FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Aspect-Oriented Programming for
Javascript using the Lara Language

Ricardo Sa Loureiro Ferreira da Silva

[BPORTO

FEU FACULDADE DE ENGENHARIA
UNIVERSIDADE DO PORTO

Mestrado Integrado em Engenharia Informética e Computagao

Supervisors: Dr. Jodo Bispo and Dr. Tiago Carvalho

July 23, 2019

Aspect-Oriented Programming for Javascript using the
Lara Language

Ricardo Sa Loureiro Ferreira da Silva

Mestrado Integrado em Engenharia Informética e Computagao

July 23, 2019

Abstract

Aspect-Oriented Programming (AOP) is a programming paradigm focused on improving modular-
ity through the separation of concerns. The LARA framework is a set of Java libraries that can be
used to easily build AOP tools for arbitrary programming languages. The main goal of this disser-
tation project was to investigate if the LARA approach, which is based on static source-to-source
compilation, was adequate for developing tools for a dynamic language such as JavaScript.

In order to test this we developed Jackdaw - an AOP tool for JavaScript which is built upon
the LARA framework. The objective was for Jackdaw to present a sufficient number of features
in order to satisfy its use cases, namely the implementation of an obfuscation module and related
features. The research component of this work analyses state-of-the-art AOP tools, libraries and
frameworks for the JavaScript programming language, and presents a methodology for compar-
ison, in order to classify the strengths and weaknesses of each of these tools. Additionally, we
compare Jackdaw against the existing tools. Through use of the LARA framework it was possible
to develop Jackdaw - a new AOP tool for JavaScript which was capable of satisfying the mentioned
use cases, while holding up against other existing tools.

ii

Resumo

Programacdo orientada a aspetos (AOP) é um paradigma de programacgdo focado em melhorar a
modularidade através da separacdo de "concerns". A LARA framework é um conjunto de bibliote-
cas de Java que podem ser utilizadas para facilmente construir ferramentas AOP para linguagens
de programacdo arbitrdrias. O objetivo principal deste projeto de dissertacdo foi investigar se
a abordagem LARA, que € baseada em compilacdo estitica source-to-source, se adequa a uma
linguagem dinadmica como Javascript.

Para testar esta hipdtese, desenvolvemos o Jackdaw - uma ferramenta AOP para Javascript
construida em cima da framework LARA. O objectivo da ferrementa é apresentar um numero su-
ficiente de capacidades de forma a poder validar os casos de uso selecionados, nomeadamente a
implementacdo de um modulo de ofuscagdo e "features" relacionadas. A componente de investi-
gacdo deste trabalho analisa as mais recentes ferramentas e frameworks de AOP para a linguagem
de programacio Javascript. Esta andlise, onde incluimos o Jackdaw, usa uma metodologia para
a comparagdo de ferramentas, de forma a poder classificar os pontos fortes e fracos de cada uma
delas.

Através do uso da LARA framework foi possivel desenvolver o Jackdaw - uma nova ferra-
menta AOP para Javascript que foi capaz de satisfazer os casos de uso mencionados e ser compet-
itiva em relagdo as ferramentas existentes.

il

v

Contents

1 Introduction 1
L1 Context e e e 1

1.2 Objectives and motivation oL o 2

1.3 Contributions e e 2

L4 Summary e e e 3

2 Existing Work 5
2.1 Aspect-Oriented Programming 5
2.1.1 Possible approachesin AOP 5

2.1.2 Domain specific languages 0oL 6

22 LARAFramework 6
221 LARAIL . . . o e 7

222 Weaver Generatoro .o e e 7

2.3 AOP frameworks for Javascript oL oo 7
2.3.1 AspectScript L 8

232 AOJS . . 8

233 Aspect]S ..o 9

234 @SPeCtiS e e e e e e e e 9

235 @SPECLJS . . . o e e e 10

2.4 Comparison and Evaluation criteria 11
24.1 Invasiveness e e 12

242 Briefness 12

243 Maturity e e 12

244 CompariSon u i e e e e e 12

2.5 Summary e e e e e e 13

3 Work Plan 15
3.1 Development Phases 15

3.2 Summary .. o.o. .. e e e e e e e e 16

4 Development 17
4.1 Used Technologies i 17
42 Jackdaw 18
42.1 Jackdaw AST L 18

422 AST Structure 19

423 Jackdaw Joinpoints 19

4.2.4 Jackdaw Query Engine oL oL oo 19

4.2.5 Joinpoint Parent Mapping 20

CONTENTS

42.6 JoinPointCreator
43 CodeObfuscation e
43.1 Variablerenaming L Lo
432 Control Flow Flattening
433 OpaquePredicates
4.4 Jackdaw Features
4.4.1 Selection of Language Nodes
442 Codeinsertions o v ittt e
4.4.3 Common Strategies and Packages,
444 Obfuscation
4.4.5 Customization of OQutput Syntax
4.5 Evaluation Through Grading Criteria
4.5.1 Invasivenesso i e e e
452 Briefness
453 Maturity e e e e e e
454 Jackdaw Code Metrics
4.6 SUMMATY o ot e e e e e e e e e e

Experimental Evaluation

5.1 Developed Aspects e
5.1.1 Configurable Obfuscations
5.1.2 Learning Obfuscation Configurations
5.2 Implementation and Performance Issues
5.2.1 ObfuscationIssues L
5.2.2 Performance Issues
5.2.3 Parsing Performance,
5.3 Performance Analysis L Lo
5.3.1 Performance of Applying Obfuscation
54 Summary ... e e e e e e
Conclusion
6.1 Concludingremarks
6.2 Futurework
References

vi

31
31
31
31
33
33
33
33
34
34
36

39
39
39

41

List of Figures

2.1
2.2
2.3
24
2.5
2.6

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

5.1

5.2

LARA codeexample. 7
AspectScript code example [HHL15] 8
AOJS code example [HHL15] 9
Aspect]S code example [HHLI15] 10
aspectjs code example for Node.js. L. 10
aspect.js code example for typescript 11
Figure presenting the current work plan 16
Jackdaw flowchart Lo 19
LARA aspect that renames all declarations. 22
Input JavaScriptcode. 22
Generated JavaScriptcode. oL oL 22
Fibonacci algorithm using a whilecycle. 23
Fibonacci algorithm obfuscated by jackdaw. 24
An example of four opaque predicates. L. 24
LARA aspect for insertingacomment. 25
Example function. 27
aspectjs aspect for inserting a prefix function. 28
LARA aspect for inserting a prefix function. 28

LARA aspect uses a custom configuration in order to apply obfuscation to the

functionsofafile. oo 32
LARA aspect that uses the discovery method in order to create a working obfus-
cation configuration forafile.. L ... 32

vii

LIST OF FIGURES

viii

List of Tables

2.1

4.1
4.2

5.1
5.2
53
54
5.5
5.6

Table showing comparison betweentools. 13
Table showing comparison betweentools. 29
Jackdaw Logical line measurements. 29
Machine specifications 34
Time measurement of applying obfuscation. 35
Time measurement of applying obfuscation. 35
Total obfuscated functions by the learning method 36
Obfuscation line increase oL 36
Runtime measurement L 37

ix

LIST OF TABLES

Abbreviations

AOP Aspect Oriented Programming
LARAI LARA Interpreter

AST Abstract Syntax Tree

CFF Control Flow Flattening

DSL Domain specific language

X1

Chapter 1

Introduction

This chapter introduces the concept and technological context of this dissertation project. It also
states the main objectives of the thesis, the motivation for this project and the validation strategies
that are going to be used. Throughout this work we will reference certain words and terminologies
that will be briefly explained here.

An aspect is code that specifies a concern separately from a program that contains the business
logic. In the context of the LARA framework, aspects are also referred as strategies.

A weaver is piece of software that applies aspects written in an AOP language to a given pro-
gram. In our case, the weaver will be the LARA-based source-to-source compiler for JavaScript.

The weaving process is the application of an aspect to a given program[KLM™97]. In our case
it corresponds to the execution of the JavaScript source-to-source compiler when an aspect/strategy

is applied to a given program.

1.1 Context

Aspect-oriented programming (AOP) is a programming paradigm focused on improving mod-
ularity through separation of concerns [KLM*97]. To achieve this, AOP proposes that certain
concerns should be specified in modules (usually called aspects) separately from the source code
where they would usually appear.

The LARA framework is a framework which uses LARA, a Domain Specific Language (DSL)
which is agnostic to the target language of the weaver. This means that a developer can develop
AOP aspects for several different target languages using with the same aspect language, and some-
times even reuse the same aspects between languages. Additionally, the LARA Framework con-
tains tools (e.g., a Weaver Generator) which reduces the required effort to add support for new
programming languages.

This dissertation investigates if it is possible to use the LARA framework to develop an AOP
tool for the JavaScript programming language. This dissertation was done in the laboratory of
Computational Systems of the Faculty of Engineering of the University of Porto (FEUP), in the
Special-Purpose Computing Systems, languages and tools research group (SPeCS). The LARA

Introduction

framework, upon which the engineering prototype of the dissertation is built, originated and is

currently maintained by this research group.

1.2 Objectives and motivation

JavaScript is currently the de facto browser programming language, and one the of the most pop-
ular programming languages in the world '. Given this, we consider that there is a valid interest
in making the advantages and features of AOP available to JavaScript developers. These features
include modularity through separation of concerns, automatic logging, automatic code transfor-
mations, among others - which can lead to an overall increase in productivity when developing a
software system.

One way to add support for AOP to a language is by using a source-to-source compiler. Typ-
ically, a compiler is a piece of software which accepts as input a program written in a given
programming language, and outputs an equivalent program in another programming language,
usually machine code. A source-to-source compiler outputs a program written in the same lan-
guage as the input program, and can be useful to apply custom code transformations. LARA
is an aspect-oriented language, developed in Faculdade de Engenharia da Universidade do Porto
(FEUP), which allows the development of aspects that can be applied to different programming
languages [CCCT12].

The main objective of this dissertation project was to investigate if the LARA approach, which
is based on static source-to-source compilation, is adequate for developing an AOP tool for a
dynamic language such as JavaScript.

In order to test this idea we developed an Aspect-Oriented weaver for Javascript, called Jack-
daw, that is based on the LARA framework. We performed a revision of the current state-of-the-art
of JavaScript weavers by doing a qualitative comparison of the already existing tools, and tried to
understand what could be done to improve upon them. In order to validate Jackdaw, we tested
it against a set of existing LARA strategies that are currently supported by other LARA-based
weavers that target languages such as MATLAB [BPN " 13] or Java [CC18]. Additionally, we de-
veloped strategies for an obfuscation use case which required non-trivial features such as variable

renaming, which were tested with several benchmarks from the known Jetstream 2 [jet] collection.
1.3 Contributions

We consider that this thesis has the following contributions:

e Review of state-of-the-art tools for applying aspect oriented programming to JavaScript and

application of a previous analysis framework to more recent tools.

e Confirmation that the LARA framework can be used to build tools for dynamic languages

such as Javascript that implement non-trivial source-to-source transformations.

1https ://github.blog/2018-11-15-state-of-the-octoverse-top-programming-languages/

https://github.blog/2018-11-15-state-of-the-octoverse-top-programming-languages/

Introduction

e Development and release of Jackdaw, an open-source LARA-based AOP tool for Javascript

that uses a static source-to-source approach?.

e Research and implementation of several obfuscation-related algorithms and their inclusion

in Jackdaw.

e Website where users can try an online demo of Jackdaw?.

1.4 Summary

On this chapter we introduced the concept and technological context of this dissertation project,
which is based on AOP and source-to-source compilation. We also stated the main objectives of
the thesis - to investigate if the LARA approach is adequate for developing an AOP tool for a
dynamic language such as JavaScript, and use it to attempt to improve the current state-of-the-art.

We presented the motivation for this project, and the validation strategies that are going to be used.

2https ://github.com/tansvanio/jsweaver
3http: //specs.fe.up.pt/tools/jackdaw/

https://github.com/tansvanio/jsweaver
http://specs.fe.up.pt/tools/jackdaw/

Introduction

Chapter 2

Existing Work

This chapter describes the basic concepts of aspect-oriented programming and introduces the
LARA Framework. It also lists the most relevant currently existing AOP tools and frameworks for
Javascript along with their correspondent analysis and comparison. This was particularly useful in
order to determine where certain tools succeed and where others fail, in order to tailor Jackdaw to

achieve the highest degree of success in all the components which make an AOP tool.

2.1 Aspect-Oriented Programming

Aspect-oriented programming is a programming paradigm that is based on the idea we can specify
certain concerns (properties or areas of interest) of a system separately from the business logic,
and then relying on mechanisms in the underlying AOP environment to weave or compose them
together into a coherent program [EFB01]. One of the main advantages of AOP is that it allows us
to achieve modularity through the separation of concerns. In order to separate concerns, AOP in-
troduces to us the concept of Aspects, which are "mechanisms beyond subroutines and inheritance
for localizing the expression of a crosscutting concern" [EFB01]. After being defined, a particular
Aspect will then contain several joint points, which are the instructions in which the aspect code
will interact with the entire environment, allowing us to perform tasks like: manipulating code,

function calls, logging, unit testing, etc.

2.1.1 Possible approaches in AOP

Regarding the implementation of aspect-oriented programming to an already existing target pro-
gramming language, we can consider the utilization of two different approaches. The first ap-
proach is for the aspect-code to be an extension of the source-code, which allows to move con-
cerns which were previously dealt with inside the business logic into an aspect, effectively moving
source code to aspect code [FDNT15]. This approach values a seamless integration between as-
pect and business logic, and provides access and support of target language features in aspect code
[PCB"18]. Examples of this approach is Aspect] [KHH'01] and AspectC++ [SGSP02], which

Existing Work

extend Java and C++ with Aspect-Oriented Programming concepts, respectively. One of the pos-
sible advantages of this approach is a possible smaller learning curve, since the user is not required
to learn a new language syntax to program the aspect code. The more considerable drawbacks of
this approach will be covered later in this chapter when we present the concept Invasiveness.

The second approach is designing an aspect language which is agnostic to the target language.
This potentially requires more complex engineering in order to integrate the two different lan-
guages for the aspect and business logic, although AOP tools that use the first approach can also
be noteworthy in their complexity [Lad09]. Tools that use this second approach will physically
separate the aspect code from the target language code. Later in this chapter we will discuss how
the LARA framework takes great advantages in using this approach in order to be able to support
different target languages [PCB ™ 18].

2.1.2 Domain specific languages

Following the definition proposed by [VDKV00], a Domain-Specific Language (DSL) is a pro-
gramming language or executable specification language that offers, through appropriate notations
and abstractions, expressive power focused on, and usually restricted to, a particular problem do-
main.

An advantage of DSLs is that they have the potential to express a solution to the domain
problem more concisely and in a clearer way. This can also diminish errors or inefficient idioms,
and make code generation more efficient. On the downside, DSLs introduce the overhead of
having to learn a new language, and usually are not as integrated in the compilation tool-flow as
native libraries or compiler-supported extensions.

DSLs for source-to-source compilers can be generic or specific. LARA [CCC™16] is an exam-
ple of a DSL which can be used to implement generic source code analysis and transformations.
On the other hand, CHiLL [CCHOS] is a declarative language that only allows to specify sequences
of (predefined) transformations and constrains that are to be applied to existing source code.

On the next section we will introduce the LARA framework and describe how the LARA DSL
and its properties make up the foundation of Jackdaw.

2.2 LARA Framework

The LARA language [CCC*12] is a DSL for source-to-source transformations and analysis, in-
spired by AOP concepts [PCB" 18] which was developed at the Faculty of Engineering of the
University of Porto and allows for the development of aspects that can be applied to different pro-
gramming languages. Unlike most AOP approaches, LARA was designed to work independently
of the target language and is capable of specifying code insertions and transformations for any
target programming language. This was achieved by separating the LARA language from the lan-
guage specification of the target language, which consists of a specification of relevant points of

interest, along with their attributes and actions [PCB " 18].

Existing Work

On Figure 2.1 we present a simple example of LARA code. This code declares a LARA aspect
which selects all the function calls inside functions and proceeds to insert a new comment in the

line prior to each call.

aspectdef LaraAspect
select function. end
apply
Scall. "// Call" + S$call.name + " at line: " + $call.line;
end
end

Figure 2.1: LARA code example.

The LARA Framework has been previously used to develop a weaver for MATLAB [BPN"13],
which is a dynamic language like JavaScript. However, that work mainly focused on the compi-
lation of MATLAB code to C/OpenCL [BRC14, RBC17], and did not fully explore the source-
to-source capabilities of LARA over a dynamic language, which is one of the objectives of this

thesis.

2.2.1 LARAI

The LARA interpreter (LARAI) was developed in order to improve the integration of the LARA
language with different weaving environments. LARAI executes the LARA aspects, while the

Weaver makes the connection between the queries and actions in LARA, and the target source-
code [PCBT18].

2.2.2 Weaver Generator

Developing and maintaining a Weaver Engine from the ground up requires a high amount of effort.
However, one of the main advantages of extending language support with the LARA framework
is that it ships with a Weaver generator. The Weaver generator is a piece of software that, provided
with a language specification, generates a skeleton Weaver engine. With the skeleton Weaver,
the developer can focus on developing the specific actions and attributes that will be exposed
by the weaver, while the generator takes care of all the required infrastructure code to interface
with LARAI [PCB*18]. Using the Weaver for this work allows for a much faster progress in the
building of the new tool and more importantly, it allows for quick prototyping and an incremental
build up of strategies.

2.3 AOP frameworks for Javascript

Currently there are several Aspect-oriented plugins and frameworks for the Javascript language.

Some of these plugins are experimental proof-of-concepts while others are fully built products that

Existing Work

are quite usable in a production environment. In this work, the scope of analysis and comparison

to other frameworks will be limited to the ones we considered to be the most relevant.

2.3.1 AspectScript

AspectScript [TLT10] has been presented as an AOP extension for Javascript that incorporates
high-level programming and support for the dynamic aspects of JavaScript as part of its native de-
sign. One of the main motives for the creation and development of AspectScript was that previous
existing work did not contain any AOP extension for JavaScript which fully supported some of the
features that define JavaScript - dynamic prototype-based programming and higher-order func-
tions. AspectScript implements point-cuts and advices as normal JavaScript functions which al-
lows the use of normal high-order programming to define AOP aspects. Additionally, AspectScript
implements a series of state-of-the-art AOP features like dynamic aspect deployment with scop-
ing strategies, and user-defined quantified events. On Figure 2.2 we can see an example of the

AspectScript syntax. This particular piece of code is reported to do the following:

1. Computes current aspects to determine what set of aspects may apply.
2. Evaluates the point-cuts of these aspects against the current join point.

3. Chains together the advices of aspects that matched the current join point and then applies

them.

It was not possible to experiment with AspectScript due to the hosting link being down on the
website of the PLEIAD laboratory of the Computer Science Department (DCC) of the University
of Chile (Faculty of Engineering).

function weave (jp) {
var currentAspects = union(globalAspects,aspectsIn(ctxObj),aspectsIn(ctxFun));
var advices = match (jp,currentAspects);

return chainAndApply (advices);

Figure 2.2: AspectScript code example [HHL15]

232 AOJS

AOQJS [OKM " 11] has been presented as an JavaScript framework which can provide AOP support
with the full separation of aspects and normal JavaScript modules. The development of AOJS
has been motivated by the fact that previous existing AOP frameworks did not achieve the full
separation of aspects from normal code, requiring instead modifications in the target code in or-

der to achieve aspect weaving. AOJS allows for the specification of function execution, variable

Existing Work

substitution and file initialization as the join-points of its aspects. Like mentioned before, AOJS
guarantees the complete separation of aspects and normal code by adapting its architecture for
aspect weaving. On Figure 2.3 we can see an example of the AOJS syntax. For this example, it
is reported that AOJS weaves aspects into the location specified by the initialization point cuts,
and uses a code template for code replacement. The weaving process proceeds in the following

manner:

1. Executes <before>.

2. Executes <target>, and stores the return value of the <target> expression into temporal vari-

able retvalue.
3. Executes <after>.

4. Returns the value stored in retvalue.

(function () {

< >
var _returnvalue = <target>;

< >

return _returnvalue;

IDNON

Figure 2.3: AOJS code example [HHL15]

2.3.3 Aspect]S

Aspect]S [asp] is a programming library that allows the user to implement method-call inter-
ception via proxy functions in Javascript. Additionally, this library provides support for method
calling and system state validation (locally or remotely) and remote method-call instrumentation.
Aspect]S was designed and developed by Richard Vaughan, and is distributed by Dodeca Tech-
nologies Ltd. The example on Figure 2.4 we can see an example of the Aspect]S syntax. The code
is reported to execute as follows: the Aspect]S function "addPrefix" is used to add the function
"prefixFunction" to run before "myFunc()". When myFunc is called, prefixFunction will be exe-
cuted first. Code experimentation with AspectJS has not been possible at the current date due to it

being a paid product.

2.3.4 aspectjs

aspectjs [For17] (in lowercase) is a simple proxy-based-AOP library developed by Philip Ford
which was implemented as a Node.js package. It works either with standalone functions or with

object methods. Additionally, it can also be used on client-side JavaScript with Browserify. One

Existing Work

function prefixFunction () {
// Code
}
function myFunc () {
// Code
}
AJS.addPrefix(, "myFunc", prefixFunc) ;
myFunc () ;

Figure 2.4: Aspect]S code example [HHL15]

of the main advantages of this library is that proxy functions are extremely easy to use and under-
stand, the downside being that it requires the user to mix AOP code with source code. On Figure
2.5 we present a code example of this package. This code declares an object with several prop-
erties and a method, following by a use of the aspectjs library to add a new method to this object

prior to the original method.

const = require (’aspectjs’). £
let addAdvice = require ("aspectijs") .addAdvice;

let advised, adviser, result;
advised = {
add: function(increment) { .left += increment; 1},
id: ’test’,
left: 32,
top: 43
}i
adviser = {
override: function(increment){ advised.left = increment; }

}i

(advised, "add").add(adviser, "override");
advised.add(2) ;
console.log (advised)
// Prints: { add: [Function: f], id: ’‘test’, left: 4, top: 43 }

Figure 2.5: aspectjs code example for Node.js.

2.3.5 aspect.js

aspect.js [asp15] (not to be mistaken with aspectjs or Aspect]S) is a library for aspect-oriented
programming with JavaScript which takes advantage of ECMAScript 2016 decorators syntax.
However, it requires AOP logic to be mixed with business logic in the Javascript code, much
like our previous example. aspect.js was first presented in AngularConnect, the official European

Angular conference of 2015.

10

Existing Work

On Figure 2.6 we present a code example of aspect.js working with typescript. On this code
we declare two classes and a AOP logger aspect. This aspect sets up a logging method before the

getting or setting of articles in the ArticleCollection class.

import {beforeMethod, Wove, Metadata} from ’aspect-dot-js’;

LoggerAspect {
@beforeMethod ({
classNamePattern: /"Article/,
methodNamePattern: /" (get|set)/
}
invokeBeforeMethod (meta: Metadata) {

// meta.woveMetadata == { bar: 42 }
console.log(‘Inside of the logger. Called ${meta.className}.${meta.method.name} with args
${meta.method.args.join(’, ")}.%);
}
}
Article {

id: number;
title: string;
content: string;

}

@Wove ({ bar: 42 })
ArticleCollection {
articles: Articlel[] = [];
getArticle (id: number) {
console.log(‘'Getting article with id: ${id}.');

return .articles.filter (a => {
return a.id === id;
1) .pop ()7

}
setArticle (article: Article) {
console.log(‘'Setting article with id: ${article.id}.?);
.articles.push(article);

}
new ArticleCollection () .getArticle(l);
// Result:

// Inside of the logger. Called ArticleCollection.getArticle with args: 1.
// Getting article with id: 1.

Figure 2.6: aspect.js code example for typescript

2.4 Comparison and Evaluation criteria

This section relies on the comparison model proposed by [HHL15]. Following this model, we
compared and evaluated the previously mentioned frameworks according to three criteria: Inva-
siveness, Briefness and Maturity. The main objective of this comparison is to understand why

some frameworks fail in some of these criteria and why others succeed. Jackdaw aims to to use

11

Existing Work

the advantages offered by the LARA framework to gain a competitive advantage against other

tools in these criteria.

2.4.1 Invasiveness

While there are many frameworks that manage to successfully implement AOP by mixing it with
source code, it should be noted that AOP was designed to be a supplement and extension to con-
ventional programming. The original program should not be modified due to the presence of AOP
in the development stack. Additionally, if we take into account code maintenance and update, join-
ing aspect programming with the rest of the system will cause secondary development [HHL15].

Thus, an AOP tool should strive to make aspect code separate from the source code.

2.4.2 Briefness

Usually, Aspect-oriented programming is harder to grasp for new developers as opposed to more
popular paradigms, like Object-Oriented programming. Thus, an AOP tool should allow the de-

veloper to define aspects with a clear and simple syntax as much as it can.

2.4.3 Maturity

An AOP tool for Javascript should be able to control all the unique features of Javascript and
particularly the dynamic aspect of Javascript, as well as providing comprehensive generic AOP

functionality.

2.4.4 Comparison

Using the previously defined grading components it is possible to perform a quick evaluation and
comparison between the presented tools (see Table 2.1).

Regarding Invasiveness, AOJS is the only tool that manages to achieve full separation of AOP
code from source Javascript code, and thus is the only tool to have a positive score in this compo-
nent.

Regarding briefness, there are two tools that clearly standout in this components - aspectjs
and Aspect]S. This is due to their proxy-function based operations which allow for very simple
AOP directives. Use of ECMAScript 2016 by aspect.js has been given a negative review, since
it proposes a somewhat messy syntax which is easy to confuse with the normal JavaScript code.
AOIJS relies on XML to achieve a somewhat brief syntax and AspectScript achieves the same with
its method-based AOP operations.

Regarding maturity, we considered AspectScript and aspect.js to be the most mature tools,
since they cover the basic fundamental features of AOP. The proxy-based nature of Aspect]S and
aspectjs end up limiting their range of features. AOJS is unable to take advantage of high-order

programming due to the fact that it uses XML for its syntax [HHL15].

12

Existing Work

Table 2.1: Table showing comparison between tools.

Component / Tool | AspectScript | AOJS | Aspect]S | aspect.js | aspectjs
Invasiveness - + - - -
Briefness + + + - ++
Maturity + - - + _

Making a preliminary evaluation of the LARA-based JavaScript Weaver, we consider that in
regard to Invasiveness, we expect the tool to do very well, due to the fact that LARA has its
own syntax that is kept separate from the source code. This is also one of the characteristics that
allows it to be multi-target framework. Regarding Briefness, we consider that LARA has a syntax
that, while not minimalistic, is quite easy to comprehend. Additionally, work on previous LARA-
weavers has shown that is it possible to write complex LARA aspects that provide accessible
interfacesl ABBC18]. Finally, the LARA framework provides several out-of-the-box tools that
significantly helps a new weaver to have access to features associated with more mature tools,
such as unit testing and documentation generators. The framework also allows to build the weaver

in an incremental way, which makes it relatively easy to add new features as needed.

2.5 Summary

On this chapter we described the main technological background for the new AOP tool for JavaScript.
Additionally, it presented an introduction to Aspect-oriented programming, the LARA framework,
and a set of relevant AOP tools. It introduced the comparison criteria which will be used to mea-
sure the developed tool against the state-of-the-art, and a comparison of the state-of-the-art tools,

based on investigation and experimentation.

13

Existing Work

14

Chapter 3

Work Plan

This chapter presents the work plan used for this dissertation project, as well as how its different

development phases were distributed throughout the allowed timetable.

3.1 Development Phases

The objective of this dissertation project was to determine if the LARA framework was adequate
for developing tools for a dynamic language such as JavaScript. In order to test this, we developed
Jackdaw - a working AOP tool for Javascript using the LARA framework - and validated it with
a set of use cases. In order to do this in an organized fashion, we used an incremental approach
where work on certain software areas began as soon as the needed background implementation
was done.

The development of Jackdaw and document writing of this dissertation project consisted of

several phases:

1. Literature review - research about current existing AOP tools for JavaScript and methodolo-

gies for evaluating them.
2. Thesis writing - writing the dissertation document itself.

3. Weaver development - obtaining a Javascript AST to be used by the weaver, created from
parsed JavaScript code, and incremental development of join points, attributes and actions

for the weaver.
4. Strategy support - implementing support for already existing LARA strategies.

5. Use case support - implementation of custom strategies in order to perform code obfusca-

tion.
6. Strategy validation - validation of already existing LARA.

7. Use case validation - use case validation by checking if requirements are fulfilled.

15

Work Plan

The previously mentioned phases can be seen distributed in a time schedule on Figure 3.1.
The purpose of this work plan was to provide a basis for time management and allocation of
priorities during the development of the project. The writing of the dissertation document took
place alongside project coding and development. The first few weeks were spent developing the
weaver for JavaScript, Jackdaw. After Jackdaw supported a sufficient number of joint-points, the
development of strategy support began. Likewise, when a basic set of supported strategies were
implemented, the development of use case support began, namely features like variable renam-
ing and obfuscation. Any remaining needed joint-points or strategies were developed in this last

stretch of time. Validation of implemented strategies and use-cases were done in parallel with their

development.
Figure 3.1: Figure presenting the current work plan
118 2019
Activity Resource Status November December January February WMarch April May June
Literature Review I
Thesis Writing
Weaver Development |
Sirategy Development I
Use Case Development
Strategy Validation |

Use Case Validation

3.2 Summary

On this chapter we presented a reviewed version of the work plan of this work, which describes

the different phases of this dissertation project and how they were scheduled.

16

Chapter 4

Development

In this chapter we will cover what we consider to be the most important aspects of the Jackdaw
development process. We present the technologies used during development, and explain their
role and how they were used. We will describe the internal mechanisms of the Jackdaw tool and
how it uses several different constructions in order to properly modify the incoming AST tree from
the parsed Javascript code. We also discuss the implemented obfuscation algorithms and the chal-
lenges we encountered, and how they were solved. Finally, this chapter concludes by presenting
a set of Jackdaw’s main features, outlining their functionality and making a retrospective analysis

on the grading criteria introduced on chapter 2.

4.1 Used Technologies

In order to develop Jackdaw and meet the proposed challenges of this work, we assembled a wide
range of technologies. The following list describes the technology stack and a short description

regarding how each one was used.

e Java 11 - The LARA framework source code is written in Java and the preferred way to
develop a new LARA-based tool is to write the tool also in Java. Java development was
done using Eclipse, which allowed for a very quick setup of the project after importing the

LARA framework dependencies using a Maven repository .

e Nashorn Engine - Nashorn is a JavaScript engine developed in the Java programming lan-
guage by Oracle which comes included in Java 8[nas]. The Nashorn engine is used by Jack-
daw in order to parse files and generate Javascript files using packages written in Javascript,

such as Esprima and Escodegen.

e Gson - Gson is a Java library that can be used to convert Java Objects into their JSON
representation. It can also be used to convert a JSON string to an equivalent Java object.

Gson can work with arbitrary Java classes, including compiled classes for which we do not

IThe lara-framework can be found here: https://mvnrepository.com/artifact/pt.up.fe.specs/
lara—-framework

17

https://mvnrepository.com/artifact/pt.up.fe.specs/lara-framework
https://mvnrepository.com/artifact/pt.up.fe.specs/lara-framework

Development

have the source-code [gso17]. This was the library chosen for dealing with JSON and it is

extensively used by Jackdaw to serialize and deserialize Javascript code nodes.

e Esprima - Esprima is a high performance, standard-compliant ECMAScript parser written
in ECMAScript (also popularly known as Javascript) and it can be used to perform lexical
analysis (tokenization) and syntactic analysis (parsing) of a JavaScript program [esp]. The
ability to parse Javascript code into an AST structure was an obvious need early on. The
lack of readily available Javascript parsers written in Java, and the time it would take to
write a custom parser, led us to consider using the Java 8 Nashorn Javascript engine to
execute a package that would let us parse Javascript source code into an abstract syntax tree.
Esprima was the perfect choice for this task since it allows us to quickly parse Javascript
files with several option flags to include extra information in the AST, such as the inclusion

of comments, location of the code corresponding to each node, etc.

e Escodegen - Escodegen (escodegen) is an ECMAScript code generator from Mozilla’s
Parser API AST [esc]. After Jackdaw parses all the source code and applies the trans-
formations to the AST, it needs to convert it back into Javascript code. In order to do this we
decided to use Escodegen to generate the output code from the modified JSON tree struc-
ture. In addition to the advantage of not having to write a custom code generator, Escodegen
already contains several flags which allow the user to define how the generated code should

be formatted.

4.2 Jackdaw

Figure 4.1 describes the structure of the tool Jackdaw. It uses the JavaScript parser Esprima to tok-
enize and parse the code into an abstract syntax tree (AST), as a JSON object. After some thought
and planning, we decided to directly use the AST produced by Esprima, instead of producing a
new AST from it. The Jackdaw weaver interacts with the AST and applies the appropriate actions
according to the requests of the LARA framework, which executes the LARA code. In the final
step, Jackdaw uses the JavaScript library Escodegen [esc] to generate code from JSON AST and

produce a modified Javascript program as result.

4.2.1 Jackdaw AST

The first task in the development of Jackdaw was the Jackdaw AST module. The objective of
this module is to parse JavaScript source files into an Abstract Syntax tree, and back to code. In
order to do this we used Esprima and Escodegen, a JavaScript parser and generator respectively.
However, since both of these packages are written in Javascript, we had to use the Nashorn engine

in order to successfully execute Javascript code from within a Java runtime.

18

Development

Figure 4.1: Jackdaw flowchart

Lara
Strategy

Javascript
Program

Lara Framework

——Y¥ Esprima Modified Modified

[Json Ast Json Ast ‘ | Javascript
Esprima Jackdaw ‘ Escod 1 | Program

4.2.2 AST Structure

The result from parsing a Javascript source is a JSON object with all the codes structures and hier-
archies defined by Esprima. Initially, we planned to convert this JSON object into an intermediate
node structure which contained only relevant information, before converting them into Jackdaw
join points. However, with some investigation we were able to conclude that it was possible to
skip this step and use the JSON object to directly create the Jackdaw join points. Additionally,
this approach has the added advantage of being able to use existing tools such as Escodegen to
generate the output code. If we used an intermediate node structure we would have to either im-
plement our own Javascript generator, or a generator for Esprima-compatible JSON, in order to
convert this structure back into Javascript code. Any added or computed properties that might be
useful to have added to the original JSON structure yielded by Esprima can instead be computed

on join point side (much like virtual properties), leaving the original JSON structure intact.

4.2.3 Jackdaw Join points

The join points supported by Jackdaw represent Javascript language structures and statements
present in the source code, such as declarations, while statements, if statements, try-catch state-
ments, etc. It is possible to use the LARA syntax to query and capture these join points in order
to do further operations. Each join point is mapped to a Java class, which internally queries the
corresponding JSON node and provide methods that return the attributes and perform the actions

specified in the weaver language specification.

4.2.4 Jackdaw Query Engine

Early in the development of Jackdaw we noticed that there would be a need to perform certain
searching tasks from within a language node or join point. Examples include getting the parent of
a join point, getting all child nodes, getting all descendant nodes of a certain type, etc. In order
to provide this functionality we developed the Jackdaw Query Engine, which was developed as a

static class that provides several search functions.

19

Development

4.2.5 Join point Parent Mapping

A very common property needed for AOP actions or implementing strategies is the ability to
obtain the parent node of a join point, e.g., obtain the scope of a given statement. This presented a
particular challenge due to the fact that the JSON structure generated by Esprima does not contain
any information regarding the parent of a node. In order to address this problem three options

were considered.

e Recursively iterate through the JSON structure of each source file and add a parent property
to each node. This option was discarded due to the fact that this would lead to a circular

JSON structure, which is not supported by the Gson library.

e Recursively iterate through the JSON structure of each source file and add a unique identi-
fier, and a property containing the identifier of its parent. This option was considered more
reasonable due to the fact that it no longer leads to a circular JSON structure. However,
it still requires the generation of unique identifiers and updating the parents every time the
AST is changed.

e Recursively iterating through the JSON structure of each source file and adding a <child,
parent> pair to a map. Every time a change is made to the AST, this method is recursively
executed from the root of the project, ensuring that an AST changing action never yields a

child-to-parent map that contains stale information.

We solved this problem by implementing a class that performs the algorithm described in the
third option. This algorithm was further improved by adding a "dirty" flag to the child-parent map.
Every time we make a change to the AST, this flag is set to true. When we request the parent of a
node, a map rebuilding process is triggered if the state is set to true. This ensures we are always
working with an updated map, while avoiding unnecessary rebuilding operations, which improves

performance.

4.2.6 Join Point Creator

Every time we use the LARA selector language to query for a particular type of join point, there
is a need to search for the corresponding JSON object in the AST and then wrap it around the
correct type of join point. The Join point creator module offers this capability by checking the
attributes of the input JSON object and trying to wrap it into the correct join point type. If there
is no corresponding join point type for the input node, then the Join point creator will wrap it
around a generic type of join point, which only contains methods for properties common to all
join points. The generic join point type is specially useful for join point attributes which return
other join points, since this particular use case may at times require the wrapping of JSON nodes

for which join points have not been yet defined.

20

Development

4.3 Code Obfuscation

We have chosen obfuscation of Javascript source code as a use case to validate Jackdaw. Code
obfuscation is a deliberate act to make code unintelligible and hard to comprehend to a human.
The process of obfuscating code is done by applying transformations to the source code such that
the result is much more difficult to read, while maintaining the same functionality [BS05]. Unlike

encrypted code, obfuscated code can be compiled and executed by anyone.

Code obfuscation is particularly relevant for the Javascript that is executed by Internet browsers,
since the code is always available to the user. Javascript obfuscation is often used in this situation
to help ensure protection against code theft, and to hinder reverse engineering that provide insights

about the code original meaning and purpose [dSRS16, QBBO08].

In order to successfully achieve the obfuscation of Javascript code, the Jackdaw tool relies on
different techniques such has code refactoring and flattened control flow. These techniques will be

explained further in this section.

4.3.1 Variable renaming

Renaming a variable declaration is a simple technique we have used in order to make code unintel-
ligible and usually serves as one of the first steps of obfuscation. The renaming of a code structure
involves renaming the keyword of an object or variable declaration, following by a propagation
of this renaming to all the code instructions that reference it. The ability to rename variables and
other code structures has many uses and its utility is not limited to code obfuscation. Figure 4.2
shows a LARA aspect developed for Jackdaw which selects all the declarations in the source files
and renames them to a new automatically generated keyword. On figures 4.3 and 4.4 we can

observe the input and generated JavaScript code, respectively.

This example shows a repeated declaration of the variable a, which is allowed in Javascript
by use of the declaration keyword var. The underlying mechanisms used in our implementation
of the variable renaming action allow us to properly detect the different scopes of these two vari-
ables (which happen to have the same name) and properly rename them and their references to
two different variable names. This is particularly useful in code obfuscation due to the fact that,
depending on the obfuscation techniques used, repeated variable declarations may cause problems
in the generated obfuscated JavaScript code. It was easier to address this problem by simply re-
naming the variables and their references into different names, which is something that would

typically also be done in order to obfuscate the actual names of the variables.

An issue we have encountered when dealing with Javascript variable renaming is that, due
to the dynamic nature of Javascript, the renaming operation may require the propagation of the
new name not just in the statements after the declaration, but above the declaration as well. The
renaming function implemented in Jackdaw also allows to propagate renaming to the statements

about, however, it is not well developed and is deactivated by default.

21

Development

aspectdef RenameDeclarations

var i = 0;

select declarator end

apply
i++;
var newName = "new_var_"+i;
Sdeclarator.refactor (newName) ;

end
end
Figure 4.2: LARA aspect that renames all declarations.
var a = 1 var new_var_1 = 1;
while(a < 5) { while (new_var_1 < 5) {
a++; new_var_1l++;
} }
var a = 3 var new_var_2 = 3;
if(a >= 5){ if (new_var_2 >= 5) {
console.log(a); console.log (new_var_2);
} }
Figure 4.3: Input JavaScript code. Figure 4.4: Generated JavaScript code.

4.3.2 Control Flow Flattening

Control Flow Flatenning (CFF) is the main obfuscation technique applied by Jackdaw in order to
achieve code obfuscation. CFF is a code transformation whose idea was first described by Wang et
al. [WHKDOO] and consists in gathering all the code blocks contained in a program, which might
be located in different scopes, and placing them next to each other, usually inside a large switch
statement within a loop with control flow variables that decide which case gets activated at each
iteration of the loop [BSO5].

The CFF transformation that Jackdaw implements is mainly an adaptation of the CFF algo-
rithm described by Balakrishnan et al. [BS0O5], which presents a CFF algorithm for C++. Since the
target language of Jackdaw is Javascript, we had to make several changes to the original algorithm,
for instance, due to the fact that Javascript does not support label and goto statements in the same
way that C++ does.

The structure that was most dramatically impacted was the switch statement, which originally
heavily relied on gotfo statements in order to generate its obfuscated counterpart. The solution
was to first generate a switch statement which assigns a value to a control variable depending on
the matching case, and then generate new control flow cases for each case of the original switch
statement. This strategy effectively replaces the use of goro with a more extensive usage of control
flow variables.

Figures 4.5 and 4.6 show an example of a Fibonacci sequence algorithm before and after it

22

Development

is obfuscated by Jackdaw. As we can see, all the declared identifiers were renamed and the code
contained in the function was completely flattened to a single while with a switch statement. As a

result, it is quite difficult for the human eye to understand what this simple algorithm does.

function fibonacci (num) {
var a = 1, b = 0, temp;

while (num >= 0) {

temp = a;
a=a+ b;
b = temp;

num--;
}
}

fibonacci (13);

Figure 4.5: Fibonacci algorithm using a while cycle.

4.3.3 Opaque Predicates

In order to complement the obfuscation achieved by variable renaming and control flow flattening,
we decided to also implement a proof-of-concept opaque predicate obfuscation. Opaque Predicate
obfuscation is a low-cost and stealthy control flow obfuscation technique used to add superfluous
branches [XMW16]. Predicates are essentially functions that return boolean values which are
known to the obfuscator software, in this case Jackdaw. These predicates are then introduced in
the original code in such a way that they do not alter the original logic but make it harder for a

potential reverse engineering effort to succeed.

Jackdaw allows the user the ability to generate a number of random predicates and applying
them to Javascript nodes via selections and aspects. Additionally, it is possible to combine opaque
predicates obfuscation with control flow flatenning via an optional flag. If this flag is activated,
the control flow algorithm will generate N predicates per file and will randomly assign them to
all nodes containing logical expressions (ex: while, if, do, for, etc). It is important to note that in
this process the predicate functions themselves will also be flattened, making it very difficult for
a user to infer what value a logical expression in the code will evaluate to during runtime. Since
the Jackdaw obfuscator always knows the return value of these predicates, it is able to apply them
in such a way that the original values of the logical expressions are not altered. The predicates
themselves are also not distinguishable from the original code which has been flattened. Figure
4.7 shows an example of the simplest type of opaque predicates - a function that was randomly

chosen to return false or true.

23

Development

| function id_303316e8_69%c_46cc_bd27_41d5c6dcdcOf (id_b9c6d674_ade0_43a7_81l4c_aB85fe818d315) {

2 var id_8be2alcd_al6c_415e_blba_7440e30ca288 = 1, id_819824fa_elbb_4640_8b59 _03cfl87a58a6
= 0, 1d_4fc078£f0_100a_4140_b914_0202e7b4b3d0;

3 var id_44d650f0_ac7d_420d_a5c8_01fa3fd87cdb = ’'id_edc601e9_12f9 4615 _aadc_024elb62175c’;

4 while (id_44d650f0_ac7d_420d_a5c8_01fa3fd87c4b != "’
id_8e61087b_738d_4ade_93ae_2£f72946464c4’) {

5 switch (id_44d650£f0_ac7d_420d_ab5c8_01fa3fd87c4b) {

6 case ’'id_edc601e9_12f9_4615_aadc_024elb62175c’ :

7 id_44d650£f0_ac7d_420d_a5c8_01fa3fd87c4b = ’
id_1115e25a_3c77_4b28_b0al_752c38bc9fb7’ ;

8 break;

9 case ’'id_1115e25a_3c77_4b28_b0al_752c38bc9fb7’ :

10 if (id_b9c6d674_ade0_43a7_81l4c_aB85fe818d315 >= 0)
11 1d_44d650f0_ac7d_420d_ab5c8_01fa3fd87cd4b = ’
id_06e88c81_4lea_45dl_bad2_8ef748126ea2’;

12 else
13 id_44d650£f0_ac7d_420d_a5c8_01fa3fd87c4b = ’
id_8e61087b_738d_4ade_93ae_2f72946464c4’;

14 break;

15 case ’'id_06e88c81_4lea_45dl_bad2_8ef748126ea2’:

16 id_4£fc078£0_100a_4140_b914_0202e7b4b3d0 = id_8be2alcd_al06c_415e_blba_7440e30ca288

17 id_8be2alcd_al6c_415e_blba_7440e30ca288 = id_8be2alcd_al06c_415e_blba_7440e30ca288
+ 1d_819824fa_elbb_4640_8b59_03cfl87a58a6;

18 id_819824fa_elbb_4640_8b59_03cfl87a58a6 = id_4fc078f0_100a_4140_b914_0202e7b4b3d0

19 console.log (id_819824fa_elbb_4640_8b59_03cfl87a58a6);

20 id_b9c6d674_ade0_43a7_81l4c_a85fe818d315--;

21 id_44d650£f0_ac7d_420d_a5c8_01fa3fd87c4b = ’
id_1115e25a_3c77_4b28_b0al_752c38bc9fb7’;

22 break;

‘7»‘, }

24 }

25}

261d_303316e8_69%bc_46cc_bd27_41d5c6dedc0f (13);

Figure 4.6: Fibonacci algorithm obfuscated by jackdaw.

| function id_8a8e532c_4104_4f5c_9d78_a9d2670ab40d () {
2 return true;

}
4 function id_ced2ele7_92db_4de7_801b_ebe782dla66d () {
5 return false;

6}

7 function id_9c8433dl_ebdf_4e25_8111_bl89ccl08cll () {
8 return false;

91}

10 function id_b690ceab_7c29_4feb_93b8_f281le5bl97da () {
11 return true;

12 }

Figure 4.7: An example of four opaque predicates.

24

Development

4.4 Jackdaw Features

On this section we will describe that features that Jackdaw presents in order to satisfy the use cases

which are the goal of this work.

4.4.1 Selection of Language Nodes

One of the most common use cases of AOP is the ability to select a certain language node or set

of nodes from the source code and apply an aspect to it, as it can be seen on example 1.

Example 1. Select all function declarations in a file and append automatically generated docu-

mentation.

In order to do this Jackdaw implements a wide range of different types of join points with
different properties which correspond to Javascript language nodes. Most of these join points can
be selected via the LARA query system, while others are meant to be merely obtained as properties
of selected join points.

Some of the more important join points the user can select in order to interact with Javascript
code are: project, file, functionDeclaration, classDeclaration, declaration,
forStatement, whileStatement, switchStatement, ifStatement, tryStatement
and expressionStatement. Although Jackdaw currently supports more join points, these are
sufficient to make the tool functional as a proof-of-concept software and to allow common LARA
packages to work properly.

4.4.2 Code insertions

Jackdaw allows the user to select a join point and append (or replace) another join point or string
to it (see Figure 4.8). Jackdaw also increases the security of this operation by parsing the string

inserted by the user and printing out an error if it does not match a valid Javascript syntax.

aspectdef insertDocumentation

select function end

apply
var text = "/% Function: " + $function.name + " x/";
Sfunction. ("before", text);
end
end

Figure 4.8: LARA aspect for inserting a comment.

25

Development

4.4.3 Common Strategies and Packages

There are several LARA packages and aspects that can work in different LARA-based weavers for
different target languages. In order to get these packages the developer of a new LARA weaver
must implement certain join points with certain properties or actions. With Jackdaw we managed
to implement the required features so that we were be able to support some basic LARA packages

(i.e., lara.code.Logger, lara.code.Timer and weaver.JoinPoints).

4.4.4 Obfuscation

As it was already discussed with greater detail in previous sections, Jackdaw provides the user
with an obfuscator package that is able to obfuscate source code with two different algorithms:
control flow flattening and opaque predicates. The user can use a general obfuscation function
which selects by default all functions in a file and applies obfuscation to them. Alternatively, the
user can use the available lower-level obfuscation methods to create his own custom obfuscation
algorithm, choosing parameters such as the number of predicates to use or the type of language

structures to apply obfuscation.

4.4.5 Customization of Output Syntax

One of the great advantages of using Escodegen [esc] as a code generator is the fact that it allows
to set custom syntax rules for the generated Javascript code. These rules are setup by adding a
configuration JSON file which can specified from the Jackdaw IDE. All generated code will have

these rules applied to it.

4.5 Evaluation Through Grading Criteria

The proposed evaluation for the Jackdaw tool was to implement common strategies that existing
LARA tools already support, and by using a comparison model for evaluation of AOP tools. As
mentioned in section 4.4.3, this first objective was successfully achieved.

Regarding the second objective, on chapter 2 we introduced the comparison model proposed
by [HHL15] and which will be used to evaluate the potential success of the Jackdaw tool in an
AOP environment. We will now provide a specific analysis for Jackdaw regarding three grading
criteria: invasiveness, briefness and maturity. Additionally, we will talk about the common basic
strategies which were implemented and provide an overall analysis of Jackdaw, mentioning inter-
esting features from an user perspective and also pointing out what sort of further improvements

can be done to make Jackdaw competitive with its industry peers.

4.5.1 Invasiveness

As it was predicted, the fact that the Jackdaw tool is based on LARA makes it completely non-

invasive due to the fact that LARA is a code generation oriented tool. Since the AOP aspects

26

Development

written in LARA are kept separate from the source code, the Javascript programs are always kept
in its original form, while the new generated modified files are written into a different folder

specified by the user.

4.5.2 Briefness

The LARA scripting language uses the Nashorn javascript engine in order to run, which in this
case makes it extremely similar to its target language, with the exception of a few syntax keywords
and statements which are specifically designed for Aspect-Oriented programming. The overall
advantage is that a user does not have to work with two completely different languages in order to
modify the original source code and write the AOP aspects. In order to justify the grading which
will be later shown, we will offer a comparison with aspect.js, the other technology that received a
double plus in our evaluation. Lets take a look at the function shown in Figure 4.9. Lets say that we
wanted to a add some code to be executed before the initial statements in the body of this function.
One approach in aspect.js, would be the example shown on Figure 4.10. As we can see, we have
to declare these new statements inside a function and then add them with the "before" and "add"
methods. Now lets take a look at a LARA implementation on Figure 4.11. Since the source and
AOQOP languages are separated, we cannot access the function object anymore, instead we have to
query for all functions and their bodies and apply the needed changes w