
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Debugging Microservices

João Pedro Gomes Silva

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Pedro F. Souto

Co-supervisor: Filipe F. Correia

July 22, 2019

Debugging Microservices

João Pedro Gomes Silva

Mestrado Integrado em Engenharia Informática e Computação

Approved in oral examination by the committee:

Chair: Nuno Honório Rodrigues Flores, PhD

External Examiner: Isabel de Fátima Silva Azevedo, PhD

Supervisor: Pedro Alexandre Guimarães Lobo Ferreira Souto, PhD

July 22, 2019

Abstract

The microservice architecture is a method of developing software that structures a system as a
collection of distributed single-purpose, loosely-coupled services. This style enables the continu-
ous delivery and testing of large and complex software applications. The services are often owned
by different teams, which may be in different geographical locations. This trend has become in-
creasingly popular in recent years, as enterprises increasingly adopt agile methods and DevOps.
Unfortunately the tooling, specifically when it comes to debugging microservice-based systems,
is still lacking.

Due to its distributed nature, systems based on a microservice architecture are harder to debug
compared to monolithic systems. To some extent, this is often due to their heterogeneity (both
software and hardware-wise) concurrent execution and for being subject to partial failure. Many
approaches have been proposed to better solve this problem. The most popular ones are tracing,
log analysis, visualization and record, and replay. Each has its own merits, but also their own
drawbacks.

This document describes a solution for debugging individual microservices, by trying to iso-
late its interactions with other services, recording them, and allowing to replay them in future
executions. The approach proposed in this dissertation focuses on the instrumentation of network
communication, independently of the protocol used, and random number generation in programs
executing in the Java Virtual Machine in order to deterministically replay a previous execution of
any of the services.

A prototype following the proposed approach was developed and used to conduct a case study,
which showed that deterministic replay of executions can be obtained without introducing large
execution time overhead in the original program, and with a high level of accuracy.

i

ii

Resumo

A arquitetura de microserviços é um método de desenvolvimento de software que estrutura o sis-
tema como uma coleção de serviços idependentes, cada um com um único propósito bem definido.
Este estilo facilita a integração contínua e o teste de aplicações complexas. Frequentemente, os
serviços são desenvolvidos por equipas diferentes, que podem até encontrar-se em localizações
geográficas distintas. Esta tendência tem vindo a tornar-se cada vez mais popular recentemente,
à medida que as empresas adoptam cada vez mais métodos ágeis de desenvolvimento e DevOps.
Infelizmente, as ferramentas para fazer a depuração de sistemas baseados em microserviços não
acompanharam este desenvolvimento.

Devido à sua natureza distribuída, sistemas baseados em microserviços são mais complicados
de depurar quando comparados com sistemas monolíticos. De certa forma, isto é devido à sua
heterogeneidade (quer a nível de software como de hardware), execução altamente concorrente, e
o facto de que estão sujeitos a falhas parciais. Muitas abordagens foram propostas para resolver
este problema. As mais populares são tracing, análise de logs, visualização, e record & replay.
Cada uma tem as suas vantagens, mas também as suas desvantagens.

Este documento descreve uma solução para depurar microserviços, produrando isolar as suas
interações com outros serviços, registando-as e permitindo a sua reprodução em execuções futuras.
A abordagem proposta nesta dissertação foca-se na instrumentação de comunicação através da
rede, idependentemente do protocolo utilizado, assim como na geração de números aleatórios em
programs executando na Java Virtual Machine, com o objectivo de replicar deterministicamente
uma execução prévia de um serviço.

Um protótipo que segue a abordagem proposta foi desenvolvido e utilizado para elaborar um
caso de estudo, que mostra que replicação deterministica de uma execução pode ser obtida sem
introduzir um overhead grande no tempo de execução do programa original, e com um nível alto
de fidelidade.

iii

iv

Acknowledgements

I would like to express my sincere gratitude to my advisors Prof. Pedro F. Souto and Prof. Filipe
F. Correia for their help and support throughout the development of this work. I would also like to
thank Blip for the opportunity to conduct this work with them, and in particular to Diogo Monteiro
and Rui Borges for their assistance during this project.

João Pedro G. Silva

v

vi

“Ow! My brains!”

Douglas Noel Adams

vii

viii

Contents

1 Introduction 1
1.1 Motivation and Objectives . 1
1.2 Dissertation Structure . 6

2 Background 7
2.1 SOA and Microservices . 7
2.2 The Java Instrumentation API . 9

2.2.1 Byteman . 12
2.3 Protocol Buffers . 14

3 Literature Review 15
3.1 Introduction . 15
3.2 General Approaches For Debugging Distributed Systems 16
3.3 Distributed Tracing . 16

3.3.1 Dapper . 17
3.3.2 Conclusion . 18

3.4 Log Analysis . 18
3.4.1 Mining Console Logs . 19
3.4.2 Conclusion . 19

3.5 Visualization . 20
3.5.1 Theia . 20
3.5.2 Conclusion . 20

3.6 Record and Replay . 20
3.6.1 GoReplay . 21
3.6.2 D3S . 21
3.6.3 Friday . 22
3.6.4 Conclusion . 22

3.7 Conclusions . 22

4 Problem Statement 25
4.1 Main Issues . 25
4.2 Objectives . 26
4.3 Methodology . 27

5 Approach 29
5.1 Assumptions and Core Tenets . 29
5.2 Designing an Approach for Record and Replay 30
5.3 Overview of the Approach . 31

ix

CONTENTS

5.4 Instrumenting Network Communication . 33
5.5 Instrumenting Random Number Generation . 34

6 A Prototype for Record and Replay 37
6.1 Overview . 37
6.2 The Record Object . 39

6.2.1 Storing Records . 41
6.3 The Record Phase . 41

6.3.1 Generating Communication Records . 42
6.3.2 Generating RNG Records . 45

6.4 The Replay Phase . 48
6.4.1 Generating a Replay Script . 48
6.4.2 Replaying the Execution . 48

6.5 Usage . 56

7 Case Study 59
7.1 Description of the Service . 59
7.2 Setup . 60
7.3 Methodology . 61

7.3.1 Measuring Execution Time . 62
7.3.2 Measuring Storage Space Usage . 62
7.3.3 Computing Replay Accuracy . 63

7.4 Results and Analysis . 64
7.4.1 Execution time . 64
7.4.2 Storage Space Usage . 64
7.4.3 Replay Accuracy . 66

7.5 Conclusions . 67
7.6 Validation Threats . 68

8 Conclusions 71
8.1 Contributions . 71
8.2 Future Work . 72

References 75

A Script for Post-Processing of Logs 79

x

List of Figures

2.1 Differences between monolithic applications and microservices [Fow] 9
2.2 The instrumentation process of a Java program 12

5.1 The Internet protocol suite [int] . 34

6.1 The architecture of the system in record mode. 38
6.2 The architecture of the system in replay mode. 39
6.3 The replay script generator web application . 49

7.1 The structure of the locally deployed topology. 60

xi

LIST OF FIGURES

xii

List of Tables

3.1 Summary and comparison between the approaches to debugging a distributed
micro-service based system. 24

6.1 Description of the components of the system in record mode. 38
6.2 Description of the components of the system in replay mode. 40

7.1 Execution times per tuple and per execution without the agent running, in mil-
liseconds. 65

7.2 Execution times per tuple and execution with the agent in record mode, in mil-
liseconds. 65

7.3 Execution times per tuple and execution with the agent in replay mode, in mil-
liseconds. 66

7.4 Comparison of execution times between different modes of execution. 66
7.5 Storage space used per execution in record mode. 67
7.6 Number of lines in the log files before and after post-processing 67
7.7 Comparison between log files of the replayed executions and the log file of the

recorded execution. 68

xiii

LIST OF TABLES

xiv

Abbreviations

API Application Programming Interface
ECA Event Condition Action
GDB GNU Debugger
GUI Graphical User Interface
HTTP Hyper-Text Transfer Protocol
IP Internet Protocol
JDK Java Development Kit
JRE Java Runtime Environment
JSON Javascript Object Notation
JVM Java Virtual Machine
KB Kilobyte
MB Megabyte
OS Operating System
RNG Random Number Generation
RPC Remote Procedure Call
SOA Service-Oriented Architecture
TCP Transmission Control Protocol
UDP User Datagram Protocol
UUID Universally Unique Identifier
VM Virtual Machine

xv

Chapter 1

Introduction

Debugging is a core activity in the process of creating software systems. Developers report spend-

ing around half of their time in debugging tasks [LVD06]. The reason for this is, of course, that

despite their creators’ best efforts no non-trivial computer program is bug-free.

Microservices, a way of architecting systems as a complex collection of single-function, highly

distributed, and loosely coupled services have become mainstream in the development world

[Res18]. Its advocates claim that it increases maintainability and testability in large, complex

systems. While this may well be true, the distributed nature of this architecture also introduces

new challenges in the debugging process.

Despite the widespread adoption of distributed, microservice-based architectures, tools to help

debug them are still in its infancy. As is shown in Chapter 3, many companies have developed

custom solutions, that work only for their specific architecture. It’s the purpose of this thesis to

propose a more general approach to help solve this issue.

1.1 Motivation and Objectives

Traditionally, the debugging process has encompassed a few well-defined steps and made use of

a set of basic generally applicable techniques. This section makes the argument that those steps

and techniques are ill-suited to debug large and complex distributed systems such as microservice-

based systems, and that novel ways to debug these kinds of systems are necessary.

A software bug is usually manifested through some unexpected behavior in the system. Once

the behavior has been identified, the process finding and eliminating the problem which is produc-

ing it, also known as debugging, begins.

The first step in the debugging process is trying to replicate the problem. In other words, find-

ing a set of input values and execution environment for which the unexpected behavior manifests.

In complex distributed systems, this often turns out to be a non-trivial problem, either because the

input and context are unknown or hard to replicate or because the problems are sporadic, due to

1

Introduction

race conditions or issues in synchronization between processes. There may be cases where it is

impractical, if not impossible, to reproduce the problem.

The irreproducibility of problems in a complex distributed system is a problem for two main

reasons. First, it is substantially harder to analyze a problem of which only one example exists. It

greatly increases the search space, as each input or environment attribute is a possible cause for

the unexpected behavior. Second, and perhaps more dramatic, is that if the circumstances under

which some bug manifests itself are not known, then there is no hope of ensuring that a potential

fix works. Once a fix has been devised and is being tested, if the unexpected behavior is not present

there is no way of knowing if that is because the root cause of the issue has been found and fixed,

or if it is just pure chance.

Even if one manages to reproduce the problem, there is still the need to find the root cause of

unexpected behavior. Over the years a number of techniques [CBM90] have emerged to analyze

the execution of a program and identify the root cause of a problem:

• Output debugging: Is the simplest technique available in the debugging toolbox. In output

debugging a developer inserts output statements at selected places in the program that is

being debugged. The developer then attempts to understand the behavior of the program

based on the outputs of those statements.

This technique is very simple and allows a developer to focus only on the section of the

code that they hypothesize might be causing unexpected behavior. However, it requires

modifications to the source code, and those modifications must be done in specific areas.

The job of selecting the sections of code where to insert the output statements is not easy and

often requires in-depth knowledge of the code base. In distributed systems, the difficulties

are exacerbated because the developer must observe the output of the program in many

different processors. If the number of processors is big enough this becomes unfeasible,

since transient bugs may manifest themselves in some processors but not in others.

• Tracing: Tracing is similar to output debugging in that it relies on logging and outputting

information in order to trace the execution of a program. Often, it relies on tracing function-

ality built into either the operating system or the platform. Unlike output debugging though,

it can be turned on and off on demand and spans the entirety of the program, as opposed to

just the sections of interest.

Its advantages are that it is not necessary to change the program, avoiding the risk of in-

troducing new bugs in the process, and that there is no need for the developer to decide

where to place the output statements in the program’s source code, avoiding cases where

misplaced output statements offer no information, or erroneous information, about the exe-

cution. Unfortunately, it is still not very adequate to large scale distributed micro-services,

since it produces vast quantities of data that are very difficult to analyze manually.

• Breakpoints: Breakpoints are points in the program where the developer has chosen to in-

terrupt normal execution and output the complete state of the process at that point. When a

2

Introduction

breakpoint is hit, the developer can not only inspect the state of the process but also modify

it. Furthermore, it is also possible to continue execution by one instruction at a time and

inspecting or interacting with the state at each step.

This technique offers some clear advantages. In the first place, there is no need to modify

the source code, once again avoiding the possibility of introducing new unexpected behavior

when inserting the debugging probes. Secondly, the full state of the process can be inspected

at each breakpoint, which means that the developer is not responsible for choosing the state

variables that may or may not be useful to inspect. And finally, breakpoints can be used to

analyze just the sections of code that the developer hypothesizes that might be responsible

for the observed unexpected behavior. On the other hand, this places on the developer the

burden of selecting the correct places on the source code to place the breakpoints such that

meaningful and interesting information can be obtained that will be useful in the debugging

process.

This is a very powerful technique and widely used to debug single processes. However,

there are some difficulties when applying this technique to distributed environments. For

instance, what should happen when a breakpoint is hit in a distributed system? Should

all the processes in the system be halted, or just the process in which the breakpoint was

defined? Furthermore, the state of a process is fairly easy to define and output, but the entire

global state of a distributed system at some point is not so easy to define and would probably

require synchronized clocks between all the processors in which parts of the system are

executing on. Even the semantics of executing a single instruction is more complicated in a

distributed environment. It is not clear if a single instruction should be executed in all the

processes in the system or just in the process in which the breakpoint was defined. It is also

not clear whether single instruction execution would be helpful at all: it is usually used to

detect faulty logic, but not faulty interactions between processes.

Of course, breakpoints (as well as all the other traditional debugging techniques) remain

useful to debug unexpected behavior that is confined to a single process, even if it is part of

a larger distributed system.

• Assertions: Assertions define invariants in the source code that are checked at runtime.

Assertions can behave like breakpoints in the sense that execution can be halted and the

process state recorded when an assertion is violated or instead the execution can proceed as

normal, but the state is saved somewhere for later analysis.

Assertions require modifications to the source code, which means that there is the possi-

bility of mistakenly introducing new bugs in the program. They also require some amount

of expertise from the programmer for both knowing which invariants should hold at each

time, and to place the assertions in the correct places. However, assertions offer something

that the other methods of debugging analyzed so far don’t: the possibility of collecting large

amounts of data when, and only when the system does not behave as expected (and the in-

variant doesn’t hold). This data has a higher likelihood of being relevant, as it was collected

3

Introduction

in a case where the process was misbehaving. It can then be analyzed to understand and

identify the causes of the error.

But when it comes to applying assertions to a distributed system, once again the problem of

obtaining a correct and synchronized global state at the precise moment that the assertion

was violated does not have a simple solution. And without data on the global state of

the system it becomes very difficult to detect bugs resulting from the interaction between

different processes in the system.

• Controlled Execution: In controlled execution, a developer is may change the order of in-

teractions between processes. This is especially useful to devise tests in which interactions

are executed in different orders or at different speeds in order to identify problems that exist

because of race conditions or other concurrency issues. This is a method often used to de-

bug multi-threaded or multi-process programs. Thus, it is inherently more adequate to use

in distributed systems, due to their similarities.

However, this method has some disadvantages. Firstly, it requires the creation of a frame-

work or system to support the controlled execution with a high enough degree of granularity

to be useful. And secondly, it means extra work for the developers that would have to write

the appropriate tests in order to identify unexpected behavour.

• Replay: Replay is a way to record information about the execution of a distributed environ-

ment and trigger a new execution with the same set of inputs as the first one. This technique

can be used in combination with others such as assertions that identify and collect informa-

tion when the behavior of the system is unexpected.

The main advantage of this technique is that it allows for easier reproducibility of the erro-

neous behavior. However, this would necessitate great precision in the recording of signif-

icant events. Not only would the data transmitted between processes in the system need to

be the same, but more crucially timings would need to be the exact same, or otherwise it is

possible that the unexpected behavior would not manifest itself. This makes this technique

very difficult to implement in practice. Not only that, but the replay is also an invasive tech-

nique that would require many changes in the source code, with the risk of introducing new

bugs in the process.

• Monitoring: One of the most common ways of debugging a system is capturing as much

information as possible about all relevant events that occur, and then going through the

information once the system behaves unexpectedly. This technique is called monitoring and

is one of the most popular techniques not only for debugging distributed systems, but also

detecting issues such as performance drops, service availability and resource usage.

The advantage of this technique is that if enough information is recorded then that informa-

tion can be used to diagnose unexpected behavior. Furthermore, the information is useful

even if the system is behaving as expected, for reasons such as improving the efficiency

of the system. Many out-of-the-box solutions for monitoring distributed systems exist, and

4

Introduction

effort to integrate one into an existing system is small when taking into account the gain.

However, it requires large amounts of space to store all the information that the system main-

tainers might need to debug, and the developers still have to filter through great amounts of

information in order to find the relevant data that they might need to detect and resolve a

bug.

Monitoring, while far from perfect, is the current preferred way to debug distributed sys-

tems. It was designed with distributed architectures in mind, and provides more benefits

than just detecting and fixing unexpected behavior.

As shown in this section, traditional debugging techniques are mostly ill-suited to debug com-

plex distributed systems, such as the ones based in the micro-service architecture. Many suffer

from the problem of having been designed to debug single sequential processes and thus don’t

easily generalize to distributed environments. Others, such as monitoring, while easily applica-

ble to distributed environments are still expensive and time-consuming. This dissertation argues

that a better framework for debugging distributed systems can be devised based on the traditional

techniques presented in this section.

A good framework for distributed debugging shall meet the following requirements:

• Inexpensive: A good debugging framework should minimize the costs with storage by stor-

ing only the required information to diagnose instances of unexpected behavior. Further-

more, it should strive to make the effort required to filter the collected data minimal, so that

the debugging process can be made shorter freeing the developers time for other tasks and

potentially reducing expensive downtime.

• Non intrusive: Every modification to source code has the possibility of introducing new

bugs. This is obviously not ideal in a debugging framework, where the primary objective

is to reduce the number of bugs in the system. As such, modifications to the source code

should be kept to a minimum. This also has the benefit of facilitating the adoption of the

framework.

• Gradually adoptable: In order to encourage adoption, gradual integration into existing sys-

tems must be possible. This also opens up the possibility of gradually adjusting the imple-

mentation according to empirical evidence for each specific system.

• Generalizable: A distributed framework should be able to detect and offer assistance in

resolving bugs resulting from the distributed nature of the system, but also ones that are

confined to one single process.

This dissertation builds on the basic techniques exposed in this section to create an approach

that complies with the requirements exposed for a good framework for debugging distributed

systems. Specifically it describes a way of recording an execution of a program so that it can

be replayed in the future under controlled conditions, such as in the programmer’s development

machine and attached to an interactive debugger.

5

Introduction

1.2 Dissertation Structure

This chapter introduces the context around the topic debugging in distributed microservice-based

environments and makes the argument for the necessity of a new, general-purpose framework for

distributed debugging.

The concepts and background information that are necessary to better understand the content

of this document are explained in Chapter 2. Chapter 3 describes the state of the art and presents

a survey of previous research regarding the topic of distributed debugging and a comparison be-

tween existing approaches and solutions. An overview of the problem and the challenges that the

approach proposed in this document aims to address is detailed in Chapter 4. Chapter 5 describes

one of the main contributions of this dissertation, which is a novel approach to debug microser-

vices based on the recording and replay of past executions of a program. An implementation of

a prototype tool according to the approach outlined in Chapter 5 is explained in detail in Chapter

6. A case study has been conducted and is explained in Chapter 7. The conclusions of the work

developed in this document are described in Chapter 8.

6

Chapter 2

Background

The purpose of this chapter is to introduce concepts that are necessary to be aware of in order to

understand the ideas outlaid in this document. The approach to debugging microservices described

in Chapter 5 and the prototype implementation of that approach found in Chapter 6 make heavy

use of the concepts explained in the remaining sections of this chapter.

2.1 SOA and Microservices

Service-oriented architecture, or SOA, is a style of software design where each component in a

system provides a service to other components through a communication protocol, such as HTTP

or RPC, over a network. According to the definition of SOA found in [Gro14], a service must have

the following properties:

• It logically represents a business activity with a specified outcome.

• It is self-contained.

• It is a black box for its consumers.

• It may consist of other underlying services.

Service orientation promotes loose coupling between services. In effect, this improves modu-

larity as it means that component services may dynamically bound to other services, and services

can be replaced without introducing downtime or otherwise affecting the other systems in the sys-

tem. SOA encourages the establishment of clearly defined interfaces between services which offer

the sole point of access. These interfaces along with the communication protocol establish the

only contract between services in the system.

Service orientation also enables the concept of location transparency. This means that the

consumer of the service has no information about where the service actually resides, meaning

that it can be in the same machine, in a server accessed through the internet or even in multiple

remote machines. The actual physical location of the provider service is hidden behind a point of

7

Background

access that is published by a service broker, whose main responsibility is to maintain and provide

information about the services to any potential consumers.

Another benefit of SOA is re-usability. Because services are self-contained, there is nothing

stopping one service being part of multiple applications. In fact, from the point of view of the

producer service, there is no distinction between the consumers; it does not know whether they are

part of the same application or not because there is no concept of application at the service level.

In an enterprise setting, SOA also provides an organizational benefit: Services can be inde-

pendently developed and tested by different individuals or teams. This increases parallelism in

development, and thus development speed. In addition, it promotes good testability as each team

relies on the services maintained by others to behave in accord with specifications.

Lastly, service-orientation also facilitates availability and scalability of a system by clustering

services, therefore, introducing redundancy in the system. Additionally, clustering might be done

only in the services that represent a bottleneck in the overall system throughput, further increasing

efficiency.

Microservices are a variant of SOA. The main difference lies in service granularity, or in

other words, in how big a service must be. There is no official prescription regarding this, but

the consensus in the industry seems to be that a service in the microservice architecture must be

feasibly maintained by a team of 6 to 8 developers. Another differentiation between microservices

and SOA is that microservices are usually more loosely-coupled. As with any development style,

SOA and microservices are subject to some criticisms [fow14].

• It can be hard to establish service boundaries. When splitting a monolithic application into

microservices, it can be hard to define where exactly the split should be made. If the split is

made into too few services, it can be hard for one small team to maintain and the benefits

gained from the transition are limited. On the other hand, if the split is made into too

many services, then this may cause large dependencies between services to the point that

development in one service may be blocked by the development on another. Additionally,

this might also cause developers to lose sight of the overarching system goals and focus too

much on the goals of the service itself.

• Communication between services over a network has a higher time cost because of network

latency and message processing than in-process calls in a traditional monolithic system.

Depending on the complexity of the system, the number of messages exchanged, and the

purpose of the application the added overhead might be prohibitive.

• While testing individual services may become simpler with SOA and microservices, testing

the overall application might become more complicated, because of the great number of

dependencies between services. For the same reason, deployment can become more com-

plicated.

8

Background

Figure 2.1: Differences between monolithic applications and microservices [Fow]

• If there is not enough reusability of the services, the benefits of moving to SOA or microser-

vices are greatly diminished and the same effect can be achieved with internal modulariza-

tion while maintaining a simpler design.

• Data consistency is significantly harder to guarantee in microservice-based architectures.

For example, if each microservice maintains its own database as opposed to one centralized

application for the whole application, then a programmer can no longer rely on the database

to ensure data consistency. Additionally, protocols such as 2-phase commits are inadequate

for microservices since they increase coupling between services.

• Microservices usually increase the cognitive load for programmers. The architecture intro-

duces additional complexity and new problems such as network latency, message serializa-

tion, load balancing, and fault tolerance. New failure modes are also introduced which are

difficult to reason about. Debugging becomes increasingly complicated as the sources of

problems are potentially more.

Despite all the challenges, microservices have been rising in popularity in the last few years.

Its advocates claim that this architectural style further reinforces a modular structure for the sys-

tem, facilitates independent development and deployment of each service and increases developer

freedom to choose whichever languages and technologies are best suited for the job at hand [Mic].

2.2 The Java Instrumentation API

The Java instrumentation framework provides services that allow Java agents to instrument pro-

grams running on the Java Virtual Machine, through the mechanism of byte-code manipulation.

9

Background

A Java instrumentation agent can be started at VM startup, through a command line switch as such:

-javaagent:jarpath[=options]

Where the jarpath is the path to the agent’s JAR file and options is the options passed to the

agent — a string whose parsing and interpretation is left to the agent’s implementation. An agent

can also be loaded after the VM has been started, through an implementation-specific mechanism.

More than one agent can be loaded into one application and multiple agents can share the same

jarpath.

According to the Java Instrumentation API documentation [Ins], an agent is a JAR file crafted

according to the following specifications:

• The manifest of the agent JAR file must contain the attribute Premain-Class, which is the

name of the agent class. The agent class must implement a public static premain method

similar in principle to the main application entry point. After the Java Virtual Machine has

initialized, each premain method will be called in the order the agents were specified, then

the real application main method will be called. Each premain method must return in order

for the startup sequence to proceed.

The premain method may have one of two signatures. The JVM will first attempt to invoke

the method with the following signature:

public static void premain(String agentArgs, Instrumentation inst);

If this method is not implemented, the JVM will instead try to invoke the method with the

following signature instead:

public static void premain(String agentArgs);

• In addition to a premain method, the agent class may also implement an agentmain method

that is invoked when the agent is started after the Java Virtual Machine has started. This

method is not invoked when the agent is started at JVM startup through a command line

switch.

The agentmain’s method signature is the same as the signature of the premain method.

• If the agent is meant to be loaded after the JVM has been started it must, in addition of

implementing the agentmain method, contain the attribute Agent-Class, containing the name

of the agent class, in the manifest of its JAR.

In addition to the Premain-Class and Agent-Class attributes mentioned so far, the agent’s JAR

manifest file may also define the following attributes:

• Boot-Class-Path: A list of paths to be searched by the bootstrap class loader. This attribute

is optional.

10

Background

• Can-Redefine-Classes: A Boolean value that determines whether or not the agent can rede-

fine classes. This value is optional, and is particularly useful if the agent wishes to modify

JVM classes.

• Can-Retransform-Classes: A Boolean value that determines whether or not the agent can

re-transform classes. As with Can-Redefine-Classes this value is optional and useful if the

agent wishes to modify JVM classes.

• Can-Set-Native-Method-Prefix: A Boolean value that determines whether or not the agent

can set native method prefix. This value is also optional.

The agent class is loaded by the system class loader. This class loader is typically responsible

for loading the class that contains the main method. The agent options are passed to the agent

through the agentArgs parameter, and if the agent cannot be resolved the JVM will abort. The

second argument passed to the agent’s premain or agentmain methods is an instance of the In-

strumentation interface. This interface provides the services needed to instrument Java code. The

instrumentation capabilities offered by this interface are purely additive, meaning that they do not

modify the application state or behavior. An instrumentation instance is created when the JVM is

launched with a Java agent via a command line switch, or when a JVM provides a mechanism to

load agents after the JVM is started.

Once an agent acquires an instance of the Instrumentation interface, it can use it to modify the

classes that are loaded. The Instrumentation instance allows the registration of instances of the

ClassFileTransformer interface. A ClassFileTransformer instance implements a single method

named transform.

Once a transformer has been registered with Instrumentation.addTransformer, the transformer

will be called for every class definition and redefinition. The transform method takes an array of

bytes that contains the bytecode of the class that is being loaded. If no transformations are needed,

then the method must return null. Otherwise, it should create a new byte array, copy the input

bytes into it, make the desired transformations and then return the new array. The input byte array

must not be modified. This technique is called bytecode manipulation and is very powerful.

Obviously, manually altering every byte in the byte array in order to modify the class is not

very practical. As such some libraries have emerged that aim to facilitate this process. Some of

the most popular are:

• ASM [ASM]: A Java bytecode manipulation framework that provides a set of common

bytecode transformations and analysis algorithms that can serve as a base to build more

complex tools. It is designed for performance, aiming to be as small and as fast as possible.

• Javassist [Jav]: A library to modify Java bytecode. It offers two levels of API — The

bytecode-level API allows the modification of classes using Java bytecode, while the source-

level API allows the transformation of classes using only Java source text, requiring no

knowledge of Java bytecode.

11

Background

Figure 2.2: The instrumentation process of a Java program

• Byteman [Byt]: A higher-level framework that allows the injection of Java code into appli-

cation methods. It makes bytecode transformations easier by implementing an abstraction

layer in front of the transformer. The places in the code where the code is to be injected are

defined in rule files written in a specific format.

It’s worth mentioning that bytecode transformations can be applied not only to user-defined

classes but also to core JDK classes. While most of the core classes will be loaded before the

agent’s premain method is called, and thus will not be transformed, it is possible to re-transform

them. This requires the attribute Can-Retransform-Classes to be true in the agent’s JAR manifest.

Then the Instrumentation.retransformClasses method can be used to re-transform most of the core

classes of the JDK. This is obviously extremely powerful and disruptive, and if it is not used with

care might break programs in all sorts of unexpected ways.

Common uses for the instrumentation API are program profiling and analysis without modify-

ing the original program source code. Other uses include class generation and code optimization

and obfuscation.

2.2.1 Byteman

Of the bytecode manipulation frameworks mentioned in this section, Byteman is the one used

extensively in the implementation described in Chapter 6. Byteman is a bytecode manipulation

tool that enables the modification of previously compiled Java code. Byteman uses a system of

rules to specify when and wherein the program the code should be modified. Rules are written in

the Event Condition Action, or ECA [byt18], rule language. Figure 2.1 shows the basic skeleton

of a Byteman rule. The most common keywords are the following:

• RULE: This keyword defines the beginning of a rule and is followed by a text string that

defines the name of the rule. The name can be any string, as long as there is no other rule

with the same name. The rule’s name is used merely for identification in the source code,

for example, in the case of compilation errors in the rule.

• CLASS: This is followed by the fully qualified name of the Java class that is to be instru-

mented. The name of the Java class can be preceded by the “ˆ” character. In such cases, the

rule instruments all classes that are sub-classes of this one.

12

Background

• METHOD: This keyword is followed by the name of the method of the class that is to be

instrumented. It can contain just the name of the method, in which case it will instrument all

the methods with that name, or the name of the method followed by a list of type parameters,

in which case it will only instrument the methods whose signature matches the number and

type of the parameters defined.

From this point on, the arguments passed to the method are available to the next statements.

The following are some of the most relevant:

– $0: Holds the instance of the instrumented class where the method has been invoked.

– $1, $2, ..., $n: Hold the arguments that are passed to the instrumented method.

– $!: Holds the return value of the instrumented method.

• AT: This keyword determines the point at which the method should be instrumented. Some

of the valid values that this can take are:

– AT ENTRY: The code in the DO block is inserted right before the first instruction of

the method.

– AT EXIT: The code in the DO block is inserted just before the return statement of the

method.

• BIND: This keyword permits the binding of the values available at this point, such as the

arguments passed to the rules or the instance of the object that is being instrumented, to

other variable names.

In Chapter 6 binds are used extensively in order to improve the readability and facilitate the

comprehension of the listings.

• IF: This keyword is followed by the conditional statement that determines whether or not

the rule is valid for a specific instance. It is checked every time before execution of the code

that is defined after the DO keyword.

• DO: This is the keyword that defines the code that must be executed in the defined point in

the instrumented method. This keyword is followed by the Java code that is to be executed.

It can include multiple statements separated by a semi-colon.

• ENDRULE: This keyword defines the end of the rule.

There is another important keyword, which is HELPER. This keyword is followed by the fully

qualified name of a Java class whose methods can be used in the IF and DO blocks, instead of

writing the code directly in the rule definition.

13

Background

1 # rule skeleton
2 RULE <rule name>
3 CLASS <class name>
4 METHOD <method name>
5 BIND <bindings>
6 IF <condition>
7 DO <actions>
8 ENDRULE

Listing 2.1: The skeleton of a Byteman rule [byt18].

2.3 Protocol Buffers

Protocol buffers [Pro] are a mechanism to serialize and de-serialize data. It has been developed by

Google. In protocol buffers, the format and structure of the data is defined in special files with the

.proto file extension. These files are then used to generate source code in different languages

that allow reading and writing the data to a variety of formats. Furthermore, protocol buffers allow

updating the structure of the data without breaking programs that make use of a previous version

of that structure.

14

Chapter 3

Literature Review

This chapter presents an analysis of the state of the art of the work done in the area of debugging

large highly distributed systems, including those based in the micro-service architecture.

3.1 Introduction

The field of distributed programming is still fairly recent. It is a field of active research and many

approaches have been proposed.

Proposed approaches for debugging distributed systems differ in many ways. One of the dif-

ferences in the phase of the process in which they are applicable. Debugging can be thought of as

a process consisting of five steps [CPP]:

1. Recognize that a bug exists. Bugs manifest themselves through unexpected program be-

havior. Some are particularly serious and cause the program to terminate abnormally. Those

are easy to spot. Others manifest themselves in more subtle ways and can go unnoticed for

a long time. The best way to find bugs early is through comprehensive testing.

2. Isolate the bug. Bugs are contained to a section of the source code. Isolating the bug is

identifying the section of code in which the error lay, thus restricting the search space for

the next step in the process.

3. Identify the cause of the bug. Knowing the general vicinity of the bug is not enough. The

next step is identifying what is actually causing it. The previous step was concerned with

finding the where. This step aims to find the why.

4. Determine a fix for the bug. Having understood where the bug is and why it the program

behaves as it does, the programmer is then equipped to determine how the problem can be

mitigated..

15

Literature Review

5. Apply the fix and test it. The last step is to validate whether or not the devised solution

fixes the bug. Furthermore, it also aims to ensure that no other bugs have been introduced.

The distributed debugging approaches exposed for the remainder of this chapter aim to im-

prove either step 2, step 3, or both steps from the aforementioned process. The reason is that those

are generally the most time-consuming and thus benefit the most from any increased efficiency.

3.2 General Approaches For Debugging Distributed Systems

Several tools and frameworks for debugging distributed systems have been proposed. These usu-

ally take one of the following approaches to the debugging process [BWBE16]:

• Tracing: Collecting information about a request throughout its lifetime in the system, in-

cluding cross-process boundaries.

• Log analysis: Manually or automatically analyzing system logs in order to detect and diag-

nose anomalies.

• Visualization: Transforming execution data in a high-level visualization of the system, in

order to make it more understandable for a programmer.

• Record and Replay: Capturing information about an execution of the program so that it

can be deterministically replayed as many times as necessary.

Each outlined approach has its advantages and disadvantages. The following sections discuss

in further detail each approach and analyze particular implementations of each.

3.3 Distributed Tracing

Distributed tracing is a method to monitor distributed systems. It consists of instrumenting the

source code of a program in order to collect and record metrics regarding its functionality. It is

commonly used to track requests, such as user requests in a web service, and collect important

metrics such as latency and failure rate. It helps the programmer identify where failures happen

and understand what is causing worse than expected performance.

In microservices systems, requests often span more than one service. Distributed tracing can

follow requests through service boundaries, provided that each service is adequately instrumented.

The information recorded for each individual step that a request takes through a distributed system

is referred to as a span. Spans reference other spans and together they form a complete trace, an

end-to-end visualization of the lifetime of a request in the system. This is achieved by assigning a

unique request ID to each incoming request and passing that ID to all services involved in handling

the request. In that way, each service in the system knows to which trace a certain span belongs

to, therefore binding the collected data to the request that originated it.

16

Literature Review

Distributed tracing shines when used in conjunction with tools to aggregate, search and visu-

alize the data. Such tools would, for example, aggregate request tracing data according to the ID

of the request. Some alert programmers when a metric exceeds a pre-defined threshold, helping

maintain high service availability and discover latent bugs.

Distributed tracing is one of the most used approaches to debugging in large-scale, complex

distributed environments. Despite its popularity, there are some difficulties:

• Metric overload. It often is the case that distributed tracing produces overwhelming amounts

of data. Once the instrumentation is in place, it is usually easy to track more and more met-

rics. In the end, it’s up to the programmer to exercise its best judgment in deciding how

many and which metrics to keep track of without obscuring potentially important informa-

tion.

• Vendor lock-in. There are few standards when it comes to the structure of traces. There-

fore, each distributed tracing tools rolls their own implementation, making it hard to switch

between tools. Efforts have been made to develop vendor-neutral APIs, namely through

OpenTracing[Opeb].

• Runtime overhead. Distributed tracing tools and frameworks must aim to maintain runtime

overhead to a minimum. Failure to do so affects the distributed system negatively and can

defeat the purpose of adding the distributed tracing infrastructure in the first place.

• Storage requirements. Traces are often collected locally in each node in a distributed

system, and transferred later for centralized processing. This may make it unsuitable for

services with high throughput.

Many distributed tracing tools have been proposed, such as Magpie [BIN03], Pinpoint [CKF+02]

and X-Trace [FPKS07]. Each has made new important contributions to the design of distributed

tracing tools. But perhaps none is as influential has Dapper [SBB+10], a distributed tracing frame-

work developed at Google. The following section analyzes Dapper and its contributions to the state

of the art.

3.3.1 Dapper

Dapper is a low-level tracing framework to trace infrastructure services developed at Google. The

stated goals of Dapper are low overhead, application-level transparency, and scalability. It records

a collection of timestamped messages and events that trace all the work that is done in the system,

starting in a single initiator.

The framework traces the work done on the system starting from a single initiator. It uses an

annotation-based [BIN03] monitoring scheme, meaning that every record is tagged with an identi-

fier that binds the records together and with the original request. This approach has the drawback

of requiring the instrumentation of programs. Dapper takes advantage of the homogeneous in-

frastructure at Google and restricts instrumentation to only a small set of libraries shared by all

17

Literature Review

applications. Causal relationships between spans are preserved by representing a trace as a tree

structure, in which each node is a span and each edge indicates a causal relationship. Thus, the

root span is causally related to all the other spans in the three, while a leaf span has only a causal

relationship with its parent.

One of the new contributions introduced by Dapper is the usage of sampling to maintain low

overhead, which is especially useful in services that are highly sensitive to latency variations. The

Dapper developers use a uniform sampling probability to select which requests to record. They

found that recording on average 1 out of each 1024 requests is likely to still capture data of interest

in high throughput services. However, in services with lower traffic, those sampling rates are not

high enough to ensure that important information is not missed.

3.3.2 Conclusion

Many of the benefits provided by Dapper are only possible due to the uniformity of Google’s

distributed environment. Most applications share some common libraries and use the same pro-

gramming languages. Unfortunately, this does not translate very well to microservice architec-

tures. Microservices are inherently heterogeneous. The work required for instrumentation would

be very high and so would the effort required to maintain interoperability. However, some of the

ideas introduced by Dapper have proven to be useful and are widely used today.

Furthermore, while distributed tracing may provide great insights into the workings of a dis-

tributed application, and does offer important performance information, it is not very useful for

debugging past the point of recognizing the existence of the bug. It may, in certain cases, provide

the programmer with useful information to isolate the bug, but when it comes the time to identify

its cause, the programmer is left to its own devices.

3.4 Log Analysis

Debugging through log analysis consists of examining the free text logs generated and collected

by applications in order to recognize and isolate a bug. It is perhaps the most primitive form of

distributed debugging, but it offers something that all other approaches do not: it works even if the

system being debugged cannot be modified. In an age where third-party cloud services are ever

more commonly part of the architecture of most distributed systems, log analysis is indeed often

the only kind of debugging approach that is applicable.

This approach relies on relevant and informative log messages being present throughout the

code, and in specific in the section that contains the problem. Adequately placing log statements

requires experience and familiarity with the code base. It is essential to strike a balance between

having enough information to assist in the debugging process and cluttering log files and obscuring

relevant information with irrelevant messages.

Production services tend to produce large amounts of logs. So many, in fact, that trying to find

relevant information is akin to trying to find a needle in a haystack. This problem is amplified in

distributed systems since the logs may be scattered in the different machines on which the services

18

Literature Review

run. A programmer, if left unassisted, has little hope of finding the logs that he needs to help

identify or isolate a bug.

Efforts [XHF+10] have been made to automate the task of filtering and organizing the infor-

mation recorded by logs. The big difficulty in extracting information from log messages is their

unstructured, free text nature. One of these attempts is analyzed in the following section.

3.4.1 Mining Console Logs

Researchers at Berkeley [XHF+10] have attempted to detect bugs in programs by automatically

analyzing the application logs. They devised an approach to transform logs into more structured

data with a higher signal to noise ratio. The process is described as having three steps:

1. Log Parsing. The aim of this step is to extract information from logs such as message types

and message variables. Message types are messages with the same structure while message

variables are the variable parts of each message.

Static source code analysis is used to extract all possible log messages and build an index of

message templates to which logs are matched to at runtime.

2. Feature Creation. Many problems can only be detected in a sequence of messages. This

step focuses on grouping related messages in preparation for problem detection.

Messages are grouped in two different ways. Firstly, based on state variables, which enu-

merate the possible states of an object in a program. Secondly, based on the number of

times an identifier shows up in the logs. Different features lead to different types of problem

detection.

3. Machine-Learning. Finally, statistical methods are utilized to identify common patterns

and therefore discover anomalies in the data, which may indicate the presence of a bug.

This approach has proven successful, but with some faults. Namely, it does not detect certain

classes of bugs such as those that arise in distributed environments because of the contention for

resources and race conditions.

3.4.2 Conclusion

The unstructured nature of log messages makes it so that the potentially useful information that can

be automatically extracted is not enough to reliably detect many classes of bugs. For that reason,

log analysis remains of limited usefulness for developers and is best used when the quantity of log

messages is small or there is no other option.

In addition, log analysis aims at identifying and recognizing that a bug exists in the program. It

offers little help in isolating the bug, and none at all in the further steps of the debugging process.

19

Literature Review

3.5 Visualization

Distributed systems based on microservices can be highly complex and thus hard to understand for

the human brain. It is that complexity that inspired work on visualization tools that aim at making

distributed systems more transparent to the programmer. They offer a high-level visual abstraction

over the underlying system that can be used to spot anomalies and understand the overall behavior

of the system.

The downside of such approaches is that the underlying structure of the system is hidden and

important details may be omitted. Such details could otherwise be used by programmers to define

or refine their hypothesis about the root cause of problems in the system.

The following section analyzes a visualization tool called Theia [GKT+12] that takes advan-

tage of application-specific knowledge about Hadoop [Had] in order to help developers identify

problems in their clusters.

3.5.1 Theia

Theia [GKT+12] is a visualization tool that analyzes application-level logs for large Hadoop clus-

ters, generating visual signatures of each job’s performance. The idea behind Theia, as in most

other visualization tools, is to provide a high-level overview that allows developers to explore the

large amounts of data collected by the monitoring systems and narrow down the root cause of the

issues.

Theia exploits application-specific knowledge about Hadoop to provide relevant insights to the

developer and distinguish application from infrastructure errors with some amount of success.

3.5.2 Conclusion

Visualization tools appear to be most useful when used in a well-known and controlled environ-

ment, about which assumptions can be made that allow the tool to create relevant and insightful

visualizations. This is not the case in large scale highly distributed systems based on microser-

vices, which are mostly heterogeneous. Assumptions made about services would likely not hold

for others. This limits the usefulness of visualization tools for providing generic performance

information about the system.

3.6 Record and Replay

Record and replay consists of capturing an execution such that it can be replayed deterministically

any number of times that a programmer might need to identify and resolve a problem.

This section goes over three debugging frameworks based on the record and replay approach:

GoReplay [GoR], D3S [LGW+08] and Friday [GAM+07].

20

Literature Review

3.6.1 GoReplay

GoReplay [GoR] is a tool which allows the recording of production traffic and replaying that

traffic during testing. It provides the ability to replay the traffic at different speeds and to re-write

requests. Furthermore, it performs the analysis and recording of network traffic without modifying

or otherwise affecting the applications that use it.

GoReplay supports a large but limited number of network communication protocols, including

binary protocols. Furthermore, it is aimed at replaying only network traffic, and not necessarily

the execution of a program. If part of the execution of the program is non-deterministic, because

it depends on random number generation or for any other reason, then GoReplay does not ensure

that the program executes in the same way. This somewhat limits the application of this tool.

3.6.2 D3S

D3S [LGW+08] is a framework that models the execution of a distributed system as a state ma-

chine in which states are snapshots of the system with different global timestamps. It allows

developers to write functions that check invariants in the system. During runtime, global snap-

shots of the system are recorded. When an invariant is violated the checker functions signals it

and the developer is able to inspect the system snapshots that lead to the faulty state, effectively

replaying the execution.

D3S can be fairly expensive to implement. Firstly it requires large amounts of data to be

collected, though this can be mitigated by using buffers to store the system snapshots, that is only

persisted in case an invariant is violated. Secondly, it introduces overhead in the system that can

go up to 8%. Whether or not this is significant in a system is up to the maintainers to decide.

While D3S does not require changes to the existing source code of a program, it is not as

non-invasive as it might appear at first sight. This is because it rewrites the binary modules of

the process that it is attached to. Assuming D3S is well tested this should not have any nefarious

consequences, but as any modification to the source code, it carries the added risk of introducing

bugs in the system.

Furthermore, using D3S effectively requires some level of familiarity and expertise with the

system being debugged, since developers have to write functions to check function invariants. This

also adds the risk of false positives due to bugs in the checker functions.

In the other hand, D3S presents some significant advantages. It can be adopted gradually, in

the sense that developers can write new checker functions incrementally in order to cover larger

and larger sections of code. Additionally, it has also been shown empirically to work in some

real-life systems to detect and diagnose some classes of bugs.

Ultimately, the greatest problem with D3S is that it cannot diagnose bugs if they are not cov-

ered by the invariants checked by the checker functions. This requires extra development effort in

designing and implementing comprehensive checker functions and even then some bugs are bound

to remain undetected and thus unsolved.

21

Literature Review

3.6.3 Friday

Friday is a system that is based on another tool by the same authors called liblog [GASS06]. Liblog

itself provides the record and replay functionality, while Friday manages the replay in the context

of an interactive debugger, such as GDB [GDB]. Furthermore, it extends debugger functionality

with the addition of distributed breakpoints and watchpoints that allow a programmer to inspect

the state of the system during the replay.

Liblog is the core of Friday. It works by intercepting system calls and recording informa-

tion that is non-deterministic, such as random number generation or the sending and receiving of

messages so that the execution can be replayed deterministically.

The limitations of Friday have much to do with the limitations of the underlying liblog library.

Liblog produces vast amounts of data, which makes it unsuitable for systems with high throughput.

Furthermore, it also introduces some amount of network overhead, since it embeds a Lamport

clock [Lam78] in each message in order to preserve causal relationships.

Friday provides something that most other solutions do not, and that is the ability to assist

developers for all steps in the debugging process, up until testing and validating that any devised

solution works as expected.

3.6.4 Conclusion

Record and replay based approaches tend to be more complex than others. They tend to introduce

a large runtime and network overhead and require large amounts of storage in order to record

enough information to accurately replay executions.

However, as demonstrated by Friday, such approaches have the potential of being of great

use throughout the entirety of the debugging process, as opposed to just helping to identify and

isolating a bug. With record and replay systems a programmer has access to the entirety of the

state of the application at each and any moment and can inspect it as they would in any other se-

quential single process application. In fact, record and replay tools have the possibility of making

distributed debugging more similar to the debugging of single process applications.

3.7 Conclusions

Different approaches to debugging distributed environments, and in specific microservices, each

have their own merits and drawbacks. Most can be used complementary, for the areas in which

one excel is usually the ones other lack. It is common, for example, for monitoring systems to

take advantage of distributed tracing to collect data and visualization tools to present it to the

programmer. Table 3.1 presents a summary of the analysis done in this chapter.

Unfortunately, most approaches focus on helping the programmer identify a problem. When

it comes to identifying the root cause of a bug the developer is left fending for themselves. This is

where the record and replay approach outshines the others. While it is much more complex, and

most likely requires some familiarization with debugging tools such as interactive debuggers, it

22

Literature Review

assists developers in identifying the cause of the problem by allowing them to inspect the state of

the program at each step in the execution.

23

Literature Review

Table
3.1:Sum

m
ary

and
com

parison
betw

een
the

approaches
to

debugging
a

distributed
m

icro-service
based

system
.

A
pproach

Tracing
L

og
A

nalysis
V

isualization
R

ecord
and

R
eplay

Target
H

elps
to

identify
the

cause
ofa

bug
H

elps
to

identify
the

cause
ofa

bug
H

elps
to

identify
the

ex-
istence

of
a

bug,
as

w
ell

as
isolating

it
and

identi-
fying

its
cause

H
elps

w
ith

allsteps
ofthe

debugging
process,

since
identifying

the
existence

of
a

bug
to

determ
ining

and
applying

a
fix

C
ost

L
ow

to
m

edium
overhead

cost,
but

possibly
high

storage
cost

L
ow

overhead
cost,

possibly
high

stor-
age

cost

L
ow

overhead
cost,

pos-
sible

high
costs

of
stor-

age
and

m
aintenance

of
the

visualization
service

ortool

H
igheroverhead

and
high

costofstorage

Invasiveness
Som

ew
hat

inva-
sive,

m
ay

require
m

odification
of

source
code

N
otvery

invasive
N

otvery
invasive

C
an

be
invasive

and
re-

quire
m

odifications
to

the
source

code

G
radual

adoption
Possible,atthe

cost
of

m
issing

infor-
m

ation

Possible
Possible,

although
at

the
costofusefulness

Possible

24

Chapter 4

Problem Statement

The overarching problem addressed in this document, as described in Chapter 1 is of how to best

debug microservices. This chapter breaks that overarching problem into more specific issues, that

are addressed throughout the remainder of this thesis.

4.1 Main Issues

Part of what makes distributed programs harder to debug comes down to their increased com-

plexity and high concurrency. Developers generally find that reasoning about concurrent events

is more challenging than sequential ones. Furthermore, the fact that distributed programs run si-

multaneously on multiple processors, each of which maintaining their own time reference, further

complicates the debugging process.

Cheung [CBM90] identified the following difficulties in debugging distributed programs:

• Maintaining precise global states. Local state on each machine is readily available, but com-

bining them into a global state requires that all processors clocks be synchronized, which is

difficult to achieve.

• Large state space. The state space includes each machine’s own state as well as the records

of the interactions between all machines in the system. Large amounts of data are produced,

from which the interesting parts must be selected to be analyzed. This is often non-trivial

and requires manual effort by the developer or system operator. When the system grows to

a certain size, this task becomes cumbersome.

• Interaction between multiple asynchronous processes. Bugs that result from the interaction

between processes are often sporadic and hard to reproduce, resulting from synchronization

issues or race conditions.

• Communication limitations. Communication delays and limited bandwidth may render

some traditional debugging techniques impractical.

25

Problem Statement

• Error latency. The time interval between the occurrence of the error and it’s detection

is usually larger in a distributed program. By the time the error is detected, it may have

propagated to other nodes in the system. This may make it harder to find the root cause of

the issue.

A great number of issues in distributed programs arise from troubles in the communication

between the nodes in the system. Microservices are even worse in this aspect. Because they are

made of smaller, more focused components, then this means that there are usually more nodes in

the system when compare to a distributed system comprised of more monolithic components. This

larger number of nodes has two consequences:

• Each individual node has a larger number of dependencies.

• A larger number of messages are exchanged in the system.

This makes this kind of issues even more common. The problem with all these issues is that

they are mostly transient, and transient errors are very hard to reproduce. Often programmers are

left scavenging through logs to find any information that might help root cause the problem, with

no other recourse. Sometimes the problems are even left unsolved due to lack of logging and the

development team must wait until the next time the problem occurs to try and find the root of the

issue.

4.2 Objectives

The goal of this work is to define a conceptual framework for debugging microservices and will fo-

cus on one main research question: “Can a specific execution of a system be faithfully replayed
in a developer’s local machine?”

An execution is a subset of all the behaviors encoded in a programs source code that is man-

ifested every time a program executed. Some executions may be anomalous meaning that the

behavior of the program is different from the expected behavior. Anomalous executions are espe-

cially interesting in the scope of this document as they represent bugs in a program. While some

instances of anomalous behavior might be automatically detected, others require knowledge of the

business rules and the purpose of the program and thus require manual inspection of the results.

That is not the scope of the framework, but in order to use the framework, it is necessary to have

a system in place to detect anomalous executions that might be of interest to be replayed.

It is also important to define what it means to faithfully reproduce an execution. A naive

approach to determine whether or not a replayed execution is faithful to a reference execution

would be to check if the output produced is the same. However, that would not be enough since

it is possible that the replayed execution produces the same results in a different way. That is not

ideal since the purpose of the framework is to allow a programmer to inspect the internal state of

the system. Evidently, this is only useful if the state of the system during the replay is the same as

the state of the system in the point in the original execution.

26

Problem Statement

The approach described in this document to reproduce an execution requires first recording

said execution so that it can then be replayed. As such, to answer the main research question it is

necessary to answer other questions as well:

• Can enough information be recorded in an execution without introducing overhead in exe-

cution time that impacts the viability of the system?

• Is the amount of data generated during the execution small enough to be viably stored in

either the machines executing the instrumented program or in centralized storage?

• Can the recording and replaying of executions be performed without modifying the source

code of the program?

The solution proposed in this document attempts to achieve replay-ability of executions of

programs running in the Java Virtual Machine without modifying the source code of the program,

and relying purely on bytecode manipulation. This is unlike all the other solutions analyzed in

Chapter 3.

4.3 Methodology

In order to answer the research questions enunciated in this chapter, a prototype tool was de-

veloped based on the record and replay approach described in Chapter 5. Details regarding the

implementation of the prototype can be found in Chapter 6.

This prototype has been used to conduct a case study in a Java service that is part of a larger

system based on the microservice architecture. The description of that case study can be found

in Chapter 7. The purpose of this case study is to collect and analyze data in order to answer the

research questions.

27

Problem Statement

28

Chapter 5

Approach

The aim of this chapter is to describe the approach taken to the development of the prototype tool,

which is subsequently used to help answer the research questions raised in Chapter 4. It begins by

enunciating the assumptions and core tenets on which the solution lies, the needs that a tool based

on this approach must meet and the reasoning that lead to the proposal. It then presents a detailed

description of the approach, including some of the main challenges to its implementation.

5.1 Assumptions and Core Tenets

The solution described in this chapter and the next is based on recording and accurately replaying

executions of instrumented programs. This approach was chosen instead of others because it pro-

vides the greatest insight into the behavior of the program being debugged since the programmer

has access to all of the internal state of the program as it happened during a previous execution.

Furthermore, this approach offers easy reproduce-ability of errors since if an error is recorded even

once, then it can be replayed and thus reproduced. Its goal is to assist programmers throughout

all of the steps in the process of debugging distributed systems thus making it faster and more

efficient. The solution was developed with the following assumptions and core tenets in mind:

• The source code of the programs to be debugged must not be modified, and it is acceptable

to sacrifice accuracy to do so. This is the most important assumption and the one that guides

the implementation of the solution. Some sacrifices are made in terms of accuracy of the

replayed execution for certain types of programs and user experience in order to maintain

the source code of the programs unmodified.

• The solution must be designed for and work on production environments and with produc-

tion workloads. This restricts the amount of information that can be recorded, as well as the

way in which such information must be stored.

29

Approach

• The functionality that is instrumented by the solution to be replayed is concentrated in a

relatively small set of libraries that are widely used by most programs in each language.

These libraries are usually part of the standard library for a programming language.

5.2 Designing an Approach for Record and Replay

In order to be useful, the solution presented in the next chapter must meet the following needs:

• Low Overhead. In order to maximize its utility, the framework must record information

continuously in the service. In order for this to be possible in latency-sensitive applications,

the framework must minimize its overhead. Furthermore, if the information is recorded

for each external request to the system, it is possible that instrumented nodes may run out

of storage in applications with high throughput. So the framework must also use as little

storage as possible to record information while still allowing for accurate replays.

• Incremental adoption. To allow gradual adoption of the framework in production systems,

the framework should allow for interoperability between systems and services in the system

that are instrumented and those who are not. Unfortunately, this might result in information

being lost and interfering with the accuracy of the replay executions. But it is a necessary

trade-off in order to encourage its utilization in systems that are already in place and would

benefit from it.

• Accurate Replay. The usefulness of the framework is related to the accuracy of the replays.

If the replay execution is not faithful to the original, then bugs that have manifested in the

original execution might not in the replay. The internal state of the system in the replay

execution must match the original state so that developers are not misled in their debugging

efforts.

• Cross-platform compatibility. Often the development and the deployment of programs

happen in different platforms and operating systems. In order for a tool like this to be

useful, it must support the largest possible number of platforms.

There are many challenges in implementing such a framework. The following are some of the

most prevalent:

• Minimizing storage requirements. Compression can only go so far when it comes to

minimizing the size of the data that needs to be stored so that enough information is present

to allow accurate replays.

A possible approach to this issue is to frequently copy the collected information to central-

ized storage, freeing the nodes in the system from the burden of storing it for longer periods

of time.

30

Approach

• Minimizing network overhead. The liblog library adds 16 bytes to each message [GASS06]

in order to establish a partial ordering between the events in the system. Unfortunately, this

might make it unfit for certain classes of applications. The framework must avoid this issue

by striving to keep the network overhead to the bare minimum possible.

• Replaying multi-threaded applications. It is impossible to control context switches from

userland. Other mechanisms must be used in order to guarantee accurate and deterministic

replays of multi-threaded applications.

Solving the aforementioned challenges is crucial to develop a solution that can be used without

constraints in distributed systems based in the microservice architecture.

5.3 Overview of the Approach

A program can be thought of as a function that yields an execution from a set on inputs. An input

to a program is any information that is supplied to it and originates outside it. An execution of a

program is a subset of expressed behaviors from all the behaviors that have been encoded in its

source code. The subset of expressed behaviors that determine an execution is, then, the result

of the execution of the program with a set of inputs. If the same program is executed with the

same inputs, the result will be the same execution, or in other words, the same subset of expressed

behaviors.

Therefore, creating a reproduced execution from a reference execution entails executing the

original program in such a way that the subset of behaviors expressed in both is the same. This

means executing the program that yielded the reference execution with the inputs that were pro-

vided to the program to generate it. The first challenge is, then, to determine and register these

inputs so that they can be provided to the program again.

There are many different types of inputs such as program arguments, user interfaces, program

communication, among many others. However, all inputs have in common the fact that they are

exogenous elements that are supplied to the program in different ways but that, in one way or

another, depend on making a system call. System calls are the way in which a program can

request a service from the kernel. The kernel provides the following services through system calls

[opea]:

• Process control. This includes operations such as loading and executing programs, creating

and terminating processes and event allocating and freeing memory.

• File management. Operations such as creating and deleting files, opening and closing them

and even reading and writing files.

• Device management. Among others, this includes such operations as requesting and re-

leasing devices, or attaching and detaching them.

31

Approach

• Information maintenance. Operations that handle system information such as getting and

setting time and date, and managing other system data.

• Communication. This includes operations such as creating and deleting connections over

the network and transmitting and receiving messages.

The result of the invocation of a system call is determined by the state of the operating system

and the environment. Considering a program that wishes to open and read the contents of a file:

in order to do so, it must first invoke the appropriate system call in order to open the file and get

its file descriptor. The result of the system call, which can be either the file descriptor or some sort

of error, can be seen as an input to the program. This means that the same system call may result

in different inputs when under different contexts. Thus in order to replay an execution, the inputs

that yielded it must be determined. That is done by recording the result of the system calls made

during that execution.

However, the solution described in this document does not intercept and record the result of

system calls. It is designed to work specifically for Java and the Java Virtual Machine, which

provides an abstraction layer over the system calls provided by each platform. The solution makes

use of that abstraction layer instead of directly intercepting system calls. In fact, it goes a few

steps further and instead intercepts and records the results of some key methods in core classes

of the Java Runtime Environment that provide functionality such as network communication and

random number generation. This has the obvious disadvantage that it does not work for programs

written in other programming languages, but it also brings some advantages:

• Portability. If the JVM supports a platform, then the solution presented here also works on

that platform. This ensures that the tool works on a large number of platforms as enunciated

in the previous section.

• Effort. Instrumenting core classes of the JRE instead of system calls for all platforms

requires less programming effort and knowledge of each platform. Furthermore, it permits

the usage of tooling developed specifically for Java programs.

Having determined the inputs that must be supplied to the program, in order to reproduce a

reference execution it is necessary to ensure that those inputs are supplied to the program for a

second time. Considering the nature of the inputs explored in this section this is not always trivial.

Evidently, attempting to send or receive a message over the network may yield radically different

results depending on the state of the world and the OS at any given time. Replaying an execution,

however, requires that all attempts yield the same result. There are a few possible ways of ensuring

this:

• Reproduce the full state of the environment. This is the optimal approach, but evidently

impossible to achieve. Of course, in practice, it wouldn’t be necessary to guarantee the same

state of the whole environment, just for the services relevant for the execution. Even that,

32

Approach

however, is hardly trivial. It is very difficult, for example, to guarantee that a service will

always be available over the network and that it will always remain unchanged. Transient

failures are hard to account for, and latency may vary wildly.

In some cases, however, this may be a viable option. It is comparatively easier for example

to guarantee that a file will be available for reading, or that a user will always click the same

button.

• Intercept and replace the result of key method calls. This approach foregoes the burden

of trying to ensure the same state of the world, at the cost of decreased reliability. It may be

the only option however to deal with cases such as network configuration in which it would

be difficult to guarantee the exact same conditions between executions.

The difficulty of this approach is that it requires identifying these key methods and instru-

menting the source code in such a way that their behavior and return values can be modified.

• Hybrid approach. Alternatively, it is possible to mix both approaches. Easily reproducible

inputs are supplied to the program by ensuring the same state of the world in both executions.

On the other hand, inputs that are hard or impossible to replicate that way are supplied to

the program by intercepting and replacing the behavior and result of key method calls.

This approach is a compromise between reliability, which is best achieved through repro-

ducing the state of the environment, and the relative ease of ensuring the same results by

intercepting and replaying key method calls.

The solution described in this document takes the hybrid approach to solve this problem. It

assumes that inputs that are easily reproducible between executions remain the same, and deals

with the others by modifying the appropriate method calls. Specifically, the solution instruments

the following input sources:

• Communication. A fundamental part of microservices. Systems based on the microservice

architecture exchange a large number of messages between component services, so ensuring

that messages can be accurately replayed is a major concern in the proposed solution.

• Random number generation. Another input source that is common and fundamentally

non-deterministic. If a reliable replay is to be achieved, the random number generation

must be controlled.

5.4 Instrumenting Network Communication

Communication over the network can be done using a great variety of protocols. In order to

encompass a greater number of use cases, it is important to carefully select the point of instru-

mentation so that the maximum number of protocols are supported. The Internet protocol suite

defines four distinct layers [Nie94], each one with a different number of protocols. These are the

33

Approach

Figure 5.1: The Internet protocol suite [int]

application layer, the transport layer, the Internet layer, and the network access layer. The foun-

dational protocol of the internet is the Internet Protocol, or IP, and stands on the Internet layer of

the Internet protocol suite. That layer is the narrowest in terms of the number of protocols. How-

ever, there are not too many applications that use IP directly. Instead, most use the transport layer

protocols, namely the Transmission Control Protocol, or TCP, and the User Datagram Protocol,

or UDP. For that reason, the solution in this document instruments communication that happens

at the transport layer. This strikes a compromise between the number of protocols that must be

instrumented, which would be too many in the application layer, and ease of implementation that

would be hampered had the instrumentation been done at the Internet layer.

There is another issue with instrumenting network communication at the transport layer. The

lower the layer in the Internet protocol suite, the less information is available. This means that in

exchange for simplicity in the implementation since only two protocols are handled as opposed to

many more, some information is given up. This might affect the accuracy of the replay to some

degree, although it is unlikely because it is possible to determine the right time to replay a message

without knowing the structure of its contents.

5.5 Instrumenting Random Number Generation

Random number generation is comparatively simple to instrument. Unlike the case of network

communication, there are not many ways to generate random numbers. Usually, random numbers

are generated either through hardware random number generators, that generate genuinely ran-

dom numbers, or mathematical pseudo-random number generators. Regardless of the underlying

34

Approach

mechanisms, random number generators are typically abstracted behind a few interfaces that pro-

vide the service. That is certainly the case for Java and the JRE. These interfaces are promising

points of instrumentation.

35

Approach

36

Chapter 6

A Prototype for Record and Replay

This chapter provides a detailed description of the implementation of a prototype of the solution

proposed in Chapter 5. This implementation is used to validate the conceived approach in a case

study described in Chapter 7-

6.1 Overview

The solution proposed in this document is a record and replay agent for Java programs according

to the approach described in the previous chapter. The solution takes the form of a Java Instru-

mentation API agent, distributed as a JAR file with all necessary dependencies. The agent has two

different but complementary modes of operation:

• Record mode. If in record mode, the agent records the inputs to the program that are

necessary to replicate the execution in the future.

• Replay mode. In replay mode the agent uses the inputs recorded during the recording phase

and supplies them to the program, effectively reproducing the original execution.

The structure of the system is different based on the mode of operation. In record mode, the

main objective is recording the inputs to the program to ensure that the behavior will be the same

during the replay. However, it must also strive to maintain low overhead and, importantly, ensure

that the program being instrumented will not fail due to the agent. This is essential in order to

allow the agent to be attached to programs running in production environments, in which any

downtime may affect many users and be very costly. The architecture of the system consisting

of the program under test and the agent in record mode can be observed in Figure 6.1, and the

individual components of the system are described in Table 6.1.

In replay mode, the focus of the agent is on ensuring the accuracy of the replay, and not

necessarily on minimizing overhead or storage space since it is assumed that the replay happens in

37

A Prototype for Record and Replay

Figure 6.1: The architecture of the system in record mode.

Table 6.1: Description of the components of the system in record mode.

Component Name Description of Component
Server A generic hardware device in which one or more services are deployed.

Can be a machine that is available over the local network or over the
internet, for example in a data center.

JVM The Java Virtual Machine that the Java record agent is instrumenting.
Classes loaded by this virtual machine will be transformed by the agent.

Instrumented Program The program under scrutiny that is running in the instrumented JVM.
This is the program whose execution the programmer wishes to record
and, eventually, replay.

Record Agent The Java instrumentation agent that transforms the classes loaded into
the JVM in order to record messages exchanged over the network and
random number generation.

TCP Service A generic service that communicates with the instrumented program via
a TCP connection.

UDP Service A generic service that communicates with the instrumented program via
UDP datagrams.

Cassandra Cluster The centralized storage in which the records generated during the
recording phase of the agent are stored. This is an Apache Cassandra
cluster.

38

A Prototype for Record and Replay

Figure 6.2: The architecture of the system in replay mode.

a controlled environment such as the programmer’s development machine. Furthermore, while not

ideal, it is acceptable for the program under test to crash due to a problem in the replay agent. The

architecture of the system in record mode is shown in Figure 6.2. Table 6.2 contains a description

of the components in the system.

Each mode of operation is implemented separately, but they share a common interface: the

record object. The record object contains information about one input to the program, and all

necessary metadata to match the record to the place in which it was recorded.

6.2 The Record Object

As explored in the previous chapter, the framework focuses on collecting two types of inputs

that are difficult to reproduce. These inputs are messages exchanged during communication and

random number generation. As such there are two types of records:

• Communication records. Communication records hold information about messages ex-

changed in the system.

The information stored in communication records is the following:

– Request payload: A collection of bytes written to a socket by the instrumented pro-

gram in the case of a request originating from the instrumented program, or a collec-

tion of bytes read from a socket by the instrumented program, in the case of a request

originating externally.

39

A Prototype for Record and Replay

Table 6.2: Description of the components of the system in replay mode.

Component Name Description of Component
Development Machine The programmers development machine. In reality, it can be any en-

vironment, but the agent is most useful in replay mode when executed
under a controlled environment.

JVM The Java Virtual Machine that the Java replay agent is instrumenting.
Classes loaded by this virtual machine will be transformed by the agent.
This JVM may be attached to a debugger in order to inspect the internal
state of the instrumented program.

Instrumented Program The program under scrutiny that is running in the instrumented JVM.
This is the program whose execution the programmer wishes to replay.

Replay Agent The Java instrumentation agent that transforms the classes loaded into
the JVM in order to replay the inputs that have been generated during
the recording phase.

Mock TCP Service A mock service that simulates the original services that communicated
with the program via TCP connections. Necessary because the original
dependencies of the program may not be available during the replay.

Mock UDP Service A mock service that simulates the original services that communicated
with the program via UDP datagrams. Necessary because the original
dependencies of the program may not be available during the replay.

– Response(s) payload(s): A list of collections of bytes. These bytes have either been

read from a socket by the instrumented program in the case of a response to a request

that it has initiated, or written to a socket by the instrumented program in the case of a

response to a request that originated externally.

A list is used instead of just a collection of bytes to account for the cases in which

a request has more than one response or the cases in which the response comes in

fragments, and thus requires more than one read or write to a socket.

– Response(s) delay(s): A list of 64-bit integers, each representing the time difference

in milliseconds between the moment in which the interaction was initiated and the

moment in which the response was received. The order of the values in this list cor-

responds to the order of the responses in the response payloads list, such that the first

delay value corresponds to the first response payload and so on.

– Hostname: A string value that represents the name of the host to which the message

was addressed.

– Port: A 32-bit integer that represents the port in the host to which the message was

addressed.

– Type: An enumeration that can take the values of Inbound or Outbound. Inbound

records represent an interaction that was initiated by an external source. Outbound

records represent an interaction that was initiated by the instrumented program.

40

A Prototype for Record and Replay

– Protocol: The transport layer protocol that was used to transmit the message.

• RNG records. RNG records hold information about random number generation and the

order in which the number has been generated in the program.

The information stored in RNG records is the following:

– Next: The randomly generated number.

Furthermore, both record types share the following metadata fields:

• Execution ID: A randomly generated UUID that uniquely identifies an execution.

• Execution name: A human-readable name that is used to quickly and intuitively identify

an execution by the programmers using the tool.

• Timestamp: A timestamp of the exact moment that the record has been generated.

Instances of the record object are created when the agent is running in record mode. When

the agent is running in replay mode it takes a list of record objects and uses them to supply the

program with the necessary inputs in order to replay the original execution.

The record objects are defined as Protocol Buffer [Pro] messages. The Protocol Buffer library

is used to generate the Java classes for the record objects as well as to serialize and de-serialize

the objects into JSON and the custom Protocol Buffer format.

6.2.1 Storing Records

Depending on the number of messages exchanged in the system, a large number of records may be

generated. Because of that, it is not possible to store records locally in each machine that produce

them, because that may cause the machine to run out of disk space and fail unexpectedly. Instead,

records must be offloaded to centralized storage designed to handle large amounts of data. Having

the records in a centralized space also makes them easier to access.

Given these restrictions, the records are stored in an Apache Cassandra cluster which is a

robust database designed specifically to hold large amounts of data. In addition, Cassandra also

provides fault-tolerance, high scalability, and high availability.

6.3 The Record Phase

Logically, in order to replay an execution, the first step is to record its inputs. In order to do that,

the agent must be executed in record mode. The purpose of the agent in record mode is to generate

and store record objects that represent the inputs to the program. To this end, the agent instruments

key points in the application where these inputs are supplied to the program. The way the agent

41

A Prototype for Record and Replay

instruments these key points is through bytecode manipulation, functionality offered by the Java

instrumentation API and the Byteman [Byt] framework.

As in the previous section, there are two kinds of records that the agent generates: Commu-

nication records and RNG records. For each type of record, there are some core JDK classes that

must be instrumented.

6.3.1 Generating Communication Records

Although communication records are grouped together and represented by the same record object,

there are actually two different types of communication records, based on the protocol used to

transmit the message: TCP and UDP records. These records have the same fields and are distin-

guished only by the value of the protocol field.

Each communication record stores both the request and the response of an interaction. This

can be either a request from an external source to the program and the subsequent response or a

request from the program to an external source and the subsequent response. Of course, messages

do not always elicit a response: In these cases, a record is only generated if the message was sent

from an external source and addressed to the program; otherwise, it is not. The reasoning behind

it is that if the message is sent from the instrumented program and has received no response, then

during replay when the program sends the message again no response will need to be supplied by

the agent, because there was no response in the original execution.

There is the need, then, to match the requests to the corresponding responses so that they can

be stored under the same record. This is challenging for two reasons:

• The exchange of messages is asynchronous so the order of events cannot be used to deter-

mine the relations between messages. The response to a message can arrive earlier than

the response to a message that was sent before it. Furthermore, some messages elicit no

response further complicating the situation.

• There is no knowledge of the application level protocols, so the payload of the messages

cannot be used to determine whether or not they are a new request or just a response to

a previous message. In fact, the payload is, from the point of view of the agent, just a

meaningless string of bytes that carries no valuable information for its purpose.

This precludes one of the most common strategies to associate requests and responses which

is embedding in the request a unique per-execution value that is echoed in the response. This

is the strategy used, for example, by the Apace Kafka protocol [kaf], in which this value is

referred to as correlation id.

Because of these restrictions and the lack of information available at the points of instrumenta-

tion the agent solves the problem imperfectly: The relation between messages are established per

socket by the order that the messages are sent and received. The way this works is the following:

1. A map is maintained that associates socket object and record objects. Two maps are main-

tained by the record agent, an inbound map and an outbound map. These maps associate

42

A Prototype for Record and Replay

socket objects and record objects. One map is used exclusively for outbound records, mean-

ing records that represent requests that have been initiated by the instrumented program. The

other map is used exclusively for inbound records. Both maps are empty in the beginning.

2. When a message is received, or in other words, when a byte string is read from a socket,

then the maps are updated: First the outbound map is queried to see if there is already an

entry for the socket from which the bytes have been read. If there is, then that means that

the message is a response to a previous request. That entry, a record object, is then updated

with the bytes read from the socket. If, on the other hand, there is no entry in the outbound,

then that means that the message is a request originating from an external source. In these

cases a record object is created and added to the inbound map in association with the socket.

3. Similarly, when a message is sent, or in other words, when a byte string is written to a

socket, the maps are updated in much the same way. If there is an entry in the inbound map

for that socket, then it means that the message is a response to a previous request from an

external source, and the byte string is registered in the record object. On the other hand, if

there is not an entry in the inbound map then that means that it is a request being initiated

by the instrumented program. In such cases, the record object is created and added to the

outbound map in association with the socket.

The instrumentation points are different depending on whether the protocol used to transmit

the message is TCP or UDP.

6.3.1.1 TCP Instrumentation

There are a few classes in the JDK that are used by most programs to handle TCP traffic, either

directly or indirectly through higher-level libraries and frameworks. Specifically these classes

belong to the java.net and java.nio packages. The agent modifies these classes, in order to

correctly instrument the largest number of programs possible. Of course, it would most likely be

possible to achieve TCP communication without using these classes and in such cases, the agent

will be of little help. However, the assumption was made that that is not the typical approach

when developing Java programs, and this assumption seems to be justified as can be observed by

the large number of protocols correctly instrumented in Chapter 7.

In order to collect enough information to replay the execution, the following operations must

be intercepted:

• Writing to a socket. At this point, the information available should be the bytes being

written to the socket and the address of the socket.

• Reading from a socket. At this point, the information available should be the bytes being

read from the socket, as well as its address.

To obtain this information the java.net.Socket and java.nio.channels.SockatChannel

classes are instrumented.

43

A Prototype for Record and Replay

1 RULE Instrument java.net.Socket reads
2 CLASS java.net.SocketInputStream
3 METHOD read(byte[], int, int, int)
4 HELPER rr.helpers.RecordHelper
5 AT EXIT
6 BIND socket = $0.socket;
7 bytes = $1;
8 offset = $2;
9 length = $!;

10 IF true
11 DO recordTcpInboundMessage(socket, bytes, offset, length)
12 ENDRULE

Listing 6.1: Byteman rule used to instrument reads for instances of java.net.Socket.

The first class instrumented by the agent in order to intercept TCP communication is the

java.net.Socket class. Objects of this class provide input and output streams to respectively

read and write messages to the socket. These streams are returned by the getInputStream

and getOutputStream methods of the java.net.Socket class, which return instances of

java.io.InputStream and java.io.OutputStream respectively. However, the actual ob-

jects that are returned by these methods are instances of the java.net.SocketInputStream

and java.net.SocketOutputStream classes, which are internal classes and also sub-classes

of the java.io.InputStream and java.net.OutputStream classes. In order to inter-

cept reads and writes to sockets the agent must, then, detect reads and writes to input and output

streams, but only those that belong to sockets. The way it does so is by intercepting reads and

writes to streams that are instances of these internal classes.

The class java.net.SocketInputStream offers a read method to read from the socket.

This is the method instrumented by the agent in order to intercept messages read from objects

of the class java.net.Socket. The agent modifies the read method such that just before it

returns, a piece of code is executed that takes the bytes that were read from the socket and gen-

erates the appropriate record object. The Byteman rule to modify the bytecode of this method

is shown in Listing 6.1 (the syntax of Byteman rules is explained in Chapter 2). The class

java.net.SocketOutputStream offers a write method to write to the socket. This method

is instrumented by the agent in order to intercept messages written to objects of the class java.net.Socket.

The agent modifies the write method such that at entry, before the first instruction of the method

is executed the appropriate record object is created, using the bytes that are being written to the

socket, as well as information from the socket itself, such as the destination address. The Byteman

rule used to intercept this method is shown in Listing 6.2.

Another class that is commonly used to achieve TCP communication in Java programs is

java.nio.channels.SocketChannel. Unlike java.net.Socket, this class provides meth-

ods to read and write messages, without having to use input and output streams. These methods

are aptly called read and write, and are the methods that the agent modifies in order to generate

44

A Prototype for Record and Replay

1 RULE Instrument java.net.Socket writes
2 CLASS java.net.SocketOutputStream
3 METHOD write(byte[], int, int)
4 HELPER rr.helpers.RecordHelper
5 AT ENTRY
6 BIND socket = $0.socket;
7 bytes = $1;
8 offset = $2;
9 length = $3;

10 IF true
11 DO recordTcpOutboundMessage(socket, bytes, offset, length);
12 ENDRULE

Listing 6.2: Byteman rule used to instrument writes for instances of java.net.Socket.

the appropriate record objects. The read method is modified such that just before it returns the

bytes that were read from the socket, as well as information from the socket itself, are used to

generate a record object. On the other hand, the write method is modified in much the same

way, except that the record is generated just before the first instruction of the method is executed

and uses the bytes that are being written to the socket. The Byteman rules used to instrument these

methods are shown in Listing 6.3.

6.3.1.2 UDP Instrumentation

In Java programs, UDP communication is most commonly achieved through the usage of the

java.net.DatagramSocket class. This class offers two methods, send and receive to

send and receive datagram packets, which are instances of the class java.net.DatagramPacket

class. These methods are the points of instrumentation for the recording of UDP messages. The

Byteman rules used can be found in Listing 6.4. The send method is instrumented in such a way

that just before the first instruction of the method is executed, the bytes that are being sent, as

well as information from the packet such as the destination address, are used to generate a record

object. The receive method is modified in much the same way, except that the record object is

generated just before the method returns using the bytes read from the socket.

6.3.2 Generating RNG Records

Records of random number generation are simpler to generate than communication records, both

because there is less information required, as can be observed in the structure of the RNG record

object, but also because the process is completely synchronous. In Java, random numbers are

typically generated using the java.util.Random class. This class has an internal method called

next that is responsible for the generation of random numbers. The agent uses this method as

a point of instrumentation for random number generation. The Byteman rule used is shown in

Listing 6.5. The next method is modified so that after the number is generated and just before

the method returns, that number is used to create the appropriate record object.

45

A Prototype for Record and Replay

1 RULE Intercept java.nio.channels.SocketChannel reads
2 CLASS ^java.nio.channels.SocketChannel
3 METHOD read(java.nio.ByteBuffer)
4 HELPER rr.helpers.RecordHelper
5 AT EXIT
6 BIND socket = $0.socket();
7 buffer = $1;
8 bytesRead = $!;
9 IF TRUE

10 DO recordTcpInboundMessage(socket, buffer, bytesRead)
11 ENDRULE
12

13 RULE Intercept java.nio.channels.SocketChannel writes
14 CLASS java.nio.channels.SocketChannel
15 METHOD write(java.nio.ByteBuffer[])
16 HELPER rr.helpers.RecordHelper
17 AT ENTRY
18 BIND socket = $0.socket();
19 buffers = $1;
20 IF TRUE
21 DO recordTcpOutboundMessage(socket, buffers)
22 ENDRULE
23

24 RULE Intercept java.nio.channels.SocketChannel writes (1)
25 CLASS ^java.nio.channels.SocketChannel
26 METHOD write(java.nio.ByteBuffer)
27 HELPER rr.helpers.RecordHelper
28 AT ENTRY
29 BIND socket = $0.socket();
30 buffer = $1;
31 IF TRUE
32 DO recordTcpOutboundMessage(socket, buffer)
33 ENDRULE

Listing 6.3: Byteman rules used to instrument java.nio.channels.SocketChannel.

46

A Prototype for Record and Replay

1 RULE Instrument java.net.DatagramSocket send
2 CLASS java.net.DatagramSocket
3 METHOD send(java.net.DatagramPacket)
4 HELPER rr.helpers.RecordHelper
5 AT ENTRY
6 BIND socket = $0;
7 packet = $1;
8 IF true
9 DO recordUdpOutboundMessage(socket, packet)

10 ENDRULE
11

12 RULE Instrument java.net.DatagramSocket receive
13 CLASS java.net.DatagramSocket
14 METHOD receive(java.net.DatagramPacket)
15 HELPER rr.helpers.RecordHelper
16 AT EXIT
17 BIND socket = $0;
18 packet = $1;
19 IF true
20 DO recordUdpInboundMessage(socket, packet)
21 ENDRULE

Listing 6.4: Byteman rules used to intercept sending and receiving of UDP packets.

1 RULE Instrument java.util.Random next
2 CLASS java.util.Random
3 METHOD next(int)
4 HELPER rr.helpers.RecordHelper
5 AT EXIT
6 BIND next = $!;
7 IF true
8 DO recordRNG(next)
9 ENDRULE

Listing 6.5: Byteman rule used to intercept random number generation.

47

A Prototype for Record and Replay

6.4 The Replay Phase

After the execution has been recorded, it is possible to replay it. This is done by running the agent

in replay mode. The purpose of the agent in replay mode is to supply the program under test with

the inputs that were collected during the recording phase so that an execution can be accurately

replayed. Similarly to what happens during the recording phase, the agent makes use of the Java

Instrumentation API and byte-code manipulation to instrument strategic points of the program.

During the recording phase, a large number of records are created corresponding to the whole

execution of the program. However, sometimes it is enough to replay just a small part of the

execution. As an example, requests from clients to servers are often independent in the sense that

their result is not related to the result of previous or subsequent requests. In those cases, it might be

interesting to replay the execution of just one request from the client, if that request has produced

unexpected behavior while the others have not. As such, there must be a way to choose among

all the records generated during the recording phase the ones that should be replayed. The chosen

records can then be supplied to the agent in replay mode in the form of a replay script, which is

used to replay a certain portion of an execution.

6.4.1 Generating a Replay Script

A replay script is a file that contains a sequence of records that are meant to be used as inputs in

the replay of an execution. Replay scripts are generated using the Replay Script Generator, a web

application that reads the records generated during the recording phase from the centralized data

store, allows a user to select which ones they are interested in, creates the replay script and returns

a download link to transfer the file. The replay script generator also allows the filtering of records

per timestamp and per execution, using the execution name and id to identify it.

The interface of the replay script generator is shown in Figure 6.3. The list of records shows

some useful information that may help in identifying which records the programmer wants to

reproduce, but the information is very limited because the agent that generated the records has no

knowledge of the specifics of the program. Instead, this tool is meant to be used in conjunction

with other monitoring tools in the system. After identifying an anomaly using the monitoring tools

in the system, the replay script generator could be used to generate a script that would replay the

execution that happened at the time that the unexpected behavior occurred.

6.4.2 Replaying the Execution

Once the replay script has been generated and downloaded, the program can be initiated with the

agent in replay mode. When the agent is started in replay mode it shows a very simple GUI that

prompts the user to load the replay script. The execution of the program is halted until the replay

script has been loaded. Once the replay script has been loaded, the agent proceeds with the startup

process.

48

A Prototype for Record and Replay

Figure 6.3: The replay script generator web application

6.4.2.1 Replaying Network Communication

The main challenge in replaying network communication is to match the messages sent and re-

ceived by the program to the records that were generated by recording a previous execution. In

order to create this correspondence, it is necessary to use a heuristic based on the information that

is available both at the time of recording and at the time of the replay:

• The remote socket address of the request. This can be either the destination address in

the case of a transmission or the source in case of reception. The address of the request is

the same during the recording phase and the replay phase, otherwise, it is probably not the

same request. The address is composed of both the host address and the port.

• The payload of the request. The payload of the request must also be the same during the

recording phase and during the replay phase in order to establish the correspondence.

• The protocol. The protocol, either TCP or UDP, used to transmit the message should also

be the same in the recording phase as in the replay phase.

Using that information, and the order in which messages are sent and received, it is possi-

ble to create the correspondence between the messages sent and received by the program in the

replay phase and the records collected during the recording phase. The process by which this

correspondence is made is the following:

1. The replay script is loaded, and the records are stored in a map of unbound records. This map

creates a correspondence between record keys, which are tuples consisting of the address

and payload of the message that originated the record, and a chronologically ordered queue

49

A Prototype for Record and Replay

of unbound record objects. Unbound records are records that have not yet been associated

with any socket, or, in other words, that have not yet been used during the replay.

In addition to the map of unbound records, the agent maintains a map of bound records,

which are record objects that have been associated with a socket during the replay. The map

of bound records is empty.

2. When a message is transmitted, the map of bound records is first queried to check whether or

not there is an entry for the socket used for the transmission. If there is, then that means that

this message is the response to a previous request that originated from an external source.

In such cases, nothing needs to be done by the agent.

If, on the other hand, there is no entry for the socket then it means that this message is a

request from the program under test to an external service, and it is necessary to find the

record that corresponds to this request. To do so, a record key is created using both the

remote address of the socket, in this case, the destination address, and the request payload.

That record key is then used to find the record in the map of unbound records that matches

the request. If a record is found then that record is inserted in the bound records map in

association to the socket.

3. When a message is received, the map of bound records is queried to check whether or not

there is an entry for the socket through which the message was received. If there is not,

then that means that this message is a request originating from an external source. In such

cases, the agent does not need to do anything, since the program will most likely handle the

request in the same way that it did in the original execution.

On the other hand, if there is an entry in the bound records map for the socket, then it means

that the message is a response to a previous request from the program under test. In such

cases, the agent uses the record found in the map to replay the correct response.

There is yet another challenge encountered when replaying network communication, that is

that if the services that the program under test depends are not available over the network, then the

socket connections will fail and the replay agent will subsequently fail to reproduce the original

execution. In order to avoid this problem, the replay agent runs two mock servers, one that accepts

TCP connections and another that accepts UDP packets. The replay agent also ensures that every

request from the program under test to one of its dependencies is redirected so that it instead

arrives at the appropriate mock server. In this way, the socket connections are always established

without error, and the replay agent may proceed with the replayed execution.

This, however, raises another problem in the way that records are matched to the messages

transmitted by the program. The reason is that, as explained before, the records are matched to

requests using the remote address of the socket and the payload of the message. If the remote

address of the socket is modified by the agent, so that it becomes instead the address of the mock

server, then it becomes impossible to find the record that corresponds to the message since the

remote address will no longer be the same as it was during the recording phase.

50

A Prototype for Record and Replay

1 RULE Instrument java.net.Socket reads
2 CLASS java.net.SocketInputStream
3 METHOD read(byte[])
4 HELPER rr.helpers.ReplayHelper
5 AT EXIT
6 BIND socket = $0.socket;
7 buffer = $1;
8 IF true
9 DO RETURN interceptTcpInboundMessage(socket, buffer)

10 ENDRULE

Listing 6.6: Byteman rule to intercept reads for java.net.Socket

The agent addresses this issue by maintaining a map between sockets and their original ad-

dresses. This map is originally empty and is updated every time the program transmits a message

and just before the message is redirected to the correct mock server. This map is then queried

every time that the original remote address for a socket is required, namely to generate the correct

record keys.

Replaying TCP Communication

In order to replay TCP communication, the replay agent instruments the program in many of

the same places that the record agent does in order to record TCP communication.

The first classes instrumented by the agent are, then, the ones corresponding to the input and

output streams of the java.net.Socket class. These are java.net.SocketInputStream

and java.net.SocketOutputStream, respectively. The read method of the input stream

is instrumented in such a way that just before it returns, the contents of the buffer that holds the

bytes that have been read from the socket are replaced with the contents of the bytes that have

been saved in the corresponding record object, and the return value of the method is also replaced

by the length of the replayed message. The Byteman rule used to intercept this method is shown

in Listing 6.6. The write method of the input stream is modified such that, just before its first

instruction, the record that matches the transmitted message is found and subsequently bound to

the socket in the bound records map. The Byteman rule used to achieve this modification is shown

in Listing 6.7.

The other class that is instrumented by the replay agent is java.nio.channels.SocketChannel.

As observed in previous sections, this class provides methods to read and write to the socket, called

read and write respectively. These methods are instrumented by the replay agent in order to

inject the appropriate messages in the socket. The write method is instrumented by the agent so

that before the first instruction in the method, the socket is associated with the appropriate record

in the bound records map. The read method, on the other hand, is instrumented in such a way

that just before it returns the message in the buffer is replaced with the message that is found in

51

A Prototype for Record and Replay

1 RULE Instrument java.net.Socket writes
2 CLASS java.net.SocketOutputStream
3 METHOD write(byte[], int, int)
4 HELPER rr.helpers.ReplayHelper
5 AT ENTRY
6 BIND socket = $0.socket;
7 buffer = $1;
8 offset = $2;
9 length = $2;

10 IF true
11 DO interceptTcpOutboundMessage(socket, buffer, offset, length)
12 ENDRULE

Listing 6.7: Byteman rule to intercept writes for java.net.Socket

the corresponding record and the return value is modified to be the length of the injected message.

The Byteman rules used to do it are shown in Listing 6.8.

Furthermore, it is also necessary to instrument the point at which the sockets are connected in

order to both save the original address and to redirect the socket connection to the mock server.

This is, however, not done for all the addresses. It is possible to configure the replay agent so

that some addresses are not redirected and thus messages exchanged with services available at that

address happen as normal.

For the java.net.Socket objects, the connection is established either by invoking the con-

structor or by invoking the connect method. The constructor is instrumented so that before any

instruction in it is executed the original address is saved and the remote address for the socket that

has been passed as the argument to the constructor is modified to point at the mock server. Some

of the Byteman rules used to achieve this can be found in Listing 6.9. For objects of the class

java.net.Socket that are created unconnected, the connect method is instrumented so that

the original address is saved and the remote address for the socket that has been passed has an

argument to the method is modified. The Byteman rule that intercepts this call is shown in Listing

6.10.

In the case of the java.net.SocketChannel class, the connect method is modified by

the replay agent in such a way that before the first instruction is executed the original address is

saved and the remote address for the socket is modified. Listing 6.11 contains the Byteman rule to

intercept and modify this method.

Replaying UDP Communication

In the case of UDP communication, and similarly to what is done in the record phase, the

send and receive methods of the java.net.DatagramPacket are instrumented. It is not

necessary to instrument any other point in order to obtain and save the original address of the

52

A Prototype for Record and Replay

1 RULE Intercept java.nio.channels.SocketChannel read
2 CLASS ^java.nio.channels.SocketChannel
3 METHOD read(java.nio.ByteBuffer)
4 HELPER rr.helpers.ReplayHelper
5 AT EXIT
6 BIND socket = $0.socket();
7 buffer = $1;
8 IF true
9 DO RETURN interceptTcpInboundMessage(socket, buffer);

10 ENDRULE
11

12 RULE Intercept java.nio.channels.SocketChannel write
13 CLASS ^java.nio.channels.SocketChannel
14 METHOD write(java.nio.ByteBuffer[], int, int)
15 HELPER rr.helpers.ReplayHelper
16 AT ENTRY
17 BIND socket = $0.socket();
18 buffers = $1;
19 offset = $2;
20 length = $3;
21 IF true
22 DO interceptTcpOutboundMessage(socket, buffers, offset, length)
23 ENDRULE
24

25 RULE Intercept java.nio.channels.SocketChannel write (1)
26 CLASS ^java.nio.channels.SocketChannel
27 METHOD write(java.nio.ByteBuffer)
28 HELPER rr.helpers.ReplayHelper
29 AT ENTRY
30 BIND socket = $0.socket();
31 buffer = $1;
32 IF true
33 DO interceptTcpOutboundMessage(socket, buffer)
34 ENDRULE

Listing 6.8: Byteman rules to instrument java.nio.channels.SocketChannel.

1 RULE Instrument java.net.Socket constructor
2 CLASS java.net.Socket
3 METHOD <init>(java.lang.String, int)
4 HELPER rr.helpers.ReplayHelper
5 AT ENTRY
6 BIND socket = $0;
7 host = $1;
8 port = $2;
9 address = new java.net.InetSocketAddress(getTcpMockServerHost(),

getTcpMockServerPort());
10 IF addressNotExempt(address)
11 DO saveOriginalAddress(socket);
12 host = getTcpMockServerHost();
13 port = getTcpMockServerPort();
14 ENDRULE

Listing 6.9: Byteman rule to intercept constructor for java.net.Socket

53

A Prototype for Record and Replay

1 RULE Instrument java.net.Socket connect
2 CLASS ^java.net.Socket
3 METHOD connect(java.net.SocketAddress, int)
4 HELPER rr.helpers.ReplayHelper
5 AT ENTRY
6 BIND socket = $0;
7 address = $1;
8 IF addressNotExempt(address)
9 DO saveOriginalAddress(socket, address);

10 address = new java.net.InetSocketAddress(getTcpMockServerHost(),
getTcpMockServerPort());

11 ENDRULE

Listing 6.10: Byteman rule to intercept connect for java.net.Socket

1 RULE Instrument java.nio.channels.SocketChannel connect
2 CLASS ^java.nio.channels.SocketChannel
3 METHOD connect(java.net.SocketAddress)
4 HELPER rr.helpers.ReplayHelper
5 AT ENTRY
6 BIND socket = $0.socket()
7 address = $1;
8 IF addressNotExempt(address)
9 DO saveOriginalAddress(socket, address);

10 address = new java.net.InetSocketAddress(getTcpMockServerHost(),
getTcpMockServerPort());

11 ENDRULE

Listing 6.11: Byteman rule to intercept connect for java.nio.channels.SocketChannel

54

A Prototype for Record and Replay

1 RULE Instrument java.net.DatagramSocket send
2 CLASS java.net.DatagramSocket
3 METHOD send(java.net.DatagramPacket)
4 HELPER rr.helpers.ReplayHelper
5 AT ENTRY
6 BIND socket = $0;
7 packet = $1;
8 IF true
9 DO interceptUdpOutboundMessage(socket, packet)

10 ENDRULE
11

12 RULE Instrument java.net.DatagramSocket receive
13 CLASS java.net.DatagramSocket
14 METHOD receive(java.net.DatagramPacket)
15 HELPER rr.helpers.ReplayHelper
16 AT EXIT
17 BIND socket = $0;
18 packet = $1;
19 IF true
20 DO interceptUdpInboundMessage(socket, packet)
21 ENDRULE

Listing 6.12: Byteman rules to intercept and replay exchange of UDP messages.

packet because the address is carried together with the packet. The Byteman rules are shown in

Listing 6.12.

6.4.2.2 Replaying Random Number Generation

The replay of the generation of random numbers is simpler than the replay of network communi-

cation. When the replay script is loaded, the RNG record objects are stored in a queue in chrono-

logical order, from the ones that happened first to the ones that happened last. Then, whenever

the method next of the java.util.Random class is invoked, the next record is taken from

the queue and that number is injected as the return value. The Byteman rule used to perform the

interception can be found in Listing 6.13.

1 RULE Instrument java.util.Random next
2 CLASS java.util.Random
3 METHOD next(int)
4 HELPER rr.helpers.ReplayHelper
5 AT EXIT
6 BIND value = $!;
7 IF true
8 DO RETURN replayRNG(value)
9 ENDRULE

Listing 6.13: Byteman rule to intercept and replay generation of random numbers.

55

A Prototype for Record and Replay

6.5 Usage

The agent is distributed as a JAR file along with the necessary dependencies. The most important

dependency is Byteman, to perform bytecode injection and the Byteman scripts that define the

rules. The structure of the directory that is distributed is:

dist

libs

scripts

record.btm

replay.btm

rr-agents.jar

The entry point to the agent is the rr-agents.jar JAR file. The libs directory holds the JAR files

of all the dependencies of the program, including the Byteman JAR. The scripts directory holds

the Byteman scripts used by the agent to intercept method calls. There are two scripts, one used

during the recording phase and another used during the replay phase.

The agent can be started from the command line using the javaagent command line switch.

Generically the javaagent switch is used in the following way:

java Main -javaagent:<agent>=<options>

Where agent is the path to the agent’s JAR file and options is a string passed to the agent. The

options string must be parsed by the agent. The format of the options string for this particular agent

is a comma-separated list of properties, where each property takes the form of <key>:<value>.

The supported list of properties are:

• mode: String value that represents the execution mode of the agent. Possible values are

record and replay. This parameter is required. If absent, the agent will throw an exception.

• name: String value that represents the execution name. The execution name is a human-

friendly name intended to allow users to quickly identify the execution in the replay script

generator. This can take any value and is a required parameter if running the agent in record

mode. If absent, the agent will throw an exception.

• tcp: Integer value that specifies the port that the mock TCP server should use in replay

mode. Meant to avoid conflicts with programs that are using the default port 9998. This is

an optional parameter. If absent, the default value for the port will be used.

• udp: Integer value that specifies the port that the mock UDP server should use in replay

mode. Meant to avoid conflicts with programs that are using the default port 9999. This is

an optional parameter. If absent, the default value for the port will be used.

56

A Prototype for Record and Replay

• exclude: String value representing an address to be excluded for instrumentation during

replay. This parameter is optional, and may appear more than once.

• verbose: Meant for debugging purposes. This parameter does not require any value. This

is an optional parameter. If absent, the default level of logging will be used.

For example, if the program is the main class is called Application, this is how the appli-

cation can be started with the agent in record mode:

java Main -javaagent:rr-agents.jar=mode:record,name=my-app

Starting the program with the agent in replay mode is very similar, except that the value of the

mode parameter is different and there is no need to specify the name parameter:

java Main -javaagent:rr-agents.jar=mode:replay

The same JAR file of the agent is also used to start the replay script generator application. The

command line parameters required are:

• node: A string value, representing the hostname of the Cassandra cluster used to store the

record objects generated in the recording phase of the agent. This parameter is required.

• port: An integer value, representing the port of the Cassandra cluster used to store the record

objects generated in the recording phase of the agent. This parameter is required.

Assuming that the Cassandra cluster is available on the address localhost:9042, the replay

script generator can be started from the command line in the following way:

java -jar rr.agents.jar localhost 9042

57

A Prototype for Record and Replay

58

Chapter 7

Case Study

Throughout the development, the solution described in this document has been tested with simple

programs that isolate a single aspect of the desired functionality. Some of these programs, for

example, only communicate via TCP connections. Others communicate exclusively via UDP

datagrams. Still others generate random numbers and displayed them in the console. Multi-

threaded variations of these simple programs were also used to test the limitations of the solution.

However, in order to gain stronger confidence on whether or not the solution meets the criteria

defined in Chapter 5 a case study was designed. The remainder of this chapter will describe this

case study.

7.1 Description of the Service

The case study was conducted on one service of a microservice-based system. The system in

question is highly distributed, is composed of hundreds of services and large numbers of messages

are exchanged between them. The service under analysis in this chapter is an Apache Storm 1

topology. A topology in Apache Storm is essentially a graph that determines the way in which the

data is computed. Each node in the topology has processing logic, and the topology determines

the path that the data takes through the nodes. There are two types of nodes in a topology:

• Spouts: The source of data streams. Spouts read from an external data source and emit

them to the next nodes as defined in the topology. Commonly used data sources are message

queues or web APIs.

• Bolts: Bolts consume streams, perform computations on the data and may emit new streams.

A bolt can consume one or more streams and can be followed by one or more bolts. A

topology may have many bolts.

1Apache Storm is a distributed real-time computation system designed to process endless streams of data. Apache
Storm ensures scalability and fault-tolerance making it easier for programmers to create real-time processing systems.

59

Case Study

Figure 7.1: The structure of the locally deployed topology.

The Apache Storm topology used in this case study consists of a single spout and three bolts,

connected sequentially. The data source for the bolt is a Kafka message queue. Each bolt does

some computation on the stream. One of the bolts exchanges messages with an external web

server. The last bolt in the topology writes the result of the computations to another Kafka message

queue. Figure 7.1 shows the structure of the topology.

The topology used for this case study is interesting because it features different communication

protocols. The spout reads from Kafka using the Kafka protocol, a custom protocol over TCP, and

one of the bolts uses HTTP to communicate with a web server.

7.2 Setup

Typically, Apache Storm topologies are deployed on a cluster to become available over the In-

ternet. This means that different bolts may execute in different nodes in the cluster. However,

for practical reasons, the topology has been set up locally for this case study. The Apache Storm

Java library provides this functionality through the org.apache.storm.LocalCluster class,

which emulates a cluster in a process. It is important to note that this is not the same way that the

Apache Storm executes in production. However, it is the way the topology is tested before deploy-

ment and should accurately represent its behavior in the production environment.

The Kafka message queues were made available through a Docker container. The container

uses the spotify/kafka docker image. This image provides a Kafka cluster installation that is

made available by default at port 9092 of the container. The appropriate input and output topics

have been created before executing the topology. These message queues are not written to by any

service. Therefore, in order to provide data for the topology a number of messages have been

extracted from previous executions in production and a simple Java program has been created

to inject these messages when desired. It is important to note that while the way in which the

messages arrive in the input message queue is different from what it would be in production, this

does not affect the execution of the topology in any way.

The web server that exchanges messages with one of the bolts in the Apache Storm topology

is available over the Internet and as such required no extra setup.

60

Case Study

There is one extra setup step required in order to be able to run the agent in record mode

attached to this topology, which is setting up the data store. As described in the previous chapter,

when running in record mode the agent stores the generated records in an Apache Cassandra

cluster. Similarly to what is done for the Kafka message queues, the Cassandra cluster is made

available through a Docker container, in this case using the bitnami/cassandra image.

7.3 Methodology

In order to validate the solution by the criteria defined in Chapter 5 the following metrics are

measured:

• Execution time, with and without the agent running alongside the topology. This is intended

to measure the overhead introduced by the agent in the component, and thus in the overall

system.

To this end the program was modified to measure the time between the instant that a message

is read from the input Kafka queue to the moment that the message is written to the output

Kafka queue.

• Disk space used by the generated records. It is important to measure this in order to gauge

the cost of maintaining the records in storage. Depending on the results, it may or not be

necessary to decrease the period of storage of each record.

This measurement is taken by querying the Cassandra data store to obtain the amount of

disk space occupied by the cluster before and after the recording has been obtained, and

dividing the difference between these values by the number of records generated in order to

determine the average size per record.

• Accuracy of the replay, or in other words, the difference between the output of the original

execution and that of the replayed execution. This is important in order to determine whether

or not the agent works as intended.

This is measured by comparing the contents of the output Kafka queue between the original

execution and the replay execution as well as the output logs between both executions.

The topology has been executed in three different configurations. For the first set of execu-

tions, the topology has been executed without the agent attached. Measurements taken during this

executions have been used as a reference to understand the impact of attaching the agent to the

program in both record and replay modes. The command used to start the topology in this config-

uration is:

java Topology

61

Case Study

For the second set of executions, the topology has been executed with the agent attached in

record mode in order to collect enough information to do a replay. The command used to run the

topology in this configuration is the following:

java Topology -javaagent:rr-agent.jar=mode:record, name:case-study,

excluded=localhost:2000

In record mode, the excluded option allows configuring the agent to not record communi-

cation with remote addresses, so as to minimize the number of records collected. In this case,

localhost:2000 excludes cluster management messages that should not meaningfully impact

the execution.

The final set of executions of the topology is a replay of one of the executions of the sec-

ond set. Since the address localhost:2000 has been excluded during the recording phase it

has also been excluded from the replaying phase. This means that the agent will not intercept

communication with the remote address localhost:2000 and therefore in the replay execution

cluster management traffic may be different from that in the recording execution. However, this

difference should have no meaningful impact. The command used to execute the program in this

configuration is the following.

java Topology -javaagent:rr-agent.jar=mode:replay,

excluded=localhost:2000

The results of these executions were recorded in files for later analysis.

7.3.1 Measuring Execution Time

The spout of the topology reads messages from the input queue and turns them into tuples which

are then processed by the topology. Each message corresponds to one tuple. The execution time is

measured by recording the time at the moment the tuple enters the system and subtracting it to the

time at the instant the tuple is emitted by the last bolt in the topology. The measurement is made

in milliseconds.

7.3.2 Measuring Storage Space Usage

The total number of bytes in use in the data store to store the records generated in an execution is

recorded in bytes. The total number of record objects generated is also stored in order to calculate

the average storage space used per record.

62

Case Study

7.3.3 Computing Replay Accuracy

The logs of the topology contain the payload of the messages transmitted and received from the

web server, as well as the result of the processing of each tuple by each bolt. The logs of both

the reference and the replayed executions have been used to calculate the accuracy of the replays,

since if the replay is faithful to the original execution, then the logs will be as well. To that end,

during each execution, the logs are written to a text file. Then, the contents of the files containing

the logs of each replayed execution are compared to the logs of the original execution in order to

assess:

• Differing lines: The number of lines in the log file of the replayed execution that are differ-

ent from the corresponding line in the log file of the original execution.

• Lines out of position: The number of lines that while not matching the corresponding line

in the log file of the original execution, do match another line in that file. In practice, this

usually means that the lines were logged in both executions, but at different relative times.

• Accuracy: A percentage value that represents the ratio between the number of lines that

are present in the log file of the replayed execution but not on the original execution and the

total number of lines in the log file of the replayed execution.

However, there are some parts of the generated logs that are always different between execu-

tions, even if they are an accurate replay of another. These include values such as timestamps,

thread IDs, and local socket addresses, among others. This means that in order to be able to use

the logs to calculate the accuracy, some post-processing is required to substitute these values.

The execution logs are stored in plain text files after each execution. The post-processing of

these files is done using the stream editing tool sed. Transformations to be applied to the file are

defined in a set of rules as described in Appendix A, and sed does one pass over the contents and

applies them. The transformations applied to the raw log files are:

• Removing cluster management logs. Logs that pertain to cluster management are not

meaningful for the purpose of determining whether or not the replay is accurate since

messages regarding cluster management have been explicitly ignored during the recording

phase.

• Replacing local socket addresses. Sockets are bound to different local ports in each execu-

tion. This has no impact in the accuracy of the replay, and as such all addresses in the logs

are made the same.

• Replacing object addresses. Object addresses are also different for each execution. Again

this has no impact on the accuracy of the replay so all addresses are replaced during post-

processing so as to be the same.

• Removing timing information and timestamps. The logging framework used by the

topology under study in this chapter outputs structured messages. One of the fields in these

63

Case Study

messages is the time in milliseconds since the beginning of the execution. Because the re-

play agent does not guarantee that things happen at the same time during the replay as they

happened during the original execution, these timestamps must be removed as they have no

impact on determining the accuracy of the replay.

It is important to note that the information lost in these transformations does not meaningfully

impact the measurement of the accuracy of the program.

7.4 Results and Analysis

This section contains the results obtained from the measurements described in the previous sec-

tions of this chapter.

7.4.1 Execution time

Tables 7.1, 7.2 and 7.3 contain the measurements of execution times for the reference, record and

replay execution modes respectively. For each execution mode ten executions have been measured,

each one processing ten tuples and thus ten messages. Table 7.4 contains a comparison between

the execution time measured in each execution mode and the reference executions.

As shown in Table 7.4, it is evident that for this case study the agent in record mode introduces

very little overhead, around 1.5%. This value is negligible for the execution times registered in

this case study, which are of around 626 milliseconds in the reference execution, meaning that

a 1.5% increase corresponds to around 6 milliseconds. This is an acceptable value and shows

that the agent in recording mode introduces little overhead. In replay mode, this is not the case,

as the overhead introduced is of around 74% to 84% of the original execution time. However,

as explained previously in this document, the agent only executes in replay mode in controlled

environments such as a programmers development machine in which the introduced overhead has

no impact on the users. A replay overhead of less than 100% is acceptable for the purpose of

debugging, considering that the tool is meant to be used with interactive debuggers that allow the

introduction of breakpoints which make the overhead introduced negligible. Overall, the agent

meets the criteria defined in Chapter 5.

7.4.2 Storage Space Usage

The storage space used by the records generated during the recording executions can be observed

in Table 7.5. Storage space has not been measured for the other execution modes because they do

not generate records and thus do not use any storage space.

Each record generated during recordings for this case study takes on average 12395 bytes in

storage space, as can be observed in Table 7.5. This is a very significant value, considering the

large number of records generated for the small number of messages processed in each execution,

and the duration of each recorded execution which was around 30 seconds. In reality, most records

are much smaller than that. However, some are also much bigger, resulting in a high average value.

64

Case Study

Table 7.1: Execution times per tuple and per execution without the agent running, in milliseconds.

Execution 1 2 3 4 5 6 7 8 9 10
#1 454 513 568 634 686 741 797 854 960 1015
#2 374 424 480 534 586 644 700 757 810 866
#3 390 439 492 545 596 651 707 766 820 873
#4 337 399 463 528 589 652 717 782 845 907
#5 71 141 207 238 303 367 433 501 564 629
#6 381 442 506 570 632 697 762 828 892 956
#7 341 402 469 532 595 658 725 790 852 915
#8 458 508 565 621 674 730 787 846 900 956
#9 472 524 576 627 653 686 739 797 854 885

#10 389 438 492 549 620 672 727 784 836 890

Mean (ms) 367 423 482 538 593 650 709 771 833 889
Median (ms) 381 438 492 545 596 658 725 784 845 890

Table 7.2: Execution times per tuple and execution with the agent in record mode, in milliseconds.

Execution 1 2 3 4 5 6 7 8 9 10
#1 500 553 610 666 716 772 829 893 949 1004
#2 363 415 470 572 624 679 734 791 845 900
#3 402 454 509 563 614 669 729 786 841 891
#4 332 381 438 491 547 601 655 723 776 831
#5 359 408 463 666 742 796 850 950 1006 1060
#6 402 454 508 575 627 679 735 794 847 901
#7 304 354 408 463 515 572 630 693 748 805
#8 321 372 431 490 545 601 656 713 771 824
#9 365 416 472 528 580 635 691 749 802 868
#10 373 422 479 532 583 641 696 755 811 863

Mean (ms) 372 423 479 555 609 665 721 785 840 895
Median (ms) 365 416 472 555 609 665 721 785 840 891

65

Case Study

Table 7.3: Execution times per tuple and execution with the agent in replay mode, in milliseconds.

Execution 1 2 3 4 5 6 7 8 9 10
#1 538 787 975 1147 1295 1469 1626 1829 1998 2164
#2 434 614 796 940 1124 1306 1456 1616 1808 2000
#3 505 661 839 974 1105 1246 1384 1518 1662 1801
#4 463 609 761 896 1030 1164 1299 1446 1630 1781
#5 434 561 704 835 965 1133 1271 1433 1599 1751
#6 377 528 694 849 993 1180 1320 1454 1597 1751
#7 449 579 725 852 980 1129 1264 1427 1597 1754
#8 420 550 691 820 943 1086 1220 1368 1548 1695
#9 614 794 955 1098 1228 1372 1530 1726 1920 2087
#10 423 551 698 840 970 1119 1259 1417 1555 1680

Mean (ms) 466 623 784 925 1063 1220 1363 1523 1691 1846
Median (ms) 442 594 743 874 1012 1172 13190 1450 1615 1768

In the end, the amount of space required per record may be a limitation for usage of the tool in

production environments, and special care might have to be taken in order to limit the number of

records generated or the amount of time during which the records are stored.

7.4.3 Replay Accuracy

Table 7.7 shows the comparison between the log files produced during the replayed executions

and the log file produced during one of the ten recorded executions. Accuracy is the percentage of

lines that show up in both log files, regardless of the relative position in which they appear.

The number of lines in the post-processed log files is just slightly lower than the number of

lines in the corresponding raw log files, as can be observed in Table 7.6. This reinforces the claim

that little meaningful information is lost in these transformations.

Accuracy of the replay for this case study is close to perfect, as observed in Table 7.7, meaning

that the same operations that occurred in the original execution will happen again in the replay.

Due to the highly concurrent nature of the program under analysis in this case study, some of the

messages will be written to the log files in different positions in relation to other messages, even

though it is usually very close. Furthermore, once one message appears out of position, most of the

following messages will appear one line before or after the original. This explains the sometimes

Table 7.4: Comparison of execution times between different modes of execution.

Reference Record Replay
Mean Execution Time per Tuple (ms) 625 634 1151
Median Execution Time per Tuple (ms) 627 637 1092
Difference of Mean to Reference (%) 0% +1.44% +84.16%
Difference of Median to Reference (%) 0% +1.59% +74.16%

66

Case Study

Table 7.5: Storage space used per execution in record mode.

Execution Space Used (Bytes) Number of Records Space Used per Record (Bytes)
#1 403768 67 6026
#2 399814 53 7543
#3 392696 28 14024
#4 392138 26 15082
#5 393280 30 13109
#6 392980 29 13551
#7 392435 27 14534
#8 391854 25 15674
#9 393274 30 13109

#10 395697 35 11305
Mean 394793 35.0 12395

Median 393127 29.5 13330

large number of lines that appear on both the original log file and the replayed log file in different

positions. Regardless, the replayed execution will be very faithful to the original, thus fulfilling

the main objective of the replay agent.

7.5 Conclusions

There is at this point enough information to be able to answer the research questions enunciated

in Chapter 4. These answers are based on a single case study. While the program was chosen

because it is a good representation of the kind of programs that this tool is intended to help debug,

further case studies would need to be conducted in order to obtain more definitive answers:

• Can enough information be recorded in an execution without introducing overhead in exe-

cution time that impacts the viability of the system?

The results obtained are very encouraging. As reported in this section the overhead in-

troduced by the agent in record mode is about 1.5%, so small enough as to be negligible.

However, in order to give a definitive answer to this question more services would need to

be analyzed.

• Is the amount of data generated during the execution small enough to be viably stored in

either the machines executing the instrumented program or in centralized storage?

Table 7.6: Number of lines in the log files before and after post-processing

Orignal File Name Original Line Count Post-Processed Line Count Difference
record-logs.txt 1899 1781 -118
replay-logs.txt 1899 1781 -118

67

Case Study

Table 7.7: Comparison between log files of the replayed executions and the log file of the recorded
execution.

Replay Differing Lines Lines Out of Position Accuracy
#1 48 48 100.00%
#2 43 43 100.00%
#3 42 42 100.00%
#4 122 122 100.00%
#5 46 45 99.94%
#6 103 102 99.94%
#7 1677 1676 99.94%
#8 44 44 100.00%
#9 37 37 100.00%
#10 1665 1665 100.00%

This looks to be the biggest problem with the approach described in this document. Due to

the amount of information needed to replay the execution, the records use too much space

to be viably stored. The Apache Storm topology analyzed in this case study required about

390 KB for 30 seconds of execution, which would be around 46 MB per hour of recording.

This does not look like much, except that the number of messages (just 10) used for this case

study is not necessarily representative. In reality, some services would have much higher

throughput and would need much more storage space for all the records generated. This

limits the application of this tool to services with low throughput. It is possible to work

around this limitation, such as limiting the time that the records are stored and limiting the

network communication that generates records.

• Can the recording and replaying of executions be performed without modifying the source

code of the program?

The answer to this question is that yes, it can be done. in this case study the source code of

the program has only been modified in order to collect the metrics necessary to perform the

analysis.

• Can a specific execution of a system be faithfully replayed in a developer’s local machine?

This is the most important research question and the one that this case study aimed to answer.

The answer seems to be that yes, it can as seen by the replay accuracy values in Table 7.7,

which are around 100%. This means that for this case study every replay has been a faithful

reproduction of the original execution.

7.6 Validation Threats

Some issues have been identified in the way this case study has been developed that raise questions

about the validity of the solution to other programs and environments. These are:

68

Case Study

• For this case study both the recording phase and the replaying phase have been executed

in the same machine. While it should work the same if the recording phase happened in a

different machine, this case study does not do so and therefore cannot be used in support of

that claim.

• Determining the accuracy of the replay using the output logs of the original and replayed

executions might be inaccurate for the cases in which the output is the same but the behavior

has been different.

• The post-processing of output logs, while necessary, may unintentionally omit some infor-

mation that stems from different behavior of the program. Some effort has been spent to

ensure that this is not the case, but this is not guaranteed.

• This case study is focused on a specific application, so the results cannot be generalized. In

order to do so, it would be necessary to conduct other case studies with different applica-

tions, including ones using different network communication protocols.

69

Case Study

70

Chapter 8

Conclusions

This document demonstrates that it is possible to faithfully replay executions that have been pre-

viously recorded. An approach has been proposed to do so that, unlike other solutions analyzed

in Chapter 3, does not require any modifications to the source code, introduces minimal overhead,

and guarantees accurate replay not only for network communication but for all sources of non-

determinism. In order to demonstrate this, a prototype tool has been developed and a case study

has been conducted on a service that is part of a large microservice-based system. The case study

shows that the replay of executions can be done with high levels of accuracy, to the point that

the replayed execution is indistinguishable from the original when it comes to the behavior of the

program. Furthermore, it demonstrates that it can be done without modifying the source code of

the program and introducing minimal overhead when it comes to the execution time of the instru-

mented program. On the other hand, a large amount of data must be generated in order to replay

the executions accurately. This may be a limitation to the system and might make it unusable for

some types of programs.

8.1 Contributions

The main contributions from this document are:

• A novel approach to debug microservices that run in the Java Virtual Machine using the

Java Runtime Environment. This approach is described in Chapter 5 and outlines a way to

record and replay programs without modifying their source code in any way by making use

of the Java instrumentation API and bytecode manipulation.

• A prototype that implements the described approach. The implementation of this pro-

totype is described in Chapter 6 and focuses on some of the more common causes of non-

determinism in executions, in specific communication over the network and random number

generation. This prototype is intended to help validate the proposed approach.

71

Conclusions

• A case study designed to showcase and verify the validity of the approach proposed in this

dissertation. The description of the case study can be found in Chapter 7. The case study

instruments a service that is part of a complex system of microservices and is used by a

company in production. It puts the prototype to the test with a real-world example of the

kind of programs that it is meant to help debug.

8.2 Future Work

The work described in this document is meant to answer the research questions outlined in Chap-

ter 4. Further work would be necessary in order to make the tool useful and viable in the real-world

and with programs in production environments serving large numbers of users. Some of the issues

that would require further work are:

Improved correspondence of records between the recording phase and replaying phase.
Using the Java instrumentation API it is possible to obtain the place in the source code where

messages are sent and received. That information could be added to record objects in order to

facilitate the correspondence of records in the replaying phase.

Better integration of the tool in the debugging process. Using this tool in the debugging

process implies cross-referencing a bug report with the registered records for the execution in order

to find the relevant records to be replayed. At this moment, the timestamp of the anomalous event

must be used to find the records that correspond to that moment. Furthermore, the tool has no way

of figuring out which records are part of the interaction that the programmer is interested in and

which records are not. The better judgment of the programmer is required to make that distinction.

More thorough instrumentation of relevant JRE classes and methods. As it is described

in Chapter 6 the implementation of the prototype focused on a specific set of classes and methods

that are widely used to achieve network communication and random number generation. However,

there are other classes that can and are used to do the same thing. An improved implementation

of the approach would instrument these alternative classes and methods in order to ensure that the

largest possible number of use-cases are covered.

Further empirical validation. While the case study that was conducted attempts to validate

the proposed approach, it is just one example of the many types of services that this approach aims

to help debug. In order to increase confidence in the validation, it would be necessary to conduct

case studies with other programs and ideally programs of different kinds, different architectures

and that use different communication protocols. It would also be of interest to conduct some stud-

ies in production environments.

72

Conclusions

Rethink record generation and storage. The biggest limitation of the approach described in

this dissertation is the amount of disk space required to store the number of records necessary to

accurately replay executions. It is necessary to think of better strategies to minimize the number

of generated records, the amount of data needed per record and the way in which said records are

stored.

73

Conclusions

74

References

[ASM] ASM. https://asm.ow2.io/. Accessed: 2019-02-06.

[BIN03] Paul Barham, Rebecca Isaacs, and Dushyanth Narayanan. Magpie: online modelling
and performance-aware systems. In 9th Workshop on Hot Topics in Operating Sys-
tems (HotOS-IX), pages 85–90. USENIX, May 2003.

[BWBE16] Ivan Beschastnikh, Patty Wang, Yuriy Brun, and Michael D Ernst. Debugging dis-
tributed systems. Queue, 14(2):50:91–50:110, March 2016.

[Byt] Byteman. https://byteman.jboss.org/. Accessed: 2019-02-06.

[byt18] Byteman programmer’s guide. https://downloads.jboss.org/byteman/
4.0.5/byteman-programmers-guide.pdf, 2018.

[CBM90] W.H. Cheung, J.P. Black, and E. Manning. A framework for distributed debugging.
IEEE Software, pages 106–115, January 1990.

[CKF+02] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer. Pinpoint: problem
determination in large, dynamic internet services. In Proceedings International Con-
ference on Dependable Systems and Networks, pages 595–604, June 2002.

[CPP] Computer Programming Principles maintaining/debugging. https:
//en.wikibooks.org/w/index.php?title=Computer_Programming_
Principles/Maintaining/Debugging&oldid=3449890. Accessed:
2019-02-06.

[Fow] Microservices. https://martinfowler.com/articles/microservices.
html.

[fow14] Microservices. https://martinfowler.com/articles/microservices.
html, 2014.

[FPKS07] Rodrigo Fonseca, George Porter, Randy H. Katz, and Scott Shenker. X-trace: A per-
vasive network tracing framework. In 4th USENIX Symposium on Networked Systems
Design & Implementation (NSDI 07), Cambridge, MA, 2007. USENIX Association.

[GAM+07] Dennis Geels, Gautam Altekar, Petros Maniatis, Timothy Roscoe, and Ion Stoica. Fri-
day: Global comprehension for distributed replay. In Proceedings of the 4th Usenix
Conference on Networked Systems Design and Implementation, 2007.

[GASS06] Dennis Geels, Gautam Altekar, Scott Shenker, and Ion Stoica. Replay debugging for
distributed applications. pages 27–27, 05 2006.

75

https://asm.ow2.io/
https://byteman.jboss.org/
https://downloads.jboss.org/byteman/4.0.5/byteman-programmers-guide.pdf
https://downloads.jboss.org/byteman/4.0.5/byteman-programmers-guide.pdf
https://en.wikibooks.org/w/index.php?title=Computer_Programming_Principles/Maintaining/Debugging&oldid=3449890
https://en.wikibooks.org/w/index.php?title=Computer_Programming_Principles/Maintaining/Debugging&oldid=3449890
https://en.wikibooks.org/w/index.php?title=Computer_Programming_Principles/Maintaining/Debugging&oldid=3449890
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html

REFERENCES

[GDB] Gdb: The gnu project debugger. https://www.gnu.org/software/gdb/. Ac-
cessed: 2019-02-06.

[GKT+12] Elmer Garduno, Soila P. Kavulya, Jiaqi Tan, Rajeev Gandhi, and Priya Narasimhan.
Theia: Visual signatures for problem diagnosis in large hadoop clusters. In Presented
as part of the 26th Large Installation System Administration Conference (LISA 12),
pages 33–42, San Diego, CA, 2012. USENIX.

[GoR] GoReplay. https://goreplay.org.

[Gro14] Open Group. Service-oriented architecture ontology, version 2.0. Technical report,
April 2014.

[Had] Apache hadoop. http://hadoop.apache.org/. Accessed: 2019-02-06.

[Ins] java.lang.Instrument. https://docs.oracle.com/javase/8/docs/api/
java/lang/instrument/package-summary.html. Accessed: 2019-02-06.

[int] The Internet Protocol Stack. https://www.w3.org/People/Frystyk/
thesis/TcpIp.html. Accessed: 2019-02-06.

[Jav] Javassist. https://www.javassist.org/. Accessed: 2019-02-06.

[kaf] Kafka Protocol Guide. https://kafka.apache.org/protocol. Accessed:
2019-06-06.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558–565, July 1978.

[LGW+08] Xuezheng Liu, Zhenyu Guo, Xi Wang, Feibo Chen, Xiaochen Lian, Jian Tang, Ming
Wu, Mariëlle Kaashoek, and Zheng Zhang. D3s: Debugging deployed distributed
systems. In NSDI, 2008.

[LVD06] Thomas D. LaToza, Gina Venolia, and Robert DeLine. Maintaining mental models:
A study of developer work habits. In Proceedings - International Conference on
Software Engineering, pages 492–501, January 2006.

[Mic] Microservice Trade-Offs. https://martinfowler.com/articles/
microservice-trade-offs.html.

[Nie94] Henrik Frystyk Nielsen. The HTTP Protocol in the World Wide Web Library of
Common Code. Master’s thesis, Aalborg University, Denmark, August 1994.

[opea] Operating System Concepts. Wiley.

[Opeb] The OpenTracing Project. https://opentracing.io/. Accessed: 2019-02-06.

[Pro] Protocol buffers | google developers. https://developers.google.com/
protocol-buffers/. Accessed: 2019-06-29.

[Res18] Dimensional Research. Global microservices trends: A survey of de-
velopment professionals. Available at https://go.lightstep.com/
global-microservices-trends-report-2018.html, April 2018.

76

https://www.gnu.org/software/gdb/
https://goreplay.org
http://hadoop.apache.org/
https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/package-summary.html
https://www.w3.org/People/Frystyk/thesis/TcpIp.html
https://www.w3.org/People/Frystyk/thesis/TcpIp.html
https://www.javassist.org/
https://kafka.apache.org/protocol
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://opentracing.io/
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://go.lightstep.com/global-microservices-trends-report-2018.html
https://go.lightstep.com/global-microservices-trends-report-2018.html

REFERENCES

[SBB+10] Benjamin H. Sigelman, Luiz André Barroso, Mike Burrows, Pat Stephenson, Manoj
Plakal, Donald Beaver, Saul Jaspan, and Chandan Shanbhag. Dapper, a large-scale
distributed systems tracing infrastructure. Technical report, Google, Inc., 2010.

[XHF+10] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael Jordan. Experi-
ence mining google’s production console logs. In Proceedings of the 2010 Work-
shop on Managing Systems via Log Analysis and Machine Learning Techniques,
SLAML’10, pages 5–5, Berkeley, CA, USA, 2010. USENIX Association.

77

REFERENCES

78

Appendix A

Script for Post-Processing of Logs

This appendix contains the sed script used to perform the post-processing of the log files collected

during the record and replay phases of the executions analyzed in the case-study. The script

removes information that is always different in each execution such as memory addresses and

timestamps, but also logs that are irrelevant to the execution and pertain to cluster management or

other tasks.

1 sed -e ’1d’ \

2 -e ’s/[0-9][0-9]* \(\[\)/X \1/’ \

3 -e ’s/Thread-[0-9][0-9]*/Thread-X/g’ \

4 -e ’s/@[a-z0-9][a-z0-9]*/@XXXXXXXX/g’ \

5 -e ’s/[a-z0-9]\{8\}-[a-z0-9]\{4\}-[a-z0-9]\{4\}-[a-z0-9]\{4\}-[a-z0

-9]\{12\}(:[0-9]*)*/XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXX/g’ \

6 -e ’s/\[SLOT_[0-9][0-9]*\]/\[SLOT_X\]/’ \

7 -e ’/\[NIOServerCxn.Factory/d’ \

8 -e ’/\[SyncThread/d’ \

9 -e ’/\[SLOT_/d’ \

10 -e ’s/time [0-9][0-9]*/time X/g’ \

11 -e ’s/0x[a-z0-9]\{15\}/0xXXXXXXXXXXXXXXX/’ \

12 -e ’s/([a-z0-9]\.)*:[0-9]*/<old_address>/’ \

13 -e ’s/Topology_[^]*Topology_<topology_ID>/g’ \

14 -e ’/\[timer/d’ \

15 -e ’s/[0-9\.][0-9\.:]*:[0-9][0-9]*/<address>/g’ \

16 -e ’s/\/var\/folders\/[^]*/<tmp_dir>/g’ \

17 -e ’s/[a-z0-9]\{8\}-[a-z0-9]\{4\}-[a-z0-9]\{4\}-[a-z0-9]\{4\}-[a-z0-9]*/

XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXX/g’

79

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation and Objectives
	1.2 Dissertation Structure

	2 Background
	2.1 SOA and Microservices
	2.2 The Java Instrumentation API
	2.2.1 Byteman

	2.3 Protocol Buffers

	3 Literature Review
	3.1 Introduction
	3.2 General Approaches For Debugging Distributed Systems
	3.3 Distributed Tracing
	3.3.1 Dapper
	3.3.2 Conclusion

	3.4 Log Analysis
	3.4.1 Mining Console Logs
	3.4.2 Conclusion

	3.5 Visualization
	3.5.1 Theia
	3.5.2 Conclusion

	3.6 Record and Replay
	3.6.1 GoReplay
	3.6.2 D3S
	3.6.3 Friday
	3.6.4 Conclusion

	3.7 Conclusions

	4 Problem Statement
	4.1 Main Issues
	4.2 Objectives
	4.3 Methodology

	5 Approach
	5.1 Assumptions and Core Tenets
	5.2 Designing an Approach for Record and Replay
	5.3 Overview of the Approach
	5.4 Instrumenting Network Communication
	5.5 Instrumenting Random Number Generation

	6 A Prototype for Record and Replay
	6.1 Overview
	6.2 The Record Object
	6.2.1 Storing Records

	6.3 The Record Phase
	6.3.1 Generating Communication Records
	6.3.2 Generating RNG Records

	6.4 The Replay Phase
	6.4.1 Generating a Replay Script
	6.4.2 Replaying the Execution

	6.5 Usage

	7 Case Study
	7.1 Description of the Service
	7.2 Setup
	7.3 Methodology
	7.3.1 Measuring Execution Time
	7.3.2 Measuring Storage Space Usage
	7.3.3 Computing Replay Accuracy

	7.4 Results and Analysis
	7.4.1 Execution time
	7.4.2 Storage Space Usage
	7.4.3 Replay Accuracy

	7.5 Conclusions
	7.6 Validation Threats

	8 Conclusions
	8.1 Contributions
	8.2 Future Work

	References
	A Script for Post-Processing of Logs

