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Abstract

Aspect-Oriented Programming (AOP) is a programming paradigm focused on improving modular-
ity through the separation of concerns. The LARA framework is a set of Java libraries that can be
used to easily build AOP tools for arbitrary programming languages. The main goal of this disser-
tation project was to investigate if the LARA approach, which is based on static source-to-source
compilation, was adequate for developing tools for a dynamic language such as JavaScript.

In order to test this we developed Jackdaw - an AOP tool for JavaScript which is built upon
the LARA framework. The objective was for Jackdaw to present a sufficient number of features
in order to satisfy its use cases, namely the implementation of an obfuscation module and related
features. The research component of this work analyses state-of-the-art AOP tools, libraries and
frameworks for the JavaScript programming language, and presents a methodology for compar-
ison, in order to classify the strengths and weaknesses of each of these tools. Additionally, we
compare Jackdaw against the existing tools. Through use of the LARA framework it was possible
to develop Jackdaw - a new AOP tool for JavaScript which was capable of satisfying the mentioned
use cases, while holding up against other existing tools.
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Resumo

Programação orientada a aspetos (AOP) é um paradigma de programação focado em melhorar a
modularidade através da separação de "concerns". A LARA framework é um conjunto de bibliote-
cas de Java que podem ser utilizadas para facilmente construir ferramentas AOP para linguagens
de programação arbitrárias. O objetivo principal deste projeto de dissertação foi investigar se
a abordagem LARA, que é baseada em compilação estática source-to-source, se adequa a uma
linguagem dinâmica como Javascript.

Para testar esta hipótese, desenvolvemos o Jackdaw - uma ferramenta AOP para Javascript
construída em cima da framework LARA. O objectivo da ferrementa é apresentar um numero su-
ficiente de capacidades de forma a poder validar os casos de uso selecionados, nomeadamente a
implementação de um modulo de ofuscação e "features" relacionadas. A componente de investi-
gação deste trabalho analisa as mais recentes ferramentas e frameworks de AOP para a linguagem
de programação Javascript. Esta análise, onde incluímos o Jackdaw, usa uma metodologia para
a comparação de ferramentas, de forma a poder classificar os pontos fortes e fracos de cada uma
delas.

Através do uso da LARA framework foi possível desenvolver o Jackdaw - uma nova ferra-
menta AOP para Javascript que foi capaz de satisfazer os casos de uso mencionados e ser compet-
itiva em relação às ferramentas existentes.
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Chapter 1

Introduction

This chapter introduces the concept and technological context of this dissertation project. It also

states the main objectives of the thesis, the motivation for this project and the validation strategies

that are going to be used. Throughout this work we will reference certain words and terminologies

that will be briefly explained here.

An aspect is code that specifies a concern separately from a program that contains the business

logic. In the context of the LARA framework, aspects are also referred as strategies.

A weaver is piece of software that applies aspects written in an AOP language to a given pro-

gram. In our case, the weaver will be the LARA-based source-to-source compiler for JavaScript.

The weaving process is the application of an aspect to a given program[KLM+97]. In our case

it corresponds to the execution of the JavaScript source-to-source compiler when an aspect/strategy

is applied to a given program.

1.1 Context

Aspect-oriented programming (AOP) is a programming paradigm focused on improving mod-

ularity through separation of concerns [KLM+97]. To achieve this, AOP proposes that certain

concerns should be specified in modules (usually called aspects) separately from the source code

where they would usually appear.

The LARA framework is a framework which uses LARA, a Domain Specific Language (DSL)

which is agnostic to the target language of the weaver. This means that a developer can develop

AOP aspects for several different target languages using with the same aspect language, and some-

times even reuse the same aspects between languages. Additionally, the LARA Framework con-

tains tools (e.g., a Weaver Generator) which reduces the required effort to add support for new

programming languages.

This dissertation investigates if it is possible to use the LARA framework to develop an AOP

tool for the JavaScript programming language. This dissertation was done in the laboratory of

Computational Systems of the Faculty of Engineering of the University of Porto (FEUP), in the

Special-Purpose Computing Systems, languages and tools research group (SPeCS). The LARA

1



Introduction

framework, upon which the engineering prototype of the dissertation is built, originated and is

currently maintained by this research group.

1.2 Objectives and motivation

JavaScript is currently the de facto browser programming language, and one the of the most pop-

ular programming languages in the world 1. Given this, we consider that there is a valid interest

in making the advantages and features of AOP available to JavaScript developers. These features

include modularity through separation of concerns, automatic logging, automatic code transfor-

mations, among others - which can lead to an overall increase in productivity when developing a

software system.

One way to add support for AOP to a language is by using a source-to-source compiler. Typ-

ically, a compiler is a piece of software which accepts as input a program written in a given

programming language, and outputs an equivalent program in another programming language,

usually machine code. A source-to-source compiler outputs a program written in the same lan-

guage as the input program, and can be useful to apply custom code transformations. LARA

is an aspect-oriented language, developed in Faculdade de Engenharia da Universidade do Porto

(FEUP), which allows the development of aspects that can be applied to different programming

languages [CCC+12].

The main objective of this dissertation project was to investigate if the LARA approach, which

is based on static source-to-source compilation, is adequate for developing an AOP tool for a

dynamic language such as JavaScript.

In order to test this idea we developed an Aspect-Oriented weaver for Javascript, called Jack-

daw, that is based on the LARA framework. We performed a revision of the current state-of-the-art

of JavaScript weavers by doing a qualitative comparison of the already existing tools, and tried to

understand what could be done to improve upon them. In order to validate Jackdaw, we tested

it against a set of existing LARA strategies that are currently supported by other LARA-based

weavers that target languages such as MATLAB [BPN+13] or Java [CC18]. Additionally, we de-

veloped strategies for an obfuscation use case which required non-trivial features such as variable

renaming, which were tested with several benchmarks from the known Jetstream 2 [jet] collection.

1.3 Contributions

We consider that this thesis has the following contributions:

• Review of state-of-the-art tools for applying aspect oriented programming to JavaScript and

application of a previous analysis framework to more recent tools.

• Confirmation that the LARA framework can be used to build tools for dynamic languages

such as Javascript that implement non-trivial source-to-source transformations.

1https://github.blog/2018-11-15-state-of-the-octoverse-top-programming-languages/

2
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• Development and release of Jackdaw, an open-source LARA-based AOP tool for Javascript

that uses a static source-to-source approach2.

• Research and implementation of several obfuscation-related algorithms and their inclusion

in Jackdaw.

• Website where users can try an online demo of Jackdaw3.

1.4 Summary

On this chapter we introduced the concept and technological context of this dissertation project,

which is based on AOP and source-to-source compilation. We also stated the main objectives of

the thesis - to investigate if the LARA approach is adequate for developing an AOP tool for a

dynamic language such as JavaScript, and use it to attempt to improve the current state-of-the-art.

We presented the motivation for this project, and the validation strategies that are going to be used.

2https://github.com/tansvanio/jsweaver
3http://specs.fe.up.pt/tools/jackdaw/

3
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Chapter 2

Existing Work

This chapter describes the basic concepts of aspect-oriented programming and introduces the

LARA Framework. It also lists the most relevant currently existing AOP tools and frameworks for

Javascript along with their correspondent analysis and comparison. This was particularly useful in

order to determine where certain tools succeed and where others fail, in order to tailor Jackdaw to

achieve the highest degree of success in all the components which make an AOP tool.

2.1 Aspect-Oriented Programming

Aspect-oriented programming is a programming paradigm that is based on the idea we can specify

certain concerns (properties or areas of interest) of a system separately from the business logic,

and then relying on mechanisms in the underlying AOP environment to weave or compose them

together into a coherent program [EFB01]. One of the main advantages of AOP is that it allows us

to achieve modularity through the separation of concerns. In order to separate concerns, AOP in-

troduces to us the concept of Aspects, which are "mechanisms beyond subroutines and inheritance

for localizing the expression of a crosscutting concern" [EFB01]. After being defined, a particular

Aspect will then contain several joint points, which are the instructions in which the aspect code

will interact with the entire environment, allowing us to perform tasks like: manipulating code,

function calls, logging, unit testing, etc.

2.1.1 Possible approaches in AOP

Regarding the implementation of aspect-oriented programming to an already existing target pro-

gramming language, we can consider the utilization of two different approaches. The first ap-

proach is for the aspect-code to be an extension of the source-code, which allows to move con-

cerns which were previously dealt with inside the business logic into an aspect, effectively moving

source code to aspect code [FDNT15]. This approach values a seamless integration between as-

pect and business logic, and provides access and support of target language features in aspect code

[PCB+18]. Examples of this approach is AspectJ [KHH+01] and AspectC++ [SGSP02], which

5
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extend Java and C++ with Aspect-Oriented Programming concepts, respectively. One of the pos-

sible advantages of this approach is a possible smaller learning curve, since the user is not required

to learn a new language syntax to program the aspect code. The more considerable drawbacks of

this approach will be covered later in this chapter when we present the concept Invasiveness.

The second approach is designing an aspect language which is agnostic to the target language.

This potentially requires more complex engineering in order to integrate the two different lan-

guages for the aspect and business logic, although AOP tools that use the first approach can also

be noteworthy in their complexity [Lad09]. Tools that use this second approach will physically

separate the aspect code from the target language code. Later in this chapter we will discuss how

the LARA framework takes great advantages in using this approach in order to be able to support

different target languages [PCB+18].

2.1.2 Domain specific languages

Following the definition proposed by [vDKV00], a Domain-Specific Language (DSL) is a pro-

gramming language or executable specification language that offers, through appropriate notations

and abstractions, expressive power focused on, and usually restricted to, a particular problem do-

main.

An advantage of DSLs is that they have the potential to express a solution to the domain

problem more concisely and in a clearer way. This can also diminish errors or inefficient idioms,

and make code generation more efficient. On the downside, DSLs introduce the overhead of

having to learn a new language, and usually are not as integrated in the compilation tool-flow as

native libraries or compiler-supported extensions.

DSLs for source-to-source compilers can be generic or specific. LARA [CCC+16] is an exam-

ple of a DSL which can be used to implement generic source code analysis and transformations.

On the other hand, CHiLL [CCH08] is a declarative language that only allows to specify sequences

of (predefined) transformations and constrains that are to be applied to existing source code.

On the next section we will introduce the LARA framework and describe how the LARA DSL

and its properties make up the foundation of Jackdaw.

2.2 LARA Framework

The LARA language [CCC+12] is a DSL for source-to-source transformations and analysis, in-

spired by AOP concepts [PCB+18] which was developed at the Faculty of Engineering of the

University of Porto and allows for the development of aspects that can be applied to different pro-

gramming languages. Unlike most AOP approaches, LARA was designed to work independently

of the target language and is capable of specifying code insertions and transformations for any

target programming language. This was achieved by separating the LARA language from the lan-

guage specification of the target language, which consists of a specification of relevant points of

interest, along with their attributes and actions [PCB+18].

6
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On Figure 2.1 we present a simple example of LARA code. This code declares a LARA aspect

which selects all the function calls inside functions and proceeds to insert a new comment in the

line prior to each call.

1 aspectdef LaraAspect
2 select function.call end
3 apply
4 $call.insert before "// Call" + $call.name + " at line: " + $call.line;
5 end
6 end

Figure 2.1: LARA code example.

The LARA Framework has been previously used to develop a weaver for MATLAB [BPN+13],

which is a dynamic language like JavaScript. However, that work mainly focused on the compi-

lation of MATLAB code to C/OpenCL [BRC14, RBC17], and did not fully explore the source-

to-source capabilities of LARA over a dynamic language, which is one of the objectives of this

thesis.

2.2.1 LARAI

The LARA interpreter (LARAI) was developed in order to improve the integration of the LARA

language with different weaving environments. LARAI executes the LARA aspects, while the

Weaver makes the connection between the queries and actions in LARA, and the target source-

code [PCB+18].

2.2.2 Weaver Generator

Developing and maintaining a Weaver Engine from the ground up requires a high amount of effort.

However, one of the main advantages of extending language support with the LARA framework

is that it ships with a Weaver generator. The Weaver generator is a piece of software that, provided

with a language specification, generates a skeleton Weaver engine. With the skeleton Weaver,

the developer can focus on developing the specific actions and attributes that will be exposed

by the weaver, while the generator takes care of all the required infrastructure code to interface

with LARAI [PCB+18]. Using the Weaver for this work allows for a much faster progress in the

building of the new tool and more importantly, it allows for quick prototyping and an incremental

build up of strategies.

2.3 AOP frameworks for Javascript

Currently there are several Aspect-oriented plugins and frameworks for the Javascript language.

Some of these plugins are experimental proof-of-concepts while others are fully built products that

7
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are quite usable in a production environment. In this work, the scope of analysis and comparison

to other frameworks will be limited to the ones we considered to be the most relevant.

2.3.1 AspectScript

AspectScript [TLT10] has been presented as an AOP extension for Javascript that incorporates

high-level programming and support for the dynamic aspects of JavaScript as part of its native de-

sign. One of the main motives for the creation and development of AspectScript was that previous

existing work did not contain any AOP extension for JavaScript which fully supported some of the

features that define JavaScript - dynamic prototype-based programming and higher-order func-

tions. AspectScript implements point-cuts and advices as normal JavaScript functions which al-

lows the use of normal high-order programming to define AOP aspects. Additionally, AspectScript

implements a series of state-of-the-art AOP features like dynamic aspect deployment with scop-

ing strategies, and user-defined quantified events. On Figure 2.2 we can see an example of the

AspectScript syntax. This particular piece of code is reported to do the following:

1. Computes current aspects to determine what set of aspects may apply.

2. Evaluates the point-cuts of these aspects against the current join point.

3. Chains together the advices of aspects that matched the current join point and then applies

them.

It was not possible to experiment with AspectScript due to the hosting link being down on the

website of the PLEIAD laboratory of the Computer Science Department (DCC) of the University

of Chile (Faculty of Engineering).

1 function weave(jp){
2 var currentAspects = union(globalAspects,aspectsIn(ctxObj),aspectsIn(ctxFun));
3 var advices = match(jp,currentAspects);
4 return chainAndApply(advices);
5 }

Figure 2.2: AspectScript code example [HHL15]

2.3.2 AOJS

AOJS [OKM+11] has been presented as an JavaScript framework which can provide AOP support

with the full separation of aspects and normal JavaScript modules. The development of AOJS

has been motivated by the fact that previous existing AOP frameworks did not achieve the full

separation of aspects from normal code, requiring instead modifications in the target code in or-

der to achieve aspect weaving. AOJS allows for the specification of function execution, variable
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substitution and file initialization as the join-points of its aspects. Like mentioned before, AOJS

guarantees the complete separation of aspects and normal code by adapting its architecture for

aspect weaving. On Figure 2.3 we can see an example of the AOJS syntax. For this example, it

is reported that AOJS weaves aspects into the location specified by the initialization point cuts,

and uses a code template for code replacement. The weaving process proceeds in the following

manner:

1. Executes <before>.

2. Executes <target>, and stores the return value of the <target> expression into temporal vari-

able retvalue.

3. Executes <after>.

4. Returns the value stored in retvalue.

1 (function(){
2 <before>
3 var _returnvalue = <target>;
4 <after>
5 return _returnvalue;
6 })();

Figure 2.3: AOJS code example [HHL15]

2.3.3 AspectJS

AspectJS [asp] is a programming library that allows the user to implement method-call inter-

ception via proxy functions in Javascript. Additionally, this library provides support for method

calling and system state validation (locally or remotely) and remote method-call instrumentation.

AspectJS was designed and developed by Richard Vaughan, and is distributed by Dodeca Tech-

nologies Ltd. The example on Figure 2.4 we can see an example of the AspectJS syntax. The code

is reported to execute as follows: the AspectJS function "addPrefix" is used to add the function

"prefixFunction" to run before "myFunc()". When myFunc is called, prefixFunction will be exe-

cuted first. Code experimentation with AspectJS has not been possible at the current date due to it

being a paid product.

2.3.4 aspectjs

aspectjs [For17] (in lowercase) is a simple proxy-based-AOP library developed by Philip Ford

which was implemented as a Node.js package. It works either with standalone functions or with

object methods. Additionally, it can also be used on client-side JavaScript with Browserify. One

9
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1 function prefixFunction(){
2 // Code
3 }
4 function myFunc(){
5 // Code
6 }
7 AJS.addPrefix(this,"myFunc",prefixFunc);
8 myFunc();

Figure 2.4: AspectJS code example [HHL15]

of the main advantages of this library is that proxy functions are extremely easy to use and under-

stand, the downside being that it requires the user to mix AOP code with source code. On Figure

2.5 we present a code example of this package. This code declares an object with several prop-

erties and a method, following by a use of the aspectjs library to add a new method to this object

prior to the original method.

1 const before = require(’aspectjs’).before;
2 let addAdvice = require("aspectjs").addAdvice;
3

4 let advised, adviser, result;
5 advised = {
6 add: function(increment){this.left += increment; },
7 id: ’test’,
8 left: 32,
9 top: 43

10 };
11 adviser = {
12 override: function(increment){ advised.left = increment; }
13 };
14

15 before(advised, "add").add(adviser, "override");
16 advised.add(2);
17 console.log(advised)
18 // Prints: { add: [Function: f], id: ’test’, left: 4, top: 43 }

Figure 2.5: aspectjs code example for Node.js.

2.3.5 aspect.js

aspect.js [asp15] (not to be mistaken with aspectjs or AspectJS) is a library for aspect-oriented

programming with JavaScript which takes advantage of ECMAScript 2016 decorators syntax.

However, it requires AOP logic to be mixed with business logic in the Javascript code, much

like our previous example. aspect.js was first presented in AngularConnect, the official European

Angular conference of 2015.
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On Figure 2.6 we present a code example of aspect.js working with typescript. On this code

we declare two classes and a AOP logger aspect. This aspect sets up a logging method before the

getting or setting of articles in the ArticleCollection class.

1 import {beforeMethod, Wove, Metadata} from ’aspect-dot-js’;
2

3 class LoggerAspect {
4 @beforeMethod({
5 classNamePattern: /^Article/,
6 methodNamePattern: /^(get|set)/
7 })
8 invokeBeforeMethod(meta: Metadata) {
9 // meta.woveMetadata == { bar: 42 }

10 console.log(‘Inside of the logger. Called ${meta.className}.${meta.method.name} with args
: ${meta.method.args.join(’, ’)}.‘);

11 }
12 }
13

14 class Article {
15 id: number;
16 title: string;
17 content: string;
18 }
19

20 @Wove({ bar: 42 })
21 class ArticleCollection {
22 articles: Article[] = [];
23 getArticle(id: number) {
24 console.log(‘Getting article with id: ${id}.‘);
25 return this.articles.filter(a => {
26 return a.id === id;
27 }).pop();
28 }
29 setArticle(article: Article) {
30 console.log(‘Setting article with id: ${article.id}.‘);
31 this.articles.push(article);
32 }
33 }
34

35 new ArticleCollection().getArticle(1);
36

37 // Result:
38 // Inside of the logger. Called ArticleCollection.getArticle with args: 1.
39 // Getting article with id: 1.

Figure 2.6: aspect.js code example for typescript

2.4 Comparison and Evaluation criteria

This section relies on the comparison model proposed by [HHL15]. Following this model, we

compared and evaluated the previously mentioned frameworks according to three criteria: Inva-

siveness, Briefness and Maturity. The main objective of this comparison is to understand why

some frameworks fail in some of these criteria and why others succeed. Jackdaw aims to to use
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the advantages offered by the LARA framework to gain a competitive advantage against other

tools in these criteria.

2.4.1 Invasiveness

While there are many frameworks that manage to successfully implement AOP by mixing it with

source code, it should be noted that AOP was designed to be a supplement and extension to con-

ventional programming. The original program should not be modified due to the presence of AOP

in the development stack. Additionally, if we take into account code maintenance and update, join-

ing aspect programming with the rest of the system will cause secondary development [HHL15].

Thus, an AOP tool should strive to make aspect code separate from the source code.

2.4.2 Briefness

Usually, Aspect-oriented programming is harder to grasp for new developers as opposed to more

popular paradigms, like Object-Oriented programming. Thus, an AOP tool should allow the de-

veloper to define aspects with a clear and simple syntax as much as it can.

2.4.3 Maturity

An AOP tool for Javascript should be able to control all the unique features of Javascript and

particularly the dynamic aspect of Javascript, as well as providing comprehensive generic AOP

functionality.

2.4.4 Comparison

Using the previously defined grading components it is possible to perform a quick evaluation and

comparison between the presented tools (see Table 2.1).

Regarding Invasiveness, AOJS is the only tool that manages to achieve full separation of AOP

code from source Javascript code, and thus is the only tool to have a positive score in this compo-

nent.

Regarding briefness, there are two tools that clearly standout in this components - aspectjs

and AspectJS. This is due to their proxy-function based operations which allow for very simple

AOP directives. Use of ECMAScript 2016 by aspect.js has been given a negative review, since

it proposes a somewhat messy syntax which is easy to confuse with the normal JavaScript code.

AOJS relies on XML to achieve a somewhat brief syntax and AspectScript achieves the same with

its method-based AOP operations.

Regarding maturity, we considered AspectScript and aspect.js to be the most mature tools,

since they cover the basic fundamental features of AOP. The proxy-based nature of AspectJS and

aspectjs end up limiting their range of features. AOJS is unable to take advantage of high-order

programming due to the fact that it uses XML for its syntax [HHL15].
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Table 2.1: Table showing comparison between tools.

Component / Tool AspectScript AOJS AspectJS aspect.js aspectjs
Invasiveness - + - - -
Briefness + + + - ++
Maturity + - - + -

Making a preliminary evaluation of the LARA-based JavaScript Weaver, we consider that in

regard to Invasiveness, we expect the tool to do very well, due to the fact that LARA has its

own syntax that is kept separate from the source code. This is also one of the characteristics that

allows it to be multi-target framework. Regarding Briefness, we consider that LARA has a syntax

that, while not minimalistic, is quite easy to comprehend. Additionally, work on previous LARA-

weavers has shown that is it possible to write complex LARA aspects that provide accessible

interfaces[ABBC18]. Finally, the LARA framework provides several out-of-the-box tools that

significantly helps a new weaver to have access to features associated with more mature tools,

such as unit testing and documentation generators. The framework also allows to build the weaver

in an incremental way, which makes it relatively easy to add new features as needed.

2.5 Summary

On this chapter we described the main technological background for the new AOP tool for JavaScript.

Additionally, it presented an introduction to Aspect-oriented programming, the LARA framework,

and a set of relevant AOP tools. It introduced the comparison criteria which will be used to mea-

sure the developed tool against the state-of-the-art, and a comparison of the state-of-the-art tools,

based on investigation and experimentation.
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Chapter 3

Work Plan

This chapter presents the work plan used for this dissertation project, as well as how its different

development phases were distributed throughout the allowed timetable.

3.1 Development Phases

The objective of this dissertation project was to determine if the LARA framework was adequate

for developing tools for a dynamic language such as JavaScript. In order to test this, we developed

Jackdaw - a working AOP tool for Javascript using the LARA framework - and validated it with

a set of use cases. In order to do this in an organized fashion, we used an incremental approach

where work on certain software areas began as soon as the needed background implementation

was done.

The development of Jackdaw and document writing of this dissertation project consisted of

several phases:

1. Literature review - research about current existing AOP tools for JavaScript and methodolo-

gies for evaluating them.

2. Thesis writing - writing the dissertation document itself.

3. Weaver development - obtaining a Javascript AST to be used by the weaver, created from

parsed JavaScript code, and incremental development of join points, attributes and actions

for the weaver.

4. Strategy support - implementing support for already existing LARA strategies.

5. Use case support - implementation of custom strategies in order to perform code obfusca-

tion.

6. Strategy validation - validation of already existing LARA.

7. Use case validation - use case validation by checking if requirements are fulfilled.

15



Work Plan

The previously mentioned phases can be seen distributed in a time schedule on Figure 3.1.

The purpose of this work plan was to provide a basis for time management and allocation of

priorities during the development of the project. The writing of the dissertation document took

place alongside project coding and development. The first few weeks were spent developing the

weaver for JavaScript, Jackdaw. After Jackdaw supported a sufficient number of joint-points, the

development of strategy support began. Likewise, when a basic set of supported strategies were

implemented, the development of use case support began, namely features like variable renam-

ing and obfuscation. Any remaining needed joint-points or strategies were developed in this last

stretch of time. Validation of implemented strategies and use-cases were done in parallel with their

development.

Figure 3.1: Figure presenting the current work plan

3.2 Summary

On this chapter we presented a reviewed version of the work plan of this work, which describes

the different phases of this dissertation project and how they were scheduled.
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Chapter 4

Development

In this chapter we will cover what we consider to be the most important aspects of the Jackdaw

development process. We present the technologies used during development, and explain their

role and how they were used. We will describe the internal mechanisms of the Jackdaw tool and

how it uses several different constructions in order to properly modify the incoming AST tree from

the parsed Javascript code. We also discuss the implemented obfuscation algorithms and the chal-

lenges we encountered, and how they were solved. Finally, this chapter concludes by presenting

a set of Jackdaw’s main features, outlining their functionality and making a retrospective analysis

on the grading criteria introduced on chapter 2.

4.1 Used Technologies

In order to develop Jackdaw and meet the proposed challenges of this work, we assembled a wide

range of technologies. The following list describes the technology stack and a short description

regarding how each one was used.

• Java 11 - The LARA framework source code is written in Java and the preferred way to

develop a new LARA-based tool is to write the tool also in Java. Java development was

done using Eclipse, which allowed for a very quick setup of the project after importing the

LARA framework dependencies using a Maven repository 1.

• Nashorn Engine - Nashorn is a JavaScript engine developed in the Java programming lan-

guage by Oracle which comes included in Java 8[nas]. The Nashorn engine is used by Jack-

daw in order to parse files and generate Javascript files using packages written in Javascript,

such as Esprima and Escodegen.

• Gson - Gson is a Java library that can be used to convert Java Objects into their JSON

representation. It can also be used to convert a JSON string to an equivalent Java object.

Gson can work with arbitrary Java classes, including compiled classes for which we do not

1The lara-framework can be found here: https://mvnrepository.com/artifact/pt.up.fe.specs/
lara-framework
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have the source-code [gso17]. This was the library chosen for dealing with JSON and it is

extensively used by Jackdaw to serialize and deserialize Javascript code nodes.

• Esprima - Esprima is a high performance, standard-compliant ECMAScript parser written

in ECMAScript (also popularly known as Javascript) and it can be used to perform lexical

analysis (tokenization) and syntactic analysis (parsing) of a JavaScript program [esp]. The

ability to parse Javascript code into an AST structure was an obvious need early on. The

lack of readily available Javascript parsers written in Java, and the time it would take to

write a custom parser, led us to consider using the Java 8 Nashorn Javascript engine to

execute a package that would let us parse Javascript source code into an abstract syntax tree.

Esprima was the perfect choice for this task since it allows us to quickly parse Javascript

files with several option flags to include extra information in the AST, such as the inclusion

of comments, location of the code corresponding to each node, etc.

• Escodegen - Escodegen (escodegen) is an ECMAScript code generator from Mozilla’s

Parser API AST [esc]. After Jackdaw parses all the source code and applies the trans-

formations to the AST, it needs to convert it back into Javascript code. In order to do this we

decided to use Escodegen to generate the output code from the modified JSON tree struc-

ture. In addition to the advantage of not having to write a custom code generator, Escodegen

already contains several flags which allow the user to define how the generated code should

be formatted.

4.2 Jackdaw

Figure 4.1 describes the structure of the tool Jackdaw. It uses the JavaScript parser Esprima to tok-

enize and parse the code into an abstract syntax tree (AST), as a JSON object. After some thought

and planning, we decided to directly use the AST produced by Esprima, instead of producing a

new AST from it. The Jackdaw weaver interacts with the AST and applies the appropriate actions

according to the requests of the LARA framework, which executes the LARA code. In the final

step, Jackdaw uses the JavaScript library Escodegen [esc] to generate code from JSON AST and

produce a modified Javascript program as result.

4.2.1 Jackdaw AST

The first task in the development of Jackdaw was the Jackdaw AST module. The objective of

this module is to parse JavaScript source files into an Abstract Syntax tree, and back to code. In

order to do this we used Esprima and Escodegen, a JavaScript parser and generator respectively.

However, since both of these packages are written in Javascript, we had to use the Nashorn engine

in order to successfully execute Javascript code from within a Java runtime.
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Figure 4.1: Jackdaw flowchart

4.2.2 AST Structure

The result from parsing a Javascript source is a JSON object with all the codes structures and hier-

archies defined by Esprima. Initially, we planned to convert this JSON object into an intermediate

node structure which contained only relevant information, before converting them into Jackdaw

join points. However, with some investigation we were able to conclude that it was possible to

skip this step and use the JSON object to directly create the Jackdaw join points. Additionally,

this approach has the added advantage of being able to use existing tools such as Escodegen to

generate the output code. If we used an intermediate node structure we would have to either im-

plement our own Javascript generator, or a generator for Esprima-compatible JSON, in order to

convert this structure back into Javascript code. Any added or computed properties that might be

useful to have added to the original JSON structure yielded by Esprima can instead be computed

on join point side (much like virtual properties), leaving the original JSON structure intact.

4.2.3 Jackdaw Join points

The join points supported by Jackdaw represent Javascript language structures and statements

present in the source code, such as declarations, while statements, if statements, try-catch state-

ments, etc. It is possible to use the LARA syntax to query and capture these join points in order

to do further operations. Each join point is mapped to a Java class, which internally queries the

corresponding JSON node and provide methods that return the attributes and perform the actions

specified in the weaver language specification.

4.2.4 Jackdaw Query Engine

Early in the development of Jackdaw we noticed that there would be a need to perform certain

searching tasks from within a language node or join point. Examples include getting the parent of

a join point, getting all child nodes, getting all descendant nodes of a certain type, etc. In order

to provide this functionality we developed the Jackdaw Query Engine, which was developed as a

static class that provides several search functions.
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4.2.5 Join point Parent Mapping

A very common property needed for AOP actions or implementing strategies is the ability to

obtain the parent node of a join point, e.g., obtain the scope of a given statement. This presented a

particular challenge due to the fact that the JSON structure generated by Esprima does not contain

any information regarding the parent of a node. In order to address this problem three options

were considered.

• Recursively iterate through the JSON structure of each source file and add a parent property

to each node. This option was discarded due to the fact that this would lead to a circular

JSON structure, which is not supported by the Gson library.

• Recursively iterate through the JSON structure of each source file and add a unique identi-

fier, and a property containing the identifier of its parent. This option was considered more

reasonable due to the fact that it no longer leads to a circular JSON structure. However,

it still requires the generation of unique identifiers and updating the parents every time the

AST is changed.

• Recursively iterating through the JSON structure of each source file and adding a <child,

parent> pair to a map. Every time a change is made to the AST, this method is recursively

executed from the root of the project, ensuring that an AST changing action never yields a

child-to-parent map that contains stale information.

We solved this problem by implementing a class that performs the algorithm described in the

third option. This algorithm was further improved by adding a "dirty" flag to the child-parent map.

Every time we make a change to the AST, this flag is set to true. When we request the parent of a

node, a map rebuilding process is triggered if the state is set to true. This ensures we are always

working with an updated map, while avoiding unnecessary rebuilding operations, which improves

performance.

4.2.6 Join Point Creator

Every time we use the LARA selector language to query for a particular type of join point, there

is a need to search for the corresponding JSON object in the AST and then wrap it around the

correct type of join point. The Join point creator module offers this capability by checking the

attributes of the input JSON object and trying to wrap it into the correct join point type. If there

is no corresponding join point type for the input node, then the Join point creator will wrap it

around a generic type of join point, which only contains methods for properties common to all

join points. The generic join point type is specially useful for join point attributes which return

other join points, since this particular use case may at times require the wrapping of JSON nodes

for which join points have not been yet defined.
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4.3 Code Obfuscation

We have chosen obfuscation of Javascript source code as a use case to validate Jackdaw. Code

obfuscation is a deliberate act to make code unintelligible and hard to comprehend to a human.

The process of obfuscating code is done by applying transformations to the source code such that

the result is much more difficult to read, while maintaining the same functionality [BS05]. Unlike

encrypted code, obfuscated code can be compiled and executed by anyone.

Code obfuscation is particularly relevant for the Javascript that is executed by Internet browsers,

since the code is always available to the user. Javascript obfuscation is often used in this situation

to help ensure protection against code theft, and to hinder reverse engineering that provide insights

about the code original meaning and purpose [dSRS16, QBB08].

In order to successfully achieve the obfuscation of Javascript code, the Jackdaw tool relies on

different techniques such has code refactoring and flattened control flow. These techniques will be

explained further in this section.

4.3.1 Variable renaming

Renaming a variable declaration is a simple technique we have used in order to make code unintel-

ligible and usually serves as one of the first steps of obfuscation. The renaming of a code structure

involves renaming the keyword of an object or variable declaration, following by a propagation

of this renaming to all the code instructions that reference it. The ability to rename variables and

other code structures has many uses and its utility is not limited to code obfuscation. Figure 4.2

shows a LARA aspect developed for Jackdaw which selects all the declarations in the source files

and renames them to a new automatically generated keyword. On figures 4.3 and 4.4 we can

observe the input and generated JavaScript code, respectively.

This example shows a repeated declaration of the variable a, which is allowed in Javascript

by use of the declaration keyword var. The underlying mechanisms used in our implementation

of the variable renaming action allow us to properly detect the different scopes of these two vari-

ables (which happen to have the same name) and properly rename them and their references to

two different variable names. This is particularly useful in code obfuscation due to the fact that,

depending on the obfuscation techniques used, repeated variable declarations may cause problems

in the generated obfuscated JavaScript code. It was easier to address this problem by simply re-

naming the variables and their references into different names, which is something that would

typically also be done in order to obfuscate the actual names of the variables.

An issue we have encountered when dealing with Javascript variable renaming is that, due

to the dynamic nature of Javascript, the renaming operation may require the propagation of the

new name not just in the statements after the declaration, but above the declaration as well. The

renaming function implemented in Jackdaw also allows to propagate renaming to the statements

about, however, it is not well developed and is deactivated by default.
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1 aspectdef RenameDeclarations
2

3 var i = 0;
4 select declarator end
5 apply
6 i++;
7 var newName = "new_var_"+i;
8 $declarator.refactor(newName);
9 end

10

11 end

Figure 4.2: LARA aspect that renames all declarations.

1 var a = 1
2 while(a < 5){
3 a++;
4 }
5 var a = 3
6 if(a >= 5){
7 console.log(a);
8 }

Figure 4.3: Input JavaScript code.

1 var new_var_1 = 1;
2 while (new_var_1 < 5) {
3 new_var_1++;
4 }
5 var new_var_2 = 3;
6 if (new_var_2 >= 5) {
7 console.log(new_var_2);
8 }

Figure 4.4: Generated JavaScript code.

4.3.2 Control Flow Flattening

Control Flow Flatenning (CFF) is the main obfuscation technique applied by Jackdaw in order to

achieve code obfuscation. CFF is a code transformation whose idea was first described by Wang et

al. [WHKD00] and consists in gathering all the code blocks contained in a program, which might

be located in different scopes, and placing them next to each other, usually inside a large switch

statement within a loop with control flow variables that decide which case gets activated at each

iteration of the loop [BS05].

The CFF transformation that Jackdaw implements is mainly an adaptation of the CFF algo-

rithm described by Balakrishnan et al. [BS05], which presents a CFF algorithm for C++. Since the

target language of Jackdaw is Javascript, we had to make several changes to the original algorithm,

for instance, due to the fact that Javascript does not support label and goto statements in the same

way that C++ does.

The structure that was most dramatically impacted was the switch statement, which originally

heavily relied on goto statements in order to generate its obfuscated counterpart. The solution

was to first generate a switch statement which assigns a value to a control variable depending on

the matching case, and then generate new control flow cases for each case of the original switch

statement. This strategy effectively replaces the use of goto with a more extensive usage of control

flow variables.

Figures 4.5 and 4.6 show an example of a Fibonacci sequence algorithm before and after it

22



Development

is obfuscated by Jackdaw. As we can see, all the declared identifiers were renamed and the code

contained in the function was completely flattened to a single while with a switch statement. As a

result, it is quite difficult for the human eye to understand what this simple algorithm does.

1 function fibonacci(num){
2 var a = 1, b = 0, temp;
3

4 while (num >= 0){
5 temp = a;
6 a = a + b;
7 b = temp;
8 num--;
9 }

10 }
11 fibonacci(13);

Figure 4.5: Fibonacci algorithm using a while cycle.

4.3.3 Opaque Predicates

In order to complement the obfuscation achieved by variable renaming and control flow flattening,

we decided to also implement a proof-of-concept opaque predicate obfuscation. Opaque Predicate

obfuscation is a low-cost and stealthy control flow obfuscation technique used to add superfluous

branches [XMW16]. Predicates are essentially functions that return boolean values which are

known to the obfuscator software, in this case Jackdaw. These predicates are then introduced in

the original code in such a way that they do not alter the original logic but make it harder for a

potential reverse engineering effort to succeed.

Jackdaw allows the user the ability to generate a number of random predicates and applying

them to Javascript nodes via selections and aspects. Additionally, it is possible to combine opaque

predicates obfuscation with control flow flatenning via an optional flag. If this flag is activated,

the control flow algorithm will generate N predicates per file and will randomly assign them to

all nodes containing logical expressions (ex: while, if, do, for, etc). It is important to note that in

this process the predicate functions themselves will also be flattened, making it very difficult for

a user to infer what value a logical expression in the code will evaluate to during runtime. Since

the Jackdaw obfuscator always knows the return value of these predicates, it is able to apply them

in such a way that the original values of the logical expressions are not altered. The predicates

themselves are also not distinguishable from the original code which has been flattened. Figure

4.7 shows an example of the simplest type of opaque predicates - a function that was randomly

chosen to return false or true.
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1 function id_303316e8_69bc_46cc_bd27_41d5c6dcdc0f(id_b9c6d674_a4e0_43a7_814c_a85fe818d315) {
2 var id_8be2a0cd_a06c_415e_b1ba_7440e30ca288 = 1, id_819824fa_e1bb_4640_8b59_03cf187a58a6

= 0, id_4fc078f0_100a_4140_b914_0202e7b4b3d0;
3 var id_44d650f0_ac7d_420d_a5c8_01fa3fd87c4b = ’id_edc601e9_12f9_4615_aadc_024e1b62175c’;
4 while (id_44d650f0_ac7d_420d_a5c8_01fa3fd87c4b != ’

id_8e61087b_738d_4a4e_93ae_2f72946464c4’) {
5 switch (id_44d650f0_ac7d_420d_a5c8_01fa3fd87c4b) {
6 case ’id_edc601e9_12f9_4615_aadc_024e1b62175c’:
7 id_44d650f0_ac7d_420d_a5c8_01fa3fd87c4b = ’

id_1115e25a_3c77_4b28_b0a1_752c38bc9fb7’;
8 break;
9 case ’id_1115e25a_3c77_4b28_b0a1_752c38bc9fb7’:

10 if (id_b9c6d674_a4e0_43a7_814c_a85fe818d315 >= 0)
11 id_44d650f0_ac7d_420d_a5c8_01fa3fd87c4b = ’

id_06e88c81_41ea_45d1_ba42_8ef748126ea2’;
12 else
13 id_44d650f0_ac7d_420d_a5c8_01fa3fd87c4b = ’

id_8e61087b_738d_4a4e_93ae_2f72946464c4’;
14 break;
15 case ’id_06e88c81_41ea_45d1_ba42_8ef748126ea2’:
16 id_4fc078f0_100a_4140_b914_0202e7b4b3d0 = id_8be2a0cd_a06c_415e_b1ba_7440e30ca288

;
17 id_8be2a0cd_a06c_415e_b1ba_7440e30ca288 = id_8be2a0cd_a06c_415e_b1ba_7440e30ca288

+ id_819824fa_e1bb_4640_8b59_03cf187a58a6;
18 id_819824fa_e1bb_4640_8b59_03cf187a58a6 = id_4fc078f0_100a_4140_b914_0202e7b4b3d0

;
19 console.log(id_819824fa_e1bb_4640_8b59_03cf187a58a6);
20 id_b9c6d674_a4e0_43a7_814c_a85fe818d315--;
21 id_44d650f0_ac7d_420d_a5c8_01fa3fd87c4b = ’

id_1115e25a_3c77_4b28_b0a1_752c38bc9fb7’;
22 break;
23 }
24 }
25 }
26 id_303316e8_69bc_46cc_bd27_41d5c6dcdc0f(13);

Figure 4.6: Fibonacci algorithm obfuscated by jackdaw.

1 function id_8a8e532c_4104_4f5c_9d78_a9d2670ab40d() {
2 return true;
3 }
4 function id_ced2e1e7_92db_4de7_801b_e5e782d1a66d() {
5 return false;
6 }
7 function id_9c8433d1_ebdf_4e25_8111_b189cc108c11() {
8 return false;
9 }

10 function id_b690ceab_7c29_4feb_93b8_f281e5b197da() {
11 return true;
12 }

Figure 4.7: An example of four opaque predicates.
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4.4 Jackdaw Features

On this section we will describe that features that Jackdaw presents in order to satisfy the use cases

which are the goal of this work.

4.4.1 Selection of Language Nodes

One of the most common use cases of AOP is the ability to select a certain language node or set

of nodes from the source code and apply an aspect to it, as it can be seen on example 1.

Example 1. Select all function declarations in a file and append automatically generated docu-

mentation.

In order to do this Jackdaw implements a wide range of different types of join points with

different properties which correspond to Javascript language nodes. Most of these join points can

be selected via the LARA query system, while others are meant to be merely obtained as properties

of selected join points.

Some of the more important join points the user can select in order to interact with Javascript

code are: project, file, functionDeclaration, classDeclaration, declaration,

forStatement, whileStatement, switchStatement, ifStatement, tryStatement

and expressionStatement. Although Jackdaw currently supports more join points, these are

sufficient to make the tool functional as a proof-of-concept software and to allow common LARA

packages to work properly.

4.4.2 Code insertions

Jackdaw allows the user to select a join point and append (or replace) another join point or string

to it (see Figure 4.8). Jackdaw also increases the security of this operation by parsing the string

inserted by the user and printing out an error if it does not match a valid Javascript syntax.

1 aspectdef insertDocumentation
2

3 select function end
4 apply
5 var text = "/* Function: " + $function.name + " */";
6 $function.insert("before", text);
7 end
8 end

Figure 4.8: LARA aspect for inserting a comment.
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4.4.3 Common Strategies and Packages

There are several LARA packages and aspects that can work in different LARA-based weavers for

different target languages. In order to get these packages the developer of a new LARA weaver

must implement certain join points with certain properties or actions. With Jackdaw we managed

to implement the required features so that we were be able to support some basic LARA packages

(i.e., lara.code.Logger, lara.code.Timer and weaver.JoinPoints).

4.4.4 Obfuscation

As it was already discussed with greater detail in previous sections, Jackdaw provides the user

with an obfuscator package that is able to obfuscate source code with two different algorithms:

control flow flattening and opaque predicates. The user can use a general obfuscation function

which selects by default all functions in a file and applies obfuscation to them. Alternatively, the

user can use the available lower-level obfuscation methods to create his own custom obfuscation

algorithm, choosing parameters such as the number of predicates to use or the type of language

structures to apply obfuscation.

4.4.5 Customization of Output Syntax

One of the great advantages of using Escodegen [esc] as a code generator is the fact that it allows

to set custom syntax rules for the generated Javascript code. These rules are setup by adding a

configuration JSON file which can specified from the Jackdaw IDE. All generated code will have

these rules applied to it.

4.5 Evaluation Through Grading Criteria

The proposed evaluation for the Jackdaw tool was to implement common strategies that existing

LARA tools already support, and by using a comparison model for evaluation of AOP tools. As

mentioned in section 4.4.3, this first objective was successfully achieved.

Regarding the second objective, on chapter 2 we introduced the comparison model proposed

by [HHL15] and which will be used to evaluate the potential success of the Jackdaw tool in an

AOP environment. We will now provide a specific analysis for Jackdaw regarding three grading

criteria: invasiveness, briefness and maturity. Additionally, we will talk about the common basic

strategies which were implemented and provide an overall analysis of Jackdaw, mentioning inter-

esting features from an user perspective and also pointing out what sort of further improvements

can be done to make Jackdaw competitive with its industry peers.

4.5.1 Invasiveness

As it was predicted, the fact that the Jackdaw tool is based on LARA makes it completely non-

invasive due to the fact that LARA is a code generation oriented tool. Since the AOP aspects
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written in LARA are kept separate from the source code, the Javascript programs are always kept

in its original form, while the new generated modified files are written into a different folder

specified by the user.

4.5.2 Briefness

The LARA scripting language uses the Nashorn javascript engine in order to run, which in this

case makes it extremely similar to its target language, with the exception of a few syntax keywords

and statements which are specifically designed for Aspect-Oriented programming. The overall

advantage is that a user does not have to work with two completely different languages in order to

modify the original source code and write the AOP aspects. In order to justify the grading which

will be later shown, we will offer a comparison with aspect.js, the other technology that received a

double plus in our evaluation. Lets take a look at the function shown in Figure 4.9. Lets say that we

wanted to a add some code to be executed before the initial statements in the body of this function.

One approach in aspect.js, would be the example shown on Figure 4.10. As we can see, we have

to declare these new statements inside a function and then add them with the "before" and "add"

methods. Now lets take a look at a LARA implementation on Figure 4.11. Since the source and

AOP languages are separated, we cannot access the function object anymore, instead we have to

query for all functions and their bodies and apply the needed changes when we have the right one.

While these two tools have different operational paradigms, we can see that the LARA language

is equally clean, effective and non-verbose in accomplishing this task. Additionally, this example

could be made even less verbose by implementing specific methods for prefixing instructions to a

function.

1 function fun1(){
2 console.log("original code.")
3 }

Figure 4.9: Example function.

Finally, we can conclude that writing aspects in LARA is accessible for both experienced and

non-experienced users in AOP. The fact that the LARA IDE gives immediate access to the Jackdaw

API and its documentation to the user is a great help.

4.5.3 Maturity

Maturity is rated by measuring the amount of implemented features and comparing with other

existing tools. In the case of Jackdaw, it must also be compared to other LARA-based tools in

order to grade its implementation of the LARA API. The main features that Jackdaw provides at

the time of writing of this document are:
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1 let aspectjs = require("aspectjs");
2 let before = require(’aspectjs’).before;
3 let addAdvice = require("aspectjs").addAdvice;
4

5 let wrapper = {
6 fun1: fun1
7 }
8 function fun2(){
9 console.log("prefix code")

10 }
11 aspectjs.before(wrapper,"fun1").add(fun2);
12

13 wrapper.fun1();

Figure 4.10: aspectjs aspect for inserting a prefix function.

1 aspectdef addPrefix
2

3 select function.blockStatement end
4 apply
5 if($function.name == "fun1"){
6 $blockStatement.children[0].insert("before","console.log(’prefix code.’);");
7 }
8 end
9 end

Figure 4.11: LARA aspect for inserting a prefix function.

• A wide but incomplete range of selectable Javascript language nodes and properties.

• A sufficient implementation of join point types and properties that enable common LARA

packages to work properly.

• A LARA package that provides obfuscation of Javascript using two different popular tech-

niques.

• The ability of customize the syntax of the output Javascript code according to a definable

set of rules.

It can be concluded that Jackdaw in its present state was able to meet the proposed goals of this

dissertation project and can be considered a usable tool. We can consider as proof of this the fact

that it was possible to implement an entire LARA package for obfuscation that implements two

obfuscation algorithms using the Jackdaw API and its implemented join points and properties.

Finally, while Jackdaw can be considered a usable proof-of-concept tool, it would need to be

further developed in order to be able to seriously compete with the current industry standards. The

main area of improvement would be completing the scope of join points that can be selected to

include the entirety of the Javascript language. Finally, on Table 4.1 we present our evaluation
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of Jackdaw while comparing it to the previously analyzed tools. The self-given grading aims to

reflect what was previously said in this section about each of the grading components.

Table 4.1: Table showing comparison between tools.

Component / Tool AspectScript AOJS AspectJS aspect.js aspectjs Jackdaw
Invasiveness - + - - - ++
Briefness + + + - ++ ++
Maturity + - - + - –

4.5.4 Jackdaw Code Metrics

This section provides an evaluation on the amount of code that was written in order to develop

Jackdaw. Table 4.2 presents the amount of written logical lines, for each of the main development

languages, Java and LARA. It is important to note that the table contains only user-written code.

The code automatically generated by the weaver generator contains 2652 lines of code, which is

more than the total lines of code manually written, while the LARA framework itself contains

more than 24.000 lines of Java code [PCB+18]. This is an indication of the effort saved by using

the LARA framework to develop the tool, as opposed to writing the tool from scratch.

Project Java LARA
Jackdaw 1286 412
JAST 151 0

Table 4.2: Jackdaw Logical line measurements.

4.6 Summary

On this chapter we covered the most important aspects of the Jackdaw development process. We

presented the technologies used in the development of Jackdaw and explained the reasons for

their usage and impact in functionality. We described the most important internal mechanisms of

Jackdaw and how it uses several different constructions in order to work and properly modify the

incoming AST tree from the parsed Javascript code. We described and discussed the implemented

obfuscation algorithms and the challenges we encountered while solving them. Finally, we con-

cluded this chapter by presenting a set of Jackdaw’s main features, outlining their functionality

and making a retrospective analysis on the grading criteria components that were introduced in the

state-of-the-art review.
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Chapter 5

Experimental Evaluation

This chapter will cover the experimental usage and evaluation that was done in order to validate

Jackdaw as a reliable tool. This chapter will begin by introducing some relevant LARA aspects

that were developed in order to assist the experimental evaluation process. Next, we will cover

some of the issues encountered both on the implementation side and on the performance side.

Finally, the chapter presents results regarding Jackdaw usage in obfuscating and running a battery

of benchmarks.

5.1 Developed Aspects

We developed several LARA aspects in order to facilitate the process of running and debugging

benchmarks. These aspects were also integrated in Jackdaw’s obfuscation API, in order to give

the user some more functionality and control over the obfuscation process.

5.1.1 Configurable Obfuscations

Jackdaw offers a method which allows the user to control and customize the obfuscation the user

wants to apply to a file. This is done by passing a JSON object to the function which contains the

configuration. This configuration object contains the minimum and maximum amount of opaque

predicates to be generated (the true number we will be a random number in this interval), which

functions should have obfuscation applied to them, and which obfuscation techniques (opaque

predicates, control flow flatenning, or both). Figure 5.1 shows an aspect that uses the method

applyCustomObfuscation to apply a custom obfuscation configuration to a file.

5.1.2 Learning Obfuscation Configurations

One of the most useful aspects that Jackdaw provides is the ability to automatically discover an

obfuscation configuration for a Javascript source file. Since the current obfuscation method has

some limitations and occasionally can fail when obfuscation a code structure, the alternatives

would be to either blindly call a global obfuscation function, ignoring the potential problems of
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1

2 import obfuscation.Obfuscator;
3 aspectdef obfuscateFile
4

5 select file end
6

7 apply
8 var configuration = {predicates:{min:3,max:6}, functions:[{name:"fun1",algorithms:["

opaque","flat"]}],excluded:[]};
9 applyCustomObfuscation($file,configuration);

10 end
11 end

Figure 5.1: LARA aspect uses a custom configuration in order to apply obfuscation to the functions
of a file.

obfuscating everything in a file, or manually investigating what functions can and can not be

obfuscated.

This aspect solves this problem by iterating over all the functions in a file, obfuscating them

one-by-one, and attempting to run the file each time a function is obfuscated. If there is any run-

time error or a timeout in the execution of the program, the aspect will exclude the last obfuscated

function, revert the code back to the previous state, and continue the process until the last function

is tested. The method then returns a working configuration which contains all the functions for

which there were no obfuscation or runtime problems. The configuration can be obtained as a

return value, and it is also saved as a JSON object to the Jackdaw configuration folder.

Figure 5.2 shows an example of an aspect that uses the method discoverObfuscableFunctions

to test and learn a working configuration for the file to be obfuscated. The previous mentioned

method can then be called passing the obtained configuration as an argument.

1

2 import obfuscation.Obfuscator;
3 aspectdef getObfuscableFunctionsAndExecute
4

5 select file end
6

7 apply
8 var config = discoverObfuscableFunctions($file);
9 applyCustomObfuscation($file,config);

10 end
11 end

Figure 5.2: LARA aspect that uses the discovery method in order to create a working obfuscation
configuration for a file.
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5.2 Implementation and Performance Issues

During the implementation and testing of Jackdaw we encountered several issues which are worth

mentioning, some of which were fixed during the dissertation project. Most of these issues were

related to performance.

5.2.1 Obfuscation Issues

Due to time constraints and also the scope of this project, it was not possible to implement custom

obfuscation for every single type of Javascript structure. Additionally, we detected some bugs in

the list of supported code constructions. Here is a listing and description of these problems:

1. The obfuscation of for-loops with implicit variable declaration may cause runtime errors.

This is due to the fact that the renaming of the declared variable works for the loop’s code

block but this renaming does not propagate to the update step and verification step of the for

loop.

2. The same situation applies to the alternative for-of loop syntax for iterating elements of an

array or list.

3. Attribution of class properties with the this keyword are not being translated to the top of

the function body as the CFF algorithm proposes. This is an interesting case because this

operation depending on its context and position can be for all effects and purposes a variable

declaration or just a simple attribution. The end result is that the order of the declarations

will be wrong, thus the likely-hood of a runtime error is high.

5.2.2 Performance Issues

Some performance issues started being detected after testing with very large files, such as the ones

we found in the benchmarks. These issues usually led to an unacceptable large consumption of

RAM and usually also lead to very large execution times and general unresponsiveness. After

careful re-evaluation and debugging, and with information from profiling tools, we found out this

problem was connected to the creation of a large number of Nashorn engines. Every time certain

tasks were executed (e.g., code insertion), a new engine was created. After detecting that this was

the culprit for the lack of performance, we implemented a system of reusing previously called

Nashorn engine instances, which fixed the performance issues.

5.2.3 Parsing Performance

Through an initial analysis using debugging and time measuring, it was possible to determine that

a very large percentage of execution time was spent parsing the Javascript source files. Parsing

is of course delegated to Esprima [esp], which is run within the Nashorn Javascript engine. Our

reasoning at the time was that using Esprima was a trade-off which allowed us to spend more
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time developing more interesting features within the scope of this dissertation project. However,

solving this particular type of issue was important to make Jackdaw usable.

As previously mentioned, problems with parsing performance were also partly related to un-

necessary calls done to the Nashorn engine. In order to improve parsing performance, we intro-

duced several optimizations which reduced the number of calls and initializations of the Nashorn

engine, which saved results of previous parsings for future aspect executions.

5.3 Performance Analysis

In order to correctly measure the performance impact of both applying obfuscation to files and

executing obfuscated files we decided to run a set of benchmarks taken from the JetStream 2

benchmark collection [jet]. Throughout this section we will present the recorded results of apply-

ing obfuscation and executing obfuscated code. The components of the machine used to run these

benchmarks can be found on Table 5.1.

Component Model
CPU AMD Ryzen 5 2600x
RAM 16Gb DDR4 3200 Mhz
OS Windows 10

Table 5.1: Machine specifications

5.3.1 Performance of Applying Obfuscation

Initially, the time of applying obfuscation was quite large due to redundant calls to the Nashorn

engine. After this problem was corrected, it was possible to apply obfuscation algorithms to large

Javascript files in a few milliseconds. Table 5.3 shows the time for applying complete obfuscation

to the selected benchmarks in the Jetstream 2 benchmark collection [jet]. As we can see, we

managed to successfully obfuscate all examples in less than one second. It is important to note

that the measured times only includes the actual time spent applying obfuscation constructions,

and not time needed to learn the obfuscation configuration, like the presented example on the

beginning of this chapter.

Table 5.4 presents the number of obfuscated functions out of the total number of functions

for each benchmark. The obfuscation aspect, which was developed as a proof-of-concept, was

able to obfuscate a very large number of functions for each benchmark (82% of the functions,

on average). The remaining 18% of functions that were not obfuscated, was usually related to

the already known issues described on subsection 5.2.1. An obfuscation bug will either cause a

runtime error, or fail to assign proper exit variable labels in the control flow flattening algorithm

which will cause an infinite loop which is then detected by the learning method via a timeout.

Finally, Table 5.5 presents the increase on the number of lines of the obfuscated files. As

expected, we can notice a large increase in the number of lines (sometimes up to more than double
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the original size). This is mostly due to the applying of Control Flow Flattening, which transforms

small functions into very large while cycles with switch statements that contain many cases inside.

We can also see that Jackdaw was able to obfuscate in under a second files with hundreds of lines

of code.

Algorithm Obfuscation Lines
Fibonacci 0.2s 33
Base64 0.2s 213
Delta-Blue 0.5s 499
Gaussian-Blur 0.1s 168
N-Body 0.2s 132
Navier-Stokes 0.8s 367
Poker 0.2s 299
Raytrace 0.6s 613
Richards 0.3s 313
String-Unpack-Code 0.1s 121
Tagcloud 0.3s 200

Table 5.2: Time measurement of applying obfuscation.

Algorithm Obfuscation
Fibonacci 0.2s
Base64 0.2s
Delta-Blue 0.5s
Gaussian-Blur 0.1s
N-Body 0.2s
Navier-Stokes 0.8s
Poker 0.2s
Raytrace 0.6s
Richards 0.3s
String-Unpack-Code 0.1s
Tagcloud 0.3s

Table 5.3: Time measurement of applying obfuscation.

5.3.1.1 Impact in Execution time

It is expected that applying obfuscation techniques leads to a degradation of the execution time for

the obfuscated programs, which is one of the trade-offs when applying obfuscation to a program.

In order to do some evaluation of this effect, we decided to measure some algorithms, comparing

the execution time of the original code with its correspondent obfuscated code. Table 5.6 shows

the performance of the evaluated benchmarks. Additionally, we calculate the slowdown multiplier

related to obfuscation for each benchmark.

Analyzing these results we can notice that we have a wide range of outcomes. Most of times

the obfuscated version will be slightly slower than its original counterpart while other times there
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Algorithm Functions Functions
Fibonacci 1/1 100%
Base64 6/8 75%
Delta-Blue 17/21 81%
Gaussian-Blur 5/6 83%
N-Body 9/11 81%
Navier-Stokes 11/24 46%
Poker 5/6 83%
Raytrace 4/4 100%
Richards 12/12 100%
String-Unpack-Code 4/5 80%
Tagcloud 8/9 89%
Geometric Mean 82%

Table 5.4: Total obfuscated functions by the learning method

Algorithm Lines before Lines after Increase Percentage
Fibonacci 33 145 339%
Base64 213 361 69%
Delta-Blue 499 734 47%
Gaussian-Blur 168 359 114%
N-Body 132 327 148%
Navier-Stokes 367 557 52%
Poker 299 395 32%
Raytrace 613 778 27%
Richards 313 556 77%
String-Unpack-Code 121 281 132%
Tagcloud 200 368 84%
Geometric Mean 78%

Table 5.5: Obfuscation line increase

is quite a large difference. For instance, Fibonacci is the benchmark that has the biggest slowdown

(more than 300%). We suspect this is due to Fibonacci’s execution time being mostly bound by

computation. If a benchmark execution time is bounded by memory operations, the increased

computation required by obfuscation is masked by the time the application is waiting for the

memory. The conclusions we make from the analysis of these results is that while it is expected

that obfuscation will generally cause a slowdown of runtime execution, ultimately, it depends on

the particular code that is being obfuscated.

5.4 Summary

On this chapter we covered several topics regarding the experimental usage, process and evalua-

tion of Jackdaw in order to achieve its validation. We discussed several important LARA aspects

that were developed and which were critical in the experimental evaluation process, and pointed
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Algorithm Non-Obfuscated Obfuscated Slowdown
Fibonacci 1.7s 23.1s 13.5x
Base64 11.8s 12.4s 1.05x
Delta-Blue 1s 1.2s 1.2x
Gaussian-Blur 1.1s 8.1s 7.36x
N-Body 1.1s 1.1s 1x
Navier-Stokes 1.1s 1.6s 1.45x
Poker 0.9s 0.9s 1x
Raytrace 1.1s 1.2s 1.09x
Richards 1.3s 1.4s 1.07x
String-Unpack-Code 1.3s 1.3s 1x
Tagcloud 1.4s 1.5s 1.07x

Table 5.6: Runtime measurement

out how they were added to the Jackdaw obfuscation package. We discussed several issues en-

countered both in the implementation side and in the performance side. During this analysis, we

presented data regarding the obfuscation process and execution of obfuscated benchmarks. Fi-

nally, we ended this chapter by discussing the impact of obfuscation in execution time.
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Chapter 6

Conclusion

This chapter states what was created during this dissertation project, how we used literature re-

view in order to better aim the goals of this application and how we used the implementation of

obfuscation in order to validate the developed tool. Finally, we will talk about the improvements

that could be made to Jackdaw in order to make it a more relevant tool when it comes to Aspect

Oriented Programming for Javascript.

6.1 Concluding remarks

During the development of this thesis we managed to meet the projects objectives and success-

fully develop an Aspect-Oriented Programming tool for Javascript through the use of the LARA

framework. Our analysis of past work in this area and literature review allowed us to understand

and grade an AOP tool for Javascript through a series of criteria. With this in mind, we consider

that the developed tool could successfully overcome the proposed challenges, and in certain cri-

teria, such as Invasiveness, is an improvement over the state-of-the-art. Once the Jackdaw tool

was sufficiently matured, we started using it in order to develop an obfuscation module. We then

integrated this developed module within Jackdaw itself and analyzed the results of obfuscating

and executing a collection of known benchmarks, from which we could obfuscate 82% of their

functions, on average, always under 1 second.

6.2 Future work

While we believe that Jackdaw is a working functional tool at the present moment, its functionality

could be vastly improved by increasing the scope of the Javascript language that Jackdaw supports.

Adding more structure support, actions and features would greatly improve its usability. Regarding

the obfuscation module, its usability could be improved by solving some currently known bugs

which were stated previously, and increasing the number of code structures that can be obfuscated

by the Control Flow Flattening algorithm. The random opaque predicates package can be extended
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to generate more complex predicates, and more obfuscation algorithms could be added into the

package.
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