and to select the test

cases. Then, it is explained how to generate a test script using the Selenium framework (3.2.3). To

conclude, the technologies used in all development process are described (3.2.4).

3.1 Proposed Solution

The proposed solution is mainly composed of three phases.

In the first one, data regarding the interactions performed over the Web application under test is

collected and then saved on a graph database: Neo4j1. In the second phase, saved data is analysed,

according to the available filters. In the end, a JSON file is generated with the information about

the sessions that match the defined criteria which is selected by the tester. In the third, and last

phase, test scripts are generated from the JSON files.

These phases will be deeper explained next.

3.2 Implementation

3.2.1 Data collection

To retrieve user interactions from the website, a JavaScript file (tracking.js) must be included in

the pages that will be under test. This file is responsible not only for collecting the data that is

needed to replay the interaction later on but also to save it. In order to save the interaction, the file

makes requests to the API responsible for connecting to the database.

1https://neo4j.com/

19

20 Proposed Approach

In terms of components, the process of data collection depends on the tracking file and capture

data API which is represented by the numbers one and two, accordingly, in Figure 3.1.

Figure 3.1: Components diagram of the proposed solution.

By including the JavaScript file in every page of the application, an event listener starts lis-

tening to events across the page — using the JavaScript function addEventListener. This

listener will be triggered whenever the user interacts with the page, and consequently, an event is

dispatched.

The events that are caught by the data capture script are: click, double-click, drag and drop,

key pressed and paste events. Every time an event of these types is detected, the script file will

retrieve from the page the information needed to playback the interaction .

3.2 Implementation 21

Figure 3.2: Sequence diagram of the proposed solution.

Each node on the database represents an interaction, as shown in Figure 3.3, structured as it

is shown in Listing 3.1. It is possible to connect each node with other nodes using a relationship

connection. If the action is the first of the session, it is saved as a simple node and without any

relationship. On the other hand, if the interaction is not the first one, it is saved with a relationship

with the previous interaction. This process is represented in the sequence diagram in Figure 3.2.

1 "properties": {

2 "path": "id(\"search\")/input[@class=\"text\"]",

3 "session": "dfdf5a5d-98a4-d90d-334d-094fb7180d80",

4 "actionId": 3,

5 "action": "input",

6 "pathId": 5,

7 "elementPos": 2,

8 "value": [

9 "char",

10 "char",

11 "char",

12 "Enter"

13],

14 "url": "http://www.ipvc.pt/"

15 }

Listing 3.1: JSON structure of a node’s properties.

22 Proposed Approach

Figure 3.3: Snapshot of the Neo4j browser.

3.2.1.1 Session Identifier

In this work context, it is important to keep the data related by user sessions, to have a proper flow

representing real linked interactions. This will be useful knowledge about the data for the analysis

phase. To do so, session identifiers are used.

The goal is to connect interactions, firstly by sessionID. In order to be possible to group saved

interactions by session, each user session (i.e. the tab where the website is running, since the

moment user opens it until it is closed) is identified by a unique identifier composed of 32 random

characters (either letters or numbers) which is generated every time a new tab is open.

3.2.1.2 Element Position

The session ID is enough to group the interactions. However, in order to reproduce them according

to the same flow/sequence, the interactions have to be organized in the same order they were

performed by the users.

To do so, another property is saved in each element that indicates the position of the element

(elementPos) in the respective sequence. This variable is saved locally, in session storage, and

incremented every time a new interaction is recorded. When a new session is created, with a

respective new session ID, the position restarts, starting from 1.

This way, it’s always possible to know where an interaction is in the path, as well as the

previous and following interactions.

3.2 Implementation 23

3.2.1.3 DOM Element

To replay each interaction, it is essential to have a way to identify precisely the element which the

user interacted with. The two main discussed options were CSS selector and XPath 2.

CSS selectors are not much precise and may not retrieve the right element since some selectors,

such classes, are not unique and can be repeated between elements. XPath stands for XML Path

Language and allows to navigate through the structure of an XML document, representing the

position of an element in the DOM (Document Object Model) using a path notation that embodies

not only the structure tree but also the ID or class, if there is any. XPath is not only more precise

than CSS selectors, but it also is independent of the properties added to the elements (such as

IDs or classes). The work presented here is focused on already developed applications, making

very risky to trust in CSS selectors, because the elements can have no specific selector associated.

Based on that, a function was implemented in the tracking.js file that extracts the XPath from the

interacted element. The XPath structure is similar to the following one [Listing 3.2].

1 id("node-4747")/div[@class="node-inner"]/div[@class="content"]/div[@class="field-

type-text"]/p[2]

Listing 3.2: XPath example.

3.2.1.4 URL

The URL of the page in which the interaction is made is saved as a property of the interaction. This

property ensures that two equal actions in different pages are not misunderstood and interpreted as

the same actions since XPath is unique only in the respective page structure. Before being saved,

the URL is formatted to remove parameters that are being sent through the URL in GET requests.

3.2.1.5 Action Types

The previous referred events, click, double-click, drag and drop, key pressed and paste events will

trigger the process of retrieving information and saving it on the database. Associated with mouse

events, three types of interactions are expected: click, double click and drag and drop. All action

types are saved with a numeric ID beyond the string identifier, to be easy to analyse the data later

if there is need to apply an algorithm that only accepts numerical values.

The key pressed event is triggered not only by all character keys but also by the delete, tab,

backspace and space keys. The type of action that represents key pressed and paste events is the

input action. This action has a complementary part with additional information that is better

explained next.

2https://developer.mozilla.org/en-US/docs/Web/XPath

24 Proposed Approach

3.2.1.6 Value

According to each action type, an optional parameter is saved along with the action type identifier.

In the drag and drop action, the XPath of the target element is saved in Value parameter, when

the element with which the user is interacting with is placed at the destination of the drag and drop

interaction.

In the Input action, despite each key triggering the event, the input data is saved as an array of

keys to avoid saving a node for each key. To avoid saving sensitive and personal data, the input

data is not saved literally. It is converted to “char” or “string” according to the length input.

Moreover, when the selected input’s type is a password, no input information is retrieved, making

sure that no user information is disclosed.

When the input is made a character by character, the saved array may look like [char,

char, char]. However, if the information is written all at once, like in a paste event, it is

represented by a complete string and it may be saved like [string].

Click and Double Click actions do not need to save any additional value to the action itself.

3.2.1.7 Path Id

Each set [xPath, actionType, url] is represented by a unique ID so that it can be used

later on data analysis. As a result, each pathId represents a unique interaction with an element

in a specific page.

So that, before saving a record, it is checked whether a specific set already exists or not in

the database: if so, the previous ID is used; otherwise, a new ID is created, increasing the highest

existent ID by one. The API should provide the pathId of the interaction to be possible to save

the interaction performed by the user.

3.2.2 Data extract analysis

Using all captured data is neither feasible nor efficient. All the sessions that are important to test

in the context of the application need to be retrieved. In the analysis process, the tester should

define some constraints to result in a set of sessions that fits the tester needs as well as the testing

purpose. As Figure 3.1 shows, filters defined by the tester are also an input of the Analysis UI,

which allows to select and retrieve the subset of sessions. The process can also be seen in the

sequence diagram in Figure 3.2.

3.2.2.1 Analysis API

To access the database and to get the requested data, it was developed an API. This API runs the

Cypher queries, the graph query language native from Neo4j, on the database. In some endpoints,

the API receives the filter criteria, reaching a set of sessions that respects the provided filter pa-

rameters. In other cases, all sessions are retrieved and selected afterwards on the front-end side

according to the defined criteria.

3.2 Implementation 25

3.2.2.2 Analysis Application

To make the analysis process more intuitive and visual, a UI application was developed as repre-

sented in Figure 3.4. More screenshots can be found in Appendix A.

This application allows the user/tester to make requests to the Analysis API, also developed in

this work’s context and previously explained, retrieving sessions data to be filtered and, afterwards,

to generate the test cases.

The user can navigate through the filters panel, on the left, where the constraints can be defined.

There are five main sections of filters: Action type, Element, Most common sessions, Length and

URL. Then, in the middle of the screen, the sessions that correspond to the defined filter are shown.

If the result is interesting for the tester, the filter can be selected to have its result combined

with other filters later one. When all filters are selected, the tester can combine them all and get the

result that matches all the constraints. Then, it is possible to select the sessions to be downloaded

in JSON format, as it is represented in the Components diagram in Figure 3.1, linking the Analysis

UI to Test Script Generation. Sessions are downloaded in separated files. An example of a JSON

file can be found in Appendix B.

This flow is represented in the sequence diagram, in Figure 3.2, as the process after saving the

data. The process starts with defining the filter, followed by getting the data to result in a set of

sessions that match the previously defined constraints. This process depends on the Analysis API

and Analysis UI components, represented in the diagram components in Fig.3.1.

Figure 3.4: UI application to analyse the previously collected data.

The filters available in the UI application are summarized next and better explained in the

following paragraphs. The values used as criteria are provided by the tester on the UI interface.

All the filters can be combined according to the tester preference in order to get the most suitable

set of test cases.

26 Proposed Approach

1. Filter sessions by Action Types

• More than X different action types

• Less than X different action types

• Equal to X different action types

• Include the action type:

– Click

– Double Click

– Drag and Drop

– Input

2. Filter sessions by Element presence

• Contain the XPath provided

• Begin in the XPath provided

• End in the XPath provided

• Order by diverse XPath presence

3. Filter sessions by Length

• The biggest session

• The shortest session

• Bigger than X interactions

• Shorter than X interactions

4. Filter sessions by URL

• Contain the URL provided

• Order by diverse URL presence

5. Order by the most common session to the less common

3.2.2.3 Filter sessions by action types

The analysis application allows filtering sessions by the number of different types of interactions.

It is possible to select the sessions that have more than a defined number of interactions, less than

the provided threshold, as well as equal to it.

Moreover, the tester can define one type of interaction that the session should have, in case

of needing to test a specific kind of interaction. This filter allows focusing the test on the type of

interactions instead of the elements or pages. To have such data, a request to the /actiontype

endpoint of the analysis API is needed (Listing 3.3), which retrieves all sessions and the number

of different types of interactions each one has. The selection of the sessions that match the defined

limit is made on the front-end side.

3.2 Implementation 27

1 {

2 "records": [

3 {

4 "keys": [

5 "sessionId",

6 "size(collect(DISTINCT n.action))",

7 "collect(DISTINCT n.action)"

8],

9 "length": 3,

10 "_fields": [

11 "20099fd4-04b3-cbc5-b8ec-875842c830a7",

12 {

13 "low": 2,

14 "high": 0

15 },

16 [

17 "click",

18 "dblclick"

19]

20],

21 "_fieldLookup": {

22 "sessionId": 0,

23 "size(collect(DISTINCT n.action))": 1,

24 "collect(DISTINCT n.action)": 2

25 }

26 },

27]

28 }

Listing 3.3: one item of the /actiontype endpoint response.

3.2.2.4 Filter sessions by element presence

If the tester aims to test a specific component, it is possible to select sessions in which the element

is present, providing the XPath of the element. Additionally, because the /element endpoint

(Listing 3.4) provides not only the position of the element in the sequence but also if it is the last

element or not, based in the sequence length, it can be filtered if the element is the first interaction

or the last one. This type of analysis was inspired in the goal kind of approach, which main focus

is in specifying goals instead of sequences of actions [32].

Furthermore, it is also possible to order the test cases by how much different new path IDs

each test cover. In other words, the process starts with adding the test case that tests more different

path IDs to the suite. All of the remaining test cases are analysed, one by one, to see which one

adds more value to the suite. Each time one test case is added, the remaining are re-analysed,

comparing the path IDs with the ones covered by the new test suite. When there is no new path ID

to cover, no more sessions are added, avoiding to test sessions that do not add value to the suite.

28 Proposed Approach

1 {

2 "records": [

3 {

4 "keys": [

5 "sessionId",

6 "count",

7 "nodePosition",

8 "lastNode"

9],

10 "length": 4,

11 "_fields": [

12 "cf48d0bf-4cc0-bc28-477c-85ec03c08d76",

13 {

14 "low": 12,

15 "high": 0

16 },

17 6,

18 false

19],

20 "_fieldLookup": {

21 "sessionId": 0,

22 "count": 1,

23 "nodePosition": 2,

24 "lastNode": 3

25 }

26 },

27]

28 }

Listing 3.4: one item of the /element endpoint response.

3.2.2.5 Filter sessions by length

Based on the number of interactions, this filter allows choosing the longest or the shortest session

as well as to define how many interactions the sessions should have, i.e., the number of nodes

saved in each session. The /allsessions endpoint retrieves all sessions and the length of each

one (Listing 3.5), ordered by the length in decreasing order.

The selection of the sessions that match the criteria is made on the front-end side, based on the

length item. When the goal is to find the longest or the shortest session, it is picked the first or the

last session, accordingly, of the order set of sessions.

This filter is useful to remove small sessions from the whole sessions set that do not add value

to the test suite. Sometimes, saved sessions are composed of just one or two clicks. It is important

to clean up the data, avoiding to waste effort testing useless sessions. Filtering by length allows

managing coverage having fewer test cases with more performed actions.

3.2 Implementation 29

1 {

2 "records": [

3 {

4 "keys": [

5 "sessionId",

6 "count"

7],

8 "length": 2,

9 "_fields": [

10 "465ed123-6e37-4afd-29e3-f398c927c8c9",

11 {

12 "low": 85,

13 "high": 0

14 }

15],

16 "_fieldLookup": {

17 "sessionId": 0,

18 "count": 1

19 }

20 },

21]

22 }

Listing 3.5: one item of the /allsessions endpoint response.

3.2.2.6 Filter session by URL

Ensuring that the test case interacts with a specific page can also be very useful. To do so, there

is a filter that allows choosing a URL for which the sessions will be filtered. A POST request is

made to the /url endpoint (Listing 3.6), sending the wanted URL as url parameter. The API

returns every session that contains interactions made on that page.

In addition, it is possible to order the test cases depending on the value they add to the test

suite, i.e. a test case is added to the suite when it is the one that adds more different URLs to the

set of URLs. The first selected test case is the one which covers more different URLs. Then, the

following picked test case is the one which covers more different pages, without the pages covered

by the previous test case. The process is repeated successively, calculating the difference between

the URLS covered by each session and the ones covered by the already selected test cases, until

all different URLs are covered by the test suite. This structured selection process allows getting

the same coverage that the whole set of sessions would achieve with only a subset. In addition,

if there is a need to test only a part of the complete test suite, it is assured that selecting by order

from the ordered test suite, the most complete test cases reduction is being selected. To get the data

properly structured to this analysis, a request to /urlsession is needed. The response contains

all sessions and the URLs each session includes (Listing 3.7). The algorithm used to analyse this

information is explained in Pseudocode in Algorithm 1.

30 Proposed Approach

1 {

2 "records": [{

3 "keys": [

4 "sessionId"

5],

6 "length": 1,

7 "_fields": [

8 "cf48d0bf-4cc0-bc28-477c-85ec03c08d76"

9],

10 "_fieldLookup": {

11 "sessionId": 0

12 }

13 }]

14 }

Listing 3.6: one item of the /url endpoint response.

1 {

2 "records": [{

3 "keys": [

4 "sessionId",

5 "urlArray",

6 "count"

7],

8 "length": 3,

9 "_fields": [

10 "ab0b2c3b-09d2-9d67-b4e9-21275f13ff6b",

11 ["http://www.ipvc.pt/",

12 "http://www.ipvc.pt/instituicao",

13 "http://www.ipvc.pt/servicos",

14 "http://www.ipvc.pt/recursos-humanos",

15 "http://www.ipvc.pt/recursos-humanos-procedimentos-concursais"],

16 {

17 "low": 5,

18 "high": 0

19 }

20],

21 "_fieldLookup": {

22 "sessionId": 0,

23 "urlArray": 1,

24 "count": 2

25 }

26 },

27]}

Listing 3.7: one item of the /urlsession endpoint response.

3.2 Implementation 31

Data: the response of the request to /urlsession endpoint (Listing 3.7) as a set of
sessionId-URLs pairs

Result: a set of sessionIds ordered by the most diverse URLs tested
// the algorithm starts here;

1 testedUrls← [];
2 sessions← [];

foreach session in data do
if first session then

Add session.url to testedUrls ;
Add session.id to sessions ;
removeSession() // remove session from the set of total sessions ;

else
while there is different URLs to add do

foreach session in sessions to add do
getUrlsNotInUrlsToTest() // get how many URLs covered by the session
are not included in the ones already selected ;

end
orderSessionsByUrls() // order sessions by the one that tests more URLs not
covered to the one that tests less ;

3 session← getFirstSession() // get first session: the one which tests more
uncovered URLs ;

Add session.url to testedUrls ;
Add session.id to sessions ;
removeSession() // remove session from the set of total sessions ;

end
end

end
Algorithm 1: Algorithm implemented to order sessions by the URLs each one covers.

32 Proposed Approach

3.2.2.7 Order by the most common to less common sessions

One of the main goals of the analysis part of this work was to found which set of interactions,

represented by sessions, were more common in all saved data. Firstly, it was needed to understand

what common sequence could mean in this context. It was concluded that the most common

sequence is the sequence that has a higher similarity degree between itself and all of the other

sequences.

To get common sequences, since Neo4j does not provide any known method to get the most

repeated sequence, it was needed to evaluate the similarity degree of each sequence pair. Two se-

quences are similar when they share common sets [xPath, actionType, url], represented

by the pathId.

In order to calculate the similarity between two sequences of interactions, we explored first

the native algorithms provided by the Neo4j database.

Neo4j provides five algorithms in the Neo4j Graph Algorithms library to measure the similarity

between two sets: Jaccard 3, Cosine4, Pearson5, Euclidean6 and Overlap7 Similarity.

Jaccard Algorithm measures similarities between sets, being the similarity equal to the size of

the intersection divided by the size of the union of two sets. To measure overlap between two sets,

as the name denotes, the Overlap algorithm was used, which defines the similarity degree as the

size of the intersection of two sets, divided by the size of the smaller of the two sets.

However, the result of the Jaccard and Overlap algorithms is not influenced by the order that

the elements are, only by the number of repeated elements across the sets. The order is very

important in this context, once some interactions depend on the previous one. For example, if an

element is only available when a button is clicked, the action in that element depends if the button

was clicked or not. In view of the fact of these algorithms do not take into account the order of the

sequence, they are not adequate to find common sequences in this context.

On the other side, Cosine, Pearson and Euclidean evaluate the order elements appear in the

interactions set. Cosine similarity is the dot product of the two vectors divided by the product of

the two vectors’ lengths, which means the cosine of the angle between two n-dimensional vectors

in an n-dimensional space. Pearson algorithm is the covariance of the two n-dimensional vectors

divided by the product of their standard deviations. Last but not least, Euclidean distance measures

the straight line distance between two points in n-dimensional space.

However, to evaluate two sequences similarity, these algorithms require sequences with the

same length. To solve this problem, it would be necessary to pre-process the data and to fill in

the sequence with null actions to have both sequences with the same length. The changes have

to be made after getting the data since changing directly in the database would lead to a loss

of characteristics, as the original length of the sequence. Having the data changed outside the

database, it would no longer make sense to use Neo4j algorithms to analyse the data.

3https://neo4j.com/docs/graph-algorithms/current/algorithms/similarity-jaccard/
4https://neo4j.com/docs/graph-algorithms/current/algorithms/similarity-cosine/
5https://neo4j.com/docs/graph-algorithms/current/algorithms/similarity-pearson/
6https://neo4j.com/docs/graph-algorithms/current/algorithms/similarity-euclidean/
7https://neo4j.com/docs/graph-algorithms/current/algorithms/similarity-overlap/

3.2 Implementation 33

Considering that none of those solutions was adapted to our case, we tried to find an approach

that could work on the front-end side.

A request to /path endpoint (Listing 3.8) retrieves all sessions with the corresponding se-

quences of path Ids, representing all interactions of each session. The data allow comparing ses-

sions to find the similarity degree between them.

The algorithm that was found as the more suitable for this context was the Levenshtein 8

algorithm, explained in Pseudocode in Algorithm 2 9. This algorithm works as a string metric

for measuring the difference between two sequences of characters, getting the smallest number of

editions (insertions, deletions or substitutions) needed to change one string into another. That was

the type of similarity needed between two sequences. As a result, the algorithm was implemented

to use an array of integers (a sequence represented by the pathId of each node) instead of a

string.

The Levenshtein distance value is divided by the bigger sequence length, to attenuate the length

effect on the value and to get a value between 0 and 1, the percentage of how much similar

two sequences are. Two sequences with distance value equal to 1 are totally similar, while two

sequences with distance value equal to 0 are completely different. The algorithm to compare all

sessions and get the distance values between them is explained in Pseudocode in Algorithm 3.

After comparing each pair of sequences, the most common sequence is the one with the smaller

average of the distance between itself and the other sequences, what means that the average number

of transformations needed to change itself in any other sequence is the smallest one.

1 {

2 "records": [

3 {

4 "keys": [

5 "sessionId",

6 "pathArray"

7],

8 "length": 2,

9 "_fields": [

10 "465ed123-6e37-4afd-29e3-f398c927c8c9",

11 [4676, 2750, 467, 468, 7445, 7446, 7447, 7447]

12],

13 "_fieldLookup": {

14 "sessionId": 0,

15 "pathArray": 1

16 }

17 },

18]

19 }

Listing 3.8: one item of the /path endpoint response.

8https://dzone.com/articles/the-levenshtein-algorithm-1
9https://people.cs.pitt.edu/ kirk/cs1501/Pruhs/Spring2006/assignments/editdistance/Levenshtein%20Distance.htm

34 Proposed Approach

Data: sequence A (seqA) and sequence B (seqB)
Result: the value of the distance between the provided sequences
// the algorithm starts here;

1 a← length of seqA;
2 b← length of seqB;

if a equals to 0 then
return b and exit;

end
if b equals to 0 then

return a and exit
end
for i = 0 to a do

3 matrix[i,0]← i
end
for j = 0 to b do

4 matrix[0, j]← j
end
for i = 1 to a do

for j = 1 to b do
if seqA[i] equals to seqB[j] then

5 cost← 0
else

6 cost← 1
end

7 matrix[i][j]← minimum(
d[i−1, j]+1 // The cell immediately above plus 1
d[i, j−1]+1 // The cell immediately to the left plus 1
d[i−1, j−1]+ cost // The cell diagonally above and to the left plus the cost
)

end
end

8 distance← matrix[a,b] //The distance is found in the position a,b
Algorithm 2: Levenshtein algorithm.

3.2.3 Test Cases Generation

Each session is represented by the set of nodes that are associated with it. To build test cases from

the information of each session, each node is transformed in a test command.

Using test frameworks as Selenium10, it is possible to write test commands from the JSON file,

previously downloaded from the Analysis Application presented before, represented in Figure.3.4.

The conversion of JSON files to test scripts is the process that allows having the actual tests to run

in the Web application under test from which the data were retrieved. This process is represented

by the components 5 and 6 in Figure 3.1.

10https://www.seleniumhq.org/

3.2 Implementation 35

Data: the response of the request to /path endpoint (Listing 3.8) as a set of
sessionId-pathArray pairs

Result: a set of sessionIds order by the most to the less common session
// the algorithm starts here;

1 length← number of sessions;
// create an empty matrix length x length to store distance values;
for i = 0 to length do

2 matrix[i,0]← []

end
for j = 0 to length do

3 matrix[0, j]← []

end
for i = 0 to length do

for j = 0 to length do
if session[i] is equal to session[j] then

4 distance← 0 //equal sessions have no distance ;
else

5 levenshteinValue← getLevenshteinValue(session[i],session[j]) // the distance
value between sessions is calculated with the Levenshtein algorithm presented
in Algorithm 2 ;

6 distance← 1− levenshteinValue/biggerLength // the distance value is divided
by the length of the bigger session. Then it is subtracted to one to get a
percentual value ;

7 matrix[i][j]← distance;
8 matrix[j][i]← distance // the values are assigned for the inverse combination of

the same sessions to avoid duplicated effort;
end

end
end
foreach row in data do

sumDistanceByRow() // for each session is summed every distance value regarding the
other sessions ;

orderSessionsByTotalDistance() //sessions are order by the higher to the lower
distance value ;

end
Algorithm 3: Algorithm implemented to find the most common sessions.

36 Proposed Approach

The properties regarding each node are used to build a test command for each interaction. In

the following example (Listing 3.9), it is reproduced a click action. However, all the collected

actions can be played by Selenium functions. Knowing the XPath of the element, the action can

be executed exactly in the same element. The test commands can be performed in the same order

that they were made, following the position of the element on the sequence (elementPos). In

the input type of action, the value parameter provides some information about the input, useful to

reproduce the action with the most similar information possible. However, since real inputs are

not captured to keep the privacy of the user and to follow the GDPR (General Data Protection

Regulation) rules, generating proper input to reproduce the test is still a challenge.

1 driver.findElement(webdriver.By.xpath("id(\"caixa-pesquisa\")/input[@class=\"

search_texto\"]")).click();

Listing 3.9: example of a Selenium test command written in JavaScript.

3.2.4 Technologies

To store data, it is used a graph database: Neo4j 11, with native graph storage and processing.

A graph database is more focused on data relationships because it treats the relationship as data

(not like structure as relational databases do), allowing you to query data relationships in real-time

using Cypher, Neo4j’s query language. In addition, Graph databases lead to a more flexible model,

making changes to the model an easier task with less impact than in other kinds of databases [50].

Each record in the database is saved as a node, as it can be seen in Figure 3.3. This visual browser

is interesting, allowing us, in this work context, to distinguish sessions and see the connections

between their interactions.

In order to access the database, Neo4j provides an official driver to connect via an HTTP

request. A Node.js application was created to implement the Neo4j driver. Node.js executes

JavaScript 12 outside the browser, allowing to server-side scripting. In addition, it was used Ex-

press 13, a minimal and flexible Node.js Web application framework, which helps to create Web

applications and APIs. In this environment, it was possible to implement the Neo4j driver and

configure it to access the database. After that, using the Express framework, the endpoints were

created: the ones needed to retrieve information from the database and the ones to save the us-

age data. Both applications, to collect data and to analyse it, were built using the same referred

technologies.

Javascript is an interpreted programming language with object-oriented capabilities. It allows

not only the user to interact with the Web page, but also the Web browser to be controlled and

content to be changed. The official name of the language stands for ECMAScript. This was the

11https://neo4j.com/
12https://developer.mozilla.org/en-US/docs/Web/JavaScript
13https://expressjs.com/

3.2 Implementation 37

chosen language to develop the script to save the data since it was needed that the script ran on the

client-side, in a Web browser, to retrieved and process the information needed [17].

Furthermore, to build the Analysis application (Figure 3.4), which provides the filters to select

test cases, it was used React 14. React is a Javascript library which helps to create interactive UIs,

managing the render of components in a very efficient way, just rendering the right components

according to state changes. This library allows organizing the UI code into components, providing

methods to easily pass data through them. In addition, it was used Material UI 15, a React UI

framework. Implementing Google’s Material Design, this framework provides styles, themes and

native components to help to build a consistent application.

Git Hub 16, a Web-based hosting service using Git, was used for version control.

Both APIs and the analysis application were installed and, during this investigation, were run-

ning on a server provided by the Software Engineering Laboratory, in the Faculty of Engineering

of the University of Porto. The process to install and access is explained in the Installation Manual

in Appendix C.

14https://reactjs.org/
15https://material-ui.com/
16https://github.com/

38 Proposed Approach

Chapter 4

Validation and Results

This chapter is devoted to our case study. The results obtained by using MARTT are analysed and

some conclusions are presented.

In the first section, Section 4.1, the case study is introduced. Then, in Section 4.2, it is widely

presented how interactions are spread by the different pages, getting the most visited pages, used

as a subset for further analysis. In the third section, the coverage is analysed, focusing on the

elements of the page and presenting the coverage of the elements, either interactive or not, in a

small sample. Then, in Section 4.4, it is studied how much sessions from the whole set are needed

to reach maximum coverage, i.e the same coverage achieved executing all captured sessions. This

analysis is made regarding Path IDs (4.4.1) and URLs (4.4.2). The last section, Section (4.5) sums

up the most important results and compares the three approaches between them.

4.1 Case Study

MARTT was applied on the website of the Polytechnic Institute of Viana do Castelo 1. It is a

website used by everyone who wants to know more about the institute, as well as by students

who want to access the pages of the schools that are part of the institute. The script to collect

data was included only in the public pages of the institute, not including schools individual pages

neither private access areas. That means that only the pages under the (ipvc.pt/) domain were

analysed.

The data was collected from 8.30am on the 8th April 2019 to 12 am on the 19th of April 2019.

In total, 18124 interactions were saved, which leads to 4900 different sessions.

4.2 Interactions

In a universe of 18124 interactions, 38.61% of the total interactions are performed only in the

1% most visited URLs, represented by 11 pages. This subset was selected from the most visited

set, represented in Table 4.1. The first 11 most visited URLs of the 1111 different ones that were

1http://www.ipvc.pt/

39

40 Validation and Results

0 20 40 60 80 100
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
·104

% URLs

In
te

ra
ct

io
ns

Figure 4.1: Relationship between the percentage of URLs order by most visited sessions and the
number of collected interactions

saved during the process of collecting data are responsible for more than one-third of all retrieved

interactions.

As might be expected, the homepage is the page with the higher total of collected interactions:

16.29% of the total interactions were performed on the first page (http://www.ipvc.pt/). As

it can be observed in the Figure 4.1, at 40% of the most visited URLs, the number of interactions

almost reaches the total of interactions, being 92% of the total captured interactions already per-

formed. This means that the major part of the interactions is performed mainly in a small group of

pages. However, the coverage of the pages will be deeper presented in the following section 4.4.2.

4.3 Elements

In this section, the focus is on the HTML elements presented on the page, either static or interac-

tive. The purpose is to understand, in a small sample (1% most visited URLs), how the different

type of elements are covered by the tests and the degree of their coverage, comparing the number

of collected elements with the actual elements present in the pages.

Analyzing the number of elements that each page has and the number of elements that test

cases would interact with, it can be concluded, by observing the data represented in Table 4.2, that

the relationship between the number of tested elements and the URLs is not linear, at least not in

the 1% most visited pages. In Figure 4.2, you can notice the irregularity of the interactive elements

covered percentage. However, the higher percentage of tested elements, either interactive or not,

matches with the most visited URL. The lowest percentage of interactive elements is found in the

9th URL. This page is one of the pages which have fewer interactive elements. Since it is a mainly

informative page and not a much interactive page, users probably interact less with it, explaining

why the percentage of coverage is lower than on the other pages. However, even in the other pages,

4.3 Elements 41

Order URL Interactions

1 http://www.ipvc.pt/ 2952

2 http://www.ipvc.pt/m23-provas 630

3 http://www.ipvc.pt/servicos-web 547

4 http://www.ipvc.pt/instituicao 467

5 http://www.ipvc.pt/licenciaturas 429

6 http://www.ipvc.pt/mestrados 404

7 http://www.ipvc.pt/estudar-no-ipvc 376

8 http://www.ipvc.pt/ctesp 369

9 http://www.ipvc.pt/conselho-geral 354

10 http://www.ipvc.pt/mais-23anos 250

11 http://www.ipvc.pt/candidato 220

12
http://www.ipvc.pt/mestrado-
enfermagem-medico-cirurgica

206

13 http://www.ipvc.pt/contacto 190

14 http://www.ipvc.pt/pos-graduacoes 162

15 http://www.ipvc.pt/pesquisa 161

16
http://www.ipvc.pt/recursos-humanos-
procedimentos-concursais

153

17
http://www.ipvc.pt/maiores-23-
candidaturas-2019-20-2-fase

144

18 http://www.ipvc.pt/calendario-escolar 144

19
http://www.ipvc.pt/eleicao-presidente-
admissao-definitiva-candidaturas-2019

142

20
http://www.ipvc.pt/formacao-
especializada

128

21
http://www.ipvc.pt/candidaturas-
estudante-internacional-2019-20-2-
fase

117

22
http://www.ipvc.pt/maiores-23-anos-
resultados-seriacao

114

23 http://www.ipvc.pt/viver-no-ipvc 110

24
http://www.ipvc.pt/mestrado-gestao-
organizacoes

102

Total 8871
Table 4.1: Most visited URLs

42 Validation and Results

Order URL Total Int.
Total
Tested

Int.
Tested

%
Tested

% Int.
Tested

1 http://www.ipvc.pt/ * 1302 140 259 114 19.89% 81.43%

2
http://www.ipvc.pt/m23-
provas

941 171 79 64 8.39% 37.42%

3
http://www.ipvc.pt/servicos-
web *

788 103 93 32 11.80% 31.07%

4 http://www.ipvc.pt/instituicao 804 106 68 42 8.45% 39.62%

5
http://www.ipvc.pt/licenciaturas
*

910 125 69 38 7.58% 30.40%

6
http://www.ipvc.pt/mestrados
*

956 134 68 35 7.11% 51.47%

7
http://www.ipvc.pt/estudar-
no-ipvc

657 95 41 27 6.24% 28.42%

8 http://www.ipvc.pt/ctesp * 961 134 74 43 7.70% 32.09%

9
http://www.ipvc.pt/conselho-
geral

857 99 73 16 8.51% 16.16%

10
http://www.ipvc.pt/mais-
23anos

848 129 38 31 4.48% 24.03%

11 http://www.ipvc.pt/candidato 811 111 49 38 6.04% 34.23%

Total 9835 1347 911 480 8.74% 36.94%

Table 4.2: Elements tested on each URL of the 1% most visited subset

excepting the homepage, the coverage does not reach very high values. The interactive elements

that pages have are mainly links to other pages, so the users likely interact with only a few of them,

since the purpose of most of the pages is to be informative and static.

From the total number of different elements, i.e different XPaths, it was selected the interactive

elements: anchors, buttons and inputs. The data presented in the Table 4.2 shows, for the 11 most

visited URLs, the number of total elements, the selected interactive elements, the total and the

interactive elements collected covered by the tests, the percentage of elements and interactive

elements tested for each URL. It is important to notice that all of these pages have three hidden

inputs that prevent, from the beginning, to achieve total coverage.

After retrieving all the elements, we noticed that some pages had more elements tested than

exist on the page. That led to a deeper investigation that revealed that some elements of the

ipvc.pt have dynamic classes that are composed by a random ID generated each time the page

is loaded. It is usually a development decision when a list is rendered and there is a need for

different keys in each item. This means that the XPath of these elements will be changing every

time, leading to different XPaths and consequently interpreted as different elements. To solve this

problem, the data was pre-processed before being analysed to remove that random ID. URLs in

which this process occurred are marked in the Table 4.2 with an asterisk.

4.4 Test Suite Reduction 43

1 2 3 4 5 6 7 8 9 10 11
0

20

40

60

80

100

81.43

37.42
31.07

39.62
30.4

51.47

28.4232.09

16.16
24.03

34.23
%

of
te

st
ed

el
em

en
ts

Figure 4.2: Relationship between the 1% most visited URLs subset and the percentage of interac-
tive tested elements

4.4 Test Suite Reduction

Testing all sessions is not feasible. So, prioritization is important to select a subset of test cases

with maximum possible coverage in order to reduce the effort and costs of testing. With test suite

reduction we can achieve the same coverage as when executing all sessions. In this section it

will be presented three different ways of selecting test cases: selecting test cases based on most

common sessions, selecting test cases based on how diverse test sessions are and selecting test

cases randomly. The three methods will be applied and analysed regarding Path IDs and URLs.

4.4.1 Path ID

The next proposal present here is still focused on the elements, however, instead of focus only on

the XPath of the elements, it is focused on Path ID, in order to represent the whole action. The test

cases were selected using the Analysis App, presented in the previous chapter, and the coverage

of the collected sessions was analysed by selecting the tests following three different approaches:

ordered by most common sessions, ordered by the sessions that test more diverse Path IDs and

Random approach. In this section, the value used as a reference to analyse the coverage will be

the number of total different collected Path IDs: 8333.

4.4.1.1 Order by Most Common Sessions

Ordering the test cases by the most common to the less common session, it can be concluded

that the total coverage of the collected Path IDs can only be achieved when running the 4900 test

cases. As it can be seen in Figure 4.3 and in Figure 4.4, the most common sessions test a very

small number of Path IDs. To achieve 50% of coverage, it would need to run at least 60% of

the test cases ordered by this method. This happens due to the short length of the most common

sessions.

44 Validation and Results

To improve the coverage results, the test cases were not only ordered by most common sessions

but also filtered by length, getting different results. Choosing only sessions with more than 5

nodes, it is possible to achieve 29.27% of coverage of the Path IDs with 490 tests (10% of the

previously analysed test suite), however, without reaching total coverage. The total selected tests

with more than 5 interactions - 1090 test cases - would cover 70.91% of the total collected Path

IDs. If the sessions are filtered by more than 10 nodes by session, the maximum coverage is

46.70% with 380 test cases, even fewer test cases than the 490 considered before. Although this

combination of filters does not lead to total coverage, it leads to higher coverage with fewer test

cases. So, it may fit testing needs, depending on the coverage goal and what is intended by the

testing team or product goals.

0 10 20 30 40 50 60 70 80 90 100
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,0008,333

% of tests order by most common sessions

Pa
th

ID
s

Figure 4.3: Relationship between the percentage of the total tests ordered by most common ses-
sions and the number of total covered Path IDs

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

% of tests order by most common sessions

%
Pa

th
ID

s

Figure 4.4: Relationship between the percentage of the total tests ordered by most common ses-
sions and the percentage of total covered Path IDs

4.4 Test Suite Reduction 45

4.4.1.2 Order by Diverse Path ID

This approach aims to select test cases based on the Path IDs that they test, using the Diverse

filter, available on the Analysis App. Ordering the test cases by the value they bring to the test

suite allows reaching better results with fewer test cases, removing redundant sessions that are

not testing different elements. This method was previously explained in section 3.2.2.4 of the

Proposed Approach chapter 3.

As represented in Figure 4.5 and in Figure 4.6, the total coverage of the collected Path IDs

is achieved with 53.63% of the 4900 sessions, what leads to 2628 test cases. As we can see in

Figure 4.7, with 10% of the test cases it is already possible to achieve 42.44% of coverage of the

considered Path IDs. With half of the test suite, 83% of the Path IDs are covered.

0 10 20 30 40 50 60 70 80 90 100
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,0008,333

% of tests order by diverse URLs

Pa
th

ID
s

Figure 4.5: Relationship between the percentage of the total tests ordered by Diverse Path ID and
the number of total covered Path IDs

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

% of tests order by diverse Path Ids

%
Pa

th
ID

s

Figure 4.6: Relationship between the percentage of the total tests ordered by Diverse Path ID and
the percentage of covered Path IDs

46 Validation and Results

Suite Total Covered Path IDs
10%* 20%* 30%* 40%* 50%* 60%* 70%* 80%* 90%* 100%*

1 2913 941 1863 2700 3514 4363 5248 5930 6736 7623 8333

2 2908 1063 1934 2750 3675 4506 5284 6101 6814 7581 8333

3 2923 956 1878 2639 3490 4392 5245 6028 6855 7593 8333

4 2922 799 1730 2598 3369 4257 5079 5952 6759 7509 8333

5 2909 886 1765 2550 3271 4187 5061 5885 6756 7527 8333

6 2910 949 1836 2844 3656 4472 5233 6017 6773 7578 8333

7 2903 1008 1891 2690 3584 4343 5171 5950 6733 7570 8333

8 2932 975 1929 2802 3522 4281 5126 5979 6800 7578 8333

9 293 1932 1889 2715 3662 4493 5358 6126 6861 7668 8333

10 2905 935 1816 2791 3539 4356 5227 5997 6826 7587 8333

x 2916 944 1853 2708 3528 4365 5203 5997 6791 7581 8333

σ 10,60 69,92 66,94 93,24 130,04 105,10 93,29 74,83 46,89 44,41 0

*Percentage of the total test cases of each test suite.
Table 4.3: Path IDs tested on each suite generated by the Random approach.

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

% of tests order by diverse Path IDs

%
Pa

th
ID

s

Figure 4.7: Relationship between the percentage of the selected tests ordered by Diverse Path ID
and the percentage of covered Path IDs

4.4.1.3 Random Approach

The Random approach aims to pick randomly a session, get the Path IDs covered by the session,

and add it to the test suite. To have consistent results, 10 test suites were generated and analysed,

which results are presented in Table 4.3.

Analyzing the coverage with the average of the data retrieved in the 10 test suites, we conclude

that 100% of coverage is achieved when 59.48% of test cases are performed. The Figure 4.8 and

Figure 4.9 represent the test cases selected randomly and their coverage. It actually improves

linearly, as it is proved in Figure 4.10.

4.4 Test Suite Reduction 47

0 10 20 30 40 50 60 70 80 90 100
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,0008,333

% of tests randomly chosen

Pa
th

ID
s

Figure 4.8: Relationship between the percentage of tests randomly chosen and the number of
covered Path IDs

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

% of tests randomly chosen

%
Pa

th
ID

s

Figure 4.9: Relationship between the percentage of tests randomly chosen and the percentage of
covered Path IDs

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

% of tests randomly chosen

%
Pa

th
ID

s

Figure 4.10: Relationship between the percentage of selected tests randomly chosen and the per-
centage of covered Path IDs

48 Validation and Results

4.4.2 URLs

To get all URLs of the application under test, the wget tool2, a free software package for retrieving

files from Web pages was used and 17865 pages were retrieved. Therefore, this data was analysed

next: all the GET parameters sent on URLs were removed as well as the pages that lead to files

(such as images or pdf files). Finally, 4612 different URLs were obtained under the ipvc.pt

domain. The total saved interactions would span 1111 different URLs, according to the collected

data. That leads to a 24.01% coverage.

However, from the 4612 pages, 1067 URLs belong to the calendar, since each day view is

represented by one different URL, as well as each week, month or year present on the calendar.

Although URLs are different, the page structure is the same between each type. So that, if we only

considered four different pages, one for each time unit, instead of 1067, the coverage will raise

to 31.30%. From the collected data, there is no interaction in any of the calendar pages, which

denotes that the calendar area is not much visited by the users.

The node section represents a similar problem. There are pages with the same structure which

URL keeps the following structure: http://www.ipvc.pt/node/2579, changing only the

ID on the end of the URL. From the 4612 URLs explored, 1410 seem to represent the equal

structured page, varying only on the left-sided menu, having two different versions. If we only

considered two pages, one for each menu version, the coverage increases to 51.89%. There are

125 interactions on this type of pages on our collected data, representing 11 different news URLs.

Furthermore, it was found that there are more equal structured pages, however, without the same

URLs structure that was previously referred. This makes us believe that there are more pages in the

2150 left pages with the same structure that, if removed, would lead to a coverage improvement.

Unfortunately, since we do not have this kind of information, it is not possible to make this deeper

analysis.

Next, it will be presented three different approaches that were followed in order to select test

cases according to different criteria - most common sessions, sessions that test more diverse URLs,

Random approach - and analyse the respective coverage of the collect URLs (1111). This process

is similar to the one followed to analyse the Path IDs coverage.

Moreover, it was selected a subset of the most visited URLs, choosing the ones which have

more than 100 interactions. As a result, we have a set of 24 URLs, presented in the Table 4.1,

that will be used to analyse the coverage of our tests in this smaller sample, representing the most

visited pages.

4.4.2.1 Order by Most Common Sessions

Firstly, test cases were ordered by the most common session to the less common one. Only when

testing the 4900 possible sessions, the 1111 collected URLs are covered. As it can be noticed in

the graphs, Figure 4.11 and Figure 4.12, the result is close to linear, which means that, for instance,

50% of the tests leads close to 50% URLs coverage.

2https://www.gnu.org/software/wget/

4.4 Test Suite Reduction 49

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1,000
1,111

% of tests order by most common sessions

U
R

L
s

Figure 4.11: Relationship between the percentage of total tests order by most common session and
the number of covered URLs

In addition, since the most common sessions are usually very small (easier to be most per-

formed), not allowing to go through many different pages, we filtered sessions by length, which

combined with the most common order result in different conclusions. For instance, selecting

from the most common sessions, the ones whose length is bigger than 5 interactions achieve a

74.7% coverage (830 in 1111 URLs) with 1089 tests cases. If we increase the length limit to 10,

with 381 test cases, it is possible to achieve 58.7% coverage (652 in 1111 URLs).

Moreover, focusing on the most common subset of URLs, represented in Table 4.1, we can

achieve the total coverage, 100% of the 24 pages, with 165 sessions bigger than 5 interactions.

The total coverage is reached with 41 test cases bigger than 10 nodes. Without length filter, the 24

URLs will be covered after 984 tests (20.08% of total tests). While the length filter does not allow

to achieve total coverage on the total set of URLs, in this subset, the results are improved when

applied the filter.

4.4.2.2 Order by Diverse URLs

Secondly, if we use the Diverse URLs function of the analysis tool to order the test cases, we get

a differently ordered test suite. This approach aims to select test cases depending on the value

they add to the test suite, i.e a test case is added to the suite when is the one that adds more

different URLs to the set of URLs covered by the already selected test cases. Redundant sessions

are removed from the test suite, allowing to test the same pages with fewer test cases.

As we can see in the Figure 4.13 and in the Figure 4.14, with only 10.4% of the total test

cases (4900), which means 510 test cases, we achieve total coverage of the 1111 collected URLs.

Focusing on the subset of most visited URLs, it is possible to achieve the coverage of the 24 pages

with 73 test cases (1.48% of the total sessions). In Figure 4.15, we can see the URLs distribution

by the 510 test cases that lead to total coverage of the collected pages. Actually, almost half of the

URLs are tested with less than 20% of the 510 tests.

50 Validation and Results

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

% of tests order by most common sessions

%
U

R
L

s

Figure 4.12: Relationship between the percentage of total tests order by most common session and
the percentage of covered URLs

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1,000
1,111

% of tests order by diverse URLs

U
R

L
s

Figure 4.13: Relationship between the percentage of total tests ordered by Diverse URLs and the
number of total covered URLs

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

% of tests order by diverse URLs

%
U

R
L

s

Figure 4.14: Relationship between the percentage of total tests ordered by Diverse URLs and the
percentage of covered URLs

4.4 Test Suite Reduction 51

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

% of tests order by diverse URLs

%
U

R
L

s

Figure 4.15: Relationship between the percentage of the selected tests ordered by Diverse URLs
and the percentage of covered URLs

4.4.2.3 Random Approach

Last but not least, the Random approach selects, randomly, a session to add to the test suite. This

technique revealed interesting results, since it reaches the total coverage of the collected pages

with 14.8% test cases, which means 725 test cases of the 4900 possible sessions, as it is presented

in Figure 4.16 and in Figure 4.17. Focusing on the selected test cases, represented in Figure 4.18,

we can notice a graph very close to a linear graph.

Analyzing the coverage of the subset of the most visited (Table 4.1), it can be concluded that,

with 123 test cases, the 24 URLs would be covered, representing only 2.51% of the total sessions.

This Random approach can origin different test suites, with slight differences, every time a

new one is created. In order to get representative data, 10 test suites were created and retrieved the

coverage of each one, from 10% to 10%, allowing us to compare the values across the 10 suites

in 10 points through them. These values are represented in the Table 4.4. The final values were

calculated as the arithmetic mean of the values for the 10 suites. Only these values were used to

build the graphs and to make conclusions about this technique.

In general, the number of covered URLs in each percentage of test cases is very close between

test suites. That can be proved by calculating the standard deviation, which shows a small range of

values. Standard deviation is higher in the subset of the most visited URLs because we are looking

for specific things. Since the test cases are randomly selected, these specific URLs can actually

appear at any order in the test suite.

52 Validation and Results

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1,000
1,111

% of tests randomly chosen

U
R

L
s

Figure 4.16: Relationship between the percentage of tests randomly chosen and the number of
covered URLs

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

% of tests randomly chosen

%
U

R
L

s

Figure 4.17: Relationship between the percentage of total tests randomly chosen and the percent-
age of covered URLs

4.5 Summary 53

Suite Tests Covered URLs
Total Set** 10%* 20%* 30%* 40%* 50%* 60%* 70%* 80%* 90%* 100%*

1 725 104 145 267 377 498 610 699 802 911 1019 1111

2 728 189 137 266 389 504 604 697 797 896 1008 1111

3 751 166 141 244 341 451 556 665 785 907 1008 1111

4 737 135 128 261 376 488 599 704 811 924 1018 1111

5 706 80 146 256 381 513 624 728 819 916 1016 1111

6 725 89 145 276 406 515 614 715 816 911 1018 1111

7 726 183 139 243 397 511 611 716 822 924 1022 1111

8 721 149 132 253 382 493 607 712 817 926 1027 1111

9 715 68 144 259 364 501 617 717 809 919 1013 1111

10 722 72 131 277 403 520 615 721 820 909 1018 1111

x 725 123.5 138 269 381 499 605 707 809 914 1016 1111

σ 12.10 42.96 6.90 10.48 18.55 19.44 18.73 17.60 11.40 9.60 6.55 0

*Percentage of the total test cases of each test suite.
** The most visited pages subset, represented in Table 4.1.

Table 4.4: Elements tested on each URL of the 1% most visited set

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

% of tests randomly chosen

%
U

R
L

s

Figure 4.18: Relationship between the percentage of the selected tests randomly chosen and the
percentage of covered URLs

4.5 Summary

The coverage in www.ipvc.pt is not very high because this Web site has a lot of historic infor-

mation, collecting a lot of not visited and old pages. The way the Web site is organized also ends

in a lot of different URLs. In fact, the structure and the amount of data can impact our results.

Since it was difficult to collect usage data in all pages as well as to interact with all elements, the

test coverage is affected by that.

Focusing in the 11 most visited URLs we can notice by observing the data represented in Table

4.2 that the interactive elements coverage is not very high since the average for that URLs subset is

54 Validation and Results

Approach Path IDs URLs
All Subset

Common 100% 100% 20.08% (0.84%)
Diverse 53.63% 10.4% 1.48%
Random 59.48% 14.8% 2.51%

Table 4.5: Percentage of tests to achieve total coverage following different approaches

36.94%. Pages are mostly informative and the interactive elements that they have are mainly links

to other pages, so the users likely interact with only a few of them, explaining why the percentage

of coverage is not very high. After pre-processing URLs, the maximum pages coverage achieved

was 24.01%, which means that we only have collected data in 24.01% of the pages.

After that, we considered only captured data to get the coverage of the generated test cases

against the retrieved data during the capture process. Considering all Path IDs and URLs collected,

from the three different approaches presented (Common, Diverse and Random), the Diverse ap-

proach was the one which achieves total coverage with fewer test cases, either on elements and

pages. Since this solution analyses which test case brings more value to add to the test suite before

adding any, it would be expected that it would achieve better results. With 53.63% of the total ses-

sions, it would be possible to achieve total coverage of the Path IDs. URLs would all be covered

with only 10.4% of test cases.

The proposal that aims to order test cases by common sessions always needs to run the total

tests in order to get 100% of coverage. This can be explained by the existence of some interac-

tions, not much performed, that by being uncommon stand at the end of the test suite, preventing

from achieving total coverage before running the last test cases. That can explain why Random

approach performs better, because the less common sessions have a higher chance of being per-

formed before, achieving first the total coverage. Actually, the Random approach achieves results

much close to the Diverse approach, with less effort to build the test suite. These values are

centralized in the Table 4.5.

However, in the most visited subset, the total coverage is achieved with fewer test cases when

ordered by the most common session and combined to a length filter. Since it is only considered

a set of items, there is no need to perform the whole test suite to achieve particularly uncommon

interactions. This proves that each approach has its own target, depending on the testing goal and

the acceptable effort, i.e the number of test cases intended to run.

When we only focus on the collected data, we could see that it is possible to achieve high

levels of coverage, even total, without great effort, using the most suitable approach to select test

cases. So, the coverage actually depends on the collected usage: the richer collected data is, the

easier is to achieve high coverage of the application.

Chapter 5

Conclusions and Future Work

In this work, we were motivated by finding a way of generating automated GUI tests with less

effort, trying to fight one of the main reasons why companies still rely on manual testing: to

avoid taking time on learning how to use tools, building models or scripts and maintaining them.

However, adopting automated tests allow running them every time the application changes, having

a stronger quality control than when performing manual testing. We presented MARTT - Mining

Automated Regression Testing Tool: a solution which generates automated GUI tests for Web

applications based on real usage, properly adapted to the application needs and reflecting real

users behaviour.

This document has presented the state of the art regarding automated GUI test cases generation

techniques and regression testing, focusing especially on usage information and on generating test

cases approaches that use it to derive test cases. Trying to provide some context to this work, the

state of the art started by presenting four methods to generate automated GUI tests: random testing,

capture and replay, scripting and model-based testing. We proposed to include our approach in

model-based testing techniques, considering our captured usage data set as a model since we

analyse that data and select the most important subsets with the purpose of generating test cases

from that. After that, usage information was outlined, presented the two main methods to collect

information: in the server side or in the client side, by Web server logs or by page tagging method,

accordingly. To conclude the state of the art, it is provided context about regression testing process

and its three main phases: test case generation, test case prioritization and test case execution. It

is important to notice that we only focused on test case generation techniques based on usage

information since they are the ones closest to our approach.

Focusing on how MARTT was implemented, three main phases were described. The first one

relies on capturing data needed to generate test cases, depending on the client-side script (respon-

sible for collecting data) and the API (responsible to communicate with the database to save the

collected interactions). Then, in a second phase, the data is analyzed according to defined criteria

55

56 Conclusions and Future Work

with the purpose of selecting efficient and useful test cases from the whole test sessions collected.

Lastly, in the third phase, test scripts are generated from the files retrieved in the previous step.

The databased used in this work was Neo4j: a graph database with native graph storage and

processing. It was useful since the saved data have strong relationships and querying them was

more intuitive. The visual browser that Neo4j provides is really interesting because the nodes ap-

pear connected by session, giving knowledge about sessions just at a first glance. At the beginning

of this work, Neo4j seemed a better option when compared with a relational database. Indeed, the

way data is modelled would not fit properly in a relational database and the model would have to

be adapted. The only limitations of Neo4j were in Neo4j algorithms library that did not allow us

to analyse the data in a way we expected to do: extracting the most common sessions easily. To

solve that problem, we implemented the Levenshtein algorithm to get the most common sessions.

In order to validate our work, we applied it on a real Web application 1. The results were pre-

sented in chapter 4. We analysed the global pages coverage and have achieved a maximum value

of 24.01%, after having pre-processed URLs, joining the ones with the same structure. Selecting

the 11 most visited URLs and calculating the coverage of their elements, we can conclude that,

because pages are mostly informative and static, the elements coverage is not very high, resulting

in an average cover of 36.94%.

The deeper coverage study presented was regarding Path IDs and URLs collected. It was

used three different approaches to calculate test cases coverage against the captured data: select

test cases according to the most common sessions, select test cases according to the most diverse

items they test or select randomly. We noticed that the better approach to achieve total coverage,

either on Path IDs or URLs, was the Diverse approach since it chooses the test case according

to the value it adds to the test suite, comparing it to the ones that were already selected. The

random approach revealed good results since test cases are selected without none criteria, staying

behind Diverse approach by a slight difference. The approach which selects test cases based on

the most common sessions only achieve total coverage when running all test cases. However, it

suits better to the scenario which considers a subset of most common URLs. We could conclude

that the coverage actually depends on the collected usage. If the captured data represent the whole

website, it is easy to achieve high coverage when executing the selected test cases.

After the investigation concluded we are able to answer the research questions proposed on

problem section (1.3).

• RQ1. Are we able to generate an executable test suite from real usage data?

yes, we are. The case study validated our work, meeting the goal of having test cases

generated after retrieving real data from the http://www.ipvc.pt/.

• RQ2. How much coverage of the application, regarding pages, can we get with all
sessions?

The coverage achieved was 51.89% considered the same structured pages as one and 24.01%

without processing the data. This means that the captured interactions were performed in
1http://www.ipvc.pt/

Conclusions and Future Work 57

24.01% of the pages. The structure and nature of the application that was under test did not

help to reach more pages. This approach would get better results in applications that are

widely covered by the users when interacting with it. More different collected data means

more application coverage.

• RQ3. How efficient is the reduction of test cases based on the collected sessions, re-
garding elements and pages coverage?

The reduction of test cases was especially efficient using the Diverse approach since, with

53.63% of the whole test cases we can achieve the same Path ID coverage as when executing

all sessions. Regarding URLs, with only 10.4% of total test cases, we can cover the same

pages as it would be achieved with all test sessions.

Our study may not be completely free of errors. Regarding internal validity, we have used a

Web site, “IPVC”, that has some particularities. For instance, dynamic behaviour associated to

the XPath, which means that the same element may be identified differently in different sessions.

This has an impact on the elements coverage analysis. In order to mitigate this problem, we have

performed a pre-processing that had removed dynamic IDs from the XPath of elements affected

by this dynamic behaviour. Also, when parameters are passed through the URL, some Web pages

may be detected as distinguish pages. This may have an impact on the URL coverage analysis. To

mitigate this problem we have removed the parameters from the URLs.

Regarding external validity, our results may not generalize to other Web sites. In particular,

if the Web site under analysis has a different nature, for instance, with less historical data related

to older news, the results achieved may be different. In this particular case, we would expect

to exercise a higher percentage of interactive UI elements. We could mitigate this problem by

filtering URLs with old content and remove them from the URL coverage analysis. We did not

perform that mitigation action because the Web site used is public, we are not the owners of the

Web site, and we do not have this type of information, neither a way to get it.

In this work we used XPath, but we had some problems with dynamic IDs generated each

time the application was reloaded, led to equal elements with different XPaths. The data were

processed to reducing the impact of this issue. As future work, we would like to improve the

way GUI elements are identified to deal better with dynamic behaviour. The way inputs are being

captured may also be improved. If the input type was saved, generating test inputs when running

the test script would be an easier and not so vague process since we would have information like

number, month, email that would help. However, it is important to have in mind that no personal

information must be disclosed.

The application that allows filtering the test cases could also be improved, not only the UI

but also more features could be added: file download could be made all at the same time when

more than one test cases are selected, instead of having individual downloads; sessions could have

a preview mode before being downloaded, to help tester to select the more suitable ones; more

algorithms to find most common sessions could be added.

58 Conclusions and Future Work

References

[1] A. Abdurazik and J. Outt. Using UML Collaboration Diagrams for Static Checking and
Test Generation. Proceedings of the 3rd International Conference on the Unified Modelling
Language, page 383–395, 2000.

[2] E. Alégroth. Random Visual GUI Testing: Proof of Concept. In SEKE, 2013.

[3] D. Amalfitano, A. R. Fasolino, P. Tramontana, and N. Federico. Rich Internet Application
Testing Using Execution Trace Data. 2010 Third International Conference on Software Test-
ing, Verification, and Validation Workshops, pages 274–283, 2010.

[4] P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge University Press,
One edition, 2008.

[5] M. Barnett, K. Leino, M. Rustan, and W. Schulte. The Spec# Programming System: An
Overview. In Proceedings of the 2004 International Conference on Construction and Analy-
sis of Safe, Secure, and Interoperable Smart Devices, pages 49–69, Berlin, Heidelberg, 2005.
Springer-Verlag.

[6] M. Benedikt, J. Freire, and P. Godefroid. VeriWeb: Automatically Testing Dynamic Web
Sites. In Proceedings 11th International Conference on World Wide Web WWW02, page
654–668, 2002.

[7] A. Bertolino, E. Marchetti, and H. Muccini. Introducing a Reasonably Complete and Coher-
ent Approach for Model-based Testing. Electronic Notes in Theoretical Computer Science
116, page 85–97, 2004.

[8] International Software Testing Qualifications Board. Regression testing. Available at
http://glossary.istqb.org/search/regression%20testing, November 2018.

[9] I. Burnstein. Practical Software Testing. Springer, first edition, 2003.

[10] Y. Chen, R. Probert, and D. P. Sims. Specification-based Regression Test Selection with
Risk Analysis. In Proceedings of the 2002 Conference of the Centre for Advanced Studies
on Collaborative Research, CASCON ’02, pages 1–14. IBM Press, 2002.

[11] V. Dallmeier, B. Pohl, M. Burger, M. Mirold, and A. Zeller. WebMate: Web Application Test
Generation in the Real World. In 2014 IEEE Seventh International Conference on Software
Testing, Verification and Validation Workshops, pages 413–418, 2014.

[12] W. Dickinson, D. Leon, and A. Podgurski. Finding failures by Cluster Analysis of Execution
Profiles. Proceedings - International Conference on Software Engineering, pages 339–348,
2001.

59

60 REFERENCES

[13] S. Elbaum, S. Karre, and G. Rothermel. Improving Web Application Testing With User Ses-
sion Data. In 25th International Conference on Software Engineering, 2003. Proceedings.,
pages 49–59, May 2003.

[14] A. M. Fard, M. Mirzaaghaei, and A. Mesbah. Leveraging Existing Tests in Automated
Test Generation for Web Applications. In Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering, ASE ’14, pages 67–78, 2014.

[15] J. Fernandes and A. D. Fonzo. When to Automate Your Testing (and When Not
To). Available at https://www.oracle.com/technetwork/cn/articles/when-to-automate-testing-
1-130330.pdf, December 2018.

[16] L. Fernandez-Sanz and S. Misra. Practical Application of UML Activity Diagrams for the
Generation of Test Cases. Proceedings of the Romanian Academy - Series A: Mathematics,
Physics, Technical Sciences, Information Science, 13:251–260, 07 2012.

[17] D. Flanagan. JavaScript: The Definitive Guide. O’Reilly Media, Inc., Third edition, 2014.

[18] S. Gnesi, D. Latella, and M. Massink. Formal Test-case Generation for UML Statecharts.
Proceedings of the 9th IEEE International Conference on Engineering Complex Computer
Systems Navigating Complexity in the e- Engineering. Vol. 42, page 75–84, 2004.

[19] N. Gupta, V. Yadav, and M. Singh. Automated Regression Test Case Generation for Web
Application. ACM Computing Surveys, 51(4):1–25, 2018.

[20] P. Haar and D. Michaëlssion. Automated GUI Testing: A Comparison Study With A Mainte-
nance Focus. PhD thesis, Chalmers University of Technology and University of Gothenburg,
SE-412 96 Gothenburg Sweden, 2018.

[21] J. Hao and E. Mendes. Usage-based Statistical Testing of Web Applications. In Proceedings
of the 6th International Conference on Web Engineering, ICWE ’06, pages 17–24, New York,
NY, USA, 2006. ACM.

[22] M. J. Harrold, R. Gupta, and M. L. Soffa. A Methodology for Controlling the Size of a Test
Suite. ACM Transactions on Software Engineering and Methodology, 2(3):270–285, 1993.

[23] S. Jain, R. Rawat, and B. Bhandari. A survey Paper on Techniques and Applications of Web
Usage Mining. In 2017 International Conference on Emerging Trends in Computing and
Communication Technologies (ICETCCT), pages 1–6, 2017.

[24] U. P. Jyothi1, S. Bonthu, and B. V. Prasanthi. A Study on Raise of Web Analytics and its
Benefits. In International Journal of Computer Sciences and Engineering, pages 59–64,
2007.

[25] C. Kallepalli and J. Tian. Measuring and Modeling Usage and Reliability for Statistical Web
Testing. IEEE Transactions on Software Engineering, 27(11):1023–1036, Nov 2001.

[26] D. Lee and M. Yannakakis. Principles and Methods of Testing Finite State Machines - A
Survey. Proceedings of the IEEE, 84(8):1090–1123, Aug 1996.

[27] D. Leon, A. Podgurski, and L. J. White. Multivariate Visualization in Observation-based
Testing. In Proceedings of the 2000 International Conference on Software Engineering.
ICSE 2000 the New Millennium, pages 116–125, June 2000.

REFERENCES 61

[28] M. Leotta, A. Stocco, F. Ricca, and P. Tonella. Using Multi-Locators to Increase the Robust-
ness of Web Test Cases. In 2015 IEEE 8th International Conference on Software Testing,
Verification and Validation (ICST), pages 1–10, 2015.

[29] Y. F. Li, P. K. Das, and D. L. Dowe. Two Decades of Web Application Testing - A Survey of
Recent Advances. Information Systems, 43:20–54, 2014.

[30] M. Linares-Vásquez, M. White, C. Bernal-Cárdenas, K. Moran, and D. Poshyvanyk. Mining
Android App Usages for Generating Actionable GUI-Based Execution Scenarios. In 2015
IEEE/ACM 12th Working Conference on Mining Software Repositories, pages 111–122, May
2015.

[31] S. Mallaiah and S. Manjula. A Systematic Strategy for Extracting Frequent Items Through
Associate Analysis. In Proceedings of International Conference on “Information Science &
Technology for Sustainability & Innovation”, 2015.

[32] A. M. Memon and M. E. Pollack. Plan Generation for GUI Testing. In Proceedings of the
Fifth International Conference on Artificial Intelligence Planning Systems, pages 226–235,
2000.

[33] R. M. L. M. Moreira and A. C. R. Paiva. PBGT Tool: An Integrated Modeling and Testing
Environment for Pattern-Based GUI Testing. In SE ’14 Proceedings of the 29th ACM/IEEE
international conference on Automated software engineering, pages 1–5, 2014.

[34] R .M. L. M. Moreira, A. C. R. Paiva, and A. Memon. A Pattern-based Approach for GUI
Modeling and Testing. In 2013 IEEE 24th International Symposium on Software Reliability
Engineering (ISSRE), pages 288–297, Nov 2013.

[35] R .M. L. M. Moreira, A. C. R. Paiva, M. Nabuco, and A. Memon. Pattern-based GUI testing:
Bridging the Gap Between Design and Quality Assurance. Software Testing Verification and
Reliability, 2017.

[36] I. C. Morgado and A. C. R. Paiva. The iMPAcT Tool: Testing UI Patterns on Mobile Ap-
plications. In 2015 30th IEEE/ACM International Conference on Automated Software Engi-
neering (ASE), pages 876–881, Nov 2015.

[37] I. C. Morgado, A. C. R. Paiva, and J. Faria. Reverse Engineering of Graphical User Interfaces.
In Proceedings of ICSEA 2011 : The Sixth International Conference on Software Engineering
Advances, pages 293–298, 2011.

[38] I. C. Morgado and A. C.R. Paiva. Impact of Execution Modes on Finding Android Failures.
Procedia Computer Science, 83:284 – 291, 2016. The 7th International Conference on Am-
bient Systems, Networks and Technologies (ANT 2016) / The 6th International Conference
on Sustainable Energy Information Technology (SEIT-2016) / Affiliated Workshops.

[39] K. Naik and P. Tripathy. Software Testing and Quality Assurance, Theory and Practice.
Wiley-Spektrum, One edition, 2008.

[40] A. C. D. Neto, R. Subramanyan, M. Vieira, and G. H. Travassos. Characterization of Model-
based Software Testing Approaches. (December 2006):114, 2007.

[41] S. P. Nina, M. Rahman, K. I. Bhuiyan, and K. E. U. Ahmed. Pattern Discovery of Web Usage
Mining. In 2009 International Conference on Computer Technology and Development, pages
499–503, 2009.

62 REFERENCES

[42] A. C. R. Paiva, J. C. P. Faria, and R. F. A. M. Vidal. Towards the Integration of Visual and
Formal Models for GUI Testing. Electronic Notes in Theoretical Computer Science, pages
99 – 111, 2007. Proceedings of the Third Workshop on Model Based Testing (MBT 2007).

[43] A. C. R. Paiva, J. Garcia, A. Restivo, and P. Silva. Automatic Test Case Generation from
Usage Information. In 11th International Conference on the Quality of Information and
Communications Technology (QUATIC), Sep 2018.

[44] Regression testing. Available at http://softwaretestingfundamentals.com/regression-testing/,
May 2019.

[45] F. Ricca and P. Tonella. Analysis and Testing of Web Applications. In Proceedings of
the 23rd International Conference on Software Engineering. ICSE 2001, pages 25–34, May
2001.

[46] M. Riebisch, I. Philippow, and M. Gotze. UML-based Statistical Test Case Generation.
Objects, Components, Architecture, Services for Applications for a Networked World, page
394–4111, 2002.

[47] I. Sommerville. Software Engineering. Pearson, Ninth edition, 2011.

[48] H. Srikanth, L. Williams, and J. Osborne. System Test Case Prioritization of New and Re-
gression Test Cases. In 2005 International Symposium on Empirical Software Engineering,
2005., pages 10 pp.–, Nov 2005.

[49] J. Steven, P. Chandra, B. Fleck, and A. Podgurski. jRapture: A Capture/Replay Tool for
Observation-based Testing. SIGSOFT Softw. Eng. Notes, 25(5):158–167, August 2000.

[50] The Database Model Showdown: An RDBMS vs. Graph Comparison. Available at
https://neo4j.com/blog/database-model-comparison/, May 2019.

[51] A. Torsel. Automated Test Case Generation for Web Applications from a Domain Specific
Model. In 2011 IEEE 35th Annual Computer Software and Applications Conference Work-
shops, pages 137–142, 2011.

[52] C. Trammell. Quantifying the Reliability of Software: Statistical Testing Based on a Usage
Model. In Proceedings of Software Engineering Standards Symposium, pages 208–218, Aug
1995.

[53] F. Tsui, O. Karam, and B. Bernal. Essentials of Software Engineering. Jones & Bartlett
Learning, Third edition, 2014.

[54] T. Wetzlmaier and R. Ramler. Hybrid Monkey Testing: Enhancing Automated GUI Tests
with Random Test Generation. In Proceedings of the 8th ACM SIGSOFT International Work-
shop on Automated Software Testing, 2017.

[55] Q. Zhongsheng. Test Case Generation and Optimization for User Session-based Web Appli-
cation Testing. JCP, 5:1655–1662, 2010.

Appendix A

MARTT - UI

Some screenshots of our UI application are here presented. These screenshots were captured with

real data of our case study.

Figure A.1: UI application with Diverse filter active on elements.

63

64 MARTT - UI

Figure A.2: UI application with Element filter active.

Figure A.3: UI application with Action Type filter active

MARTT - UI 65

Figure A.4: UI application with Most Common filter active.

Figure A.5: UI application combining three filters.

66 MARTT - UI

Appendix B

Test Case Example

A test case from our case study is represented in Listing B.1, as it was downloaded from our

analysis application, in JSON format.

1 [{"path":"id(\"block-block-6\")/div[@class=\"block-inner\"]/div[@class=\"content

\"]/table[@class=\"mpricipal\"]/tbody[1]/tr[4]/td[@class=\"mtescolas lfnd\"]/a[

@class=\"escola mtestg\"]","session":"a9f20b7d-e795-8c40-ca2d-9e5786e68a50","

actionId":1,"action":"click","pathId":6647,"elementPos":9,"url":"http://www.

ipvc.pt/esce-conferencia-mosquito-2019"},

2 {"path":"id(\"caixa-pesquisa\")","session":"a9f20b7d-e795-8c40-ca2d-9e5786e68a50","

actionId":1,"action":"click","pathId":6650,"elementPos":10,"url":"http://www.

ipvc.pt/ese-prova-portugues-mestrados-profissionais-2018-19-agenda"},

3 {"path":"id(\"caixa-pesquisa\")/input[@class=\"search_texto\"]","session":"a9f20b7d

-e795-8c40-ca2d-9e5786e68a50","actionId":1,"action":"click","pathId":6651,"

elementPos":11,"url":"http://www.ipvc.pt/ese-prova-portugues-mestrados-

profissionais-2018-19-agenda"},

4 {"path":"id(\"block-block-4\")/div[@class=\"block-inner\"]/div[@class=\"content\"]/

table[@class=\"mpricipal\"]/tbody[1]/tr[1]/td[@class=\"link investi mpover\"]/a

[1]","session":"a9f20b7d-e795-8c40-ca2d-9e5786e68a50","actionId":1,"action":"

click","pathId":461,"elementPos":1,"url":"http://www.ipvc.pt/"},

5 {"path":"id(\"block-block-4\")/div[@class=\"block-inner\"]/div[@class=\"content\"]/

table[@class=\"mpricipal\"]/tbody[1]/tr[1]/td[@class=\"link inicio mpover\"]/a

[1]","session":"a9f20b7d-e795-8c40-ca2d-9e5786e68a50","actionId":1,"action":"

click","pathId":6638,"elementPos":2,"url":"http://www.ipvc.pt/IDi"},

6 {"path":"id(\"caixa-pesquisa\")","session":"a9f20b7d-e795-8c40-ca2d-9e5786e68a50","

actionId":1,"action":"click","pathId":4951,"elementPos":3,"url":"http://www.

ipvc.pt/"},

7 {"path":"id(\"caixa-pesquisa\")","session":"a9f20b7d-e795-8c40-ca2d-9e5786e68a50","

actionId":4,"action":"dblclick","pathId":6639,"elementPos":4,"url":"http://www.

ipvc.pt/"},

8 {"path":"id(\"caixa-pesquisa\")","session":"a9f20b7d-e795-8c40-ca2d-9e5786e68a50","

actionId":3,"action":"input","pathId":6640,"elementPos":5,"value":["char","char

","char","char","char","char"],"url":"http://www.ipvc.pt/"},

9 {"path":"id(\"block-block-4\")/div[@class=\"block-inner\"]/div[@class=\"content\"]/

table[@class=\"mpricipal\"]/tbody[1]/tr[1]/td[@class=\"link instit mpover\"]","

67

68 Test Case Example

session":"a9f20b7d-e795-8c40-ca2d-9e5786e68a50","actionId":1,"action":"click","

pathId":504,"elementPos":6,"url":"http://www.ipvc.pt/"},

10 {"path":"id(\"block-block-4\")/div[@class=\"block-inner\"]/div[@class=\"content\"]/

table[@class=\"mpricipal\"]/tbody[1]/tr[1]/td[@class=\"link instit mpover\"]","

session":"a9f20b7d-e795-8c40-ca2d-9e5786e68a50","actionId":1,"action":"click","

pathId":504,"elementPos":7,"url":"http://www.ipvc.pt/"},

11 {"path":"id(\"block-block-6\")/div[@class=\"block-inner\"]/div[@class=\"content\"]/

table[@class=\"mpricipal\"]/tbody[1]/tr[4]/td[@class=\"mtescolas lfnd\"]/a[

@class=\"escola mtesce\"]","session":"a9f20b7d-e795-8c40-ca2d-9e5786e68a50","

actionId":1,"action":"click","pathId":220,"elementPos":8,"url":"http://www.ipvc

.pt/"},

12 {"path":"id(\"block-system-main\")/div[@class=\"block-inner\"]/div[@class=\"content

\"]/div[@class=\"view view-pesquisas view-id-pesquisas view-display-id-page_1

view-dom-id-4c67b94b909e90ad3d939d4c814c995c\"]/div[@class=\"view-content\"]/

div[@class=\"views-row views-row-17 views-row-odd\"]/div[@class=\"views-field

views-field-title\"]/span[@class=\"field-content\"]/a[1]","session":"a9f20b7d-

e795-8c40-ca2d-9e5786e68a50","actionId":1,"action":"click","pathId":6658,"

elementPos":20,"url":"http://www.ipvc.pt/pesquisa"},

13 {"path":"id(\"block-system-main\")/div[@class=\"block-inner\"]/div[@class=\"content

\"]/div[@class=\"view view-pesquisas view-id-pesquisas view-display-id-page_1

view-dom-id-4c67b94b909e90ad3d939d4c814c995c\"]/div[@class=\"view-content\"]/

div[@class=\"views-row views-row-17 views-row-odd\"]/div[@class=\"views-field

views-field-title\"]/span[@class=\"field-content\"]/a[1]","session":"a9f20b7d-

e795-8c40-ca2d-9e5786e68a50","actionId":1,"action":"click","pathId":6658,"

elementPos":21,"url":"http://www.ipvc.pt/pesquisa"},

14 {"path":"id(\"node-6897\")/div[@class=\"node-inner\"]/div[@class=\"content\"]/div[

@class=\"field field-name-field-ncorpo field-type-text-long field-label-hidden

\"]/div[@class=\"field-items\"]/div[@class=\"field-item even\"]/p[2]/a[1]","

session":"a9f20b7d-e795-8c40-ca2d-9e5786e68a50","actionId":1,"action":"click","

pathId":6662,"elementPos":22,"url":"http://www.ipvc.pt/candidaturas-mestrados

-2017-2018-2-fase-seriacao"},

15 {"path":"id(\"block-block-6\")/div[@class=\"block-inner\"]/div[@class=\"content\"]/

table[@class=\"mpricipal\"]/tbody[1]/tr[4]/td[@class=\"mtescolas lfnd\"]/a[

@class=\"escola mtesce\"]","session":"a9f20b7d-e795-8c40-ca2d-9e5786e68a50","

actionId":1,"action":"click","pathId":6665,"elementPos":23,"url":"http://www.

ipvc.pt/candidaturas-seriacao-2-fase"},

16 {"path":"id(\"caixa-pesquisa\")/input[@class=\"submeter\"]","session":"a9f20b7d-

e795-8c40-ca2d-9e5786e68a50","actionId":1,"action":"click","pathId":6652,"

elementPos":12,"url":"http://www.ipvc.pt/ese-prova-portugues-mestrados-

profissionais-2018-19-agenda"},

17 {"path":"id(\"block-system-main\")/div[@class=\"block-inner\"]/div[@class=\"content

\"]/div[@class=\"view view-pesquisas view-id-pesquisas view-display-id-page_1

view-dom-id-de6cf30471363511d668def84edce626\"]/div[@class=\"view-content\"]/

div[@class=\"views-row views-row-1 views-row-odd views-row-first\"]/div[@class

=\"views-field views-field-title\"]/span[@class=\"field-content\"]/a[1]","

session":"a9f20b7d-e795-8c40-ca2d-9e5786e68a50","actionId":1,"action":"click","

pathId":6653,"elementPos":13,"url":"http://www.ipvc.pt/pesquisa"},

18 {"path":"id(\"block-views-lateral-block_3\")/div[@class=\"block-inner\"]/div[@class

=\"content\"]/div[@class=\"view view-lateral view-id-lateral view-display-id-

Test Case Example 69

block_3 view-dom-id-002c41d2a4debc11fa4847b0ac84cffb\"]/div[@class=\"view-

content\"]/div[@class=\"views-row views-row-1 views-row-odd views-row-first

views-row-last\"]/div[@class=\"views-field views-field-field-nimgtopo\"]/div[

@class=\"field-content\"]/img[1]","session":"a9f20b7d-e795-8c40-ca2d-9

e5786e68a50","actionId":1,"action":"click","pathId":6655,"elementPos":14,"url":

"http://www.ipvc.pt/ese-prova-portugues-mestrados-profissionais-2018-19"},

19 {"path":"id(\"block-block-4\")/div[@class=\"block-inner\"]/div[@class=\"content\"]/

table[@class=\"mpricipal\"]/tbody[1]/tr[1]/td[@class=\"link inicio mpover\"]/a

[1]","session":"a9f20b7d-e795-8c40-ca2d-9e5786e68a50","actionId":1,"action":"

click","pathId":2768,"elementPos":15,"url":"http://www.ipvc.pt/ese-prova-

portugues-mestrados-profissionais-2018-19"},

20 {"path":"id(\"caixa-pesquisa\")/input[@class=\"search_texto\"]","session":"a9f20b7d

-e795-8c40-ca2d-9e5786e68a50","actionId":1,"action":"click","pathId":4,"

elementPos":16,"url":"http://www.ipvc.pt/"},

21 {"path":"id(\"caixa-pesquisa\")/input[@class=\"search_texto\"]","session":"a9f20b7d

-e795-8c40-ca2d-9e5786e68a50","actionId":3,"action":"input","pathId":5,"

elementPos":17,"value":["char","char","char","char","char","char","char","char"

,"char","Enter"],"url":"http://www.ipvc.pt/"},

22 {"path":"id(\"caixa-pesquisa\")/input[@class=\"submeter\"]","session":"a9f20b7d-

e795-8c40-ca2d-9e5786e68a50","actionId":1,"action":"click","pathId":6,"

elementPos":18,"url":"http://www.ipvc.pt/"},

23 {"path":"id(\"block-system-main\")/div[@class=\"block-inner\"]/div[@class=\"content

\"]/div[@class=\"view view-pesquisas view-id-pesquisas view-display-id-page_1

view-dom-id-4c67b94b909e90ad3d939d4c814c995c\"]/div[@class=\"view-content\"]/

div[@class=\"views-row views-row-6 views-row-even\"]/div[@class=\"views-field

views-field-title\"]/span[@class=\"field-content\"]/a[1]","session":"a9f20b7d-

e795-8c40-ca2d-9e5786e68a50","actionId":1,"action":"click","pathId":6658,"

elementPos":19,"url":"http://www.ipvc.pt/pesquisa"},

24 {"path":"id(\"block-block-4\")/div[@class=\"block-inner\"]/div[@class=\"content\"]/

table[@class=\"mpricipal\"]/tbody[1]/tr[1]/td[@class=\"link instit\"]/a[1]","

session":"a9f20b7d-e795-8c40-ca2d-9e5786e68a50","actionId":1,"action":"click","

pathId":6667,"elementPos":24,"url":"http://www.ipvc.pt/candidaturas-seriacao-2-

fase"},

25 {"path":"id(\"block-block-4\")/div[@class=\"block-inner\"]/div[@class=\"content\"]/

table[@class=\"mpricipal\"]/tbody[1]/tr[1]/td[@class=\"link investi mpover\"]/a

[1]","session":"a9f20b7d-e795-8c40-ca2d-9e5786e68a50","actionId":1,"action":"

click","pathId":6668,"elementPos":25,"url":"http://www.ipvc.pt/candidaturas-

seriacao-2-fase"}]

Listing B.1: Test Case Example.

70 Test Case Example

Appendix C

Installation Manual

This work is mainly composed of two parts. The first part, regarding collecting data, needs the

collecting script (tracking.js) to be run on the client side and the API responsible to save the

collected data on the Database. Then, the analysis part relies on the API which connects to the

Database, retrieving the needed data, and on the UI application, which allows the user/tester to

define the constraints and filter the test cases wanted.

In the following steps, it will be described how to install and use these applications either

locally, to be installed from scratch, or to use the version already installed on the currently used

server.

C.1 Server

The server used to host this work was provided by the Software Engineering Laboratory, in the

Faculty of Engineering of the University of Porto. To access the server, the following steps are

required:

• Install VNC Viewer to access to the virtual machine.

• Connect to FEUP network (presential or by VPN).

• The virtual machine is running on the IP: 10.227.107.154 and port: 5900.

• Insert the credentials (they will be provided).

C.2 Database

C.2.1 Locally

• Install Neo4j desktop application 1.

• Create a new Graph database on the previously installed application C.1.

1https://neo4j.com/download-center/

71

72 Installation Manual

Figure C.1: Start Neo4j database in its desktop application.

• Start the database.

C.2.2 Server

• Install Neo4j: sudo apt-get install neo4j=3.1.4

• Run sudo service neo4j restart.

• Access the Neo4j interface at http://localhost:7474/browser/.

• To access by IP address, open config file by running

sudo gedit /etc/neo4j/neo4j.conf

• Edit as the following example C.1

1 #dbms.connector.http.address

2 dbms.connector.http.listen_address = 10.227.107.15:7474

3 dbms.connector.bolt.listen_address = 0.0.0.0:7687

Listing C.1: Neo4j config file.

C.3 Collecting Data 73

C.3 Collecting Data

C.3.1 Script: client-side

The JavaScript file must be included in the website to be tested, inserting the reference to the script

in the HTML file. Currently, the script is hosted at paginas.fe.up.pt domain, in personal

area. The link to access the file is the one in C.2.

1 <script type="text/javascript" src="https://paginas.fe.up.pt/~up201708898/tracking.

js"></script>

Listing C.2: How to include Javascript file in HTML.

C.3.2 API: Save data

C.3.2.1 Locally

• Open app.js file.

• Choose port where API will be running (app.listen(80))

• Change database credentials and the IP to the one where the Neo4j database is hosted

(neo4j.driver)

• Run the node app command on the project’s directory to start the API.

C.3.2.2 Server

• Run API by running the sudo node app command on the project’s directory (currently

/Desktop/collect-data-api)

• The API can be externally accessed at http://web-analytics.fe.up.pt when run-

ning on the port 80.

C.4 Data Analysis

C.4.1 Data Analysis UI

C.4.1.1 Locally/Server

• Run npm install on the first time application is running.

• In case of having trouble running the application, delete node_modules folder and run npm

install again.

• Run npm start on the project’s directory to start the application.

74 Installation Manual

• The application should start on the port 3000, it should be accessible by the browser.

C.4.2 API: Retrieve data

C.4.2.1 Locally

• Open app.js file.

• Choose port where API will be running (app.listen(3001))

• Change database credentials and the IP to the one where the Neo4j database is hosted

(neo4j.driver)

• Run the node app command on the project’s directory to start the API.

C.4.2.2 Server

• Run API by running the sudo node app command on the project’s directory (currently

/Desktop/collect-data-api)

• The API cannot be externally accessed, it requires VPN access.

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation and Objectives
	1.3 Problem and Research Question
	1.4 Structure of the Dissertation

	2 State of the Art
	2.1 Automated GUI Testing
	2.1.1 Random Testing
	2.1.2 Capture and Replay
	2.1.3 Scripting
	2.1.4 Model-based Testing

	2.2 Usage Information
	2.3 Regression Testing
	2.3.1 Test Case Generation based on Usage Information
	2.3.2 Test Case Prioritization
	2.3.3 Test Case Execution

	2.4 Summary

	3 Proposed Approach
	3.1 Proposed Solution
	3.2 Implementation
	3.2.1 Data collection
	3.2.2 Data extract analysis
	3.2.3 Test Cases Generation
	3.2.4 Technologies

	4 Validation and Results
	4.1 Case Study
	4.2 Interactions
	4.3 Elements
	4.4 Test Suite Reduction
	4.4.1 Path ID
	4.4.2 URLs

	4.5 Summary

	5 Conclusions and Future Work
	References
	A MARTT - UI
	B Test Case Example
	C Installation Manual
	C.1 Server
	C.2 Database
	C.2.1 Locally
	C.2.2 Server

	C.3 Collecting Data
	C.3.1 Script: client-side
	C.3.2 API: Save data

	C.4 Data Analysis
	C.4.1 Data Analysis UI
	C.4.2 API: Retrieve data

