
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Software Architecture by Component
Selection

Hugo Ari Rodrigues Drumond

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Filipe Alexandre Pais de Figueiredo Correia

Co-supervisor: Hugo José Sereno Lopes Ferreira

July 20, 2019

Software Architecture by Component Selection

Hugo Ari Rodrigues Drumond

Mestrado Integrado em Engenharia Informática e Computação

July 20, 2019

Abstract

Software architecture is concerned with the high-level modelling of a software system and com-
prises the decisions and the rationale that led to a particular architectural solution. Although the
rationale behind decisions is at the core of well architectured software much of this knowledge
is still implicit, impromptu and not supported by software engineering processes and tools. Re-
sulting in increased costs for change and architecture degradation, and poor decision re-usability.
Furthermore, Component Selection involves selecting existing components that are suitable for
some parts of the system instead of developing the whole system from scratch allowing architects
and developers to focus on their team’s areas of expertise which is normally associated with better
quality products and reduced time to market. Component Selection is still a hard task in part due
to the nonexistence of structured knowledge in most software projects. This is because, compo-
nent consumers seek the functional, and non-functional aspects that resulted from specifications
and architectural decisions to select an appropriate component given problem context. In order
words, capturing knowledge is equally important for consumers. However, building an ontology
to encode it is non-trivial since different component types may have distinct features and rationales
for selection. Taking this into consideration, the goal of this dissertation is to build a conceptual
framework that helps with architectural decision making in particular the selection of components
by making use of structured knowledge. To accomplish this we investigated techniques and frame-
works related to Architecture Knowledge Management (AKM), component selection, component
comparison, data formats, and artificial intelligence. Whose critical output is a set of issues that
culminated in an approach and a list of desired characteristics, a desiderata, that implementations
should heed. The approach involves collecting features segmented by concern from Software
Components present in repositories and exposing them through a service. In a sense building a
knowledge base of software features that can assist component selection. Consequently, we im-
plemented a framework that captures structured knowledge from features files present in GitHub
repositories exposing it through a Representational State Transfer (REST) API. To evaluate it we
discuss the implementation of each key principle of the desiderata, contrast it with the litera-
ture review, and exemplify its use through a prototype front-end application populated with Big
Data feature information. In conclusion, the analysis of the desiderata in the evaluation chapter
indicates that our approach and implementation better assist feature comparisons in component
selection processes when compared to current approaches, but it still needs to be put to the test by
researchers willing to conduct users studies with developers of components and its consumers. All
in all, we established: a framework that assists producers and consumers of software in capturing,
searching and comparing software features; a structured approach to capture project knowledge
stored along side code; and lastly, a set of key characteristics, an implementation and a client side
prototype for the comparison of software.

Keywords: Software architecture, Component Selection, Knowledge-Base

i

ii

Resumo

A arquitetura de software preocupa-se com a modelação de alto nível de um sistema de software e
compreende as decisões e a lógica que levaram a uma solução de arquitetura específica. Embora a
lógica por detrás das decisões esteja no centro de software bem arquitetado, muito deste conheci-
mento ainda é implícito, improvisado e não é suportado por ferramentas e processos de engenharia
de software. Resultando num aumento dos custos de mudança e degradação de arquitetura, e má
reutilização de decisão. Além disso, a seleção de componentes envolve a escolha de soluções
existentes que são adequadas para algumas partes do sistema, em vez de se desenvolver tudo a
partir do zero, permitindo que arquitetos e programadores se concentrem nas suas áreas de es-
pecialização. Prática esta que normalmente está associada a produtos de melhor qualidade com
menor tempo de comercialização. A seleção de componentes ainda é uma tarefa difícil, em parte
devido à inexistência de conhecimento estruturado na maioria dos projetos de software. Tal ocorre
porque os consumidores de componentes buscam pelos aspetos funcionais e não funcionais resul-
tantes de especificações e decisões arquiteturais para selecionar um componente apropriado, dado
o contexto do problema. Noutras palavras, captar conhecimento é igualmente importante para
os consumidores. No entanto, construir uma ontologia para codificá-la não é trivial, pois, difer-
entes componentes podem ter características e justificações distintas para a seleção. Tendo isto em
conta, o objetivo desta dissertação é construir uma framework concetual que auxilie na tomada de
decisões arquitetónicas, nomeadamente, a seleção de componentes utilizando conhecimento es-
truturado. Com este fim em vista, investigámos técnicas e estruturas relacionadas com Gestão de
Conhecimento de Arquitetura, seleção de componentes, comparação de componentes, formatos de
dados, e inteligência artificial. Cujo resultado crítico é um conjunto de problemas que culminou
numa abordagem e numa lista de características desejadas, um desiderata, que as implementações
devem seguir. A abordagem envolve a colheita de características segmentadas por domínio de
componentes de software presentes em repositórios e na exposição deste através de um serviço.
De certo modo, construindo uma base de conhecimentos que auxilia na seleção de componentes.
Consequentemente, implementámos uma framework que captura o conhecimento estruturado de
ficheiros de características presentes em repositórios do GitHub, expondo-os numa API REST.
Para avaliá-la, discutimos a implementação de cada princípio-chave do disederata, contrastamos
com a revisão da literatura, e exemplificamos o seu uso através de um protótipo preenchido com
informações sobre Big Data. Em conclusão, a análise do desiderata indica que a nossa abordagem
e implementação melhoram as comparações de características nos processos de seleção de com-
ponentes quando comparadas com as abordagens atuais. No entanto, estas aindam precisam de
ser testadas por investigadores dispostos a conduzir estudos com produtores de componentes e
consumidores. De um modo geral, estabelecemos: uma estrutura que auxilia produtores e con-
sumidores de software na captura, pesquisa e comparação de características de software; uma
abordagem estruturada para capturar conhecimento de projetos armazenado ao lado do código;
e, por último, um conjunto de características chave, uma implementação e um protótipo para a
comparação de software.

iii

iv

Acknowledgements

First and foremost, I would like to thank my supervisor, Filipe Alexandre Pais de Figueiredo Cor-
reia, whose guidance and availability was decisive in the elaboration of this document. Secondly,
I thank my co-supervisor, Hugo José Sereno Lopes Ferreira, for providing input when there were
some early project deadlocks.

Last but not least, my sincere gratitude to my family for their support and unconditional love
which has given me the strength to keep moving forward for as long as I remember. Also a big
thank you to my friends for the many laughs and adventures we shared along the way.

Hugo Ari Rodrigues Drumond

v

vi

“Whether you think you can,
or you think you can’t – you’re right.”

Henry Ford

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Problem Definition . 2
1.3 Motivation and Goals . 3
1.4 Contributions . 3
1.5 Document Structure . 3

2 Literature Review 5
2.1 Architecture Knowledge Management . 5
2.2 Component Selection . 18

2.2.1 Quality Architecture at Scale for Big Data 18
2.2.2 A formal Framework . 20
2.2.3 Multiple-criteria decision-making . 22

2.3 Data Interchange Models & Formats . 23
2.3.1 RDF, RDFS, SPARQL, OWL, Linked Data 23
2.3.2 JSON, XML, JSON Schema, XML Schema, YAML 33
2.3.3 Avro, Protocol Buffers, Thrift . 33

2.4 Comparison Websites . 35
2.4.1 Multi-Faceted Comparison Websites . 35
2.4.2 Feature-Comparison Websites . 39

3 Problem Statement 41
3.1 Current Issues . 41
3.2 Proposal . 42

3.2.1 Approach . 42
3.2.2 Desiderata . 43
3.2.3 Assumptions . 44
3.2.4 Evaluation . 44

4 Implementation 45
4.1 Overview . 45
4.2 Architecture and Tools . 46
4.3 Data Model . 48
4.4 Features . 49

4.4.1 Feature 1 — encode features . 49
4.4.2 Feature 2 — encode features per domain 49
4.4.3 Feature 3 — support multiple encoding formats 49
4.4.4 Feature 4 — support for optional feature schemas 50

ix

x CONTENTS

4.4.5 Feature 5 — feature and schema versioning 52
4.4.6 Feature 6 — ignorable branches, releases, and branch publishes 52
4.4.7 Feature 7 — capture push and release information 53
4.4.8 Feature 8 — schema validation using the github checks API 53
4.4.9 Feature 9 — re-use schemas to reduce heterogeneity 54
4.4.10 Feature 10 — provide a public API . 56

4.5 Using the solution . 56
4.5.1 Producer . 56
4.5.2 Consumer . 57

4.6 Building the Solution . 58

5 Evaluation 61
5.1 Methodology . 61
5.2 Capture and Grouping . 62
5.3 Validation . 64
5.4 Reuse . 65
5.5 Versioning . 65
5.6 Search and Comparison . 66
5.7 Conclusion . 68

6 Conclusions and Future Work 69
6.1 Main Difficulties . 69
6.2 Contributions . 69
6.3 Future Work . 70

6.3.1 Approach . 70
6.3.2 Prototype . 70
6.3.3 Ideas to explore . 71
6.3.4 User Studies . 71

6.4 Conclusion . 72

References 73

A Feature Taxonomy of Gorton et al 81
A.1 Data Architecture . 81

A.1.1 Data Model . 81
A.1.2 Query languages . 82
A.1.3 Consistency . 83

A.2 Software Architecture . 85
A.2.1 Scalability . 85
A.2.2 Data Distribution . 85
A.2.3 Data Replication . 86
A.2.4 Security . 87
A.2.5 Administration and Monitoring . 88

B ISO/IEC/IEEE 42010:2011 Conceptual Models and Definitions 89

C ADvISE Meta-model 95

D CoCoADvISE Meta-model 97

CONTENTS xi

E Architecture Knowledge Management Systems Features, and Strengths and Weak-
nesses 99
E.1 Architecture Knowledge Management Systems Features 99
E.2 Architecture Knowledge Management Systems Strengths and Weaknesses 102

F Architecture Documentation stakeholders might find useful 103

G Data Model Data Definition Language 105

H Docker files 107

xii CONTENTS

List of Figures

2.1 Global Analysis Flow . 7
2.2 Example of a Factor Table . 7
2.3 Example of an Issue Card . 8
2.4 Example of a Decision Table . 8
2.5 Unified Modeling Language (UML) model of Global Analysis artefacts 9
2.6 New Architecture Description Standard ISO/IEC/IEEE 42010 11
2.7 Architecture Description languages (ADLs) used by the study population 12
2.8 Comparison between Architecture Knowledge Management Systems (AKMSs) . 13
2.9 Architectural Design Decision Support Framework (ADvISE) 14
2.10 Questions, Options, and Criteria (QOC) example 14
2.11 ADvISE and View-based Modeling Framework (VbMF) integration 15
2.12 Reusable Architectural Decision Models for Quality-driven Decision Support (Co-

CoADvISE) exemplary model . 16
2.13 CoCoADvISE questionnaire . 16
2.14 Distribution of OSS projects from SourceForge, Google Code, Github, and Tigris

over ADL and architecture document elements 17
2.15 Logical structure of the QuABaseBD ontology 19
2.16 A Decision Support System for Technology Selection 22
2.17 Semantic Web Stack . 23
2.18 Example of an Resource Description Framework (RDF) graph 24
2.19 Example of an RDF graph with the Resource Description Framework Schema

(RDFS) vocabulary . 25
2.20 Resolving differences between the writer’s and reader’s schema 34
2.21 Options for the question, What are the best backend web frameworks? 35
2.22 Phoenix details for question, What are the best backend web frameworks? 36
2.23 Django details for question, What are the best backend web frameworks? 36
2.24 Berlin vs London Demographics Category . 37
2.25 Berlin vs London Radar Chart . 37
2.26 Berlin vs London Key Facts Chart . 37
2.27 Apache Spark Reviews & Stack decisions . 38
2.28 MySQL vs PostgreSQL vs Oracle . 39
2.29 StackShare Stack . 39
2.30 Open Source Time Series DB Comparison Google Sheets 40

4.1 Implementation Overview . 46
4.2 Featurewise GitHub App . 46
4.3 Deployment Diagram . 47
4.4 Class Diagram . 48

xiii

xiv LIST OF FIGURES

4.5 Feature File . 49
4.6 Example of a domain in a feature file that was validated 53
4.7 Example of a domain in a feature file that failed validation 54
4.8 Featurewise installation page . 57
4.9 Featurewise configuration page . 57
4.10 Smee in action . 58

5.1 All the repositories stored in our service @frontend/repositories 63
5.2 Example of a domain that follows a schema @frontend/featurewise/60 63
5.3 Table of software that follows a schema . 64
5.4 Example of multiple riak versions @frontend/repository/192900930 66
5.5 Example of two schemas @frontend/schemas 66
5.6 Comparison between two mongo versions . 67
5.7 Comparison between different software . 68

B.1 Conceptual model of an architecture description 90
B.2 Conceptual model of architectural description elements and correspondences . . 91
B.3 Conceptual model of architectural decisions and rationale 91
B.4 Conceptual model of an architecture framework 92
B.5 Conceptual model of an architecture description language 93

C.1 ADvISE meta-model . 95

D.1 CoCoADvISE meta-model . 97

E.1 Current Strengths and Weaknesses of AKMSs 102

F.1 Architecture documentation stakeholders might find useful 103

List of Tables

2.1 Organisation of features from (Gorton et al., 2015) updated with information from
QuABaseBD . 18

A.1 Data Model QuABaseBD Subcategories . 81
A.2 Data Model QuABaseBD . 82
A.3 Query languages QuABaseBD Subcategories 82
A.4 Query languages QuABaseBD . 83
A.5 Consistency QuABaseBD Subcategories . 83
A.6 Consistency QuABaseBD . 84
A.7 Scalability QuABaseBD . 85
A.8 Data Distribution QuABaseBD Subcategories 85
A.9 Data Distribution QuABaseBD . 86
A.10 Data Replication QuABaseBD Subcategories 86
A.11 Data Replication QuABaseBD . 87
A.12 Data Replication QuABaseBD Subcategories 87
A.13 Security QuABaseBD . 88
A.14 Administration and Monitoring QuABaseBD 88

E.1 Knowledge Capture . 99
E.2 Knowledge Application/Presentation . 100
E.3 Knowledge Maintenance . 100
E.4 Knowledge Sharing . 100
E.5 Knowledge Reuse . 101
E.6 Technology . 101

xv

xvi LIST OF TABLES

Acronyms

ADD Architecture Design Decision. 9, 14, 15, 16

ADDSS Architecture Design Decision Support System. 11

ADL Architecture Description language. xiii, 11, 12, 13, 16, 17

ADvISE Architectural Design Decision Support Framework. xiii, xiv, 13, 14, 15, 95

AKM Architecture Knowledge Management. i, 1, 10, 11, 16, 17, 19, 42

AKMS Architecture Knowledge Management System. xiii, xiv, 1, 10, 12, 13, 15, 16, 17, 32, 42,
71, 99, 101

API Application Programming Interface. 45, 47, 52, 53, 56, 57, 63, 64, 66, 67, 68

ArchiMate Architecture-Animate. 11

AREL Architecture Rationale and Elements Linkage. 11

ATAM Tradeoff Analysis Method. 15

CBAM Cost Benefit Analysis Method. 15

CoCoADvISE Reusable Architectural Decision Models for Quality-driven Decision Support.
xiii, xiv, 15, 16, 70, 97

COTS Commercial off-the-shelf. 21

DAMSAK Data Model for Software Architecture Knowledge. 11

DoDAF Department of Defense Architecture Framework. 11

DRIM Design Recommendation and Intent Model. 5

DRL Decision Representation Language. 5, 9

FDL fuzzy description logic. 21

HTML Hyper Text Markup Language. 16, 28, 29, 32, 43

HTTP Hyper Text Transfer Protocol. 23, 28, 29, 30

IBIS Issue Based Information Systems. 5, 8, 9

xvii

xviii Acronyms

IRI Internationalized Resource Identifier. 23, 26

ISAA Integrated Issue, Solution, Artifact and Argument model. 5, 32

JSON JavaScript Object Notation. 32, 33, 34, 47, 49, 50, 51, 54, 55, 56, 64, 65

LADR Lightweight Architecture Decision Records. 17

MCDM Multiple-criteria decision-making. 1, 17, 21, 22, 57

NFR non-functional requirement. 10, 11, 13, 20, 21

OOP Object-oriented programming. 25

OSS Open-source software. 16, 21

OWL Web Ontology Language. 27, 31

PAKME Process-based Architecture Knowledge Management Environment. 11

PHI Procedural Hierarchy of Issues. 5

QOC Questions, Options, and Criteria. xiii, 5, 9, 13, 14, 15, 70

QuaDAI Quality-driven Product Architecture Derivation and Improvement. 15

RDF Resource Description Framework. xiii, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 42, 43, 71

RDFa Resource Description Framework in Attributes. 32, 43, 71

RDFS Resource Description Framework Schema. xiii, 25, 27, 31

REST Representational State Transfer. i, 47, 56, 57, 66, 68

SPARQL SPARQL Protocol and RDF Query Language. 26, 27, 28

SysML Systems Modeling Language. 11

TOGAF The Open Group Architecture Framework. 11

UML Unified Modeling Language. xiii, 8, 9, 11, 16

URI Uniform Resource Identifier. 23, 28, 29, 30, 31, 42, 55

URL Uniform Resource Locator. 23, 46, 48, 50, 52, 55, 56, 64, 65

VbMF View-based Modeling Framework. xiii, 14, 15

XML eXtensible Markup Language. 23, 32, 33, 34

YAML YAML Ain’t Markup Language. 33, 49, 51, 54, 55, 65

Glossary

MediaWiki Is a free open source wiki. It can be found at
https://www.mediawiki.org/wiki/MediaWiki. xix

QuABaseBD pronounced as ’kbase-BeeDee’ is "a Knowledge Base for Big Data Architectures
and Technologies" that follows the taxonomy of (Gorton et al., 2015). It can be found at
https://quabase.sei.cmu.edu/mediawiki/index.php/Main_Page. xiii, xv,
18, 19, 20, 42, 44, 61, 62, 64, 65, 66, 81, 82, 83, 84, 85, 86, 87, 88

Semantic MediaWiki Is an free open source extension to MediaWiki which adds concepts from
the semantic web in order to give information structure. Effectively building knowledge
management systems whose information can be queried, shared and linked in a machine
and human readable way. It can be found at
https://www.semantic-mediawiki.org/wiki/Semantic_MediaWiki. 19, 32,
64, 65

xix

https://www.mediawiki.org/wiki/MediaWiki
https://quabase.sei.cmu.edu/mediawiki/index.php/Main_Page
https://www.semantic-mediawiki.org/wiki/Semantic_MediaWiki

Chapter 1

Introduction

In this chapter we describe the motivations that lead to this thesis, and sum up the overall structure

of the document. Section 1.1 presents related topics. Section 1.2 defines the problem and its

causes. Section 1.3 describes the objective of the project as well as the motivation behind it.

Section 1.4 elaborates on the main contributions of our work. Section 1.5 presents the structure

and content of the document.

1.1 Context

Software architecture is concerned with the high-level modelling of a software system and com-

prises the decisions and the rationale that led to a particular architectural solution (Bosch, 2004;

Jansen and Bosch, 2005). Although the rationale behind decisions is at the core of well architec-

tured software much of this knowledge is still implicit, impromptu and not supported by software

engineering processes and tools (Jansen and Bosch, 2005; Capilla et al., 2016). Resulting in in-

creased costs for change and architecture degradation, and poor decision re-usability. As a way

to solve this predicament, a new research interest emerged, AKM. Its tools assist in the decision

making process by gathering and managing information paramount to the inception and evolution

of a robust and backed architecture. Unfortunately AKM adoption is still not widespread mainly

due to the costs of capturing the required information necessary to aid decision (Capilla et al.,

2016). Furthermore most AKMSs: do not integrate well with current development processes; do

not provide guidelines about which architecture knowledge is indeed important; and do not inte-

grate well or at all with current tools and processes so as to not duplicate information. Because

AKMSs are concerned with documenting decisions and their rationale they are linked to design

rationale. It seeks argumentation-based structures to record decisions and their reasons as a way to

address wicked problems, that is, difficult problems with incomplete, contradictory, and changing

requirements.

1

2 Introduction

1.2 Problem Definition

Component Selection involves contrasting a set of candidate components according to a set of

criteria and picking one following a criteria input. It is often associated with Multiple-criteria

decision-making (MCDM) systems and algorithms because it deals with the modelling of multiple

conflicting criteria in decision making which is common in software selection — e.g. evaluating

component origins, technology selection, etc. One of the reasons for the difficulty in Component

Selection is the nonexistence of structured knowledge in most software projects. This is because

architectural decisions are normally justified by combining problem context (data characteristics,

granularity, ecosystem restrictions, etc) and non-functional vocabulary which is also an important

factor in the selection of components. So it seems plausible to say that architecture knowledge cap-

ture is equally important for producers and consumers of software components. However, a wide

encompassing and complex approach to capturing architecture knowledge might not be the most

adequate since software developers would have to shift considerable development time to doc-

umentation activities which would also not benefit component consumers as they only need the

current architectural decisions snapshot and not the full history that lead to it. As a result for the

purpose of component selection the encoding of only the current characteristics and trade-offs of

components is probably the best approach. Such would assist the construction of candidate com-

ponent descriptions, Component Catalogues. Furthermore, components from different types have

distinct features which makes efforts to build these taxonomies a hard problem. One additional

concern is how to achieve and maintain a common model that is able to describe all software com-

ponents while also describing trade-offs. The lack of specialised search engines and models for

component selection means the search for software features must rely on generic keyword-based

search engines which do not take advantage of model semantics. Indeed, it is current practice

to use Web search engines, like Google, and keywords such as versus to find software compar-

isons in blogs, forums, developer communities, and so on. Fortunately, there are some sources

of structured knowledge scattered all over the web such as the: Open Source Time Series DB

Comparison1, Knowledge Base of Relational and NoSQL Database Management Systems2, Ul-

timate Time Series DB Comparison3, Relational Database Management Systems Comparison4,

etc. However, in both cases information is hard to search and contrast because they hold different

syntaxes and semantics. Moreover there is seldom a description of the architectural approaches

taken and the rationale behind them which would indicate the scenarios and quality attributes that

the system was designed for.

1https://docs.google.com/spreadsheets/d/1sMQe9oOKhMhIVw9WmuCEWdPtAoccJ4a-IuZv4fXDHxM/
edit

2https://db-engines.com/en/systems
3https://tsdbbench.github.io/Ultimate-TSDB-Comparison/
4https://en.wikipedia.org/wiki/Comparison_of_relational_database_management_

systems

https://docs.google.com/spreadsheets/d/1sMQe9oOKhMhIVw9WmuCEWdPtAoccJ4a-IuZv4fXDHxM/edit
https://docs.google.com/spreadsheets/d/1sMQe9oOKhMhIVw9WmuCEWdPtAoccJ4a-IuZv4fXDHxM/edit
https://db-engines.com/en/systems
https://tsdbbench.github.io/Ultimate-TSDB-Comparison/
https://en.wikipedia.org/wiki/Comparison_of_relational_database_management_systems
https://en.wikipedia.org/wiki/Comparison_of_relational_database_management_systems

1.3 Motivation and Goals 3

1.3 Motivation and Goals

Using existing components that are suitable for some parts of the system instead of developing

the whole system from scratch allows architects and developers to focus on their team’s areas

of expertise which is normally associated with better quality products and reduced time to mar-

ket. However the process of selection is most often than not a laborious task since it is done

in an ad-hoc way relying on individual experience, manual search, and only then comparison of

features. Hence, the goal of this work is to provide an approach and develop a tool that helps

with the selection of components by making use of structured knowledge. This would make the

documentation of software features a byproduct of documented projects and not an external con-

cern. In the long run such a formalism would also benefit architecture refactorings by providing

a formal way to compare components with similar intents — e.g. the comparison between post-

gres and mongodb. In a distant future, the ultimate vision would be for an intelligent system to

combine this information with load parameters and migration rules to change a component for

another in a running environment while maintaining the functional behaviour of the system. An

Architecture Refactoring Suggestion for component change could be triggered by determining

under-performing components through the analyses of different metrics in a live environment.

1.4 Contributions

The main contribution of our work is a new way to capture structured knowledge in a way that

fosters contributions and reuse of that information by other services. As a result the contributions

of this dissertation are the following:

• A conceptual framework that assists producers and consumers of software in capturing the

features of their software per domain, searching for appropriate components, and comparing

them. As a side effect this would serve as a stepping stone towards Architecture Refactor-

ings.

• A structured approach to project knowledge capture stored along side code that could possi-

bly be extended to scenarios other than component selection — e.g. mapping of features to

code through annotations which could be useful for building a dataset for machine learning

purposes, whose aim would be to do the inverse, mapping code into features.

• A set of key characteristics described in a desiderata, an implementation of those principles

in a service and a client side prototype for the comparison of software.

1.5 Document Structure

• Chapter 2 describes approaches to component selection, architecture knowledge manage-

ment and other related works while also relating them to the problem at hand.

4 Introduction

• Chapter 3 summarises current issues and presents our proposal.

• Chapter 4 describes the overall architecture of the system, the techniques and tools that were

used to create the solution, its features, and how we can use and run the application.

• Chapter 5 evaluates whether the implementation follows the desiderata.

• Chapter 6 enumerates the main difficulties faced, presents the main contributions, indicates

what future work could look like, and draws conclusions.

Chapter 2

Literature Review

In this chapter we present and discuss topics related to the goal we are trying to accomplish, to

develop an approach and a tool that helps with the selection of components by making use of struc-

tured knowledge. Section 2.1, describes how architecture evolved in relation to the encoding of

decisions and rationale in order to understand how these models can be used to aid component se-

lection. Section 2.2 presents different ways to frame component selection problems. And Section

2.3 details possible data formats for the encoding of knowledge. Section 2.4 showcases different

comparison websites. Building a tool that assists component selection by making use of structured

information involves encoding vocabulary and its relationships, and sharing and reasoning about

this body of knowledge. Henceforth different approaches to solve the above are presented.

2.1 Architecture Knowledge Management

Software architecture is complex, prone to erosion, and with high costs for change (Jansen and

Bosch, 2005). According to (Jansen and Bosch, 2005) this is partly due to design decision knowl-

edge about architecture being implicit and not having a first-class representation. The lack of

explicitness results in valuable knowledge being lost especially when experts depart raising over-

all project cost (Capilla et al., 2016). The first systems that tried to handle problems related to

decision encoding where built around the 70s and the 80s and used concepts from Design Rational

(Capilla et al., 2016). In a general sense rationale is:

“The reasons or intentions that cause a particular set of beliefs or actions“

Cambridge Dictionary

Hence Design Rationale is concerned with the explicit encoding of decisions, and the reasons

behind those decisions that constitute the design of an artefact (Jarczyk et al., 1992). Its ap-

proaches, also called argumentation-based models, are studied and used in many fields because its

5

6 Literature Review

goal is ubiquitous; to understand, maintain, and improve design by building a collection of struc-

tured knowledge about decisions and its reasons. Some of which are the: Toulmin model (Toulmin,

1958); Issue Based Information Systems (IBIS) (W Kunz, 1970); Procedural Hierarchy of Issues

(PHI) (McCall, 1991); QOC (MacLean et al., 1991); Decision Representation Language (DRL)

(Lee, 1991); Design Recommendation and Intent Model (DRIM) (Pena-Mora et al., 1993); Win-

Win Spiral Model (Boehm and Kitapci, 2006); and more recently the Integrated Issue, Solution,

Artifact and Argument model (ISAA) (Zhang et al., 2013). The Software Engineering Community

has adapted and extended some of these methods to document the rationale behind software design

decisions, requirements specifications, and other approaches that combine rationale and scenarios

to elicit and refine requirements (Tang et al., 2006). As can be seen in Figure F.1, design ratio-

nale can be useful to project managers, members of the development team, maintainers, analysts,

new stakeholders, and current and future architects. In our opinion, designers of other systems,

what we call component consumers, too find system rationale and constraints particularly impor-

tant because they can leverage this information to better determine how well a component might

fit into their system — e.g. VoltDB uses statement-based replication for their implementation of

replication logs which is prone to inconsistency when faced with non-deterministic operations;

however it does not constitute a problem since the system was designed uniquely for determinis-

tic transactions (no functions such as NOW() that get dispatched to replicas in DML statements)

(Kleppmann, 2017).

According to (Tang et al., 2006) early references to the importance of using a Design Ratio-

nale approach to Software Engineering can be found in (Parnas and Clements, 1985) and (Potts

and Bruns, 1988), however it was only with the work from (Perry and Wolf, 1992) that a foun-

dation was established for the evolving Software Architecture Community. It states that software

architecture is a set of processing, data, and connecting elements holding constraints and relation-

ships among each other that follow from a careful reasoning process that ought to be a first-class

citizen in architectural descriptions (Perry and Wolf, 1992).

So f twareArchitecture = {Elements,Form,Rationale}

Furthermore, they crystallise and relate architectural concepts and terms as a way to build an

unifying basis for understanding and sharing. Some of these are: architectural views; architectural

styles; requirements; architecture; design; implementation; architecture specifications; problems

of use and reuse; etc.

Some important works in the beginning of the 2000s stated the importance of design ratio-

nale (Len Bass, Paul Clements, 2003) and the limitations of current approaches (Bosch, 2004),

and made efforts to build new ontologies (Kruchten, 2004) and tools (Jansen and Bosch, 2005).

Until then efforts to guide the management and use of rationale information such as the IEEE

1471-2000 standard (IEEE Architecture Working Group, 2000) and the Views and Beyond ap-

proach (Clements et al., 2002) had some flaws (Tang et al., 2006). The first made architectural

terms explicit, stated what information architectural descriptions should contain, and conceived

2.1 Architecture Knowledge Management 7

a conceptual model of architectural description where relations to defined terms were made. Al-

though they state that rationale is a part of architectural descriptions, no information for the storing,

sharing, or manipulation of this knowledge was shown. The later emphasises the importance for

rationale capturing, clarifies what rationale information is, and states a way to document rationale

through the linkage of factors to issues to design decisions called Global Analysis, see Figure 2.1.

However the previous topics are only touched very briefly and the document does not demonstrate

a concrete example of a rationale toolkit for Software Architecture and a process that makes use

of it, show alternative ways to document and use rationale, or indicate how this knowledge could

be shared between communities.

Figure 2.1: Global Analysis Flow
Source: (Clements et al., 2002)

Global analysis is made up of two parts, analysis and rationale. It is an architectural de-

sign activity done incrementally as the system’s architecture evolves due to new factors and the

refinement of strategies into new issues (Clements et al., 2002; Hofmeister et al., 2005), and is

used in the Siemens approach to architecture design as the first design activity to back each view

(Clements et al., 2002). First, all characteristics that affect the architecture of the system are taken

into account by analysing the environment and encoding them into factors. These represent: envi-

ronment constraints such as time to market and resources; system requirements such as important

features, quality attributes and technological constraints; and their flexibility, changeability and

impact (Clements et al., 2002). The Table 2.2 shows an example of a factor table.

Figure 2.2: Example of a Factor Table
Source: (Hofmeister et al., 2005)

The major architectural design characteristics of a system stem from factors that have low

flexibility, high changeability, or that affect many components (Clements et al., 2002). This leads

8 Literature Review

us to the second concept, Issue Cards. Their purpose is to assist architects in identifying key

problems which come about from strong factors, and in identifying a solution in the form of

strategies and related approaches to solve the problem (Hofmeister et al., 2005), see Figure 2.3.

Figure 2.3: Example of an Issue Card
Source: (Hofmeister et al., 2005)

Issue cards were inspired by design patterns and pattern languages (Hofmeister et al., 2005)

and in an analogous way: list what factors affect it and if needed how so; discusses a general solu-

tion and identifies a set of strategies to solve the problem which can be in the form of architectural

styles, architectural patterns, design tactics, design guidelines, constraints, or other approaches

(Clements et al., 2002) along with a explanation about its impact on the system — e.g. strengths

and weaknesses in the form of quality attributes; and, points to alternative solutions.

This process culminates into key design decisions which represent the actual implementation

of strategies from Issue Cards. In essence, it is a table which maps rationales in the form of

strategies, present in Issue cards, to design decisions see Figure 2.4.

Figure 2.4: Example of a Decision Table
Source: (Hofmeister et al., 2005)

In this way, Global Analysis provides rationale capture, linkage between architecture design

requirements and strategies, and traceability through the the linkage of factors to issues to design

decisions (Clements et al., 2002). To conclude, it adapts concepts from design rationale namely

IBIS (W Kunz, 1970) to aid architectural processes through the use of issues, positions, and ar-

guments present in Issue Cards in the form of issues, strategies and rationale (Hofmeister et al.,

2.1 Architecture Knowledge Management 9

2005). There seems to be shortcomings in Global Analysis such as the lack of trade-off, com-

posability and dependency descriptions for decisions and strategies when defining a solution in

an Issue Card. Which possibly arises from the fact that the model lacks first-class structures to

describe this knowledge. Nevertheless, it could prove useful for our work as a means to define

a collection of stories written by component consumers with semi-structured text associated to a

particular component — e.g. a collection of justifications for the use a datastore. That informa-

tion could live alongside software code acting as documentation for component consumers, and

be consumed by a service which presents use case stories for particular software; thereby assisting

consumers searching for appropriate software. To take advantage of such a structure the UML

model below, Figure 2.5, would have to be extended and implemented in a backend which would

receive stories from repositories or through a web app.

Figure 2.5: UML model of Global Analysis artefacts
Source: (Hofmeister et al., 2005)

There is a problem however, methods such as IBIS (W Kunz, 1970), QOC (MacLean et al.,

1991), and DRL (Lee, 1991) are not widely accepted by practitioners because they need to know

the end results of the design and the related intents and rationale to get there (Capilla et al., 2016).

Also there is the danger of separating architectural models from their rationale which inevitably

leads to heaps of textual information which are difficult to use (Conklin, 1991).

To deal with the lack of first class representation for Architecture Design Decisions (ADDs),

and their cross-cutting and intertwining — i.e. affecting multiple components and connectors —

description of software architecture Bosch suggested the creation of decision-centric Architecture

Knowledge systems (Bosch, 2004). In it he states that architecture research on modelling of

components and connectors, the first stage of software architecture, has matured and disseminated

to the industry (Bosch, 2004). And that further research on first-class representation of design

decisions, the second stage of software architecture, is needed to deal with design erosion and

the difficulty in changing the architecture of software systems (Bosch, 2004). Their evidence

suggests that knowledge vaporisation of information concerning domain analysis, architectural

10 Literature Review

styles, selected patterns, and other design decisions is the main culprit in architectural unsoundness

(Bosch, 2004). In sum, he found the following problems and promoted further work on the:

first-class presentation of ADDs; cross-cutting and intertwined nature of design decisions among

components, connectors and even themselves; high cost of change because of the above; design

rules and constraints violation; and, removal of obsolete design decisions (Bosch, 2004). They

also identified the many parts that constitute design decisions in a rigorous manner:

• Restructuring effect: design decisions have great impact on software architecture because

they involve addition, removal, splitting or merging of components (Bosch, 2004). The

accumulated restructuring to system design due to a plethora of decisions is not easy to

understand, thus a notation and language to describe design decisions is paramount (Bosch,

2004).

• Design rules: design decisions can impose rules that some or all components must follow

such as a particular way of performing a task (Bosch, 2004).

• Design constraints: define what the system and its parts may not do (Bosch, 2004).

• Rationale: is the output of a careful analysis into the functional and non-functional require-

ments (NFRs) to achieve the best design (Bosch, 2004).

From this moment on several AKMSs and models were built with support for one or more

of the following main use cases for Architecture Knowledge (De Boer et al., 2007; Capilla et al.,

2016): sharing of goals, requirements, problems, system behaviour, contexts such as assump-

tions, constraints, risks, trade-offs, and so on (Capilla et al., 2016); compliance to set constraints,

perform dependency, consistency, impact and quality requirements analysis as the architecture

changes during its lifetime (Capilla et al., 2016); discovery of design questions, design alterna-

tives, behaviours and scenarios through the knowledge encoded in the system in the form of busi-

ness and technical contexts, architecture views, and so on (Capilla et al., 2016); and traceability,

the ability to navigate forwards from requirements, decisions, and implementation or backwards

to assist in system understanding, impact analysis, design assessment, and designer maintenance

tasks such as reviewing architecture changes (Capilla et al., 2016).

Although there are many AKMSs there is still no consensus on: a common meta-model / data-

model to describe Architecture Knowledge (Capilla et al., 2016); and, what type of knowledge is

valuable to which purpose (Capilla et al., 2016). As a consequence Component Selection assisted

by Architecture Knowledge is still a non-trivial problem with no established solution.

The first step in order to build a tool for AKM is to define a data-model. ISO/IEC/IEEE

42010 (ISO/IEC/IEEE, 2011), described in summary in appendix B, is the successor of the IEEE

1471-2000 standard (IEEE Architecture Working Group, 2000) and its purpose is to standardise

terminology and models to describe how architecture descriptions of systems are organised and

expressed (ISO/IEC/IEEE, 2011).

2.1 Architecture Knowledge Management 11

Figure 2.6: New Architecture Description Standard ISO/IEC/IEEE 42010
Source: http://enterprise-strategy-architecture.blogspot.com/2011/11/
understanding-isoiecieee-420102011.html

Over the years there have been other attempts such as Process-based Architecture Knowledge

Management Environment (PAKME) (Babar et al., 2005), Data Model for Software Architec-

ture Knowledge (DAMSAK) (Babar et al., 2006), the meta-model behind Architecture Design

Decision Support System (ADDSS) (Capilla et al., 2006), Architecture Rationale and Elements

Linkage (AREL) (Tang et al., 2007), and the various models underpinning Knowledge Architect

(Jansen et al., 2009) (Capilla et al., 2016). As there is too much diversity and no uniform approach

to cover all architecture knowledge use cases it is best (and advised) to develop custom solutions

following existing meta-models more adapted to those cases (Capilla et al., 2016). Afterwards us-

ing those implementations to validate empirically the underlying meta-model (Capilla et al., 2016).

Recently researchers have used and adapted the IEEE 42010:2011 meta-model (ISO/IEC/IEEE,

2011) to develop new AKM Tools or to evaluate previous ones (Capilla et al., 2016). Our solution

could make use of the IEEE 42010:2011 meta-model (ISO/IEC/IEEE, 2011) to create a simplified

tool adapted to Component Selection. There are also some architecture frameworks and ADLs that

follow this standard and that could possibly be looked into and adapted. An architecture frame-

work is a set common of practices within a domain for building, analysing and using architec-

ture descriptions, some examples of IEEE 42010:2011 (ISO/IEC/IEEE, 2011) architecture frame-

works are: Kruchten’s “4+1” view model (Kruchten, 1995), Siemens’ 4 views method (Christine

Hofmeister, Robert Nord, 1999), Department of Defense Architecture Framework (DoDAF)1, The

Open Group Architecture Framework (TOGAF)2, among others3. An ADL is a graphical or /

and textual description of a software system in terms of elements and theirs relationships4 and

can be of three types: box and line informal drawings, formal ADL, and UML-based notation

(Malavolta et al., 2013); some examples of ones compatible with the IEEE 42010:2011 meta-

model (ISO/IEC/IEEE, 2011) are: Rapide5, Wright6, Systems Modeling Language (SysML)7,

Architecture-Animate (ArchiMate)8, etc3 (ISO/IEC/IEEE, 2011).

An ADL could be implemented or used to describe the interactions of the elements that con-

stitute a system to favour component selection. Through the analysis of the structure and relations

1https://dodcio.defense.gov/library/dod-architecture-framework/
2https://en.wikipedia.org/wiki/The_Open_Group_Architecture_Framework
3http://www.iso-architecture.org/ieee-1471/afs/frameworks-table.html
4https://www.todaysoftmag.com/article/2241/architecture-description-languages
5http://complexevents.com/stanford/rapide/
6http://www.cs.cmu.edu/afs/cs/project/able/www/paper_abstracts/rallen_thesis.htm
7https://www.omg.org/spec/SysML/About-SysML/
8http://pubs.opengroup.org/architecture/archimate3-doc/

http://enterprise-strategy-architecture.blogspot.com/2011/11/understanding-isoiecieee-420102011.html
http://enterprise-strategy-architecture.blogspot.com/2011/11/understanding-isoiecieee-420102011.html
https://dodcio.defense.gov/library/dod-architecture-framework/
https://en.wikipedia.org/wiki/The_Open_Group_Architecture_Framework
http://www.iso-architecture.org/ieee-1471/afs/frameworks-table.html
https://www.todaysoftmag.com/article/2241/architecture-description-languages
http://complexevents.com/stanford/rapide/
http://www.cs.cmu.edu/afs/cs/project/able/www/paper_abstracts/rallen_thesis.htm
https://www.omg.org/spec/SysML/About-SysML/
http://pubs.opengroup.org/architecture/archimate3-doc/

12 Literature Review

described in the ADL artefact behaviours and NFRs could possibly be inferred and checked. Also

Architectural Styles, Patterns and Tactics could be a first class citizen in the language and act as an

abstract concept (abstract class) that could be realised (implemented) into the artefact to form well

understood relationships between elements. The combination of the above would allow a compo-

nent consumer to understand the intricacies of the system under analysis for selection while at the

same time having a textual and / or graphical representation which could be composed with their

own ADL artefact to determine the qualities of the composition — e.g. like an import of a library

in a programming language where well defined interfaces are exposed and intricacies hidden. The

ADL could possibly be annexed or linked to structured documentation to form a simple source of

Architecture Knowledge which could live alongside code in a repository. However, formal ADLs

are rarely part of software life cycles due to the lack of documentation, tooling, extensibility, and

wide focus (Malavolta et al., 2013). Because of this UML is seen as the successor to existing

ADLs (Malavolta et al., 2013), see Figure 2.7. As a matter of fact UML has gotten closer to an

ADL, “ADL research of the 1990s directly influenced the definition of UML 2.0“ (Malavolta et al.,

2013). Furthermore there are many UML extensions tailored towards specific concerns in software

engineering9 and others10. Unfortunately there are still analysis limitations in ADLs especially in

terms of extra-functional expressiveness (Malavolta et al., 2013). As a consequence it is probably

ill advised to extend or build an ADL for component selection within our time-frame.

Figure 2.7: ADLs used by the study population
Source: (Malavolta et al., 2013)

9https://www.omg.org/spec/category/software-engineering/
10https://www.omg.org/spec/

https://www.omg.org/spec/category/software-engineering/
https://www.omg.org/spec/

2.1 Architecture Knowledge Management 13

AKMSs built on top of these approaches to make the management of decisions and rationale

a first class citizen. There are three generations of AKMSs (Capilla et al., 2016) as can be seen in

Figure 2.8.

Figure 2.8: Comparison between AKMSs
Source: (Capilla et al., 2016)

Work on the tools from the first generation (2004-2006) was done with little knowledge of each

other and focused on the ways to capture and represent problem knowledge — e.g. using templates

list of attributes like (Tyree and Akerman, 2005) which can be seen as an extension of Global

Analysis — (Capilla et al., 2016). The second generation (2007-2010) brought sharing capabilities

by using wikis and web based tools and personalization to extend features to specialised groups

of users (Capilla et al., 2016). And the third generation (2011-2014), focused on collaboration for

concurrent work, reuse which often consists in the retrieval of captured design decisions or design

patterns, fuzzy decision-making, and assessment capabilities (Capilla et al., 2016).

The features that are most important for component selection apart from basic functionality

like capturing (CAP) and management (MGM) of knowledge, are reuse (REU), some kind of

reasoning (REA) to guide the user towards the right component, sharing (SHA), relation to NFRs

(ASS), and if possible collaborative (COL) mechanisms to promote contributions.

From the Figure 2.8 and the Tables E.1 from appendix E, we observe that the only tool that

supports those requirements is ADvISE11 which is a Eclipse-based tool that supports modelling

of ADLs through the use of QOC (MacLean et al., 1991) and fuzzy decision making (Lytra et al.,

2013). Its purpose is to assist decision making for reusable architecture decisions at different levels

of abstraction to achieve low cost documentation of rationale in a semi-automated fashion11, see

Figure 2.9.

11https://swa.univie.ac.at/Software_Architecture/research-projects/
architectural-design-decision-support-framework-advise/

https://swa.univie.ac.at/Software_Architecture/research-projects/architectural-design-decision-support-framework-advise/
https://swa.univie.ac.at/Software_Architecture/research-projects/architectural-design-decision-support-framework-advise/

14 Literature Review

Figure 2.9: ADvISE
Source: (Lytra et al., 2013)

In appendix C Figure C.1 which describes the ADvISE meta-model we can see that a decision

is a collection of questions which have options or answers that may trigger further questions and

decisions; and that options establish links to solutions which are a collection of patterns. Also, the

model can be reasoned about by writing forces and rules in the fuzzy logic layer. It is effectively

an extension of QOC (MacLean et al., 1991), seen in Figure 2.10, with support for inference.

Figure 2.10: QOC example
Source: (MacLean et al., 1991)

2.1 Architecture Knowledge Management 15

In essence, ADvISE allows for the creation of once per domain reusable ADD using the Model

Editor to generate Questionnaires editable through the Questionnaire Editor Tool as a way to

make concrete ADDs (Lytra et al., 2013); thereby automatically generating architectural decision

documentation from the answers to the questionnaires (Lytra et al., 2013). It can also be integrated

with VbMF to keep architectural decisions and designs consistent and traceable to each other11

(Lytra et al., 2013), see Figure 2.11.

Figure 2.11: ADvISE and VbMF integration
Source: (Lytra et al., 2013)

Even though ADvISE seems to be the most suitable AKMS for component selection it lacks

support for sharing and collaboration among different work groups, in fact in (Weinreich and

Groher, 2016) ADvISE is said to miss sharing functionality — i.e. not a web app and lacks

a mechanism to expose the collected knowledge in eclipse to the web for wide consumption and

reuse. However, QOC (MacLean et al., 1991) as shown in (Lytra et al., 2013) can be useful to guide

consumers towards a solution, in our case a component, through a series of choices which could be

built collaboratively in a web app for a given domain — e.g. how to choose a datastore. In effect,

(Lytra et al., 2015) follows an approach similar to the above but more guided by the synergies and

trade-offs of quality attributes which could further clarify component selection since they are key

in architectural design, see appendix D. Distancing itself from most AKMSs, seen above in Figure

2.8, which rely on extensive ADD mechanisms to avoid knowledge vaporisation (Bosch, 2004),

but moving closer to Software Architecture Evaluation Methods such as Tradeoff Analysis Method

(ATAM) (Clements et al., 2002), Cost Benefit Analysis Method (CBAM) (Kazman et al., 2001),

Attribute Driven Design (Bass et al., 2002), and Quality-driven Product Architecture Derivation

and Improvement (QuaDAI) (González-Huerta et al., 2013) that try to judge architectural decisions

described through quality attributes in accordance to non-functional goals and scenarios (Lytra

et al., 2015), see Figure 2.12 and 2.13.

16 Literature Review

Figure 2.12: CoCoADvISE exemplary model
Source: (Lytra et al., 2015)

Figure 2.13: CoCoADvISE questionnaire
Source: (Lytra et al., 2015)

Unfortunately it is still not clear which AKMS approaches and knowledge better describe

particular architectural tasks (Capilla et al., 2016), one of which is component selection — i.e.

there are many AKMS approaches (Weinreich and Groher, 2016), see section E.1, with almost no

experiments (Tofan et al., 2014; Capilla et al., 2016) even though research on knowledge-based

architecture documentation has increased over the last decade (Ding et al., 2014a); also how can

we extract knowledge from these systems to aid component consumers if almost no developers

use them to record ADD (Capilla et al., 2016)? See Figure E.1 for some reasons why that is the

case.

The relation between Component Selection and AKM is growing in importance because the

inclusion of Open-source software (OSS) components into commercial software systems (Franch

et al., 2013) and others is on the rise. Alas, most OSS do not have any architecture documentation

especially those that are not related to industry, research or that have big teams (> 10 elements)

(Ding et al., 2014b). When they do document they prefer Hyper Text Markup Language (HTML)

(70.4%) followed by Pictures (20.4%), Wikis (8.3%), PDF (5.6%), Word (3.7%), and PPT (1.9%)

2.1 Architecture Knowledge Management 17

but with few artefacts (<= 3, 84.6%) focusing primarily on Model (98.1%), System (97.2%), Mis-

sion (91.7%), Environment (43.5%), Stakeholder (41.7%), Concern (33.3%), Rationale (18.5%),

View (7.4%), Viewpoint (0%), Library Viewpoint (0%) elements and preferring natural language

descriptions (88.9%) over diagrams (41.7%), UML (17.6%) , and lastly formal ADL (0%), see

Figure 2.14 (Ding et al., 2014b).

Figure 2.14: Distribution of OSS projects from SourceForge, Google Code, Github, and Tigris
over ADL and architecture document elements
Source: (Ding et al., 2014b)

There are simpler alternatives to full-fledged AKMSs like Lightweight Architecture Decision

Records (LADR)12 and others13,14. LADR is of the opinion that well written code and tests is

a form of documentation and that design decisions should be recorded alongside code instead of

wikis, websites or other external tools. Command-line tools such as adr-tools15 assist this process.

However, these approaches are even worse than the ones seen above in regards to component selec-

tion because their selection depends on many criteria that are not captured; from the architectural

design decisions developers opted for which might be related to a plethora of concerns such as

desirable quality attributes in certain contexts, constraints because of other decisions, business or

company tech know-how, among others to company and community support, licenses, popularity,

relation to my particular problem space, etc.

There have also been attempts to extract architecture knowledge from developer communi-

ties (Soliman et al., 2018), source-code (Shahbazian et al., 2018; Mirakhorli and Cleland-Huang,

2016), and documentation (Slankas and Williams, 2013) using artificial intelligence techniques.

Additionally, machine learning has been used to assist knowledge base curation (Gorton et al.,

2017). But it is still a challenge that needs further researcher in the fields of software engineering

and artificial intelligence (Gorton et al., 2017).

12https://www.thoughtworks.com/radar/techniques/lightweight-architecture-decision-records
13https://news.ycombinator.com/item?id=18874707
14https://news.ycombinator.com/item?id=19098926
15https://github.com/npryce/adr-tools

https://www.thoughtworks.com/radar/techniques/lightweight-architecture-decision-records
https://news.ycombinator.com/item?id=18874707
https://news.ycombinator.com/item?id=19098926
https://github.com/npryce/adr-tools

18 Literature Review

2.2 Component Selection

Component selection is complex and is seldom done in a structure way. It is a huge time sink

since it is in practice an unstructured exploratory task where the relevant information is mostly

hidden, out of date and lacking formalism (Gorton et al., 2015). In Subsection 2.2.1 we present

and discuss an AKM approach in the form of a semantic wiki for the selection of big data systems.

Subsection 2.2.2 describes a formal framework built using the Semantic Web Stack which can be

generalised to components. Subsection 2.2.3 relates component selection to MCDM and discusses

the difficulty in acquiring knowledge to feed such systems.

2.2.1 Quality Architecture at Scale for Big Data

In (Gorton et al., 2015), a dynamic knowledge base, QuaABaseBD, and a detailed feature taxon-

omy for designing big data systems with scalable database systems was constructed (Gorton et al.,

2015). The taxonomy was derived from the authors experience in evaluating databases for big

data systems and takes into account core architectural characteristics, the data model and query

capabilities (Gorton et al., 2015).

Since the main objective of our work is to find a structured way to model component selection

(Gorton et al., 2015) aids in determining the usefulness of a more technical approach to selection

rather than relying only on common software quality parameters such as reliability, performance,

security, consistency and so on. To validate the utility of the taxonomy they classified 9 database

systems and encoded them in QuaABaseBD. Initially this task was done by the authors and then

offloaded to graduate students who located and gathered features by reviewing the documentation

of each database system (Gorton et al., 2015). According to (Gorton et al., 2015) the approaches

that database systems follow in order to achieve certain quality goals can be distinguished by

the data model and the data distribution architecture they support. Because of this, architectural

and data characteristics of applications are greatly affected by database technology (Gorton et al.,

2015). Having this in mind they structured the feature taxonomy as shown in Table 2.1:

Table 2.1: Organisation of features from (Gorton et al., 2015) updated with information from
QuABaseBD

Categories Features
Data

Architecture
A.1

Data Model

A.1.1

Query Languages

A.1.2

Consistency

A.1.3

Software
Architecture

A.2

Scalability

A.2.1

Data Distribution

A.2.2

Data

Replication

A.2.3

Security

A.2.4

Administration

and Management

A.2.5

All of the features above are further divided into a set of sub-features each of them having a set

of allowed values (Gorton et al., 2015) as can be seen in the Tables of Appendix A. Since quality

2.2 Component Selection 19

assessment is futile without context the ontology uses other concepts such as scenarios, tactics

and quality attributes to describe respectively architectural problems, approaches to solve those

problems, and the advantages and disadvantages of using those approaches in terms of quality.

Features integrate into the ontology by supporting certain tactics (Gorton et al., 2015). In essence,

a tactic is a design decision that attempts to handle an architectural problem which has positive

or negative impact on certain quality attributes and that can be realised by implementing certain

features. The QuABaseBD ontology is presented visually in Figure 2.15:

Figure 2.15: Logical structure of the QuABaseBD ontology

As can be seen in Figure 2.15 there are two sections with different intents separated by the

software architecture concept tactics. The one to the right of tactics inclusive is meant to serve

as a growing collection of concepts and terms needed to understand and reason about database

technologies — i.e. architecturally significant requirements, quality attribute trade-offs, and how

design tactics can solve certain architectural requirements (Gorton et al., 2015). The other side

represents the actual features that databases implement following (Gorton et al., 2015)’s taxonomy

as can be seen in appendix A. According to (Gorton et al., 2015) the linkage between these two

sides through the features-tactics relationship is novel and allows architects and developers to

reason about the features that are needed in order to achieve certain quality attributes. Moreover

it can be used to compare the impact that different implementations of tactics (group of features)

have on system qualities (Gorton et al., 2015). Their work relates to AKM and in a similar fashion

to early developments on this field such as (Kruchten, 2004) builds a graph of related design

alternatives and relationships for decision encoding. But designed to describe distributed databases

instead of specific software projects (Gorton et al., 2015).

QuABaseBD, the knowledge base that implements the ontology, is encoded through the Se-

mantic MediaWiki platform which builds upon concepts from the semantic web to give structure

to wiki information. Through a combination of forms and templates it allowed them to represent

novel domain knowledge through a medium that users are accustomed to (Gorton et al., 2015).

The knowledge-base can be searched through three means:

• "Explore Software Design Principles", where one can browse for databases that support a

certain quality attribute (Availability, Consistency, Performance, Scalability, Security) by

https://quabase.sei.cmu.edu/mediawiki/index.php/Explore_Software_Design_Principles

20 Literature Review

analysing Quality Attribute Scenarios and the Tactics that handle these.

• "Explore Database Technologies and Features", where it is possible to query per quality

attribute for database features and to explore the features and tactics that a given database

supports.

• "Explore Architecture Tactics for Big Data Systems" where you can browse for databases

that implement certain tactics in order to satisfy some quality attribute scenario having a

positive or negative impact on certain quality attributes.

To conclude the ontology was robust enough to encode all the functionally of the nine evalu-

ated databases (Gorton et al., 2015). Also the QuABaseBD content is of high quality since it is

intended to be validated by experts on each database through a systematic process (Gorton et al.,

2015). However, almost no contributions were made since 18:59, 13 April 2016 as of 15:30, 21

January 2018. Which probably means that the choice of platform was not ideal, or the ontology

was too low-level and consequently unable to be used by the average developer.

Nonetheless, the generalisation of the ontology for other component types could prove use-

ful to ease component producers with decision recording through the vocabulary of scenarios and

tactics while also providing consumers with structured data for the selection of components. Fur-

thermore, pushing the component descriptions more closely to developers could also act as a way

to increase contributions. More concretely, it would ease: the elaboration of selection criteria for

component selection since the model’s features are connected indirectly to scenarios and quality

attributes, and the screening of candidate products because key characteristics are well segmented

and externalised from software documentation enabling fast comparisons. Such would inform a

more theoretical phase in the evaluation of software just before a more practical one using bench-

marking techniques which is not the focus of this work — e.g. as done in (Klein et al., 2015a,b).

2.2.2 A formal Framework

In (Di Noia et al., 2018) an ontology based approach is used to define a theoretical framework and

a semi-automated tool capable of: gathering structured information about design patterns and the

families they belong to, as well as capturing the relationships between NFRs and design patterns.

Even though (Di Noia et al., 2018) focuses on finding appropriate architectural design patterns

through fuzzy modelling of NFRs its modelling ideas are useful for our study. Because only the

end product is different, components instead of architectural design patterns, the modelling prin-

ciples ought to be similar. This formalisation, first proposed in (Di Noia et al., 2015), makes it

possible for architects to build a knowledge base of concepts and relations that aid in the architec-

tural design patterns decision making process. Such is equally important in component selection

since the criteria and rationale for selection lives mainly in the head of architects and lacks formal

structure (Jansen and Bosch, 2005; Capilla et al., 2016; Di Noia et al., 2018).

The theory behind (Di Noia et al., 2015) and (Di Noia et al., 2018), mathematical fuzzy logic,

is an extension of classical set theory (crisp sets). It allows one to say that a given value belongs to

https://quabase.sei.cmu.edu/mediawiki/index.php/Explore_Database_Technologies_and_Features
https://quabase.sei.cmu.edu/mediawiki/index.php/Explore_Architecture_Tactics_for_Big_Data_Systems

2.2 Component Selection 21

a set with some degree of truth. In other words, we can say that the membership function of set A

that indicates whether an element belongs to this set now returns a range of values between [0,1]

rather than either {0,1}. In a formal way we say that:

µA : X → [0,1]

where X represents the universal set (Straccia, 2013). The membership function in fuzzy logic

is context dependent and can take many different shapes (Straccia, 2015). The most commonly

used ones are the: trapezoidal; triangular; L-function; and, R-function (Straccia, 2015). This is

particularly useful when modelling imprecise and vague concepts as is the case of NFRs (Di Noia

et al., 2018). The encoding of the knowledge in (Di Noia et al., 2018) is done using the fuzzy OWL

2 ontology which is based on fuzzy description logics (FDLs). Modelling in such a way makes it

possible to represent and describe trade-offs and quality attributes of patterns in a fuzzy way (Di

Noia et al., 2018):

• "For instance, in our context, FDLs allow one to model that “portability and

adaptability are directly proportionate”, “stability and adaptability are inversely

proportionate” (ontological knowledge) or that “the Adapter pattern has high

portability” (factual knowledge)." (Di Noia et al., 2018)

• "Another type of expression allowed in our framework is “high adaptability im-

plies a medium maintainability”. Let us note that in the previous statements, we

can use fuzzy sets [71] to characterise concepts like high, medium and low." (Di

Noia et al., 2018)

For instance, by substituting patterns (adapter, broker) for components (postgresql, mongodb,

amqt) and pattern families (Adaptation and Extention, Distribution Infrastructure) for component

domains (Relational databases, NoSQL, Message Queues) most of the formalisation logic remains

the same. Relations between components and families, and NFRs and components are not always

clear cut so a formalisation that enables both relational freedom and degree of truth makes sense.

Having knowledge structured in this way not only makes it possible to discover new one

through combination of existing facts and relations but also enables automatic task selection from

a set of requirements (Di Noia et al., 2018). Above else, it makes cooperation, sharing and data

linking a possibility by relying on technology from the semantic web (fuzzy OWL 2 ontology and

its many other layers, see Figure 2.17). The adaption of this technique to our problem means that

components would be classified only by the families they belong to and the quality attributes they

have, the combination is more than likely insufficient to select appropriate components. Moreover,

it is difficult to determine values for quality-attributes in relation to components without some kind

of context. To conclude, we think that statements such as "high adaptability implies a medium

maintainability" might not always hold.

22 Literature Review

2.2.3 Multiple-criteria decision-making

Component Selection/Sourcing is often associated with the Operations Research sub-discipline

MCDM. It deals with the modelling of conflicting multiple criteria which is common in software

selection to deal with the evaluation of component origins (Commercial off-the-shelf (COTS),

OSS, In-house, and Outsourcing) (Petersen et al., 2018); technology selection according to a set

of criteria (Kaur and Singh, 2014; Kusters et al., 2016; Trienekens et al., 2017; Garg et al., 2017;

Farshidi et al., 2018a,b,c); and, any problem where rigorous decision and planning is essential.

For instance, in (Farshidi et al., 2018c) the decision model is a set of rules, facts and preferences

that guide users towards a technology choice. To do so they have to hard-code a set of matrices

that indicate the alternatives that a domain has, the features that domain supports, and the quality

attributes that each feature obeys, see Figure 2.16. From these matrices a custom user preference

in the form of a rule is consumed to rank the feasible alternatives whose scores are calculated using

the Weighted Sum Model (Farshidi et al., 2018c).

Figure 2.16: A Decision Support System for Technology Selection
Source: (Farshidi et al., 2018c)

The problem with using MCDM to tackle Software Selection using Software Architecture

Knowledge in this way is that the relation between quality-attributes and features is highly depen-

dent on problem context which is variable between domains and may involve lots of independent

variables and rules to infer meaningful knowledge. For instance, read and write performance

in datastores is highly reliant on the characteristics of data and access patterns, so a feature to

do with partitioning methods (scatter and grab?, local secondary indexes?, hash-based?, value-

based?, range scans?, etc) would have to have this information in mind to be linked accurately to

2.3 Data Interchange Models & Formats 23

a quality attribute. A formalism to make such inferences would be extremely useful but unwieldy

and difficult to contribute to. Not to mention the arduous and repetitive work of having to scan

documentation to fill feature matrices and other information. The construction of an authoritative

source of this type of knowledge which any interested party could consume is probably time better

spent at least for now.

2.3 Data Interchange Models & Formats

As one of the main problems of Component Selection is data reuse it makes sense to analyse the

perks of different Data Interchange Models & Formats. Ideally a knowledge base for Component

Selection should be easy to share, consume, search and combine by interested parties.

2.3.1 RDF, RDFS, SPARQL, OWL, Linked Data

The traditional web, Web 1.016 and Web 2.017, is a set of content pages lacking meta-data informa-

tion about its subjects, descriptions, etc with connections to other pages only through hyperlinks.

To tackle this issue a set of proposals were made dating back as far as 198918 to extend the capa-

bilities of the web to support structured data (Bizer et al., 2009). The tenet of these ideas is to shift

from only human-readable documents to more machine-readable semantic information (Berners-

Lee et al., 1994) thereby creating a Web of Data or Data Web that can be processed by machines

(Berners-Lee and Fischetti, 1999), that is a Semantic Web19 or as some call it Web 3.020. To

achieve this vision many standards came about as can be seen in Figure 2.17.

Figure 2.17: Semantic Web Stack
Source: https://commons.wikimedia.org/wiki/File:Semantic_web_stack.svg

16https://computer.howstuffworks.com/web-101.htm
17https://computer.howstuffworks.com/web-20.htm
18http://www.w3.org/History/1989/proposal.html
19http://web.archive.org/web/20070713230811/http://www.sciam.com/print_version.

cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
20https://www.w3.org/2007/Talks/0123-sb-W3CEmergingTech

https://commons.wikimedia.org/wiki/File:Semantic_web_stack.svg
https://computer.howstuffworks.com/web-101.htm
https://computer.howstuffworks.com/web-20.htm
http://www.w3.org/History/1989/proposal.html
http://web.archive.org/web/20070713230811/http://www.sciam.com/print_version.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
http://web.archive.org/web/20070713230811/http://www.sciam.com/print_version.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
https://www.w3.org/2007/Talks/0123-sb-W3CEmergingTech

24 Literature Review

RDF21 is a framework for modelling information using a set of statements in the form of (sub-

ject, predicate, object) called triples designed for combining information that originates from mul-

tiple sources (Heath and Bizer, 2011). To make it possible for data to be combined and grouped to

avoid collisions subjects, predicates and objects can be identified through an Internationalized Re-

source Identifier (IRI) which is an Uniform Resource Identifier (URI)22 with support for Unicode

Characters. In other words a string that uniquely identifies a resource. RDF Links (predicates)

connect subjects and objects together creating a global data graph (Bizer et al., 2009). Internal

RDF Links connect resources within a single Linked Data Source while external RDF Links con-

nect resources that are served by different Linked Data sources (Heath and Bizer, 2011). URIs in

most cases take the form of an Hyper Text Transfer Protocol (HTTP) Uniform Resource Locator

(URL) (which is an URI) for the simple fact that it provides a simple way to look-up more in-

formation about the respective term (Bizer et al., 2009) as well as enabling the domain owner to

create new globally unique URIs in a decentralised fashion (Heath and Bizer, 2011). As a result

external users can reference RDF subjects, predicates and objects defined elsewhere building a

navigable semantic structured web of data. For that reason, a collection of IRIs meant for reuse

is called an RDF vocabulary. And a set of triples is called an RDF graph, see Figure 2.18. RDF

itself does not specify any serialisation formats however it is normally associated with eXtensible

Markup Language (XML). Many more serialisation formats exist for RDF graph encoding23, see

Listing 1.

Figure 2.18: Example of an RDF graph
Source: https://www.w3.org/TR/rdf11-primer/

21http://www.w3.org/TR/rdf11-concepts/
22https://tools.ietf.org/html/rfc3986
23https://www.w3.org/TR/rdf11-primer/#section-graph-syntax

https://www.w3.org/TR/rdf11-primer/
http://www.w3.org/TR/rdf11-concepts/
https://tools.ietf.org/html/rfc3986
https://www.w3.org/TR/rdf11-primer/#section-graph-syntax

2.3 Data Interchange Models & Formats 25

1 BASE <http://example.org/>

2 PREFIX foaf: <http://xmlns.com/foaf/0.1/>

3 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

4 PREFIX schema: <http://schema.org/>

5 PREFIX dcterms: <http://purl.org/dc/terms/>

6 PREFIX wd: <http://www.wikidata.org/entity/>

7

8 <bob#me>

9 a foaf:Person ;

10 foaf:knows <alice#me> ;

11 schema:birthDate "1990-07-04"^^xsd:date ;

12 foaf:topic_interest wd:Q12418 .

13

14 wd:Q12418

15 dcterms:title "Mona Lisa" ;

16 dcterms:creator <http://dbpedia.org/resource/Leonardo_da_Vinci> .

17

18 <http://data.europeana.eu/item/04802/243FA8618938F4117025F17A8B813C5F9AA4D619>

19 dcterms:subject wd:Q12418 .

Listing 1: Example of the Turtle serialisation format
Source: https://www.w3.org/TR/rdf11-primer/

RDFS24, is a vocabulary description language which provides a means to give more semantic

meaning to RDF triples, a lightweight ontology also known as a vocabulary (Heath and Bizer,

2011). This is achieved by using its own RDF vocabulary to describe a set of constraints for

subjects and properties in a similar way to an Object-oriented programming (OOP) type system

(W3C, 2014). With the exception that properties in RDF are separate from classes giving it the

ability to determine the type of the subject and object by inferring from its explicit domain and

range. For instance it is possible to say that: subject S1 is a instance of class C1, class C2 is a

subclass of class C1, property P1 has a given domain and range, property P1 is a sub-property

of property P2, and so on. Because RDFS is just another RDF vocabulary we can use any RDF

serialisation format to make these kind of semantic descriptions, see Figure 2.19 and Listing 2.

Figure 2.19: Example of an RDF graph with the RDFS vocabulary
Source: https://en.wikipedia.org/wiki/RDF_Schema

24https://www.w3.org/TR/rdf-schema/

https://www.w3.org/TR/rdf11-primer/
https://en.wikipedia.org/wiki/RDF_Schema
https://www.w3.org/TR/rdf-schema/

26 Literature Review

1 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

2 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

3 @prefix ex: <http://example.org/> .

4 @prefix zoo: <http://example.org/zoo/> .

5

6 ex:dog1 rdf:type ex:animal .

7 ex:cat1 rdf:type ex:cat .

8 ex:cat rdfs:subClassOf ex:animal .

9 zoo:host rdfs:range ex:animal .

10 ex:zoo1 zoo:host ex:cat2 .

Listing 2: Example of a RDFS description in Turtle
Source: https://en.wikipedia.org/wiki/RDF_Schema

Even though RDF is meant for internet-wide data exchange its triple-store data model is much

more than just the Semantic Web (Kleppmann, 2017). It is similar to the Property Graph Model

with the exception that everything is expressed through predicates including node properties and

relations to other nodes, à la ternary facts in Prolog25. As a matter of fact there are technologies

that have nothing to do with the Semantic Web that follow this concept, such as Datomic and its

supporting query language Datalog (Kleppmann, 2017). Furthermore, the systems that store triples

are called triple-stores26 and most of them ingest some kind of RDF format27. To conclude, an

RDF graph can be retrieved and manipulated in triple-stores or tools that implement the SPARQL

Protocol and RDF Query Language (SPARQL)28 declarative querying language. Each variable

in a query ?foo can be associated with an amalgam of triples to bind them together as seen with

?person in Listing 3.

1 # Gets the name and email of all the subjects that are an

2 # instance of Person and have at least one name and email

3

4 PREFIX foaf: <http://xmlns.com/foaf/0.1/>

5 SELECT ?name

6 ?email

7 WHERE

8 {

9 ?person a foaf:Person .

10 ?person foaf:name ?name .

11 ?person foaf:mbox ?email .

12 }

Listing 3: Example of a SPARQL query
Source: https://en.wikipedia.org/wiki/SPARQL

SPARQL29 is also capable of querying named graphs which are RDF graphs identified by an

25https://www.metalevel.at/prolog
26https://en.wikipedia.org/wiki/Comparison_of_triplestores
27https://en.wikipedia.org/wiki/Resource_Description_Framework#Serialization_

formats
28https://www.w3.org/TR/sparql11-query/
29https://www.w3.org/wiki/SparqlImplementations

https://en.wikipedia.org/wiki/RDF_Schema
https://en.wikipedia.org/wiki/SPARQL
https://www.metalevel.at/prolog
https://en.wikipedia.org/wiki/Comparison_of_triplestores
https://en.wikipedia.org/wiki/Resource_Description_Framework#Serialization_formats
https://en.wikipedia.org/wiki/Resource_Description_Framework#Serialization_formats
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/wiki/SparqlImplementations

2.3 Data Interchange Models & Formats 27

IRI which are meant to organise statements according to different contexts, concerns, etc. Inter-

estingly an RDF dataset is a collection of graphs built out of many named graphs but only with

one default/unnamed one. See Listing 4.

1 PREFIX foaf: <http://xmlns.com/foaf/0.1/>

2

3 SELECT ?homepage

4 # Present in a SPARQL-capable store in a named graph with IRI http://example.org/joe.

5 FROM NAMED <http://example.org/joe>

6

7 WHERE {

8 GRAPH ?g {

9 ?person foaf:homepage ?homepage .

10 ?person foaf:mbox <mailto:joe@example.org> .

11 }

12 }

Listing 4: Example of named graph SPARQL query
Source: https://en.wikipedia.org/wiki/Named_graph

Web Ontology Language (OWL)30 is a declarative logic based language whose purpose is to

augment the RDFS conceptual model. It allows for richer metadata descriptions to better frame

a domain of knowledge, an ontology. And is no more than an RDF vocabulary meant to supply

additional semantics for a reasoner31 to infer additional knowledge. For instance it is possible to

state that: two classes are equivalent; a class is a union or intersection of classes; specify restric-

tions in terms of values, cardinalities, etc; declare that object properties are inverse, symmetric,

asymmetric, disjoint, reflexive, and so on; etc. Tools such as Protégé32 and others33 assist in the

creation and editing of ontologies. See Listing 5.

30https://www.w3.org/TR/2012/REC-owl2-primer-20121211/
31https://www.w3.org/2001/sw/wiki/OWL/Implementations#Reasoners
32https://protege.stanford.edu/
33https://www.w3.org/wiki/Ontology_editors

https://en.wikipedia.org/wiki/Named_graph
https://www.w3.org/TR/2012/REC-owl2-primer-20121211/
https://www.w3.org/2001/sw/wiki/OWL/Implementations#Reasoners
https://protege.stanford.edu/
https://www.w3.org/wiki/Ontology_editors

28 Literature Review

1 @prefix : <http://example.com/owl/families/> .

2 @prefix owl: <http://www.w3.org/2002/07/owl#> .

3 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

4

5 :hasSpouse rdf:type owl:SymmetricProperty .

6

7 :Mother owl:equivalentClass [

8 rdf:type owl:Class ;

9 owl:intersectionOf (:Woman :Parent)

10] .

11

12 :Parent owl:equivalentClass [

13 rdf:type owl:Class ;

14 owl:unionOf (:Mother :Father)

15] .

16

17 :Jack rdf:type [

18 rdf:type owl:Class ;

19 owl:intersectionOf (

20 :Person

21 [rdf:type owl:Class ; owl:complementOf :Parent]

22)

23] .

Listing 5: Example of a OWL description in Turtle
Source: https://www.w3.org/TR/2012/REC-owl2-primer-20121211/

Linked Data defines a set of principles to create machine-readable linked knowledge from

different data sources and heterogeneous systems using standard Semantic Web tools (Bizer et al.,

2009). That is a collection of linked datasets sharing relationships that act as the backbone of

the Semantic Web (Web of Data, Data Web, Web 3.0). In other words, an attempt to bridge

information islands by relating and composing with other ones (Heath and Bizer, 2011). Much

like what the Web does for interconnecting HTML content pages through Hyperlinks creating

a global information space with the twist that Linked Data Hyperlinks are used to connected

disparate data into a global data space (Heath and Bizer, 2011). According to Tim Bernes-Lee

Linked Data should:

• Use URIs to identify world objects and concepts and not just Web Documents and Digital

content through Hyperlinks (Heath and Bizer, 2011; Tim Berners-Lee, 2006)

• Use HTTP URIs identifiers so that more information can be looked up about the object or

concept over the HTTP protocol (Heath and Bizer, 2011; Tim Berners-Lee, 2006).

– Get the HTML,
1 curl --header "Accept: text/html" --request GET

"http://xmlns.com/foaf/0.1"↪→

– Get the RDF document,
1 curl --header "Accept: application/rdf+xml" --request GET -L

"http://xmlns.com/foaf/0.1/"↪→

https://www.w3.org/TR/2012/REC-owl2-primer-20121211/

2.3 Data Interchange Models & Formats 29

• Use the standard RDF graph model and the SPARQL query language when structured data

is looked up using URIs. (Heath and Bizer, 2011; Tim Berners-Lee, 2006)

• Use RDF Hyperlinks/Links that is typed Hyperlinks/Links (predicates identified with an

URI) to connect to any type of thing. Instead of just Web Documents as is the case of

normal HTTP hyperlinks. (Heath and Bizer, 2011; Tim Berners-Lee, 2006)

By following these principles all information is related through common unique predicates,

subjects and objects building what is called a giant global graph (Heath and Bizer, 2011). Linked

Data applications can then look up parts of the Linked Data global graph by dereferencing URIs

(Heath and Bizer, 2011). Because there can be many different RDF datasets34 spread across

the web equal concepts can be represented with different URIs. For that reason it is advised to

use well-known vocabularies35. However it is possible to link URIs using the owl owl:sameAs

predicate. URIs can be looked up using the HTTP protocol to retrieve HTML representations or

Linked Data RDF documents in two ways: 303 (See other) URIs, and Hash URIs (Heath and

Bizer, 2011). The former involves issuing a Get request to a common HTTP path with a crafted

Accept Header and then receiving a 303 See Other indicating the path to the document with the

respective format, see Listing 6, and 7.

1 GET /people/dave-smith HTTP/1.1

2 Host: biglynx.co.uk

3 Accept: text/html;q=0.5, application/rdf+xml

Listing 6: Dereferencing 303 URIs Request
Source: (Heath and Bizer, 2011)

1 HTTP/1.1 303 See Other

2 Location: http://biglynx.co.uk/people/dave-smith.rdf

3 Vary: Accept

Listing 7: Dereferencing 303 URIs Response
Source: (Heath and Bizer, 2011)

On response arrival, Listing 7, an HTTP Get request is then made using the Header Location to

retrieve the appropriate document. The latter approach involves making just one HTTP Get request

with an appropriate Accept Header and fragment identifier to get the RDF document without

redirects, see Listing 8 and 9.

1 GET /vocab/sme HTTP/1.1

2 Host: biglynx.co.uk

3 Accept: application/rdf+xml

Listing 8: Dereferencing Hash URIs Request
Source: (Heath and Bizer, 2011)

34https://lod-cloud.net/
35https://lov.linkeddata.es/dataset/lov

https://lod-cloud.net/
https://lov.linkeddata.es/dataset/lov

30 Literature Review

1 HTTP/1.1 200 OK

2 Content-Type: application/rdf+xml;charset=utf-8

3

4 <rdf:RDF

5 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

6 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" >

7 ...

Listing 9: Dereferencing Hash URIs Response
Source: (Heath and Bizer, 2011)

Because HTTP fragments36 — e.g http://biglynx.co.uk/vocab/sme#Team — are not sent to

HTTP servers it is up to the client application to handle the whole RDF document and only then

process the fragment — e.g disregarding everything but the fragment, pinpointing the fragment

in the document, etc. Even tough this approach reduces round-trips everything under the HTTP

path is downloaded which is obviously not ideal when only a part is needed (Heath and Bizer,

2011). One the other hand, 303 URIs are more flexible since each resource can be identified by

a path which may point to different redirection targets — e.g. an RDF document per person in

separate URIs and possibly different datasets (Heath and Bizer, 2011) — see the Location Header

in Listing 7. For this reason 303 URIs are normally used for very large RDF datasets such as

DBPedia, see Listing 10, while RDF vocabularies such as http://www.foaf-project.org/ often use

Hash URIs (Heath and Bizer, 2011). Fortunately it is possible to combine both methods — e.g.

http://biglynx.co.uk/vocab/sme/Team#this (Heath and Bizer, 2011).

1 curl --header "Accept: application/rdf+xml" --request GET

http://dbpedia.org/resource/Britney_Spears -v↪→

1 HTTP/1.1 303 See Other

2 Content-Type: application/rdf+xml

3 Server: Virtuoso/07.20.3230 (Linux) x86_64-generic-linux-glibc25 VDB

4 TCN: choice

5 Vary: negotiate,accept

6 Alternates: ...

7 Link: <http://creativecommons.org/licenses/by-sa/3.0/>;rel="license",

<http://dbpedia.mementodepot.org/timegate/http://dbpedia.org/resource/Britney_Spears>;

rel="timegate"

8 Location: http://dbpedia.org/data/Britney_Spears.xml

Listing 10: Britney Spears DBPedia Partial Response

The dereferenced RDF Links may be of tree kinds:

• Relationship Links, relating subjects in one dataset to objects in another one, which in turn

might point to entities in other datasets (Heath and Bizer, 2011), see Line 14 in Listing 1.

• Identify Links, different URIs can represent the same concept because anyone can create a

Web Server under a domain name that they control to expose RDF triples (Heath and Bizer,
36https://en.wikipedia.org/wiki/Fragment_identifier#Examples

https://en.wikipedia.org/wiki/Fragment_identifier#Examples

2.3 Data Interchange Models & Formats 31

2011). For this reason, URIs that refer to equal concepts are called URI aliases and can

be identified through the owl http://www.w3.org/2002/07/owl#sameAs predicate.

The plurality of statements about equal concepts and the owl:sameAs predicate make it

possible for (Heath and Bizer, 2011):

– Web Publishers to express different opinions (Heath and Bizer, 2011)

– Trace opinions about the same concept since the Web Publisher opinions are identified

by an URI that they control and expose (Heath and Bizer, 2011)

– Avoid central points of failure since there is no centralised URI naming authority to

map a concept to a single URI (Heath and Bizer, 2011) — e.g. the unavailability of an

URI does not obliterate the concept described since other URI aliases exist.

– As there is no central naming authority the Web of Data relies on evolutionary and
distributed identity resolution using the owl:sameAs predicate to make it easier for

users to publish their statements under a URI without having to worry at first with

other URIs that represent the same concept (Heath and Bizer, 2011). Even tough

OWL semantics treat RDF statements as facts the predicate owl:sameAs is used in the

Linked Web more as a way to identify different claims (Heath and Bizer, 2011).

• Vocabulary Links, RDF links may point to new RDF datasets but for data to be meaningful

a set of common semantic descriptions is needed. The integration of data relies on common

terminology identifiable through URIs defined in popular vocabularies to reduce hetero-

geneity. However, when there are no appropriate terms in vocabularies or only a subset is

found new ones should be defined and used to describe RDF statements (Heath and Bizer,

2011). In the advent of similar terms in other vocabularies the publisher ought to identify

similar URIs using appropriate RDF statements (Heath and Bizer, 2011), see Listing 11:

– From OWL: owl:equivalentClass, owl:equivalentProperty (Heath and Bizer, 2011)

– From RDFS: rdfs:subClassOf, rdfs:subPropertyOf (Heath and Bizer, 2011)

1 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-n#> .

2 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

3 @prefix owl: <http://www.w3.org/2002/07/owl#> .

4 @prefix co: <http://biglynx.co.uk/vocab/sme#> .

5

6 <http://biglynx.co.uk/vocab/sme#SmallMediumEnterprise>

7 rdf:type rdfs:Class ;

8 rdfs:label "SmallorMedium-sizedEnterprise" ;

9 rdfs:subClassOf <http://dbpedia.org/ontology/Company> ;

10 rdfs:subClassOf <http://umbel.org/umbel/sc/Business> ;

11 rdfs:subClassOf <http://sw.opencyc.org/concept/Mx4rvVjQNpwpEbGdrcN5Y29ycA> ;

12 rdfs:subClassOf <http://rdf.freebase.com/ns/m/0qb7t> .

Listing 11: Relating SmallMediumEnterprise to other vocabulary terms
Source: (Heath and Bizer, 2011)

http://www.w3.org/2002/07/owl#sameAs

32 Literature Review

As we saw in section 2.2.2 building an ontology to describe a nuanced topic, as is the case of

Component Selection, is a challenging endeavour with no single solution. All in all, as Component

Selection is yet to mature adding too much formalism or strictness will likely hamper adoption

and contributions. Building a lightweight ontology to capture architecture details first and then

progressing towards an ontology is probably a wiser choice.

Several AKMSs have tried to leverage these technologies to build taxonomies and ontologies

to support structured knowledge capture (Ding et al., 2014a; De Graaf et al., 2016; Sabou et al.,

2018) but as mentioned previously adoption is still an issue. Other more lightweight approaches

as the encoding of architecture knowledge through semantic wikis — e.g. Semantic MediaWiki

— face the same issues regardless of improved content browsing and organisation. Furthermore,

Design Rationale approaches such as ISAA (Zhang et al., 2013), and Exploratory Search for Ar-

chitecture Knowledge in Enterprises (Sabou et al., 2018) have also adopted semantic structures and

approaches but are still in their infancy. To conclude, one feature that seems yet to be explored is

the use of Resource Description Framework in Attributes (RDFa)37 to embed Architecture Knowl-

edge in HTML pages supplying a means for web crawlers to extract structured information about

architecture concepts, component features and others. Also, the addition of RDFa meta-data in the

HTML documentation of software projects would probably be a good means to sum up important

features as well as improving search and software comparisons. See Listing 12.

1 <html prefix="dc: http://purl.org/dc/elements/1.1/" lang="en">

2 <head>

3 <title>John's Home Page</title>

4 <link rel="profile" href="http://www.w3.org/1999/xhtml/vocab" />

5 <base href="http://example.org/john-d/" />

6 <meta property="dc:creator" content="Jonathan Doe" />

7 <link rel="foaf:primaryTopic" href="http://example.org/john-d/#me" />

8 </head>

9 <body about="http://example.org/john-d/#me">

10 <h1>John's Home Page</h1>

11 <p>My name is John D and I like

12 <a href="http://www.neubauten.org/" rel="foaf:interest"

13 lang="de">Einstürzende Neubauten.

14 </p>

15 <p>

16 My favorite

17 book is the inspiring <cite

18 property="dc:title">Weaving the Web</cite> by

19 Tim Berners-Lee.

20 </p>

21 </body>

22 </html>

Listing 12: Example of an RDFa description
Source: https://en.wikipedia.org/wiki/RDFa#HTML5_+_RDFa_1.1

37https://www.w3.org/TR/rdfa-primer/

https://en.wikipedia.org/wiki/RDFa#HTML5_+_RDFa_1.1
https://www.w3.org/TR/rdfa-primer/

2.3 Data Interchange Models & Formats 33

2.3.2 JSON, XML, JSON Schema, XML Schema, YAML

JavaScript Object Notation (JSON) and XML are very well known and supported human readable

textual encondings. For some time now XML has been loosing ground to JSON primarily on Web

facing applications because the latter is way less verbose in most cases, and much closer to the

representation of Javascript objects. Also there is growing support for JSON document validation

using JSON schema implementations38 which was one of the strong factors in picking XML39.

Nevertheless XML still has a much larger and more mature ecosystem with many standards for

document namespacing, transformation, querying, encryption, stream-oriented parsing, etc40,41

which is paramount for some enterprise applications and legacy systems. Moreover, its verbosity

and file size can be reduced by respectively using element attributes instead of sub-elements when

appropriate42, and compression methods43,44 that take advantage of its repetitive syntax. Lastly,

XML supports comments, the separation of metadata and data through respectively attributes and

elements, and is also a markup language.

YAML Ain’t Markup Language (YAML) uses python style indentation and is a superset of

JSON since version 1.245. Compared to JSON it is more human readable making it a better target

for configuration files. In addition it supports: multiple documents within a single file, comments,

embedded block literals46, relational anchors, extensible data-types, and mapping types preserving

key order; see https://learnxinyminutes.com/docs/yaml/. However, JSON is a better

serialisation format since it has a much simpler specification. Unfortunately YAML still lacks well

established support for schema validation. However it can be binded to XML using YAXML47 to

leverage the XML stack. Also, even tough JSON is a subset of YAML most features can be

mapped to the former. Hence JSON schema can be used in most cases48.

To avoid any confusions around RDF/XML, XML is a serialisation format and markup lan-

guage while RDF is a data model. In other words, XML is the delivery mechanism while RDF

represents the actual information and its meaning. In fact, RDF can be expressed in many formats.

2.3.3 Avro, Protocol Buffers, Thrift

Binary encoding standards like Avro49, Protocol Buffers50, and Thrift51 reduce encoding file size,

and fix problems related to JSON, and XML textual encodings, such as:

38https://json-schema.org/implementations.html
39https://en.wikipedia.org/wiki/XML_schema
40https://en.wikipedia.org/wiki/XML#Related_specifications
41https://en.wikipedia.org/wiki/XML#Programming_interfaces
42https://stackoverflow.com/questions/1096797/should-i-use-elements-or-attributes-in-xml
43https://www.w3.org/XML/EXI/
44https://www.usenix.org/legacy/events/expcs07/papers/7-augeri.pdf
45https://en.wikipedia.org/wiki/JSON#YAML
46https://yaml-multiline.info/
47https://yaml.org/xml
48https://json-schema-everywhere.github.io/yaml
49https://avro.apache.org/
50https://developers.google.com/protocol-buffers/
51https://thrift.apache.org/

https://learnxinyminutes.com/docs/yaml/
https://json-schema.org/implementations.html
https://en.wikipedia.org/wiki/XML_schema
https://en.wikipedia.org/wiki/XML#Related_specifications
https://en.wikipedia.org/wiki/XML#Programming_interfaces
https://stackoverflow.com/questions/1096797/should-i-use-elements-or-attributes-in-xml
https://www.w3.org/XML/EXI/
https://www.usenix.org/legacy/events/expcs07/papers/7-augeri.pdf
https://en.wikipedia.org/wiki/JSON#YAML
https://yaml-multiline.info/
https://yaml.org/xml
https://json-schema-everywhere.github.io/yaml
https://avro.apache.org/
https://developers.google.com/protocol-buffers/
https://thrift.apache.org/

34 Literature Review

• JSON ambiguity when dealing with numbers; XML does not distinguish between numbers

and strings except when an external schema is used (Kleppmann, 2017).

• JSON and XML use binary-to-text encoders like base64 to embed binary information (Klepp-

mann, 2017).

• Schema support for XML and JSON is quite complex to learn and in the case of the latter in-

frequently used harming correct interpretation for numbers and binary strings (Kleppmann,

2017).

For all these problems binary encodings are a good candidate for internal use in organisations

(Kleppmann, 2017). JSON and XML do have binary versions for encoding respectively Mes-

sagePack, BSON, BJSON, YBJSON, BISON, Smile, etc, and WBXML, Fast Infoset, etc but they

embed object field names inside the payload instead of using a schema (Kleppmann, 2017). Thus

increasing file size.

Protocol Buffers and Thrift are very identical in the way they do the encoding unlike Avro. In

contrast, it ditches the data type information and fields identification in the payload by requiring

the writer’s schema to do the decoding (Kleppmann, 2017). Because both the reader and the writer

have their own schemas they can be compared and resolved to achieve a successful data translation

to the reader’s schema (Kleppmann, 2017), see Figure 2.20.

Figure 2.20: Resolving differences between the writer’s and reader’s schema
Source: (Kleppmann, 2017)

Avro’s schema resolution technique could be an interesting way to compare the features of

different components by contrasting their schemas using JSON and JSON Schema. As an example,

JSON schemas could define targets that components of certain types could instantiate to indicate

their functionalities. Software could then be compared even if their schemas are different but

share some similarities. Each schema would represent a software domain with a set of appropriate

feature values — e.g. Message Queues Features. As an example, an instance of Datastores could

probably be comparable to an instance of Message Queues since their schemas more likely than

not share concepts.

2.4 Comparison Websites 35

2.4 Comparison Websites

In this section we describe websites that assist users in contrasting and selecting components.

Subsection 2.4.1, analyses Multi-Faceted Comparison Websites. And lastly, Subsection 2.4.2 dis-

cusses Feature-Comparison Websites.

2.4.1 Multi-Faceted Comparison Websites

Herein we describe websites that implement several mechanisms that assist component selection

including in some cases component feature comparisons.

2.4.1.1 Slant

In Slant questions can be asked and tagged with fields to better find them. Questions have a set of

options that can be up-voted. Each option has a set of experiences, pros, cons, and specs. Pros,

and cons are user provided unstructured text and can be up or down voted. Experiences are user

provided reviews in unstructured text with embedded support for pros and cons which users can

mark as helpful. Specs is a key-value list of properties. It is not easy to compare options under a

question because everything is unstructured, unrelated, and entirely subject to the whims of users.

So the question has to be very specific so that users can up-vote the clear winner. Same options in

different questions don’t share a single thing so content like pros, cons, specs and if appropriate

experiences have to be repeated occasionally. Edits are last write wins but activity is tracked and

certain edits require karma. See Figures 2.21, 2.22, and 2.23.

Figure 2.21: Options for the question, What are the best backend web frameworks?
Source: https://www.slant.co/topics/362/~best-backend-web-frameworks

https://www.slant.co
https://www.slant.co/topics/362/~best-backend-web-frameworks

36 Literature Review

Figure 2.22: Phoenix details for question, What are the best backend web frameworks?
Source: https://www.slant.co/topics/362/~best-backend-web-frameworks

Figure 2.23: Django details for question, What are the best backend web frameworks?
Source: https://www.slant.co/topics/362/~best-backend-web-frameworks

2.4.1.2 Versus

Versus follows a structured approach to describe options. Each option belongs to a single category

organised by sections, features and values. Only options from the same category are comparable

and analysable through tables, graphs and charts. Users are only allowed to comment, and up or

down vote the pertinence of features. Also the categories they focus on (Smartphones, Cameras,

https://www.slant.co/topics/362/~best-backend-web-frameworks
https://www.slant.co/topics/362/~best-backend-web-frameworks
https://versus.com

2.4 Comparison Websites 37

Cities, etc) don’t overlap which is sometimes not the case in software — e.g. Graph database,

Relational database and NoSQL replication features. See Figures 2.24, 2.25, and 2.26.

Figure 2.24: Berlin vs London Demographics Category
Source: https://versus.com/en/berlin-vs-london

Figure 2.25: Berlin vs London Radar Chart
Source: https://versus.com/en/berlin-vs-london

Figure 2.26: Berlin vs London Key Facts Chart
Source: https://versus.com/en/berlin-vs-london

2.4.1.3 StackShare

StackShare is a software discovery platform whose primary goal is to provide more meaningful

software choice information by combining software stacks, tools, stack decisions, and job search.

https://versus.com/en/berlin-vs-london
https://versus.com/en/berlin-vs-london
https://versus.com/en/berlin-vs-london
https://stackshare.io/

38 Literature Review

It has three main functionalities: browsing stacks, exploring tools, comparing tools, and job search.

Each tool page has a set of sections whose information in some cases is derived from software stack

decisions: What is Foo?, is a brief textual description of the tool; Foo stack decisions & reviews,

shows all the stack decisions that contain the Foo tool (see Figure 2.27); Who uses Foo?, lists all

the companies and apps that use a stack that contains the Foo tool; Foo integrates with, seems

to be added manually by the creator of the tool’s page; Why people like Foo, is a set of one-line

reasons for using the tool that can be up-voted, which is similar to slant; Foo’s alternatives, is

probably derived from the most common tool comparisons in the same group that involve Foo;

Explore other languages & frameworks tools that are know for, links to other tools from the

same category that share the most relevant reasons seen in Why people like Foo; Similar tools &
services, shows other tools in the same group. It is also possible to look-up and apply for jobs that

require the Foo tool. New tool submissions are vetted52 and its page can be claimed by supplying a

company email53. Tools are organised hierarchically through an uneditable tree of depth 3, Home

-> MainCategory -> Category -> Group, for instance Home -> Application and Data -> Data

Stores -> Databases.

Figure 2.27: Apache Spark Reviews & Stack decisions
Source: https://stackshare.io/spark

In addition to the information about each tool the comparisons (stackups) page adds support

for tool cons, and questions to ask the community for advice for that specific comparison. Com-

parisons between tools can be made irrespective of their nature, for instance, Python vs Boostrap,
52https://stackshare.io/submit
53https://stackshare.io/claim-service/amazon-ec2

https://stackshare.io/spark

2.4 Comparison Websites 39

so it is up to the user to choose similar tools. Unfortunately as what happens in slant, it is not easy

to contrast tool features visually because they are encompassed in Why do developers choose
Foo? free-form one liners which make no distinction between opinions and actual implemented

features.

Figure 2.28: MySQL vs PostgreSQL vs Oracle
Source: https://stackshare.io/stackups/mysql-vs-oracle-vs-postgresql

One of the most interesting functionalities is the ability for users to share their personal stacks,

and work stacks by adding a company email. Each tool of the stack is segmented according to its

main category and possibly justified by a decision from a team member.

Figure 2.29: StackShare Stack
Source: https://stackshare.io/stackshare/stackshare

2.4.2 Feature-Comparison Websites

Websites such as the Open Source Time Series DB Comparison54 (see Figure 2.30), Knowledge

Base of Relational and NoSQL Database Management Systems55, Ultimate Time Series DB Com-

54https://docs.google.com/spreadsheets/d/1sMQe9oOKhMhIVw9WmuCEWdPtAoccJ4a-IuZv4fXDHxM/
edit

55https://db-engines.com/en/systems

https://stackshare.io/stackups/mysql-vs-oracle-vs-postgresql
https://stackshare.io/stackshare/stackshare
https://docs.google.com/spreadsheets/d/1sMQe9oOKhMhIVw9WmuCEWdPtAoccJ4a-IuZv4fXDHxM/edit
https://docs.google.com/spreadsheets/d/1sMQe9oOKhMhIVw9WmuCEWdPtAoccJ4a-IuZv4fXDHxM/edit
https://db-engines.com/en/systems

40 Literature Review

parison56, Relational Database Management Systems Comparison57, among others provide an

exhaustive list of features but with duplication of information between them often with no in-

formation about which component version has the indicated functionality. Which is probably

a consequence of software not being described feature wise in software repositories following

a common domain terminology. Also because features are separate from software justifications

component consumers have to know the drawbacks and advantages that certain features pose on

their situations.

Figure 2.30: Open Source Time Series DB Comparison Google Sheets
Source: https://docs.google.com/spreadsheets/d/
1sMQe9oOKhMhIVw9WmuCEWdPtAoccJ4a-IuZv4fXDHxM/edit

56https://tsdbbench.github.io/Ultimate-TSDB-Comparison/
57https://en.wikipedia.org/wiki/Comparison_of_relational_database_management_

systems

https://docs.google.com/spreadsheets/d/1sMQe9oOKhMhIVw9WmuCEWdPtAoccJ4a-IuZv4fXDHxM/edit
https://docs.google.com/spreadsheets/d/1sMQe9oOKhMhIVw9WmuCEWdPtAoccJ4a-IuZv4fXDHxM/edit
https://tsdbbench.github.io/Ultimate-TSDB-Comparison/
https://en.wikipedia.org/wiki/Comparison_of_relational_database_management_systems
https://en.wikipedia.org/wiki/Comparison_of_relational_database_management_systems

Chapter 3

Problem Statement

Early in this chapter we present the major pain points in component selection, in Section 3.1. Af-

terwards, we propose a framework, in Section 3.2, described by: an approach relating it to current

issues and possible alternatives, in Section 3.2.1; following a set of high level characteristics, in

Section 3.2.2; with some assumptions, in Section 3.2.3; and an evaluation strategy, in Section

3.2.4.

3.1 Current Issues

As mentioned in Chapter 1 there are numerous ways to search for components and their char-

acteristics but the information follows different syntaxes, semantics, and in most cases does not

describe the architectural choices and quality attributes for different scenarios. The major issues

are summed up bellow:

1. Architectural Decision Knowledge of software projects is not re-purposed for Com-
ponent Selection: the process of component selection involves grasping the qualities of

components therefore design rationale could possibly be reused for consumer reasoning.

2. Architecture Decision Rationale is in most cases implicit, unstructured or not recorded
through tools: architecture knowledge management systems require too much information

capture resulting in big chunks of developer time being allocated to the maintenance of

documentation.

3. Component Selection features are scattered and multiform: there are too many syntax

and semantic differences in online information about components which makes its search

and comparison a hard task.

4. Project documentation lives apart from code repositories: in most cases documentation

is not in sync with projects since it is maintained in external systems.

41

42 Problem Statement

5. The documentation of Components is too free-form: there is no easy way to gather all

the important features that characterise a piece of software without digging into its docu-

mentation.

3.2 Proposal

As evidenced by the issues above, software components projects rarely provide structured infor-

mation about their features. As a consequence, component selection is an exploratory endeavour

relying in most cases on manual search and comparison of related software. One possible way to

try to solve this issue would be to reduce the amount of information required by most AKM data

models and focus it on the description of the set of features that make up a software component.

Preferably, the descriptions would be produced by the developers of the components themselves

in order to diminish syncing with external systems such as wikis (QuABaseBD), other web places

(Comparison Websites) and AKMSs (see Table E.6) while at the same time promoting its quality

and reducing the need for repeated work on feature description.

By structured information we mean information that fits into a data model that facilitates the

description of a software component following a set of features that a developer sees as an im-

portant characteristic of their solution. The characteristics that developers choose to describe their

software will vary but they must be structured and comparable in order for that information to

usable by component selection processes.

In sum the goal of this dissertation is to build a conceptual framework that helps with archi-

tectural decision making in particular the selection of components by making use of structured

knowledge.

3.2.1 Approach

Because architectural knowledge from AKMSs is scarce and hard to re-purpose for component

selection we focus on collecting features from Software Components present in repositories and

exposing them through a service. In a sense we are building a knowledge base of software features

capable of differentiating concerns — e.g. Big Data Technologies, quality-attributes, and so on —

that can assist component selection. Thereby addressing to an extent the issues above.

Issues 1 and 2 in Section 3.1, have to do with AKMS and as seen in Chapter 2 almost no

projects make use of it. So trying to re-purpose Decision Knowledge to aid Component Selection

when the former is almost non-existent is for now a delusion. Solving these these two issues prob-

ably involves investigating a new information flexible framework for the capture of Architecture

Knowledge, testing it and then having it adopted in projects. Only then would it be possible to

attempt to re-purpose some of that knowledge for Component Selection. These two issues are

related to our proposal only because features are structured information and part of Architectural

Knowledge.

Issue 3 in Section 3.1, is only considered in part because the features of Components are

assigned only by repository contributors. Unfortunately, by using our approach other Web Places

3.2 Proposal 43

can not indicate additional features for Components. The construction of a website to centralise

the description of Components in feature terms is in our opinion not a good solution since many

other similar Websites already exist, see Section 2.4 in Chapter 2. To solve this problem in its

entirety technology from the Semantic Web could be looked at. Software Repositories would need

to be identified through an URI, and the RDF statements from the contributors would have to

be exposed in an RDF dataset URI. Other websites to do with Component Selection could then

use RDF and an ontology built by us or not to append to an interconnected sea of information

where different claims about Components would coexist. Alas, Semantic Web and Linked Data

technologies are still not really that well known, and occasionally looked at with disbelief so we

opted for a less grandiose approach.

Issue 4 in Section 3.1, deals with the fact that software documentation tends to live far from

code repositories which is obviously not ideal since developers spend most of their time working

on code related activities. External documentation has the obvious drawbacks of being difficult to

track and keep updated as the project grows which is more likely than not one of the main reasons

why so few documentation exists. The addition of software features as a form of documentation to

the repositories of projects while being far from a full solution does offer benefits to Component

Consumers. As a matter of fact, a collection of the main features of a Component can act as a

way to sum up major parts of documentation, Issue 5 in Section 3.1. However, a more sound

approach to the summation of documentation could be attempted by using technology from the

Semantic Web namely RDFa to embed RDF data directly inside HTML documents or even inside

code comments. Unfortunately as stated above Semantic Web and Linked Data approaches are yet

to ingrain in the mindset of developers.

3.2.2 Desiderata

Following from the approach and the set of issues described above, we conceived a list of char-

acteristics that implementations should honour. There may be multiple solutions that follow the

desiderata, herein described, that can present good solutions to the approach. Ours is just one

interpretation of such requirements that we will have to analyse.

• Capture and Grouping, there should be a mechanism that enables the capture of structured

information deemed important by developers for consumers about their software compo-

nents in repositories. Because software may be described according to different concerns it

should be possible to group related features.

• Validation, in order to contrast software and promote consistent definitions according to

the concerns of a group of features there should be some kind of validation that makes sure

that an instance of a concern is well defined. It guarantees that different repositories can be

compared among each other as long as they respect the concern’s vocabulary.

44 Problem Statement

• Reuse, information about features and groups should be reusable and there should be a way

to reduce information duplication — e.g. when the same feature appears in different groups,

when mapping a set of features to a concern via a group, etc.

• Versioning is particularly important since for the same piece of software there may be

releases with different features. The same is also true for concerns for the simple reason

that they might evolve as a domain is better understood.

• Search and Comparison, the captured features should be usable by external entities. For

instance, comparison websites could then leverage this information to augment their soft-

ware descriptions possibly building new visualisations — e.g. feature clustering, iterative

comparison through tables, software search, etc.

3.2.3 Assumptions

We will focus our efforts on the construction of a simple system following the principles stated

in the desiderata, reusing existing technology whenever possible. Additionally, no dataset for fea-

tures will be devised since it requires expert knowledge and industry practice using the concerned

component types. Consequently, we will populate the system with data from QuABaseBD and

other reputable sources (Kleppmann, 2017) which will be placed in custom repositories to help

validate the approach.

3.2.4 Evaluation

We judge whether the desiderata, in Section 3.2.2, is achieved through our implementation, in

Section 4.4, in order to ascertain the merits of our approach. This involves discussing the related

implementation for each key principle, contrasting it with approaches in the literate review, and

exemplifying its use through a prototype front-end application.

Chapter 4

Implementation

In this chapter we describe the many parts that constitute the developed system and state how

the application can be used. The implementation is grounded on the principles established by the

desiderata and aims to ease the capture and sharing of feature information. Section 4.1 summarises

the implementation. Section 4.2 describes the architecture and the tools that where used to build

the system. Section 4.3 presents the data model used to encode component features and schemas.

Section 4.4 lists the features provided by our implementation. Section 4.5 describes the flow of use

for the two roles considered: component producer and component consumer. Section 4.6 reports

how the solution can be built.

4.1 Overview

Our implementation leverages the GitHub version control hosting service to capture information

about software projects. Even though feature information is only captured from GitHub reposito-

ries the idea can be extended to other code hubs — e.g. by using their Application Programming

Interface (API), git hooks, scripts, etc. In fact, adding support for the extraction of features from

repositories may boost feature knowledge capture and curation since one of the reasons developers

do not document them in a structured way is due to the little benefit it brings in the short term and

the maintenance cost of keeping information synchronised with external systems. Moreover, we

opted for GitHub because they are the most popular code hub and have a well documented API1.

The GitHub API supplies a means to automate and improve the work-flow of repositories using

GitHub Apps2. So we created a GitHub App called featurewise with a set of permissions that can

be installed in repositories whose goal is to deliver events to our platform. When we receive those

events we process them and if deemed appropriate we fetch a file in the root of the respective

1https://developer.github.com/
2https://developer.github.com/apps/

45

https://developer.github.com/
https://developer.github.com/apps/

46 Implementation

repository called featurewise.{json,yaml} whose contents describe the software’s features. Lastly,

our platform’s API supplies component information documents to interested parties.

Figure 4.1: Implementation Overview

4.2 Architecture and Tools

Our implementation captures events from GitHub projects when they install our GitHub App

whose name is Featurewise. GitHub Apps are the recommended way to integrate with GitHub

and work by sending certain subscribed events configurable through GitHub’s website and their

payloads to a webhook URL. In our case we are only interested in the check_suite3, check_run4,

release5, and repository6 events and their actions. As for permissions we only require read access

to repository metadata and code, and write and read access to checks.

Figure 4.2: Featurewise GitHub App

A check_suite is a collection of check_runs for a specific commit. And its requested action

event triggers when a new commit is pushed to a repository. From that point on check_runs can

be created to analyse a commit. Moreover, the release event and its actions are used to capture the

releases of components and their respective features and to synchronise our database on release
3https://developer.github.com/v3/activity/events/types/#checksuiteevent
4https://developer.github.com/v3/activity/events/types/#checkrunevent
5https://developer.github.com/v3/activity/events/types/#releaseevent
6https://developer.github.com/v3/activity/events/types/#repositoryevent

https://developer.github.com/v3/activity/events/types/#checksuiteevent
https://developer.github.com/v3/activity/events/types/#checkrunevent
https://developer.github.com/v3/activity/events/types/#releaseevent
https://developer.github.com/v3/activity/events/types/#repositoryevent

4.2 Architecture and Tools 47

delete, edition, and so on. Likewise, repository events serve to synchronise on repository meta-

data changes.

When the web-hooks arrive we load balance them between n Github Server nodes whose

purpose is to consume and act on the events discussed above. If the event contains information

about features or repository meta-data that is suitable for archival we store it in PostgresSQL7. To

avoid creating additional check_runs for branches whose features should not be published but only

checked we query Redis8 for feature file hashes that have already been processed. Our backend

then utilizes the PostgresSQL datastore to provide a REST API for external users to retrieve feature

files, schemas and related meta-data so that they can augment software comparisons. Check the

deployment diagram bellow, Figure 4.3, for a visual representation of the described above.

Figure 4.3: Deployment Diagram

The whole solution is developed using the Javascript programming language so that we can

share code between the Github Server and the Backend. The former is built on top of a framework

7https://www.postgresql.org/
8https://redis.io/

https://www.postgresql.org/
https://redis.io/

48 Implementation

for building Github Apps, Probot9. And the later uses a low overhead web framework inspired

by Express.js10 and Hapi.js11, fastify12. For group validation and SQL manipulation we lever-

age respectively Ajv13 JSON Schema validator and Objection.js14. The nodes and the datastores

shown in the deployment diagram above are built using docker15 images and run using the docker-

compose16 multi-container tool. Finally, Traefik17 acts as the reverse proxy shielding and load

balancing requests originating from outside our platform. Even though in the above diagram it

shows two reverse proxies in actuality it is only one with two distinct locations. One for the

Github App and another for the Backend.

4.3 Data Model

Feature files, and groups are represented in our data model as Featurewise, and Domain. A Fea-

turewise row represents a repository feature file which originates from either a Release or a Branch

Commit. Groups of related features are stored in Domain rows and may follow a validation schema

so that related software can be located and compared. A schema can originate from a repository

or from an external URL. In the case of the former repository meta-data is used to frame it, much

like what happens with feature files because they are always located in repositories, see Figure 4.4

and its implementation in Listing 23 in appendix G.

Figure 4.4: Class Diagram

9https://github.com/probot/probot
10https://github.com/expressjs/express
11https://github.com/hapijs/hapi
12https://github.com/fastify/fastify
13https://github.com/epoberezkin/ajv
14https://vincit.github.io/objection.js/
15https://www.docker.com/
16https://docs.docker.com/compose/
17https://traefik.io/

https://github.com/probot/probot
https://github.com/expressjs/express
https://github.com/hapijs/hapi
https://github.com/fastify/fastify
https://github.com/epoberezkin/ajv
https://vincit.github.io/objection.js/
https://www.docker.com/
https://docs.docker.com/compose/
https://traefik.io/

4.4 Features 49

4.4 Features

Herein lies the features that we implemented following the desiderata, present in Section 3.2.2.

Each feature has a brief description of the reasoning behind it in order to best convey its meaning

and objective.

4.4.1 Feature 1 — encode features

Encoding of the features of a component in a file stored in the root of a repository — e.g. .fea-

turewise.json. The file is readable by either humans or machines in a well adopted format, JSON.

Support for processing of this file is added by installing a GitHub App called Featurewise which

should work in a similar fashion to travis18, see Figure 4.5 — i.e. a server under our control cap-

tures repository events issued by GitHub and acts on them by collecting and processing feature

files.

Figure 4.5: Feature File

4.4.2 Feature 2 — encode features per domain

Components can belong to multiple categories of Software as is the case of redis19. It is an in-

memory datastore that can be used as a database, cache, or message broker. As a result the domain

concept exists to separate different sets of features, see Listing 13 — e.g. cache, message broker,

etc. However, it can be the case that a subset of features match in different domains — e.g.

replication. To fix this issue either domains have to be more specific so as to avoid repetitions —

e.g. a domain just for replication which would reduce the benefit of whole comparisons — or for

there to be a mechanism to reduce duplication and link equal features together, see features 4.4.3,

4.4.4, and 4.4.9.

1 {

2 "domains": [{}, {}]

3 }

Listing 13: Multiple Domains

4.4.3 Feature 3 — support multiple encoding formats

Apart from JSON there is support for YAML since it is more appropriate for configuration files.

Fortunately most of YAML can be translated to JSON. As a matter of fact YAML is crucial for

18https://travis-ci.com/
19https://redis.io/

https://travis-ci.com/
https://redis.io/

50 Implementation

diminishing information duplication as it has support for anchors(&) and references(*), see Listing

14 and 15.

1 ---

2 - Scalability: &id1

3 Scalable Distribution Architecture: replicate complete database only

4 Request Load Balancing: fixed connections to a request coordinator

5

6 - Scalability2: *id1

7

8 - Scalability3: *id1

9 <<: *id1

10 Request Load Balancing: uses HTTP-based load balancers

11 Granularity of Write Locks: no locks - conflicts allowed

Listing 14: Example of anchors(&) and references(*) in YAML

1 [

2 {

3 "Scalability": {

4 "Scalable Distribution Architecture": "replicate complete database only",

5 "Request Load Balancing": "fixed connections to a request coordinator"

6 }

7 },

8 {

9 "Scalability2": {

10 "Scalable Distribution Architecture": "replicate complete database only",

11 "Request Load Balancing": "fixed connections to a request coordinator"

12 }

13 },

14 {

15 "Scalability3": {

16 "Scalable Distribution Architecture": "replicate complete database only",

17 "Request Load Balancing": "uses HTTP-based load balancers",

18 "Granularity of Write Locks": "no locks - conflicts allowed"

19 }

20 }

21]

Listing 15: Listing 14 converted to JSON

4.4.4 Feature 4 — support for optional feature schemas

Support for schemas is a very important feature since it makes data more structured and homoge-

neous helping greatly with comparisons. Component domains can be identified via a schema URL

wherein possible values for features are described, see Listing 16 and 17.

4.4 Features 51

1 {

2 "domains": [

3 {

4 "schema": {

5 "url": "https://github.com/hugdru/some-repo/blob/master/.some-schema.json"

6 },

7 "data": {

8 "Scalability": {

9 "Scalable Distribution Architecture": "horizontal partitioning and replication",

10 "Scaling Out - Adding Data Storage Capacity": "automatic data rebalancing"

11 }

12 }

13 }

14]

15 }

Listing 16: Features file with just one domain

1 {

2 "title": "Big Data Architectures and Technologies",

3 "description": "Classifies Big Data Technologies according to a set of features",

4 "type": "object",

5 "properties": {

6 "Scalability": {

7 "title": "Scalability",

8 "description": "Describes how a system behaves when there is increased load or resource demand",

9 "type": "object",

10 "properties": {

11 "Scalable Distribution Architecture": {

12 "type": "string",

13 "enum": [

14 "replicate complete database only",

15 "horizontal partitioning of database",

16 "horizontal partitioning and replication"

17]

18 },

19 "Scaling Data Storage Capacity": {

20 "type": "string",

21 "enum": [

22 "automatic data rebalancing",

23 "manual data rebalancing",

24 "N/A - single server only"

25]

26 }

27 },

28 "additionalProperties": false

29 }

30 },

31 "additionalProperties": false

32 }

Listing 17: Features Schema file using JSON Schema

52 Implementation

Schemas are optional so as to not burden users with the declaration of possible values when do-

mains are not yet fully understood. A best effort comparison involving simple string comparisons

would have to be done in such cases when contrasting software. It may happen that semantically

equal concepts will not be contrasted because of sleight differences in syntax. However as under-

standing grows around a domain, repository contributors can come together and define a schema

that better contrasts their features with those of competitors extolling their virtues. A schemaless

domain is defined by not specifying the schema object. In addition, the schema is also definable

in YAML so that users can pick a common format for both features and schemas declaration.

4.4.5 Feature 5 — feature and schema versioning

The framework expects software features and schemas to evolve when respectively new releases

or pushes are made, and feature vocabulary is updated. The features of software components

are versioned from the get go since they are stored in GitHub repositories — e.g. commit id,

timestamp, branch, release, tag, etc. The same is true for Schemas but only if they are stored in

GitHub. When they are defined elsewhere the only information we have is the URL, and the file’s

contents. So we attach an id to it which gets incremented only if its contents change. To conclude,

in both cases we look carefully into the feature and respective schema files per push per branch to

check for actual changes so as not to populate the Featurewise table with duplicated information.

Therefore we decode, normalise and compare features and schemas to their last related inserted

value in all cases except for releases which always get stored if its associated commit contains

a featurewise file. The comparison involves contrasting the hash of the normalised files using

SHA-25620.

4.4.6 Feature 6 — ignorable branches, releases, and branch publishes

Different versions of software are normally developed under separate branches with specific points

of history tagged for the purpose of releases — e.g. see https://github.com/apache/

spark. In spite of that some branches and tags might not hold any special meaning or be desirable

for schema validation using the GitHub Checks API, see Feature 4.4.8, and publishing — e.g.

branch gh-pages . For that reason it is possible to opt out or in for branches, and enable or disable

support for releases and as a consequence their tags. In addition, publishes for branches can be

disabled so that only checking is done, see Listing 18.

1 # Defaults to allow every branch except gh-pages

2 branches:

3 only: master # Takes precedence over except

4 except: master # Disregarded in this case since only is present

5 publish: True # Defaults to False

6 # Defaults to True

7 releases: False

Listing 18: Ignoring branches, releases and publishes

20https://en.wikipedia.org/wiki/SHA-2

https://github.com/apache/spark
https://github.com/apache/spark
https://en.wikipedia.org/wiki/SHA-2

4.4 Features 53

4.4.7 Feature 7 — capture push and release information

Each push or release event contains repository and commit metadata — e.g. commit id, timestamp,

branch, release title and description, tag, etc — that is stored along side feature files for framing

and informational purposes, see https://developer.github.com/v3/activity/events/

types/#checksuiteevent for an example of the check_suite event payload and https://

developer.github.com/v3/activity/events/types/#releaseevent for release events.

4.4.8 Feature 8 — schema validation using the github checks API

GitHub Apps21 help improve the workflow of projects by automating different types of tasks. In

our case we validate the correctness of domains when they are subject to a schema and provide a

message if the feature file was successfully checked and/or published. For that reason we consume

events and call APIs to do with check_suites22,23 and checks24,25. See Figure 4.6 for an example

of a validated but not published domain since its featurewise.json has that disabled, and Figure 4.7

for a job that failed.

Figure 4.6: Example of a domain in a feature file that was validated

21https://developer.github.com/apps/
22https://developer.github.com/v3/activity/events/types/#checksuiteevent
23https://developer.github.com/v3/checks/suites/
24https://developer.github.com/v3/activity/events/types/#checkrunevent
25https://developer.github.com/v3/checks/runs/

https://developer.github.com/v3/activity/events/types/#checksuiteevent
https://developer.github.com/v3/activity/events/types/#checksuiteevent
https://developer.github.com/v3/activity/events/types/#releaseevent
https://developer.github.com/v3/activity/events/types/#releaseevent
https://developer.github.com/apps/
https://developer.github.com/v3/activity/events/types/#checksuiteevent
https://developer.github.com/v3/checks/suites/
https://developer.github.com/v3/activity/events/types/#checkrunevent
https://developer.github.com/v3/checks/runs/

54 Implementation

Figure 4.7: Example of a domain in a feature file that failed validation

4.4.9 Feature 9 — re-use schemas to reduce heterogeneity

JSON schema can reduce duplication inside a document by using keywords to locate subschemas.

As a convention they are defined in a top level object called definitions26 and referenced through

the $ref keyword which basically outputs the referenced value, see Listing 19. YAML descriptions

can use their own convention for pointers or be directly translated from JSON.

1 {

2 "definitions": {

3 "details": {

4 "type": "object",

5 "properties": {

6 "description": { "type": "string" },

7 "pitfalls":{ "type": "array", "items": { "type": "string" } }

8 },

9 "required": ["description", "pitfalls"]

10 }

11 },

12

13 "title": "Big Data Architectures and Technologies",

14 "description": "Classifies Big Data Technologies according to a set of features",

15 "type": "object",

16 "properties": {

17 "Scalability": {

26https://json-schema.org/understanding-json-schema/structuring.html

https://json-schema.org/understanding-json-schema/structuring.html

4.4 Features 55

18 "details": { "$ref": "#/definitions/details" },

19 "title": "Scalability",

20 "description": "Describes how a system behaves when there is increased load or resource demand",

21 "type": "object",

22 "properties": {

23 "Scaling Data Storage Capacity": {

24 "type": "string",

25 "enum": [

26 "automatic data rebalancing",

27 "manual data rebalancing",

28 "N/A - single server only"

29]

30 }

31 },

32 "additionalProperties": false

33 }

34 },

35 "additionalProperties": false

36 }

Listing 19: Definition reuse in JSON Schema

The $ref keyword expects a URI path to a subschema. So it may happen that the unit of

reuse is a resource located elsewhere — e.g. a URL such as "$ref": "http://mycontrolled.

domain/otherSchema.json#definitions/details" or "$ref": "https://github.

com/owner/repo/blob/master/otherSchema.json#definitions/details" or sim-

ply "$ref": "https://github.com/owner/repo/blob/master/otherSchema.json".

JSON schema validators must validate documents with external subschemas but their downloads

are not expected to be handled by them. As a consequence we implemented recursive subschemas

fetching, and linkage using the addSchema function from Ajv27. In addition to the $ref & defi-

nitions approach to reuse it is also possible to utilise $id which is a way to identify one schema

without navigating a JSON tree, resembling YAML anchors and references, see Listing 20.

1 {

2 "definitions": {

3 "details": {

4 "$id": "#details",

5 "type": "object",

6 "properties": {

7 "description": { "type": "string" },

8 "pitfalls":{ "type": "array", "items": { "type": "string" } }

9 },

10 "required": ["description", "pitfalls"]

11 }

12 },

13

14 "title": "Big Data Architectures and Technologies",

15 "description": "Classifies Big Data Technologies according to a set of features",

16 "type": "object",

17 "properties": {

18 "Scalability": {

27https://github.com/epoberezkin/ajv

http://mycontrolled.domain/otherSchema.json#definitions/details
http://mycontrolled.domain/otherSchema.json#definitions/details
https://github.com/owner/repo/blob/master/otherSchema.json#definitions/details
https://github.com/owner/repo/blob/master/otherSchema.json#definitions/details
https://github.com/owner/repo/blob/master/otherSchema.json
https://github.com/epoberezkin/ajv

56 Implementation

19 "details": { "$ref": "#details" },

20 }

21 }

22 }

Listing 20: Definition reuse in JSON Schema using ids

4.4.10 Feature 10 — provide a public API

Our REST API provides a set of GET routes for the retrieval of software features with support for

optional query parameters. One query parameter that exists for all routes is eager which allows

for the retrieval of additional related table information. For instance /featurewise?eager=[release,

domains.schema.repository.owner, repository.owner] returns a JSON whose content is the result

of joining all those tables.

• /domain & /domain/:id — routes for the retrieval of domains.

• /featurewise & /featurewise/:id & /featurewise/latest — routes for the retrieval of feature

files.

• /owner & /owner/:id — routes for the retrieval of owners.

• /release & /release/:id — routes for the retrieval of releases.

• /repository & /repository/:id — routes for the retrieval of repositories.

• /schema & /schema/:id & /schema/latest — routes for the retrieval of schemas.

Software comparison websites and others can then use the information supplied by our API to

enrich their comparisons, descriptions, component justifications, and others.

4.5 Using the solution

In this section we describe how users can utilise our implementation following the two different

use cases. As a developer of a piece of software, a producer, or as a user looking for feature

information about components, a consumer.

4.5.1 Producer

Firstly the Featurewise GitHub App must be installed so that our service can receive GitHub

Events. To do so the user must navigate to the Apps URL, https://github.com/apps/

featurewise, see Figure 4.8, and install it on the desired repositories, see Figure 4.9.

https://github.com/apps/featurewise
https://github.com/apps/featurewise

4.5 Using the solution 57

Figure 4.8: Featurewise installation page

After the installation branch commits and releases issue events that are captured by our service

triggering the download of a featurewise.json or a featurewise.yaml in the root of the repository.

Their settings (i.e. branches: & releases:) along with the version control meta-data allow us to

frame and process the features accordingly — i.e. ignore branches and/or releases, skip processing,

validate or validate and publish, and so on. Unfortunately the construction of the featurewise file

is a manual text-based task. However because we use schemas it should be easy to create a form

per domain with autocompletion. This functionally could even be added to a front-end app which

uses GitHub OAuth to import and export featurewise files from user repositories.

Figure 4.9: Featurewise configuration page

4.5.2 Consumer

The information provided by our service can be queried directly by end-users through the REST

API, see Feature 4.4.10, as a way to build component feature catalogues for use in Component Se-

lection Processes and MCDM systems. Additionally, other services, such as Software Comparison

Websites, may build on top of our API to supply current and structured visualisations.

58 Implementation

4.6 Building the Solution

To assemble our service as described in Figure 4.3 we use docker and docker-compose. There ex-

ists three different docker-compose files, one for development in Listing 26, another for production

in Listing 24, and lastly one for traefik in Listing 25. Each follows different environment variable

settings which are set automatically by running a helper script located in the root of the project

called, ./run.sh see Listing 21. Traefik does not belong to the production docker-compose.yml

even though it is only meant for production because it is possible for it to route requests to differ-

ent composes or even to cluster technologies such as docker swarm as long as they belong to the

same network which the ./run.sh creates when ran with the traefik d option.

Usage: ./run.sh env (p package)|d) call

env is a file in env/ without the extension where

secrets and environment variables are stored

p cds to a package in packages/ and runs a command

d cds to an env folder in docker/ and runs a command

call represents a command and arguments to run

Examples:

./run.sh dev d docker-compose up

./run.sh dev p backend yarn dev

./run.sh dev p github-app yarn dev

./run.sh dev p frontend yarn start

./run.sh traefik d docker-compose up

./run.sh prod d docker-compose up

./run.sh prod p frontend yarn start

Listing 21: Run options for run.sh

To avoid having to create a server online in order to receive the GitHub App Events we use

smee28 for development purposes. It is a small service that proxies payloads from a webhook

source to a local machine, see Figure 4.10.

Figure 4.10: Smee in action

28https://smee.io/

https://smee.io/

4.6 Building the Solution 59

To run in production mode locally traefik must receive host information so that it can redirect

the requests to the appropriate containers. It is possible to emulate this by adding entries to the

Static table lookup for hostnames, in file /etc/hosts, see Listing 22.

127.0.0.1 featurewise.com

127.0.0.1 api.featurewise.com

127.0.0.1 www.featurewise.com

127.0.0.1 github.featurewise.com

Listing 22: Table lookup for hostnames

60 Implementation

Chapter 5

Evaluation

In this chapter we describe the methodology, in Section 5.1, used to analyse the implementation

of each desiderata topic: Capture and Grouping, in Section 5.2; Validation, in Section 5.3; Reuse,

in Section 5.4; and, Versioning, in Section 5.5.

5.1 Methodology

We judge whether the desiderata, introduced in Section 3.2.2, is achieved through our implemen-

tation, described in Section 4.4, in order to ascertain the merits of our approach. This involves

evaluating the implementation for each desideratum following a sequence of steps:

• Summarising each desideratum

• Briefly describing the implementation

• Discussing how the implementation relates to the principle

• Contrasting the implementation with approaches in the literate review

• Exemplifying its use through a prototype front-end application

To evaluate our system we built a dataset consisting of 10 repositories each with a feature file

using knowledge extracted from QuABaseBD. The following repositories where built: hugdru/ac-

cumulo, hugdru/cassandra, hugdru/couchdb, hugdru/hbase, hugdru/mongodb, hugdru/neo4j, hug-

dru/redis, hugdru/riak, hugdru/voltdb, and lastly hugdru/schemas. Our GitHub App was installed

in all repositories and their featurewise files captured by our service on commit push, and release

publish. A frontend written in React1, a library for building Single-Page Application user inter-

faces declaratively, and Typescript2, a statically typed super-set of Javascript, queries our service

and presents views for component and schema search, and comparison.
1https://reactjs.org/
2https://www.typescriptlang.org/

61

https://github.com/hugdru/accumulo
https://github.com/hugdru/accumulo
https://github.com/hugdru/cassandra
https://github.com/hugdru/couchdb
https://github.com/hugdru/hbase
https://github.com/hugdru/mongodb
https://github.com/hugdru/neo4j
https://github.com/hugdru/redis
https://github.com/hugdru/redis
https://github.com/hugdru/riak
https://github.com/hugdru/voltdb
https://github.com/hugdru/schemas
https://reactjs.org/
https://www.typescriptlang.org/

62 Evaluation

5.2 Capture and Grouping

Part of the desiderata is for there to be a mechanism that enables the capture of structured knowl-

edge and scoping of different feature concerns into groups. In our implementation, software fea-

tures are captured by downloading feature files after handling release and commit events issued by

GitHub. Depending on a set of rules they might or might not be stored in our service. For instance,

the metadata and featurewise file of releases is always stored in our service as long as the associ-

ated tag/commit contains a features file. But commit featurewise files only get saved if the current

featurewise file is different from the last one inserted considering the current branch. In essence,

our implementation establishes a means for the creation of a queryable curated knowledge base

built straight from code repositories and it relates to the literature review in the following way:

• In contrast to QuABaseBD we relax the model disregarding concepts such as scenarios and

tactics but promote contributions whilst handling structured information. Additionally we

extend the model so as to allow for different domains to co-exist when describing the same

piece of software — e.g. one domain to describe Big Data Features, another to describe its

key quality attributes, and so on.

• The solution resembles Feature-Comparison Websites as discussed in the literate review

with the exception that features are scoped to different concerns through domains following

strict validation rules — i.e. feature groups are implemented using the concept of domains

and schemas. For instance it is possible to characterise Redis3 both as a database, cache,

and message broker in the same knowledge unit instead of relying on different websites that

focus on each of those specific domains.

• Furthermore, our framework much better describes component functionality when com-

pared to Multi-Faceted Comparison Websites that leverage lists in the form of free-text to

contrast software. Alas, those lists commonly mix features and opinions and do not group

them by concern.

In Figure 5.1 we can see a list of repositories that have at least one associated featurewise file

stored in our service.

3https://redis.io/

https://redis.io/

5.2 Capture and Grouping 63

Figure 5.1: All the repositories stored in our service @frontend/repositories

Each repository may contain different featurewise files each having groups of features called

domains which may follow a schema. As can be seen in Figure 5.2, MongoDB has one domain

description with id: 60 in its featurewise file with id: 60, which follows a schema to do with Big

Data Features. In its domain table a list of features follow.

Figure 5.2: Example of a domain that follows a schema @frontend/featurewise/60

The Capture and Grouping desideratum was attained successfully in respect to the capture of

features and groups of features. Although the idea of placing a featurewise file alongside project

code is applicable to all cases, its capture in our implementation is done only from GitHub reposi-

tories that have our GitHub App installed. Nevertheless, the approach could be easily extended to

other code hubs that provide APIs. Moreover, the featurewise file could also serve to inform other

64 Evaluation

services and its transmission for consumption could be achieved using different techniques such

as git hooks, scripts, and so on.

5.3 Validation

The desiderata expects feature group validation so that there is a guarantee that groups of features

that follow a concern are comparable between different components. In our implementation a

concern is represented through a domain which encompasses a schema URL and a set of features.

The validation process involves checking whether the JSON Schema matches the data and alerting

the user using the GitHub Checks API. Contrasting with the literature review:

• QuABaseBD uses semantic annotations and other techniques from Semantic MediaWiki to

link concepts together creating structured information. However, group validation for well

behaved comparisons does not apply in this case because knowledge exists in a single big

knowledge unit focusing only in one domain.

• Feature-Comparison Websites too make no use of mechanisms to scope and validate features

because they target a single domain per website which makes grouping related software

according to sets of features a non issue.

• Multi-Faceted Comparison Websites have no group of features validation whatsoever to

organise what is from what is not comparable. In most cases they rely on tags to identify

similar software and free-form text comparisons.

Scoping features according to a schema allows us to find and compare any software that in-

stantiated it. For instance Redis could be compared to different message brokers, and databases if

it instantiated a schema for each one of those concerns in its featurewise file. See Figure 5.3.

Figure 5.3: Table of software that follows a schema

5.4 Reuse 65

The use of schemas to frame concerns does in fact make software components comparable

among each other. Additionally, because groups with equal concerns follow the same schema all

related software can be easily found and organised naturally through its actual feature sets and not

through rigid hierarchies or tags.

5.4 Reuse

According to the desiderata, features and concerns should be reusable and duplicate information

should be kept at a minimum. In an attempt to solve the above we:

• support YAML in addition to JSON to reference already defined concepts using anchors and

references in featurewise and schema files;

• leverage JSON schema concepts in the construction of schema files to reduce duplicate

definitions inside a schema and mapping to external sub-schemas;

• link groups of features to a concern using a schema URL.

Contrasting with the literature review:

• QuABaseBD has reuse functionality since it uses Semantic MediaWiki but because it only

focuses on one domain in a single knowledge repository concern reuse does not apply.

• Feature-Comparison Websites too only touch one concern so reuse among different groups

does not apply.

• Multi-Faceted Comparison websites lack any sort of reuse as defined above even though its

support could provide grounds for a more common structure aiding comparisons between

software with similar concerns.

As software feature descriptions are in the majority of cases scattered and multi-form the

implemented reuse primitives can in fact reduce duplication and heterogeneity.

5.5 Versioning

The desiderata also calls for the versioning of releases and concerns because different software

may contain different features possibly following updated definitions. This inevitably happens

as domains are better understood. In our implementation different versions of similar software

and the same software can be compared among each other so as to decide for instance between

stable and mainline versions. Our solution improves upon the Feature and Comparison Websites

investigated and the QuABaseBD knowledge base since they do not support any sort of versioning.

66 Evaluation

Figure 5.4: Example of multiple riak versions @frontend/repository/192900930

For two featurewise files to be comparable they must contain at least one common schema in

a domain. However, schemas can evolve as well. Therefore, in our implementation they are also

versioned. See Figure 5.5 for an example of two related schemas.

Figure 5.5: Example of two schemas @frontend/schemas

As elucidated by the above figures, our implementation versions feature files and concerns. As

a result our approach and implementation not only provides current software feature information

but also a history of its changes. Consequently, key software feature changes can be catalogued

in a structured way acting as a structured software release notes changelog. Component selection

processes can then leverage this information to judge the need for version upgrades and the se-

lection of similar software following different versions — e.g. mongodb mainline vs mongodb

stable, mongodb stable vs cassandra mainline, and so on.

5.6 Search and Comparison

Another requirement of the desiderata is the exposure of features and concerns so that external

services can use this information to augment component search, comparison, and selection. In

our implementation features are captured via the processing of GitHub App events and stored in a

knowledge base which can be queried through a REST API. It contrasts to the literature review in

the following way:

5.6 Search and Comparison 67

• Even though QuABaseBD provides a knowledge-base for Big Data Architecture and Tech-

nologies its contents are not meant to be queried by external systems. It does contain search

functionality though but it is very rudimentary due to wiki limitations.

• Feature-comparison Websites do have meaningful information for component selection pur-

poses but their extraction is in most cases via web scraping and is only concerned with

certain component types.

• Multi-Faceted Comparison Websites such as StackShare, in Section 2.4.1.3, and Slant, in

Section 2.4.1.1, leave a lot to be desired when comparing features since they are free form;

so even if they provided an API their contents would not be very useful. They do excel at

gathering user opinions about software which might help component selection processes but

that is not our intent.

As can be seen in Figures 5.6 and 5.7 structured visualisations can be rendered from the data

made available by our service.

Figure 5.6: Comparison between two mongo versions

In the frontend prototype different versions of software can be compared through tables in

order to assist in the determination of the most suitable piece of software.

68 Evaluation

Figure 5.7: Comparison between different software

The sharing of repository features was made available by developing a public REST API and as

exemplified above through the front-end prototype figures the service can in fact be used to assist

component selection processes. Resulting in a knowledge-base that is queryable and evolves as

projects change. Furthermore, the presence of a featurewise file in the root of a project makes it

possible for other tools to consume its information without having to rely on our service.

5.7 Conclusion

The desiderata (Section 3.2.2) was attained successfully in all cases presenting noticeable im-

provements over the literature review approaches. We capture features and groups of features
by encoding knowledge in a featurewise file, thus extending the gathering of structured features to

multiple domains. Use schemas to validate whether a group of features follows a concern allowing

for them to be compared, and organised naturally through their actual feature sets and not through

rigid hierarchies or tags. Define reuse primitives to reduce duplication and heterogeneity when

describing software features. Support versioning of feature files and concerns so that software

with different versions can be catalogued and contrasted. And lastly, provide a public REST API

that can, in fact, be used to assist component selection processes. Resulting in a knowledge-base

that is queryable and evolves as projects change.

Chapter 6

Conclusions and Future Work

In this chapter we sum up the work done in this dissertation. Section 6.1, presents the main dif-

ficulties we encountered. Section 6.2, enunciates our contributions. Section 6.3, describes future

work which could solidify and bolster the approach and implementation. And finally, Section 6.4,

sums up the results of the dissertation.

6.1 Main Difficulties

The literature review, that is described in Chapter 2, was very exploratory and touched many

areas of knowledge. This is the case because there are multiple papers about Component Selec-

tion with no clear connection to Software Architecture and vice versa. Also it was difficult to

find approaches that guide users towards the choice of a component having as input structured

architectural knowledge or problem context. Therefore, the literature review focused on finding

different platforms, frameworks, data formats, and websites that were related to knowledge cap-

ture and component selection as a means to unravel issues and understand how the component

selection process could be improved. As a consequence, the elaboration of the problem statement

was more focused on identifying the major issues in this topic and the key characteristics that im-

plementations should follow in order to effectively support an approach that helps with component

selection.

6.2 Contributions

The main contribution of our work is a new way to capture structured knowledge in a way that

fosters contributions and reuse of that information by other services. As a result the contributions

of this dissertation are the following:

69

70 Conclusions and Future Work

• A framework that assists producers and consumers of software in capturing the features of

their software per domain, searching for appropriate components, and comparing them. As

a side effect this would serve as a stepping stone towards Architecture Refactorings.

• A structured approach to capture project knowledge stored along side code that could pos-

sibly be extended to scenarios other than component selection — e.g. mapping of features to

code through annotations which could be useful for building a dataset for machine learning

purposes, whose aim would be to do the inverse, mapping code into features.

• A set of key characteristics described in a desiderata, an implementation of those principles

in a service and a client side prototype for the comparison of software.

6.3 Future Work

As research is an incremental and evolutionary process, we would have liked to have delved into

additional ideas and technical aspects of the framework. Next, we mention some of those aspira-

tions.

6.3.1 Approach

Having built an implementation which followed our approach and desiderata, gathering feature

information from repositories, the next logical step would be to come up with an approach to use

that information to guide users towards a particular component considering problem context. For

instance, combining software feature information with a reasoning process such as CoCoADvISE

which is based on QOC. An implementation of such could involve building a web app where

criteria for component selection would be described collaboratively in a versioned QOC decision

tree. Ideally, comparison websites would then fetch those representations to guide their users.

6.3.2 Prototype

Even though the implementation follows the desiderata there is still work to be done to make the

system more user friendly, and production ready:

• Manually creating feature files according to schemas is error-prone because they are only

checked after commit pushes to GitHub through the GitHub checks functionality. Feature-

wise files creation could be improved by building a web application that generates a form

with auto-completion per domain according to its schema. Additionally, the website could

use GitHub OAuth to import and export featurewise files from/to repositories;

• Moreover, IDE plugins could be developed to support that same functionality directly from

editors;

6.3 Future Work 71

• Finally, there is still work to be done on testing and infrastructure code to make the system

production ready — i.e. leverage docker swarm or kubernetes to manage and scale contain-

ers as events increase or decrease — and more searchable — i.e using a search engine to

index featurewise files and schemas.

6.3.3 Ideas to explore

As we understood more of the problem at hand several alternatives were discussed that could be

looked at further:

• Use the Semantic Web stack to combine component knowledge from multiple sources in-

cluding structured information from repositories.

• Leverage RDFa to embed RDF statements inside the HTML documentation of software

projects or even inside code comments as a means to sum up their major traits.

• Create and investigate how a lightweight AKMS with support for the encoding of design

rationale located along-side code could aid both architectural decisions recording as well as

component selection.

• Determine how the multiple parts of the architecture of a system (the code, documentation,

and operational metrics) could be described in a rich model to promote not only the sugges-

tion of alternate components but also, and more importantly, the refactoring of architectures

using better-suited structures and components.

6.3.4 User Studies

To confidently show the merits of the approach, user studies would need to be conducted. They

could help us identify flaws in the approach or the prototype. Some of these user studies could be:

• Exploratory interviews or questionnaires to assess if component developers would consider

using our tool, and if not, why.

• Interviews or questionnaires with experienced architects to understand the merits of the ap-

proach by developers creating the components, and by those selecting the most appropriate

components for the software that they are creating.

• Industrial case studies using the implemented prototype, to help us understand the bene-

fits of using the tool (and the underlying approach) for component selection in real-world

scenarios.

72 Conclusions and Future Work

6.4 Conclusion

Our interpretation of the desiderata resulted in an implementation that followed its principles

which were derived from the issues identified in the literature review and the approach. In con-

clusion, after the analysis of the desiderata in the evaluation chapter we remain confident that our

approach and implementation better assist feature comparisons in component selection processes

when compared to current approaches, but it still needs to be put to the test by researchers willing

to conduct users studies with developers of components and its consumers.

References

M A Babar, X Wang, and I Gorton. PAKME: A tool for capturing and using architec-
ture design knowledge. In 2005 Pakistan Section Multitopic Conference, INMIC, 2005.
doi: 10.1109/INMIC.2005.334419. URL https://www.scopus.com/inward/
record.uri?eid=2-s2.0-50249121296{&}doi=10.1109{%}2FINMIC.2005.
334419{&}partnerID=40{&}md5=fbae611ed497b3084fc61262a3deed7b.

M A Babar, I Gorton, and B Kitchenham. A framework for supporting architecture knowledge
and rationale management. 2006. doi: 10.1007/978-3-540-30998-7_11. URL https:
//www.scopus.com/inward/record.uri?eid=2-s2.0-70350692949{&}doi=
10.1007{%}2F978-3-540-30998-7{_}11{&}partnerID=40{&}md5=
c6004aac9c251c3831ab60998031b280.

L Bass, M Klein, and F Bachmann. Quality attribute design primitives and the attribute driven de-
sign method. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 2290:169–186, 2002. URL https://www.
scopus.com/inward/record.uri?eid=2-s2.0-84944072009{&}partnerID=
40{&}md5=89fb8f547b2ceb5c160e378411006526.

Tim Berners-Lee and Mark Fischetti. Weaving the Web : the origins and future of the World Wide
Web. London : Orion Business, 1st ed edition, 1999. ISBN 0752820907.

Tim Berners-Lee, Robert Cailliau, Ari Luotonen, Henrik Frystyk Nielsen, and Arthur Secret. The
World-Wide Web. Communications of the ACM, 37(8):76–82, aug 1994. ISSN 00010782.
doi: 10.1145/179606.179671. URL http://portal.acm.org/citation.cfm?doid=
179606.179671.

Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked Data - The Story So Far. International
Journal on Semantic Web and Information Systems, 5(3):1–22, jul 2009. ISSN 1552-6283. doi:
10.4018/jswis.2009081901. URL http://services.igi-global.com/resolvedoi/
resolve.aspx?doi=10.4018/jswis.2009081901.

Barry Boehm and Hasan Kitapci. The WinWin Approach: Using a Requirements Negotiation Tool
for Rationale Capture and Use. In Rationale Management in Software Engineering, pages 173–
190. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006. doi: 10.1007/978-3-540-30998-7_
8. URL http://link.springer.com/10.1007/978-3-540-30998-7{_}8.

Jan Bosch. Software Architecture: The Next Step. (May 2004):194–199, 2004. ISSN 0302-
9743. doi: 10.1007/978-3-540-24769-2_14. URL http://link.springer.com/10.
1007/978-3-540-24769-2{_}14.

73

https://www.scopus.com/inward/record.uri?eid=2-s2.0-50249121296{&}doi=10.1109{%}2FINMIC.2005.334419{&}partnerID=40{&}md5=fbae611ed497b3084fc61262a3deed7b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-50249121296{&}doi=10.1109{%}2FINMIC.2005.334419{&}partnerID=40{&}md5=fbae611ed497b3084fc61262a3deed7b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-50249121296{&}doi=10.1109{%}2FINMIC.2005.334419{&}partnerID=40{&}md5=fbae611ed497b3084fc61262a3deed7b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-70350692949{&}doi=10.1007{%}2F978-3-540-30998-7{_}11{&}partnerID=40{&}md5=c6004aac9c251c3831ab60998031b280
https://www.scopus.com/inward/record.uri?eid=2-s2.0-70350692949{&}doi=10.1007{%}2F978-3-540-30998-7{_}11{&}partnerID=40{&}md5=c6004aac9c251c3831ab60998031b280
https://www.scopus.com/inward/record.uri?eid=2-s2.0-70350692949{&}doi=10.1007{%}2F978-3-540-30998-7{_}11{&}partnerID=40{&}md5=c6004aac9c251c3831ab60998031b280
https://www.scopus.com/inward/record.uri?eid=2-s2.0-70350692949{&}doi=10.1007{%}2F978-3-540-30998-7{_}11{&}partnerID=40{&}md5=c6004aac9c251c3831ab60998031b280
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84944072009{&}partnerID=40{&}md5=89fb8f547b2ceb5c160e378411006526
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84944072009{&}partnerID=40{&}md5=89fb8f547b2ceb5c160e378411006526
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84944072009{&}partnerID=40{&}md5=89fb8f547b2ceb5c160e378411006526
http://portal.acm.org/citation.cfm?doid=179606.179671
http://portal.acm.org/citation.cfm?doid=179606.179671
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jswis.2009081901
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jswis.2009081901
http://link.springer.com/10.1007/978-3-540-30998-7{_}8
http://link.springer.com/10.1007/978-3-540-24769-2{_}14
http://link.springer.com/10.1007/978-3-540-24769-2{_}14

74 REFERENCES

Rafael Capilla, Francisco Nava, Sandra Pérez, and Juan C Dueñas. A Web-based Tool for Man-
aging Architectural Design Decisions. SIGSOFT Softw. Eng. Notes, 31(5), 2006. ISSN 0163-
5948. doi: 10.1145/1163514.1178644. URL http://doi.acm.org/10.1145/1163514.
1178644.

Rafael Capilla, Anton Jansen, Antony Tang, Paris Avgeriou, and Muhammad Ali Babar. 10 years
of software architecture knowledge management: Practice and future. Journal of Systems and
Software, 116:191–205, 2016. ISSN 01641212. doi: 10.1016/j.jss.2015.08.054. URL http:
//dx.doi.org/10.1016/j.jss.2015.08.054.

Dilip Soni Christine Hofmeister, Robert Nord. Applied Software Architecture.
Addison-Wesley Professional, 1999. ISBN 9780201325713,0201325713. URL
https://books.google.pt/books?hl=en{&}lr={&}id=3klAPCIB3hQC{&}oi=
fnd{&}pg=PR13{&}dq=0201325713{&}ots=NoImzT6yON{&}sig=
grpeKWzIjh3BphbKU{_}HKDWl7KDU{&}redir{_}esc=y{#}v=onepage{&}q=
globalanalysis{&}f=false.

Paul Clements, David Garlan, Len Bass, Judith Stafford, Robert Nord, James Ivers, and Reed
Little. Documenting Software Architectures: Views and Beyond. Pearson Education, 2002.
ISBN 0201703726.

E J Conklin. A Process-Oriented Approach to Design Rationale. Human-
Computer Interaction, 6(3-4):357–391, 1991. doi: 10.1080/07370024.1991.
9667172. URL https://www.scopus.com/inward/record.uri?eid=2-s2.
0-0026407773{&}doi=10.1080{%}2F07370024.1991.9667172{&}partnerID=
40{&}md5=2b4b61b758fba700c452ad10be79a0e3.

R C De Boer, R Farenhorst, P Lago, H Van Vliet, V Clerc, and A Jansen. Architec-
tural knowledge: Getting to the core. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics), 4880 LNCS:197–214, 2007. doi: 10.1007/978-3-540-77619-2_12. URL https:
//www.scopus.com/inward/record.uri?eid=2-s2.0-49949095038{&}doi=
10.1007{%}2F978-3-540-77619-2{_}12{&}partnerID=40{&}md5=
0da08141fdcbed800f32c39c7972519e.

K. A. De Graaf, P. Liang, A. Tang, and H. Van Vliet. How organisation of architecture documen-
tation affects architectural knowledge retrieval. Science of Computer Programming, 121:75–99,
2016. ISSN 01676423. doi: 10.1016/j.scico.2015.10.014. URL http://dx.doi.org/10.
1016/j.scico.2015.10.014.

Tommaso Di Noia, Marina Mongiello, and Umberto Straccia. Fuzzy description logics for com-
ponent selection in software design. In Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 9509,
pages 228–239. 2015. ISBN 9783662492239. doi: 10.1007/978-3-662-49224-6_19. URL
http://link.springer.com/10.1007/978-3-662-49224-6{_}19.

Tommaso Di Noia, Marina Mongiello, Francesco Nocera, and Umberto Straccia. A fuzzy
ontology-based approach for tool-supported decision making in architectural design. Knowl-
edge and Information Systems, pages 1–30, mar 2018. ISSN 0219-1377. doi: 10.1007/
s10115-018-1182-1. URL https://doi.org/10.1007/s10115-018-1182-1http:
//link.springer.com/10.1007/s10115-018-1182-1.

http://doi.acm.org/10.1145/1163514.1178644
http://doi.acm.org/10.1145/1163514.1178644
http://dx.doi.org/10.1016/j.jss.2015.08.054
http://dx.doi.org/10.1016/j.jss.2015.08.054
https://books.google.pt/books?hl=en{&}lr={&}id=3klAPCIB3hQC{&}oi=fnd{&}pg=PR13{&}dq=0201325713{&}ots=NoImzT6yON{&}sig=grpeKWzIjh3BphbKU{_}HKDWl7KDU{&}redir{_}esc=y{#}v=onepage{&}q=global analysis{&}f=false
https://books.google.pt/books?hl=en{&}lr={&}id=3klAPCIB3hQC{&}oi=fnd{&}pg=PR13{&}dq=0201325713{&}ots=NoImzT6yON{&}sig=grpeKWzIjh3BphbKU{_}HKDWl7KDU{&}redir{_}esc=y{#}v=onepage{&}q=global analysis{&}f=false
https://books.google.pt/books?hl=en{&}lr={&}id=3klAPCIB3hQC{&}oi=fnd{&}pg=PR13{&}dq=0201325713{&}ots=NoImzT6yON{&}sig=grpeKWzIjh3BphbKU{_}HKDWl7KDU{&}redir{_}esc=y{#}v=onepage{&}q=global analysis{&}f=false
https://books.google.pt/books?hl=en{&}lr={&}id=3klAPCIB3hQC{&}oi=fnd{&}pg=PR13{&}dq=0201325713{&}ots=NoImzT6yON{&}sig=grpeKWzIjh3BphbKU{_}HKDWl7KDU{&}redir{_}esc=y{#}v=onepage{&}q=global analysis{&}f=false
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026407773{&}doi=10.1080{%}2F07370024.1991.9667172{&}partnerID=40{&}md5=2b4b61b758fba700c452ad10be79a0e3
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026407773{&}doi=10.1080{%}2F07370024.1991.9667172{&}partnerID=40{&}md5=2b4b61b758fba700c452ad10be79a0e3
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026407773{&}doi=10.1080{%}2F07370024.1991.9667172{&}partnerID=40{&}md5=2b4b61b758fba700c452ad10be79a0e3
https://www.scopus.com/inward/record.uri?eid=2-s2.0-49949095038{&}doi=10.1007{%}2F978-3-540-77619-2{_}12{&}partnerID=40{&}md5=0da08141fdcbed800f32c39c7972519e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-49949095038{&}doi=10.1007{%}2F978-3-540-77619-2{_}12{&}partnerID=40{&}md5=0da08141fdcbed800f32c39c7972519e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-49949095038{&}doi=10.1007{%}2F978-3-540-77619-2{_}12{&}partnerID=40{&}md5=0da08141fdcbed800f32c39c7972519e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-49949095038{&}doi=10.1007{%}2F978-3-540-77619-2{_}12{&}partnerID=40{&}md5=0da08141fdcbed800f32c39c7972519e
http://dx.doi.org/10.1016/j.scico.2015.10.014
http://dx.doi.org/10.1016/j.scico.2015.10.014
http://link.springer.com/10.1007/978-3-662-49224-6{_}19
https://doi.org/10.1007/s10115-018-1182-1 http://link.springer.com/10.1007/s10115-018-1182-1
https://doi.org/10.1007/s10115-018-1182-1 http://link.springer.com/10.1007/s10115-018-1182-1

REFERENCES 75

Wei Ding, Peng Liang, Antony Tang, and Hans Van Vliet. Knowledge-based approaches in
software documentation: A systematic literature review. Information and Software Tech-
nology, 56(6):545–567, 2014a. ISSN 09505849. doi: 10.1016/j.infsof.2014.01.008. URL
http://dx.doi.org/10.1016/j.infsof.2014.01.008.

Wei Ding, Peng Liang, Antony Tang, Hans Van Vliet, and Mojtaba Shahin. How do open source
communities document software architecture: An exploratory survey. Proceedings of the IEEE
International Conference on Engineering of Complex Computer Systems, ICECCS, pages 136–
145, 2014b. doi: 10.1109/ICECCS.2014.26.

Siamak Farshidi, Slinger Jansen, Rolf De Jong, and Sjaak Brinkkemper. A decision support system
for cloud service provider selection problem in software producing organizations. Proceeding
- 2018 20th IEEE International Conference on Business Informatics, CBI 2018, 1:139–148,
2018a. ISSN 1521-6934. doi: 10.1109/CBI.2018.00024.

Siamak Farshidi, Slinger Jansen, Rolf De Jong, and Sjaak Brinkkemper. Multiple criteria deci-
sion support in requirements negotiation. CEUR Workshop Proceedings, 2075, 2018b. ISSN
16130073.

Siamak Farshidi, Slinger Jansen, Rolf de Jong, and Sjaak Brinkkemper. A deci-
sion support system for software technology selection. Journal of Decision Sys-
tems, 27(sup1):98–110, may 2018c. ISSN 1246-0125. doi: 10.1080/12460125.2018.
1464821. URL https://doi.org/10.1080/12460125.2018.1464821https://
www.tandfonline.com/doi/full/10.1080/12460125.2018.1464821.

X Franch, A Susi, M C Annosi, C Ayala, R Glott, D Gross, R Kenett, F Mancinelli, P Ramsamy,
C Thomas, D Ameller, S Bannier, N Bergida, Y Blumenfeld, O Bouzereau, D Costal,
M Domínguez, K Haaland, L López, M Morandini, and A Siena. Managing risk in open
source software adoption. In ICSOFT 2013 - Proceedings of the 8th International Joint
Conference on Software Technologies, pages 258–264, 2013. URL https://www.scopus.
com/inward/record.uri?eid=2-s2.0-84887052413{&}partnerID=40{&}md5=
3bc1e271f87bdcec926e75f5f458ca25.

Rakesh Garg, R. K. Sharma, Kapil Sharma, and R. K. Garg. MCDM based evaluation and
ranking of commercial off-the-shelf using fuzzy based matrix method. Decision Science
Letters, 6:117–136, 2017. ISSN 19295804. doi: 10.5267/j.dsl.2016.11.002. URL http:
//www.growingscience.com/dsl/Vol6/dsl{_}2016{_}30.pdf.

J González-Huerta, E Insfrán, and S Abrahão. Defining and validating a multimodel approach
for product architecture derivation and improvement. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), 8107 LNCS:388–404, 2013. doi: 10.1007/978-3-642-41533-3_24. URL https:
//www.scopus.com/inward/record.uri?eid=2-s2.0-84886848508{&}doi=
10.1007{%}2F978-3-642-41533-3{_}24{&}partnerID=40{&}md5=
470a1e83060cea2a038d5adeb4f1f478.

Ian Gorton, John Klein, and Albert Nurgaliev. Architecture Knowledge for Evaluating Scalable
Databases. In 2015 12th Working IEEE/IFIP Conference on Software Architecture, pages 95–
104. IEEE, may 2015. ISBN 978-1-4799-1922-2. doi: 10.1109/WICSA.2015.26. URL http:
//ieeexplore.ieee.org/document/7158508/.

http://dx.doi.org/10.1016/j.infsof.2014.01.008
https://doi.org/10.1080/12460125.2018.1464821 https://www.tandfonline.com/doi/full/10.1080/12460125.2018.1464821
https://doi.org/10.1080/12460125.2018.1464821 https://www.tandfonline.com/doi/full/10.1080/12460125.2018.1464821
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84887052413{&}partnerID=40{&}md5=3bc1e271f87bdcec926e75f5f458ca25
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84887052413{&}partnerID=40{&}md5=3bc1e271f87bdcec926e75f5f458ca25
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84887052413{&}partnerID=40{&}md5=3bc1e271f87bdcec926e75f5f458ca25
http://www.growingscience.com/dsl/Vol6/dsl{_}2016{_}30.pdf
http://www.growingscience.com/dsl/Vol6/dsl{_}2016{_}30.pdf
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84886848508{&}doi=10.1007{%}2F978-3-642-41533-3{_}24{&}partnerID=40{&}md5=470a1e83060cea2a038d5adeb4f1f478
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84886848508{&}doi=10.1007{%}2F978-3-642-41533-3{_}24{&}partnerID=40{&}md5=470a1e83060cea2a038d5adeb4f1f478
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84886848508{&}doi=10.1007{%}2F978-3-642-41533-3{_}24{&}partnerID=40{&}md5=470a1e83060cea2a038d5adeb4f1f478
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84886848508{&}doi=10.1007{%}2F978-3-642-41533-3{_}24{&}partnerID=40{&}md5=470a1e83060cea2a038d5adeb4f1f478
http://ieeexplore.ieee.org/document/7158508/
http://ieeexplore.ieee.org/document/7158508/

76 REFERENCES

Ian Gorton, Rouchen Xu, Yiming Yang, Hanxiao Liu, and Guoqing Zheng. Experiments in Cu-
ration: Towards Machine-Assisted Construction of Software Architecture Knowledge Bases.
Proceedings - 2017 IEEE International Conference on Software Architecture, ICSA 2017, pages
79–88, 2017. doi: 10.1109/ICSA.2017.27.

Tom Heath and Christian Bizer. Linked Data: Evolving the Web into a Global Data Space.
Synthesis Lectures on the Semantic Web: Theory and Technology, 1(1):1–136, feb 2011.
ISSN 2160-4711. doi: 10.2200/S00334ED1V01Y201102WBE001. URL http://www.
morganclaypool.com/doi/abs/10.2200/S00334ED1V01Y201102WBE001.

C. Hofmeister, R.L. Nord, and D. Soni. Global Analysis: moving from software re-
quirements specification to structural views of the software architecture. IEE Pro-
ceedings - Software, 152(4):187, 2005. ISSN 14625970. doi: 10.1049/ip-sen:
20045052. URL https://digital-library.theiet.org/content/journals/
10.1049/ip-sen{_}20045052.

IEEE Architecture Working Group. IEEE Recommended Practice for Architectural Description of
Software-Intensive Systems. IEEE Std 1471-2000, 2000. doi: 10.1109/IEEESTD.2000.91944.

ISO/IEC/IEEE. ISO/IEC/IEEE 42010: 2011 Systems and software engineering – Architecture
description. ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC 42010:2007 and IEEE Std
1471-2000), 1:1–46, 2011. doi: 10.1109/IEEESTD.2011.6129467.

A Jansen, P Avgeriou, and J S van der Ven. Enriching software architecture doc-
umentation. Journal of Systems and Software, 82(8):1232–1248, 2009. doi:
10.1016/j.jss.2009.04.052. URL https://www.scopus.com/inward/record.
uri?eid=2-s2.0-67949120215{&}doi=10.1016{%}2Fj.jss.2009.04.
052{&}partnerID=40{&}md5=cafdac96d9f1509604e32915fee646e3.

Anton Jansen and Jan Bosch. Software architecture as a set of architectural design decisions. Pro-
ceedings - 5th Working IEEE/IFIP Conference on Software Architecture, WICSA 2005, 2005:
109–120, 2005. ISSN 0163-769X. doi: 10.1109/WICSA.2005.61.

A.P.J. Jarczyk, Peter Löffler, and FM Shipman. Design rationale for software engineering: a
survey. Proceedings of the Hawaii International Conference on System Sciences, 25:577–
577, 1992. doi: 10.1109/HICSS.1992.183309. URL http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.122.4936{&}rep=rep1{&}type=pdf.

Loveleen Kaur and Hardeep Singh. Software Component Selection techniques - A
review. pdfs.semanticscholar.org, 5(3):3739–3742, 2014. URL https://pdfs.
semanticscholar.org/4c60/dc4fdfc3c778ea22a52ce3166ba2a47d443b.pdf.

Rick Kazman, J. Asundi, and Mark Klein. Quantifying the Costs and Benefits of RSS in Perish-
ables. Agenda, (August):297–306, 2001. ISSN 0270-5257. doi: 10.1109/ICSE.2001.919103.
URL http://ieeexplore.ieee.org/document/919103/.

John Klein, Ian Gorton, Neil Ernst, Patrick Donohoe, Kim Pham, and Chrisjan Matser.
Application-Specific Evaluation of No SQL Databases. Proceedings - 2015 IEEE International
Congress on Big Data, BigData Congress 2015, pages 526–534, 2015a. ISSN 16113349. doi:
10.1109/BigDataCongress.2015.83.

http://www.morganclaypool.com/doi/abs/10.2200/S00334ED1V01Y201102WBE001
http://www.morganclaypool.com/doi/abs/10.2200/S00334ED1V01Y201102WBE001
https://digital-library.theiet.org/content/journals/10.1049/ip-sen{_}20045052
https://digital-library.theiet.org/content/journals/10.1049/ip-sen{_}20045052
https://www.scopus.com/inward/record.uri?eid=2-s2.0-67949120215{&}doi=10.1016{%}2Fj.jss.2009.04.052{&}partnerID=40{&}md5=cafdac96d9f1509604e32915fee646e3
https://www.scopus.com/inward/record.uri?eid=2-s2.0-67949120215{&}doi=10.1016{%}2Fj.jss.2009.04.052{&}partnerID=40{&}md5=cafdac96d9f1509604e32915fee646e3
https://www.scopus.com/inward/record.uri?eid=2-s2.0-67949120215{&}doi=10.1016{%}2Fj.jss.2009.04.052{&}partnerID=40{&}md5=cafdac96d9f1509604e32915fee646e3
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.122.4936{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.122.4936{&}rep=rep1{&}type=pdf
https://pdfs.semanticscholar.org/4c60/dc4fdfc3c778ea22a52ce3166ba2a47d443b.pdf
https://pdfs.semanticscholar.org/4c60/dc4fdfc3c778ea22a52ce3166ba2a47d443b.pdf
http://ieeexplore.ieee.org/document/919103/

REFERENCES 77

John Klein, Ian Gorton, Neil Ernst, Patrick Donohoe, Kim Pham, and Chrisjan Matser. Per-
formance Evaluation of NoSQL Databases. In Proceedings of the 1st Workshop on Per-
formance Analysis of Big Data Systems - PABS ’15, pages 5–10, New York, New York,
USA, 2015b. ACM Press. ISBN 9781450333382. doi: 10.1145/2694730.2694731. URL
http://dl.acm.org/citation.cfm?doid=2694730.2694731.

Martin Kleppmann. Designing data-intensive applications : the big ideas behind reliable, scal-
able, and maintainable systems. 2017. ISBN 9781491903094.

P B Kruchten. The 4+1 View Model of architecture. IEEE Software, 12(6):42–50, nov 1995. ISSN
0740-7459. doi: 10.1109/52.469759.

Philippe Kruchten. An Ontology of Architectural Design Decisions in Software-Intensive Sys-
tems. Groningen Workshop on Software Variability management, (January 2004):55–62, 2004.

Rob J Kusters, Lieven Pouwelse, Harry Martin, and Jos Trienekens. Decision Criteria for
Software Component Sourcing - Steps towards a Framework. Proceedings of the 18th In-
ternational Conference on Enterprise Information Systems, 1(Iceis):580–587, 2016. doi:
10.5220/0005915005800587. URL http://www.scitepress.org/DigitalLibrary/
Link.aspx?doi=10.5220/0005915005800587.

Jintae Lee. Extending the Potts and Bruns model for recording design rationale. In
[1991 Proceedings] 13th International Conference on Software Engineering, pages 114–125.
IEEE Comput. Soc. Press, 1991. ISBN 0-8186-2140-0. doi: 10.1109/ICSE.1991.130629.
URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
130629http://ieeexplore.ieee.org/document/130629/.

Rick Kazman Len Bass, Paul Clements. Software architects in practice. Professional, Addison-
Wesley, 2003. ISBN 0321154959.

Ioanna Lytra, Huy Tran, and Uwe Zdun. Supporting consistency between architectural design
decisions and component models through reusable architectural knowledge transformations.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 7957 LNCS:224–239, 2013. ISSN 16113349. doi: 10.
1007/978-3-642-39031-9_20.

Ioanna Lytra, Gerhard Engelbrecht, Daniel Schall, and Uwe Zdun. Reusable Architectural Deci-
sion Models for Quality-Driven Decision Support: A Case Study from a Smart Cities Software
Ecosystem. Proceedings - 3rd International Workshop on Software Engineering for Systems-
of-Systems, SESoS 2015, pages 37–43, 2015. doi: 10.1109/SESoS.2015.14.

Allan MacLean, Richard M Young, Victoria M E Bellotti, and Thomas P Moran. Ques-
tions, Options, and Criteria: Elements of Design Space Analysis. Human–Computer In-
teraction, 6(3-4):201–250, 1991. doi: 10.1080/07370024.1991.9667168. URL https:
//www.tandfonline.com/doi/abs/10.1080/07370024.1991.9667168.

Ivano Malavolta, Patricia Lago, Henry Muccini, Patrizio Pelliccione, and Antony Tang. What
industry needs from architectural languages: A survey. IEEE Transactions on Software Engi-
neering, 39(6):869–891, 2013. ISSN 00985589. doi: 10.1109/TSE.2012.74.

Raymond J. McCall. PHI: a conceptual foundation for design hypermedia. Design Studies, 12
(1):30–41, jan 1991. ISSN 0142694X. doi: 10.1016/0142-694X(91)90006-I. URL http:
//linkinghub.elsevier.com/retrieve/pii/0142694X9190006I.

http://dl.acm.org/citation.cfm?doid=2694730.2694731
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0005915005800587
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0005915005800587
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=130629 http://ieeexplore.ieee.org/document/130629/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=130629 http://ieeexplore.ieee.org/document/130629/
https://www.tandfonline.com/doi/abs/10.1080/07370024.1991.9667168
https://www.tandfonline.com/doi/abs/10.1080/07370024.1991.9667168
http://linkinghub.elsevier.com/retrieve/pii/0142694X9190006I
http://linkinghub.elsevier.com/retrieve/pii/0142694X9190006I

78 REFERENCES

Mehdi Mirakhorli and Jane Cleland-Huang. Detecting, Tracing, and Monitoring Architectural
Tactics in Code. IEEE Transactions on Software Engineering, 42(3):206–221, 2016. ISSN
00985589. doi: 10.1109/TSE.2015.2479217.

David L. Parnas and Paul C. Clements. A rational design process: How and why to fake it.
In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics), volume 186 LNCS, pages 80–100. 1985. ISBN
9783540151999. doi: 10.1007/3-540-15199-0_6. URL http://link.springer.com/
10.1007/3-540-15199-0{_}6.

F. Pena-Mora, D. Sriram, and R. Logcher. SHARED-DRIMS: SHARED design recommendation-
intent management system. In [1993] Proceedings Second Workshop on Enabling Technolo-
gies@m_Infrastructure for Collaborative Enterprises, pages 213–221. IEEE Comput. Soc.
Press, 1993. ISBN 0-8186-4082-0. doi: 10.1109/ENABL.1993.263047. URL http:
//ieeexplore.ieee.org/document/263047/.

Dewayne E. Perry and Alexander L. Wolf. Foundations for the study of software architec-
ture. ACM SIGSOFT Software Engineering Notes, 17(4):40–52, 1992. ISSN 01635948.
doi: 10.1145/141874.141884. URL http://portal.acm.org/citation.cfm?doid=
141874.141884.

Kai Petersen, Deepika Badampudi, Syed Muhammad Ali Shah, Krzysztof Wnuk, Tony Gorschek,
Efi Papatheocharous, Jakob Axelsson, Séverine Sentilles, Ivica Crnkovic, and Antonio Cic-
chetti. Choosing Component Origins for Software Intensive Systems: In-House, COTS, OSS or
Outsourcing? - A Case Survey. IEEE Transactions on Software Engineering, 44(3):237–261,
2018. ISSN 00985589. doi: 10.1109/TSE.2017.2677909.

C Potts and G Bruns. Recording the Reasons for Design Decisions. In Proceedings of the 10th
International Conference on Software Engineering, ICSE ’88, pages 418–427, Los Alamitos,
CA, USA, 1988. IEEE Computer Society Press. ISBN 0-89791-258-6. URL http://dl.
acm.org/citation.cfm?id=55823.55863.

Marta Sabou, Fajar J. Ekaputra, Tudor Ionescu, Juergen Musil, Daniel Schall, Kevin Haller,
Armin Friedl, and Stefan Biffl. Exploring Enterprise Knowledge Graphs: A Use Case
in Software Engineering. In Advances in Information Technologies for Electromagnetics,
volume 1, pages 560–575. Springer Netherlands, 2018. doi: 10.1007/978-3-319-93417-4_36.
URL http://dx.doi.org/10.1007/978-3-319-93417-4{_}36http://link.
springer.com/10.1007/978-1-4020-4749-5{_}3http://link.springer.
com/10.1007/978-3-319-93417-4{_}36.

Arman Shahbazian, Youn Kyu Lee, Duc Le, Yuriy Brun, and Nenad Medvidovic. Recovering
Architectural Design Decisions. Proceedings - 2018 IEEE 15th International Conference on
Software Architecture, ICSA 2018, pages 95–104, 2018. ISSN 12245984. doi: 10.1109/ICSA.
2018.00019.

John Slankas and Laurie Williams. Automated extraction of non-functional requirements in avail-
able documentation. 2013 1st International Workshop on Natural Language Analysis in Soft-
ware Engineering, NaturaLiSE 2013 - Proceedings, pages 9–16, 2013. ISSN 09473602. doi:
10.1109/NAturaLiSE.2013.6611715.

http://link.springer.com/10.1007/3-540-15199-0{_}6
http://link.springer.com/10.1007/3-540-15199-0{_}6
http://ieeexplore.ieee.org/document/263047/
http://ieeexplore.ieee.org/document/263047/
http://portal.acm.org/citation.cfm?doid=141874.141884
http://portal.acm.org/citation.cfm?doid=141874.141884
http://dl.acm.org/citation.cfm?id=55823.55863
http://dl.acm.org/citation.cfm?id=55823.55863
http://dx.doi.org/10.1007/978-3-319-93417-4{_}36 http://link.springer.com/10.1007/978-1-4020-4749-5{_}3 http://link.springer.com/10.1007/978-3-319-93417-4{_}36
http://dx.doi.org/10.1007/978-3-319-93417-4{_}36 http://link.springer.com/10.1007/978-1-4020-4749-5{_}3 http://link.springer.com/10.1007/978-3-319-93417-4{_}36
http://dx.doi.org/10.1007/978-3-319-93417-4{_}36 http://link.springer.com/10.1007/978-1-4020-4749-5{_}3 http://link.springer.com/10.1007/978-3-319-93417-4{_}36

REFERENCES 79

Mohamed Soliman, Amr Rekaby Salama, Matthias Galster, Olaf Zimmermann, and Matthias
Riebisch. Improving the Search for Architecture Knowledge in Online Developer Commu-
nities. Proceedings - 2018 IEEE 15th International Conference on Software Architecture, ICSA
2018, pages 186–195, 2018. doi: 10.1109/ICSA.2018.00028.

Umberto Straccia. Foundations of Fuzzy Logic and Semantic Web Languages. 2013. ISBN
9781439853481.

Umberto Straccia. All about fuzzy description logics and applications. In Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics), volume 9203, pages 1–31. 2015. ISBN 9783319217673.
doi: 10.1007/978-3-319-21768-0_1. URL http://link.springer.com/10.1007/
978-3-319-21768-0{_}1.

A Tang, Y Jin, and J Han. A rationale-based architecture model for design traceabil-
ity and reasoning. Journal of Systems and Software, 80(6):918–934, 2007. doi:
10.1016/j.jss.2006.08.040. URL https://www.scopus.com/inward/record.
uri?eid=2-s2.0-33947402169{&}doi=10.1016{%}2Fj.jss.2006.08.
040{&}partnerID=40{&}md5=e14624606973821f6e56eba995c32998.

Antony Tang, Muhammad Ali Babar, Ian Gorton, and Jun Han. A survey of architecture
design rationale. Journal of Systems and Software, 79(12):1792–1804, dec 2006. ISSN
01641212. doi: 10.1016/j.jss.2006.04.029. URL https://linkinghub.elsevier.com/
retrieve/pii/S0164121206001415.

Tim Berners-Lee. Linked Data - Design Issues, 2006. URL https://www.w3.org/
DesignIssues/LinkedData.html.

Dan Tofan, Matthias Galster, Paris Avgeriou, and Wes Schuitema. Past and future of software
architectural decisions - A systematic mapping study. Information and Software Technology,
56(8):850–872, 2014. ISSN 09505849. doi: 10.1016/j.infsof.2014.03.009. URL http://dx.
doi.org/10.1016/j.infsof.2014.03.009.

Stephen E Toulmin. The Uses of Argument. Cambridge University Press, 1958. doi: 10.1080/
00048405985200191.

Jos. J. M. Trienekens, Rob Kusters, Jan van Moll, and Casper Vos. Decision Criteria for Soft-
ware Component Sourcing - An Initial Framework on the Basis of Case Study Results. Pro-
ceedings of the 19th International Conference on Enterprise Information Systems, 2(Iceis):
279–286, 2017. doi: 10.5220/0006294302790286. URL http://www.scitepress.org/
DigitalLibrary/Link.aspx?doi=10.5220/0006294302790286.

Jeff Tyree and Art Akerman. Architecture decisions: Demystifying architecture. IEEE Software,
22(2):19–27, 2005. ISSN 07407459. doi: 10.1109/MS.2005.27.

HWJ Rittel W Kunz. Issues as elements of information systems. 1970.

W3C. RDF Schema 1.1. Technical report, 2014. URL https://www.w3.org/TR/
rdf-schema/.

Rainer Weinreich and Iris Groher. Software architecture knowledge management approaches and
their support for knowledge management activities: A systematic literature review. Information
and Software Technology, 80:265–286, 2016. ISSN 09505849. doi: 10.1016/j.infsof.2016.09.
007. URL http://dx.doi.org/10.1016/j.infsof.2016.09.007.

http://link.springer.com/10.1007/978-3-319-21768-0{_}1
http://link.springer.com/10.1007/978-3-319-21768-0{_}1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33947402169{&}doi=10.1016{%}2Fj.jss.2006.08.040{&}partnerID=40{&}md5=e14624606973821f6e56eba995c32998
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33947402169{&}doi=10.1016{%}2Fj.jss.2006.08.040{&}partnerID=40{&}md5=e14624606973821f6e56eba995c32998
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33947402169{&}doi=10.1016{%}2Fj.jss.2006.08.040{&}partnerID=40{&}md5=e14624606973821f6e56eba995c32998
https://linkinghub.elsevier.com/retrieve/pii/S0164121206001415
https://linkinghub.elsevier.com/retrieve/pii/S0164121206001415
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html
http://dx.doi.org/10.1016/j.infsof.2014.03.009
http://dx.doi.org/10.1016/j.infsof.2014.03.009
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0006294302790286
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0006294302790286
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/rdf-schema/
http://dx.doi.org/10.1016/j.infsof.2016.09.007

80 REFERENCES

Yingzhong Zhang, Xiaofang Luo, Jian Li, and Jennifer J. Buis. A semantic representation model
for design rationale of products. Advanced Engineering Informatics, 27(1):13–26, 2013. ISSN
14740346. doi: 10.1016/j.aei.2012.10.005. URL http://dx.doi.org/10.1016/j.aei.
2012.10.005.

http://dx.doi.org/10.1016/j.aei.2012.10.005
http://dx.doi.org/10.1016/j.aei.2012.10.005

Appendix A

Feature Taxonomy of Gorton et al

Here lies the tables that represent the taxonomy of features of (Gorton et al., 2015) first described

in 2.1. Additional features and values where added by looking at the current state of QuABaseBD.

A.1 Data Architecture

A.1.1 Data Model

Table A.1: Data Model QuABaseBD Subcategories
Source: (Gorton et al., 2015)

Subcategories Features

Data Organization
Data Model, Fixed Schema, Opaque Data Objects, Hierarchical Data

Objects

Keys and Indexes
Automatically allocated Primary Key, Composite Keys, Secondary

Indexes

Query Approaches
Query by Key Ranges, Query by Partial Keys, Query by Non-key

Values, Map Reduce API, Indexed Text Search

81

82 Feature Taxonomy of Gorton et al

Table A.2: Data Model QuABaseBD
Source: (Gorton et al., 2015)

Features Allowed Values
Data Model Column, Key-Value, Graph, Document, Object, Relational, XML

Fixed Schema Required, Not required, Optional

Opaque Data Objects Required, Not required

Hierarchical Data Objects Supported, Not supported

Automatically allocated
Primary Key

Supported, Not supported

Composite Keys Supported, Not supported

Secondary Indexes Supported, Not supported

Query by Key Ranges Supported, Not supported

Query by Partial Keys Supported, Not supported

Query by Non-Key Values
(Scan)

Supported, Not supported

Map Reduce API Builtin, Integrated with an external framework, Not supported

Indexed Text Search
Support in a plugin (e.g Solr), Proprietary (database-specific), Not

supported

A.1.2 Query languages

Table A.3: Query languages QuABaseBD Subcategories
Source: (Gorton et al., 2015)

Subcategories Features

Query Language Options
API-based, Declarative Query Language, REST/HTTP-based Queries,

Languages Supported

Query Language Features
Cursor-based Queries, JOIN-style queries, Complex Data Types,

Restrict Query Result Set Size, Key Matching Options, Sort Options,

Triggers, Data Object Expiry

A.1 Data Architecture 83

Table A.4: Query languages QuABaseBD
Source: (Gorton et al., 2015)

Features Allowed Values
API-based Supported, Not supported

Declarative Query Language Supported, Not supported

REST/HTTP-based Queries Supported, Not supported

Languages Supported Java, C#, Python, C/C++, Perl, Ruby, Scala, Erlang, Javascript, PHP

Cursor-based Queries Supported, Not Supported

JOIN-style Queries Supported, Not Supported

Complex Data Types Lists, Maps, Sets, Nested Structures, Arrays, Geospatial, None

Restrict Query Result Set Size Supported, Not Supported

Key Matching Options Exact, Partial Match, Wildcards, Regular Expressions

Sort Options Ascending, Descending, None

Triggers Pre-commit, Post-commit, Not supported

Data Object Expiry Supported, Not Supported

A.1.3 Consistency

Table A.5: Consistency QuABaseBD Subcategories
Source: (Gorton et al., 2015)

Subcategories Features

Strong Consistency
Object Level Atomic Updates, ACID Transactions, Distributed

Transactions, Durable Writes

Eventual Consistency
Features (Read and Write

Setting)

Quorum Reads and Writes, Number of Replicas to Read, Number of

Replicas to Write, Writes with Unavailable Replicas, Read from

Master Only

Eventual Consistency
Features (Other Settings)

Resolving Write Conflicts

84 Feature Taxonomy of Gorton et al

Table A.6: Consistency QuABaseBD
Source: (Gorton et al., 2015)

Features Allowed Values

Object Level Atomic Updates
Supported, Multi Version Concurrency Control (MVCC), Not

supported - conflicts allowed

ACID Transactions
Supported, Lightweight transactions (e.g. compare and set), Not

Supported

Distributed Transactions Supported, Not supported

Durable Writes Supported, Not supported

Quorum Reads and Writes
In the client, In the database, In both the database and data center, Not

relevant, Not supported

Number of Replicas to Read In the client, Not applicable - master-slave, Not supported

Number of Replicas to Write In the client, Not applicable - master-slave, Not supported

Writes with Unavailable
Replicas

A rollback at all replicas, No rollback: write returns replication error,

Hinted handoffs: writes are applied later when a replica recovers, Not

applicable

Read from Master Only
Not applicable - peer to peer, Not supported, Specified in the client,

Specified in the database configuration, Specified in the application

configuration (e.g. Web load balancer)

Resolving Write Conflicts
Supported, Not supported, Not applicable: master-slave, Not

applicable: single threaded

A.2 Software Architecture 85

A.2 Software Architecture

A.2.1 Scalability

Table A.7: Scalability QuABaseBD
Source: (Gorton et al., 2015)

Features Allowed Values
Scalable Distribution

Architecture
Replicate complete database only, Horizontal partitioning of database,

Horizontal partitioning and replication

Scaling Out - Adding Data
Storage Capacity

Automatic data rebalancing, Manual data rebalancing, N/A - single

server only

Request Load Balancing
Fixed connections to a request coordinator, Client requests load

balanced across coordinators, Uses HTTP-based load balancers

Granularity of Write Locks
No locks - conflicts allowed, No locks - optimistic concurrency model,

Locks on updated objects only, Locks on tables/collections, Locks on

whole database, No locks - single threaded execution

Scalable Request Processing
Architecture

Fully distributed - any node can act as a coordinator, Centralised

coordinator but can be replicated, Not scalable (bottleneck), Based on

an external load balancer

A.2.2 Data Distribution

Table A.8: Data Distribution QuABaseBD Subcategories
Source: (Gorton et al., 2015)

Subcategories Features

Distribution Architecture
Data Distribution Architecture, Data Distribution Method, Automatic

Data Rebalancing, Physical Data Distribution

Querying Distributed
Database

Query Architecture, Queries using Non-Shard Key Value, Merging

Query Results from Multiple Shards

86 Feature Taxonomy of Gorton et al

Table A.9: Data Distribution QuABaseBD
Source: (Gorton et al., 2015)

Features Allowed Values
Data Distribution

Architecture
Single database only, Master-single slave, Master-multiple slaves,

Peer-to-peer

Data Distribution Method
Assigned key ranges to nodes, Hash key, Consistent hashing, Not

relevant (single server only)

Automatic Data Rebalancing
Failure triggered, New storage triggered, Data growth triggered,

Schedulable rebalancing, Administrative rebalancing tools, No

rebalancing (single server only)

Physical Data Distribution Single cluster, Rack-aware on single cluster, Multiple data centers

Query Architecture
Centralized coordinator for shard key lookup, Distributed coordinator

for shard key lookup, Direct shard connection only (resolved in client),

External load balancer required

Queries using Non-Shard Key
Value

Not supported, Secondary indexes, Non-indexed (scan)

Merging Query Results from
Multiple Shards

Random order, Sorted order, Paged from server, Not supported

A.2.3 Data Replication

Table A.10: Data Replication QuABaseBD Subcategories
Source: (Gorton et al., 2015)

Subcategories Features

Replication Features
Replication Architecture, Replication for Backup, Replication across

Data Centers, Replica Writes, Replica Reads, Read Repair

Failover Features
Automatic Replica Failure Detection, Automatic Failover, Automatic

New Master Election after Failure, Replica Recovery and

Resynchronization

A.2 Software Architecture 87

Table A.11: Data Replication QuABaseBD
Source: (Gorton et al., 2015)

Features Allowed Values
Replication Architecture Master-slave, Peer-to-peer

Replication for Backup Supported, Not supported

Replication across Data
Centers

Supported by data center aware features, Supported by enterprise

version only (data center aware), Supported by standard data

replication mechanisms

Replica Writes
To master replica only, To any replica, To multiple replicas, To

specified replica (configurable)

Replica Reads
From master replica only, From any replica, From multiple replicas,

From specified replica (configurable)

Read Repair Per query, Background, Not relevant, Not applicable

Automatic Replica Failure
Detection

Supported, Not supported

Automatic Failover Supported, Not supported

Automatic New Master
Election after Failure

Supported, Not supported, Not relevant

Replica Recovery and
Resynchronization

Supported - automatic, Performed by administrator, Not supported

A.2.4 Security

Table A.12: Data Replication QuABaseBD Subcategories
Source: (Gorton et al., 2015)

Subcategories Features
Authentication Client Authentication, Server authentication, Credential Store

Role Based Security Role Based Security, Security Role Options, Scope of Roles

Database Security and
Logging

Database Encryption, Logging

88 Feature Taxonomy of Gorton et al

Table A.13: Security QuABaseBD
Source: (Gorton et al., 2015)

Features Allowed Values
Client Authentication Custom user/password, X509, LDAP, Kerberos, SSL

Server Authentication Shared keyfile, SSL, Not secured, Server account credentials

Credential Store In database, External file, Certificates only

Role Based Security
Supported, Not supported, Supported - enterprise version only,

Supported - requires programmatic extension

Security Role Options
Multiple roles per user, Role inheritance, Default roles, Custom roles,

Not supported

Scope of Roles Cluster, Database, Collection, Object, Field

Database Encryption Supported, Not supported

Logging
No logging, Configurable event logging, Fixed event logging, Requires

external components (e.g. Web Servers)

A.2.5 Administration and Monitoring

Table A.14: Administration and Monitoring QuABaseBD
Source: (Gorton et al., 2015)

Features Allowed Values
Configuration files Single, Multiple

Node command line access Authenticated, Non-authenticated, Not supported

Node addition/removal Centralized tool, Single file, Multiple files

Cluster monitoring Real-time, Snapshot, Entreprise version only

Dump database configuration Supported, Not supported

Database object count Supported, Not supported

Physical storage usage Supported, Not supported

Appendix B

ISO/IEC/IEEE 42010:2011 Conceptual
Models and Definitions

Here lies the conceptual models for architecture descriptions according to standard ISO/IEC/IEEE

42010:2011 (ISO/IEC/IEEE, 2011).

89

90 ISO/IEC/IEEE 42010:2011 Conceptual Models and Definitions

Figure B.1: Conceptual model of an architecture description
Source: (ISO/IEC/IEEE, 2011)

“Whereas an architecture description is a work product, an architecture is abstract, consisting

of concepts and properties.“ ISO/IEC/IEEE (2011).

“This International Standard does not specify any format or media for recording architecture

descriptions. It is intended to be usable for a range of approaches to architecture description in-

cluding document-centric, model-based, and repository-based techniques.“ ISO/IEC/IEEE (2011)

“This International Standard does not prescribe the process or method used to produce ar-

chitecture descriptions. This International Standard does not assume or prescribe specific ar-

chitecting methods, models, notations or techniques used to produce architecture descriptions.“

ISO/IEC/IEEE (2011)

ISO/IEC/IEEE 42010:2011 Conceptual Models and Definitions 91

Figure B.2: Conceptual model of architectural description elements and correspondences
Source: (ISO/IEC/IEEE, 2011)

“An AD element is any construct in an architecture description. AD elements are the most

primitive constructs discussed in this International Standard. Every stakeholder, concern, archi-

tecture viewpoint, architecture view, model kind, architecture model, architecture decision and

rationale (see 4.2.7) is considered an AD element. When viewpoints and model kinds are defined

and their models are populated, additional AD elements are introduced.“ ISO/IEC/IEEE (2011)

“A correspondence defines a relation between AD elements.“ ISO/IEC/IEEE (2011). “Cor-

respondences and correspondence rules are used to express and enforce architecture relations

such as composition, refinement, consistency, traceability, dependency, constraint and obligation.“

ISO/IEC/IEEE (2011)

Figure B.3: Conceptual model of architectural decisions and rationale
Source: (ISO/IEC/IEEE, 2011)

92 ISO/IEC/IEEE 42010:2011 Conceptual Models and Definitions

“Architecture rationale records explanation, justification or reasoning about architecture deci-

sions that have been made. The rationale for a decision can include the basis for a decision, alter-

natives and trade-offs considered, potential consequences of the decision and citations to sources

of additional information.“ ISO/IEC/IEEE (2011)

“Decisions pertain to system concerns; however, there is often no simple mapping between the

two. A decision can affect the architecture in several ways. These can be reflected in the archi-

tecture description as follows: requiring the existence of AD elements; changing the properties of

AD elements; triggering trade-off analysis in which some AD elements, including other decisions

and concerns, are revised; raising new concerns.“ ISO/IEC/IEEE (2011)

Figure B.4: Conceptual model of an architecture framework
Source: (ISO/IEC/IEEE, 2011)

“An architecture framework establishes a common practice for creating, interpreting, analyz-

ing and using architecture descriptions within a particular domain of application or stakeholder

community.“ ISO/IEC/IEEE (2011)

“A view is governed by its viewpoint: the viewpoint establishes the conventions for construct-

ing, interpreting and analyzing the view to address concerns framed by that viewpoint. Viewpoint

conventions can include languages, notations, model kinds, design rules, and/or modelling meth-

ods, analysis techniques and other operations on views.“ ISO/IEC/IEEE (2011)

ISO/IEC/IEEE 42010:2011 Conceptual Models and Definitions 93

Figure B.5: Conceptual model of an architecture description language
Source: (ISO/IEC/IEEE, 2011)

“An architecture description language (ADL) is any form of expression for use in architecture

descriptions.“ ISO/IEC/IEEE (2011). “An ADL provides one or more model kinds as a means to

frame some concerns for its audience of stakeholders. An ADL can be narrowly focused, defining

a single model kind, or widely focused to provide several model kinds, optionally organized into

viewpoints. Often an ADL is supported by automated tools to aid the creation, use and analysis of

its models.“ ISO/IEC/IEEE (2011)

94 ISO/IEC/IEEE 42010:2011 Conceptual Models and Definitions

Appendix C

ADvISE Meta-model

Here lies the meta-model for ADvISE.

Figure C.1: ADvISE meta-model
Source: ADvISE official website1

95

96 ADvISE Meta-model

Appendix D

CoCoADvISE Meta-model

Here lies the meta-model for CoCoADvISE.

Figure D.1: CoCoADvISE meta-model
Source: (Lytra et al., 2015)

97

98 CoCoADvISE Meta-model

Appendix E

Architecture Knowledge Management
Systems Features, and Strengths and
Weaknesses

Here lies the table of features, and the current strengths and weaknesses of AKMSs.

E.1 Architecture Knowledge Management Systems Features

Table E.1: Knowledge Capture
Source: (Weinreich and Groher, 2016)

Knowledge Capture

template-
based

PAKME, ADDSS, Decision Capture Tool,

LISA, ADManager, A28, A44, A45

schema-based CORE, Tyree Template, Kruchten Ontology

view-based
ADF, Decision Capture Tool, AR-diagram,

TVM, A34

annotations
Knowledge Architect, Decision Capture Tool,

ArchiMind

value-based DDRD/DGA, CADDMS

reuse-based
PAKME, ADDSS, RADM, ADMD3, ADUAK,

SEURAT_Architecture, A26, ADvISE, A33,

A34, A40, ArchPad, ADManager, ADMentor

automation /
generation

ABC/DD, STREAM-ADD, TopDocs, A36,

Latent Semantic Analysis, A44, LISA

recovery
NDR, TopDocs, A25, A26, A28, ADDRA,

Latent Semantic Analysis, A45, A41, DVIA

99

100 Architecture Knowledge Management Systems Features, and Strengths and Weaknesses

Table E.2: Knowledge Application/Presentation
Source: (Weinreich and Groher, 2016)

Knowledge
application /
presentation

visualization
Knowledge Architect, LISA, Decision Capture

Tool, NDR, Compendium, QuOnt, EA

Anamnsesis, ShyWiki

analysis
AREL, LISA, ArchiMind, Decision Capture

Tool, NDR, Archium, AR-diagram, TopDocs,

A46, AQUA, ADManager

evaluation

TopDocs, QuOnt, PAKME, AREL, ADF,

Knowledge Architect, Latent Semantic

Analysis, AQUA, LISA, NDR, AR-diagram,

A41

decision-
making

AREL, ADF, ABC/DD, DDRD/DGA, RADM,

Shywiki, ADMD3, SEURAT_Architecture,

A27, ADvISE, A33, ArchPad, EA anamnesis,

Software Architecture Warehouse, A52,

TDD/Decision Buddy, ISARCS

Table E.3: Knowledge Maintenance
Source: (Weinreich and Groher, 2016)

Knowledge
maintenance

history
tracking

PAKME, AREL, ADF, ADDSS, Decision

Capture Tool, RADM, ShyWiki

process TVM, Decision Documentation Model

transformation ADvISE, AQUA

Table E.4: Knowledge Sharing
Source: (Weinreich and Groher, 2016)

Knowledge sharing
central access

PAKME, AK Sharing Portal, ADDSS, ADUAK,

Software Architecture Warehouse,

TDD/Decision Buddy, ISARCS, Knowledge

Architect, ShyWiki, ArchiMind, RADM

knowledge
base/reposi-

tory

TopDocs, A45, A52, NDR, A28, A25, Decision

Capture Tool

model-focused MQPM, CORE, CADDMS

E.1 Architecture Knowledge Management Systems Features 101

Table E.5: Knowledge Reuse
Source: (Weinreich and Groher, 2016)

Knowledge reuse

generic/project-
specific

RADM, ADMentor, TDD/Decision Buddy

pattern-based ArchPad, A40, A33, ADvISE, ADUAK

partial
solutions

A36, A44, Archium

Table E.6: Technology
Source: (Weinreich and Groher, 2016)

Technology

web-based

AK Sharing Portal, PAKME, ADDSS, ADUAK,

Software Architecture Warehouse,

TDD/Decision Buddy, ISARCS, Knowledge

Architect

wiki-based ShyWiki, ArchiMind, RADM

Eclipse-based
LISA, SEURAT_Architecture, ADManager,

ABC/DD, ADvISE, Decision Capture Tool

UML-based
AREL, UML profile, EA Anamnesis,

ADMentor

DSL-based Archium

102 Architecture Knowledge Management Systems Features, and Strengths and Weaknesses

E.2 Architecture Knowledge Management Systems Strengths and Weak-
nesses

Figure E.1: Current Strengths and Weaknesses of AKMSs
Source: (Capilla et al., 2016)

Appendix F

Architecture Documentation
stakeholders might find useful

Figure F.1: Architecture documentation stakeholders might find useful
Source: (Clements et al., 2002)

103

104 Architecture Documentation stakeholders might find useful

Appendix G

Data Model Data Definition Language

1 CREATE TABLE Owner (

2 id INTEGER PRIMARY KEY,

3 login TEXT NOT NULL,

4 html_url TEXT NOT NULL,

5 avatar_url TEXT,

6 gravatar_id INTEGER,

7 type TEXT NOT NULL

8);

9

10 CREATE TABLE Repository (

11 id INTEGER PRIMARY KEY,

12 id_owner INTEGER NOT NULL REFERENCES Owner(id),

13 name TEXT NOT NULL,

14 full_name TEXT NOT NULL,

15 html_url TEXT NOT NULL,

16 homepage TEXT,

17 description TEXT,

18 fork BOOLEAN NOT NULL,

19 private BOOLEAN NOT NULL,

20 stargazers_count INTEGER NOT NULL,

21 watchers_count INTEGER NOT NULL,

22 language TEXT

23);

24

25 CREATE TABLE Release (

26 id INTEGER PRIMARY KEY,

27 name TEXT NOT NULL,

28 html_url TEXT NOT NULL,

29 tag_name TEXT NOT NULL,

30 body TEXT NOT NULL,

31 target_commitish TEXT NOT NULL,

32 commit_id TEXT NOT NULL,

33 published_at TIMESTAMP WITH TIME ZONE NOT NULL

34);

35

36 CREATE TABLE Featurewise (

37 id SERIAL PRIMARY KEY,

38 id_repository INTEGER NOT NULL REFERENCES Repository(id),

39 id_release INTEGER UNIQUE REFERENCES Release(id),

40 domains_hash TEXT NOT NULL,

41 head_branch TEXT,

105

106 Data Model Data Definition Language

42 head_sha TEXT

43);

44

45 CREATE TABLE Schema (

46 id SERIAL PRIMARY KEY,

47 id_repository INTEGER REFERENCES Repository(id),

48 commit_id TEXT,

49 file_path TEXT,

50 version INTEGER,

51 external_url TEXT,

52 data JSONB NOT NULL,

53 data_hash TEXT NOT NULL,

54 created_at TIMESTAMP WITH TIME ZONE

55);

56

57 CREATE TABLE Domain (

58 id SERIAL PRIMARY KEY,

59 id_featurewise INTEGER NOT NULL REFERENCES Featurewise(id),

60 id_schema INTEGER REFERENCES Schema(id),

61 data JSONB NOT NULL,

62 data_hash TEXT NOT NULL

63);

Listing 23: Data Description Language

Appendix H

Docker files

1 version: '3.7'

2

3 services:

4 backend:

5 build:

6 context: ../../

7 dockerfile: docker/prod/backend.Dockerfile

8 networks:

9 - app-network

10 - datastore-network

11 environment:

12 - DEBUG

13 - NODE_ENV

14 - SESSION_SECRET

15 - SESSION_COOKIE_PATH

16 - SESSION_COOKIE_DOMAIN

17 - SESSION_REDIS_URL

18 - BACKEND_PORT

19 - DATASTORES_POSTGRES_URL

20 depends_on:

21 - postgres

22 - redis

23 labels:

24 - "traefik.enable=true"

25 - "traefik.docker.network=app-network"

26 - "traefik.backend=backend"

27 - "traefik.basic.frontend.rule=Host:${TRAEFIK_BACKEND_HOST}"

28 - "traefik.basic.port=${BACKEND_PORT}"

29 - "traefik.basic.protocol=http"

30 - "traefik.port=80"

31 restart: always

32 github-app:

33 build:

34 context: ../../

35 dockerfile: docker/prod/github-app.Dockerfile

36 networks:

37 - app-network

38 - datastore-network

39 environment:

40 - PORT=${GITHUB_APP_PORT}

41 - DEBUG

107

108 Docker files

42 - NODE_ENV

43 - APP_ID

44 - PRIVATE_KEY_PATH

45 - WEBHOOK_PROXY_URL

46 - WEBHOOK_SECRET

47 - FEATUREWISE_REDIS_URL

48 - LOG_LEVEL

49 - DATASTORES_POSTGRES_URL

50 depends_on:

51 - postgres

52 - redis

53 labels:

54 - "traefik.enable=true"

55 - "traefik.docker.network=app-network"

56 - "traefik.backend=github-app"

57 - "traefik.basic.frontend.rule=Host:${TRAEFIK_GITHUB_APP_HOST}"

58 - "traefik.basic.port=${GITHUB_APP_PORT}"

59 - "traefik.basic.protocol=http"

60 - "traefik.port=80"

61 restart: always

62 postgres:

63 build:

64 context: ../../datastores/

65 dockerfile: ../docker/prod/postgres.Dockerfile

66 networks:

67 - datastore-network

68 container_name: ${POSTGRES_CONTAINER_NAME}

69 environment:

70 - POSTGRES_USER

71 - POSTGRES_PASSWORD

72 - POSTGRES_DB

73 - PGDATA=/var/lib/postgresql/data/pgdata

74 volumes:

75 - postgres-data:/var/lib/postgresql/data/pgdata

76 restart: always

77 redis:

78 image: redis

79 container_name: ${REDIS_CONTAINER_NAME}

80 networks:

81 - datastore-network

82 restart: always

83

84 networks:

85 app-network:

86 external: true

87 datastore-network:

88

89 volumes:

90 postgres-data:

91 driver: local

Listing 24: docker-compose.yml for prod

1 version: '3.7'

2

3 services:

4 traefik:

Docker files 109

5 image: traefik

6 command: --api

7 ports:

8 - 80:80

9 - 8080:8080

10 networks:

11 - app-network

12 volumes:

13 - /var/run/docker.sock:/var/run/docker.sock

14 - ./traefik.toml:/traefik.toml

15 container_name: traefik

16 restart: always

17

18 networks:

19 app-network:

20 external: true

Listing 25: docker-compose.yml for traefik

1 version: '3.7'

2

3 services:

4 postgres:

5 build:

6 context: ../../datastores/

7 dockerfile: ../docker/prod/postgres.Dockerfile

8 networks:

9 - app-network

10 container_name: ${POSTGRES_CONTAINER_NAME}

11 environment:

12 - POSTGRES_USER

13 - POSTGRES_PASSWORD

14 - POSTGRES_DB

15 - PGDATA=/var/lib/postgresql/data/pgdata

16 ports:

17 - 5432:5432

18 restart: always

19 redis:

20 image: redis

21 container_name: ${REDIS_CONTAINER_NAME}

22 networks:

23 - app-network

24 ports:

25 - 6379:6379

26 restart: always

27

28 networks:

29 app-network:

30 driver: bridge

31

32 volumes:

33 postgres-data:

34 driver: local

Listing 26: docker-compose.yml for dev

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Problem Definition
	1.3 Motivation and Goals
	1.4 Contributions
	1.5 Document Structure

	2 Literature Review
	2.1 Architecture Knowledge Management
	2.2 Component Selection
	2.2.1 Quality Architecture at Scale for Big Data
	2.2.2 A formal Framework
	2.2.3 Multiple-criteria decision-making

	2.3 Data Interchange Models & Formats
	2.3.1 RDF, RDFS, SPARQL, OWL, Linked Data
	2.3.2 JSON, XML, JSON Schema, XML Schema, YAML
	2.3.3 Avro, Protocol Buffers, Thrift

	2.4 Comparison Websites
	2.4.1 Multi-Faceted Comparison Websites
	2.4.2 Feature-Comparison Websites

	3 Problem Statement
	3.1 Current Issues
	3.2 Proposal
	3.2.1 Approach
	3.2.2 Desiderata
	3.2.3 Assumptions
	3.2.4 Evaluation

	4 Implementation
	4.1 Overview
	4.2 Architecture and Tools
	4.3 Data Model
	4.4 Features
	4.4.1 Feature 1 — encode features
	4.4.2 Feature 2 — encode features per domain
	4.4.3 Feature 3 — support multiple encoding formats
	4.4.4 Feature 4 — support for optional feature schemas
	4.4.5 Feature 5 — feature and schema versioning
	4.4.6 Feature 6 — ignorable branches, releases, and branch publishes
	4.4.7 Feature 7 — capture push and release information
	4.4.8 Feature 8 — schema validation using the github checks API
	4.4.9 Feature 9 — re-use schemas to reduce heterogeneity
	4.4.10 Feature 10 — provide a public API

	4.5 Using the solution
	4.5.1 Producer
	4.5.2 Consumer

	4.6 Building the Solution

	5 Evaluation
	5.1 Methodology
	5.2 Capture and Grouping
	5.3 Validation
	5.4 Reuse
	5.5 Versioning
	5.6 Search and Comparison
	5.7 Conclusion

	6 Conclusions and Future Work
	6.1 Main Difficulties
	6.2 Contributions
	6.3 Future Work
	6.3.1 Approach
	6.3.2 Prototype
	6.3.3 Ideas to explore
	6.3.4 User Studies

	6.4 Conclusion

	References
	A Feature Taxonomy of Gorton et al
	A.1 Data Architecture
	A.1.1 Data Model
	A.1.2 Query languages
	A.1.3 Consistency

	A.2 Software Architecture
	A.2.1 Scalability
	A.2.2 Data Distribution
	A.2.3 Data Replication
	A.2.4 Security
	A.2.5 Administration and Monitoring

	B ISO/IEC/IEEE 42010:2011 Conceptual Models and Definitions
	C ADvISE Meta-model
	D CoCoADvISE Meta-model
	E Architecture Knowledge Management Systems Features, and Strengths and Weaknesses
	E.1 Architecture Knowledge Management Systems Features
	E.2 Architecture Knowledge Management Systems Strengths and Weaknesses

	F Architecture Documentation stakeholders might find useful
	G Data Model Data Definition Language
	H Docker files

