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Resumo

O cancro da mama é a principal causa de cancro nas mulheres em todo o mundo. Há vários
fatores associados a este cancro, como por exemplo primeira gravidez tardia, menopausa tardia,
consumo moderado de álcool, e genética. No entanto, como resultado da deteção mais precoce
e da melhoria dos tratamentos, a taxa de mortalidade tem vindo a decrescer, em certos países.
A ultrasonografia é uma técnica mais barata, acessível, e mais segura para deteção de cancro da
mama, quando comparado com a mamografia, já que a paciente não é exposta a radiação ionizante.
Deste modo, o uso de imagens ultrassom para o estudo, avaliação e desenvolvimento de diferentes
técnicas para segmentação de estruturas anatómicas e lesões da mama na mulher desempenha um
papel significativo.

Tendo isto presente, o desenvolvimento de um algoritmo para segmentação automatizada de
estruturas anatómicas, como a pele, a gordura subcutânea, a glândula mamária e a região torá-
cica, assim como lesões, será de extrema importância para empoderar as pacientes e melhorar a
comunicação entre estas e o médico especialista. Deste modo, esta dissertação investiga seis técni-
cas diferentes para segmentação de lesões - K-means clustering, Mean shift clustering, Watershed
segmentation, Region growing, Active contour model (Snakes) e Polar minimum path; e três para
segmentação de estruturas anatómicas - K-means clustering, Mean shift clustering e Watershed
segmentation, todas as três seguidas de um algoritmo de caminho mínimo de modo a conectar
uma margem da imagem à outra.

Para avaliar os resultados estes são comparados com anotações manualmente delineadas por
uma radiologista usando métricas Pixel-Area e de contorno. Os resultados indicam que os métodos
baseados em contornos e os métodos baseados em regiões tendem a ter um melhor desempenho
que os métodos baseados em clustering e que os métodos baseados em watershed, no que toca
à segmentação de lesões. Para mais, o método Active contour model (SD = 0.72, AD = 4.3) foi
aquele que melhor cumpriu a tarefa de segmentação de lesões. Por outro lado, os resultados reve-
lam que o K-means clustering (SD = 0.57, AD = 13.4) é o método testado que leva aos melhores,
no que toca à segmentação de estruturas anatómicas. Além disso, os resultados sugerem que este
método excede tanto o Watershed como o Mean shift para a segmentação da pele (SD = 0.61,
AD = 3.1), da glândula mamária (SD = 0.49, AD = 23.2) e da região torácica (SD = 0.71, AD =
13.1). O Watershed, no entanto, supera os outros dois métodos supracitados para segmentação da
gordura subcutânea (SD = 0.51, AD = 17.2).
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Abstract

Breast cancer is the leading cause of cancer in women worldwide. There are many risk factors
associated with breast cancer such as late first full-term pregnancy, late menopause, moderate
alcohol intake, and genetics. However, as a result of earlier detection and improved treatment,
the mortality rate has decreased in some countries. Ultrasound imaging is an affordable, easily
accessible and safer technique to detect breast cancer, compared to mammograms, since it does
not expose the patient to ionizing radiation. Therefore, the use ultrasound imaging for study,
evaluation and development of different techniques for anatomical landmark segmentation of the
different structures and lesions of the female breast can play a significant role.

Bearing this in mind, the development of an algorithm for automated segmentation of anatom-
ical structures, such as skin, subcutaneous fat, mammary gland, and thoracic region, as well as
lesions of the female breast using ultrasound imaging can be of great use to empower the patients
and improve the communication between them and the physician. This dissertation investigates the
use of six different methods for lesion segmentation - K-means clustering, Mean shift clustering,
Watershed segmentation, Region growing, Active contour model (Snakes) and Polar minimum
path; and three for anatomical structures segmentation - K-means clustering, Mean shift cluster-
ing and Watershed segmentation, all of them followed by a shortest path algorithm to connect one
margin to the other.

To assess the results, these are compared with manually delineated annotations by a radiologist
using Pixel-Area and Contour-wise metrics. The results indicate that contour-based and region-
based methods have a better performance than clustering-based and watershed-based methods for
lesion segmentation. Furthermore, Active contour model (SD = 0.72, AD = 4.3) was the most
successful of the methods tested for the task at hands. On the other hand, the results revealed
K-means clustering (SD = 0.57, AD = 13.4) to be the most fruitful of the methods tested for
anatomical structures segmentation. Additionally, the results suggest that this method exceeds
both Watershed and Mean shift at skin (SD = 0.61, AD = 3.1), mammary gland (SD = 0.49,
AD = 23.2) and thoracic region (SD = 0.71, AD = 13.1) segmentation. Watershed segmentation,
however, outperforms the other two at subcutaneous fat (SD = 0.51, AD = 17.2) segmentation.

iii



iv



Acknowledgements

Throughout the five years of this course I have received a great deal of support and assistance.
I would first like to thank my supervisor, Dr. Hélder Oliveira, for giving me the opportunity to

work at INESC TEC two years ago as an intern. I would also like to thank my co-supervisor, João
Teixeira, for developing my critical thinking throughout these two years and teaching me how to
attack engineering problems.

On top of that, I would like to thank radiologist Rute Santos from Escola Superior de Tecnolo-
gia da Saúde de Coimbra for manually delineating the ultrasound images used in this dissertation.

Next, I would like to thank my closest friends from university: Sérgio, Daniel, Paulo, Jorge,
Armando, André, Joaquim, Tiago, Diogo, Manel, Martins, Grilo, Nando, Jójó, Francisco and last,
but certainly not least, Ramalho to which I am very grateful to have shared moments of pain, and
feelings of joy and satisfaction during our battles as partners in class.

After that, I would like to express my gratitude to my hometown friends who have been with
me for many years and helped me through the hardest moment of my life. Teodoro, Simão, Fábio,
Miguel, Dinis, Tiago, Nuno, Janecas, Andrade, Francisco, Ânia, Catarina, Bea. Thank you.

Following, I would like to thank 5 special people with whom I was flatmates with. Camilo
Gutiérrez and Juan David Camacho, my two biggest influences throughout university. I am forever
thankful for every moment we shared and for everything I learned with the two of you. El que
piensa pierde is one of my favourite quotes and truly embodies your life philosophy. I would also
like to thank you for arousing in me the desire to learn to dance. I would also like to show my
gratitude to Raul, more than a flatmate you were my big brother in Porto. We shared incredible
moments together and I would never ask for a better flatmate. Bruno, thank you for mentoring and
sharing knowledge with me. I learned the fundamentals of programming with you by my side,
fundamentals that today serve me greatly. You are a unique person and along with Raul, you two
were my favourite flatmates. I would also like to thank my incredible friend Tabata for being kind,
understanding and showing me new perspectives. You are truthfully an amazing person.

Next, I wish to thank my godmother, Tuxa, for being my mother’s best friend and making
her laugh everyday. I want to extend my gratitude to Tio Carlos, to Marta and João for being my
borrowed cousins.

I would also like to express my sincerest gratitude to my godfather, Emídio, for always being
there for me and being my second father. Thank you for making Porto feel like home to me and
for being someone I look up to. I wish to extend this appreciation to my "Padrinha" Luísa who
always shows an incredible amount of energy and sense of humor and to the kids, Zé and Kiko,
who make me feel like an older brother.

I would also like to convey a special thank you to my family, my grandfather, Avô Américo
who represents bravery to me, my late grandmother avó Odette who represents who symbolizes
delicacy to me, my late grandfather Avô António who I never had the opportunity to meet but
with whom I share the name and, as my mother has told me many times, the personality, my
grandmother Avó Zé who is a force of nature and has always shown me what is the meaning of

v



vi

a powerful woman, my uncles Tio Zé and Tio Paulo, my aunts Tia Inês and Tia Sofia and Tia
Fernanda, my cousins Francisca, Patrícia, Manel, and Pedro who was a great influence in my
childhood and I am forever grateful for that. An enormous thank you.

To my loving girlfriend, Alexandra, I would like to address my gratitude for keeping my spirit
high during this dissertation, through all the setbacks with love and comprehension. I would also
like to express my appreciation for everything we have lived so far and for what I have learned
from you.

To my best friend, the only person I would die for, the person who has always led the way for
me, my brother, Duarte, I am very honored to have shared my life with you, to have learned from
you and with you. To see you grow as a person and mature as a professional, I am immensely
proud. I have always looked up to you. Thank you for always defending me and believing in me
and cheering me up.

To my late father, my biggest role model, a unique person whose intellectual can not be
matched. My goal has always been to be as good as you. You were gone too soon, I think this was
your way to give me a chance to match you. O arranjador, my hero, a person with an indomitable
force and willpower and a thirst for knowledge whilst being an incredibly kind person. You were
a visionary, always ahead of time. A humongous thank you.

Finally, to the person I dedicate this dissertation, the most important person in my life, my
mother. I have no words to describe my feelings for you. I love you with all my heart. You always
took care of me to the best of your possibilities, you showed me that hard work prevails over talent
and luck. And when our family needed it the most, you revealed a colossal strength inside you
that was unknown. You are my favourite person. I say it again, I love you!

António Mesquita dos Santos Marques Carreiro

This work was funded by the ERDF - European Regional Development Fund through the Norte
Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020
Partnership Agreement and through the Portuguese National Innovation Agency (ANI) as a part
of project BCCT.Plan–NORTE-01-0247-FEDER-01768 .



“Só se aprende a caminhar caminhando.”

Pai

vii



viii



Contents

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.5 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Literature review 5
2.1 Breast Anatomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Image Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Breast ultrasound segmentation 25
3.1 Dataset description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5 Acquisition window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6.1 Pipeline #1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.6.2 Pipeline #2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.6.3 Pipeline #3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.7 Breast ultrasound segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Conclusion and future work 67
4.1 Overview and contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A Appendix 69
A.1 Mean shift clustering (lesions) . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.2 Active Contour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
A.3 Mean shift clustering (anatomical structures) . . . . . . . . . . . . . . . . . . . . 97

References 101

ix



x CONTENTS



List of Figures

2.1 The anatomy of a breast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 B-mode Ultrasound acquisition and an example of such image . . . . . . . . . . 6
2.3 Anisotropic Diffusion Applied to Image . . . . . . . . . . . . . . . . . . . . . . 8
2.4 (k) interference based speckle filter and (l) interference based speckle filter fol-

lowed by anisotropic diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Simulated breast ultrasound image filtered by anisotropic diffusion-based approaches.

Top row: Outputs of evaluated filters. Bottom row: Edge maps obtained with
Canny’s detector. The squares contain the corresponding figure of merit results.
ADLG 5 anisotropic diffusion guided by Log–Gabor filters; CADF 5 conven-
tional anisotropic diffusion filtering; SRAD 5 speckle-reducing anisotropic diffu-
sion; TOAD 5 texture-oriented anisotropic diffusion; ISFAD 5 interference-based
speckle filtering followed by anisotropic diffusion . . . . . . . . . . . . . . . . . 9

2.6 Examples of Nonlocal Means Filters . . . . . . . . . . . . . . . . . . . . . . . . 10
2.7 De-noised arterial image using Multi-scale filter (the left is the original image and

the right is the de-noised image). . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.8 Hybrid algorithm combining guided filter with SRBF filter and a post-processing

technique that takes advantage of both bilateral and NLM filters . . . . . . . . . 11
2.9 Homomorphic filtering and Otsu segmentation of ultrasound cardiac duplex screen-

ing samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.10 Examples of Region Growing segmentation methods . . . . . . . . . . . . . . . 14
2.11 Examples of Level set segmentation methods . . . . . . . . . . . . . . . . . . . 15
2.12 (a) the original image; (b) the tumor region (white area) manually segmented by

the radiologist; (c) the tumor region using MAP-MFR segmentation framework. . 16
2.13 Examples of Watershed segmentation methods . . . . . . . . . . . . . . . . . . . 16
2.14 Structural graph of multilayer perceptron (MLP) neural network model . . . . . . 17
2.15 (A) Original BUS image (B) Pre-processed image (C) Segmented image (D) Re-

moval the adjacent regions of the segmented image (E) Overlap of contour in the
original image (F) Contour delimited by a radiologist . . . . . . . . . . . . . . . 18

2.16 Examples of Clustering segmentation methods . . . . . . . . . . . . . . . . . . . 19
2.17 Examples of Hybrid segmentation methods . . . . . . . . . . . . . . . . . . . . 19
2.18 Traditional closed shortest path approach vs closed shortest path in the original

coordinates, with different angular resolution . . . . . . . . . . . . . . . . . . . 20
2.19 Standard Hough Transform (SHT) parametric representation . . . . . . . . . . . 22
2.20 Circular Hough Transform (CHT) . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Pipeline #1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Pipeline #2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Pipeline #3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

xi



xii LIST OF FIGURES

3.4 Components of the calculation of the Hausdorff distance between the green line X
and the blue line Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Euclidean distance in R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6 Pre-processing methods used . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.7 Original ADLG and the result after performing an Opening operation . . . . . . 31
3.8 Hough Matrix with the 4 lines detected (blue crosses) . . . . . . . . . . . . . . . 31
3.9 ADLG pre-processing experiments . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.10 Original image and lesion’s and anatomical structures’ ground truths . . . . . . . 33
3.11 K-means variation with pre-processing (K = 4 and H-max = 20%) . . . . . . . . 36
3.12 K-means variation with H-max (Median 9x9 filter and K = 4) . . . . . . . . . . . 36
3.13 K-means variation with number of clusters (Median 9x9 filter and H-max=20%) . 37
3.14 Mean shift variation with pre-processing (Bandwidth = 0.1 and X ,Y weights = 1) 39
3.15 Mean shift variation with bandwidth (ADLG with 1000 iterations and X ,Y weights=

1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.16 Mean shift variation with X ,Y weights (ADLG with 1000 iterations and Bandwidth=

0.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.17 Watershed variation with pre-processing (H-min=5%) . . . . . . . . . . . . . . . 42
3.18 Watershed variation with number of clusters (Median 9x9 filter) . . . . . . . . . 43
3.19 Active contour variation with pre-processing (N = 200, SF = 0.2, CB =−0.2) . 46
3.20 Active contour variation with number of iterations N (ADLG with 500 iterations,

SF = 0.2, CB =−0.2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.21 Active contour variation with SmoothFactor (ADLG with 500 iterations, N = 200,

CB =−0.2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.22 Active contour variation with ContractionBias (ADLG with 500 iterations, N =

200, SF = 0.2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.23 Region growing variation with pre-processing (T hreshold = 10%) . . . . . . . . 50
3.24 Region growing variation with aggregation criterion threshold (ADLG with 200

iterations) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.25 Polar minimum path variation with pre-processing . . . . . . . . . . . . . . . . . 52
3.26 K-means variation with pre-processing (K = 6 and H-max = 20%) . . . . . . . . 56
3.27 K-means variation with H-max (ADLG with 50 iterations and K = 6) . . . . . . 57
3.28 K-means variation with number of clusters (ADLG with 50 iterations and H-max

= 20%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.29 Mean shift variation with pre-processing (Bandwidth = 0.1 and X ,Y weights =

0.125) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.30 Mean shift variation with X ,Y weights (ADLG with 500 iterations and Bandwidth=

0.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.31 Mean shift variation with bandwidth (ADLG with 500 iterations and X ,Y weights=

0.125) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.32 Watershed variation with pre-processing (H-min=0%) . . . . . . . . . . . . . . . 63
3.33 Watershed variation with H-min (Original image) . . . . . . . . . . . . . . . . . 64

A.1 Mean shift segmentation (lesions) - Validation metrics (average and standard de-
viation) for parameters choice using Sørensen–Dice coefficient (SD) for X,Y po-
sition weight = 0.0625 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A.2 Mean shift segmentation (lesions) - Validation metrics (average and standard devi-
ation) for parameters choice using Average Distance (AD) for X,Y position weight
= 0.0625 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



LIST OF FIGURES xiii

A.3 Mean shift segmentation (lesions) - Validation metrics (average and standard de-
viation) for parameters choice using Sørensen–Dice coefficient (SD) for X,Y po-
sition weight = 0.125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

A.4 Mean shift segmentation (lesions) - Validation metrics (average and standard devi-
ation) for parameters choice using Average Distance (AD) for X,Y position weight
= 0.125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

A.5 Mean shift segmentation (lesions) - Validation metrics (average and standard de-
viation) for parameters choice using Sørensen–Dice coefficient (SD) for X,Y po-
sition weight = 0.25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A.6 Mean shift segmentation (lesions) - Validation metrics (average and standard devi-
ation) for parameters choice using Average Distance (AD) for X,Y position weight
= 0.25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A.7 Mean shift segmentation (lesions) - Validation metrics (average and standard de-
viation) for parameters choice using Sørensen–Dice coefficient (SD) for X,Y po-
sition weight = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A.8 Mean shift segmentation (lesions) - Validation metrics (average and standard devi-
ation) for parameters choice using Average Distance (AD) for X,Y position weight
= 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A.9 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), Smooth-
Factor = 0, ContractionBias = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A.10 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor =
0, ContractionBias = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A.11 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), Smooth-
Factor = 0.01, ContractionBias = 0 . . . . . . . . . . . . . . . . . . . . . . . . . 73

A.12 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor =
0.01, ContractionBias = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A.13 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), Smooth-
Factor = 0.04, ContractionBias = 0 . . . . . . . . . . . . . . . . . . . . . . . . . 74

A.14 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor =
0.04, ContractionBias = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A.15 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), Smooth-
Factor = 0.1, ContractionBias = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A.16 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor =
0.1, ContractionBias = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

A.17 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), Smooth-
Factor = 0.2, ContractionBias = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 75

A.18 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor =
0.2, ContractionBias = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



xiv LIST OF FIGURES

A.19 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), Smooth-
Factor = 0.5, ContractionBias = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A.20 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor =
0.5, ContractionBias = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A.21 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), Smooth-
Factor = 0, ContractionBias = -0.01 . . . . . . . . . . . . . . . . . . . . . . . . 76

A.22 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor =
0, ContractionBias = -0.01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.23 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), Smooth-
Factor = 0.01, ContractionBias = -0.01 . . . . . . . . . . . . . . . . . . . . . . . 77

A.24 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor =
0.01, ContractionBias = -0.01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.25 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), Smooth-
Factor = 0.04, ContractionBias = -0.01 . . . . . . . . . . . . . . . . . . . . . . . 78

A.26 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor =
0.04, ContractionBias = -0.01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A.27 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), Smooth-
Factor = 0.1, ContractionBias = -0.01 . . . . . . . . . . . . . . . . . . . . . . . 78

A.28 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor =
0.1, ContractionBias = -0.01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.29 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), Smooth-
Factor = 0.2, ContractionBias = -0.01 . . . . . . . . . . . . . . . . . . . . . . . 79

A.30 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor =
0.2, ContractionBias = -0.01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.31 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), Smooth-
Factor = 0.5, ContractionBias = -0.01 . . . . . . . . . . . . . . . . . . . . . . . 80

A.32 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor =
0.5, ContractionBias = -0.01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

A.33 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), Smooth-
Factor = 0, ContractionBias = -0.04 . . . . . . . . . . . . . . . . . . . . . . . . 80

A.34 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor =
0, ContractionBias = -0.04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



LIST OF FIGURES xv

A.35 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), Smooth-
Factor = 0.01, ContractionBias = -0.04 . . . . . . . . . . . . . . . . . . . . . . . 81

A.36 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor =
0.01, ContractionBias = -0.04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.37 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), Smooth-
Factor = 0.04, ContractionBias = -0.04 . . . . . . . . . . . . . . . . . . . . . . . 82

A.38 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor =
0.04, ContractionBias = -0.04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A.39 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), Smooth-
Factor = 0.1, ContractionBias = -0.04 . . . . . . . . . . . . . . . . . . . . . . . 82

A.40 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor =
0.1, ContractionBias = -0.04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A.41 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), Smooth-
Factor = 0.2, ContractionBias = -0.04 . . . . . . . . . . . . . . . . . . . . . . . 83

A.42 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor =
0.2, ContractionBias = -0.04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A.43 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), Smooth-
Factor = 0.5, ContractionBias = -0.04 . . . . . . . . . . . . . . . . . . . . . . . 84

A.44 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor =
0.5, ContractionBias = -0.04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

A.45 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), Smooth-
Factor = 0, ContractionBias = -0.1 . . . . . . . . . . . . . . . . . . . . . . . . . 84

A.46 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor =
0, ContractionBias = -0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A.47 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), Smooth-
Factor = 0.01, ContractionBias = -0.1 . . . . . . . . . . . . . . . . . . . . . . . 85

A.48 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor =
0.01, ContractionBias = -0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A.49 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), Smooth-
Factor = 0.04, ContractionBias = -0.1 . . . . . . . . . . . . . . . . . . . . . . . 86

A.50 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor =
0.04, ContractionBias = -0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



xvi LIST OF FIGURES

A.51 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), Smooth-
Factor = 0.1, ContractionBias = -0.1 . . . . . . . . . . . . . . . . . . . . . . . . 86

A.52 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor =
0.1, ContractionBias = -0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.53 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), Smooth-
Factor = 0.2, ContractionBias = -0.1 . . . . . . . . . . . . . . . . . . . . . . . . 87

A.54 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor =
0.2, ContractionBias = -0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.55 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), Smooth-
Factor = 0.5, ContractionBias = -0.1 . . . . . . . . . . . . . . . . . . . . . . . . 88

A.56 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor =
0.5, ContractionBias = -0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.57 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), Smooth-
Factor = 0, ContractionBias = -0.2 . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.58 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor =
0, ContractionBias = -0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A.59 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), Smooth-
Factor = 0.01, ContractionBias = -0.2 . . . . . . . . . . . . . . . . . . . . . . . 89

A.60 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor =
0.01, ContractionBias = -0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A.61 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), Smooth-
Factor = 0.04, ContractionBias = -0.2 . . . . . . . . . . . . . . . . . . . . . . . 90

A.62 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor =
0.04, ContractionBias = -0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.63 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), Smooth-
Factor = 0.1, ContractionBias = -0.2 . . . . . . . . . . . . . . . . . . . . . . . . 90

A.64 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor =
0.1, ContractionBias = -0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.65 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), Smooth-
Factor = 0.2, ContractionBias = -0.2 . . . . . . . . . . . . . . . . . . . . . . . . 91

A.66 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor =
0.2, ContractionBias = -0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



LIST OF FIGURES xvii

A.67 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), Smooth-
Factor = 0.5, ContractionBias = -0.2 . . . . . . . . . . . . . . . . . . . . . . . . 92

A.68 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor =
0.5, ContractionBias = -0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.69 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), Smooth-
Factor = 0, ContractionBias = -0.5 . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.70 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor =
0, ContractionBias = -0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.71 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), Smooth-
Factor = 0.01, ContractionBias = -0.5 . . . . . . . . . . . . . . . . . . . . . . . 93

A.72 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor =
0.01, ContractionBias = -0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.73 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), Smooth-
Factor = 0.04, ContractionBias = -0.5 . . . . . . . . . . . . . . . . . . . . . . . 94

A.74 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor =
0.04, ContractionBias = -0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

A.75 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), Smooth-
Factor = 0.1, ContractionBias = -0.5 . . . . . . . . . . . . . . . . . . . . . . . . 94

A.76 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor =
0.1, ContractionBias = -0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A.77 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), Smooth-
Factor = 0.2, ContractionBias = -0.5 . . . . . . . . . . . . . . . . . . . . . . . . 95

A.78 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor =
0.2, ContractionBias = -0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A.79 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), Smooth-
Factor = 0.5, ContractionBias = -0.5 . . . . . . . . . . . . . . . . . . . . . . . . 96

A.80 Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor =
0.5, ContractionBias = -0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

A.81 Mean shift segmentation (anatomical structures) - Validation metrics (average and
standard deviation) for parameters choice using Sørensen–Dice coefficient (SD)
for X,Y position weight = 0.0625 . . . . . . . . . . . . . . . . . . . . . . . . . . 97

A.82 Mean shift segmentation (anatomical structures) - Validation metrics (average and
standard deviation) for parameters choice using Average Distance (AD) for X,Y
position weight = 0.0625 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97



xviii LIST OF FIGURES

A.83 Mean shift segmentation (anatomical structures) - Validation metrics (average and
standard deviation) for parameters choice using Sørensen–Dice coefficient (SD)
for X,Y position weight = 0.125 . . . . . . . . . . . . . . . . . . . . . . . . . . 98

A.84 Mean shift segmentation (anatomical structures) - Validation metrics (average and
standard deviation) for parameters choice using Average Distance (AD) for X,Y
position weight = 0.125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

A.85 Mean shift segmentation (anatomical structures) - Validation metrics (average and
standard deviation) for parameters choice using Sørensen–Dice coefficient (SD)
for X,Y position weight = 0.25 . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

A.86 Mean shift segmentation (anatomical structures) - Validation metrics (average and
standard deviation) for parameters choice using Average Distance (AD) for X,Y
position weight = 0.25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

A.87 Mean shift segmentation (anatomical structures) - Validation metrics (average and
standard deviation) for parameters choice using Sørensen–Dice coefficient (SD)
for X,Y position weight = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

A.88 Mean shift segmentation (anatomical structures) - Validation metrics (average and
standard deviation) for parameters choice using Average Distance (AD) for X,Y
position weight = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



List of Tables

2.1 Summary of de-noising filtering techniques . . . . . . . . . . . . . . . . . . . . 12
2.2 Summary of Breast ultrasound image segmentation techniques . . . . . . . . . . 21

3.1 K-means clustering (lesions) - Validation metrics (average and standard deviation)
for parameters choice using Sørensen–Dice coefficient (SD) . . . . . . . . . . . 34

3.2 K-means clustering (lesions) - Validation metrics (average and standard deviation)
for parameters choice using Average Distance (AD) . . . . . . . . . . . . . . . . 35

3.3 Mean shift clustering (lesions) - Best validation metrics combination (average and
standard deviation) for parameters choice using Sørensen–Dice coefficient (SD)
and Average Distance (AD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Mean shift clustering (lesions) - Worst validation metrics combination (average
and standard deviation) for parameters choice using Sørensen–Dice coefficient
(SD) and Average Distance (AD) . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Watershed segmentation (lesions) - Validation metrics (average and standard de-
viation) for parameters choice using Sørensen–Dice coefficient (SD) . . . . . . . 41

3.6 Watershed segmentation (lesions) - Validation metrics (average and standard de-
viation) for parameters choice using Average Distance (AD) . . . . . . . . . . . 41

3.7 Active contour model segmentation (lesions) - Best validation metrics combina-
tion (average and standard deviation) for parameters choice using Sørensen–Dice
coefficient (SD) and Average Distance (AD) . . . . . . . . . . . . . . . . . . . . 44

3.8 Active contour model segmentation (lesions) - Worst validation metrics combina-
tion (average and standard deviation) for parameters choice using Sørensen–Dice
coefficient (SD) and Average Distance (AD) . . . . . . . . . . . . . . . . . . . . 45

3.9 Region growing segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD) . . . . . . 49

3.10 Region growing segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD) . . . . . . . . . . 49

3.11 Polar Minimum Path (lesions) - Validation metrics (average and standard devia-
tion) for parameters choice using Sørensen–Dice coefficient (SD) . . . . . . . . . 52

3.12 Polar Minimum Path (lesions) - Validation metrics (average and standard devia-
tion) for parameters choice using Average Distance (AD) . . . . . . . . . . . . . 52

3.13 K-means clustering (anatomical structures) - Validation metrics (average and stan-
dard deviation) for parameters choice using Sørensen–Dice coefficient (SD) . . . 54

3.14 K-means clustering (anatomical structures) - Validation metrics (average and stan-
dard deviation) for parameters choice using Average Distance (AD) . . . . . . . 55

3.15 Mean shift clustering (anatomical structures) - Best validation metrics combina-
tion (average and standard deviation) for parameters choice using Sørensen–Dice
coefficient (SD) and Average Distance (AD) . . . . . . . . . . . . . . . . . . . . 59

xix



xx LIST OF TABLES

3.16 Mean shift clustering (anatomical structures) - Worst validation metrics combina-
tion (average and standard deviation) for parameters choice using Sørensen–Dice
coefficient (SD) and Average Distance (AD) . . . . . . . . . . . . . . . . . . . . 59

3.17 Watershed segmentation (anatomical structures) - Validation metrics (average and
standard deviation) for parameters choice using Sørensen–Dice coefficient (SD) . 62

3.18 Watershed segmentation (anatomical structures) - Validation metrics (average and
standard deviation) for parameters choice using Average Distance (AD) . . . . . 62

3.19 Pipeline #1 and Pipeline #2 (lesions) - Full dataset metrics results (average and
standard deviation) of the best parameter combination for each method using the
Sørensen–Dice coefficient (SD) and the Average distance (AD) . . . . . . . . . . 64

3.20 Pipeline #3 (anatomical structures) - Full dataset metrics results (average and
standard deviation) of the best parameter combination for each method using the
Sørensen–Dice coefficient (SD) and the Average distance (AD) . . . . . . . . . . 65



Abbreviations and Symbols

AD Average Distance
AMED Average MinimumEuclidean Distance
AOM Area Overlap Measure
CHT Circular Hough Transform
CM Combined Measure
GT Ground Truth
H-max H-maxima Transform
H-min H-minima Transform
HAUSD Hausdorff distance
INESC TEC Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência
SD Sørensen–Dice coefficient
SHT Standard Hough Transform
STD Standard Deviation
VCMI Visual Computing and Machine Intelligence

xxi





Chapter 1

Introduction

1.1 Context

Breast cancer is the leading cause of cancer in women worldwide. According to the World Health

Organization, more than 600,000 women died from this type of cancer in 2018 alone and the

frequency of detection is increasing globally [68]. This cancer is caused by the malignant prolif-

eration of epithelial cells lining the ducts or lobules of the breasts. There are many risk factors

associated with breast cancer such as late first full-term pregnancy, late menopause, moderate al-

cohol intake, and genetics. However, as a result of earlier detection and improved treatment, the

mortality rate has decreased in some countries [40].

One metric for breast cancer diagnosis is the 5-year survival rate. This metric tells us the

percentage of people that are still alive 5 years after being diagnosed with cancer. If the cancer is

only in the breast then there is a 99% 5-year survival rate. 62% of the diagnostics show the cancer

at this stage. However, if it has spread to the regional lymph nodes then this number decreases to

85%. Furthermore, if the cancer has spread to a more distant part of the body then the survival rate

is 27% [10]. For this reason, early diagnosis increases the chance of survival and of a successful

treatment.

Ultrasound, contrary to mammograms, can be very useful when trying to distinguish between

fluid-filled cysts, which are benign, and solid masses, which can constitute cancer. This imaging

technique is not only affordable but also more easily accessible and safer since it does not expose

the patient to radiation [3].

Accordingly it is of utmost importance to use ultrasound imaging for study, evaluation and

development of different techniques for anatomical landmark segmentation of the different struc-

tures of the female breast such as skin, fat, glandular tissue and thoracic region but also lesions in

those tissues.

1



2 Introduction

1.2 Motivation

Even though the detection of cancer has been largely studied, the decision of which strategy to

take concerning oncoplastic surgery still relies almost exclusively on the surgeon’s perception of

post surgical aesthetic result, which sometimes leads to unsatisfactory outcomes.

In order to empower the patients on the joint decision process there needs to exist a better

communication between the parts. This can be achieved by developing medical grade 3D models

of the breast and better explaining the surgical options and their results.

So as to obtain such models, some effort has been made concerning multi-modality radiologic

imaging combination. This line of research is yet to mature. In turn, the modality alignment

requires accurate landmarks to be produced. 2D Ultrasound imaging has not been sufficiently

studied for multimodal registration due to the image characteristics and thus, landmark segmenta-

tion is extremely important.

1.3 Goals

This dissertation aims at developing an algorithm for automated segmentation of the several

anatomical structures as well as lesions of the female breast using ultrasound imaging.

The task can be subdivided in three major tasks:

1. Study and evaluation of the existing techniques for segmentation of anatomical structures

such skin, fat and glandular tissue and of lesions

2. Development of ultrasound segmentation methods for acquiring landmarks

3. Evaluation of the developed methods with manual annotations and comparison of results

with the current algorithm alternatives

1.4 Contributions

This dissertation presents the following contributions:

• An experimental methodology for lesion segmentation in ultrasound images;

• An experimental methodology for anatomical structures segmentation, more specifically

skin, subcutaneous fat, mammary gland and thoracic region in ultrasound images;

• A model for lesion segmentation after previous detection, in ultrasound images;

• A model for skin, subcutaneous fat, mammary gland and thoracic region detection and seg-

mentation, in ultrasound images;



1.5 Structure 3

1.5 Structure

Apart from Chapter 1 there are 3 other chapters in this dissertation:

• Chapter 2 shows the medical background of this dissertation as well as the technical state of

the art and related work. This chapter gives the reader an overview of the current techniques

for pre-processing and segmentation of breast ultrasound images;

• Chapter 3 details the different pipelines used for segmentation of both anatomical structures

and lesions. This chapter also details the results and the reasoning behind them;

• Chapter 4 summarizes the dissertation and offers possible future additions to further develop

the work presented
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Chapter 2

Literature review

In this chapter the reader is enlightened about the structures that constitute the breast. After that

a brief overview over the acquisition process is done showing how the ultrasound works and how

each structure appears in a B-mode ultrasound image. A literature review over the recent past

work on pre-processing and segmentation is also done.

2.1 Breast Anatomy

The breasts are organs located on the anterior chest wall. The female breast is more developed

than the male breast since its development is stimulated by the estrogens production during the

monthly female sexual cycle. The combination with the growth of the female’s mammary glands

and the deposition of fat gives the breasts mass [31].

This section makes a brief review of the anatomy of several breast structures [27].

Figure 2.1: The anatomy of a breast

The constituting parts of the breast beneath the skin are the glandular tissue, fibrous tissue

which connects its lobes and fat tissue in the intervals between the lobes. The fat tissue usually

exists in considerable abundance, and determines the form and size of the gland. Beneath this
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structures is the Pectoralis major which is a "thick, fan-shaped muscle, situated at the upper and

forepart of the chest" [26]. Figure 2.1 shows a breast and its main structures.

2.2 Image Acquisition

As stated in [62], ultrasound imaging is an affordable, non-invasive technology that has been used

in clinical practice for several decades. Moreover, it is obtained in real time making it the method

of choice frequently. Ultrasonic waves are generated and detected by a piezoelectric crystal which

deforms under the influence of an electric field and vice versa. This crystal is embedded in a

transducer that serves both as a transmitter and as a detector. There are 3 ways of acquiring data:

A-mode, M-mode and B-mode. This dissertation refers only to B-mode.

B-mode generates 2D images by translating acquisitions and B stands for brightness. This is il-

lustrated in Figure 2.2a. This technique highlights strongly reflecting structures while suppressing

the weakly reflecting ones. See Figure 2.2b.

(a) B-mode image acquisition can be done
by translating the transducer [62].

(b) B-mode Ultrasound image of a breast
structure from [28].

Figure 2.2: B-mode Ultrasound acquisition and an example of such image

The echo pattern can be subdivided into 5 categories, according to [46]:

• Anechoic - Without internal echoes

• Hyperechoic - Increased echogenicity relative to fat or equal to fibroglandular tissue

• Complex - Complex mass contains both anechoic (cystic) and echogenic (solid) compo-

nents

• Hypoechoic - Defined relative to fat; hypoechoic masses are characterized by low-level

echoes throughout

• Isoechoic - Same echogenicity as fat.

Therefore, both skin and mammary gland will appear as Hyperechoic structures whilst subcu-

taneous tissue and pectoral muscle will be more Hypoechoic. Furthermore, fluid within cysts are
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generally Anechoic and appear black and solid masses are more echogenic (or Hyperechoic) than

fat. For this reason, ultrasonography is specially useful for distinguishing between benign (cysts)

and malign (masses) lesions.

2.3 Pre-processing

A serious concern for processing medical images is the presence of speckle noise. Speckle is

a random granular texture, that makes the anatomy in ultrasound images unclear and harder to

see. This unwanted property of the images is caused by interference of the ultrasound echoes

by reflectors spaced closer together than the machine’s resolution limits as explained in [63].

This problem could be reduced using higher frequencies, although it would limit the depth of the

ultrasound image. Random noise can not be predicted and for this reason it is the hardest type of

noise to get rid of.

The speckle reduction in ultrasound images is a challenging task although much work has been

done over the last years to overcome this obstacle.

A number of de-noising methods for medical ultrasound images have been proposed and can

be divided into 5 categories: Adaptive Filters, Anisotropic Diffusion Filters, Non-local means
Filters, Multi-scale Filters and Hybrid Filters which are combinations of the other 4 types of

filters. Below is the description of each one of them along with some important papers about the

subject.

Adaptive Filters have low complexity and are the simplest type of speckle noise removal fil-

ters. Median filters run through each image pixel and replace it with the median of the neighbour-

ing pixels [35]. Bilateral filtering first proposed by [64] and more recently [6] smoothes images by

combining the intensity level of nearby image values with a weighted average depending on both

geometric closeness and photometric similarity in what is called speckle reducing bilateral filter

(SRBF).

An efficient technique for speckle noise removal is Anisotropic Diffusion (SRAD). This

method was originally proposed by [51] to simultaneously remove noise and preserve edges by

choosing the conduction coefficient as a function. The maxim of this method is to smooth within

the region instead of smoothing across the edges.

A general expression for Anisotropic Diffusion is detailed in [63]. The derivations and equa-

tions below are cited and summarized from there:

I(x,0) = I0
∂ l
∂ t

= div(F)+β (I0− I) (2.1)

where I is the input image, I0 the initial image, F the diffusion flux and β is a data attachment

coefficient.

If β = 0, then the non linear probability density function with F = c(|∆I|)× I is given by:
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C(x) =
1

1+ x
k

and C(x) = exp(
1

1+ x
k
) (2.2)

and the functions for the diffusion coefficient:

C(‖ ∇I ‖ ) = e−(
‖ ∇I ‖

K
)2 and C(‖ ∇I ‖ ) = 1

1+(‖∇I‖
K )2

(2.3)

∆ is the gradient operator, div is the divergence operator and ‖ denotes the magnitude.

Below is Figure 2.3 depicting the Anisotropic Diffusion method.

Figure 2.3: Anisotropic Diffusion Applied to Image - [51].

This method has been used by [9] in an attempt to segment the breast’s mammary gland. How-

ever, several variants of this algorithm have been made since then with significant improvements.

In 2012, [11] proposed an edge-preserving speckle removal method based on interference

speckle filtering followed by anisotropic diffusion.

The filter was named ISFAD and its goal is to minimize oscillations in the values of noise

and preserve the local intensity information. The first part of proposed filter, interference-based

speckle filter (ISF), takes into account what causes the speckle noise and preserves the high inten-

sity pixels which represent constructive interference while suppressing low intensity pixels which

constitute destructive interference. This process can be divided into three steps:

First, a median filter is applied in order to smooth the image using a circular window to avoid

"blocking" artifacts which could sprout from the use of a square window.

After this, the next step is to suppress the gray values caused by destructive interferences by

selecting the maximum value between the median filtered image from the previous step and the

speckled image.

Lastly, a small-windowed median filter is applied to eliminate the remaining extreme single

pixels from the resulting image of step 2. In the end of this 3 steps, Anisotropic Diffusion is

applied. Figure 2.4 represents the result of both ISF and ISFAD. The author presents an accuracy

greater than 90% for structures with well-defined borders. This demonstrates the ability to segment

structures and so reduce the depedence of the segmentation algorithms on their parameter set.



2.3 Pre-processing 9

Figure 2.4: (k) interference based speckle filter and (l) interference based speckle filter followed
by anisotropic diffusion - [11].

This method is cited by several other papers including [23] which takes into consideration the

fact that different tissues, and more specifically breast tissues, have distinct textures. Hence, the

authors propose an anisotropic diffusion guided by Log–Gabor filters (ADLG) where the conduc-

tion coefficient of the anisotropic diffusion filter is computed using texture responses instead of

the intensity values. The paper claims that the selection of the K parameter is critical and should

be chosen according to both noise and local contrast using Log-Gabor filters.

The results for this approach are compared with 4 other methods including ISFAD and SRAD

using 2 validity metrics: Pratt’s figure of merit and mean radial distance. The indices should

tend toward 1 and 0, respectively, to indicate adequate edge preservation. ADLG shows the best

performance indicating in the first metric a median value of 0.83 (ISFAD scores 0.59 and SRAD

0.39) and 4.19 in the second (ISFAD scores 5.88 and SRAD 6.39). The visual results for all the 5

approaches can be seen in Figure 2.5.

Figure 2.5: Simulated breast ultrasound image filtered by anisotropic diffusion-based approaches.
Top row: Outputs of evaluated filters. Bottom row: Edge maps obtained with Canny’s detec-
tor. The squares contain the corresponding figure of merit results. ADLG 5 anisotropic diffu-
sion guided by Log–Gabor filters; CADF 5 conventional anisotropic diffusion filtering; SRAD 5
speckle-reducing anisotropic diffusion; TOAD 5 texture-oriented anisotropic diffusion; ISFAD 5
interference-based speckle filtering followed by anisotropic diffusion - [23].
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Another approach to speckle noise reduction are the Non-local Means Filters. This type of

filters are characterized by having a good performance in speckle reduction despite the fact that

present high algorithm complexity.

One algorithm of this type is the Optimized Bayesian Non Local Means filter (OBNLM) [16].

This algorithm uses a Bayesian framework to adapt the Non Local (NL) Means filter for Ultra-

sound images by introducing the Pearson distance as a relevant measure for patch comparison.

Results for approach can be seen in Figure 2.6a.

Another author [30] proposes a modified NL-means filter (MNL) using maximum likelihood

estimation as the first step. This algorithm states that because NL-means algorithm is normalized

for Gaussian noise reduction then it does not properly remove the Rayleigh distributed speckle

present in the ultrasonic images.

The two steps of the MNL method are then the computation of the maximum likelihood esti-

mation to obtain the initial noise-free intensity and then use a NL-means algorithm to restore the

details. Figure 2.6b depicts this algorithm.

(a) Results obtained with OBNLM, SRAD and another
filter SBF - [16]

(b) Comparison of MNL filter with original image and
NL filter - [30].

Figure 2.6: Examples of Nonlocal Means Filters

The fourth category of de-noising methods for medical ultrasound images are the Multi-scale
Filters which are obtained by applying a single scale method on sub-images obtained with the

Laplacian pyramid [2] or wavelet decomposition [1]. [4] suggests a linear Gaussian filtering ap-

plied to sub-images obtained from a wavelet decomposition of the vertical and diagonal details.

More recently, [72] advances a speckle reduction of ultrasound images based on the wavelet

shrinkage algorithm and guided filtering and can be divided into 3 steps.

The first step consists on an improved wavelet function based on the universal threshold value

function in order to guarantee a balance between speckle suppresion and feature preservation.

The second step makes use of statistical models of speckle noise and noise-free signal in

the wavelet domain in order to obtain a new shrinkage algorithm from a Bayesian maximum a

posteriori estimation.

The third step uses a guided filter to suppress the speckle noise in the low frequency sub-band.

Figure 2.7 exemplifies the result of this method.
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Figure 2.7: De-noised arterial image of the method proposed in [72] (the left is the original image
and the right is the de-noised image).

As stated before methods from different categories can be combined to create what can be

called Hybrid Filters.

One example of this is a recent paper [59] that suggests a hybrid algorithm consisting of three

stages: in the first stage, local statistics in the form of guided filter is used. Then, in the second

stage, the speckle noise is further reduce with an improved SRBF filter.

Finally, in the third stage, diffused edges are reconstructed using a joint post-processing tech-

nique that takes advantage of both bilateral and NLM filters for a more efficient attenuation of

speckle noise. Figure 2.8 illustrates this algorithm.

Figure 2.8: Hybrid algorithm combining guided filter with SRBF filter and a post-processing
technique that takes advantage of both bilateral and NLM filters by [59]
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Below is Table 2.1 summarizing the different speckle reduction filters described in this section.

Table 2.1: Summary of de-noising filtering techniques

Method References Advantages Disadvantages

Adaptive Filters
[35]
[64]
[6]

Low complexity
Non-satisfatory
de-noised results

Anisotropic Diffusion
Filters

[51]
[63]
[9]
[11]
[23]

Good speckle noise suppression
Might result in
an over-smooth image

Nonlocal means
Filters

[16]
[30]

Good speckle noise
removing effect

Very high algorithm
complexity

Multi-scale Filters

[2]
[1]
[4]
[72]

time-frequency analysis
and multi-scale analysis

Computationaly intensive

Hybrid Filters [59]
Higher performance
and accuracy

Depends on the
combination
of several techniques
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2.4 Segmentation

Segmentation, in computer vision, is the process of separating an image into several segments.

Over the past 20 years, numerous techniques have been proposed for ultrasound segmentation.

These techniques can be essentially subdivided into 7 categories: Histogram based methods,

Region growing based methods, Model based methods, Watershed based methods, Neural
network based methods, Clustering based methods and Hybrid methods.

The first type of segmentation techniques are the Histogram based ones. One disadvantage of

Histogram based segmentation is that it can not be directly used to segment multimodal images.

A famous algorithm that belongs to this category is the Otsu’s method for image thresholding

which separates the image into 2 classes (foreground and background) by calculating the optimum

threshold value that minimizes the intra-class variance and maximizes the inter-class variance [50].

The use of this method along with an homomorphic filter has also been used by [18] to segment

ultrasound images as seen in Figure 2.9.

There are other algorithms worth mentioning such as [34] in which a median filter is applied

to the image and then this image is multiplied with a Gaussian constraint function. After that, the

method uses gray level thresholding to obtain the probable margins of the lesion on which a utility

function is be applied and maximized.

Figure 2.9: Homomorphic filtering and Otsu segmentation of ultrasound cardiac duplex screening
samples [18].

Another category of methods used for ultrasound segmentation are the Region Growing based
methods. The main goal of this type of technique is to partition an image into several regions

based on the similarity of pixel intensity values. This approach has been used for segmentation by

different authors but because of its sensivity to noise, it can not guarantee an accurate boundary.

One author [45] suggests filtering and enhancing the contrast of the ultrasound image to em-

phasize tumor regions. He then uses a mathematical formulation of a set of empirical rules used

by radiologists that is often called the Stavros Criteria to automatically find a seed point which lies

in the expected lesion region. This seed point is then expanded to find an initial boundary lesion

region. This process stops as boundary points are found on the directional gradient of the image.

The process is presented in Figure 2.10a.
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Authors of [52] take a different approach where the seed point is automatically selected from

the abnormal region based on textural features such as co-occurrence features and run length

features. This method controls the region growing process as well by similarly calculating a

threshold value as depicted in Figure 2.10b.

A third author [55] suggests another alternative for segmenting ultrasound images in which

the input image is initially pre-processed using a SRAD filter and then iteratively binarised to

automatically find a seed point. A mathematical formulation formulation is used to select the

containing region of the target seed if the number of dark regions present in the binary image is

greater than one. Results for this method are illustrated in Figure 2.10c.

(a) [45] - (a) Original image. (b) Contrast-enhanced ver-
sion. (c) Detected boundary points. (d) Output of deformable
model.

(b) Various stages of [52] algorithm for liver tumor image (c) Results of two cases: (a) and (c)
are [56]’s method results and (b) and
(d) are Madabhushi’s method results

Figure 2.10: Examples of Region Growing segmentation methods

In Model based segmentation, a model is created and repeatedly applied to obtain a certain

result. There are 3 commonly used methods for this type of segmentation: active contours, level

sets and Markov random fields.

Active contour models were first proposed by [42] suggest a so called snake which is a de-

formable spline influenced by constraint and image push and pull forces to segment the desired

regions whilst minimizing the energy of the contour. This method is particularly useful in noisy

images.

A decade later, [71] proposed an improvement to the method presented above to solve the

problems associated with initialization and poor convergence to boundary concavities by suggest-

ing a new external force called gradient vector flow (GVF), and is computed as a diffusion of the

gradient vectors of a gray-level or binary edge map derived from the image.
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One example of usage is the case of researchers [41] which used the active contour model

to segment tumors in Breast ultrasound images (BUS) as seen in Figure 2.11a and differentiated

benign and malignant masses afterwards and [53] who applied active contours in integration with

a direction score also to segment BUS images.

Level-set methods (LSM) are another framework that uses level sets for analysis of surfaces

and shapes.

A group of researchers [54] designed a partial differential equation based geometric model

(flow) that takes the classic Rayleigh probability distribution to model the gray levels present in

ultrasound images and takes it into account to derive the flow while also taking into account the

smoothness constraints. A level set formulation is then derived and the minimum value of the

model is the point of minimum energy which is then used to segment the image as depicted in

Figure 2.11b.

In [38] a level set based method is applied to find the final shape of the tumor after pre-

processing the input image with an average and a low-pass filter. Level set methods have the

downside of requiring correct initialisation and accurate tuning of the deformation parameter.

These methods are also slow to achieve the local minima.

(a) (a) Original ROI and (b) Balloon Snake - [41] (b) Maximum likelihood algorithm applied to a syn-
thetic image effected by Rayleigh noise - [54].

Figure 2.11: Examples of Level set segmentation methods

We also have the Markov Random Field (MRF). This technique uses a Bayesian labelling to

segment images. The model takes the spatial relationship between labels to model the intensity

inhomogeneity.

A famous scientific work about this was written by [43]. This paper presents a systematic way

to MRF modelling summarized in 5 steps.

To start, the problem is reformulated as a labeling problem in which each label configuration

represents a solution. The problem is then, again, reformulated as a Bayesian labeling problem in

which the optimal solution is defined as the MAP (maximum a posteriori) label configurations.

After that a Gibbs distribution is used to characterize the prior distribution. The fourth step is to

calculate the likelihood density of the data and, as the last step, use the Bayesian rule to derive the

posterior distribution of label configurations.

A paper [8] suggests the use of an adaptive region segmentation algorithm for noisy images

within a Bayesian framework and uses a MRF to model the region process due to its restriction to
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local interaction.

Furthermore, [69] uses a probability model-based method in breast ultrasound images. Using

the combination of spatial knowledge with frequency domain constraints under a MAP with MRF

(MAP-MRF) segmentation frameworks. This method is illustrated in Figure 2.12.

Figure 2.12: (a) the original image; (b) the tumor region (white area) manually segmented by the
radiologist; (c) the tumor region produced by [69].

In Watershed segmentation, the image operates like a topographic map in which the intensity

level of each pixel represents its height and where valleys or basins represent adjacent regions

separated by dams. The biggest drawback of this technique is over-segmentation.

To solve this issue [37] proposed a marker controlled watershed segmentation in which mark-

ers are pre-defined and positioned within the most wanted areas to be segmented using image

textures to select the markers.

Author [25] took another approach by multiplying the image by a constraint Gaussian function

to calculate the markers.

An alternative way to handle over-segmenation is called cell competition in which basins gen-

erated by two passes of watershed transformation are merged and split into prominent segments.

A cell based grouping process is then used to find the best closed subsets of edges using prominent

component tessellation. Authors of [14] use this approach.

Examples of Watershed segmentation are illustrated in Figure 2.13.

(a) [37] - On the left the original ROI
and on the right the generated bound-
aries.

(b) [25] - On the left the original ROI
and on the right the generated bound-
aries.

(c) [14] - On the left the original ROI
and on the right the generated bound-
aries.

Figure 2.13: Examples of Watershed segmentation methods
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Neural network based segmentation methods turn segmentation into a decision problem

based on a set of features, resembling a human brain, and can be used in a supervised or unsuper-

vised way.

A type of unsupervised neural network is called Hopfield in which the image segmentation

problem is theoretically formulated as a clustering problem based on global distribution of gray

level values as stated by [15].

Another type of neural network is called MultiLayer Perceptron (MLP) where one or more

layers are hidden and have the fuction of artibtrating between the input and output of the neu-

ral network [36]. Figure 2.14 shows the structural graph of multilayer perceptron (MLP) neural

network model.

Figure 2.14: Structural graph of multilayer perceptron (MLP) neural network model [36].

One more type of unsupervised technique for neural networks are the Self Organizing Maps

(SOM). According to [47] in a SOM network only the input is supplied. The solution output is

the convergence of the algorithm adaptation to parameters for a given data set. This process is

illustrated in the sequence of images of Figure 2.15.

Pulse Coupled Neural Network (PCNN) are yet another type of neural networks with fixed

structure that are learning free and invariant to geometric transformations. They have one to one

association between image pixels and network neurons. The image is analyzed by looking multiple

times at different coupled pixels as stated by [33]. Performance of this type of neural networks are

heavily dependent on the tuning of its parameters. One author, [17] suggests automatic parameters

determination based on the analysis of neuron firing time.

By grouping a set of pixels in a way that objects in the same group are more similar to each

other than those in other groups we perform a process called clustering. Clustering based ap-

proaches are known to achieve good results in images which contain well separable objects.

According to [61] clustering can be separated into 2 categories: hard clustering and soft clus-

tering. The former means that a point either fully belongs to a cluster or not and the latter attributes
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Figure 2.15: (A) Original BUS image (B) Pre-processed image (C) Segmented image (D) Removal
the adjacent regions of the segmented image (E) Overlap of contour in the original image (F)
Contour delimited by a radiologist - [47].

a probability for a point to be in one of the assigned clusters. Because of the presence of artifacts,

hard clustering is not suitable for ultrasound images. Soft clustering can also be called fuzzy

clustering.

A widely known algorithm of this type is Fuzzy C-means Clustering (FCM) which was first

developed by [21] and later improved by [7] and has been used in different forms by different

authors on breast ultrasound images. This algorithm can be subdivided into a few steps: first

we start by selecting an initial fuzzy pseudo-partition and then repeat the process until the the

algorithm converges and the centroid of each fuzzy partition does not change.

An extension of this method has proposed by [32] in which the concept of information gain has

been added. To reduce FCM’s sensitivity to noise fuzzy membership values and cluster centroids

are updated based on information gain producing a more homogeneous clustering.

In recent years a new wave of thought called Neutrosophic Logic (NLP) has been introduced.

Neutrosophic relates to a general form of logic where each proposition has separate values for

truth, falsehood, and indeterminacy deals with how one affects another in decision making.

In [58] a method called neutrosophic L-mean (NLM) clustering is presented, which combines

neutrosophy with FCM and can be seen in Figure 2.16a.

Another clustering method known as Neutrosophic C-means clustering (NCM) has been put

forward by [29] and also integrates both NLP and FCM to better deal with uncertainty in image

segmentation. This algorithm’s results are illustrated in Figure 2.16b.
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(a) [32] - On the left the original ROI and on the right
the generated boundaries.

(b) [58] - On the left the original ROI and on the right
the generated boundaries.

Figure 2.16: Examples of Clustering segmentation methods

Sometimes, individual approaches don’t give the expected results. Therefore, some researchers

opt for combining methods, with what are called Hybrid methods, to obtain a better way to seg-

ment the image.

One example of this is [57] in which the authors propose a technique that combines mulitple-

domian features, more specifically, intensity and texture with an artificial neural network (ANN) to

detect the lesion after automatically locating the region of interest (ROI). This algorithm’s results

can be seen in Figure 2.17a.

Another example is that of [70] who defines a cost function in terms of tumor’s boundary

and region information in both frequency and space domains. The authors suggest a new edge

vector invariant to contrast and brightness to build the frequency constraint. The spatial domain is

then constrained by modeling the tumor’s pose position and intensity distribution. This method’s

results are illustrated in Figure 2.17b.

(a) [57] - (a)–(b) the original images with tumor regions
manually delineated by the radiologist; (c)–(d) the tu-
mor regions produced by the proposed method.

(b) [70] - (a) is the original ROI; (b) is the automatic
segmentation result; (c) is the manually segmented re-
sult.

Figure 2.17: Examples of Hybrid segmentation methods
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Finally, the Shortest path algorithms define a closed contour enclosing a previously detected

seed.

Usually the closed contour computation is addressed by transforming the image into polar

coordinates, where the closed contour is transformed in an open contour between two opposite

margins [73].

However, some authors [12][49][13] have proposed a way to compute the closed contour in

the original coordinates by addressing the main difficulty in operating in the original coordinates.

After defining a directed acyclic graph, and since small paths collapsing in the seed point are

naturally favored, these authors modulate the cost of the edges to counterbalance that bias.

Results from both approaches are illustrated below in Figure 2.18.

Figure 2.18: Traditional vs proposed closed shortest path algorithm in [13] with different angular
resolution
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Below is Table 2.2 summarizing the different segmentation techniques laid out in this section.

Table 2.2: Summary of Breast ultrasound image segmentation techniques

Method References Advantages Disadvantages

Histogram based
[50]
[34]
[18]

Easy to implement
Bad performance in
multimodal histograms

Region Growing based
[45]
[52]
[56]

Easy to implement.
Variety of stop criteria
can be selected.

Susceptible to noise
Starting point required

Model based

[42]
[71]
[41]
[53]
[54]
[38]
[43]
[8]
[69]

Self adapting approach.

Easy stalling in
local minima states.
Complex and time
consuming.

Watershed based
[37]
[25]
[14]

Guarantees closed boundaries. Over-segmentation.

Neural Network based

[15]
[36]
[47]
[33]
[17]

Different characteristics
can be associated.

Outcome depends on
training data set’s
features.

Clustering based

[21]
[7]
[32]
[58]
[29]

Relatively simple.
Advisable for well
separable clusters.

Outcome depends on
initialisation.
Susceptible to noise

Hybrid methods
[57]
[70]

More robust due to use
of spatial and frequency
domain features.

Integration of multiple
features.

Closed Shortest Path methods

[73]
[12]
[49]
[13]

Reliable results. Computational cost.
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2.5 Feature extraction

The Standard Hough Transform as it is universally used today was invented by [20] and uses

the parametric representation of a line:

rho = x∗ cos(theta)+ y∗ sin(theta)

In this formulation rho is the distance from the origin to the line along a vector perpendicular to the

line and theta the angle, in degrees clockwise with range −90° 6 θ 6 90° , of the perpendicular

projection from the origin to the line, as illustrated in Figure 2.19. Peak values in the SHT represent

potential lines in the input image.

Figure 2.19: Standard Hough Transform (SHT) parametric representation

The Circular Hough Transform has three essencial steps:

1. Accumulator Array Computation - Candidate foreground pixels of high gradient vote

in pattern around them to form a full circle with fixed radius and cast those votes in the

accumulator array. Figure 2.20a shows an example of a candidate pixel lying on an actual

circle (solid circle) and the classical CHT voting pattern (dashed circles) for the candidate

pixel.

2. Center Estimation - The circle centers are estimated by detect5ing the peaks in the accu-

mulator array corresponding to the circles’ centers. Figure 2.20b shows an example of the

candidate pixels (solid dots) lying on an actual circle (solid circle), and their voting patterns

(dashed circles) which coincide at the center of the actual circle.

3. Radius Estimation - If more than one radius uses the same accumulator array, then the radii

of the detected circles has to be estimated.



2.6 Summary 23

(a) (b)

Figure 2.20: Circular Hough Transform (CHT)

2.6 Summary

This chapter informs the reader about the anatomy of the breast more specifically its constituting

structures. This chapter also makes a brief overview of the acquisition process and how each

structure appears in a B-mode ultrasound image. Furthermore, shows a review of the preprocessing

and segmentation techniques used in the past and in the present.

It is worth noting that many of the papers have as goal to do classification of the tumor as

malignant or benign after preprocessing and its segmentation. However, that step is out of the

scope of this dissertation and, thus, is not addressed.

In the next chapter some of these methods are implemented and tested namely the Median filter

and the Anisotropic Diffusion Guided by Log–Gabor filters (ADLG) in the case of pre-processing

and for segmentation, K-means clustering, Mean shift clustering, Watershed segmentation, Active

contour model (Snakes), Region Growing and Minimum Path. The first three for both lesions and

anatomical structures and the rest just for lesions.
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Chapter 3

Breast ultrasound segmentation

2D Ultrasound Imaging has not yet been sufficiently studied for multi-modal registration. This is

due to the low resolution of this type of images and the amount of speckle noise that is inherent to

them.

However, landmark segmentation of anatomical breast structures in ultrasound imaging is still

of the utmost importance in order to complete the multi-modality radiologic imaging combination

and further empower the patients on the decision process.

This chapter details the experimental approach to the problem and the alternatives studied for

segmentation of the breast images assuming the previous detection of the tumor’s centroid. The

chapter starts by introducing the dataset used. Then follows the idea behind the acquisition image

cropping phase and the reasoning behind the chosen pre-processing method and lastly the different

approaches to segmentation attempted throughout the development of the project.

3.1 Dataset description

During the development of this dissertation, 2 datasets were used for testing and comparison. One

of the datasets is comprised of 443 ultrasound B-mode breast images from 18 different patients and

contains the manual delineation of lesions by the assigned radiologist for the project, Rute Santos.

In this dataset, images are in the format DICOM which is the standard for the communication and

management of medical imaging information and related data. The annotations are in Text file
format.

The other dataset consists of 75 images from 10 different patients and is composed of manual

delineations of the several anatomical structures, again, ultrasound B-mode breast images by the

same physician. In this dataset, the images are also in DICOM format. However, the annotations

are not in Text file format as in the other dataset but in DICOM format as well.

Because of the computation time it takes to generate results and the delay in receiving the

annotations, two validation datasets were used. The first one, for lesions, consisting of 54 images,

3 for each patient and the second one, for anatomical structures, consisting of 25 images from 3

patients.

25
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After obtaining the optimal parameters for each method for the two validation sets, those

parameters were replicated and used in the complete datasets.

3.2 Models

Although several methods were tested during the development of this dissertation, they can be

grouped into 3 different pipeline models: two for lesion segmentation and one for anatomical

structures segmentation. The first lesion segmentation pipeline (#1) is composed of 4 modules.

In the first module, the image is preprocessed using one of several filters mentioned in the next

section, ADLG or Median filter. The resulting image is segmented using one of the following tech-

niques: K-means clustering, Mean shift clustering or Watershed. The following module expects

prior detection of the lesion centroid and uses it to select the desired object.

Finally, several metrics are calculated to evaluate the quality of the segmentation, more specif-

ically using Pixel- Area and Contour-wise metrics. A visual representation of this pipeline is

illustrated below in Figure 3.1.

Figure 3.1: Pipeline #1

The second lesion segmentation pipeline (#2) is composed of 4 modules as well. However,

in this case the lesion selection must be done prior to the segmentation since its centroid and/or

bounding box (depending on the method) are used to segment the designated object.

In this model, the pre-processing methods used are the same as above. For segmentation three

techniques were used: Active contour model (Snakes), Region Growing and Polar Minimum Path.

The evaluation metrics too remain the same. A descriptive diagram of this pipeline is depicted

below in Figure 3.2.

Figure 3.2: Pipeline #2

The third pipeline (#3) is that of anatomical structures segmentation and is composed of 4

modules.
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This pipeline is very similar to the first pipeline presented above with the additional module

of a Minimum Path algorithm instead of the lesion selection module, after the segmentation tech-

niques are used. In this case, the segmentation methods used are K-means clustering, Mean shift

clustering and Watershed.

After performing these segmentation methods, a minimum path algorithm [49] finds the short-

est paths connecting the two margins of the image. Figure 3.3 portrays this pipeline.

To evaluate the results, each margin-to-margin line was considered, in order from the top of

the image to the bottom, to correspond to skin, subcutaneous fat and mammary gland. Other

structures were collectively considered as thoracic region due to the discrepancies in the ground

truth annotations.

Still in this matter, due to time constraints, the metrics for the validation set were calculated

to evaluate the average performance of the methods for all three structures combined instead of

separately. In the complete dataset, however, results are detailed for each structure, including the

thoracic region, as well as the average.

Figure 3.3: Pipeline #3

3.3 Metrics

In order to assess the results from each of the methods tested, 6 Pixel-Area and Contour-wise

metrics were computed, namely the Hausdorff distance (HAUSD), the Sørensen–Dice coefficient

(SD), the Area Overlap Measure (AOM), the Combined Measure (CM) of AOM, the Average

Minimum Euclidean Distance (AMED), and the Average Distance (AD). Below follows a com-

prehensive explanation of these metrics.

The Hausdorff distance [39] measures how far two subsets of a metric space are from each

other, in other words, it is the longest distance possible between a point in one of the two sets

(supremum) to the closest point in the other set (infimum). If X and Y are two non-empty subsets

of a metric space (M,d) where M is a set and d d is a metric on M, then their Hausdorff distance,

dH(X ,Y ), can be defined as:

dH(X ,Y ) = max{sup
x∈X

inf
y∈Y

d(x,y), sup
y∈Y

inf
x∈X

d(x,y)},

where sup represents the supremum and inf the infimum.

The Sørensen–Dice coefficient [60][19] gauges the similarity between two sets. Given two

sets X, Y:

SD =
2|X ∩Y |
|X |+|Y |
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Figure 3.4: Components of the calculation of the Hausdorff distance between the green line X and
the blue line Y [67]

where |X | and |Y | are the number of elements in each set.

This statistic equals twice the number of elements common to both sets divided by the sum of

the number of elements in each set.

The Area Overlap Measure [22] can be defined as the ratio of the intersection area of S and

T and the joint area of S and T, where S represents the segmented region and T represents the

ground-truth region of the same region:

P1 =
|S∩T |
|S∪T |

From here, two measures can be deduced:

Measure of undersegmentation - This measure is defined as the ratio of the unsegmented

area and the ground-truth area T:

P2 =
|T \ (|S∩T |)|

|T |

Measure of oversegmentation - This measure is defined as the ratio of segmented unwanted

area and the segmented area S:

P2 =
|S\ (|S∩T |)|

|S|

The Combined Measure of AOM is used when none of the three criteria mentioned above

(overlap, under and oversegmentation are preferred during the evaluation, and thus equal weights

are assigned to each of the three criteria and the combined metric is defined as:

P =
P1 +(1−P2)+(1−P3)

3

The Average Minimum Euclidean Distance is, as the very name indicates, the average value

of the Euclidean Distance between a point in a set S and the closest point in the other set T. Let

p = (p1, p2) and q = (q1,q2) be two points in the Euclidean plane (two-dimensional space), then
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the Euclidean distance between points p and q is the length of the line segment connecting them

pq and is given by:

d(p,q) =
√
(q1− p1)2 +(q2− p2)2

Figure 3.5: Euclidean distance in R2 [66]

The Average Distance, or the Average Hausdorff Distance, between two sets, S and T, is the

Hausdorff Distance averaged over all points. The former is known to be stable and less sensitive

to outliers than the latter and it can be defined by:

AD(S,T ) = max(d(S,T ),d(S,T ))

where d(S,T ) is the directed Average Hausdorff distance that is given by

d(S,T ) =
1
N
×∑

s∈S
min
t∈T
‖ s− t ‖

Although all of the metrics above were computed for each image, this dissertation only shows,

and compares, two of them: Sørensen–Dice coefficient (SD) and Average Distance (AD). The first

is used to estimate the area similarity between the ground truth and the segmentation result and

the second is used to evaluate the similarity between the contours of the structures, again, between

the ground truth and the segmentation result.

3.4 Pre-processing

Ultrasound image modality are characterized by suffering from an intrinsic artifact called speckle

noise, which degrades spatial and contrast resolution and obscures the screened anatomy. Hence,

it is important to reduce speckle artifacts before performing image segmentation. In addition, the

trade-off between smoothing level and preservation of the structure’s contour details should be

addressed by speckle reduction schemes.

In this scenario, two despeckling methods were tested. One of them based on anisotropic

diffusion guided by Log–Gabor filters (ADLG) [23] and a 2-D median filter [44] with a 9× 9

kernel. The former method allows to set the maximum number of iterations for diffusion. The

values tested for this parameter were 50, 100, 200, 500 and 1000 iterations as exemplified in

Figure 3.6.
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Additionally, for K-means clustering the H-Maxima Transform was used to suppress all max-

ima in the intensity image whose height were less than 0%, 20% and 40% of the image’s intensity

range. This was used to reduce the noise inherent to ultrasound images and prevent oversegmen-

tation. Watershed uses the H-minima Transform for the same purpose with values 0%, 5%, 10%

and 20%.

(a) Original (b) ADLG 50 iterations (c) ADLG 100 iterations

(d) ADLG 200 iterations (e) ADLG 500 iterations (f) ADLG 1000 iterations

(g) Median 9x9

Figure 3.6: Pre-processing methods used

3.5 Acquisition window

Ultrasound images usually have information to aid the physician’s comprehension such as scales

and brightness. As seen below in Figure 3.7a, this information is most prevalent outside the

acquisition window. Therefore, in order to decrease the potential errors of segmentation and also

to reduce the processing time only the acquisition window of the ultrasound images was kept for

further processing.

To start, a simple morphological opening of the pre-processed image was performed with a

disk shaped structuring element of 15 pixels in radius. With this small bright objects from the
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foreground are removed. An example result is depicted in Figure 3.7.

(a) Original ADLG (b) Original ADLG after Opening operation

Figure 3.7: Original ADLG and the result after performing an Opening operation

The next step is to find within the result of the last step the Area and corresponding linear

indices of the pixels in each of the 8-connected components left so to sort them and find the

component with the largest area. This component will most likely represent the desired acquisition

window and the intensity of each of its pixels is copied to a matrix of zeros of the same size of the

original image. This is done because there is no way of knowing the dimensions of the acquisition

window for proper reconstruction.

The solution to this problem was to compute the Standard Hough Transform (SHT) which is

designed to detect lines. The resulting Hough matrix is illustrated in Figure 3.8.

Figure 3.8: Hough Matrix with the 4 lines detected (blue crosses)

After computing the SHT, the following procedure was to find the peaks in the parameter
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space which might correspond to the boundary lines of the acquisition window in the image.

The value of 0.3 × maximum value of the Hough transform matrix and a maximum of 4 peaks

successfully detected the lines. The first value was purely experimental whereas the reasoning

behind maximum number of peaks was to find the four corresponding to the boundaries. Each line

has a starting point and an ending point as well as a theta and a rho already detailed in Subsection

2.5.

In order to find the first row of the designated window theta must have an absolute value of

90º because it is a horizontal line. The last row is based on the fact that the last non zero pixel

of the image will belong to this row. Therefore, the said pixel is found and its corresponding row

is chosen as the last row. The first and last columns are found by selecting, correspondingly, the

minimum and maximum of column values of the two element vector specifying the coordinates of

the end-point of the line segments stated above.

The acquisition window is then cropped according to the specified values of the boundaries.

After that, the median and the standard deviation of each of the rows starting from all four direc-

tions (top, bottom, left and right) are computed and the image is cropped until two criteria are met

both in rows and columns.

30 6 median value 6 240∧ std value > 20

This is used for two reasons. One, in the original images there was always a white row above

the acquisition window already present in the original ultrasound and inherent to the physical fac-

tors of the acquisition process, and two the reduced size of the resulting cropped image increases

the speed of processing. Therefore the stated criteria was experimentally defined and kept due to

the satisfactory results and increase in performance.

The ending result is demonstrated in Figure 3.9.

(a) Original ADLG (b) Original ADLG + Opening (c) Original ADLG + Crop

Figure 3.9: ADLG pre-processing experiments

3.6 Segmentation

Having the image pre-processed and the acquisition window cropped out of the ultrasound image,

the next step is to perform segmentation.
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As stated in Section 3.2, three pipelines were adopted during the development of this project.

Below follows the segmentation methods used in each pipeline model. Each method includes the

resulting metrics and a brief discussion on the best parameters to be used. In the end is shown a

comparison between each method for the type of structure to be segmented (lesions or anatomical

structures) and a final analysis with visual comparison of example images.

Furthermore, the visual results displayed in this section are representations of the region detec-

tion measurements towards the ground truth of the exemplifying image, Figure 3.10a. The ground

truths for lesions and anatomical structures are illustrated below in Figure 3.10b and Figure 3.10c,

respectively.

(a) Original image (b) Lesion ground truth (c) Anatomical structures ground
truth

Figure 3.10: Original image and lesion’s and anatomical structures’ ground truths

3.6.1 Pipeline #1

3.6.1.1 K-means clustering

This method performs K-means clustering to partition the observations of the image into K clus-

ters and uses the squared Euclidean distance metric and the K-means++ algorithm [5] for cluster

center initialization. Contrarily to K-means, which starts with allocating cluster centers randomly

and then looks for "better" solutions, K-means++ starts with the allocation of one cluster center

randomly and then searches for other centers given the first one.

A grid search was used to test several parameters:

• Input image: Original, ADLG filtered (50, 100, 200, 500, 1000 iterations), Median filtered

with 9×9 kernel

• H-max suppression: 0%, 20%, 40% of image’s intensity range

• Number of clusters: K = 2, 3, 4, 5, 6

The results for the validation set are displayed below in Tables 3.1 and 3.2 and show the best

results for Median filtered with 9×9 kernel with 20% H-max suppression and for K = 4 clusters

(both for SD and AD). Visual results are also displayed in Figures 3.11, 3.12 and 3.13.
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H-max K = 2 K = 3 K = 4 K = 5 K = 6

Original 0% 0.14 (0.31) 0.32 (0.41) 0.37 (0.40) 0.31 (0.37) 0.30 (0.34)

20% 0.26 (0.38) 0.37 (0.41) 0.51 (0.36) 0.46 (0.34) 0.37 (0.33)

40% 0.31 (0.41) 0.46 (0.39) 0.48 (0.36) 0.45 (0.34) 0.40 (0.30)

ADLG 50 iter 0% 0.18 (0.33) 0.38 (0.41) 0.49 (0.39) 0.43 (0.37) 0.42 (0.34)

20% 0.26 (0.38) 0.46 (0.40) 0.58 (0.32) 0.46 (0.33) 0.43 (0.33)

40% 0.31 (0.40) 0.56 (0.36) 0.51 (0.34) 0.46 (0.32) 0.45 (0.29)

ADLG 100 iter 0% 0.17 (0.32) 0.41 (0.40) 0.47 (0.40) 0.43 (0.38) 0.41 (0.36)

20% 0.27 (0.39) 0.50 (0.39) 0.58 (0.34) 0.49 (0.34) 0.43 (0.33)

40% 0.34 (0.41) 0.59 (0.34) 0.52 (0.35) 0.41 (0.35) 0.43 (0.29)

ADLG 200 iter 0% 0.16 (0.32) 0.42 (0.41) 0.46 (0.40) 0.45 (0.37) 0.42 (0.35)

20% 0.27 (0.39) 0.50 (0.39) 0.52 (0.36) 0.47 (0.35) 0.46 (0.31)

40% 0.34 (0.40) 0.56 (0.36) 0.53 (0.35) 0.48 (0.33) 0.39 (0.32)

ADLG 500 iter 0% 0.19 (0.34) 0.39 (0.41) 0.51 (0.38) 0.48 (0.36) 0.40 (0.37)

20% 0.26 (0.38) 0.46 (0.39) 0.55 (0.35) 0.48 (0.35) 0.45 (0.34)

40% 0.37 (0.41) 0.52 (0.40) 0.49 (0.34) 0.45 (0.34) 0.40 (0.33)

ADLG 1000 iter 0% 0.24 (0.38) 0.41 (0.42) 0.53 (0.38) 0.48 (0.37) 0.37 (0.37)

20% 0.26 (0.37) 0.46 (0.41) 0.56 (0.34) 0.45 (0.36) 0.47 (0.36)

40% 0.36 (0.41) 0.55 (0.37) 0.44 (0.37) 0.46 (0.36) 0.43 (0.34)

Median 9x9 0% 0.25 (0.36) 0.40 (0.41) 0.51 (0.38) 0.45 (0.35) 0.43 (0.33)

20% 0.32 (0.38) 0.49 (0.38) 0.60 (0.29) 0.52 (0.29) 0.47 (0.28)

40% 0.44 (0.39) 0.58 (0.33) 0.57 (0.29) 0.51 (0.26) 0.45 (0.27)

Column K = 6 has several maxima. However, none of them is the maximum value of the table.

Therefore, no value in that column is shown in bold formatting

Table 3.1: K-means clustering (lesions) - Validation metrics (average and standard deviation) for
parameters choice using Sørensen–Dice coefficient (SD)
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H-max K = 2 K = 3 K = 4 K = 5 K = 6

Original 0% 33.8 (24.4) 27.2 (27.8) 24.7 (28.8) 24.6 (26.0) 25.2 (28.6)

20% 30.1 (26.8) 25.2 (29.3) 15.0 (24.1) 15.4 (25.7) 17.6 (24.3)

40% 29.8 (31.8) 21.2 (29.6) 16.0 (24.5) 16.3 (24.2) 14.7 (23.5)

ADLG 50 iter 0% 34.2 (22.2) 21.7 (26.1) 18.7 (26.4) 17.5 (24.1) 16.7 (23.0)

20% 30.6 (24.7) 19.2 (25.1) 10.8 (21.4) 14.0 (22.7) 14.8 (22.7)

40% 28.2 (26.7) 12.0 (18.4) 14.6 (24.5) 14.1 (24.0) 11.6 (20.9)

ADLG 100 iter 0% 34.2 (21.8) 19.8 (24.1) 19.1 (26.7) 17.5 (23.2) 17.4 (23.7)

20% 28.8 (23.8) 17.2 (22.9) 11.5 (21.3) 13.2 (22.1) 15.1 (22.8)

40% 29.6 (30.7) 12.1 (20.9) 13.3 (22.8) 17.4 (24.5) 12.7 (22.6)

ADLG 200 iter 0% 37.0 (23.7) 20.3 (24.7) 20.7 (27.9) 15.7 (22.0) 16.9 (23.3)

20% 28.4 (24.0) 15.6 (20.8) 13.7 (21.2) 14.3 (22.6) 11.7 (20.7)

40% 29.6 (30.8) 13.4 (23.2) 12.8 (22.2) 13.8 (22.7) 16.4 (23.8)

ADLG 500 iter 0% 34.5 (24.7) 23.0 (25.3) 16.3 (24.8) 14.9 (22.6) 19.4 (24.9)

20% 31.7 (28.2) 18.7 (24.6) 11.6 (19.9) 15.9 (24.7) 15.5 (22.6)

40% 28.9 (32.7) 17.5 (25.8) 14.5 (24.9) 17.8 (26.2) 17.2 (24.2)

ADLG 1000 iter 0% 36.0 (28.7) 20.8 (24.2) 14.9 (23.0) 16.3 (24.0) 19.9 (24.7)

20% 33.5 (27.4) 20.2 (25.6) 12.5 (22.9) 16.8 (25.0) 16.7 (24.8)

40% 29.7 (31.2) 16.6 (28.4) 17.2 (23.6) 16.5 (24.7) 15.7 (22.2)

Median 9x9 0% 27.9 (21.7) 18.6 (23.1) 16.1 (25.1) 16.3 (24.2) 15.5 (24.0)

20% 24.7 (24.5) 17.5 (26.3) 7.7 (15.1) 10.3 (20.5) 9.3 (17.3)

40% 25.2 (32.4) 12.5 (22.2) 9.4 (20.3) 8.4 (16.8) 11.7 (21.4)

Table 3.2: K-means clustering (lesions) - Validation metrics (average and standard deviation) for
parameters choice using Average Distance (AD)
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(a) Original (b) ADLG 50 iterations (c) ADLG 100 iterations

(d) ADLG 200 iterations (e) ADLG 500 iterations (f) ADLG 1000 iterations

(g) Median 9x9 filter

Figure 3.11: K-means variation with pre-processing (K = 4 and H-max = 20%)

Figure 3.11 shows that K-means does not vary too much with the pre-processing method.

Although some differences are visible, these can be attributed to ADLG’s reduction of speckle

artifacts which homogenizes pixels close to each other with similar intensity values.

(a) H-max = 0% (b) H-max = 20% (c) H-max = 40%

Figure 3.12: K-means variation with H-max (Median 9x9 filter and K = 4)

Figure 3.12 suggests that the detected area increases with H-max suppression. This is ex-

plained by the fact that pixels that are connected will belong to the same object if their difference
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in height is smaller than that specified by H-max. Therefore, with an increase in H-max the seg-

mented area increases as well.

(a) K = 2 (b) K = 3 (c) K = 4

(d) K = 5 (e) K = 6

Figure 3.13: K-means variation with number of clusters (Median 9x9 filter and H-max=20%)

Figure 3.13 shows that, except for K = 6, as the number of clusters increases, the detected

area decreases which is expected since each observation will belong to the cluster with the nearest

mean and the difference between clusters means is smaller. The best results, as stated above, were

for Median filtered with 9×9 kernel with 20% H-max suppression and for K = 4 clusters.

3.6.1.2 Mean shift clustering

This method performs Mean shift clustering using the cluster centroid locations from K-means

as initial seeds to segment lesions in the ultrasound image. The parameters used for K-means

result from Section 3.6.1.1 experiments and they are K = 4 clusters, H−max = 20% and on the

median filtered by a 9x9 kernel image. The implementation uses a Mean shift clustering algorithm

adaptation of [24] by Co-supervisor João Pedro Fonseca Teixeira which has several parameters

apart from the initial seeds such as bandwidth and X,Y position weights relative to image.

A grid search was used to test the several parameters:

• Input image: Original, ADLG filtered (50, 100, 200, 500, 1000 iterations), Median filtered

with 9×9 kernel

• Bandwidth: 0.02, 0.05, 0.1

• Position weights: 0.0625, 0.125, 0.25 and 1
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The complete results for the validation set are present in Appendix A.1. Because of the high

number of results for this experiment, only the 8 best combinations for SD (and their correspond-

ing AD results) and the 2 worst are shown below in Tables 3.3 and 3.4.

Best parameters

ADLG 1000 iter
Bandwidth = 0.1

Weight = 1

ADLG 500 iter
Bandwidth = 0.1

Weight = 1

ADLG 200 iter
Bandwidth = 0.1

Weight = 1

ADLG 50 iter
Bandwidth = 0.1

Weight = 1

SD 0.57 (0.22) 0.55 (0.21) 0.52 (0.22) 0.51 (0.24)

ADLG 100 iter
Bandwidth = 0.1

Weight = 1

Median 9x9
Bandwidth = 0.1

Weight = 1

Original
Bandwidth = 0.1

Weight = 1

ADLG 1000 iter
Bandwidth = 0.05

Weight = 0.25

SD 0.51 (0.22) 0.50 (0.23) 0.47 (0.25) 0.42 (0.23)

Best parameters

Original
Bandwidth = 0.02

Weight = 0.25

ADLG 1000 iter
Bandwidth = 0.1

Weight = 1

ADLG 500 iter
Bandwidth = 0.1

Weight = 1

Original
Bandwidth = 0.1

Weight = 1

AD 5.79 (7.17) 6.61 (8.22) 6.69 (8.51) 7.09 (10.66)

Median 9x9
Bandwidth = 0.1

Weight = 1

ADLG 200 iter
Bandwidth = 0.1

Weight = 1

ADLG 50 iter
Bandwidth = 0.02

Weight = 0.25

Original
Bandwidth = 0.05

Weight = 1

AD 7.12 (8.32) 7.30 (9.21) 7.41 (10.13) 7.71 (9.62)

Table 3.3: Mean shift clustering (lesions) - Best validation metrics combination (average and stan-
dard deviation) for parameters choice using Sørensen–Dice coefficient (SD) and Average Distance
(AD)

Worst parameters

Original
Bandwidth = 0.02

Weight = 1

Median 9x9
Bandwidth = 0.02

Weight = 1

SD 0.055 (0.078) 0.070 (0.090)

Worst parameters

ADLG 200 iter
Bandwidth = 0.1
Weight = 0.0625

ADLG 50 iter
Bandwidth = 0.1
Weight = 0.0625

AD 111.72 (62.45) 111.11 (57.67)

Table 3.4: Mean shift clustering (lesions) - Worst validation metrics combination (average and
standard deviation) for parameters choice using Sørensen–Dice coefficient (SD) and Average Dis-
tance (AD)
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(a) Original (b) ADLG 50 iterations (c) ADLG 100 iterations

(d) ADLG 200 iterations (e) ADLG 500 iterations (f) ADLG 1000 iterations

(g) Median 9x9 filter

Figure 3.14: Mean shift variation with pre-processing (Bandwidth = 0.1 and X ,Y weights = 1)

Figure 3.14 demonstrates that Mean shift has difficulty dealing with speckle noise since both

3.14a and 3.14g detect a small artifact and not the lesion itself. Other than that, the size of the

segmented region is approximately the same with smoother edges as the number of iterations in

ADLG increases. It is worth noting that with 1000 iterations the detected area increases consider-

ably.

(a) Bandwidth = 0.02 (b) Bandwidth = 0.05 (c) Bandwidth = 0.1

Figure 3.15: Mean shift variation with bandwidth (ADLG with 1000 iterations and X ,Y weights =
1)
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Figure 3.15 indicates an increase in area detected with an increase in the value of bandwidth.

This is expected since this parameter dictates the size of the region to search through.

(a) X ,Y weights = 0.0625 (b) X ,Y weights = 0.125 (c) X ,Y weights = 0.25

(d) X ,Y weights = 1

Figure 3.16: Mean shift variation with X ,Y weights (ADLG with 1000 iterations and Bandwidth =
0.1)

Figure 3.16 shows that the spacial weights have a big influence in the segmented region. In-

terestingly, with smaller weights this method segments other structures, subcutaneous fat in Fig-

ures 3.16a and 3.16b and pectoral muscle in Figure 3.16c. With a spacial weight equal to the

weight of the image, the method segments the lesion as expected. The best results, as shown

above in Table 3.3, were for ADLG with 1000 iterations, Bandwidth = 0.1, and X,Y Weight = 1.

3.6.1.3 Watershed

The watershed transform finds "catchment basins" or "watershed ridge lines" in an image by treat-

ing it as a surface where light pixels represent high elevations and dark pixels represent low eleva-

tions. The watershed transform can be used to segment contiguous regions of interest into distinct

objects. This watershed implementation uses the Fernand Meyer algorithm [48].

A grid search was used to test several parameters:

• Input image: Original, ADLG filtered (50, 100, 200, 500, 1000 iterations), Median filtered

with 9×9 kernel

• H-min suppression: 0%, 5%, 10%, 20% of image’s intensity range
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The results for the validation set are displayed below in Tables 3.5 and 3.6 and show the best

results for H-min = 5% and median filtered with 9×9 kernel image (both for SD and AD).

H-min
0% 5% 10% 20%

Original 0.21 (0.26) 0.06 (0.09) 0.06 (0.07) 0.04 (0.06)
ADLG 50 iter 0.04 (0.07) 0.04 (0.05) 0.33 (0.27) 0.43 (0.29)
ADLG 100 iter 0.56 (0.20) 0.39 (0.22) 0.57 (0.16) 0.52 (0.17)
ADLG 200 iter 0.30 (0.22) 0.56 (0.16) 0.51 (0.17) 0.29 (0.22)
ADLG 500 iter 0.56 (0.15) 0.47 (0.18) 0.29 (0.22) 0.53 (0.17)
ADLG 1000 iter 0.47 (0.19) 0.26 (0.20) 0.52 (0.18) 0.44 (0.21)
Median 9x9 0.28 (0.21) 0.58 (0.15) 0.55 (0.16) 0.33 (0.23)
Column H−min = 0% has several maxima.

However, none of them is the maximum value of the table.

Therefore, no value in that column is shown in bold formatting

Table 3.5: Watershed segmentation (lesions) - Validation metrics (average and standard deviation)
for parameters choice using Sørensen–Dice coefficient (SD)

H-min
0% 5% 10% 20%

Original 37.3 (44.4) 46.8 (36.7) 51.7 (40.3) 44.8 (33.0)
ADLG 50 iter 57.8 (44.3) 54.8 (43.6) 17.3 (22.0) 12.2 (20.8)
ADLG 100 iter 7.4 (17.2) 27.4 (39.7) 5.8 ( 8.8) 8.4 (11.8)
ADLG 200 iter 50.5 (55.3) 6.8 ( 9.8) 9.2 (12.8) 53.8 (55.8)
ADLG 500 iter 6.6 ( 9.9) 11.7 (13.6) 53.6 (53.3) 8.8 (12.8)
ADLG 1000 iter 14.6 (18.8) 57.2 (50.0) 9.9 (13.9) 19.6 (24.9)
Median 9x9 54.1 (50.1) 5.4 ( 8.9) 7.2 (12.2) 41.8 (49.2)

Table 3.6: Watershed segmentation (lesions) - Validation metrics (average and standard deviation)
for parameters choice using Average Distance (AD)

As Figure 3.17 below shows, the original image, Figure 3.17a, suffers from oversegmentation

which is a characteristic of the watershed method. After pre-processing for noise reduction, this

method increases its performance. However, this method has difficulty detecting the contour of

the object and detects neighouring areas around the object of interest.
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(a) Original (b) ADLG 50 iterations (c) ADLG 100 iterations

(d) ADLG 200 iterations (e) ADLG 500 iterations (f) ADLG 1000 iterations

(g) Median 9x9 filter

Figure 3.17: Watershed variation with pre-processing (H-min=5%)

Figure 3.18, in the next page, indicates an increase in segmented area with an increase in

H-minima suppression. This is explained by the fact that H-minima Transform suppresses all

minima in the image whose depth is less than that specified by H-min. Therefore, with an increase

in H-min the segmented area increases as well. The best results, as stated above, were for Median

filtered with 9×9 kernel with t% H-min suppression.
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(a) H-min = 0% (b) H-min = 5% (c) H-min = 10%

(d) H-min = 20%

Figure 3.18: Watershed variation with number of clusters (Median 9x9 filter)

3.6.2 Pipeline #2

3.6.2.1 Active contour model (Snakes)

Active contour model (snakes) makes use of energy constraints and forces the separation of region

of interest in the image. The contour depends on various constraints based on which they are

classified into different types such as gradient vector flow, balloon and geometric models.

This active contour implementation uses the Sparse-Field level-set method [65] for implement-

ing active contour evolution and uses the boundaries of the regions in a mask as the initial state of

the contour from where the evolution starts. Therefore, the mask given was the smallest possible,

a 2x2 square that includes the centroid of the ground truth.

This implementation has several other parameters, namely the active contour method used for

segmentation, the maximum number of iterations (N) to perform in evolution of the segmentation,

the SmoothFactor (SF) which states the degree of smoothness or regularity of the boundaries of

the segmented regions and the ContractionBias (CB) which is the tendency of the contour to grow

outwards or shrink inwards.

For the first parameter, we had two choices, either Edge which is naturally biased towards

shrinking inwards (collapsing) or Chan-Vese where the contour is unbiased, which means the

contour is free to either shrink or expand based on the image features. The decision was to use

Chan-Vese since the initial mask for growth was inside the contour.

For the rest of the parameters, a grid search was used:

• Input image: Original, ADLG filtered (50, 100, 200, 500, 1000 iterations), Median filtered

with 9×9 kernel
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• Iterations: 50, 100, 200, 500, 1000 iterations

• SmoothFactor: 0, 0.01, 0.04, 0.1, 0.2, 0.5

• ContractionBias: 0, -0.01, -0.04, -0.1, -0.2, -0.5 (Negative values bias the contour to grow

outwards)

The complete results for the validation set are present in Appendix A.2. Because of the high

number of results for this experiment, only the 8 best combinations for SD (and their correspond-

ing AD results) and the 2 worst are shown below in Tables 3.7 and 3.8.

Best parameters

ADLG 500 iter
N = 200
SF = 0.2

CB = -0.2

ADLG 200 iter
N = 200
SF = 0.2

CB = -0.2

ADLG 1000 iter
N = 200
SF = 0

CB = -0.1

ADLG 1000 iter
N = 200

SF = 0.01
CB = -0.1

SD 0.733 (0.20) 0.731 (0.20) 0.730 (0.21) 0.729 (0.21)

ADLG 1000 iter
N = 200
SF = 0.2

CB = -0.2

ADLG 50 iter
N = 200
SF = 0.2

CB = -0.2

ADLG 500 iter
N = 200
SF = 0

CB = -0.1

ADLG 500 iter
N = 200

SF = 0.01
CB = -0.1

SD 0.729 (0.21) 0.728 (0.20) 0.727 (0.21) 0.727 (0.21)

Best parameters

Original
N = 100
SF = 0

CB = -0.2

ADLG 50 iter
N = 100
SF = 0

CB = -0.2

ADLG 50 iter
N = 100

SF = 0.01
CB = -0.2

ADLG 200 iter
N = 100
SF = 0

CB = -0.2

AD 2.946 (4.41) 2.948 (4.21) 2.949 (4.27) 2.958 (4.01)

ADLG 100 iter
N = 100
SF = 0

CB = -0.2

Original
N = 100

SF = 0.01
CB = -0.2

ADLG 200 iter
N = 100

SF = 0.01
CB = -0.2

Median 9x9
N = 100

SF = 0.01
CB = -0.2

AD 2.961 (4.13) 2.961 (4.46) 2.962 (4.08) 2.973 (4.21)

N = Number of iterations

SF = SmoothFactor

CB = ContractionBias

Table 3.7: Active contour model segmentation (lesions) - Best validation metrics combination
(average and standard deviation) for parameters choice using Sørensen–Dice coefficient (SD) and
Average Distance (AD)



3.6 Segmentation 45

Worst parameters

ADLG 1000 iter
N = 50

SF = 0.5
CB = 0

ADLG 1000 iter
N = 100
SF = 0.5
CB = 0

SD 0.00171 (0.0025) 0.00171 (0.0025))

Worst parameters

Original
N = 1000
SF = 0.01
CB = -0.5

Original
N = 1000

SF = 0
CB = -0.5

AD 122.60 (52.96) 122.28 (53.32)

N = Number of iterations

SF = SmoothFactor

CB = ContractionBias

Table 3.8: Active contour model segmentation (lesions) - Worst validation metrics combination
(average and standard deviation) for parameters choice using Sørensen–Dice coefficient (SD) and
Average Distance (AD)
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Figure 3.19 shows that pre-processing has no considerable effect on the active contour exper-

iments. Little differences, such as contour smoothness and object area, are noticed which can be

explained by difference in size and shape of the lesion in the pre-processed image.

(a) Original (b) ADLG 50 iterations (c) ADLG 100 iterations

(d) ADLG 200 iterations (e) ADLG 500 iterations (f) ADLG 1000 iterations

(g) Median 9x9 filter

Figure 3.19: Active contour variation with pre-processing (N = 200, SF = 0.2, CB =−0.2)

In Figure 3.20, however, the similarity between the lesion and the segmented region grows with

an increase in the number of iterations performed. This can be justified by the very nature of active

contour which evolves until the maximum number of iterations has been reached. Nonetheless,

there are no considerable differences visually between 3.20d and 3.20e which indicates that the

growth rate has decreased and since the former has a faster computation speed than the latter it

might be a good option to use it.
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(a) N = 50 iterations (b) N = 100 iterations (c) N = 200 iterations

(d) N = 500 iterations (e) N = 1000 iterations

Figure 3.20: Active contour variation with number of iterations N (ADLG with 500 iterations,
SF = 0.2, CB =−0.2)

(a) SF = 0 (b) SF = 0.01 (c) SF = 0.04

(d) SF = 0.1 (e) SF = 0.2 (f) SF = 0.5

Figure 3.21: Active contour variation with SmoothFactor (ADLG with 500 iterations, N = 200,
CB =−0.2)

Figure 3.21 illustrates the effect of the SmoothFactor which specifies the degree of smoothness

or regularity of the boundaries of the segmented regions. This parameter has a small effect on the

outcome since all images, except the last one, are very similar apart from subtle differences in the
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contour. In the last image, 3.21f, the contour seems to halt its growth. This gives us a warning that

perhaps it is too big of a value for our type of image, in particular.

(a) CB = 0 (b) CB =−0.01 (c) CB =−0.04

(d) CB =−0.1 (e) CB =−0.2 (f) CB =−0.5

Figure 3.22: Active contour variation with ContractionBias (ADLG with 500 iterations, N = 200,
SF = 0.2)

Finally, Figure 3.22 shows that perhaps values of ContractionBias, which is the tendency of

the contour to grow outwards (negative) or shrink inwards (positive), close to 0 will allow the

contour to grow with less difficulty. However, it is noticeable that from a certain value the contour

will grow beyond the region of interest 3.22f.

The best results, as shown in Table 3.7 are for ADLG with 500 iterations, N = 200 iterations,

SF = 0.2 and CB = -0.2.

3.6.2.2 Region growing

Region growing is a region-based image segmentation method that examines neighboring pixels

of initial seed points and determines whether the pixel neighbors should be added to the region

based on the threshold value used for aggregation criterion. This implementation is a MATLAB-

optimized version of Daniel Kellner’s code by the co-supervisor of this dissertation, João Pedro

Fonseca Teixeira, and is a recursive region growing algorithm for 2D and 3D grayscale image sets

with polygon and binary mask output.

A grid search was used to test several parameters:

• Input image: Original, ADLG filtered (50, 100, 200, 500, 1000 iterations), Median filtered

with 9×9 kernel

• Threshold value: 2%, 5%, 10%, 15%, 20% of image’s intensity range
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The results for the validation set are displayed below in Tables 3.9 and 3.10 and show that SD

is the highest for ADLG with 200 iterations and threshold value of 10% for aggregation criterion,

and AD is the lowest for ADLG with 1000 iterations and threshold value of 5% for aggregation

criterion.

Threshold
2% 5% 10% 15% 20%

Original 0.21 (0.22) 0.45 (0.27) 0.55 (0.29) 0.52 (0.33) 0.37 (0.33)
ADLG 50 iter 0.24 (0.21) 0.47 (0.23) 0.58 (0.29) 0.53 (0.35) 0.33 (0.32)
ADLG 100 iter 0.27 (0.22) 0.49 (0.23) 0.58 (0.29) 0.52 (0.35) 0.38 (0.33)
ADLG 200 iter 0.29 (0.21) 0.49 (0.22) 0.59 (0.28) 0.50 (0.35) 0.41 (0.34)
ADLG 500 iter 0.34 (0.20) 0.50 (0.21) 0.59 (0.29) 0.55 (0.34) 0.42 (0.35)
ADLG 1000 iter 0.40 (0.21) 0.55 (0.21) 0.58 (0.28) 0.57 (0.33) 0.44 (0.35)
Median 9x9 0.26 (0.20) 0.49 (0.24) 0.57 (0.29) 0.53 (0.34) 0.41 (0.35)

Table 3.9: Region growing segmentation (lesions) - Validation metrics (average and standard de-
viation) for parameters choice using Sørensen–Dice coefficient (SD)

Threshold
2% 5% 10% 15% 20%

Original 16.3 (17.9) 13.2 (22.1) 19.7 (37.7) 30.9 (44.1) 54.3 (55.5)

ADLG 50 iter 13.0 (15.2) 12.6 (21.8) 23.4 (44.2) 34.5 (48.0) 61.1 (53.9)

ADLG 100 iter 13.9 (16.4) 9.6 (18.7) 23.6 (44.6) 36.2 (49.8) 54.1 (54.2)

ADLG 200 iter 11.7 (12.8) 9.4 (16.1) 22.0 (43.1) 39.9 (51.8) 53.6 (58.0)

ADLG 500 iter 11.0 (13.6) 10.1 (16.4) 26.1 (47.1) 36.0 (55.0) 53.3 (57.8)

ADLG 1000 iter 8.9 (10.3) 6.4 (10.2) 23.2 (44.8) 35.8 (59.4) 50.8 (59.7)

Median 9x9 13.6 (16.5) 12.7 (23.0) 22.9 (44.8) 33.2 (48.8) 54.3 (57.9)

Table 3.10: Region growing segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD)

Figure 3.23, below, indicates small differences between pre-processing variations. This method

seems to grow as expected so segment the region of interest that varies with the pre-processing

method. It is noticeable that Figure 3.23a reveals a more detailed contour and with an increase in

the pre-processing iterations of ADLG these details diminish.
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(a) Original (b) ADLG 50 iterations (c) ADLG 100 iterations

(d) ADLG 200 iterations (e) ADLG 500 iterations (f) ADLG 1000 iterations

(g) Median 9x9 filter

Figure 3.23: Region growing variation with pre-processing (T hreshold = 10%)

On the other hand, Figure 3.24 suggests substantial differences with different aggregation

criterion threshold values. Figure 3.24a reveals under-segmentation which can be explained by

the echogenicity of the lesion and since the threshold only allows the aggregation of values 2% (of

the image’s range) under or above the intensity of the seeds, values even slightly under or above

this threshold will not be aggregated and, thus, this visual result.

For higher values of threshold this method grows more easily to shapes closer to those desired.

Still, for values from a certain value for threshold, the segmented region outgrows the desired

result, as seen in Figure 3.24d, and in a more extreme case segments other structures, as depicted

in Figure 3.24e.
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(a) T hreshold = 2% (b) T hreshold = 5% (c) T hreshold = 10%

(d) T hreshold = 15% (e) T hreshold = 20%

Figure 3.24: Region growing variation with aggregation criterion threshold (ADLG with 200 iter-
ations)

As illustrated in Table 3.9, the best results come from images pre-processed with ADLG filter

with 200 iterations. It is worth noting that ADLG filter with 500 iterations produces comparable

results to the ones with 200 iterations. Nonetheless, the first has a slower computation speed

compared to the second which further suggests the use of the latter in the complete dataset.

3.6.2.3 Polar Minimum Path

This method uses an algorithm created by the supervisor of this dissertation, Professor Doctor

Hélder Filipe Pinto de Oliveira [49] which consists in obtaining the accurate contour of an object

using a closed shortest path algorithm.

This version has the particularity of being retricted considering it only moves forward or in the

forward diagonal (8-connected), from margin to margin, turning the image into a graph. The way

it works is that the lesion boundary can be seen as a change in the grey-level values of the pixels,

originating an edge in the resulting image. Since the lesion contour is approximately circular the

computation is more naturally carried out by adopting polar coordinates, with the origin of the

coordinates in the ground truth’s centroid.

Because this algorithm has been extensively used in the Visual Computing and Machine Intel-

ligence (VCMI) group of INESC TEC, the parameters are already optimized and, therefore, this

algorithm was used with the standard parameters only.

The results for the validation set are displayed below in Tables 3.11 and 3.12 and show that SD

is the highest for ADLG with 1000 iterations, and AD is the lowest for ADLG with 500 iterations.
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Original ADLG
50 iter

ADLG
100 iter

ADLG
200 iter

ADLG
500 iter

ADLG
1000 iter

Median
9x9 kernel

0.43 (0.27) 0.48 (0.28) 0.53 (0.29) 0.59 (0.27) 0.70 (0.23) 0.71 (0.24) 0.47 (0.26)

Table 3.11: Polar Minimum Path (lesions) - Validation metrics (average and standard deviation)
for parameters choice using Sørensen–Dice coefficient (SD)

Original ADLG
50 iter

ADLG
100 iter

ADLG
200 iter

ADLG
500 iter

ADLG
1000 iter

Median
9x9 kernel

15.2 (18.8) 12.9 (19.4) 11.5 (18.1) 8.0 (13.9) 4.0 (7.1) 4.1 (7.0) 14.2 (20.4)

Table 3.12: Polar Minimum Path (lesions) - Validation metrics (average and standard deviation)
for parameters choice using Average Distance (AD)

(a) Original (b) ADLG 50 iterations (c) ADLG 100 iterations

(d) ADLG 200 iterations (e) ADLG 500 iterations (f) ADLG 1000 iterations

(g) Median 9x9 filter

Figure 3.25: Polar minimum path variation with pre-processing
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Figure 3.25 suggests an increase in performance of this method as the speckle noise reduction

increases. As seen in Figure 3.25a, the lesion is poorly segmented which is related to the small

variations of intensity present in the image. But, as this variations are smoothed out, by the pre-

processing filters, the quality of the segmentation increases.

The best results, as shown in Table 3.11 result from the image pre-processed with ADLG filter

with 1000 iterations.

3.6.3 Pipeline #3

3.6.3.1 K-means clustering

This method is essentially the same as the one in Section 3.6.1. However this time the goal is,

not to segment a lesion, but to perform segmentation over the anatomical structures present in the

image. Therefore, after performing K-means clustering, a Minimum Path algorithm created by

Supervisor Hélder Filipe Pinto de Oliveira [49] is used to find the shortest paths from one margin

to the other of the image.

In order to assess the best parameters to use, a grid search approach was adopted. Below are

the parameters tested:

• Input image: Original, ADLG filtered (50, 100, 200, 500, 1000 iterations), Median filtered

with 9×9 kernel

• H-max suppression: 0%, 20%, 40% of image’s intensity range

• Number of clusters: K = 2, 3, 4, 5, 6

The results for the validation set are displayed below in Tables 3.13 and 3.14 and show that

SD is the highest for ADLG with 50 iterations, K = 6 and H-max = 20%, and AD is the lowest for

the original image, K = 2 and H-max = 0%.
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H-max K = 2 K = 3 K = 4 K = 5 K = 6

Original 0% 0.62 (0.20) 0.52 (0.24) 0.45 (0.20) 0.59 (0.18) 0.47 (0.16)

20% 0.56 (0.19) 0.54 (0.26) 0.53 (0.18) 0.50 (0.20) 0.59 (0.22)

40% 0.56 (0.20) 0.53 (0.24) 0.56 (0.17) 0.54 (0.23) 0.54 (0.20)

ADLG 50 iter 0% 0.57 (0.16) 0.54 (0.22) 0.51 (0.19) 0.55 (0.15) 0.57 (0.18)

20% 0.58 (0.16) 0.58 (0.22) 0.54 (0.18) 0.57 (0.21) 0.63 (0.18)

40% 0.54 (0.21) 0.58 (0.23) 0.54 (0.21) 0.55 (0.19) 0.56 (0.22)

ADLG 100 iter 0% 0.60 (0.18) 0.51 (0.24) 0.51 (0.18) 0.52 (0.21) 0.51 (0.19)

20% 0.54 (0.20) 0.52 (0.24) 0.55 (0.17) 0.49 (0.19) 0.53 (0.15)

40% 0.59 (0.20) 0.56 (0.22) 0.47 (0.19) 0.55 (0.21) 0.54 (0.18)

ADLG 200 iter 0% 0.59 (0.17) 0.47 (0.24) 0.45 (0.21) 0.54 (0.22) 0.58 (0.17)

20% 0.42 (0.25) 0.46 (0.24) 0.50 (0.23) 0.44 (0.19) 0.46 (0.22)

40% 0.55 (0.20) 0.51 (0.23) 0.51 (0.19) 0.58 (0.18) 0.54 (0.17)

ADLG 500 iter 0% 0.42 (0.26) 0.39 (0.23) 0.44 (0.25) 0.43 (0.21) 0.37 (0.21)

20% 0.56 (0.19) 0.56 (0.19) 0.53 (0.19) 0.50 (0.20) 0.56 (0.18)

40% 0.37 (0.27) 0.38 (0.23) 0.45 (0.22) 0.51 (0.20) 0.43 (0.24)

ADLG 1000 iter 0% 0.54 (0.21) 0.62 (0.19) 0.53 (0.20) 0.54 (0.22) 0.56 (0.22)

20% 0.32 (0.24) 0.37 (0.27) 0.37 (0.25) 0.43 (0.24) 0.36 (0.22)

40% 0.51 (0.24) 0.55 (0.24) 0.46 (0.23) 0.52 (0.20) 0.49 (0.21)

Median 9x9 0% 0.29 (0.24) 0.38 (0.23) 0.42 (0.27) 0.35 (0.21) 0.39 (0.23)

20% 0.60 (0.18) 0.56 (0.23) 0.52 (0.19) 0.50 (0.19) 0.57 (0.20)

40% 0.42 (0.25) 0.48 (0.22) 0.47 (0.19) 0.44 (0.18) 0.45 (0.21)

Table 3.13: K-means clustering (anatomical structures) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD)
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H-max K = 2 K = 3 K = 4 K = 5 K = 6

Original 0% 10.2 (12.5) 19.2 (15.5) 24.0 (22.3) 14.4 (13.2) 20.0 (18.4)

20% 16.3 (14.4) 17.8 (20.6) 16.0 (14.3) 18.5 (13.7) 11.1 (12.2)

40% 15.5 (14.6) 19.0 (19.8) 15.5 (15.0) 16.3 (18.4) 19.5 (20.5)

ADLG 50 iter 0% 16.6 (13.1) 15.1 (17.1) 18.5 (14.1) 14.5 (14.6) 10.7 (10.3)

20% 14.1 (11.0) 14.9 (15.6) 19.9 (18.4) 14.5 (18.0) 14.4 (19.5)

40% 17.2 (14.7) 13.7 (16.2) 17.0 (17.0) 15.8 (14.0) 15.8 (18.2)

ADLG 100 iter 0% 12.7 (14.0) 17.4 (15.7) 19.7 (16.0) 18.2 (15.0) 20.7 (19.5)

20% 16.0 (14.3) 18.3 (20.2) 13.4 (10.5) 20.8 (20.9) 16.7 (12.7)

40% 10.7 (12.1) 16.1 (19.5) 21.7 (16.3) 13.5 (13.6) 14.0 (16.6)

ADLG 200 iter 0% 14.4 (13.2) 20.6 (21.1) 25.3 (17.7) 17.2 (17.7) 11.2 (12.7)

20% 24.8 (16.0) 24.3 (21.1) 19.0 (19.4) 24.8 (19.6) 23.7 (19.7)

40% 16.6 (13.9) 20.1 (18.7) 17.4 (15.1) 14.7 (18.7) 14.9 (14.3)

ADLG 500 iter 0% 27.1 (24.3) 26.8 (15.7) 24.8 (20.0) 22.8 (17.3) 28.4 (20.4)

20% 16.8 (14.5) 14.9 (15.3) 18.7 (15.1) 20.0 (18.8) 14.5 (14.6)

40% 29.3 (25.1) 29.3 (19.5) 28.1 (27.5) 20.9 (18.8) 29.1 (25.9)

ADLG 1000 iter 0% 17.1 (17.3) 11.8 (13.8) 18.5 (16.5) 13.5 (15.0) 15.4 (17.1)

20% 37.9 (25.9) 31.6 (24.4) 34.6 (30.4) 25.3 (24.7) 35.7 (26.5)

40% 17.9 (17.1) 17.7 (20.1) 21.9 (17.7) 18.2 (20.4) 23.1 (18.1)

Median 9x9 0% 39.3 (24.6) 31.8 (23.8) 24.9 (22.3) 34.3 (23.9) 29.9 (20.7)

20% 14.6 (15.2) 14.7 (16.0) 17.5 (13.1) 21.9 (20.6) 13.3 (14.2)

40% 30.1 (20.7) 21.2 (20.0) 21.0 (17.2) 23.2 (20.4) 25.5 (21.2)

Column K = 5 has several minima. However, none of them is the minimum value of the table.

Therefore, no value in that column is shown in bold formatting

Table 3.14: K-means clustering (anatomical structures) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD)
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(a) Original (b) ADLG 50 iterations (c) ADLG 100 iterations

(d) ADLG 200 iterations (e) ADLG 500 iterations (f) ADLG 1000 iterations

(g) Median 9x9 filter

Figure 3.26: K-means variation with pre-processing (K = 6 and H-max = 20%)

As seen in Figure 3.26 the resulting margin-to-margin segmentation slightly varies with the

pre-processing method used, although some differences can be attributed to the speckle noise

reduction. For example in Figure 3.26a the method does not detect the heterogeneous area in the

upper right corner of the mammary gland which is detected using pre-processing methods.

On the other hand, this smoothing can also affect large contiguous areas with similar echogenic-

ity in the original image that end up undetected. This can be seen in ADLG pre-processed versions

in the right lower bound of the segmentation where the method misses out an area of the mammary

gland with less intensity which is detected in the original image.
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(a) H-max = 0% (b) H-max = 20% (c) H-max = 40%

Figure 3.27: K-means variation with H-max (ADLG with 50 iterations and K = 6)

Figure 3.27 indicates that the variation in the value of H-maxima Transform induces somewhat

different results. The absence of this suppression not only leads the path to pass through small

maxima along the way that may not be part of the region of interest, as depicted in the lower

left bound of the mammary gland in Figure 3.27a but also to go through regions of high gradient

within the region of interest that are not boundaries, as seen in the path along the skin of the same

figure.

The use of higher values for H-max might also under-segment areas that have lower gradient

transitions to other structures, although that is not the case in any of the figures displayed.

(a) K = 2 (b) K = 3 (c) K = 4

(d) K = 5 (e) K = 6

Figure 3.28: K-means variation with number of clusters (ADLG with 50 iterations and H-max =
20%)

Figure 3.28 also suggests small variations with the number of clusters with some areas being

falsely detected with a small number of clusters, as seen in in the upper bound of the mammary

gland in Figure 3.28a and some areas wrongly undetected due to a higher number of clusters, as
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depicted in the right lower bound of the mammary gland for K = 6 Figure 3.28e compared to

K = 3 in Figure 3.28b.

The best results, as stated above, resulted from pre-processing the image with the ADLG filter

using 50 iterations, K = 6 clusters and with a 20% H-max suppression.

3.6.3.2 Mean shift clustering

This method performs Mean shift clustering using the cluster centroid locations from K-means as

initial seeds to segment the anatomical structures in the ultrasound image. The parameters used

for K-means result from Section 3.6.3.1 experiments and they are K = 6 clusters, H−max = 20%

and on the median filtered by a ADLG filter using 50 iterations.

The implementation uses a Mean shift clustering algorithm adaptation of [24] by Co-supervisor

João Pedro Fonseca Teixeira which has several parameters apart from the initial seeds such as

bandwidth and X,Y position weights relative to image.

However this time the goal is, not to segment a lesion, but to perform segmentation over the

anatomical structures present in the image. Therefore, after performing Mean shift clustering, a

Minimum Path algorithm created by Supervisor Hélder Filipe Pinto de Oliveira [49] is used to find

the shortest paths from one margin to the other of the image.

A grid search was used to test the several parameters:

• Input image: Original, ADLG filtered (50, 100, 200, 500, 1000 iterations), Median filtered

with 9×9 kernel

• Bandwidth: 0.02, 0.05, 0.1

• Position weights: 0.0625, 0.125, 0.25 and 1

The complete results for the validation set are present in Appendix A.3. Because of the high

number of results for this experiment, only the 8 best combinations for SD and the 2 worst are

shown below in Tables 3.15 and 3.16. Due to time constraints, only SD is shown for this method.
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Best parameters

ADLG 500 iter
Bandwidth = 0.1
Weight = 0.125

ADLG 500 iter
Bandwidth = 0.1
Weight = 0.0625

Median 9x9
Bandwidth = 0.02

Weight = 0.25

ADLG 500 iter
Bandwidth = 0.05

Weight = 0.25

SD 0.64 (0.16) 0.62 (0.14) 0.62 (0.18) 0.62 (0.21)

ADLG 200 iter
Bandwidth = 0.02

Weight = 0.125

ADLG 200 iter
Bandwidth = 0.02

Weight = 1

ADLG 500 iter
Bandwidth = 0.02

Weight = 1

ADLG 50 iter
Bandwidth = 0.02

Weight = 0.25

SD 0.61 (0.16) 0.60 (0.18) 0.60 (0.20) 0.59 (0.14)

Best parameters

Median 9x9
Bandwidth = 0.02

Weight = 0.25

ADLG 500 iter
Bandwidth = 0.02

Weight = 1

ADLG 200 iter
Bandwidth = 0.05

Weight = 1

ADLG 200 iter
Bandwidth = 0.02

Weight = 0.125

AD 10.8 (12.4) 10.8 (11.4) 11.3 (11.0) 12.3 (14.7)

ADLG 500 iter
Bandwidth = 0.1
Weight = 0.125

ADLG 50 iter
Bandwidth = 0.02

Weight = 0.25

ADLG 500 iter
Bandwidth = 0.05

Weight = 1

ADLG 100 iter
Bandwidth = 0.02
Weight = 0.0625

AD 12.9 (13.4) 12.9 (10.9) 13.0 (10.9) 13.7 (16.4)

Table 3.15: Mean shift clustering (anatomical structures) - Best validation metrics combination
(average and standard deviation) for parameters choice using Sørensen–Dice coefficient (SD) and
Average Distance (AD)

Worst parameters

Original
Bandwidth = 0.1
Weight = 0.0625

Original
Bandwidth = 0.1
Weight = 0.125

SD 0.15 (0.27) 0.21 (0.27)

Worst parameters

Original
Bandwidth = 0.1
Weight = 0.0625

Original
Bandwidth = 0.1
Weight = 0.125

AD 109.8 (50.3) 91.4 (54.0)

Table 3.16: Mean shift clustering (anatomical structures) - Worst validation metrics combination
(average and standard deviation) for parameters choice using Sørensen–Dice coefficient (SD) and
Average Distance (AD)
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(a) ADLG 500 iterations (b) ADLG 1000 iterations

Figure 3.29: Mean shift variation with pre-processing (Bandwidth = 0.1 and X ,Y weights =
0.125)1

The performance of Mean shift clustering increases with the number of iterations used for

ADLG filter, as seen in Figures 3.29a and 3.29b. It is worth noting that Mean shift clustering

has difficulty finding the shortest path in images pre-processed by ADLG with a low number of

iterations as well as with the Median 9x9 filter, as expressed in Footnote 1.

(a) X ,Y weights = 0.0625 (b) X ,Y weights = 0.125 (c) X ,Y weights = 0.25

(d) X ,Y weights = 1

Figure 3.30: Mean shift variation with X ,Y weights (ADLG with 500 iterations and Bandwidth =
0.1)

Figure 3.30 suggests that lower weights for positions X,Y improve the quality of the results.

In Figures 3.30a and 3.30b all three structures, skin, subcutaneous fat and mammary gland, and

consequently, thoracic region, are reasonably segmented. With higher values, however, the seg-

mentation quality decays as illustrated in Figure 3.30c, in which not all structures are segmented.

1The results for Original image, ADLG with 50, 100 and 200 iterations and Median filtered 9x9 are not displayed
in Figure 3.29 because this method could not find the shortest paths for these variations of pre-processing.
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In Figure 3.30d, although the upper and lower boundaries of the mammary gland are visually

close to the ground truth for this image in particular, the results for other images were not as

satisfactory and it should also be pointed out that in the figure in question, the skin is also poorly

segmented compared to the other variants.

(a) Bandwidth = 0.02 (b) Bandwidth = 0.05 (c) Bandwidth = 0.1

Figure 3.31: Mean shift variation with bandwidth (ADLG with 500 iterations and X ,Y weights =
0.125)

Finally, Figure 3.31 shows that lower values of bandwidth might be useful to detect other

structures as depicted in the lower red line of Figure 3.31a which roughly detects portions of what

seems to be the rib. Figure 3.31b and Figure 3.31c show that for higher values of bandwidth this

method reasonably segments the expected structures assessed.

The best results, as shown above in Table 3.15, were for ADLG with 500 iterations, Bandwidth

= 0.1, and X,Y Weight = 0.125.

3.6.3.3 Watershed

As with all the methods in this pipeline this method is essentially the same as the respective one in

Section 3.6.1. However this time the goal is, not to segment a lesion, but to perform segmentation

over the anatomical structures present in the image.

Therefore, because we want to detect transitions from brighter to darker areas, Watershed

segmentation was performed on the complementary of the image and followed, again, by a Mini-

mum Path algorithm created by Supervisor Hélder Filipe Pinto de Oliveira [49] is used to find the

shortest paths from one margin to the other of the image.

A grid search was used to test several parameters:

• Input image: Original, ADLG filtered (50, 100, 200, 500, 1000 iterations), Median filtered

with 9×9 kernel (As stated above, the complementary of these images was used)

• H-min suppression: 0%, 5%, 10%, 20% of image’s intensity range

The results for the validation set are displayed below in Tables 3.17 and 3.18 and show that

SD is the highest for original image with H-min = 0%, and AD is the lowest for ADLG with 50

iterations and H-min = 10%.
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H-min
0% 5% 10% 20%

Original 0.47 (0.18) 0.32 (0.14) 0.31 (0.16) 0.33 (0.16)

ADLG 50 iter 0.30 (0.17) 0.28 (0.17) 0.42 (0.18) 0.42 (0.24)

ADLG 100 iter 0.38 (0.24) 0.23 (0.25) 0.32 (0.20) 0.28 (0.24)

ADLG 200 iter 0.09 (0.07) 0.36 (0.21) 0.31 (0.25) 0.09 (0.06)

ADLG 500 iter 0.34 (0.21) 0.18 (0.18) 0.09 (0.05) 0.21 (0.17)

ADLG 1000 iter 0.17 (0.21) 0.11 (0.14) 0.15 (0.18) 0.12 (0.15)

Median 9x9 0.11 (0.13) 0.34 (0.18) 0.27 (0.23) 0.09 (0.08)

Table 3.17: Watershed segmentation (anatomical structures) - Validation metrics (average and
standard deviation) for parameters choice using Sørensen–Dice coefficient (SD)

H-min
0% 5% 10% 20%

Original 21.9 ( 15.0) 24.9 (11.3) 27.5 (16.6) 28.3 (18.2)

ADLG 50 iter 31.4 ( 18.2) 36.1 (18.6) 21.5 (12.5) 24.1 (22.3)

ADLG 100 iter 27.0 ( 20.0) 50.5 (40.3) 26.2 (16.9) 29.7 (22.5)

ADLG 200 iter 59.7 ( 23.6) 26.1 (20.8) 30.8 (25.2) 60.1 (23.3)

ADLG 500 iter 27.3 ( 20.5) 50.0 (33.5) 60.7 (28.8) 44.1 (26.2)

ADLG 1000 iter 54.0 ( 33.7) 61.5 (30.8) 57.1 (34.2) 59.6 (23.0)

Median 9x9 58.3 ( 27.2) 24.2 (16.9) 33.1 (25.9) 58.1 (25.9)

Table 3.18: Watershed segmentation (anatomical structures) - Validation metrics (average and
standard deviation) for parameters choice using Average Distance (AD)
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(a) Original (b) ADLG 50 iterations (c) ADLG 100 iterations

(d) ADLG 200 iterations (e) ADLG 500 iterations (f) ADLG 1000 iterations

(g) Median 9x9 filter

Figure 3.32: Watershed variation with pre-processing (H-min=0%)

Figure 3.32 shows that Watershed has difficulty finding anatomical structures. As seen in this

figure, images pre-processed for speckle noise reduction lead to less structures to be found. This

can be explained since over-segmentation occurs because every regional minimum, even if tiny

and insignificant, forms its own catchment basin. One solution is to modify the image to remove

minima that are too shallow using the H-minima Transform.
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(a) H-min = 0% (b) H-min = 5% (c) H-min = 10%

(d) H-min = 20%

Figure 3.33: Watershed variation with H-min (Original image)

Figure 3.33 tries to illustrate exactly this, with the number of margin-to-margin segmentation

lines decreasing with an increase in minima suppression. Although this is not apparent in the

figures displayed, the best results were found for the original image with a 0% minima suppression

(no suppression).

3.7 Breast ultrasound segmentation

After an extensive experimentation with the several parameters on the validation set, the best

combinations for each method were applied to the full dataset. Tables 3.19 and 3.20 summarize

the resulting metrics for every method tested.

Pipeline #1 Pipeline #2
K-means
clustering

Watershed
segmentation

Mean shift
clustering

Active Contour
model

Region
growing

Polar
Minimum path

SD 0.57 (0.33) 0.60 (0.23) 0.55 (0.19) 0.72 (0.19) 0.60 (0.28) 0.70 (0.26)

AD 12.1 (23.6) 6.3 (9.1) 7.6 (14.1) 4.3 (6.4) 18.9 (33.8) 6.4 (17.3)

Table 3.19: Pipeline #1 and Pipeline #2 (lesions) - Full dataset metrics results (average and stan-
dard deviation) of the best parameter combination for each method using the Sørensen–Dice co-
efficient (SD) and the Average distance (AD)
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Skin Subcutaneous
Fat

Mammary
Gland

Thoracic
Region

Average

K-means
clustering

SD 0.61 (0.22) 0.49 (0.29) 0.49 (0.32) 0.71 (0.20) 0.57 (0.28)

AD 3.1 (5.5) 17.4 (17.2) 23.2 (24.8) 13.1 (17.0) 13.4 (18.3)

Mean shift
clustering

SD 0.48 (0.27) 0.44 (0.29) 0.44 (0.32) 0.64 (0.22) 0.49 (0.28)

AD 13.8 (24.5) 29.6 (34.2) 38.9 (54.3) 15.0 (13.3) 22.4 (32.0)

Watershed
segmentation

SD 0.52 (0.25) 0.51 (0.26) 0.32 (0.29) 0.66 (0.22) 0.50 (0.28)

AD 3.4 (5.1) 17.2 (20.9) 41.4 (37.0) 21.3 (20.3) 20.4 (27.1)

Table 3.20: Pipeline #3 (anatomical structures) - Full dataset metrics results (average and standard
deviation) of the best parameter combination for each method using the Sørensen–Dice coefficient
(SD) and the Average distance (AD)

For lesion segmentation, the results for the full dataset further confirm the results for the vali-

dation set. As seen in Table 3.19, Pipeline #2 methods outperform methods from Pipeline #1 which

suggests that region-based and contour-based methods are better suited than clustering-based and

watershed-based method for this type of segmentation. Moreover, as with the validation set, Active

Contour model is the most successful in lesion segmentation.

On one hand, on K-means, K is chosen manually, and because ultrasounds have low resolution

and a good amount of speckle noise , the optimal K often varies from image to image. On the other

hand, clustering-based methods are very dependent on initial values and is very difficult to pick

the values of the initial centroids. Furthermore, centroids can be dragged by outliers, or outliers

might get their own cluster instead of being ignored. In the case of Watershed segmentation, this

method usually results in over-segmentation due to its noise sensitivity. One solution to this is to

use markers and start flooding from those specific seed points. The fact that lesions may have a

homogeneous nature, if they are benign, aids the results for Region growing in which pixels with

similar properties are clustered together to form a homogeneous region. Moreover, since lesion

boundaries usually have strong edges this gives an advantage to deformable models, like Active

contour model, which because of their dynamic and iterative nature can adapt to the shape of

the object. Moreover, this property of having strong edges also helps Polar Minimum Path since

this method uses the gradient of the image to find the shortest path. Therefore, it is expected for

methods from Pipeline #2 to outperform those of Pipeline #1.

In the matters of anatomical structures segmentation, the results for the full dataset diverge

from the validation set. As seen in Table 3.20, the average best performing method is still K-means

clustering. However, Mean shift clustering, which had comparable results in the validation set, has

an inferior performance for the full dataset. Additionally, for the full dataset each structure was

evaluated individually as well. K-means clustering is the best performing method for skin, mam-

mary gland and thoracic region segmentation but Watershed has better results for subcutaneous

fat segmentation. Nevertheless, K-means clustering achieves similar results for this structure’s

segmentation.
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As stated before, the very nature of Watershed segmentation is very sensitive to noise and,

consequently, prone to over-segmentation which can lead to undesirable results and, thus, to un-

expected paths from margin-to-margin. Furthermore, in the case of Mean shift clustering, this

method has its initial seeds dependent on the results from K-means which means that errors in

the latter method are propagated to the former. This might explain the reason this method falls

behind K-means in the detection and segmentation of every structure. For these reasons, it is safe

to presume K-means clustering results to exceed those of Mean shift clustering and Watershed

segmentation for anatomical structures segmentation.

3.8 Summary

In this chapter, several of the segmentation approaches attempted were documented and the exper-

imental results displayed.

The chapter started with a brief introduction of the dataset followed by a detailed description

of the pipeline models used. Next, the reader was elucidated on the metrics used for results com-

parison, although only the Sørensen–Dice coefficient and the Average distance were effectively

considered and shown for each method. After that, the pre-processing phase is elaborated and the

steps to keep only the acquisition window were shown. Afterwards, the segmentation methods

are laid out with the various parameters combinations tested and their respective results for the

validation set, both visual and numeric, are shown.

Overall, the region-based and contour-based methods, present in Pipeline #2, were more

successful for lesion segmentation compared to clustering-based and watershed-based methods,

present in Pipeline #1. On the other hand, clustering-based methods performed better for anatom-

ical structures segmentation than the watershed-based method. The most successful lesion seg-

mentation method was the Active Contour model and the most successful anatomical structure

segmentation method was K-means clustering but Mean shift clustering had comparable results as

well.

Finally, the best combination of parameters for each method was tested on the full dataset

with Pipeline #2 methods outperforming Pipeline #1 methods for lesion segmentation and Ac-

tive Contour model, again, achieving the best results for this type of segmentation, which further

corroborated the hypothesis. With respect to the anatomical structures, Pipeline #3, contrarily to

the validation set, Mean shift clustering underperforms in the full dataset. However, K-means

clustering was still the best overall segmentation method, having the best results for skin, mam-

mary gland and thoracic region segmentation and Watershed segmentation had the best results

for subcutaneous fat segmentation, although K-means clustering had very similar results for this

structure.



Chapter 4

Conclusion and future work

This chapter summarizes the research performed throughout this dissertation, its main conclusions,

and contributions. Lastly, we list some ideas to improve our work in the future.

4.1 Overview and contributions

Breast cancer is the predominant cause of cancer in women globally. In recent years, the mor-

tality rate has been decreasing not only because of study of the primary causes related with this

type of cancer, such as late first full-term pregnancy, late menopause, moderate alcohol intake,

and genetics, but also because of the early detection, diagnosis, and treatment improvement of

this malignancy. Since ultrasound imaging does not expose the patient to ionizing radiation, it

represents a safer, easily accessible and affordable alternative to mammograms for breast cancer

detection. Therefore, this medical imaging technique can be of the utmost usefulness for study,

evaluation and development of different techniques for anatomical landmark segmentation of the

different structures and lesions of the female breast.

Taking this into consideration, it is possible to allow a better communication between the

physician and the patients and further empower them by developing a solution for automated seg-

mentation of anatomical structures, such as skin, subcutaneous fat, mammary gland, and thoracic

region. This dissertation explores six different methods for lesion segmentation - K-means clus-

tering, Mean shift clustering, Watershed segmentation, Region growing, Active contour model

(Snakes) and Polar minimum path; and three for anatomical structures segmentation - K-means

clustering, Mean shift clustering and Watershed segmentation, all of them followed by a shortest

path algorithm to connect one margin to the other.

Using Pixel-Area and Contour-wise metrics, the results are compared to manually delineated

annotations by a professional physician. These results suggest a better lesion segmentation using

countour-based and region-based methods in contrast to clustering-based and watershed-based

methods. Furthermore, Active contour model (SD = 0.72, AD = 4.3) was the best performing

method for this type of segmentation. In contrast, results reveal K-means clustering to be the most

effective method for anatomical structures segmentation. Additionally, this method exceeds both

67
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Watershed and Mean shift at skin (SD = 0.61, AD = 3.1), mammary gland (SD = 0.49, AD = 23.2)

and thoracic region (SD = 0.71, AD = 13.1) segmentation. Watershed segmentation, however,

outperforms the other two at subcutaneous fat (SD = 0.51, AD = 17.2) segmentation.

4.2 Future work

This dissertation shows that although we were able to perform segmentation of lesions and anatom-

ical structures in breast ultrasound images there is still room for furtherance in this field. Below,

we list some possible improvements that we propose to implement in the future.

• Development of machine learning algorithms for segmentation of structures. In this dis-

sertation only classical methods were tested;

• Acquisition of more and better annotations. The annotations used in this dissertation were

poorly detailed and the number of annotations for anatomical structures segmentation was

very small;

• Develop an automated detection algorithm for lesions. Several tests were conducted through-

out the development of this dissertation, namely using the Circular Hough Transform. The

tests were successful for some lesions (benign). However, due to the nature of malignant

lesions (heterogeneous echogenicity and irregular shape), automated detection could not be

generalized and, thus, abandoned;

• Extend the pre-processing study with other methods;

• Explore specific parameters for each anatomical structure segmentation. The methods

used were assessed for the overall segmentation of the structures and not for each specific

structure.

• Explore other evaluation metrics to overcome some contradictions detected by the ones

used for this research.
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Appendix

A.1 Mean shift clustering (lesions)

Bandwidth
0.02 0.05 0.1

Original 0.15 (0.16) 0.14 (0.16) 0.14 (0.17)
ADLG 50 iter 0.16 (0.13) 0.16 (0.17) 0.15 (0.20)
ADLG 100 iter 0.15 (0.12) 0.17 (0.16) 0.16 (0.20)
ADLG 200 iter 0.16 (0.11) 0.18 (0.17) 0.17 (0.20)
ADLG 500 iter 0.19 (0.14) 0.20 (0.17) 0.17 (0.20)
ADLG 1000 iter 0.22 (0.14) 0.20 (0.17) 0.20 (0.23)
Median 9x9 0.16 (0.16) 0.16 (0.17) 0.14 (0.17)
Column Bandwidth = 0.05 has several maxima.

However, none of them is the maximum value of the table.

Therefore, no value in that column is shown in bold formatting

Figure A.1: Mean shift segmentation (lesions) - Validation metrics (average and standard de-
viation) for parameters choice using Sørensen–Dice coefficient (SD) for X,Y position weight =
0.0625
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Bandwidth
0.02 0.05 0.1

Original 58.0 (55.5) 100.9 (60.8) 106.0 (62.3)

ADLG 50 iter 45.2 (48.9) 94.0 (56.5) 111.1 (57.7)

ADLG 100 iter 51.4 (48.2) 92.4 (56.1) 111.1 (58.8)

ADLG 200 iter 50.5 (51.4) 92.6 (58.9) 111.7 (62.4)

ADLG 500 iter 45.0 (46.4) 83.5 (54.4) 108.1 (61.4)

ADLG 1000 iter 41.3 (44.9) 84.1 (57.4) 107.9 (63.5)

Median 9x9 48.3 (46.8) 96.3 (56.4) 109.4 (60.9)

Figure A.2: Mean shift segmentation (lesions) - Validation metrics (average and standard devia-
tion) for parameters choice using Average Distance (AD) for X,Y position weight = 0.0625

Bandwidth
0.02 0.05 0.1

Original 0.18 (0.16) 0.18 (0.18) 0.14 (0.17)

ADLG 50 iter 0.22 (0.14) 0.20 (0.18) 0.16 (0.20)

ADLG 100 iter 0.24 (0.14) 0.22 (0.19) 0.17 (0.20)

ADLG 200 iter 0.24 (0.15) 0.22 (0.17) 0.16 (0.21)

ADLG 500 iter 0.28 (0.18) 0.24 (0.19) 0.18 (0.22)

ADLG 1000 iter 0.31 (0.21) 0.25 (0.18) 0.22 (0.23)

Median 9x9 0.20 (0.16) 0.19 (0.18) 0.14 (0.17)

Figure A.3: Mean shift segmentation (lesions) - Validation metrics (average and standard devia-
tion) for parameters choice using Sørensen–Dice coefficient (SD) for X,Y position weight = 0.125

Bandwidth
0.02 0.05 0.1

Original 18.7 (30.8) 71.3 (55.6) 106.1 (62.1)
ADLG 50 iter 11.0 (14.4) 62.6 (45.5) 107.1 (60.5)
ADLG 100 iter 10.2 (13.3) 62.2 (47.1) 106.2 (60.2)
ADLG 200 iter 13.0 (19.2) 61.4 (49.0) 108.0 (62.5)
ADLG 500 iter 11.0 (13.1) 58.8 (50.6) 106.3 (61.4)
ADLG 1000 iter 11.6 (16.6) 51.9 (47.1) 99.0 (61.3)
Median 9x9 14.3 (16.8) 63.7 (48.4) 107.1 (59.5)

Figure A.4: Mean shift segmentation (lesions) - Validation metrics (average and standard devia-
tion) for parameters choice using Average Distance (AD) for X,Y position weight = 0.125
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Bandwidth
0.02 0.05 0.1

Original 0.21 (0.18) 0.28 (0.22) 0.16 (0.18)

ADLG 50 iter 0.22 (0.16) 0.34 (0.22) 0.19 (0.21)

ADLG 100 iter 0.22 (0.17) 0.34 (0.21) 0.22 (0.23)

ADLG 200 iter 0.24 (0.18) 0.34 (0.22) 0.22 (0.22)

ADLG 500 iter 0.27 (0.21) 0.39 (0.21) 0.26 (0.25)

ADLG 1000 iter 0.32 (0.24) 0.42 (0.23) 0.29 (0.26)

Median 9x9 0.22 (0.19) 0.30 (0.21) 0.19 (0.20)

Figure A.5: Mean shift segmentation (lesions) - Validation metrics (average and standard devia-
tion) for parameters choice using Sørensen–Dice coefficient (SD) for X,Y position weight = 0.25

Bandwidth
0.02 0.05 0.1

Original 5.80 ( 7.2) 35.0 (47.6) 76.7 (52.5)
ADLG 50 iter 7.40 (10.1) 25.0 (35.2) 79.0 (58.0)
ADLG 100 iter 8.90 (11.1) 25.0 (38.6) 75.1 (58.1)
ADLG 200 iter 9.80 (13.3) 26.6 (38.8) 68.9 (54.2)
ADLG 500 iter 10.20 (12.1) 23.1 (35.0) 67.9 (54.3)
ADLG 1000 iter 9.90 (10.7) 20.9 (31.9) 66.1 (51.3)
Median 9x9 9.20 (10.9) 29.5 (37.6) 70.9 (51.0)

Figure A.6: Mean shift segmentation (lesions) - Validation metrics (average and standard devia-
tion) for parameters choice using Average Distance (AD) for X,Y position weight = 0.25

Bandwidth
0.02 0.05 0.1

Original 0.05 (0.08) 0.33 (0.25) 0.47 (0.25)
ADLG 50 iter 0.09 (0.10) 0.30 (0.23) 0.51 (0.24)
ADLG 100 iter 0.10 (0.11) 0.32 (0.24) 0.51 (0.22)
ADLG 200 iter 0.11 (0.11) 0.32 (0.23) 0.52 (0.22)
ADLG 500 iter 0.14 (0.15) 0.36 (0.25) 0.55 (0.21)
ADLG 1000 iter 0.14 (0.16) 0.38 (0.24) 0.57 (0.22)
Median 9x9 0.07 (0.09) 0.30 (0.23) 0.50 (0.23)
Column Bandwidth = 0.02 has several maxima.

However, none of them is the maximum value of the table.

Therefore, no value in that column is shown in bold formatting

Figure A.7: Mean shift segmentation (lesions) - Validation metrics (average and standard devia-
tion) for parameters choice using Sørensen–Dice coefficient (SD) for X,Y position weight = 1
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Bandwidth
0.02 0.05 0.1

Original 26.0 (21.3) 7.7 ( 9.6) 7.1 (10.7)

ADLG 50 iter 24.7 (19.7) 12.3 (13.6) 7.7 (10.6)

ADLG 100 iter 24.3 (20.5) 12.7 (15.3) 7.8 (12.1)

ADLG 200 iter 23.3 (19.1) 12.8 (14.5) 7.3 ( 9.2)

ADLG 500 iter 23.2 (19.4) 12.3 (12.8) 6.7 ( 8.5)

ADLG 1000 iter 22.9 (19.7) 11.5 (10.9) 6.6 ( 8.2)

Median 9x9 26.7 (21.0) 12.1 (12.4) 7.1 ( 8.3)

Figure A.8: Mean shift segmentation (lesions) - Validation metrics (average and standard devia-
tion) for parameters choice using Average Distance (AD) for X,Y position weight = 1

A.2 Active Contour

Iterations
50 100 200 500 1000

Original 0.33 (0.23) 0.55 (0.25) 0.66 (0.21) 0.67 (0.24) 0.65 (0.24)
ADLG 50 iter 0.38 (0.24) 0.59 (0.25) 0.69 (0.20) 0.68 (0.24) 0.65 (0.26)
ADLG 100 iter 0.38 (0.24) 0.60 (0.24) 0.69 (0.20) 0.68 (0.24) 0.65 (0.26)
ADLG 200 iter 0.39 (0.24) 0.60 (0.24) 0.69 (0.20) 0.69 (0.24) 0.65 (0.26)
ADLG 500 iter 0.40 (0.24) 0.60 (0.23) 0.69 (0.20) 0.69 (0.24) 0.65 (0.25)
ADLG 1000 iter 0.41 (0.24) 0.60 (0.23) 0.68 (0.21) 0.69 (0.24) 0.65 (0.26)
Median 9x9 0.38 (0.25) 0.60 (0.25) 0.69 (0.20) 0.67 (0.24) 0.63 (0.26)

Figure A.9: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), SmoothFactor = 0, Con-
tractionBias = 0
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Iterations
50 100 200 500 1000

Original 13.7 (15.1) 6.5 (9.8) 3.4 (6.2) 5.1 (10.2) 8.1 (16.1)

ADLG 50 iter 12.7 (15.1) 6.0 (8.8) 3.3 (5.3) 7.2 (14.3) 13.5 (25.9)

ADLG 100 iter 12.6 (15.0) 5.9 (8.7) 3.3 (5.0) 7.2 (14.2) 13.5 (26.0)

ADLG 200 iter 12.3 (14.8) 5.9 (8.7) 3.4 (5.0) 7.2 (14.3) 13.4 (25.9)

ADLG 500 iter 11.9 (14.8) 5.9 (9.0) 3.7 (5.2) 7.0 (14.0) 13.3 (25.7)

ADLG 1000 iter 11.6 (15.0) 5.7 (8.6) 3.9 (5.6) 6.8 (13.5) 12.2 (22.5)

Median 9x9 12.7 (15.0) 5.8 (8.6) 3.5 (5.4) 8.0 (14.7) 14.8 (27.8)

Figure A.10: Active contour segmentation (lesions) - Validation metrics (average and standard de-
viation) for parameters choice using Average Distance (AD), SmoothFactor = 0, ContractionBias
= 0

Iterations
50 100 200 500 1000

Original 0.33 (0.23) 0.55 (0.25) 0.66 (0.21) 0.67 (0.24) 0.65 (0.25)
ADLG 50 iter 0.37 (0.24) 0.59 (0.25) 0.69 (0.20) 0.68 (0.24) 0.65 (0.26)
ADLG 100 iter 0.38 (0.24) 0.59 (0.24) 0.69 (0.20) 0.69 (0.24) 0.65 (0.26)
ADLG 200 iter 0.38 (0.24) 0.59 (0.24) 0.69 (0.20) 0.69 (0.24) 0.65 (0.26)
ADLG 500 iter 0.39 (0.24) 0.59 (0.23) 0.69 (0.20) 0.69 (0.24) 0.65 (0.25)
ADLG 1000 iter 0.41 (0.24) 0.60 (0.23) 0.68 (0.21) 0.69 (0.24) 0.65 (0.26)
Median 9x9 0.38 (0.24) 0.60 (0.25) 0.69 (0.20) 0.67 (0.24) 0.63 (0.26)

Figure A.11: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), SmoothFactor = 0.01,
ContractionBias = 0

Iterations
50 100 200 500 1000

Original 13.8 (15.1) 6.6 (9.8) 3.5 (6.3) 5.1 ( 9.9) 8.3 (16.4)

ADLG 50 iter 12.8 (15.2) 6.0 (8.9) 3.4 (5.2) 7.0 (14.1) 13.4 (25.6)

ADLG 100 iter 12.7 (15.1) 6.0 (8.8) 3.3 (4.9) 7.1 (14.0) 13.4 (25.9)

ADLG 200 iter 12.5 (14.9) 6.0 (8.9) 3.5 (5.0) 7.2 (14.2) 13.4 (25.8)

ADLG 500 iter 12.1 (14.9) 6.0 (9.1) 3.7 (5.1) 7.0 (13.9) 13.1 (25.3)

ADLG 1000 iter 11.7 (15.1) 5.8 (8.8) 3.9 (5.5) 6.7 (13.2) 12.1 (22.3)

Median 9x9 12.8 (15.1) 5.9 (8.7) 3.5 (5.3) 7.9 (14.6) 14.7 (27.6)

Figure A.12: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor = 0.01, Contrac-
tionBias = 0
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Iterations
50 100 200 500 1000

Original 0.31 (0.23) 0.53 (0.25) 0.66 (0.21) 0.68 (0.24) 0.66 (0.25)
ADLG 50 iter 0.37 (0.24) 0.58 (0.25) 0.69 (0.20) 0.69 (0.24) 0.65 (0.26)
ADLG 100 iter 0.37 (0.24) 0.59 (0.24) 0.69 (0.20) 0.69 (0.24) 0.65 (0.26)
ADLG 200 iter 0.37 (0.24) 0.59 (0.24) 0.69 (0.20) 0.69 (0.24) 0.65 (0.26)
ADLG 500 iter 0.38 (0.24) 0.59 (0.23) 0.68 (0.20) 0.69 (0.24) 0.66 (0.25)
ADLG 1000 iter 0.40 (0.24) 0.59 (0.23) 0.68 (0.21) 0.69 (0.24) 0.65 (0.26)
Median 9x9 0.37 (0.24) 0.59 (0.25) 0.68 (0.20) 0.67 (0.24) 0.64 (0.26)

Figure A.13: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), SmoothFactor = 0.04,
ContractionBias = 0

Iterations
50 100 200 500 1000

Original 14.7 (15.7) 7.1 (10.2) 3.7 (6.5) 4.6 ( 9.1) 7.0 (14.4)

ADLG 50 iter 13.2 (15.5) 6.2 ( 9.1) 3.4 (5.2) 6.8 (13.7) 13.2 (25.3)

ADLG 100 iter 13.2 (15.3) 6.3 ( 9.1) 3.4 (5.0) 6.8 (13.6) 13.2 (25.3)

ADLG 200 iter 13.0 (15.2) 6.2 ( 9.2) 3.5 (5.0) 7.0 (13.9) 13.1 (25.2)

ADLG 500 iter 12.5 (15.2) 6.2 ( 9.4) 3.7 (5.1) 6.9 (13.7) 12.8 (24.6)

ADLG 1000 iter 12.2 (15.4) 6.0 ( 9.1) 4.0 (5.4) 6.6 (13.0) 11.7 (21.4)

Median 9x9 13.4 (15.3) 6.4 ( 9.1) 3.7 (5.5) 7.7 (14.4) 14.4 (27.1)

Figure A.14: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor = 0.04, Contrac-
tionBias = 0

Iterations
50 100 200 500 1000

Original 0.29 (0.22) 0.50 (0.26) 0.64 (0.24) 0.67 (0.25) 0.66 (0.25)
ADLG 50 iter 0.34 (0.24) 0.55 (0.28) 0.66 (0.26) 0.65 (0.29) 0.62 (0.29)
ADLG 100 iter 0.35 (0.24) 0.56 (0.26) 0.66 (0.24) 0.66 (0.27) 0.63 (0.28)
ADLG 200 iter 0.35 (0.24) 0.55 (0.26) 0.66 (0.24) 0.67 (0.27) 0.63 (0.28)
ADLG 500 iter 0.36 (0.24) 0.57 (0.25) 0.67 (0.22) 0.68 (0.26) 0.65 (0.27)
ADLG 1000 iter 0.36 (0.25) 0.55 (0.26) 0.63 (0.26) 0.65 (0.29) 0.62 (0.29)
Median 9x9 0.34 (0.24) 0.56 (0.27) 0.67 (0.22) 0.66 (0.25) 0.62 (0.27)

Figure A.15: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), SmoothFactor = 0.1, Con-
tractionBias = 0
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Iterations
50 100 200 500 1000

Original 16.2 (17.2) 8.6 (13.6) 5.4 (11.6) 5.8 (12.2) 7.8 (16.3)

ADLG 50 iter 15.7 (17.8) 9.0 (13.9) 6.1 (12.0) 9.2 (16.3) 13.7 (23.2)

ADLG 100 iter 15.1 (17.8) 8.4 (14.0) 5.7 (12.1) 8.5 (16.5) 13.9 (25.0)

ADLG 200 iter 14.7 (16.2) 7.8 (11.2) 4.8 ( 8.0) 7.9 (14.3) 13.9 (24.0)

ADLG 500 iter 13.8 (16.1) 7.3 (11.0) 4.4 ( 7.1) 7.3 (13.9) 12.8 (22.8)

ADLG 1000 iter 14.3 (17.1) 8.3 (13.0) 6.1 (10.7) 8.3 (15.2) 12.4 (20.7)

Median 9x9 14.7 (15.9) 7.4 ( 9.9) 4.3 ( 6.3) 7.8 (14.1) 14.4 (26.0)

Figure A.16: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor = 0.1, Contraction-
Bias = 0

Iterations
50 100 200 500 1000

Original 0.09 (0.16) 0.18 (0.27) 0.24 (0.33) 0.26 (0.36) 0.26 (0.35)
ADLG 50 iter 0.04 (0.12) 0.08 (0.19) 0.10 (0.23) 0.11 (0.27) 0.10 (0.25)
ADLG 100 iter 0.05 (0.13) 0.08 (0.21) 0.11 (0.26) 0.13 (0.30) 0.13 (0.29)
ADLG 200 iter 0.03 (0.10) 0.04 (0.15) 0.05 (0.17) 0.04 (0.17) 0.04 (0.16)
ADLG 500 iter 0.02 (0.10) 0.04 (0.16) 0.05 (0.18) 0.05 (0.18) 0.05 (0.18)
ADLG 1000 iter 0.01 (0.01) 0.01 (0.01) 0.01 (0.02) 0.01 (0.04) 0.01 (0.04)
Median 9x9 0.04 (0.12) 0.08 (0.20) 0.11 (0.24) 0.11 (0.26) 0.10 (0.24)

Figure A.17: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), SmoothFactor = 0.2, Con-
tractionBias = 0

Iterations
50 100 200 500 1000

Original 29.9 (22.6) 26.3 (23.6) 24.3 (24.1) 24.0 (24.0) 25.4 (24.5)

ADLG 50 iter 33.2 (21.0) 31.4 (20.9) 29.9 (21.6) 30.2 (21.5) 31.8 (22.5)

ADLG 100 iter 33.3 (21.1) 31.4 (21.0) 29.8 (21.8) 29.1 (22.4) 29.5 (21.9)

ADLG 200 iter 35.5 (22.4) 34.8 (22.8) 34.4 (22.9) 34.4 (22.8) 34.6 (22.6)

ADLG 500 iter 35.6 (22.5) 34.9 (22.9) 34.5 (22.9) 34.4 (22.9) 34.4 (22.9)

ADLG 1000 iter 36.7 (21.9) 36.4 (21.7) 35.9 (21.7) 35.8 (21.9) 35.8 (21.9)

Median 9x9 33.3 (21.4) 31.5 (21.6) 30.2 (22.3) 30.7 (22.0) 33.6 (23.6)

Figure A.18: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor = 0.2, Contraction-
Bias = 0
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Iterations
50 100 200 500 1000

Original 0 (0.01) 0.01 (0.04) 0.02 (0.08) 0.02 (0.07) 0.02 (0.07)
ADLG 50 iter 0.01 (0.04) 0.03 (0.11) 0.05 (0.17) 0.05 (0.18) 0.04 (0.17)
ADLG 100 iter 0 (0.01) 0.01 (0.02) 0.01 (0.07) 0.02 (0.12) 0.02 (0.11)
ADLG 200 iter 0.01 (0.05) 0.03 (0.11) 0.04 (0.18) 0.05 (0.21) 0.05 (0.19)
ADLG 500 iter 0 (0.02) 0.01 (0.05) 0.01 (0.05) 0 (0.02) 0 (0.01)
ADLG 1000 iter 0 ( 0) 0 ( 0) 0 ( 0) 0 ( 0) 0 ( 0)
Median 9x9 0.01 (0.02) 0.01 (0.07) 0.01 (0.08) 0.01 (0.06) 0.01 (0.04)

Figure A.19: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), SmoothFactor = 0.5, Con-
tractionBias = 0

Iterations
50 100 200 500 1000

Original 36.9 (21.2) 36.4 (20.9) 36.1 (21.1) 36.1 (20.7) 36.4 (20.8)

ADLG 50 iter 36.4 (21.4) 35.2 (21.7) 34.4 (22.2) 34.7 (21.9) 35.9 (21.7)

ADLG 100 iter 37.5 (21.1) 37.0 (20.7) 36.4 (20.9) 36.1 (21.2) 36.2 (21.1)

ADLG 200 iter 36.6 (21.5) 35.8 (21.3) 35.1 (21.7) 34.8 (22.1) 35.2 (21.6)

ADLG 500 iter 37.7 (22.4) 37.6 (22.6) 37.5 (22.8) 37.6 (22.6) 37.6 (22.6)

ADLG 1000 iter 38.1 (22.2) 38.1 (22.2) 38.1 (22.2) 38.1 (22.2) 38.1 (22.2)

Median 9x9 37.5 (22.3) 37.2 (22.6) 37.2 (22.6) 37.6 (22.2) 38.1 (22.2)

Figure A.20: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor = 0.5, Contraction-
Bias = 0

Iterations
50 100 200 500 1000

Original 0.34 (0.23) 0.56 (0.25) 0.66 (0.22) 0.66 (0.24) 0.64 (0.25)
ADLG 50 iter 0.39 (0.24) 0.60 (0.25) 0.70 (0.20) 0.68 (0.24) 0.65 (0.26)
ADLG 100 iter 0.39 (0.24) 0.60 (0.24) 0.70 (0.20) 0.69 (0.24) 0.65 (0.26)
ADLG 200 iter 0.40 (0.24) 0.60 (0.24) 0.69 (0.20) 0.69 (0.24) 0.65 (0.26)
ADLG 500 iter 0.41 (0.24) 0.60 (0.23) 0.69 (0.20) 0.69 (0.24) 0.65 (0.26)
ADLG 1000 iter 0.42 (0.24) 0.61 (0.23) 0.69 (0.21) 0.69 (0.24) 0.65 (0.26)
Median 9x9 0.39 (0.25) 0.61 (0.24) 0.69 (0.20) 0.67 (0.24) 0.63 (0.26)

Figure A.21: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), SmoothFactor = 0, Con-
tractionBias = -0.01
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Iterations
50 100 200 500 1000

Original 13.3 (14.8) 6.4 (9.8) 3.6 (7.0) 6.0 (11.8) 9.8 (19.6)

ADLG 50 iter 12.4 (14.9) 5.8 (8.6) 3.3 (5.2) 7.5 (14.7) 13.9 (26.5)

ADLG 100 iter 12.3 (14.8) 5.7 (8.5) 3.3 (5.0) 7.5 (14.6) 13.7 (26.5)

ADLG 200 iter 12.1 (14.6) 5.7 (8.5) 3.4 (5.1) 7.4 (14.5) 13.7 (26.5)

ADLG 500 iter 11.7 (14.6) 5.7 (8.6) 3.6 (5.3) 7.2 (14.4) 13.8 (26.7)

ADLG 1000 iter 11.3 (14.7) 5.6 (8.4) 3.9 (5.7) 7.0 (13.6) 12.8 (23.5)

Median 9x9 12.3 (14.8) 5.5 (8.3) 3.5 (5.4) 8.2 (15.0) 15.0 (28.1)

Figure A.22: Active contour segmentation (lesions) - Validation metrics (average and standard de-
viation) for parameters choice using Average Distance (AD), SmoothFactor = 0, ContractionBias
= -0.01

Iterations
50 100 200 500 1000

Original 0.34 (0.23) 0.55 (0.25) 0.67 (0.21) 0.67 (0.24) 0.64 (0.25)
ADLG 50 iter 0.38 (0.24) 0.60 (0.25) 0.70 (0.20) 0.68 (0.24) 0.65 (0.26)
ADLG 100 iter 0.39 (0.24) 0.60 (0.24) 0.70 (0.20) 0.69 (0.24) 0.65 (0.26)
ADLG 200 iter 0.39 (0.24) 0.60 (0.24) 0.69 (0.20) 0.69 (0.24) 0.65 (0.26)
ADLG 500 iter 0.40 (0.24) 0.60 (0.23) 0.69 (0.20) 0.69 (0.24) 0.65 (0.25)
ADLG 1000 iter 0.41 (0.24) 0.60 (0.23) 0.69 (0.21) 0.69 (0.24) 0.65 (0.26)
Median 9x9 0.39 (0.25) 0.60 (0.25) 0.69 (0.20) 0.67 (0.24) 0.63 (0.26)

Figure A.23: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), SmoothFactor = 0.01,
ContractionBias = -0.01

Iterations
50 100 200 500 1000

Original 13.5 (15.0) 6.6 (9.9) 3.5 (6.4) 5.8 (11.4) 9.5 (18.7)

ADLG 50 iter 12.6 (14.9) 5.9 (8.6) 3.3 (5.3) 7.4 (14.6) 13.6 (26.1)

ADLG 100 iter 12.5 (14.9) 5.8 (8.6) 3.3 (5.0) 7.4 (14.5) 13.6 (26.2)

ADLG 200 iter 12.2 (14.8) 5.8 (8.7) 3.4 (5.0) 7.4 (14.4) 13.7 (26.3)

ADLG 500 iter 11.9 (14.7) 5.8 (8.8) 3.7 (5.3) 7.1 (14.3) 13.6 (26.5)

ADLG 1000 iter 11.5 (14.9) 5.6 (8.5) 3.9 (5.6) 6.9 (13.5) 12.6 (23.4)

Median 9x9 12.6 (14.9) 5.7 (8.4) 3.5 (5.4) 8.2 (14.9) 14.9 (27.9)

Figure A.24: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor = 0.01, Contrac-
tionBias = -0.01
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Iterations
50 100 200 500 1000

Original 0.32 (0.23) 0.54 (0.25) 0.67 (0.21) 0.68 (0.24) 0.66 (0.24)
ADLG 50 iter 0.37 (0.24) 0.59 (0.25) 0.70 (0.20) 0.69 (0.24) 0.65 (0.26)
ADLG 100 iter 0.38 (0.24) 0.59 (0.25) 0.69 (0.20) 0.69 (0.24) 0.65 (0.26)
ADLG 200 iter 0.38 (0.24) 0.59 (0.24) 0.69 (0.20) 0.69 (0.24) 0.65 (0.26)
ADLG 500 iter 0.39 (0.24) 0.59 (0.23) 0.69 (0.20) 0.69 (0.24) 0.65 (0.25)
ADLG 1000 iter 0.40 (0.24) 0.60 (0.23) 0.68 (0.21) 0.69 (0.24) 0.65 (0.26)
Median 9x9 0.38 (0.24) 0.60 (0.25) 0.69 (0.20) 0.67 (0.24) 0.64 (0.26)

Figure A.25: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), SmoothFactor = 0.04,
ContractionBias = -0.01

Iterations
50 100 200 500 1000

Original 14.2 (15.3) 6.9 (10.2) 3.7 (6.6) 5.0 ( 9.9) 7.1 (14.6)

ADLG 50 iter 13.0 (15.3) 6.0 (9.0) 3.3 (5.2) 7.1 (14.2) 13.5 (25.8)

ADLG 100 iter 12.9 (15.2) 6.1 (8.9) 3.4 (5.0) 7.1 (14.1) 13.4 (25.8)

ADLG 200 iter 12.7 (15.0) 6.1 (9.0) 3.5 (5.0) 7.2 (14.2) 13.4 (25.7)

ADLG 500 iter 12.3 (15.0) 6.1 (9.1) 3.7 (5.1) 7.0 (13.9) 13.3 (25.6)

ADLG 1000 iter 11.9 (15.1) 5.8 (8.8) 3.9 (5.5) 6.8 (13.2) 12.3 (22.6)

Median 9x9 13.2 (15.1) 6.2 (8.9) 3.7 (5.5) 8.0 (14.7) 14.6 (27.4)

Figure A.26: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor = 0.04, Contrac-
tionBias = -0.01

Iterations
50 100 200 500 1000

Original 0.30 (0.22) 0.52 (0.25) 0.66 (0.22) 0.69 (0.22) 0.68 (0.23)
ADLG 50 iter 0.35 (0.24) 0.57 (0.27) 0.67 (0.24) 0.67 (0.27) 0.63 (0.29)
ADLG 100 iter 0.35 (0.24) 0.56 (0.28) 0.65 (0.26) 0.65 (0.30) 0.61 (0.31)
ADLG 200 iter 0.36 (0.24) 0.57 (0.26) 0.67 (0.24) 0.66 (0.27) 0.63 (0.28)
ADLG 500 iter 0.37 (0.25) 0.56 (0.27) 0.65 (0.26) 0.65 (0.29) 0.62 (0.29)
ADLG 1000 iter 0.38 (0.25) 0.57 (0.25) 0.65 (0.24) 0.66 (0.27) 0.63 (0.28)
Median 9x9 0.36 (0.24) 0.58 (0.25) 0.69 (0.20) 0.68 (0.24) 0.64 (0.26)

Figure A.27: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), SmoothFactor = 0.1, Con-
tractionBias = -0.01
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Iterations
50 100 200 500 1000

Original 15.5 (16.2) 7.7 (10.9) 4.0 ( 7.0) 4.4 ( 8.7) 6.4 (13.9)

ADLG 50 iter 14.8 (17.1) 8.1 (12.8) 5.4 (10.8) 8.5 (16.0) 13.8 (25.0)

ADLG 100 iter 15.6 (19.2) 9.5 (16.9) 7.3 (16.1) 10.7 (19.7) 16.1 (27.2)

ADLG 200 iter 14.5 (17.0) 7.9 (12.8) 5.2 (10.4) 8.6 (16.0) 14.7 (25.3)

ADLG 500 iter 14.5 (17.9) 8.7 (14.8) 6.4 (12.8) 9.5 (17.3) 14.7 (25.2)

ADLG 1000 iter 13.7 (17.1) 7.8 (12.8) 5.8 (10.6) 8.1 (15.3) 12.6 (21.8)

Median 9x9 14.0 (15.6) 6.7 ( 9.4) 3.8 ( 5.5) 7.5 (14.2) 14.1 (26.4)

Figure A.28: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor = 0.1, Contraction-
Bias = -0.01

Iterations
50 100 200 500 1000

Original 0.10 (0.17) 0.52 (0.28) 0.66 (0.34) 0.69 (0.36) 0.68 (0.36)
ADLG 50 iter 0.06 (0.14) 0.57 (0.22) 0.67 (0.26) 0.67 (0.30) 0.63 (0.29)
ADLG 100 iter 0.05 (0.13) 0.56 (0.21) 0.65 (0.27) 0.65 (0.30) 0.61 (0.29)
ADLG 200 iter 0.03 (0.12) 0.57 (0.19) 0.67 (0.21) 0.66 (0.20) 0.63 (0.19)
ADLG 500 iter 0.02 (0.10) 0.56 (0.15) 0.65 (0.18) 0.65 (0.18) 0.62 (0.18)
ADLG 1000 iter 0.01 (0.01) 0.57 (0.01) 0.65 (0.02) 0.66 (0.04) 0.63 (0.04)
Median 9x9 0.05 (0.13) 0.58 (0.21) 0.69 (0.24) 0.68 (0.25) 0.64 (0.24)

Figure A.29: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), SmoothFactor = 0.2, Con-
tractionBias = -0.01

Iterations
50 100 200 500 1000

Original 29.5 (22.8) 25.8 (23.8) 24.0 (24.4) 23.7 (24.2) 25.0 (24.7)

ADLG 50 iter 32.4 (21.1) 30.2 (21.0) 28.6 (21.7) 28.9 (21.8) 30.5 (23.0)

ADLG 100 iter 33.3 (21.0) 31.3 (21.1) 29.8 (21.8) 29.1 (22.3) 29.5 (21.9)

ADLG 200 iter 35.2 (22.8) 34.5 (23.2) 34.1 (23.2) 34.1 (23.1) 34.3 (22.9)

ADLG 500 iter 36.0 (22.3) 35.4 (22.5) 35.0 (22.5) 34.8 (22.6) 34.8 (22.6)

ADLG 1000 iter 36.7 (21.9) 36.4 (21.7) 35.9 (21.7) 35.8 (21.9) 35.7 (21.9)

Median 9x9 33.3 (21.4) 31.4 (21.7) 30.2 (22.3) 30.7 (22.0) 33.7 (23.7)

Figure A.30: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor = 0.2, Contraction-
Bias = -0.01
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Iterations
50 100 200 500 1000

Original 0.02 (0.06) 0.05 (0.16) 0.08 (0.21) 0.09 (0.25) 0.09 (0.24)
ADLG 50 iter 0.01 (0.04) 0.04 (0.12) 0.06 (0.18) 0.05 (0.18) 0.05 (0.16)
ADLG 100 iter 0.02 (0.07) 0.06 (0.17) 0.08 (0.23) 0.08 (0.24) 0.07 (0.22)
ADLG 200 iter 0.02 (0.08) 0.04 (0.14) 0.06 (0.20) 0.07 (0.23) 0.06 (0.21)
ADLG 500 iter 0.01 (0.06) 0.02 (0.12) 0.02 (0.12) 0.02 (0.12) 0.02 (0.12)
ADLG 1000 iter 0 ( 0) 0 ( 0) 0 ( 0) 0 ( 0) 0 ( 0)
Median 9x9 0.01 (0.06) 0.03 (0.13) 0.04 (0.16) 0.05 (0.18) 0.04 (0.17)

Figure A.31: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), SmoothFactor = 0.5, Con-
tractionBias = -0.01

Iterations
50 100 200 500 1000

Original 35.4 (21.5) 33.9 (21.8) 33.0 (22.4) 32.4 (22.6) 33.3 (22.3)

ADLG 50 iter 35.8 (21.5) 34.5 (21.9) 33.5 (22.6) 34.1 (22.0) 35.3 (21.8)

ADLG 100 iter 35.5 (22.2) 34.2 (22.5) 33.4 (23.0) 33.8 (22.6) 35.3 (22.2)

ADLG 200 iter 36.2 (21.5) 35.4 (21.4) 34.7 (21.8) 34.4 (22.1) 34.8 (21.6)

ADLG 500 iter 37.2 (22.4) 37.1 (22.6) 37.1 (22.6) 37.1 (22.6) 37.1 (22.6)

ADLG 1000 iter 37.5 (22.1) 37.5 (22.1) 37.5 (22.1) 37.5 (22.1) 37.5 (22.1)

Median 9x9 36.3 (21.4) 35.3 (21.5) 34.4 (22.0) 34.4 (22.0) 35.2 (21.9)

Figure A.32: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor = 0.5, Contraction-
Bias = -0.01

Iterations
50 100 200 500 1000

Original 0.37 (0.24) 0.58 (0.24) 0.68 (0.21) 0.67 (0.24) 0.64 (0.25)
ADLG 50 iter 0.42 (0.25) 0.62 (0.24) 0.71 (0.20) 0.68 (0.24) 0.63 (0.26)
ADLG 100 iter 0.42 (0.25) 0.62 (0.23) 0.71 (0.20) 0.68 (0.24) 0.64 (0.26)
ADLG 200 iter 0.42 (0.25) 0.62 (0.23) 0.71 (0.20) 0.69 (0.24) 0.64 (0.26)
ADLG 500 iter 0.43 (0.25) 0.62 (0.23) 0.70 (0.21) 0.69 (0.24) 0.65 (0.26)
ADLG 1000 iter 0.44 (0.25) 0.62 (0.22) 0.70 (0.22) 0.69 (0.24) 0.64 (0.27)
Median 9x9 0.42 (0.25) 0.62 (0.24) 0.70 (0.20) 0.67 (0.24) 0.63 (0.26)

Figure A.33: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), SmoothFactor = 0, Con-
tractionBias = -0.04
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Iterations
50 100 200 500 1000

Original 12.1 (14.0) 5.7 (9.3) 3.4 (6.5) 6.9 (13.8) 10.6 (21.4)

ADLG 50 iter 11.1 (13.7) 4.9 (7.4) 3.2 (5.4) 8.3 (15.7) 14.5 (26.9)

ADLG 100 iter 11.0 (13.7) 4.9 (7.4) 3.2 (5.4) 8.3 (15.6) 14.7 (27.0)

ADLG 200 iter 10.8 (13.5) 4.9 (7.4) 3.4 (5.7) 8.2 (15.2) 14.7 (27.1)

ADLG 500 iter 10.5 (13.6) 5.0 (7.5) 3.6 (5.7) 7.9 (15.0) 15.1 (28.7)

ADLG 1000 iter 10.0 (13.8) 4.9 (7.2) 3.8 (6.0) 7.8 (14.6) 14.5 (26.0)

Median 9x9 11.2 (13.7) 4.8 (7.1) 3.4 (5.6) 9.1 (16.0) 15.4 (28.4)

Figure A.34: Active contour segmentation (lesions) - Validation metrics (average and standard de-
viation) for parameters choice using Average Distance (AD), SmoothFactor = 0, ContractionBias
= -0.04

Iterations
50 100 200 500 1000

Original 0.37 (0.24) 0.58 (0.25) 0.68 (0.21) 0.67 (0.24) 0.64 (0.25)
ADLG 50 iter 0.41 (0.25) 0.62 (0.24) 0.71 (0.20) 0.68 (0.24) 0.64 (0.26)
ADLG 100 iter 0.42 (0.25) 0.62 (0.24) 0.71 (0.20) 0.68 (0.24) 0.64 (0.26)
ADLG 200 iter 0.42 (0.25) 0.62 (0.23) 0.70 (0.20) 0.69 (0.24) 0.64 (0.26)
ADLG 500 iter 0.43 (0.24) 0.62 (0.23) 0.70 (0.21) 0.69 (0.24) 0.65 (0.26)
ADLG 1000 iter 0.44 (0.25) 0.62 (0.23) 0.70 (0.21) 0.69 (0.24) 0.64 (0.27)
Median 9x9 0.41 (0.25) 0.62 (0.24) 0.70 (0.20) 0.67 (0.24) 0.63 (0.26)

Figure A.35: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), SmoothFactor = 0.01,
ContractionBias = -0.04

Iterations
50 100 200 500 1000

Original 12.3 (14.1) 5.8 (9.4) 3.3 (6.2) 6.7 (13.5) 10.6 (21.5)

ADLG 50 iter 11.3 (13.9) 5.0 (7.6) 3.2 (5.3) 8.2 (15.6) 14.4 (26.7)

ADLG 100 iter 11.3 (13.8) 5.0 (7.5) 3.3 (5.3) 8.2 (15.4) 14.6 (27.0)

ADLG 200 iter 11.1 (13.7) 5.0 (7.5) 3.4 (5.5) 8.1 (15.2) 14.7 (27.3)

ADLG 500 iter 10.7 (13.8) 5.1 (7.7) 3.6 (5.6) 7.8 (14.9) 15.0 (28.7)

ADLG 1000 iter 10.3 (13.9) 5.0 (7.4) 3.8 (6.0) 7.6 (14.6) 14.3 (25.6)

Median 9x9 11.3 (13.8) 4.9 (7.4) 3.4 (5.6) 8.9 (15.8) 15.3 (28.3)

Figure A.36: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor = 0.01, Contrac-
tionBias = -0.04
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Iterations
50 100 200 500 1000

Original 0.35 (0.23) 0.57 (0.25) 0.68 (0.21) 0.68 (0.24) 0.65 (0.25)
ADLG 50 iter 0.40 (0.25) 0.61 (0.24) 0.70 (0.20) 0.69 (0.24) 0.64 (0.26)
ADLG 100 iter 0.40 (0.25) 0.62 (0.24) 0.71 (0.20) 0.69 (0.24) 0.64 (0.26)
ADLG 200 iter 0.41 (0.24) 0.61 (0.23) 0.70 (0.20) 0.69 (0.24) 0.64 (0.26)
ADLG 500 iter 0.42 (0.24) 0.61 (0.23) 0.70 (0.21) 0.69 (0.24) 0.65 (0.26)
ADLG 1000 iter 0.43 (0.25) 0.62 (0.23) 0.70 (0.21) 0.69 (0.24) 0.64 (0.27)
Median 9x9 0.40 (0.25) 0.62 (0.24) 0.70 (0.20) 0.67 (0.24) 0.63 (0.26)

Figure A.37: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), SmoothFactor = 0.04,
ContractionBias = -0.04

Iterations
50 100 200 500 1000

Original 13.0 (14.5) 6.3 (9.9) 3.4 (6.4) 6.3 (12.7) 10.6 (21.4)

ADLG 50 iter 12.0 (14.4) 5.3 (7.9) 3.2 (5.1) 8.0 (15.2) 14.1 (26.2)

ADLG 100 iter 11.9 (14.3) 5.3 (7.8) 3.2 (5.0) 8.0 (15.2) 14.4 (26.8)

ADLG 200 iter 11.7 (14.1) 5.3 (8.0) 3.4 (5.2) 7.9 (14.9) 14.4 (26.8)

ADLG 500 iter 11.3 (14.2) 5.4 (8.1) 3.6 (5.4) 7.7 (14.8) 14.7 (28.1)

ADLG 1000 iter 11.0 (14.5) 5.3 (7.9) 3.8 (5.8) 7.4 (14.2) 14.0 (25.0)

Median 9x9 11.8 (14.1) 5.2 (7.7) 3.5 (5.5) 8.7 (15.5) 15.1 (28.1)

Figure A.38: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor = 0.04, Contrac-
tionBias = -0.04

Iterations
50 100 200 500 1000

Original 0.33 (0.23) 0.55 (0.25) 0.67 (0.21) 0.68 (0.24) 0.66 (0.25)
ADLG 50 iter 0.38 (0.24) 0.60 (0.25) 0.70 (0.19) 0.69 (0.24) 0.64 (0.26)
ADLG 100 iter 0.38 (0.24) 0.60 (0.25) 0.70 (0.20) 0.69 (0.24) 0.64 (0.26)
ADLG 200 iter 0.39 (0.24) 0.60 (0.24) 0.70 (0.20) 0.69 (0.24) 0.65 (0.26)
ADLG 500 iter 0.40 (0.24) 0.60 (0.23) 0.70 (0.20) 0.70 (0.24) 0.65 (0.26)
ADLG 1000 iter 0.41 (0.24) 0.61 (0.23) 0.69 (0.21) 0.70 (0.24) 0.65 (0.26)
Median 9x9 0.38 (0.25) 0.60 (0.25) 0.69 (0.20) 0.67 (0.24) 0.63 (0.26)

Figure A.39: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), SmoothFactor = 0.1, Con-
tractionBias = -0.04
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Iterations
50 100 200 500 1000

Original 14.5 (15.7) 7.0 (10.4) 3.7 (7.0) 5.8 (11.4) 8.6 (17.7)

ADLG 50 iter 13.0 (15.2) 5.9 ( 8.9) 3.2 (5.1) 7.5 (14.6) 13.7 (25.3)

ADLG 100 iter 13.0 (15.2) 5.9 ( 8.8) 3.3 (4.9) 7.5 (14.6) 13.8 (25.7)

ADLG 200 iter 12.7 (15.0) 5.9 ( 8.8) 3.4 (4.9) 7.4 (14.4) 13.8 (25.8)

ADLG 500 iter 12.3 (15.1) 5.9 ( 8.9) 3.6 (5.2) 7.2 (14.2) 14.1 (26.6)

ADLG 1000 iter 11.9 (15.2) 5.7 ( 8.8) 3.8 (5.5) 7.0 (13.5) 13.2 (23.7)

Median 9x9 13.0 (14.9) 5.9 ( 8.4) 3.6 (5.5) 8.3 (14.9) 14.8 (27.4)

Figure A.40: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor = 0.1, Contraction-
Bias = -0.04

Iterations
50 100 200 500 1000

Original 0.08 (0.16) 0.16 (0.26) 0.21 (0.33) 0.23 (0.35) 0.22 (0.34)
ADLG 50 iter 0.06 (0.15) 0.10 (0.22) 0.12 (0.26) 0.12 (0.28) 0.11 (0.27)
ADLG 100 iter 0.05 (0.14) 0.09 (0.22) 0.12 (0.27) 0.13 (0.30) 0.12 (0.29)
ADLG 200 iter 0.02 (0.10) 0.03 (0.13) 0.03 (0.13) 0.02 (0.12) 0.02 (0.12)
ADLG 500 iter 0.02 (0.11) 0.04 (0.16) 0.04 (0.18) 0.04 (0.18) 0.04 (0.18)
ADLG 1000 iter 0 (0.01) 0.01 (0.01) 0.01 (0.03) 0.01 (0.04) 0.01 (0.04)
Median 9x9 0.05 (0.14) 0.08 (0.21) 0.09 (0.23) 0.08 (0.21) 0.07 (0.21)

Figure A.41: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), SmoothFactor = 0.2, Con-
tractionBias = -0.04

Iterations
50 100 200 500 1000

Original 31.4 (23.1) 28.0 (24.3) 26.5 (25.1) 26.4 (25.0) 28.0 (25.2)

ADLG 50 iter 33.3 (21.9) 31.6 (22.3) 30.6 (22.9) 31.5 (22.6) 33.5 (23.9)

ADLG 100 iter 33.5 (21.7) 31.8 (22.1) 30.6 (22.9) 30.4 (23.2) 30.8 (22.7)

ADLG 200 iter 36.4 (22.9) 36.3 (23.1) 36.3 (23.1) 36.3 (23.0) 36.4 (23.0)

ADLG 500 iter 35.9 (22.3) 35.4 (22.5) 34.9 (22.5) 34.8 (22.6) 34.8 (22.6)

ADLG 1000 iter 36.8 (21.7) 36.5 (21.5) 36.1 (21.5) 36.0 (21.6) 36.0 (21.6)

Median 9x9 34.3 (23.3) 33.3 (23.8) 33.0 (23.8) 33.7 (23.5) 35.8 (25.8)

Figure A.42: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor = 0.2, Contraction-
Bias = -0.04
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Iterations
50 100 200 500 1000

Original 0.05 (0.11) 0.11 (0.22) 0.16 (0.29) 0.18 (0.32) 0.18 (0.32)
ADLG 50 iter 0.01 (0.03) 0.02 (0.08) 0.04 (0.13) 0.05 (0.18) 0.04 (0.17)
ADLG 100 iter 0.02 (0.09) 0.04 (0.15) 0.07 (0.20) 0.08 (0.24) 0.07 (0.23)
ADLG 200 iter 0.01 (0.03) 0.01 (0.07) 0.02 (0.12) 0.02 (0.12) 0.02 (0.10)
ADLG 500 iter 0.02 (0.07) 0.03 (0.13) 0.03 (0.13) 0.02 (0.12) 0.02 (0.12)
ADLG 1000 iter 0 (0.01) 0 (0.01) 0.01 (0.02) 0.01 (0.04) 0.01 (0.04)
Median 9x9 0.03 (0.08) 0.06 (0.17) 0.09 (0.23) 0.10 (0.26) 0.09 (0.24)

Figure A.43: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), SmoothFactor = 0.5, Con-
tractionBias = -0.04

Iterations
50 100 200 500 1000

Original 33.3 (22.1) 30.9 (22.8) 29.1 (23.4) 28.3 (23.4) 28.9 (23.5)

ADLG 50 iter 35.9 (21.0) 34.9 (20.8) 34.0 (21.2) 34.0 (21.5) 34.6 (21.5)

ADLG 100 iter 35.6 (21.2) 34.6 (21.0) 33.5 (21.5) 33.4 (21.7) 34.2 (21.6)

ADLG 200 iter 36.8 (22.3) 36.6 (22.6) 36.4 (22.7) 36.5 (22.6) 36.8 (22.3)

ADLG 500 iter 36.5 (22.7) 36.3 (23.0) 36.2 (23.1) 36.4 (23.0) 36.4 (22.9)

ADLG 1000 iter 37.0 (21.8) 36.8 (21.5) 36.3 (21.4) 36.0 (21.6) 36.0 (21.6)

Median 9x9 35.2 (21.5) 33.6 (21.7) 32.1 (22.6) 32.0 (22.9) 33.6 (22.4)

Figure A.44: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor = 0.5, Contraction-
Bias = -0.04

Iterations
50 100 200 500 1000

Original 0.42 (0.25) 0.63 (0.23) 0.70 (0.21) 0.66(0.23) 0.59 (0.26)
ADLG 50 iter 0.46 (0.25) 0.66 (0.22) 0.72 (0.21) 0.66(0.24) 0.60 (0.27)
ADLG 100 iter 0.46 (0.25) 0.66 (0.22) 0.72 (0.21) 0.66(0.24) 0.61 (0.27)
ADLG 200 iter 0.46 (0.25) 0.66 (0.22) 0.72 (0.21) 0.66(0.24) 0.60 (0.28)
ADLG 500 iter 0.47 (0.25) 0.66 (0.22) 0.73 (0.21) 0.67(0.25) 0.61 (0.28)
ADLG 1000 iter 0.48 (0.25) 0.66 (0.21) 0.73 (0.21) 0.67(0.26) 0.61 (0.28)
Median 9x9 0.45 (0.26) 0.66 (0.22) 0.71 (0.20) 0.65(0.25) 0.60 (0.27)

Figure A.45: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), SmoothFactor = 0, Con-
tractionBias = -0.1
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Iterations
50 100 200 500 1000

Original 10.6 (13.5) 4.70 (8.1) 3.7 (6.3) 8.3 (16.2) 13.6 (22.4)

ADLG 50 iter 9.6 (12.9) 4.10 (6.2) 3.6 (6.8) 10.3 (17.7) 17.0 (29.0)

ADLG 100 iter 9.5 (12.9) 4.00 (6.1) 3.6 (6.9) 10.4 (17.8) 17.3 (29.4)

ADLG 200 iter 9.3 (12.8) 4.00 (6.0) 3.6 (7.0) 10.3 (17.6) 18.6 (30.1)

ADLG 500 iter 9.1 (13.0) 4.00 (5.9) 3.7 (7.3) 10.8 (17.6) 18.7 (30.5)

ADLG 1000 iter 8.7 (13.0) 3.80 (5.5) 3.9 (7.4) 10.6 (16.8) 18.9 (29.6)

Median 9x9 9.6 (12.8) 3.90 (5.9) 3.6 (6.7) 11.1 (18.3) 17.3 (28.1)

Figure A.46: Active contour segmentation (lesions) - Validation metrics (average and standard de-
viation) for parameters choice using Average Distance (AD), SmoothFactor = 0, ContractionBias
= -0.1

Iterations
50 100 200 500 1000

Original 0.42 (0.25) 0.63 (0.23) 0.70 (0.21) 0.66(0.23) 0.59 (0.26)
ADLG 50 iter 0.45 (0.25) 0.65 (0.22) 0.72 (0.21) 0.66(0.24) 0.60 (0.27)
ADLG 100 iter 0.46 (0.26) 0.66 (0.22) 0.72 (0.21) 0.66(0.24) 0.61 (0.27)
ADLG 200 iter 0.46 (0.25) 0.66 (0.22) 0.72 (0.21) 0.66(0.24) 0.60 (0.27)
ADLG 500 iter 0.47 (0.25) 0.66 (0.22) 0.73 (0.21) 0.67(0.25) 0.61 (0.28)
ADLG 1000 iter 0.48 (0.25) 0.66 (0.21) 0.73 (0.21) 0.67(0.25) 0.61 (0.28)
Median 9x9 0.45 (0.26) 0.65 (0.22) 0.71 (0.20) 0.65(0.25) 0.60 (0.27)

Figure A.47: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), SmoothFactor = 0.01,
ContractionBias = -0.1

Iterations
50 100 200 500 1000

Original 10.8 (13.6) 4.8 (8.3) 3.7 (6.3) 8.2 (16.1) 13.5 (22.6)

ADLG 50 iter 9.7 (13.0) 4.2 (6.3) 3.5 (6.7) 10.2 (17.6) 16.9 (28.9)

ADLG 100 iter 9.6 (12.9) 4.1 (6.2) 3.6 (6.8) 10.3 (17.6) 17.2 (29.4)

ADLG 200 iter 9.5 (12.9) 4.0 (6.0) 3.6 (6.9) 10.2 (17.6) 17.9 (29.6)

ADLG 500 iter 9.2 (13.2) 4.1 (6.1) 3.7 (7.3) 10.7 (17.5) 18.8 (30.8)

ADLG 1000 iter 8.7 (13.0) 3.9 (5.6) 3.9 (7.4) 10.4 (16.6) 18.7 (29.5)

Median 9x9 9.6 (12.9) 4.0 (6.0) 3.7 (6.7) 11.0 (18.2) 17.2 (28.1)

Figure A.48: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor = 0.01, Contrac-
tionBias = -0.1
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Iterations
50 100 200 500 1000

Original 0.40 (0.25) 0.62 (0.23) 0.70 (0.21) 0.66(0.23) 0.60 (0.26)
ADLG 50 iter 0.44 (0.25) 0.65 (0.22) 0.72 (0.21) 0.66(0.24) 0.61 (0.26)
ADLG 100 iter 0.45 (0.25) 0.65 (0.22) 0.72 (0.21) 0.67(0.24) 0.61 (0.27)
ADLG 200 iter 0.45 (0.25) 0.65 (0.22) 0.72 (0.21) 0.67(0.24) 0.62 (0.27)
ADLG 500 iter 0.46 (0.25) 0.65 (0.22) 0.73 (0.21) 0.67(0.25) 0.61 (0.28)
ADLG 1000 iter 0.47 (0.25) 0.65 (0.21) 0.73 (0.21) 0.67(0.25) 0.61 (0.28)
Median 9x9 0.44 (0.26) 0.65 (0.22) 0.71 (0.20) 0.65(0.24) 0.61 (0.27)

Figure A.49: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), SmoothFactor = 0.04,
ContractionBias = -0.1

Iterations
50 100 200 500 1000

Original 11.2 (13.7) 5.1 (8.7) 3.7 (6.5) 7.9 (15.6) 13.4 (22.9)

ADLG 50 iter 10.0 (13.1) 4.3 (6.5) 3.5 (6.6) 9.9 (17.3) 16.4 (28.6)

ADLG 100 iter 9.9 (13.1) 4.3 (6.4) 3.5 (6.6) 9.9 (17.3) 16.5 (29.0)

ADLG 200 iter 9.8 (13.1) 4.3 (6.4) 3.5 (6.5) 9.8 (17.1) 16.7 (29.4)

ADLG 500 iter 9.5 (13.3) 4.3 (6.4) 3.7 (6.9) 10.4 (17.2) 18.5 (30.6)

ADLG 1000 iter 9.0 (13.1) 4.1 (6.0) 3.8 (7.0) 10.1 (16.3) 18.2 (28.9)

Median 9x9 9.9 (13.0) 4.1 (6.2) 3.6 (6.4) 10.5 (17.6) 16.9 (28.4)

Figure A.50: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor = 0.04, Contrac-
tionBias = -0.1

Iterations
50 100 200 500 1000

Original 0.38 (0.24) 0.60 (0.24) 0.70 (0.20) 0.67(0.23) 0.62 (0.26)
ADLG 50 iter 0.43 (0.25) 0.64 (0.23) 0.72 (0.20) 0.67(0.24) 0.62 (0.26)
ADLG 100 iter 0.43 (0.25) 0.64 (0.23) 0.72 (0.20) 0.67(0.24) 0.62 (0.26)
ADLG 200 iter 0.44 (0.25) 0.64 (0.23) 0.72 (0.21) 0.68(0.24) 0.62 (0.27)
ADLG 500 iter 0.45 (0.25) 0.64 (0.22) 0.72 (0.21) 0.68(0.25) 0.62 (0.28)
ADLG 1000 iter 0.46 (0.25) 0.64 (0.22) 0.72 (0.21) 0.69(0.24) 0.62 (0.28)
Median 9x9 0.43 (0.25) 0.64 (0.23) 0.71 (0.20) 0.66(0.24) 0.62 (0.27)

Figure A.51: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), SmoothFactor = 0.1, Con-
tractionBias = -0.1
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Iterations
50 100 200 500 1000

Original 12.1 (14.2) 5.7 (9.3) 3.5 (6.2) 7.6 (14.8) 12.7 (22.6)

ADLG 50 iter 10.7 (13.6) 4.6 (6.9) 3.3 (5.9) 9.4 (16.8) 15.9 (28.1)

ADLG 100 iter 10.6 (13.4) 4.6 (6.9) 3.4 (6.1) 9.4 (16.7) 15.9 (28.3)

ADLG 200 iter 10.4 (13.4) 4.6 (7.0) 3.4 (6.0) 9.3 (16.3) 16.1 (28.7)

ADLG 500 iter 10.1 (13.5) 4.6 (7.0) 3.6 (6.2) 9.9 (16.6) 17.5 (29.8)

ADLG 1000 iter 9.6 (13.5) 4.5 (6.8) 3.7 (6.5) 9.0 (15.5) 17.4 (27.9)

Median 9x9 10.7 (13.5) 4.5 (6.7) 3.5 (6.1) 9.7 (17.1) 15.9 (28.2)

Figure A.52: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor = 0.1, Contraction-
Bias = -0.1

Iterations
50 100 200 500 1000

Original 0.34 (0.24) 0.57 (0.25) 0.69 (0.20) 0.69(0.23) 0.63 (0.26)
ADLG 50 iter 0.39 (0.26) 0.60 (0.26) 0.69 (0.24) 0.65(0.27) 0.60 (0.29)
ADLG 100 iter 0.40 (0.25) 0.62 (0.25) 0.70 (0.22) 0.67(0.25) 0.63 (0.28)
ADLG 200 iter 0.40 (0.25) 0.61 (0.26) 0.69 (0.25) 0.66(0.27) 0.61 (0.29)
ADLG 500 iter 0.42 (0.25) 0.62 (0.24) 0.70 (0.23) 0.68(0.26) 0.62 (0.29)
ADLG 1000 iter 0.42 (0.26) 0.60 (0.25) 0.68 (0.25) 0.67(0.27) 0.61 (0.30)
Median 9x9 0.40 (0.25) 0.62 (0.24) 0.71 (0.19) 0.67(0.24) 0.63 (0.26)

Figure A.53: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), SmoothFactor = 0.2, Con-
tractionBias = -0.1

Iterations
50 100 200 500 1000

Original 14.0 (15.3) 6.7 (10.4) 3.6 ( 6.6) 6.5 (12.8) 11.3 (20.9)

ADLG 50 iter 13.2 (16.2) 6.7 (11.8) 5.1 (10.7) 10.5 (17.6) 16.7 (27.1)

ADLG 100 iter 12.5 (15.7) 6.1 (10.9) 4.4 ( 9.4) 9.4 (17.0) 15.0 (26.7)

ADLG 200 iter 12.8 (16.0) 6.8 (12.0) 5.2 (10.8) 10.0 (17.3) 15.8 (27.3)

ADLG 500 iter 12.0 (15.6) 6.2 (11.1) 4.6 ( 9.6) 9.6 (16.7) 16.6 (28.4)

ADLG 1000 iter 12.1 (16.2) 6.8 (12.0) 5.5 (10.9) 9.8 (16.5) 16.0 (25.9)

Median 9x9 12.1 (14.3) 5.4 ( 7.7) 3.6 ( 5.7) 8.9 (15.8) 15.1 (27.8)

Figure A.54: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor = 0.2, Contraction-
Bias = -0.1



88 Appendix

Iterations
50 100 200 500 1000

Original 0.03 (0.08) 0.07 (0.18) 0.11 (0.24) 0.12(0.26) 0.11 (0.24)
ADLG 50 iter 0.04 (0.12) 0.08 (0.21) 0.11 (0.25) 0.10(0.26) 0.10 (0.25)
ADLG 100 iter 0.03 (0.11) 0.06 (0.19) 0.07 (0.22) 0.07(0.23) 0.07 (0.22)
ADLG 200 iter 0.01 (0.08) 0.02 (0.12) 0.02 (0.12) 0.02(0.12) 0.02 (0.12)
ADLG 500 iter 0.02 (0.08) 0.02 (0.12) 0.02 (0.12) 0.02(0.12) 0.02 (0.12)
ADLG 1000 iter 0 (0.01) 0 (0.01) 0 (0.01) 0(0.01) 0 (0.01)
Median 9x9 0.02 (0.08) 0.05 (0.16) 0.06 (0.20) 0.06(0.18) 0.05 (0.18)

Figure A.55: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), SmoothFactor = 0.5, Con-
tractionBias = -0.1

Iterations
50 100 200 500 1000

Original 34.6 (23.2) 32.9 (24.4) 31.8 (25.3) 32.0 (25.1) 33.4 (24.7)

ADLG 50 iter 34.2 (22.2) 32.7 (22.5) 31.7 (23.0) 32.5 (22.6) 34.1 (23.0)

ADLG 100 iter 35.5 (23.1) 35.0 (23.3) 34.5 (23.7) 34.5 (23.8) 34.6 (23.6)

ADLG 200 iter 36.8 (22.6) 36.8 (22.7) 36.8 (22.7) 36.8 (22.7) 36.8 (22.7)

ADLG 500 iter 36.8 (22.6) 36.8 (22.7) 36.8 (22.7) 36.8 (22.7) 36.8 (22.7)

ADLG 1000 iter 37.2 (22.2) 37.2 (22.2) 37.2 (22.2) 37.2 (22.2) 37.2 (22.2)

Median 9x9 35.5 (22.6) 34.5 (23.2) 34.2 (23.2) 34.8 (22.6) 36.6 (23.9)

Figure A.56: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor = 0.5, Contraction-
Bias = -0.1

Iterations
50 100 200 500 1000

Original 0.49 (0.25) 0.68 (0.19) 0.70 (0.21) 0.54(0.28) 0.41 (0.32)
ADLG 50 iter 0.51 (0.25) 0.70 (0.19) 0.70 (0.22) 0.56(0.29) 0.47 (0.33)
ADLG 100 iter 0.51 (0.25) 0.70 (0.19) 0.70 (0.22) 0.56(0.29) 0.48 (0.33)
ADLG 200 iter 0.51 (0.25) 0.70 (0.19) 0.70 (0.23) 0.57(0.30) 0.48 (0.33)
ADLG 500 iter 0.52 (0.25) 0.70 (0.19) 0.69 (0.23) 0.56(0.30) 0.47 (0.33)
ADLG 1000 iter 0.53 (0.25) 0.70 (0.19) 0.69 (0.24) 0.55(0.29) 0.46 (0.33)
Median 9x9 0.51 (0.25) 0.69 (0.19) 0.69 (0.22) 0.57(0.28) 0.51 (0.31)

Figure A.57: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), SmoothFactor = 0, Con-
tractionBias = -0.2
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Iterations
50 100 200 500 1000

Original 8.2 (12.0) 2.9 (4.4) 4.9 ( 7.7) 17.0 (22.7) 32.9 (34.1)

ADLG 50 iter 7.8 (12.2) 2.9 (4.2) 5.8 ( 8.9) 19.9 (26.2) 35.7 (44.3)

ADLG 100 iter 7.8 (12.2) 3.0 (4.1) 6.1 ( 9.2) 20.6 (26.9) 36.6 (45.1)

ADLG 200 iter 7.7 (12.1) 3.0 (4.0) 6.2 ( 9.5) 20.8 (27.6) 36.9 (45.5)

ADLG 500 iter 7.5 (12.3) 3.1 (4.3) 6.8 ( 9.7) 21.1 (26.5) 39.1 (46.8)

ADLG 1000 iter 7.3 (12.3) 3.1 (4.4) 7.0 (10.0) 20.5 (24.3) 37.8 (39.8)

Median 9x9 7.7 (12.1) 3.0 (4.2) 5.9 ( 9.0) 18.7 (26.2) 31.5 (42.1)

Figure A.58: Active contour segmentation (lesions) - Validation metrics (average and standard de-
viation) for parameters choice using Average Distance (AD), SmoothFactor = 0, ContractionBias
= -0.2

Iterations
50 100 200 500 1000

Original 0.49 (0.25) 0.68 (0.19) 0.70 (0.21) 0.54(0.28) 0.41 (0.31)
ADLG 50 iter 0.50 (0.25) 0.69 (0.19) 0.70 (0.22) 0.58(0.28) 0.49 (0.32)
ADLG 100 iter 0.51 (0.25) 0.69 (0.20) 0.70 (0.22) 0.56(0.29) 0.48 (0.33)
ADLG 200 iter 0.51 (0.25) 0.70 (0.19) 0.70 (0.23) 0.57(0.30) 0.49 (0.33)
ADLG 500 iter 0.52 (0.25) 0.70 (0.19) 0.70 (0.23) 0.57(0.30) 0.48 (0.33)
ADLG 1000 iter 0.53 (0.25) 0.70 (0.19) 0.69 (0.23) 0.56(0.29) 0.46 (0.33)
Median 9x9 0.51 (0.25) 0.69 (0.19) 0.69 (0.22) 0.58(0.27) 0.51 (0.31)

Figure A.59: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), SmoothFactor = 0.01,
ContractionBias = -0.2

Iterations
50 100 200 500 1000

Original 8.3 (12.1) 3.0 (4.5) 4.7 (7.6) 17.0 (22.7) 33.2 (35.2)

ADLG 50 iter 7.9 (12.2) 2.9 (4.3) 5.7 (8.8) 18.3 (24.9) 33.0 (42.3)

ADLG 100 iter 7.8 (12.2) 3.0 (4.2) 5.9 (9.0) 20.2 (26.6) 36.4 (45.2)

ADLG 200 iter 7.7 (12.1) 3.0 (4.1) 6.1 (9.3) 20.3 (27.0) 36.2 (44.6)

ADLG 500 iter 7.6 (12.4) 3.1 (4.4) 6.5 (9.7) 19.9 (26.0) 35.8 (43.8)

ADLG 1000 iter 7.4 (12.3) 3.2 (4.4) 6.8 (9.9) 20.2 (24.3) 37.6 (39.6)

Median 9x9 7.8 (12.1) 3.0 (4.2) 5.9 (8.9) 18.1 (25.8) 30.6 (41.3)

Figure A.60: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor = 0.01, Contrac-
tionBias = -0.2
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Iterations
50 100 200 500 1000

Original 0.48 (0.25) 0.68 (0.19) 0.70 (0.20) 0.55(0.28) 0.42 (0.31)
ADLG 50 iter 0.50 (0.25) 0.69 (0.19) 0.70 (0.22) 0.59(0.28) 0.51 (0.32)
ADLG 100 iter 0.50 (0.25) 0.69 (0.20) 0.71 (0.22) 0.58(0.28) 0.49 (0.33)
ADLG 200 iter 0.50 (0.25) 0.69 (0.20) 0.71 (0.22) 0.59(0.29) 0.51 (0.33)
ADLG 500 iter 0.52 (0.25) 0.69 (0.19) 0.70 (0.23) 0.58(0.30) 0.49 (0.33)
ADLG 1000 iter 0.52 (0.25) 0.70 (0.19) 0.70 (0.23) 0.57(0.29) 0.47 (0.33)
Median 9x9 0.50 (0.26) 0.69 (0.19) 0.70 (0.22) 0.59(0.27) 0.53 (0.31)

Figure A.61: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), SmoothFactor = 0.04,
ContractionBias = -0.2

Iterations
50 100 200 500 1000

Original 8.6 (12.2) 3.1 (4.7) 4.6 (7.5) 16.2 (22.0) 32.3 (36.2)

ADLG 50 iter 8.1 (12.2) 3.1 (4.5) 5.4 (8.5) 17.2 (24.2) 31.7 (42.7)

ADLG 100 iter 8.1 (12.3) 3.1 (4.4) 5.5 (8.7) 17.6 (24.4) 33.3 (42.9)

ADLG 200 iter 7.9 (12.3) 3.1 (4.3) 5.7 (9.0) 17.7 (24.4) 32.3 (42.6)

ADLG 500 iter 7.7 (12.5) 3.2 (4.5) 6.1 (9.4) 19.0 (25.0) 35.2 (43.4)

ADLG 1000 iter 7.5 (12.4) 3.1 (4.5) 6.5 (9.6) 19.2 (23.9) 35.3 (39.2)

Median 9x9 8.1 (12.2) 3.0 (4.4) 5.6 (8.7) 16.7 (23.6) 25.8 (36.0)

Figure A.62: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor = 0.04, Contrac-
tionBias = -0.2

Iterations
50 100 200 500 1000

Original 0.46 (0.26) 0.67 (0.21) 0.71 (0.20) 0.59(0.27) 0.47 (0.29)
ADLG 50 iter 0.48 (0.26) 0.69 (0.20) 0.71 (0.21) 0.60(0.27) 0.52 (0.32)
ADLG 100 iter 0.49 (0.25) 0.68 (0.20) 0.71 (0.22) 0.60(0.28) 0.52 (0.32)
ADLG 200 iter 0.49 (0.25) 0.69 (0.20) 0.71 (0.22) 0.60(0.28) 0.52 (0.32)
ADLG 500 iter 0.50 (0.25) 0.69 (0.20) 0.72 (0.22) 0.60(0.29) 0.50 (0.33)
ADLG 1000 iter 0.51 (0.25) 0.69 (0.20) 0.72 (0.22) 0.60(0.29) 0.51 (0.32)
Median 9x9 0.49 (0.26) 0.69 (0.20) 0.70 (0.21) 0.60(0.27) 0.54 (0.30)

Figure A.63: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), SmoothFactor = 0.1, Con-
tractionBias = -0.2
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Iterations
50 100 200 500 1000

Original 9.4 (12.8) 3.8 (6.9) 4.4 (6.9) 13.2 (19.5) 26.3 (32.2)

ADLG 50 iter 8.6 (12.4) 3.3 (4.9) 4.9 (8.4) 15.5 (21.7) 27.9 (36.5)

ADLG 100 iter 8.5 (12.4) 3.3 (4.8) 5.1 (8.6) 16.2 (21.9) 28.7 (37.0)

ADLG 200 iter 8.3 (12.3) 3.3 (4.7) 5.2 (8.8) 16.0 (21.9) 29.0 (37.2)

ADLG 500 iter 8.1 (12.6) 3.3 (4.9) 5.4 (9.0) 17.3 (22.5) 33.1 (39.8)

ADLG 1000 iter 7.8 (12.6) 3.1 (4.7) 5.4 (8.9) 16.4 (21.8) 31.0 (37.4)

Median 9x9 8.6 (12.4) 3.2 (4.8) 5.3 (8.5) 16.2 (23.2) 24.6 (34.3)

Figure A.64: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor = 0.1, Contraction-
Bias = -0.2

Iterations
50 100 200 500 1000

Original 0.43 (0.26) 0.65 (0.22) 0.71 (0.20) 0.61(0.26) 0.51 (0.29)
ADLG 50 iter 0.46 (0.26) 0.67 (0.21) 0.73 (0.20) 0.62(0.26) 0.53 (0.30)
ADLG 100 iter 0.47 (0.26) 0.67 (0.21) 0.73 (0.20) 0.62(0.27) 0.53 (0.31)
ADLG 200 iter 0.47 (0.25) 0.67 (0.21) 0.73 (0.20) 0.64(0.26) 0.54 (0.31)
ADLG 500 iter 0.48 (0.25) 0.68 (0.21) 0.73 (0.20) 0.64(0.27) 0.54 (0.31)
ADLG 1000 iter 0.49 (0.25) 0.68 (0.20) 0.73 (0.21) 0.62(0.28) 0.53 (0.31)
Median 9x9 0.46 (0.26) 0.67 (0.21) 0.72 (0.20) 0.63(0.26) 0.56 (0.29)

Figure A.65: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), SmoothFactor = 0.2, Con-
tractionBias = -0.2

Iterations
50 100 200 500 1000

Original 10.8 (13.5) 4.6 (7.8) 3.9 (6.0) 11.8 (18.8) 23.4 (30.7)

ADLG 50 iter 9.5 (12.9) 3.7 (5.6) 3.9 (7.1) 13.7 (20.4) 25.0 (32.6)

ADLG 100 iter 9.4 (12.8) 3.8 (5.6) 4.1 (7.4) 14.3 (20.5) 26.7 (34.5)

ADLG 200 iter 9.2 (12.8) 3.7 (5.6) 4.0 (7.6) 13.1 (19.1) 25.6 (34.7)

ADLG 500 iter 8.9 (13.0) 3.6 (5.6) 4.2 (7.7) 13.1 (18.9) 25.5 (32.9)

ADLG 1000 iter 8.5 (12.8) 3.5 (5.4) 4.6 (8.2) 14.4 (19.6) 28.0 (34.7)

Median 9x9 9.3 (12.8) 3.7 (5.5) 4.0 (6.9) 13.4 (20.1) 21.8 (31.8)

Figure A.66: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor = 0.2, Contraction-
Bias = -0.2
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Iterations
50 100 200 500 1000

Original 0.21 (0.25) 0.36 (0.33) 0.45 (0.37) 0.43(0.37) 0.38 (0.36)
ADLG 50 iter 0.20 (0.26) 0.33 (0.35) 0.39 (0.38) 0.36(0.38) 0.32 (0.36)
ADLG 100 iter 0.20 (0.26) 0.34 (0.35) 0.38 (0.39) 0.35(0.38) 0.31 (0.36)
ADLG 200 iter 0.17 (0.23) 0.28 (0.33) 0.34 (0.38) 0.32(0.37) 0.29 (0.36)
ADLG 500 iter 0.23 (0.29) 0.33 (0.36) 0.36 (0.38) 0.33(0.38) 0.29 (0.36)
ADLG 1000 iter 0.22 (0.27) 0.32 (0.34) 0.36 (0.37) 0.34(0.37) 0.28 (0.34)
Median 9x9 0.20 (0.26) 0.34 (0.34) 0.42 (0.39) 0.40(0.39) 0.38 (0.38)

Figure A.67: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), SmoothFactor = 0.5, Con-
tractionBias = -0.2

Iterations
50 100 200 500 1000

Original 25.0 (23.3) 20.1 (24.0) 17.8 (24.3) 20.5 (25.4) 24.6 (26.2)

ADLG 50 iter 25.3 (23.3) 21.1 (24.0) 19.5 (24.4) 22.2 (23.9) 26.9 (27.7)

ADLG 100 iter 25.2 (24.2) 21.4 (25.2) 20.8 (25.4) 23.9 (25.5) 28.1 (26.5)

ADLG 200 iter 26.2 (23.0) 22.6 (23.6) 21.3 (24.0) 24.7 (23.9) 29.2 (26.1)

ADLG 500 iter 26.4 (25.9) 23.7 (26.8) 23.4 (26.5) 27.0 (26.4) 31.4 (27.7)

ADLG 1000 iter 24.9 (24.3) 22.0 (24.8) 21.5 (24.6) 24.8 (24.7) 31.1 (26.6)

Median 9x9 24.4 (21.8) 19.2 (22.1) 17.5 (22.7) 19.9 (23.5) 23.4 (27.9)

Figure A.68: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor = 0.5, Contraction-
Bias = -0.2

Iterations
50 100 200 500 1000

Original 0.52 (0.24) 0.54 (0.21) 0.33 (0.24) 0.12(0.12) 0.11 (0.11)
ADLG 50 iter 0.52 (0.24) 0.55 (0.21) 0.33 (0.24) 0.12(0.12) 0.11 (0.10)
ADLG 100 iter 0.52 (0.24) 0.55 (0.21) 0.34 (0.24) 0.12(0.12) 0.11 (0.10)
ADLG 200 iter 0.52 (0.24) 0.55 (0.21) 0.34 (0.24) 0.12(0.12) 0.11 (0.10)
ADLG 500 iter 0.52 (0.24) 0.55 (0.21) 0.34 (0.24) 0.12(0.12) 0.11 (0.10)
ADLG 1000 iter 0.52 (0.24) 0.55 (0.21) 0.34 (0.24) 0.12(0.12) 0.11 (0.11)
Median 9x9 0.52 (0.24) 0.55 (0.21) 0.34 (0.24) 0.12(0.12) 0.11 (0.10)

Figure A.69: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), SmoothFactor = 0, Con-
tractionBias = -0.5
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Iterations
50 100 200 500 1000

Original 7.2 (10.9) 8.5 (7.8) 33.2 (20.2) 96.3 (40.2) 122.3 (53.3)

ADLG 50 iter 7.2 (10.9) 8.4 (7.8) 32.2 (20.1) 94.3 (41.1) 121.0 (54.4)

ADLG 100 iter 7.3 (10.9) 8.4 (7.7) 31.8 (19.8) 92.8 (41.4) 119.6 (54.4)

ADLG 200 iter 7.3 (10.9) 8.4 (7.7) 31.7 (19.7) 92.1 (41.8) 119.2 (54.9)

ADLG 500 iter 7.3 (10.9) 8.3 (7.6) 31.5 (19.4) 90.7 (41.7) 118.0 (55.3)

ADLG 1000 iter 7.2 (10.9) 8.5 (7.7) 31.5 (19.5) 91.0 (41.4) 118.1 (55.4)

Median 9x9 7.2 (10.9) 8.4 (7.8) 32.1 (20.2) 92.5 (41.9) 119.2 (55.6)

Figure A.70: Active contour segmentation (lesions) - Validation metrics (average and standard de-
viation) for parameters choice using Average Distance (AD), SmoothFactor = 0, ContractionBias
= -0.5

Iterations
50 100 200 500 1000

Original 0.52 (0.24) 0.55 (0.21) 0.33 (0.24) 0.12(0.12) 0.11 (0.11)
ADLG 50 iter 0.52 (0.24) 0.55 (0.21) 0.34 (0.24) 0.12(0.12) 0.11 (0.10)
ADLG 100 iter 0.52 (0.24) 0.55 (0.21) 0.34 (0.24) 0.12(0.12) 0.11 (0.10)
ADLG 200 iter 0.52 (0.24) 0.55 (0.21) 0.34 (0.24) 0.12(0.12) 0.11 (0.10)
ADLG 500 iter 0.52 (0.24) 0.55 (0.21) 0.34 (0.24) 0.12(0.12) 0.11 (0.10)
ADLG 1000 iter 0.52 (0.24) 0.55 (0.21) 0.34 (0.24) 0.12(0.12) 0.11 (0.11)
Median 9x9 0.52 (0.24) 0.55 (0.21) 0.34 (0.24) 0.12(0.12) 0.11 (0.10)

Figure A.71: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), SmoothFactor = 0.01,
ContractionBias = -0.5

Iterations
50 100 200 500 1000

Original 7.2 (10.9) 8.5 (7.8) 33.0 (20.1) 96.0 (39.5) 122.6 (53.0)

ADLG 50 iter 7.2 (10.9) 8.4 (7.8) 32.2 (20.1) 94.1 (41.1) 120.6 (53.8)

ADLG 100 iter 7.2 (10.9) 8.4 (7.7) 31.7 (19.7) 92.9 (41.5) 119.7 (54.4)

ADLG 200 iter 7.3 (10.9) 8.4 (7.7) 31.7 (19.7) 92.2 (41.8) 119.3 (54.9)

ADLG 500 iter 7.3 (10.9) 8.3 (7.7) 31.3 (19.3) 90.5 (41.5) 117.7 (55.2)

ADLG 1000 iter 7.2 (10.9) 8.4 (7.7) 31.5 (19.5) 90.9 (41.3) 117.8 (55.1)

Median 9x9 7.2 (10.9) 8.4 (7.8) 32.0 (20.0) 92.4 (41.9) 119.2 (55.7)

Figure A.72: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor = 0.01, Contrac-
tionBias = -0.5
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Iterations
50 100 200 500 1000

Original 0.52 (0.24) 0.55 (0.21) 0.33 (0.24) 0.12(0.12) 0.11 (0.11)
ADLG 50 iter 0.52 (0.24) 0.55 (0.21) 0.34 (0.24) 0.12(0.12) 0.11 (0.10)
ADLG 100 iter 0.52 (0.24) 0.55 (0.21) 0.34 (0.24) 0.12(0.12) 0.11 (0.10)
ADLG 200 iter 0.52 (0.24) 0.55 (0.21) 0.34 (0.24) 0.12(0.12) 0.11 (0.10)
ADLG 500 iter 0.52 (0.24) 0.55 (0.21) 0.34 (0.24) 0.12(0.12) 0.11 (0.10)
ADLG 1000 iter 0.52 (0.24) 0.55 (0.21) 0.34 (0.24) 0.13(0.12) 0.11 (0.11)
Median 9x9 0.52 (0.24) 0.55 (0.21) 0.34 (0.24) 0.12(0.12) 0.11 (0.10)

Figure A.73: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), SmoothFactor = 0.04,
ContractionBias = -0.5

Iterations
50 100 200 500 1000

Original 7.2 (10.9) 8.5 (7.8) 32.7 (20.1) 95.5 (40.8) 121.5 (52.8)

ADLG 50 iter 7.2 (10.9) 8.3 (7.7) 31.6 (19.5) 91.7 (42.0) 119.8 (54.7)

ADLG 100 iter 7.2 (10.9) 8.3 (7.6) 31.6 (19.5) 91.1 (41.6) 119.3 (54.5)

ADLG 200 iter 7.2 (10.9) 8.2 (7.6) 31.3 (19.3) 90.0 (41.0) 118.3 (54.1)

ADLG 500 iter 7.3 (11.0) 8.3 (7.6) 31.1 (19.2) 90.9 (42.0) 118.3 (56.0)

ADLG 1000 iter 7.3 (10.9) 8.3 (7.5) 31.1 (19.3) 90.0 (41.7) 117.4 (55.1)

Median 9x9 7.2 (10.9) 8.3 (7.7) 31.5 (19.4) 90.8 (42.7) 118.5 (56.4)

Figure A.74: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor = 0.04, Contrac-
tionBias = -0.5

Iterations
50 100 200 500 1000

Original 0.52 (0.24) 0.55 (0.21) 0.34 (0.24) 0.12(0.12) 0.11 (0.11)
ADLG 50 iter 0.52 (0.24) 0.55 (0.21) 0.34 (0.24) 0.13(0.12) 0.11 (0.10)
ADLG 100 iter 0.52 (0.24) 0.55 (0.21) 0.34 (0.24) 0.13(0.12) 0.11 (0.10)
ADLG 200 iter 0.52 (0.24) 0.55 (0.21) 0.35 (0.24) 0.13(0.12) 0.11 (0.10)
ADLG 500 iter 0.52 (0.24) 0.56 (0.21) 0.35 (0.24) 0.13(0.12) 0.11 (0.10)
ADLG 1000 iter 0.52 (0.24) 0.56 (0.21) 0.35 (0.24) 0.13(0.12) 0.11 (0.11)
Median 9x9 0.52 (0.24) 0.56 (0.21) 0.35 (0.24) 0.13(0.12) 0.11 (0.10)

Figure A.75: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), SmoothFactor = 0.1, Con-
tractionBias = -0.5
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Iterations
50 100 200 500 1000

Original 7.2 (10.9) 8.2 (7.6) 31.8 (19.3) 92.4 (41.8) 119.7 (53.2)

ADLG 50 iter 7.2 (10.9) 8.1 (7.6) 30.2 (18.2) 89.3 (41.4) 119.6 (54.2)

ADLG 100 iter 7.3 (11.0) 8.1 (7.5) 30.1 (18.2) 89.3 (41.2) 119.2 (54.2)

ADLG 200 iter 7.3 (10.9) 8.1 (7.5) 30.0 (18.3) 89.8 (41.9) 118.6 (54.6)

ADLG 500 iter 7.3 (11.0) 8.0 (7.4) 29.5 (18.3) 87.2 (41.2) 117.0 (54.8)

ADLG 1000 iter 7.2 (11.0) 8.0 (7.3) 29.3 (18.5) 86.0 (40.8) 115.9 (54.9)

Median 9x9 7.2 (11.0) 7.9 (7.5) 29.8 (18.3) 86.7 (41.0) 117.7 (56.8)

Figure A.76: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor = 0.1, Contraction-
Bias = -0.5

Iterations
50 100 200 500 1000

Original 0.52 (0.23) 0.56 (0.20) 0.35 (0.23) 0.13(0.12) 0.11 (0.10)
ADLG 50 iter 0.52 (0.23) 0.57 (0.20) 0.36 (0.23) 0.13(0.12) 0.11 (0.10)
ADLG 100 iter 0.52 (0.23) 0.57 (0.20) 0.36 (0.23) 0.13(0.12) 0.11 (0.10)
ADLG 200 iter 0.52 (0.24) 0.57 (0.20) 0.36 (0.23) 0.13(0.12) 0.11 (0.10)
ADLG 500 iter 0.52 (0.24) 0.56 (0.20) 0.36 (0.23) 0.13(0.12) 0.11 (0.10)
ADLG 1000 iter 0.52 (0.24) 0.57 (0.20) 0.36 (0.24) 0.13(0.12) 0.11 (0.10)
Median 9x9 0.52 (0.23) 0.57 (0.20) 0.36 (0.23) 0.13(0.12) 0.11 (0.10)

Figure A.77: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), SmoothFactor = 0.2, Con-
tractionBias = -0.5

Iterations
50 100 200 500 1000

Original 7.2 (11.1) 7.3 (6.6) 27.6 (15.7) 85.0 (40.7) 117.2 (54.1)

ADLG 50 iter 7.2 (11.0) 7.1 (6.4) 26.3 (15.7) 82.4 (39.1) 115.9 (52.5)

ADLG 100 iter 7.3 (11.1) 7.4 (6.9) 26.5 (16.3) 82.9 (40.4) 116.0 (53.4)

ADLG 200 iter 7.3 (11.1) 7.5 (6.9) 26.4 (16.3) 82.6 (40.1) 115.3 (53.5)

ADLG 500 iter 7.3 (11.1) 7.5 (7.0) 26.1 (16.4) 80.4 (38.7) 113.9 (53.8)

ADLG 1000 iter 7.3 (11.1) 7.4 (6.8) 26.5 (16.8) 80.2 (37.7) 114.1 (54.6)

Median 9x9 7.1 (11.1) 6.9 (6.1) 25.8 (15.2) 79.4 (37.6) 113.6 (54.5)

Figure A.78: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor = 0.2, Contraction-
Bias = -0.5
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Iterations
50 100 200 500 1000

Original 0.51 (0.24) 0.64 (0.17) 0.49 (0.23) 0.21(0.20) 0.14 (0.18)
ADLG 50 iter 0.52 (0.24) 0.64 (0.17) 0.50 (0.24) 0.23(0.21) 0.15 (0.18)
ADLG 100 iter 0.52 (0.24) 0.64 (0.17) 0.50 (0.24) 0.22(0.19) 0.13 (0.15)
ADLG 200 iter 0.52 (0.24) 0.64 (0.17) 0.50 (0.23) 0.21(0.18) 0.13 (0.15)
ADLG 500 iter 0.53 (0.24) 0.64 (0.17) 0.49 (0.23) 0.20(0.16) 0.12 (0.12)
ADLG 1000 iter 0.53 (0.24) 0.62 (0.17) 0.47 (0.22) 0.20(0.16) 0.13 (0.13)
Median 9x9 0.52 (0.24) 0.65 (0.17) 0.52 (0.23) 0.24(0.20) 0.16 (0.18)

Figure A.79: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Sørensen–Dice coefficient (SD), SmoothFactor = 0.5, Con-
tractionBias = -0.5

Iterations
50 100 200 500 1000

Original 7.8 (11.8) 4.4 (4.3) 14.1 (10.0) 53.2 (27.1) 97.3 (48.8)

ADLG 50 iter 7.4 (11.6) 4.6 (4.3) 15.0 (11.3) 53.1 (30.4) 92.5 (51.0)

ADLG 100 iter 7.4 (11.7) 4.7 (4.4) 15.1 (11.3) 53.8 (30.5) 94.6 (49.0)

ADLG 200 iter 7.3 (11.6) 4.7 (4.4) 15.1 (11.1) 55.3 (29.5) 95.5 (50.3)

ADLG 500 iter 7.2 (11.7) 4.8 (4.4) 15.8 (11.1) 57.3 (28.4) 95.8 (49.0)

ADLG 1000 iter 7.1 (11.8) 5.1 (4.4) 16.6 (11.5) 57.4 (27.3) 94.2 (47.2)

Median 9x9 7.4 (11.6) 4.4 (4.1) 14.2 (10.7) 49.2 (27.3) 86.2 (51.7)

Figure A.80: Active contour segmentation (lesions) - Validation metrics (average and standard
deviation) for parameters choice using Average Distance (AD), SmoothFactor = 0.5, Contraction-
Bias = -0.5
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A.3 Mean shift clustering (anatomical structures)

Bandwidth
0.02 0.05 0.1

Original 0.50 (0.18) 0.48 (0.25) 0.15 (0.27)

ADLG 50 iter 0.56 (0.19) 0.57 (0.17) 0.42 (0.00)

ADLG 100 iter 0.53 (0.20) 0.50 (0.25) 0.51 (0.00)

ADLG 200 iter 0.48 (0.19) 0.49 (0.25) 0.51 (0.15)

ADLG 500 iter 0.47 (0.25) 0.53 (0.26) 0.62 (0.14)

ADLG 1000 iter 0.50 (0.26) 0.51 (0.26) 0.53 (0.26)

Median 9x9 0.55 (0.16) 0.55 (0.21) 0.47 (0.10)

Figure A.81: Mean shift segmentation (anatomical structures) - Validation metrics (average and
standard deviation) for parameters choice using Sørensen–Dice coefficient (SD) for X,Y position
weight = 0.0625

Bandwidth
0.02 0.05 0.1

Original 20.9 (22.0) 30.2 (33.7) 109.8 (50.3)

ADLG 50 iter 17.8 (20.3) 20.7 (17.0) 38.4 ( 0.0)

ADLG 100 iter 13.7 (16.4) 28.7 (29.2) 33.8 ( 0.0)

ADLG 200 iter 24.2 (27.0) 27.8 (29.5) 22.6 (14.3)

ADLG 500 iter 24.7 (21.6) 19.5 (21.0) 16.2 (12.7)

ADLG 1000 iter 23.8 (23.8) 22.4 (23.8) 28.9 (31.6)

Median 9x9 17.2 (20.0) 20.2 (17.9) 23.4 ( 8.9)

Figure A.82: Mean shift segmentation (anatomical structures) - Validation metrics (average and
standard deviation) for parameters choice using Average Distance (AD) for X,Y position weight
= 0.0625
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Bandwidth
0.02 0.05 0.1

Original 0.52 (0.14) 0.44 (0.21) 0.21 (0.27)
ADLG 50 iter 0.55 (0.15) 0.47 (0.23) 0.48 (0.11)
ADLG 100 iter 0.50 (0.18) 0.53 (0.23) 0.38 (0.03)
ADLG 200 iter 0.61 (0.16) 0.53 (0.22) 0.42 (0.07)
ADLG 500 iter 0.55 (0.21) 0.58 (0.18) 0.64 (0.16)
ADLG 1000 iter 0.52 (0.23) 0.54 (0.24) 0.53 (0.25)
Median 9x9 0.54 (0.15) 0.52 (0.24) 0.42 (0.10)

Figure A.83: Mean shift segmentation (anatomical structures) - Validation metrics (average and
standard deviation) for parameters choice using Sørensen–Dice coefficient (SD) for X,Y position
weight = 0.125

Bandwidth
0.02 0.05 0.1

Original 17.9 (15.4) 29.3 (28.5) 91.4 (54.0)

ADLG 50 iter 17.6 (16.1) 26.8 (29.4) 31.9 ( 2.5)

ADLG 100 iter 24.6 (22.2) 25.2 (26.8) 40.3 ( 9.8)

ADLG 200 iter 12.3 (14.7) 19.6 (19.0) 26.9 (16.2)

ADLG 500 iter 14.0 (13.1) 15.3 (16.9) 12.9 (13.4)

ADLG 1000 iter 17.5 (22.6) 16.7 (20.4) 26.2 (31.5)

Median 9x9 15.9 (13.2) 26.0 (30.2) 38.8 ( 7.4)

Figure A.84: Mean shift segmentation (anatomical structures) - Validation metrics (average and
standard deviation) for parameters choice using Average Distance (AD) for X,Y position weight
= 0.125

Bandwidth
0.02 0.05 0.1

Original 0.54 (0.19) 0.37 (0.20) 0.37 (0.29)
ADLG 50 iter 0.59 (0.14) 0.45 (0.22) 0.44 (0.22)
ADLG 100 iter 0.57 (0.20) 0.50 (0.19) 0.40 (0.21)
ADLG 200 iter 0.56 (0.18) 0.52 (0.21) 0.47 (0.21)
ADLG 500 iter 0.51 (0.25) 0.62 (0.21) 0.45 (0.26)
ADLG 1000 iter 0.50 (0.25) 0.47 (0.24) 0.53 (0.24)
Median 9x9 0.62 (0.18) 0.53 (0.18) 0.43 (0.22)

Figure A.85: Mean shift segmentation (anatomical structures) - Validation metrics (average and
standard deviation) for parameters choice using Sørensen–Dice coefficient (SD) for X,Y position
weight = 0.25
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Bandwidth
0.02 0.05 0.1

Original 19.8 (19.2) 27.0 (22.4) 44.3 (48.8)

ADLG 50 iter 12.9 (10.9) 20.2 (18.8) 28.9 (29.3)

ADLG 100 iter 13.9 (15.3) 18.8 (17.1) 32.0 (29.7)

ADLG 200 iter 16.2 (14.5) 22.0 (20.4) 26.0 (21.8)

ADLG 500 iter 17.4 (19.2) 14.4 (20.9) 33.3 (36.8)

ADLG 1000 iter 19.8 (19.1) 25.5 (19.7) 18.9 (28.9)

Median 9x9 10.8 (12.5) 18.6 (23.0) 32.5 (34.6)

Figure A.86: Mean shift segmentation (anatomical structures) - Validation metrics (average and
standard deviation) for parameters choice using Average Distance (AD) for X,Y position weight
= 0.25

Bandwidth
0.02 0.05 0.1

Original 0.50 (0.17) 0.51 (0.20) 0.41 (0.29)
ADLG 50 iter 0.53 (0.17) 0.56 (0.19) 0.46 (0.26)
ADLG 100 iter 0.53 (0.21) 0.58 (0.15) 0.46 (0.20)
ADLG 200 iter 0.60 (0.18) 0.59 (0.18) 0.53 (0.23)
ADLG 500 iter 0.60 (0.20) 0.57 (0.17) 0.52 (0.24)
ADLG 1000 iter 0.31 (0.23) 0.50 (0.25) 0.46 (0.22)
Median 9x9 0.58 (0.19) 0.56 (0.21) 0.51 (0.21)

Figure A.87: Mean shift segmentation (anatomical structures) - Validation metrics (average and
standard deviation) for parameters choice using Sørensen–Dice coefficient (SD) for X,Y position
weight = 1

Bandwidth
0.02 0.05 0.1

Original 18.0 (18.3) 17.8 (17.3) 36.2 (34.2)

ADLG 50 iter 16.7 (16.1) 15.6 (15.9) 26.8 (26.1)

ADLG 100 iter 18.7 (16.2) 14.8 (13.3) 23.2 (19.8)

ADLG 200 iter 14.6 (17.5) 11.3 (11.0) 20.5 (26.3)

ADLG 500 iter 10.8 (11.4) 13.0 (10.9) 22.5 (27.3)

ADLG 1000 iter 30.0 (22.4) 21.1 (21.5) 25.5 (25.1)

Median 9x9 14.2 (14.5) 17.5 (19.0) 19.1 (19.2)

Figure A.88: Mean shift segmentation (anatomical structures) - Validation metrics (average and
standard deviation) for parameters choice using Average Distance (AD) for X,Y position weight
= 1
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