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Abstract

Parking in cities is becoming a scarce resource and, besides new regulation policies that limit
parking spots, cost and time, drivers can have difficulty finding a vacant space near their desti-
nation. Therefore, drivers waste time looking for somewhere to park, which causes frustration,
increases pollution and congestion in crowded locations. Drivers compete between them due to
the scarcity of parking resources, creating a demand-supply problem that leads to providers com-
petition, ultimately a market-based problem. Moreover, the introduction of autonomous vehicles
adds complexity to this scenario by requiring an automatic and efficient system for parking.

The scientific community regards the use of Intelligent Transportation Systems as a viable
solution. Hence, a Smart Parking System is an intelligent system that aids drivers in selecting and
reserving parking spaces which match their preferences among competing alternatives. Also, by
using negotiation for this purpose, the utility to a parking manager can be maximized, reducing
traffic congestion and improving parking resources or availability. However, studies on the
impact of intelligent solutions to manage public parking spots are few and represent a relevant
gap that needs bridging when following the path towards Smart Cities.

Furthermore, Smart Parking dynamics depend on the synergy of the behaviours of drivers,
parking lot managers and, occasionally, a city manager. As such, a multi-agent system is a
straightforward solution for modelling this system to find parking allocation dynamics that max-
imize the satisfaction of all agents, while aspiring to distribute the traffic load better.

The solution proposed comprises a distributed agent-based simulation that allows the eval-
uation of the impact of new market dynamics such as tariffs, reservation or time available in
the individual and overall satisfaction metrics. As such, drivers are sensible to new tariffs and
Parking managers can try to distribute their users in a more profitable way, such as balancing the
availability of nearby parking lots. Finally, being a naturally distributed problem, the use of dis-
tributed agent capabilities implemented as micro-services is also introduced. Agent behaviours
are modelled following an Agent Process Model methodology, using process models to orches-
trate the micro-services interaction. The use of micro-services in this context allows greater
flexibility and scalability to support numerous agents and diverse scenario configurations.

As a result, during the development of this dissertation, we discovered that dynamic prices
have a role in solving the parking problem, both to drivers and managers. However, traffic flow
within the city did not improve as expected. Nevertheless, the solution designed can accommo-
date more complex agent behaviours and market processes to enhance parking efficiency further.
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Resumo

O estacionamento em cidade é um recurso escasso e, com as políticas de regulação que limitam
as vagas, o custo e o tempo máximo de parqueamento, torna-se difícil estacionar próximo do des-
tino pretendido. Este problema causa frustração aos condutores e aumenta os níveis de poluição
e o congestionamento em locais mais concorridos. Adicionalmente, a escassez de estaciona-
mento aumenta a concorrência entre condutores, o que origina um problema de oferta-procura
e gera competição entre os fornecedores, ou seja, cria um problema de mercados. Por sua vez,
o aparecimento de veículos autónomos torna este cenário ainda mais complexo, exigindo um
sistema automático e eficiente para gestão do estacionamento.

É reconhecido que o uso de sistemas de Smart Parking terá um grande impacto na resolução
deste problema. O uso de negociação permite maximizar a utilidade para um gestor de estaciona-
mento, reduzindo o tráfego e melhorando os seus recursos, ou a sua disponibilidade. Existem
poucos estudos sobre o impacto de soluções inteligentes na gestão de parqueamento público, o
que constitui uma relevante lacuna a colmatar quando se pretendem criar Smart Cities. Sendo
as dinâmicas de Smart Parking dependentes da sinergia dos comportamentos dos condutores,
gestores de estacionamento e, por vezes, de um gestor municipal, os sistemas multiagente são
a forma natural de modelar este sistema para encontrar uma alocação de estacionamento que
maximize a satisfação de todos os agentes, enquanto se otimiza a distribuição do tráfego.

A solução proposta consiste numa simulação distribuída baseada em agentes que permite
avaliar o impacto de novas dinâmicas de mercado (tarifas, tempo disponível ou reservas) em
métricas de satisfação individuais e globais. Os condutores são sensíveis a novas tarifas e os
gestores de estacionamento tentam distribuir os clientes de um modo mais lucrativo. Por fim,
sendo este um problema naturalmente distribuído, também foi proposto o uso de capacidades
distribuídas para os agentes, definidas como micro-serviços. Os comportamentos dos agentes
são modelados seguindo a metodologia Agent Process Model, que usa modelos de processos para
coordenar a interação entre micro-serviços. Esta arquitetura é flexível e escalável, suportando
um maior número de agentes e configurações de cenários.

Este trabalho permitiu identificar os preços dinâmicos como um fator crítico para a resolução
do problema proposto, quer do ponto de vista dos condutores como dos gestores de estaciona-
mento. No entanto, o fluxo de tráfego na cidade não diminuiu como esperado. Porém, a solução
desenhada é capaz de simular comportamentos de agentes e processos de mercado mais com-
plexos que permitem continuar a melhorar a eficiência do estacionamento.

Keywords: Smart Parking, Negociação, Agentes, Micro-Serviços
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Chapter 1

Introduction

Most people still prefer to travel in personal vehicles rather than public transport due to its

comfort and convenience [Boudali and Ouada, 2017]. However, finding a place to park a car is

getting more difficult every day due to the increasing traffic flow and car owners around the world

[Kotb et al., 2017]. The most common method to find a parking location is still to manually

drive the car looking for a place, which requires both luck and experience [Pham et al., 2015].

Moreover, in densely populated areas such as cities, there are likely more vehicles than parking

spots. As such, cruising for parking takes a considerable amount of fuel and time, estimating to

be between 30% to 50% of traffic according to recent studies [Fleyeh et al., 2018, Kotb et al.,

2017]. The parking problem is not only frustrating and time-consuming but also affects the

environment (by causing significant carbon gas emissions) and increases travel cost and traffic

congestion [Polycarpou et al., 2013]. The creation of more parking locations is not always a

viable solution to this issue. So, implementing more “intelligent” parking solutions is seen as

a significant challenge to face [Di Napoli et al., 2014]. In this context, new policies are being

deployed to restrict the number of parking spots, increase their cost and decrease maximum

parking time [Balac et al., 2017]. Consequently, drivers have an increasing need to have more

information about parking opportunities.

With the rise of autonomous (driverless) vehicles, new traffic dynamics arise. Firstly, cars

might not need to stay parked in the same spot the whole time while waiting for their owners.

Secondly, they do not require proximity parking, unlike regular ones, as such, they can park in

farther less expensive locations at no cost to their users [Balac et al., 2017]. This scenario shows

a need for new regulation policies other than the ones currently implemented: restricting prices

and times, for example, might produce harmful traffic dynamics, increasing traffic flow. On the

other hand, economics is also affected by these autonomous vehicles dynamics. Since commonly

drivers are charged for having their cars in a parking spot, vehicle decisions to change parking

autonomously could bring many market-related problems, such as peak demand prices in some

1



Introduction 2

hot-spot areas, speculation or even sub-contracting. These unwanted economic situations can be

harmful to the system by increasing traffic density, prices and market exploitation, for example.

In this scenario, most of the entities (i.e. car drivers and parking managers) are considered to

be selfish, meaning they only care about their own goals and preferences, not carrying about

the impact of their actions for the overall system. It is essential to understand and create new

policies that reduce that impact. Therefore, the existence of an intelligent, efficient and reliable

autonomous decision-making system is critical to help every vehicle find a suitable parking spot

while maintaining the parking and city managers goals in mind, to reduce the impact of the

parking problem [Smolnicki and Sołtys, 2016].

When talking about the economic impact of the parking problem, the number of parking

slots in the cities is found to be scarce compared to the vehicles seeking to occupy them. Public

parking can be classified into closed and open. Closed public parking relates to places with gate

control mechanisms, whereas open ones have unchecked car entry and departure. Traditionally,

closed and metered open parking operates like a tariff-based market, where parking managers

rent their resources to drivers for a limited amount of time. These parking solutions are usually

subject to regulations such as minimum prices and maximum parking period by the respective

authorities.

In contrast, other open parking locations are usually free and therefore, are used like col-

lectively owned resource by drivers. Nevertheless, free on-street parking locations, unlike some

off-street ones, do not yet possess sensors to collect and disseminate information about their

availability, which hinders efforts to implement more flexible parking tariffs[Fleyeh et al., 2018].

However, to help to manage traffic and parking, sharing economy in transportation has been en-

couraged [Stephany, 2015]. In one hand, some municipalities choose to try to decrease demand

by creating bike or car-sharing initiatives [Balac et al., 2017, Patel et al., 2018, Shaheen and Co-

hen, 2012]. On the other hand, some others try to grow the offer by motivating private owners

to rent their vacant parking space [Zhang et al., 2018]. However, shared economy businesses

regularly clash with traditional ones, mainly in the matter of the application of existing regula-

tion that the former feel does not apply to their business model, particularly so in the case of

peer-to-peer services [Demary, 2015]. More extreme solutions also include traffic restriction

programs in cities that only allows vehicles whose license numbers end with particular digits to

drive on particular weekdays [C-Y Cynthia Lin et al., 2011].

There have been some efforts in recent years to implement solutions for Smart Parking and

provide vehicle-to-vehicle and vehicle-to-infrastructure interaction to improve the parking al-

location [Barile et al., 2015]. In the literature, two main mechanisms to reduce the parking

problem can be found: Parking Guidance and Information (PGI) systems and Parking Reser-

vation Systems (PRS). PGI systems inform drivers of the location of available parking spots in

real-time and provide directions to them, while PRS also include the opportunity to reserve a
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parking slot ahead of time.

Smart Parking Systems (SPS) are systems that help drivers find vacant parking spots more

efficiently [Barile et al., 2015]. In general terms, this means that these systems combine features

from both PGI and PRS by guiding drivers to an agreed location. As such, the different actors

and their agendas are crucial to achieving coordination. Most of the works in this area consider

two main types of participating entities: parking managers, who own and manage parking re-

sources, and drivers, who are looking for an adequate parking spot for their vehicle. Different

drivers can have their personal preferences regarding parking, like, for example, the maximum

distance from their destination or the maximum price they are willing to pay for the parking lo-

cation. Likewise, parking managers can have their own goals and restrictions in terms of price,

availability and rules for parking. For instance, closed parking lots aim for added profit while

open parking, particularly in touristic and shopping locations, strives for shorter parking and

increased turnover. In truth, Table 1.1 summarises the properties of the main four parking lot

models. In this sense, SPS seems to be the de facto solution for the future of parking systems,

allowing new economic possibilities with negotiation and reservation support, also providing a

positive impact on reducing traffic congestion considering demand-supply rules in traffic flow.

Table 1.1: Properties of different parking models

Open Closed

Public

• No access control

• Free or metered

• Goal to increase turnover

• Example: regular on-street
parking

• Gate control with the possibility
of reservation

• Free aiming to draw cars outside
of the street and provide access
to nearby businesses

• Paid to obtain maximum profit

• Example: parking lot buildings
near commercial city areas

Private

• Norms limit access to certain
group of people

• Usually free

• Aims to ensure that drivers al-
lowed to park there, have an
available spot

• Example: on-street parking
spots for residents or users of a
specific shop

• Only some people can open the
gate

• Can be free, for example, home
or work garages

• Or can be paid periodically, like
a subscription for being able to
access the parking lot
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Nonetheless, being actor-centric systems, Smart Parking might also introduce new dynamics

in parking management and new regulation policies should be created to reduce chaotic situa-

tions. A notable research gap in SPS is to consider city-level parking (governmental policies)

management and traffic preferences as such regulator entity or a city manager. Improved models

shall be created to study parking management at each level and consider entity behaviours in

multiple situations, such as selfish and harmful actions.

From an economic perspective, traffic management involves pricing some parking locations

higher to discourage drivers from parking at predictable popular areas. Hence, drivers can be

considered consumers and the city or other parking managers as the providers or retailers of a

parking market. Therefore, aligning agents’ strategies to seek their own goals with improved

negotiation mechanisms, such as being regulation aware or tariff-responsive, could produce re-

sults in better distributing the traffic better. Because increases in demand would imply price

hikes, these mechanisms could dissuade drivers from parking in overcrowded locations. Simu-

lation allows to test and explore different "what-if" scenarios in a reduced amount of time while

maintaining the level of detail necessary. In this scenario, a natural approach is to adopt agent-

based systems for representing the entities. In other words, it signifies considering each of the

entities as an autonomous agent and the overall system as a multi-agent system. Multi-agent

systems allow heterogeneous software agents to execute some action autonomously by using

their own set of knowledge and communicating. Therefore, the agents can negotiate with one

another [Di Napoli et al., 2014]. In general, these agents are autonomous as well as heteroge-

neous and will, consequently, reflect the complexity and diversity of the city in a very flexible

way. Accordingly, using a multi-agent system to represent their interests and handle the negoti-

ation to achieve each one’s goals seems to a logical solution. In this domain, simulation allows

checking the possible consequences of new and different market models and policies for the city

before their real-world implementation. Hence, this simulation is indispensable for city policy-

makers to assert if these new policies are beneficial and can achieve better parking and traffic

conditions.

Differently from the traditional software agent system approach in which the software con-

tains all the agent capabilities, externalising the agent capabilities as services is becoming a

trend [Kravari and Bassiliades, 2018, Krivic et al., 2018] because each unique agent can be

designed using the most appropriate technologies as long as it can communicate with oth-

ers. Therefore micro-service-based agents can support better horizontal scaling than traditional

multi-agent systems, leading to more lightweight, distributed and reusable systems. As such, it

is possible to model and simulate agents with distinct decision processes which could lead to a

higher number of scenarios.

Due to the traffic and market dynamics, city-level parking management, as well as traffic

management, is understood not to have a proper or straightforward solution, but the overall
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research goal in this field should be the development of tools and models that enable explaining

and predicting the behaviour of the system and its entities when these dynamics change. It is

imperative to evaluate complex decision models for each actor mixing current behaviours and

proposing new strategies, in both market or traffic fields, that can lead to a more sustainable city

which is called Smart City. A Smart City can be seen as a six-dimensional system involving

people, living, governance, mobility, economy, and environment, which uses information and

communication technologies (ICT) to improve the efficiency and welfare of the municipality

[Di Napoli et al., 2014, Patel et al., 2018]. Hence, all entities’ decisions can influence the overall

system.

As such, changes in parking market characteristics have an impact on traffic, as the benefits

of implementing new dynamics with different pricing and parking capacity policies and their

coexistence can reveal correlation and be distinct from the sum of the benefits gained by applying

them individually [Olus Inan et al., 2019].

1.1 Motivation

The need for new studies in Smart Cities and the necessity of gathering plausible solutions for

traffic problems motivate this work. Current issues in the fields discussed in the previous section

highlight its relevance. Firstly, increments in traffic flow and the introduction of autonomous

decision systems could lead to unwanted situations. Secondly, Smart Parking simulations in

large populations are still missing proper analysis, meaning the existing solutions not consid-

ering recent technological advances that enable the simulation of a large number of drivers as

well as, parking spots and the coordination between them, either cooperatively or competitively.

Moreover, agent-based modelling for this purpose still needs more in-depth analysis due to the

infinitude of scenarios found in traffic situations. In this context, micro-services, due to their re-

duced computational costs and easy replication, seem to add a viable technical approach to this

problem. Also, distinct services can represent different decision behaviours. This feature en-

ables the simulation and later analysis of not only different agent behaviours but also the impact

of novel market approaches when coexisting with traditional markets.

In this context, using process modelling to design agent behaviours, could leverage the or-

chestration of the decisions by thinking about behaviours as if they were processes. This method-

ology, called Agent Process Modelling (APM), proves to be advantageous. Firstly, the use of a

standard process representation for the agent behaviour makes it more readable even for people

who do not understand its technological implementation [Küster et al., 2014]. Secondly, agent

implementation is understandable for designers and, thus, more easily improved. Thirdly, agent

capabilities can be designed and implemented as independent web-services. This architectural

choice helps decouple agent logic from implementation and abstract task’s execution details
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[Endert et al., 2007]. Finally, the APM framework also focuses on cloud-native agent-processes

that do not require “living threads”, which makes them notably scalable and easily integrated

with other services [Markus et al., 2008].

Dynamic price simulation in market-based environments such as parking management is

also relevant for city planners and city managers that want to determine whether these practices

can help improve traffic flow in the city. Regulation policies appear in this context as a way to

shape behaviours to keep the system running in the desired way. In some scenarios, this might be

the only way to improve the system’s state or to move it out of chaotic situations. Depending on

the scenario and the system characteristics, market self-regulation could be sufficient to ensure

that.

In this work, the evidence of needing regulation policies will also be subject of analysis.

A fascinating outcome of this project is the assessment of the necessity to regulate a system,

verifying that it will not go the proper state just by itself. Furthermore, with the increase of

peer-to-peer markets, it seems natural to study the application of market-based approaches in

parking management scenarios and the consequences of it on the overall system. As such, future

development in traffic models has a great need for studying the dynamics of these new market

models and their impact on the current ones.

1.2 Goals

This thesis aims to evaluate the impact of dynamic prices in the context of market-based smart

parking by modelling and simulating Smart Parking Systems where multiple autonomous soft-

ware agents seek to achieve their own goals by making decisions in different levels of abstrac-

tion. On the one hand, drivers must choose a specific parking spot or deliberate the city path

they should follow to get to the parking point. On the other hand, managers need to evaluate

current tariff prices as well as assess their overall profit and impact in the occupancy while fol-

lowing some city regulation. Agents are considered selfish, which means an agent’s decisions

can impact other agent’s performance. In other words, one’s actions could lead to the dynamics

of the system being in an unstable or unwanted state. Specific goals of this work comprise the

evaluation of this impact by designing and running realistic simulation scenarios where a park-

ing allocation mechanism could no only decrease overall traffic congestion, time and fuel spent

searching for parking but also increase market profit. Thus, the specific goals of this dissertation

include:

Goal 1. Analyse the relevant entities (drivers and managers) related to Smart Parking and their

characteristics, such as private and public parking lots, open or closed parking spots, among

others and their relationship with the overall traffic congestion in a city-wide perspective;
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Goal 2. Study the impact of market-related mechanisms between the agents. In other words,

evaluate whether some agent’s market actions from one agent could impact the overall perfor-

mance of another agent and the traffic itself;

Goal 3. Develop a distributed simulation system where agent behaviours are modelled as pro-

cesses and capabilities as web-services to decouple strategies and allow more accessible valida-

tion and improvement, regardless of the implementation;

Goal 4. Design and run simulation experiments varying system characteristics, such as different

map configuration and traffic situations, or market dynamics, as fixed versus dynamic prices to

evaluate the performance of each actor accordingly to the metrics introduced in Section 5.1.

Overall, this work comprises a study of different parking management scenarios and the

evaluation of the solutions using both cooperation and competition mechanisms through negoti-

ation. In the end, more particular contributions might include simulation results for cooperative

parking lots (one manager) versus multiple competing managers, evaluation of dynamic markets

creation as a way to reduce traffic flow, as well as to improve each entity satisfaction of its own

goals, and the design of new market-based processes for the related participants.

1.3 Hypotheses

From a technological perspective, the existence of multiple autonomous participants with dis-

tinct interests assumes a distributed approach. As such, an agent-based approach is deemed to

be a suitable way to perform the simulation. Besides, the use of business processes and micro-

services helps to ensure a more decoupled architecture. Additionally, this architecture simplifies

the process of replacing the micro-services with improved, more complex and realistic logic be-

yond the scope of this dissertation. Therefore, the same agent processes can use real-life services

for purposes other than simulation.

Our research question is then related to “what would happen to the overall traffic and in-

dividual satisfaction when the market characteristics are dynamic?”. As such, the hypotheses

formulated derive from this question. In this context, since selfish entities bind this work, each

of the participants is believed to follow only their interests. Moreover, changes in the environ-

ment (agents’ world) could imply a measurable impact on their satisfaction. From a systemic

perspective, changing market prices of open or closed parking could affect the overall traffic and

if the characteristics are optimal, even decline traffic levels while achieving adequate levels of

satisfaction for the stakeholders.

In this optimal scenario, the market environment should consider a mixed amount of open

and closed parking with different intentions and pricing schemes. In this setting, the term open
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refers to municipally operated facilities with no access control and the expression closed applies

to buildings with access control which are managed by private entities. Thus, the following

hypotheses are formulated, driving this work towards understanding how it is possible to achieve

the optimal balance between prices in open and closed parking:

Hypothesis 1. Parking managers’ satisfaction can be represented as a function of their occu-

pancy, and to fulfil their goals to get occupancy between some minimum and maximum thresh-

olds, they should update their tariffs frequently

Hypothesis 2. Drivers are sensible to parking prices: if parking managers change their prices,

drivers should decide to change parking spots and therefore imply traffic variations that are

visible in a city management perspective

Hypothesis 3. Dynamic pricing in open parking could be implemented as an effort to improve

the parking slots availability, thus relieving traffic problems when closed parking lots only can-

not guarantee the supply.

Hypothesis 4. Even in the case where dynamic market prices effectively work, there shall exist

some cases where explicit regulation policies are indeed necessary, and the system’s metrics

should evidence this need.

On a more technological perspective, this dissertation finally aims to prove that, given the

simulation scenario’s requirements for a distributed approach, modelling a solution using dis-

tributed agents is preferred. Furthermore, the simultaneous use of micro-services and business

processes is thought to aid in better decoupling the solutions architecture and provide better

results.

1.4 Contributions

Our hypotheses, presented in Section 1.3, evidence the impact of markets in traffic scenarios,

namely the smart parking in a city-level. The study of parking agent models and how their

decisions could affect the system is hugely relevant, and much needed to propose new strategies

that could help to leverage traffic systems in the future.

Therefore, this dissertation aims to assess the impact of parking agent decision processes

and pricing regulation on a city-level scale. The discussion about the findings in the relationship

between open and closed parking spots shows a valuable contribution to determine how these

innovative market characteristics can affect and improve traffic in the city.

Summarising, the general contributions of this work comprise:

• A first attempt to tackle the impact of the open parking to traffic flow;
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• The development of a simulation tool for evaluating market and traffic dynamics consid-

ering both open and closed parking lots;

• The design of the related entities’ behaviours following a process model approach:

• Insights about using Agent Process Modelling methodology to create cloud-native agents

for simulation in the traffic domain;

• The definition of a set of metrics that could help to evidence the need for regulation in a

Smart Parking environment

1.5 Structure

This dissertation is composed of six chapters. The present chapter introduced the motivation,

goals, hypotheses and contribution expected for this project. In Chapter 2, the background in-

formation needed to comprehend this document better can be found. These topics include Smart

Parking, the market structures already in place and current technological state for the existing

parking solutions. A State of The Art analysis of the related literature can be found in Chapter

3. The analysis covers Smart Parking in more detail and reviews research found on the use of

agents, micro-services and business processes in this context. A gap analysis is also presented.

Chapter 4 starts by explaining the methodology used to design this project. Besides, the rea-

soning behind the solution design is presented, followed by implementation details on every

component. Through Chapter 5, the simulation experiments are presented and evaluated. Here,

details on the metrics used and run configuration are described. This chapter ends with a discus-

sion on the experimental results. Finally, Chapter 6 discusses the implementation decisions and

experimental findings. This document is concluded by suggesting some possible future work.



Chapter 2

Smart Parking Management and
Related Problems

2.1 Smart Parking

In the context of this work, a Smart Parking is defined as a system that aims to assist drivers

in finding a vacant parking spot for their vehicle by collecting and disseminating information

about parking condition such as, availability and prices [Lin et al., 2017]. Its main goals include

reducing traffic congestion, parking search time, as well as parking contention by making slot

allocation more efficient [Wang, 2011]. For this purpose, this definition encompasses various

degrees of automation and functionalities. Some Smart Parking systems solely report real-time

parking availability and use these to dynamically change parking rates and influence drivers to

choose specific locations. As an improvement, there solutions attempting to accurately predict

future parking availability based on past data, to better balance reducing drivers’ parking search

time and increasing providers’ revenue for maximum communal satisfaction.

Others take it a step further and also allow reservations to ensure the availability of an empty

parking spot upon arrival to the destination. However, this may cause inefficient utilisation of

reserved slots keeping them idle when there is a demand. Furthermore, reservations raise issues

of cost of cancellation because there is the possibility of parking requests being refused despite

the reservation not happening. As a result, drivers are unable to park, and parking managers lose

revenue, which causes frustration for both.

Approaches with a higher degree of computerisation, with little to no need for human inter-

action, include algorithms for automatic parking allocation. Nonetheless, these systems assume

that all parking requests are known ahead of time and that there is a sole entity responsible for

managing all available car parks. However, this is not the case in most cities.

10
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2.2 Parking Market

Despite its common usage, the classification of parking lots as public and private is used in

different contexts to mean different things. One criterion for this distinction based on access to

the lot, which is used in Chapter 1, more specifically in Table 1.1. According to this criteria, a

public parking lot is one where everyone has access, even if by paying, and a private one implies

that only a restricted group of drivers has a right to park there. The other criterion is the one

relevant for this section, the management entity. From this perspective, a public parking lot is

managed by a municipal organization, which aims to provide better welfare to the city. On the

other hand, private lots are managed by a private entity that is competing against other providers

for maximum profit.

2.2.1 Importance of pricing policies

A considerable amount of literature has been published on the importance of parking policies and

pricing for traffic. Overall, there seems to be some evidence to indicate that parking availability

and prices affect driver search patterns and, in so doing, influence traffic [Andrew Kelly and

Peter Clinch, 2006]. Consequently, most cities already have policies to price car parks according

to predicted demand by pricing popular locations higher, either all the time or in special events,

to attempt to balance overall availability and decrease traffic congestion.

Assuming Dpopular to be a known set of popular destinations and priceA to be the price

of parking in A, parking managers can set a maximum price for popular locations and, then

calculate the price for their remaining resources using a function that takes into account several

components, including this price and the distance to it. Equation 2.1 illustrates an example of

such calculation where the city is divided into sectors.

priceA = pricemax−2
distanceA,N

r −1 ∗discount (2.1)

where:

pricemax = price for popular destinations (pricemax = priced ,D ∈ Dpopular)

distanceA,B = distance between locations A and B

r = distance to divide the the city in sectors

N = closest popular destination (N ∈ Dpopular)

discount = price factor to be reduced

However, this function is not dynamic and can lead to congested areas, not disappearing but

relocating. A possible solution is to routinely alter the current price based on an ideal occupancy

range goal. This approach is sometimes also called performance pricing, because instead of
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choosing a price, the manager chooses a performance standard and lets the market adjust the

price, within predefined limits, to reach it [Manville et al., 2018]. Because users usually prefer

to pay less if they can still park near their destination, this dynamic helps balance the availability

of parking lots. A simple example of this is to add a dynamic component dependent on the

occupancy rate of the lot, like the one shown in Equation 2.2.

price = pricebase ∗ (1+occ) (2.2)

where:

pricebase = fixed minimum price for tariff

occ = the percentage of occupied slots in the lot

2.2.2 Current market policies

Municipal parking has often fixed prices based on distance from highly-demanded locations.

However, these are commonly under-priced or free. Additionally, price updates are done manu-

ally using a convoluted formula to increase an equally undefined measure of system welfare.

Despite also having fixed prices, privately managed lots are usually over-priced and therefore

mostly vacant compared to public ones. However, privately managed parking lots prices are

aimed for personal gain. As such, their prices are highly dependent on nearby competition and

demand for the location. Besides, some lots associated with commercial activity also apply

different rates depending on the use, having some discounts for customers, for instance. When

present, performance pricing is mostly found connected to private closed parking where there is

more collection of trustworthy information about availability. However, this pricing policy faces

issues from administrative entities regarding price boundaries and maximum update regularity.

2.3 Current technological state

The concepts of IoT and Smart Parking are highly connected. In this context, drivers can broad-

cast their interest in a particular location which provides demand data. From the provider side,

low-cost sensors placed at parking spots (both legal and illegal ones) collect and transmit avail-

ability data in real-time to devices representing every interested party [Gupta et al., 2017]. Ac-

cess to this data allows drivers to find a suitable parking spot with higher likelihood and reduce

search time. Furthermore, it enables cities to manage their parking supply carefully and control

illegal parking. Thus, Smart Parking uses Machine-To-Machine technologies aimed at safety as

well as the convenience of the users.



Chapter 3

Literature Review

This section introduces with greater detail the context of this project and presents a survey of

preceding literature. Section 3.1 explains some of the work done in Smart Parking. Then, multi-

agent systems and their benefits to Smart Parking are presented in Section 3.2.1. In Section 3.3,

the micro-service architecture and its connection to multi-agent systems are introduced. Lastly,

Section 3.4 exhibits business processes and markets related to parking.

3.1 Smart parking

Cities with more dense traffic and on-street parking have a greater need for smart parking so-

lution to decrease the volume of drivers cruising for free parking. These solutions also bring

economic benefits. Firstly, distributing parking availability information can shorten the time

drivers spend searching for parking, reduce air pollution, fuel consumption and traffic conges-

tion. Secondly, these solutions can also increase park revenue by reducing the idle time for the

parking spots, and the same sensors can also detect unapproved parking. Thirdly, by making

the traffic more fluent, urban mobility increases, which, in turn, can boost the city’s events and

business opportunities [Lin et al., 2017].

In this context, Smart Cities use Intelligent Transportation Systems (ITS) to improve trans-

portation. ITS are technological applications for transport and infrastructure that provide com-

munication between different frameworks to increase productivity, safety and environmental

performance. Associated with Smart Parking, there are two ITS central systems involved: the

Parking Guidance and Information and the Parking Reservation systems [Kotb et al., 2017]. As

a whole, Smart Parking can be summed by the administrative and operational services shown in

Figure 3.1.

13
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Figure 3.1: Example of Smart Parking Use Cases [Lin et al., 2017]

3.1.1 Parking Guidance and Information Systems

Parking Guidance and Information (PGI) systems provide information about the availability of

parking spaces in monitored areas to interested drivers. They reduce overall traffic congestion

by helping drivers find free parking spaces easily. A PGI system has four main components

[Kotb et al., 2017]: parking monitoring mechanism, parking space information dissemination,

telecommunications network and control centre. The parking monitoring mechanism employs

a variety of different IoT sensors used to perceive if a parking space is available [Gupta et al.,

2017]. These sensors all have different characteristics in both reliability and cost to the park and

must be chosen according to them [Kotb et al., 2017, Polycarpou et al., 2013].

This type of systems has existed since the 1970s through the use of variable message signs

located nearby parking lots. Since then, PGI has evolved and, with the use of different sensors
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and technologies, can now offer more detailed information within the parking lot and be used

in on-street parking. Besides, these systems now incorporate web and mobile applications to

provide real-time access to data on parking availability from several locations as well as guiding

drivers to free slots [Polycarpou et al., 2013].

However, while the use of PGI increases the probability of finding free parking spaces, these

systems also modify the driver’s behaviour from searching to competing for parking [Kotb et al.,

2017]. The reason for this competition is that numerous drivers receive the same information.

As such, they tend to flock to the same available parking location, which is likely not to be free

by the time they arrive [Geng and Cassandras, 2013]. In an attempt to mitigate this problem,

some authors choose to add parking prediction techniques to the information shown to each user

and guide them to a location with a higher probability of being free by the expected time of

arrival [Liu et al., 2018, Qiu et al., 2018, Rajabioun and Ioannou, 2015].

3.1.2 Parking Reservation Systems

Parking Reservation (PRS) systems allow drivers to book a parking space and avoid conflicts

at arrival. These systems can, not only, reduce traffic congestion like PGI but also, maximize

parking resources utilization and revenue and minimise drivers’ cost [Kotb et al., 2017]. PRS

can be sub-divided in three categories: Web/Mobile, Deterministic and Pricing-based.

Web/Mobile PRS systems at their base are PGI systems with the added functionality of a

driver being able to reserve a parking location of his choosing ahead of time. Gupta et al. [Gupta

et al., 2017] and Mangwani [Mangwani, 2018] proposed two such systems with the use of IoT.

However, in these systems, the user must choose manually which parking location to reserve.

Techniques from the other two sub-categories can be applied to obtain a better overall allocation.

Deterministic PRS systems assume the driver’s arrival time to the parking lot has to be known a

priori and that there are sufficient resources to serve all the vehicles in a time frame. Then, the

system either minimises some cost function for the driver or maximizes the parking lot revenue.

IParker [Kotb et al., 2016] is an example of such a system which combines intelligent resource

allocation, real-time reservations, and dynamic pricing policies by using mixed-integer linear

programming. However, the cost function minimised for drivers carries the same weight for

monetary cost, walking distance and search time, which may not be accurate for everyone.

Pricing-based PRS systems allow the price of a parking space to dynamically change to

efficiently manage the parking resource utilization and steer general traffic flow. These pricing

policies are usually archived by using agents representing drivers and a kind of parking manager.

In this context, both agents can communicate to find a suiting price either by negotiation [Barile

et al., 2015, Di Napoli et al., 2014] or auctions [Kong et al., 2018]. However, auctions raise

fairness issues by making better parking spots available only to the wealthiest. Another method
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would be to make the price depend on some aspect beneficial to the manager. For instance,

prices could rise linearly to demand or decrease in under-used areas [Barile et al., 2015, Nocera

et al., 2014].

3.1.3 Evaluation metrics

In this context, it is relevant to mention the metrics customarily employed to measure the success

of the Smart Parking System. These include traffic flow, lot availability and utility for every agent

involved.

Cruising for parking can have tremendous repercussions on street traffic, particularly in areas

where short-term parking is the norm, like shopping or school areas. As such, SPS is considered

to have a beneficial impact on the city when this metric is reduced.

However, this system still needs to ensure that most drivers find a place to park their vehicle.

As such, one of the most recognised tools for assessing Smart Parking is gauging whether the

rate of successful parking increases[Houissa et al., 2017]. Another metric that can be used is

parking lot availability ratios[Di Napoli et al., 2014, Harper et al., 2018, Kotb et al., 2016]. If

parking lots obtain similar occupancy rates across the city, there are more possibilities that every

driver can find a suitable parking spot for his activities.

SW =
∑i∈PR(UD(i)∗UPM(i)∗UCM(i))

|PR|
(3.1)

where:

PR = set of parking requests

UD = utility for the driver

UPM = utility for the parking manager

UCM = utility for the city manager

Furthermore, agents individual utility is a well-established approach in evaluating the per-

formance of Smart Parking[Di Napoli et al., 2014, Kong et al., 2018, Kotb et al., 2016] because

it can illustrate how the parking allocation works differently for every stakeholder in the sys-

tem. To observe a combination of all the utilities, system welfare, calculated by Equation 3.1, is

used [Barile et al., 2017, Barile et al., 2015]. Therefore, the ultimate goal is to increase system

welfare.
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3.2 Agent-based Models

As Ferber defined in [Ferber, 1997],

“An agent is a real or virtual autonomous entity, operating in an environment, able to per-

ceive and act on it, which can communicate with other agents, which exhibits an independent

behavior, which can be seen as the consequence of his knowledge, its interactions with other

agents and goals it need to achieved”.

These models are suitable for assessing the consequences that emerge from the collective

behaviour of individual entities. The reason for this is that agents provide a bottom-up approach

to representing the scenario to be simulated.

Used in the scope of most STEM (Science, Technology, Engineering and Mathematics) dis-

ciplines, these computational models are suitable approaches for simulation scenarios where

real-world testing would be too expensive, dangerous, environmentally damaging, or even phys-

ically impossible [Leitão and Rückemann, 2013]. Therefore, making it possible to study how

new dynamics could impact population-level complex phenomena. However, modelling and

simulating systems with increasing scale and detail/precision, also increases computational re-

quirements, to the point of parallel solutions can become a necessity [Rousset et al., 2016].

3.2.1 Multi-agent Systems

The concept of Multi-agent Systems (MAS), derived from the field of distributed artificial intel-

ligence, is defined by the use of decentralized parallel execution of autonomous agents[Leitão

and Rückemann, 2013]. These systems aim to find solutions for problems too complex for a

single agent or monolithic system.

As mentioned in Section 3.1.2, the actors in transportation systems, in particular, Smart Park-

ing, (drivers and parking managers) have characteristics that match the definition of autonomous

agents well. This fact plus the high level of complexity of the system allows for modelling Smart

Parking Systems in terms of agents who interact in such a way to reach their goals, both selfishly

and cooperatively [Vasirani and Ossowski, 2012].

In truth, Shin and Jun [Shin and Jun, 2014] propose a system with five actors: parking lot,

parking management systems, a central server, personal navigation device and driver. In this

system, the central server is responsible for the parking allocation by answering the drivers’

requests with the best available parking location for reservation or if none is available with the

most probable to be available by the time the driver arrives. A year later, Barile et al. [Barile

et al., 2015] describe two types of agents, drivers and parking manager, as a refinement of

previous work [Di Napoli et al., 2014, Nocera et al., 2014]. The parking managers act on behalf

of the city and can respond to drivers requests with an offer of the park that better matches it.
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The driver can only accept or reject the offer based on their own parameterized utility function.

Consequently, this system can now simulate drivers with different preferences. In the same

topic, Boudali et al. [Boudali and Ouada, 2017] propose a similar multi-agent system with a

more distributed approach, as drivers can only negotiate with nearby parking facilities, and using

a multi-criteria ranking method to try to mitigate reservation conflicts and reduce the time the

reserved parking spot is idle.

However, the solutions described above do not include private parking. Kong et al. [Kong

et al., 2018] suggest a system where private parking owners can exchange their parking spots

during the workday. If the exchange is impossible, they are encouraged to rent the parking

spaces to a central platform who then auctions parking time-slots in all available parking spaces

(private and public) to drivers.

Another use for agents in Smart Parking is guidance to the most probable location with

available parking. By assuming on-street parking to be free, Houissa et al. [Houissa et al., 2017]

use a system with two agents, drivers and street segments, where the former tries to learn which

is the next segment in the itinerary to maximize a driver’s chances of finding a parking spot

faster. The downfall of this system is that the learning process must be restarted for each driver

due to the objective function, the driver’s final destination, changing.

3.2.2 Agent Frameworks

It should be emphasized that there is a clear distinction between agent-based models and multi-

agent systems. The former is to be used in a simulation context, whereas the latter have real-life

applications. Therefore, on the one hand, Agent-based Models frameworks have simulation in-

frastructure, like scheduling and synchronization between agents, but are not capable of agent-

based solutions. On the other hand, MAS frameworks are built for developing these solutions

by following specifications that enable successful interaction with other agent systems. How-

ever, by nature, these platforms lack functionalities specific for simulation purposes[Leitão and

Rückemann, 2013]. Notwithstanding, both frameworks can be used for simulation purposes

depending on the context and model requirements.

There numerous agent-based modelling and simulation tools available, each with a some-

what distinctive reason for its existence, all concerning different levels of generality, usability,

mutability, scalability and performance of the system. For example, most Agent Development

Frameworks require proficiency in programming languages such as Java, C/C++, Python or

Basic. However, there are a few tools that enable non-technical users to build higher-level sim-

ulation models by using Application Programming Interfaces (APIs), graphical add-ons and

libraries, but these lack flexibility in a simulation application. As such, an ideal framework
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should require a minimal learning curve, while being able to create simulations adaptable to any

domain and execute them robustly regardless of computing machine [Abar et al., 2017].

The majority of multi-agent platforms do not provide native support to run multi-agent simu-

lations in parallel. In other words, they are not prepared for horizontal scaling. These properties

can be achieved by developing dedicated models or implementing wrappers from the very start.

However, this approach is technically complicated, and non-specialist programmers model most

agents. Therefore, Parallel and Distributed Multi-agent systems are a better solution as they en-

able the simulation to run on several distinct nodes with agents distributed evenly amongst them,

as well as, the communication and synchronization between the said processing nodes [Rousset

et al., 2016]. However, these solutions are still far from perfect. The remainder of Section 3.2.2

presents some known Agent Frameworks as well as their strengths and limitations in terms of

designing and executing multi-agent simulations.

3.2.2.1 JADE and Jadex

JADE (Java Agent Development Framework) is a platform to implement multi-agent systems

which comply with FIPA specifications for interoperability [Bellifemine et al., 2005]. According

to Bellfemine et al., “The Foundation for Intelligent Physical Agents (FIPA) is an international

nonprofit association of companies and organisations sharing the effort to produce specifications

for generic agent technologies” [Bellifemine et al., 2001]. As such, this organisation identified

some key features that are vital for managing an agent-based system, like the existence of an

Agent Management System, Agent Communication Channel and Directory Facilitator, as well

as, describing agent content language and ontology [Bellifemine et al., 2001].

JADE aims to simplify the development of distributed agent-based solutions by providing

features to deploy, manage and debug them while maintaining easy integration with other tools

[Leitão and Rückemann, 2013, Lamersdorf et al., 2011]. However, due to targeting agent-based

applications, it does not provide any time discretisation or synchronisation support for simula-

tion. Also, JADE’s agents are written in Java and use multiple transport protocols like Java-RMI,

HTTP or IIOP to implement FIPA compliant communication [Bellifemine et al., 2001]. These

messaging protocols allow for agents to be distributed across several nodes but, reveal to be unfit

for parallel computing as they are inefficient in high-performance networks by making use of

synchronous calls [Rousset et al., 2016].

In this context, Jadex (JADE extension) appears as a layer on top of JADE to design and

implement intelligent agents using belief, desire and intention (BDI) model. This modelling

paradigm is based on the notion of agent mental states and plans, consequently allowing for

higher-level development of rational agents. In this platform, the agents are specified in XML

with plan details written in Java [Leon et al., 2015]. By using the JADE platform as a base, the
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development of agents in Jadex can still utilise all the tools available in JADE [Lamersdorf et al.,

2011], but also shares all the shortcomings stated.

3.2.2.2 Repast

The Repast Suite is a collection of agent-based modelling and simulation platforms for the cre-

ation of both reactive and BDI object-oriented agents. These platforms are known for their high

modelling strength and a vast range of applicable simulation domains, at the cost of, requiring

high model development effort and proficiency of programming languages.

Repast Symphony and Repast J are modelling systems designed to serve users with medium

to large-scale simulation needs. Both include user-friendly graphical interfaces. Symphony is

Java and ReLogo-based having visual, intuitive model development and management tools with

flow-charts. Repast J uses common or Logo-like C++ programming languages and also provides

built-in simulation results logging and charting tools.

Repast for High-Performance Computing (RepastHPC) is a C++-based modelling system

specially designed for high-performance environments and, therefore, is adapted to parallel en-

vironments. RepastHPC’s synchronization method is event-driven but, supports defining a peri-

odic scheduled event, so that time-driven simulations can be achieved. Although highly scalable,

agent communication is carried out not by messages but method calls, this translates to no com-

munication that yields agent modification being permitted between remote agents. As such,

RepastHPC will only high efficiency and scalability on read-only models [Rousset et al., 2016].

3.2.2.3 NetLogo

NetLogo is an Agent-Based Modeling Toolkit for simulating natural and social phenomena. It

uses a platform-specific simple programming language (NetLogo) and user-friendly graphical

interfaces which provides an accessible introduction to agent-based modelling. It also provides

access to an extensive collection of sample models that are easily modified and extended to

match the simulation requirements. These properties make this a viable tool for teaching and

research purposes for medium to large-scale models [Abar et al., 2017].

One of the downsides of this tool is restricted application domains provided. Due to the lack

of versatility of the framework, complex models, for example, ones that use non-grid environ-

ments, are outside the capacity of NetLogo [Robertson, 2005]. Additionally, being a tool built

for simulation, this framework is unable to create multi-agent systems for real-life application

purposes.
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3.2.2.4 Agent Process Modelling

Agent Process Modelling (APM) is a multi-agent system framework that models and orches-

trates agent behaviours as processes [Rúbio et al., 2019]. By using Business Process Model

Notation (BPMN) standards to define intra-agent behaviours, APM both decouples agent logic

from implementation and is comprehensive for a broader audience. Therefore, non-technical

users can also understand and improve agent behaviour. The Business Process Model (BPM)

engine then used to run the agents is a finite-state-machine, unlike the other platforms where

each agent was a computer thread. Therefore, this framework is more lightweight and allows

for efficient, distributed simulation operating in a virtually infinite environment [Markus et al.,

2008].

In this agent technology, Agent capabilities are developed as micro-services or web-services.

As such, agent implementation is more transparent and can be partially reused for similar scenar-

ios. Furthermore, this allows for seamless integrating with a much more comprehensive range

of applications and domains [Rúbio et al., 2017].

3.3 Micro-services

Micro-service architecture is developing an application as a suite of small domain-driven ser-

vices, each running independently and communicating in a light-weight manner with one an-

other. In this way, each service can be modified, added or removed without impacting the system

as a whole. In this way, the micro-service architecture is very similar to multi-agent architec-

ture [Krivic et al., 2018]. Table 3.1 shows that micro-services can emulate the same properties

as a multi-agent system.

Table 3.1: Agent properties present in micro-services [Krivic et al., 2018]

Agent Property Present in micro-services?
Autonomy X
Adaptation ×
Interaction X
Mobility X
Learning ×
Collaboration X
Coordination X
Reactivity X

Kravari and Bassiliades [Kravari and Bassiliades, 2018] combine intelligent agents and the

micro-service architecture to propose a rule-based eCommerce methodology “IoT’s Things”

can safely trade on the network. This study shows that Multi-agent systems in a micro-service
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architecture provide added interoperability, reusability and overall efficiency to the distributed

system, as agents who represent things all use different technology and can still negotiate with

one another.

3.4 Business Process Modelling

As mentioned in Section 3.2.1, multi-agent systems are suited for complex distributed scenarios.

However, there is a disconnection between business and multi-agent oriented software develop-

ment, which is the reason for the slow adoption of agents in the industry [Endert et al., 2007].

Despite being possible to introduce mentalistic notions to agents, business users map their issues

to business processes and entities [Endert et al., 2007]. A business process is a repeatable set of

steps or activities that need to be executed to produce value. Modelling these processes is vital

to understand who are the actors and steps involved, as well as, try to improve their efficiency

[Tjoa et al., 2008]. As such, a mapping between business processes and entities to agents, their

actions and decisions, is necessary to bridge this gap.

Markets are economic structures in which at least two parties exchange resources, either

goods or services. In markets, processes represent the logical flow aiming to coordinate agent

activities and allocate the resources by using negotiation [Rúbio et al., 2017]. In the case of

Smart Parking, agents transact a particular parking infrastructure in the required time frame. As

such, the parking market can be studied as an exchange of a resource.

Regular commuters tend to have long-term contracts with parking lots, whereas other drivers,

such as shoppers, tourists or driver with short-term parking needs, need to search for publicly

available opportunities near their destination [Anderson and de Palma, 2004]. The latter can

then choose between different parking arrangements. The parking spot may be in a free parking

location, on-street or off-street, as such, these work like communally owned parking. Another

scenario would be metered on-street parking, where the driver needs to contract that location

for a maximum amount of time before legally having to free it. The third scenario would be a

paid parking arrangement where the driver needs to pay the time used right before leaving. The

last two scenarios can be seen as tariff-based retail markets where there is a parking manager

(private or municipal) who acts as a provider and drivers are the customers.

However, the use of technology has allowed for more control on resource management and

foster the emergence of a sharing economy, a volatile market where consumers can occasion-

ally take the role of providers [Rúbio et al., 2017, Stephany, 2015]. In truth, Melo et al. [Melo

et al., 2019] conducted a case study in Porto where parking spots reserved exclusively for city

logistics operations were used for short term (10 to 20 minutes) parking. This study concluded

that shared parking could effectively reduce delay and travel times, queue lengths, and fuel con-

sumption and, also, show an increase in vehicles average speed. Likewise, there are some efforts
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to incentive "selfish sharers" rent their own parking space during unused hours to maximise al-

ready existing resources [Stephany, 2015, Zhang et al., 2018], therefore introducing peer-to-peer

markets to this scenario.

3.5 Gap Analysis

All of the studies reviewed in the theme of Smart Parking support the hypothesis that this is a

viable solution for the parking problem. Table A.1, in Appendix A, shows a summary of the

characteristics of these systems studied in the literature and their goals.

Much of the available literature on this subject deals with the question of implementing more

efficient reservation policies. Others have highlighted the relevance of providing better guidance

for drivers in increasing their parking success.

Furthermore, almost every paper written on the topic of Smart Parking considers that every

entity involved in the parking problem is selfish. Nonetheless, some studies also include a central

entity to represent the system as a whole or the city’s interests [Boudali and Ouada, 2017, Rizvi

et al., 2018]. This entity is usually responsible for allocating every driver to a parking slot and,

as a result, obtain better global social welfare. However, this approach does not account for the

existence of privately managed parking lots for which the city has no means to change parking

conditions directly.

There is a relatively small body of literature that is concerned with understanding market

policies that could also help alleviate the parking problem. These generally model individual

managers for each parking location with the power to dynamically modify parking rates [Balac

et al., 2017, Kotb et al., 2016] or employ city-wide methods for calculating prices based on a

performance metric [Nocera et al., 2014, Barile et al., 2017]. As such, the studies reviewed

either consider only on-street parking or closed off-street car parks.

Overall, much of the current literature on Smart Parking pays particular attention to the

impact these systems have for both drivers and an entity responsible for parking resources. There

are little studies on the role these systems have in improving system-wide satisfaction or welfare.



Chapter 4

An Agent-Process Model Approach for
Smart Parking

This project proposes to use a micro-service based multi-agent system simulation to represent all

stakeholders of the parking problem. As seen in Section 3.2.1, Multi-agent systems can represent

the parking context, and all the entities involved very naturally and intuitively. Therefore, using

MAS provides a model much more convenient to calibrate and to yield accurate results. The

use of micro-services to model the agents’ capacities also provides scalability and flexibility to

accommodate a great variety of scenarios.

4.1 Methodology

This project considers a city with several open and closed parking locations, which are monitored

and whose characteristics, like, for example, availability and price, are known to every agent of

the system. In this context, it is assumed the existence of IoT sensors and devices that collect

these parking slots availability and help better allocate parking in a city.

In an attempt to produce more reliable results, the simulation scenarios are based on real-

world map information collected from the OpenStreetMap API. As such, given the limit GPS

coordinates, the position of all the parking locations, both on and off-street, and the paths that

unite them are determined. However, this source does not provide sufficient data, particularly

regarding parking lot properties. Therefore, there is a need for additional data that allows further

parameterization of the simulated environment, like the addition or removal of streets or parking

capacity.

24
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4.1.1 Open versus Closed Parking Overview

Previous studies [Balac et al., 2017, Kong et al., 2018] mostly defined private parking spaces

as those who are exclusively owned by someone and, as such, are accessible only for a limited

group of drivers, like residential garages or parking spots reserved for a particular shop’s cus-

tomers. By contrast, the term “public parking” is generally understood to mean the locations

which are available for everyone, such as regular on-street spots. The scope of this thesis only

contemplates public parking and considers all on-street parking is considered to be open and

off-street lots to be closed.

There are some City Councils [Cork City Council and QPark, 2018] which provide reports of

their public parking facilities and respective prices and availability. These can be used to model

parking locations and base prices for this simulation. At the moment, there are four scenarios

designed for this simulation, each with different pricing strategies for both open and closed lots.

4.1.2 Entity Overview

The academic literature in Smart Parking [Barile et al., 2015, Di Napoli et al., 2014, Harper et al.,

2018, Nocera et al., 2014] has identified two entities involved: drivers and parking managers.

In this works, the set of parking managers have total control over every parking facility in the

scenario. So, they can have selfish, greedy motivations or, also, model the global efforts of

the city. However, there is a body of literature that describes city managers who have more

macroscopic goals for parking. Consequently, in this project, there are three types of agents to

model these entities.

Drivers represent the people or autonomous vehicles who need to find a parking spot that

meets their requirements. These requirements can be a maximum distance from the final des-

tination, the minimum time required and budget. However, these agents also have preferences

to model different driver profiles. This preferences can be modelled as weights in the utility

function, as such, drivers can prefer distance from destination or prices to be minimum. Hence,

drivers objective is to minimize total daily costs, including the parking fee, total driving dis-

tance and round-trip from parking to the final destination by negotiating where to park. For this

purpose, these agents can search for parking.

Parking Managers reflect car parks owners, both public and private, who want to maximize

their profit or obtain improved spot turnover. Similarly to drivers, each parking manager has

variable weights associated with the profit and lot availability. Thus various profiles can be

modelled. This agent can manage the parking slots under its supervision and change the price

asked for them.

Lastly, the City Manager represents the public interests in the parking arrangement. There-

fore, this entity is mostly responsible for enforcing parking regulations and distributing drivers
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across different parking locations better. Consequently, its actions aim to decrease traffic flow

and increase parking turnover near central city locations, such as near touristic, commercial and

school areas. As such, the utility for this agent is dependent on the car park availability and

distance from these troublesome locations.

4.2 Overall Architecture

From an architectural perspective, this project has three main components further detailed in

Sections 4.3 to 4.5: the simulation service, the (APM) agent service, and decision logic. Figure

4.1 shows a components diagram of this architecture

The simulation service is responsible for designing and running the simulation experiments.

This service provides a graphical interface for visualizing the simulation scenario and the agents’

behaviour. The actors specified in the simulation service then use the decision processes speci-

fied in the APM service to navigate the simulation.

The agent service is the base for designing, running and monitoring intelligent agents that

represent the entities defined in Section 4.1.2. As such, it specifies and implements the decision

process of every stakeholder of the parking problem. HTTP requests are used to obtain infor-

mation from the other two services. However, agents need to communicate between themselves

and wait for events triggered by the simulation service. For these situations, the use of Kafka

messages was deemed more suitable.

The decision logic service provides the agent capabilities and simulation context. Notwith-

standing, real-world micro-services that provide agents with the knowledge needed for decision-

making can easily replace this last service.

The workflow of this solution starts providing the simulation configuration parameters to

the simulation service, which include a map of parking lots, the number of drivers and which

processes each entity in the system uses. After the configuration is complete, this service is

tasked with the creation of the corresponding agents in the APM service and with uploading

parking lot information to the decision logic service.

When after the instruction to start simulation is given, the simulation sends a message to

the APM service every time the driver actors reach specific points where they must make de-

cisions, like intersections and parking locations. Upon receiving decisions requests, the driver

agent uses the decision logic service to obtain information about the environment and, while

negotiating with other agents, like parking managers, utilize their capabilities to modify this

environment. The actions include the occupation and liberation of parking slots by drivers and

price modifications by managers. After this decision process has concluded, the agent service

reports the decision back to the simulation and awaits further events, such as messages or timers.
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Figure 4.1: Component Diagram of the overall structure

4.3 Simulation Service

The simulation service is implemented in JavaScript using a server written in Node.js, and client-

side served in P5.js for a graphical interface. The use of web-sockets enables synchronization

between the server and various clients that are observing the same simulation. As mentioned in

Section 4.2, this service also connects with a Kafka broker to send messages to the agent service.

Figure 4.2 shows the interface for configuring the simulation. As can be seen in this Figure,

there is a map illustrating the city located on the right side of the screen. In this map, the lines

represent roads. The small squares that are connected by the roads denote decision points. These

represent any location where drivers can make a decision, such as intersections or closed parking

lots. For coherence, both roads and decision points use the same colour scheme, so any brown

shape represents that parking is not allowed while green signifies that it. In other words, green

roads and decision points show on-street and off-street parking, respectively. Lastly, the thinner

green shapes, shown solely for map readability purposes, represent the contour of closed parking

facilities. On the left side, there is a column containing all the forms provided for setting up the

simulation parameters and editing the map. On the top, the first three menus allow downloading

map information from OpenStreetMap, loading previous configurations and saving the current

one, respectively.
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Figure 4.2: Simulation configuration interface with a map based on the city of Seattle

Menu numbered four is responsible for determining the processes used for drivers and man-

agers of both open and closed parking lots. If multiple process identifiers are provided separated

by a comma, they are chosen randomly at the time of agent creation. For example, if two pro-

cesses are specified for driver agents, probabilistic states that half of all driver agents use the first

and the other half the second.

Configuration of starting tariffs and pricing policies employed by open and closed parking

lots is achieved through menu five. Like the case above if multiple prices are specified, they are

assigned randomly to created parking lots. The policies existent determine how the Decision

Logic service calculates the rate for parking. Section 4.5 provides further information on how

these prices are calculated.

The sixth menu allows the user to populate the simulation automatically. In this context,

parkers represent drivers who intend to park their vehicle and, as such, have agents associated

with them. The set of possible destinations for these drivers is minimal, only three points by

default, so popular demanded areas can be portrayed more accurately in the experiments. On the

other hand, dummies are drivers that are forever circulating the environment to mimic normal
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traffic flow.

In the bottom-left corner, menu seven shows a collection of buttons to run and pause the

simulation, as well as editing roads and decision points and adding drivers.

The edition of roads is done by choosing the option with the same name and then clicking on

two decision points. If a direct path already exists between these two points, the platform asks

for confirmation to remove the road. In case it does not exist, a pop-up window appears asking

whether it offers on-street parking and if it is only one-way (from the first point selected to the

second) or two-way.

Similarly, the user can edit decision points is accomplished selecting the mode of the same

name and then clicking on any spot of the map. If the location clicked is a decision point, the

platform asks for confirmation and then remove it. Otherwise, a window emerges to query about

whether the decision point is a closed parking lot or just a junction between roads.

To add a driver manually, the user must choose this option on the menu and then select two

decision points. The first is the driver’s starting point and the second the destination. If there is

a path between the two points, the service then creates an agent containing this information and

draw the driver on the starting point of the map.

The only action necessary for starting the simulation run is pressing the play button present

in the second row from the bottom. From this moment forward, the simulation platform begins

regular communication with the APM service, and the movement of the drivers becomes ap-

parent in the screen. As shown in Figure 4.3, drivers represented by yellow circles can be seen

moving towards their selected choice for parking location. Parking locations are represented by

green lines, in the case of on-street parking, or green squares for off-street lots.

Due to the source of map data, OpenStreetMap, not providing information regarding parking

capacity, this platform assumes that parking slots are 5.5 meters wide and use this value to

calculate how many slots exist in every street where parking is allowed. For closed lots, the

parking capacity was fixed at three, so there are extreme cases of parking scarcity.

4.4 Agent Service

The Agent Process Modelling (APM) service’s goal is designing, running and monitoring agent-

based solutions using the agent-process model. Therefore, APM’s agent behaviours are devel-

oped and depicted as business processes. Thus, these processes and can be combined, as sub-

processes, to define how the agent react. These behaviours can include calling micro-services

that act the agents’ capabilities to execute tasks.

Processes are created and stored to be re-utilized by multiple different agents. However, each

agent during its execution can take different routes and call various services or sub-processes

according to the knowledge it possesses. Agents can also communicate with one another by
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Figure 4.3: A simulation run set in a map of a section of Avenida da Boavista

exchanging messages or with other world entities (real or simulated) by invoking external micro-

services.

4.4.1 Business Process Model and Notation

Created by Business Process Management Initiative, Business Process Model and Notation

(BPMN) is a standard graphical notation for specifying business processes. Considering that,

as stated previously, agent behaviours in APM are defined as business processes, it is logical to

use this notation for this purpose. With a structure based on a flow-charting technique, BPMN

is composed of three types of elements: Events, Activities and Gateways.

4.4.1.1 Events

An Event is drawn as a circle that represents that an event has occurred; they can be broadly

divided into two categories, Catch and Throw. Catch Events denote that the event is received,

whereas the process sends Throw Events. Details regarding the event can be shown in the middle
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of the circle. For example, events for both receiving and sending messages have an envelope

drawn in the middle. There are three types of Events: Start, Intermediate and End.

Start Events act as process triggers and, as such, can only be Catch. In contrast, End Events

represent the termination of the process and are restricted to Throw events. Intermediate Events

happen in the middle of the process and are allowed to be of both categories. Figure 4.4 shows

a table with icons of all Events, some of which are not available in APM.

Figure 4.4: BPMN events
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Figure 4.5: BPMN activities

4.4.1.2 Activities

Rounded-corner rectangles represent Activities and denote atomic or compound actions exe-

cuted by the process. An atomic action or a Task represents a unit that cannot be broken down

to a further level of detail. Differently, compound activities are also known as Sub-processes.

These can be either explicitly shown as a process within this rounded-corner border or by an

icon. Figure 4.5 shows the icons illustrating Activities.

4.4.1.3 Gateways

Represented with a diamond shape, Gateways define forking and merging of paths, depending on

the conditions expressed. As illustrate in Figure 4.6, there are four types: Exclusive, Inclusive,

Parallel and Event Based.

Parallel gateways create bifurcating paths in the process flow and allow for parallel execution

as the name suggests. Exclusive and Event-based gateways create alternative process flows

Figure 4.6: BPMN gateways



4.4 Agent Service 33

where only one path is taken according to the conditions, like an XOR computational gate, the

only difference is that Event-based gateways “conditions” manifest as which event occurs first.

Similarly to an OR gate, Inclusive gateways also create alternate paths according to conditions,

but it is possible to take more than one.

4.4.2 APM Elements

APM has some components that allow the modelling and execution of agent-processes. Firstly,

this service enables agents to be encapsulated in a specific application domain called environ-

ment. This environment permits communications to be self-contained as agents can only interact

with those in the same environment. Secondly, there is the notion of roles which represent which

type of agent the agent is on that process. A name defines roles, and these can identify a group

of agents during execution for, as an example, communication purposes. Thirdly, as mentioned

earlier, processes model the agent’s behaviour and interaction with other agents. They are con-

tained in a specific environment and are associated with certain roles. These also have a version

to enable agents to continue running even if the process used is updated.

Hence, agents are placed in an environment and have a specific role and process. Besides,

agents have variables that are used and modified during its life representing their knowledge. A

distinctive execution variable is the “agent” which contains information about the agent himself,

such as its identifier, role or historical variables, from within the process. Agents also possess

goals that represent their objectives and can be monitored during execution.

4.4.3 Agent Process Models

There are two agents modelled at the simulation at the moment, the drivers and the parking

managers. Currently, City Managers are in a way represented by the Decision Logic Service as

it imposes the current limits on price signals.

As stated in Section 4.1.2, Driver agents represent drivers or autonomous vehicles that are

looking for parking opportunities in the city. Therefore, their decision process, illustrated in

Figure1 4.7, starts by obtaining a list of possible parking locations sorted by a utility metric

and then drive to the best option. This function is a weighted sum of the distance from their

final destination and slot price factors. Due to agents having different weights associated with

each utility element, the results of applying the same process to two agents, who have the same

destination and upper bounds on the price and distance, can start driving towards distinct parking

lots.

1A full-page size version of this figure can be found in Appendix B.1
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Figure 4.7: Driver behaviour process model

While cruising to the selected parking lot, the driver may find other parking opportunities.

When this occurs, the agent requests information about this location, such as price and avail-

ability. Should these conditions be deemed acceptable, the driver chooses to park there. If no

intermediate parking lots appear, at the time of arrival to the selected parking lot, the driver

queries the parking manager for available slots. If they exist, the driver parks there. Otherwise,

the parking selection process begins anew by requesting an updated list of sorted parking lots

and selects the next best option.

Parking Managers’ purpose is to manage the state of the parking lots for which they are

responsible. Therefore, in a scenario where parking lot prices’ calculation parameters are fixed,

their behaviour, shown in Figure2 4.8, only include answering queries about availability and

enforcing parking time limits. It is relevant to note that parking lot prices are calculated in the

Figure 4.8: Parking manager process model

2Appendix B.2 presents a full-page size version of this figure
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Figure 4.9: Parking manager process model (improved)

Decision Logic Service and can be set to be dynamic in terms of availability, even when this is

the process used by the manager.

An updated version of this process, illustrated in Figure3 4.9 includes a routinely update on

parking lot basic tariffs based on the minimum and maximum intended values for availability.

In this case, if a lot has shown to keep occupancy levels below expected, the prices decrease.

Likewise, should the opposite occur, the prices rise to discourage drivers from parking there.

4.5 Decision Logic Service

This web service REST, implemented using JHipster4, maintains and updates the state of the

simulation scenario by keeping information about drivers and parking lots. For drivers, it holds

information about drivers destination and conditions for parking such as maximum distance from

their goal, budget and required parking time. Similarly, it also keeps a record of each parking

lot tariffs, location, availability and regulations such as maximum time allowed for parking.

By accessing this information, this service allows drivers to retrieve lists of parking lots,

filtered by those which match their requirements or not and ordered according to the agents’

preference. The utility function presented in Equation 5.1 specifies drivers’ preferences by tak-

ing into account the lot’s distance from destination, price or a combination of both. Similarly,

the requirements represent the maximum values tolerated for these two parameters, as well as

the intended parking time.

3Appendix B.3 presents a full-page size version of this figure
4https:start.jhipster.tech



An Agent-Process Model Approach for Smart Parking 36

This service calculates the parking prices according to its manager specification. These

prices are calculated both when information about the lot is requested and at the moment of

payment. At the moment, three methods are available, fixed, dynamic and regulated.

Equation 4.1 calculates fixed prices, reflecting only the driver’s parking time.

price f ixed = ps ∗ tsused (4.1)

where:

ps = tariff price per time slot

tsused = number of time slots used

In turn, dynamic prices are obtained by adding a fee dependant on the lot occupation; as

such, they are calculated by the formula in Equation 4.2.

pricedynamic = price f ixed + price f ixed ∗occ (4.2)

where:

price f ixed = price calculated by the formula in Equation 4.1

occ = percentage of occupied slots

Regulated prices, calculated by Equation 4.3, are only available for closed parking lots be-

cause they are based on the cost practised in the nearest open parking lot, by adding a percentage,

which represents the closed lot’s profit.

priceregulated = (1+ priceopen)∗ p+ priceopen (4.3)

where:

priceopen = price of nearest open parking lot

p = percentage of price that represents profit, a value between 0 and 1

Also, this service allows parking managers to update their lot’s information by occupying or

freeing slots as well as managing how prices are calculated and the tariff price signal.



Chapter 5

Experimental Evaluation

The modelling and execution of the designed models allow the simulation of a Smart Parking

System and the study of the impact of new parking pricing dynamics in the city. In this context,

all on-street parking is admitted to be open, and every off-street lot as closed. Hence, four

different scenarios, with distinct pricing strategies in open and closed parking lots, were designed

and evaluated:

1. Both open and closed parking lots have prices that are fixed. As such, initial tariffs are

defined, and will not change during the entire run of the simulations.

2. Fixed prices in open parking locations and dynamic prices for closed lots. This price

dynamism is independent of open street prices and, therefore, unregulated.

3. Dynamic pricing to on-street parking is introduced in the third experiment. However, on-

street parking prices will be used to regulate the off-street price point. Therefore, closed

parks will decrease their prices if the street nearest to them does as well.

4. Finally, both on-street and off-street parking lots have dynamic prices. These prices, only

regulated by maximum and minimum values provided, provide a possible chaotic sce-

nario.

5.1 Metrics and evaluation

The purpose of experiments in this dissertation is to assess different market dynamics in parking

and establish how they impact city-wide traffic. Therefore, the performance of this simulation is

assessed by monitoring city traffic flow, parking occupancy rates, parking managers’ profit and

the allocation utility for drivers.

37
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5.1.1 Driver

On the drivers perspective, the parking metrics evaluated mostly result in the study of a utility

function which measures the distance from destination and price paid weighted by the drivers’

preference, as shown in Equation 5.1.

utilityparking = α ∗ dmax−d
dmax

+β ∗ pmax− p
pmax

(5.1)

where:

α = importance factor for distance

β = importance factor for price (1−α)

d = distance in meters from destination

dmax = maximum parking distance from destination

p = price paid for parking

pmax = price of the most expensive parking lot

Three additional indicators complement this metric. These intend to add information regard-

ing whether or not the driver was able to park at all and if the parking arrangement matched the

driver’s threshold values for maximum price and distance. As such, driver utility, determined

by Equation 5.2, is greater than 3 if the driver is capable of parking within threshold values.

Besides, utilities under 1 signify that no parking arrangement was tolerable.

utilitydriver = utilityparking + parked +dthreshold + pthreshold (5.2)

where:

utilityparking = utility described in 5.1

parked = 1 if driver was able to park, 0 otherwise

dthreshold = 1 if parking distance is less than threshold, 0 otherwise

pthreshold = 1 if price payed was less than threshold, 0 otherwise

5.1.2 Parking Manager

Literature in this topic shows that Parking managers aim to get maximum profit and keep occu-

pation levels within certain boundaries. As such, those are the metrics employed to measure the

satisfaction of these agents during the simulation. Therefore, during each simulation run, the oc-

cupancy rates of every parking lot, as well as, instantaneous profit per parking slot owned were

registered for each manager at regular, frequent intervals by the formulas shown in Equations

5.3 and 5.4.
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occupation =
slotsoccupied

slotstotal
(5.3)

pro f it = priceslot ∗occupation (5.4)

where:

slotsoccupied = number of slots that are occupied at the moment

slotstotal = total number of slots in the lot

priceslot = price practiced per slot

5.1.3 City

For an overview of the impacts of the parking market on the whole system, it is vital to evaluate

some metrics that relate to the good functioning of the city. As such, and based on the studies

presented before, traffic flow on every street is one of the performance indicators for this work.

The other indicator is called parking equilibrium and compares the occupancy rates of open

and closed parking lots. Calculated as shown in Equation 5.5, equilibrium below 1 indicates that

closed parking lots are being utilized in detriment of open ones and equilibrium above 1 shows

that the opposite is true.

equilibrium =
occopen

occclosed
(5.5)

where:

occopen = occupancy rate of open parking, a.k.a, on-street

occclosed = occupancy rate of closed parking, a.k.a, off-street

Due to prices in on-street locations usually being closer to most destinations and cheaper

as well, it is expected that equilibrium levels will be above 1 for most of the simulation runs

duration, in every scenario presented above.

5.2 Run Configuration

With the aim of this dissertation in view, four scenarios will be analysed. For each experiment,

the simulation is run six times, each with a duration of 25 minutes. Though, five of these

minutes are employed as start-up and cool-off periods to collect more information on the drivers

who parked.

The runs will start with thirty driver agents with five more being added every fifth second.

There are three variants on the driver behaviour, the one shown in Figure 4.7, one more simplistic
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version which disregards parking opportunities found along the way and a greedy driver who will

always try to park in his first choice. The driver order of parking lot choices will be on one of

three profiles.

The first profile is distance-oriented. Drivers with this profile do not care about the money

spent, so long as they park near their destination. This translates to having α set to 0.95 and β set

to 0.05 for utilityparking calculations. On the opposite side, the second profile is price-oriented.

As such, this profile disregards distance in favour of obtaining a lower parking price. In other

words, their α factor is 0.05, and β is 0.95. Lastly, the third profile is a mixture of the two

before. By setting α and β both to 0.5, this profile values a balance between price and distance.

Therefore, drivers with this profile are more willing to park farther way for smaller discounts

than the first profile but not as far as the second.

In addition to these agents, and to give more realistic behaviour to the system, the streets are

populated with ten dummy drivers. These drivers exist to emulate the impact on traffic flow of

the behaviour of drivers who do not wish to park in the region.

5.3 Experiment 1

In this scenario, both open and closed parking lots have their prices fixed during the entire

run. This situation resembles the current parking market found in most cities. As such, this

experiment and consequent results serve as a baseline for comparison with the ones that follow.

5.3.1 Configuration

The tariffs practised in this scenario use time slots of 15 seconds. Parking in open parking lots

costs from 0.2 to 1, whereas closed parks have prices ranging from 1 to 2.

Due to prices being unchangeable during the whole run, all parking manager processes only

deal with parking lot access and are represented by the one shown in Figure 4.8.

5.3.2 Results

Information on driver satisfaction obtained in this experiment can be consulted in Table 5.7. The

values true and f alse in %Parked row refer to the percentage of drivers that was able to park

their vehicle and those that could not, respectively. Lastly, row %Tolerance satis f ied gives an

insight into the percentage of drivers whose tolerance parameters, in terms of maximum distance

and price, were fulfilled.

By analysing this Table, it can be concluded that in every run there is at least one occurrence

of a driver that reaches utilitydriver over 3.9 which is very near the perfect utility value of 4.

Average levels of these metrics also show that, excluding Run 6, overall, drivers could park
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Table 5.1: Summary of driver metrics in experiment 1 1

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Average

Utility
Max 3.955 3.978 3.959 3.969 3.989 3.946 3.969

Average 3.444 3.597 3.569 3.353 3.049 2.974 3.319
σ 0.946 0.607 0.772 0.77 1.017 1.097 0.882

% Parked true 93.651% 98.950% 96.893% 95.868% 96.627% 94.344% 96.055%
false 6.349% 1.050% 3.107% 4.132% 3.373% 5.656% 3.945%

% Tolerance
satisfied

distance 93.651% 89.286% 88.983% 95.868% 95.868% 77.256% 90.152%
price 93.651% 98.950% 96.893% 71.084% 71.084% 71.480% 83.857%

Average choice 2.762 1.462 1.98 3.917 1.812 1.945 1.953

within tolerance values for both distance and price. In fact, it can be observed that failure to park

is only observed in at most 6.4% of drivers and that over 71% can reach a parking allocation that

satisfies one of their criteria.

Similarly, Table 5.2 summarizes the results of experiment 1 in the city’s perspective. In this

Table, the maximum levels of traffic flow and it’s variation, as well as the identifier of the road

that presents these values, are presented. In addition, the minimum and maximum value of the

equilibrium metric, described in Section 5.1, can be consulted. Due to the existence of extreme

values (0 and ∞) when either open or closed lots are being used, the average of the equilibrium

is calculated from an auxiliary variable that is −1 when closed occupancy is larger, 1 when the

opposite occurs and 0 when the equilibrium is 1.

Table 5.2: Summary of city metrics in experiment 1

Traffic flow Equilibrium
Max Road Id Max σ Road Id Average Max Min

Run 1 19 224645476 4.170 28433727 -0.119 ∞ 0
Run 2 20 28433727 4.825 40769524 -0.405 ∞ 0.172
Run 3 13 28433727 2.539 28433727 0.0694 ∞ 0.086
Run 4 15 224645476 2.775 28433727 0.668 ∞ 0
Run 5 18 224645476 3.168 28433727 0.983 ∞ 1
Run 6 22 224645476 3.428 40769524 0.858 ∞ 0
Run 7 23 28433727 3.304 28433727 0.923 ∞ 0

Average 18.571 3.459 0.425 ∞ 0.180

The maximum traffic flow observed in this scenario is of 20 cars with a maximum standard

deviation between 2.5 and 4.9 cars. Furthermore, the equilibrium levels in this experiment are,

on average, over 1, corroborating the fact that most cars choose to park in on-street locations.

The roads whose identifiers can be found at least one of the Tables 5.2, 5.5, 5.8 and 5.11 are

those whose traffic flow can be further studied in Figure 5.1. As such, the values found in the

1Detailed information can be found in Table C.1 in Appendix C.1
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Figure 5.1: Traffic flow in roads with maximum values or variation in experiment 1

legend of this Figure are the road identifier numbers. Also, for readability purposes, the values

for traffic flow are averaged per minute.

It must be recalled that these metrics are collected in intervals smaller than a second. There-

fore, the traffic flow illustrated in this Figure, and similar ones in the following Sections, will

likely yield values distinct from those shown in Tables 5.1 and equivalent. In this context, it can

be seen that the average traffic flow is less than 10 for the top 4 roads with the most traffic.

Table 5.3 shows some information about profit and occupancy rates, reflecting the interests

of parking managers. These values are shown aggregated by parking lot type, open or closed, and

show that in most runs on-street parking has both greater occupancy rates and greater revenue.

Table 5.3: Parking manager metrics in experiment 1 2

Sum of profit Average occupancy
Closed Open Total Closed Open Total

Run 1 19.00 75.86 94.86 0.138% 1.019% 0.636%
Run 2 482.40 207.07 689.47 1.985% 2.988% 2.552%
Run 3 177.30 434.23 611.52 1.011% 6.720% 4.238%
Run 4 35.40 559.25 594.65 0.555% 10.122% 5.963%
Run 5 291.60 998.20 1289.80 1.012% 8.402% 5.189%
Run 6 545.20 1253.32 1798.52 1.860% 11.990% 7.586%

Average 258.48 587.99 846.47 1.093% 6.874% 4.360%

2More detailed information about these metrics can be found in Appendix C.2 where Table C.5 contains full
experimental data by road.
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Figure 5.2: Charts of profit and occupancy over time during experiment 1

In Figure 5.2, both the occupancy and profit metrics can be compared between open and

closed lots. In this scenario, open parking lots, on average, are above the closed ones in terms of

both occupancy and profit.

Another interesting factor in this experiment is the connection between price point and oc-

cupancy levels shown in Figure 5.3. In this Figure can be observed that the tariff prices ranging

between 1 and 1.2 are the ones that obtain the best occupancy levels on average.
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Figure 5.3: Occupancy in terms of price ranges in experiment 1
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5.4 Experiment 2

The second scenario has closed lots’ prices being changed according to lot’s availability. There

are two ways for this to be archived. Either the cost is calculated dynamically in the moment of

consultation or, it is regularly updated being fixed in between updates.

5.4.1 Configuration

In this experiment, managers of open lots will have the same behaviour explained in Section 5.3

and use the same prices as before.

Similarly, closed parking managers will have the same behaviour as the one used in the first

experiment, but the price calculation technique is different. The prices here will be calculated

by Equation 2.2 with pricebase being a value between 0.5 and 1. Therefore, drivers can park in

lots with the minimum base price for a price ranging from 0.5 to 1.

The other method of obtaining price dynamism is changing parking manager behaviour to

the one shown in Figure 4.9. In this case, the base prices start by being equal to the ones used

in Section 5.3, values from 1 to 2. Then, during the simulation, these values are updated rising

if occupancy is above manager threshold of 70% and decreasing if this value is below 30%.

However, it is important to highlight that the prices are bounded by the logic service which does

not allow tariffs to be below 0.1 or over 3 per time slot.

5.4.2 Results

As shown in Table 5.4, this scenario’s maximum values of driver utility are still over 3.9. How-

ever, the average values of utility drop to an average of 3.1. These results reflect that, while most

could still park within threshold parameters, a significant amount of drivers that could not. The

Table 5.4: Summary of driver metrics in experiment 23

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Average

Utility
Max 3.969 3.981 3.984 3.969 3.961 3.984 3.975

Average 3.143 3.112 3.134 2.905 3.076 3.267 3.074
σ 0.916 1.106 1.036 1.329 1.089 0.986 1.0952

% Parked true 93.70% 90.68% 91.68% 84.10% 90.55% 93.14% 90.64%
false 6.30% 9.32% 8.32% 15.90% 9.45% 6.86% 9.36%

% Tolerance
satisfied

distance 81.91% 61.55% 76.06% 71.28% 71.28% 76.76% 73.14%
price 89.34% 87.18% 89.45% 87.79% 87.79% 90.29% 88.64%

Average choice 2.191 4.318 3.016 2.4 3.901 3.01 3.167

2More detailed information about driver metrics can be found in Appendix C.1, particularly in Table C.2
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percentage of drivers who could not park being around 9% and distance dissatisfaction levels

reaching nearly 30% further corroborates this conclusion.

Traffic in this scenario reveals a maximum traffic flow average of over 25 cars with a max-

imum standard deviation of around 4, as can be observed in Table 5.5. Moreover, parking

equilibrium values range from 0.5 to 0.9, indicating that drivers more often choose to park in

on-street locations.

Table 5.5: Summary of city metrics in experiment 2

Traffic flow Equilibrium
Max Road Max σ Road Average Max Min

Run 1 26 224645476 4.670 28433727 0.900 ∞ 0
Run 2 27 40769524 4.256 40769524 0.687 ∞ 0
Run 3 22 224645476 3.452 28433727 0.833 ∞ 0
Run 4 24 28433727 4.754 28433727 0.578 ∞ 0
Run 5 29 28433727 4.848 28433727 0.866 ∞ 0.333
Run 6 25 28433727 3.959 28433727 0.519 ∞ 0

Average 25.5 4.323 0.731 ∞ 0.056

Roads identified as having the most volatile traffic flow can be analysed in more detail in

Figure 5.4. This information shows that three of these roads have, on average, between ten to

fifteen cars circulating on them at all times. Road 224649279, however, rarely goes over five

cars, but is more stable.

Table 5.6 and Figure 5.6 reveal with certainty that drivers are preferring to park in open lots.
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Figure 5.4: Traffic flow in roads with maximum values or variation in experiment 2
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In fact, after taking averages of all the runs, these lots have occupancy levels of around double

for the most part of the experiment.

Table 5.6: Parking manager metrics in experiment 2 4

Sum of profit Average occupancy
Closed Open Total Closed Open Total

Run 1 235.136 744.075 979.211 1.652% 10.337% 6.561%
Run 2 93.200 427.375 520.575 0.494% 5.910% 3.555%
Run 3 191.160 593.550 784.710 1.259% 8.626% 5.423%
Run 4 61.152 232.275 293.427 1.905% 6.692% 4.611%
Run 5 108.640 426.750 535.390 1.317% 10.890% 6.728%
Run 6 123.136 397.325 520.461 1.609% 5.348% 3.722%

Average 135.404 470.225 605.629 1.373% 7.967% 5.100%

Profit is also, for the most part, greater in on-street parking which can be, partly, due to the

lower availability. However, as time progresses off-street managers price updates seem to yield

positive results as both profit and occupation, apparently rise towards the end.
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Figure 5.5: Charts of profit and occupancy over time during experiment 2

Figure 5.6 shows that closed lots have greater occupancy levels, around 80% when prices

range from 1.4 to 1.8. In contrast, open parking gets less available when the pricing is between

0.2 and 0.6, about 1.2 less than for closed.

4More detailed information about these metrics can be found in Appendix C.2 where Table C.6 contains full
experimental data by road
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Figure 5.6: Occupancy in terms of price ranges in experiment 2

5.5 Experiment 3

In this scenario, the prices in open lots are dynamic and regulate closed parking prices. As such,

this should emulate a city where there is little price disparity between nearby locations.

5.5.1 Configuration

The parking managers of open lots here use a decision process that includes regularly checking

the interest shown in lots. If the number of drivers that request lot availability in since the last

update is outside a predefined range, the price is changed accordingly. In addition, the price

calculation used the formula for dynamic pricing and, as such, takes into account the current

availability of slots..

The behaviour of managers of closed lots is very similar to the one used for fixed prices. The

only difference is the method used for price calculation, which is shown in Equation 4.3. Hence,

the tariffs practised by these agents are regulated by the ones used in open parking and should

not differ greatly from them.

5.5.2 Results

In this scenario, average driver utility shows that most drivers are able to park in conditions that

match driver requirements of either distance and profit. In fact, as shown in Table 5.7, the mean

is around 3.2 with a deviation of a 1, which places utility for the majority of drivers above 2.

Hence, it can be inferred that only very few drivers were not able to park respecting at least one
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decision parameter. The satisfaction of distance thresholds is the one most that most frequently

is not obtained. As a result, it can be noted that, in this scenario, drivers respond favourably to

dynamic parking prices.

Table 5.7: Summary of driver metrics in experiment 35

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Average

Utility
Max 3.989 3.991 3.989 3.969 3.962 3.984 3.981

Average 3.314 3.278 2.945 3.199 3.275 3.434 3.241
σ 0.863 1.102 1.411 0.839 1.032 0.848 1.016

% Parked true 95.34% 91.03% 82.47% 95.16% 92.24% 95.54% 91.96%
false 4.66% 8.97% 17.53% 4.85% 7.77% 4.46% 8.04%

% Tolerance
satisfied

distance 73.58% 79.82% 74.16% 93.67% 80.03% 80.83% 80.35%
price 91.19% 90.24% 79.33% 79.88% 90.97% 93.89% 87.58%

Average choice 2.509 3.133 5.007 4.935 3.225 2.298 3.518

Table 5.8 shows that the occupancy of open lots is still, on average, greater than the one

found in closed lots. However, there still moments where the opposite is true. Additionally,

some runs, traffic flow reaches values above 40 cars in some streets with standard deviations of

around six.

Table 5.8: Summary of city metrics in experiment 3

Traffic flow Equilibrium
Max Road Max σ Road Average Max Min

Run 1 26 224649279 0.354 28433689 0.961 ∞ 0
Run 2 44 28433727 7.690 40769524 0.812 ∞ 0
Run 3 48 224645476 8.321 40769524 0.810 ∞ 0
Run 4 29 224645476 4.124 224645476 0.550 ∞ 0
Run 5 44 224645476 6.914 224645476 0.930 ∞ 0.75
Run 6 23 28433727 3.544 28433727 0.895 ∞ 0

Average 35.667 5.158 0.826 ∞ 0.125

Consequently, Figure 5.7 shows average traffic per minute oscillating between twelve and

twenty-eight cars in the most popular streets. In this scenario, traffic flow peaks in the first

five minutes and then stabilizes a bit until near the end. Then, around the twenty-minute mark,

this streets’ flow culminates again. Furthermore, Road 224645476 is the one that is the most

populated throughout the experiment. In contrast, Road 224649279 is again, with the exception

of the first three minutes when it surpasses Road 40769524, the one with the least traffic flow

with around seven cars.

5Detailed information about driver metrics in experiment 3 can be found in Appendix C.1 in Table C.3
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Figure 5.7: Traffic flow in roads with maximum values or variation in experiment 3

In the parking manager’s perspective, occupancy levels in this scenario are about 1.5% and

9.6% for closed and open lots, respectively, as can be observed in Table 5.9.

Table 5.9: Parking manager metrics in experiment 3 6

Sum of profit Average occupancy
Closed Open Total Closed Open Total

Run 1 272.409 884.781 1157.19 1.575% 11.802% 7.356%
Run 2 70.873 395.966 466.838 0.930% 8.658% 5.298%
Run 3 70.999 473.131 544.13 0.908% 8.861% 5.403%
Run 4 383.2 1481.5 1864.7 2.943% 8.753% 6.227%
Run 5 61.484 514.616 576.1 0.907% 10.013% 6.054%
Run 6 166.655 659.456 826.111 1.559% 10.488% 6.606%

Average 170.937 734.908 905.845 1.470% 9.762% 6.157%

Figure 5.8 illustrates the regulation in off-street parking prices. The correlation between

profit in open and closed parking, which rise and drop almost simultaneously, makes this fact

obvious.

6More detailed experimental data grouped by road is available in Appendix C.2, in particular in Table C.7 for
this experiment.
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Figure 5.8: Charts of profit and occupancy over time during experiment 3

On the one hand, in this experiment, off-street parking has no availability when prices are

on the range of 1.2 to 1.4, getting more reasonable occupancy levels for prices between 0.6 and

1.2. On the other hand, on-street parking lots remain with free slots for every price point. These

lots have the best availability, around 60% when prices range from 2.2 to 2.4. These conclusions

can be validated from the information in Figure 5.9.
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Figure 5.9: Occupancy in terms of price ranges in experiment 3
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5.6 Experiment 4

The last scenario includes dynamic pricing in both open and closed lots. With total disconnection

between prices in public and private lots in close proximity, the difference between parking

prices can benefit a certain type of parking lot creating. Therefore, it has the potential to lead to

traffic flow peaks and parking equilibrium far from the ideal value of 1.

5.6.1 Configuration

Both types of parking managers have similar behaviour, the one illustrated in Figure 4.9. The

price changes occur every minute by adding or decreasing 0.05 to the price if the availability is

not within the already mentioned thresholds of 30% and 70%. However, the prices themselves

are also calculated dynamically by the formula in Equation 4.2, so the price changes described

are to the pricebase and can be felt as much as doubled in cases of completely free lots becoming

full between updates.

5.6.2 Results

As shown in Table 5.10, in this scenario, driver utility is, on average, of 3.3 with a standard

deviation of less than 1.1. As such, it can be concluded that most drivers are still able to park

within tolerated parameters for either distance or price. In fact, price thresholds were only

disrespected for at most 9.3% of drivers. On the contrary, distance has only a maximum of

84.5% satisfaction rate, which is lower than the minimum registered for price.

Table 5.10: Summary of driver metrics in experiment 4 7

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Average

Utility
Max 3.971 3.985 3.983 3.984 3.978 3.977 3.98

Average 3.283 3.23 3.361 3.241 3.285 3.3 3.28
σ 1.103 1.02 0.99 1.135 1.045 1.008 1.0586

% Parked true 90.70% 92.19% 93.04% 90.15% 92.03% 92.56% 91.78%
false 9.30% 7.81% 6.96% 9.85% 7.97% 7.44% 8.22%

% Tolerance
satisfied

distance 84.50% 81.29% 83.07% 78.77% 78.77% 82.59% 81.50%
price 90.70% 92.00% 92.78% 91.51% 91.51% 92.25% 91.79%

Average choice 2.233 2.614 2.248 2.84 2.584 2.552 2.536

In the city perspective, traffic flow in this experiment reaches maximum levels mostly in

Road 224645476. This Road is also the one with the highest registered variance in flow, as

demonstrated in Table 5.11. Additionally, equilibrium metrics show that, although the first run

7More information on experiment four’s driver metrics can be found in Table C.4
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had, on average, similar occupancy for both open and closed parking, the former were utilized

most frequently throughout the experiment.However, in every run, there are moments where all

drivers choose to park on the street or all of them opt for closed parking.

Table 5.11: Summary of city metrics in experiment 4

Traffic flow Equilibrium
Max Road Max σ Road Average Max Min

Run 1 16 224645476 2.697 224645476 0.147 ∞ 0
Run 2 29 224645476 3.692 40769524 0.856 ∞ 0
Run 3 25 224645476 3.351 224645476 0.743 ∞ 0
Run 4 23 224645476 3.653 224645476 0.768 ∞ 0
Run 5 22 28433727 3.713 224645476 0.863 ∞ 0
Run 6 19 224645476 3.226 40769524 0.491 ∞ 0

Average 22.333 3.389 0.645 ∞ 0

Figure 5.1 illustrates the mean traffic flow per minute in the four roads with the most traffic

or most variant flow. In this Figure, it can be observed that Roads 28433727 and 40769524

have a similar traffic flow oscillating between seven and eleven drivers. Also, Road 224649279

remains the one with the less but more stable traffic, around five cars.

As mentioned before, in this experiment, drivers choose to park mostly in on-street locations.
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Figure 5.10: Traffic flow in roads with maximum values or variation in experiment 4
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This claim is verified by the information present in both Table 5.12 and Figure 5.11. In fact,

occupancy of closed parking lots around 2.1% whereas open lots has an average availability

almost four times larger.

Table 5.12: Parking manager metrics in experiment 4 8

Sum of profit Average occupancy
Closed Open Total Closed Open Total

Run 1 37.264 88.631 125.895 3.240% 4.989% 4.229%
Run 2 107.52 591.666 699.186 2.380% 9.969% 6.669%
Run 3 68.708 443.359 512.067 1.376% 7.192% 4.664%
Run 4 74.444 760 834.444 1.075% 8.215% 5.110%
Run 5 110.228 648.725 758.953 2.528% 10.946% 7.286%
Run 6 75.172 572.256 647.428 2.241% 7.408% 5.161%

Average 78.889 517.44 596.329 2.140% 8.120% 5.520%

Similarly, managers of off-street parking have profit levels that are highly discrepant from

their on-street equivalent. Open parking lots’ profit oscillates between 0.02 and 0.06 for each

slot owned, while closed receive, at most, around 0.02.

In terms of prices, on-street slots have occupancy near the intended maximum rate of 70%

when they are price somewhere between 0.4 and 0.8. For closed lots, the desired level availabil-

ity is never achieved, but price ranges from 0.4 to 0.6 and 0.8 to 1 present the nearest results, as

can be seen from Figure 5.12.
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Figure 5.11: Charts of profit and occupancy over time during experiment 4

8More detailed information can be found in Appendix C.2, specifically in Table C.8
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Figure 5.12: Occupancy in terms of price ranges in experiment 4

5.7 Discussion and Remarks

Since different types of metrics have been established accordingly to each agent type on the

system, the discussion of results is actor-oriented.

5.7.1 Drivers Results

Table 5.13 presents a comparison between the average driver metrics obtained during each exper-

iment. Here, the third scenario exhibits the maximum utility and parking success rate. However,

the combination of dynamic prices in open parking with regulated ones for closed lots does not

represent the highest average utility. This apex is found in the scenario where both types of park-

ing opportunities have fixed prices. It could be argued that these outcomes were due to initial

prices being the most useful for drivers, but not for the managers.

Furthermore, independent dynamic prices, simulated in experiment 4, has the best results

for the rate of drivers who were able to park within their intended price limit, an astounding

91.8%, and the second best for the distance tolerance, 81.5%. However, having these dynamics

only present in off-street lots has the worst metrics for the percentage of parking failure and

dissatisfaction of maximum distance thresholds. It is difficult to explain this result, but it might

be related to the lack of viable closed parking options near the destinations chosen, for instance,

cheaper parking lots being farther from the destination than initially tolerated.

Contrary to expectations, although the third scenario has the most successful parking, it also

represents the experiment where drivers had to the most trouble finding a satisfactory slot. This
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Table 5.13: Comparison of driver metrics between experiments

Experiment 1 Experiment 2 Experiment 3 Experiment 4

Utility
Max 3.969 3.975 3.981 3.98

Average 3.319 3.074 3.241 3.28
σ 0.882 1.0952 1.016 1.0586

% Parked true 96.055% 90.644% 91.962% 91.779%
false 3.945% 9.356% 8.038% 8.221%

% Tolerance
satisfied

distance 90.152% 73.142% 80.346% 81.501%
price 83.857% 88.639% 87.581% 91.790%

Average choice 1.953 3.167 3.518 2.536

conclusion can be drawn due to drivers, on average, parking either in their third or fourth choice,

whereas, in other scenarios, the mean was closer to the second choice. A possible explanation for

this might be that the first options became overly competitive to the point where parks became

full for more extended periods.

5.7.2 Parking Managers Results

Analysing the parking managers perspective, Table 5.14 shows that on-street parking always

creates the most profit. Furthermore, the managers of this type of lots get the most monetary

revenue when their prices are dynamic. In contrast, according to this data, closed lots have more

profit with fixed pricing. These differences can be explained in part by the lower occupancy

rates in the latter, as these reduce the price of the few occupied slots in off-street lots.

Table 5.14: Comparison of parking manager metrics between experiments

Sum of profit Average occupancy
Closed Open Total Closed Open Total

Experiment 1 296.700 520.854 817.554 1.139% 6.208% 4.360%
Experiment 2 135.404 470.225 605.629 1.373% 7.967% 5.1%
Experiment 3 170.937 734.908 905.845 1.47% 9.762% 6.157%
Experiment 4 78.889 517.440 596.329 2.14% 8.12% 5.52%

However, in terms of occupancy, having dynamic prices does significantly improve parking

occupancy in every experiment. In this context, open parking prices taking into account both

traffic flow and occupancy proves to be the most beneficial for this type of lots. However, the

price regulation this scenario involved did not prove to be helpful for closed parking that had

better results, both in profit and availability, in the fully dynamic prices situation presented in

experiment 4. These results are consistent with expectations as price alterations are driven by

the increase of parking manager utility.
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Figure 5.13: Comparison of evolution parking occupancy across experiments

Figure 5.13 shows that experiments 3 and 4 have the best occupancy rates for open parking

consistently. As such, in that regard, dynamic prices are concluded to be the best solution for

this type of parking lots. This observation may support the hypothesis that price dynamism is

capable of aiding managers in regulating their lot’s availability.

For closed lots, parking occupancy is very variable and, on average, below 4%. Therefore,

the only observation to be noticed is that the fixed price mechanism is the one with the worst

results. A possible explanation for this might be that the initial parking rates were too high

compared to the ones found in open lots. There are, however, other possible explanations. For

instance, these lots not being sufficiently near the desired destinations to be a viable alternative

to on-street parking or driver processes not taking into account factors different from price and

distance, such as security or other features associated to these type of parking.

From a profit standpoint, as illustrated by Figure 5.14, overall, regulated parking prices in

off-street lots are more desirable. In truth, the profit is only comparable to when both types of

lots have fixed prices. Additionally, one unanticipated finding was that, according to this chart, a

fully dynamic pricing scenario is harmful to closed parking profits. Hence, it could conceivably

be hypothesised that external price regulations, seen as a safeguard from drastic differences

between both types of parking, has a potential of ensuring that parks in the same area have more

equal chances of being chosen. Another possible hypothesis is that the parking market is not

self-regulated.

On the one hand, across all the experiments, Figure 5.15 reveals that the best price ranges

for closed parking lots’ prices seems to be from 0.6 to 1.2 monetary units. However, when

parking prices on the street are fixed, these seems to increase to prices between 1.4 and 2, with

the exception of range 1.6 to 1.8. As such, it can be deduced that municipal parking prices were
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initially set to be less expensive than the optimum.

On the other hand, Figure 5.15 also shows that optimal pricing for on-street locations is

highly dependent on the pricing mechanisms used for closed lots. Therefore, if prices off-street

are dynamic the optimal prices range from 0.2 to 1.2. In the case of closed lots prices being

regulated by the on-street ones, this range narrows to include only prices above 0.6.

5.7.3 City Managers Results

From a city-wide perspective, price dynamics are inferred to increase overall traffic flow in the

most requested roads, as can be seen in Figure 5.16. Regulating closed parking lot prices seems

to be the worst-case scenario in this point of view. This finding was unexpected and suggests

that dynamic prices can influence drivers to park in a more restricted set of parking options in

a specific area of the city. However, it is essential to bear in mind that most of the roads do not

possess on-street parking, and these are the main links connecting critical areas of the map.

These pricing dynamics also seem to benefit on-street parking as shown in Table 5.15 by the

significant increase in the average equilibrium metric for experiments 2 and 3. However, fully

dynamic prices in both open and closed parks display the capacity to auto-regulate this ratio as

values average values tend to get closer to 0 in the fourth experiment.

5.7.4 Overall Results

Together these results provide important insights into the influence of pricing policies in the

parking problem. Taken together, they suggest that there is an association between price dy-

namism and better utility for both drivers and parking managers. However, the most striking

result to emerge from the data is that traffic flow does not seem to benefit from these policies.
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Figure 5.15: Occupancy in terms of price ranges in all experiments

Table 5.15: Comparison of city metrics between experiments

Traffic flow Equilibrium
Max Max σ Average Max Min

Experiment 1 18.571 3.459 0.425 ∞ 0.18
Experiment 2 25.5 4.323 0.731 ∞ 0.056
Experiment 3 23 3.544 0.895 ∞ 0
Experiment 4 22.333 3.389 0.644 ∞ 0

The next chapter, therefore, moves on to discuss findings in more detail and present the conclu-

sions taken.
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Figure 5.16: Comparison of traffic flow in selected roads across experiments



Chapter 6

Conclusions and Future Work

In conclusion, this thesis attempts to analyse the current parking problem using a simulation

approach. By employing a multi-agent system based on micro-services, the simulation model

the city’s parking layout and the entities involved: drivers, parking and city managers. The

agents then negotiate favourable parking conditions amongst themselves.

6.1 Discussion

The present dissertation was designed to determine the effect of different pricing policies in

traffic and parking behaviour, assuming a Smart City arrangement. In this context, the simula-

tion of four distinct parking managers operating processes aimed to ascertain whether dynamic

prices in city-managed open parking could help mitigate traffic issues, such as congestion in

highly demanded locations, and improve slot availability by visibly influencing driver parking

decisions.

Additionally, it is assumed that these entities have goals to keep occupancy rates with prede-

termined thresholds to ensure a profit and not guarantee parking supply for every client. There-

fore, the scenarios simulated also aimed to discover if frequent tariff updates could improve

parking managers’ satisfaction overall.

Furthermore, this study set out to discover a collection of metrics that could indicate the

requirement of regulation policies. These measurements should imply the dissatisfaction of one

of the entities involved in the parking problem, drivers, parking managers or city. As such, they

are the base for investigating the impact of market dynamics in the smart parking scenario.

With these hypotheses in mind, multi-agent simulation was used to expand our understand-

ing of how diverse market strategies influence Smart Parking systems. This approach, combined

with the use of micro-services and business processes to design, implement and improve the

behaviour of all parking stakeholders, proves useful in creating a more decoupled and efficient

60
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environment. Therefore, the same agents with similar processes could be connected to real-

world services and act like intelligent, automated, entities to mitigate the parking problem, such

as autonomous vehicles and parking management.

To the author’s knowledge, this project is the first comprehensive investigation of the ef-

fect of dynamic pricing strategies open parking. Thus, it contributes to existing knowledge of

Smart Parking by providing insight into the consequences it carries for traffic and the general

satisfaction of every entity involved.

According to the experimental results, drivers are more successful when on-street parking

has dynamic pricing schemes. Additionally, having closed parking prices be regulated seems to

increase both traffic flow and overall parking lot occupancy rates, which is a remarkable result.

In fact, in this scenario, on-street parking seems to be benefited with more drivers choosing

to park in these locations. This observation may support the hypothesis that market liberalism

in parking is not the best solution, as pricing regulations are favourable in improving parking

results.

Unlike what happens with driver and parking managers metrics, very little was found in

the literature on the question of how to evaluate parking policies in a city-level perspective.

As such, the parking equilibrium metric, which measures the balance between occupancy rates

in both open and closed parking, was created to illustrate the level of preference drivers were

showing for the former. According to the data collected on this metric, different pricing schemes

can be inferred to indeed alter driver behaviour and balance availability in nearby parking lots.

Although these findings will doubtless be much scrutinised, there are some immediately reli-

able conclusions for the relationship between parking equilibrium and traffic flow measurement

and the need for further parking regulation. The metrics associated with city managers gain

extreme values when chaotic parking scenarios, such as when a significant amount of drivers is

unable to park successfully.

This project is a first attempt to model the parking problem and the associated market mecha-

nisms. So, only the fundamental business rules were implemented. Consequently, more complex

processes could be tested and would probably impact the results reported. Some improvements

would be the inclusion of the possibility to reserve some parking locations or the use of peer-to-

peer slot reselling.

Furthermore, the attributes of the development environment and the use of agent-process

modelling still being somewhat recent have most likely impacted the obtained results. In truth,

the experiments conducted could have benefited from the use of a higher number of driver agents

to ensure parking supply shortage. These situations would have great value to assess the perfor-

mance of the system with the given pricing dynamics.
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6.2 Future work

This area would be fruitful for future work. An obvious starting point would be the improvement

of the presented agent behaviours and the creation of new ones. It is to be expected that better

negotiation models will improve traffic metrics and overall satisfaction of every stakeholder of

the parking problem. Hence, upgrading negotiation processes by allowing parking conditions to

be more personalised for each parking request would be favourable to better results.

Furthermore, in the scenarios presented, parking managers’ knowledge of the world is still

relatively limited to their resources. As such, the addition of a slightly more complex learn-

ing mechanism for optimal pricing could provide significant improvements to their satisfaction

metrics.

Similarly, considerably more work will need to be done to determine the influence of sev-

eral distinct driver processes. The creation of new behaviours could enrich this simulation by

representing a more diverse population and, providing a more accurate view of reality.

Moreover, the natural progression of this work is design and experiment with a broader range

of agent roles. These roles could include, for example, city managers who could implement and

modify parking regulations. Consequently, the employment of such an entity could shed more

light on the impact of these on parking markets.

Finally, another path to continue the research started in this dissertation is to include other

market models such as peer-to-peer selling of private parking slots or reselling of parking time

not used in open parking lots.
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Appendix A

Gap Analysis

Table A.1: Gap Analysis of Literature in Smart Parking

Title
PGI / PRS /

SP
Agents / Entities Reservations Markets Goals

Modelling the
impact of parking

price policy on
free-floating

carsharing: Case
study for Zurich,

Switzerland
[Balac et al.,

2017]

PGI and
Carsharing

Agents who will
choose a plan of

activity and
Carsharing
Managers

×
Dynamic
Prices and
Carsharing

analyse the impacts
of parking price

policies in
carsharing use and

generally in the
city of Zurich

Evaluating the
Social Benefit of

a Negotia-
tion–Based

Parking
Allocation [Barile

et al., 2015]

SP
Drivers and

Parking Managers
X ×

Optimize parking
allocation to

maximize utility
for all agents

Smart Parking
Reservation

System Based on
Distributed

Multicriteria
Approach

[Boudali and
Ouada, 2017]

SP

Vehicle,
Geographic
Information

System, Locality
and Park

X ×

Aid drivers find the
best parking spot
that matches their

multi-criteria
preferences
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Title
PGI / PRS /

SP
Agents / Entities Reservations Markets Goals

New “Smart
Parking” System

Based on
Resource

Allocation and
Reservations
[Geng and

Cassandras,
2013]

SP

Driver Request
Processing Center

and Smart
Parking

Allocation Center

X ×

dynamically
change reservation

until the car is
physically parked
to ensure overall

maximum
efficiency

A learning
algorithm to
minimize the

expected time of
finding a parking
place in an urban

area [Houissa
et al., 2017]

PGI Intersections × ×

Minimizes
expected time for a

driver to find an
available parking

spot

Regulating
vehicle sharing
systems through

parking
reservation

policies: Analysis
and performance
bounds [Kaspi

et al., 2016]

PRS
Vehicle sharing

users and Renting
stations

X ×

Study the impact of
introducing partial
reservation policies
for parking vehicle

sharing systems

IoT-Enabled
Parking Space
Sharing and
Allocation

Mechanisms
[Kong et al.,

2018]

SP
Drivers and

Parking platform
X

Parking
Space

Peer-to-
Peer

Exchange
and

Auctions

Encourage drivers
to exchange their
private parking

spots during
working hours and

obtain grater
welfare

iParker—A New
Smart

Car-Parking
System Based on

Dynamic
Resource

Allocation and
Pricing [Kotb
et al., 2016]

SP

Parkers, Parking
managers, local
smart allocation

systems and
central request

centre

X
Dynamic
Pricing

increase parking
success with

minimal cost to the
drivers and highest
revenue for parking

managers
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Title
PGI / PRS /

SP
Agents / Entities Reservations Markets Goals

A user
equilibrium,

traffic assignment
model of network
route and parking
lot choice, with
search circuits

and cruising flows
[Leurent and

Boujnah, 2014]

PGI
Parking lots,

roadway network
and customers

× ×

Macroscopic
simulation of

parking route and
search choices with
stochastic parking

lot conditions

On-Street Parking
Guidance with

Real-Time
Sensing Data for
Smart Cities [Liu

et al., 2018]

PGI
Drivers and a
Cloud Server

× ×

recommend
parking locations

based on
availability
prediction

Capacity-sharing
in logistics

solutions: A new
pathway towards

sustainability
[Melo et al.,

2019]

SP

Drivers and
parking spots
with variable

parking
restrictions

× +/−

Increase traffic
efficiency by

sharing parking
spots reserved for

city logistics
during specific

periods of the day
for short-term use.

A Cloud-Based
Smart-Parking

System Based on
Internet-of-

Things
Technologies
[Pham et al.,

2015]

PGI
Driver and

Parking System
× ×

Decrease the
number of cars that
fail to find parking
as well as minimize

the time spent
searching for the

car park

ASPIRE: An
Agent-Oriented
Smart Parking

Recommendation
System for Smart

Cities [Rizvi
et al., 2018]

PRS

Local Agent,
Parker’s Agent,

Resource
Allocation

Management
Center, Park Unit

X ×

Building a strategy
for finding the

parking allocation
based on drivers’

preferences
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Title
PGI / PRS /

SP
Agents / Entities Reservations Markets Goals

Carsharing and
Personal Vehicle

Services:
Worldwide

Market
Developments
and Emerging

Trends [Shaheen
and Cohen, 2012]

Carsharing
Users and
Carsharing

organisations
× X

Survey carsharing
business models

from 2006 to 2015
which are highly
dependent on free
or reduced-price

parking

CrowdPark: A
Crowdsourcing-
based Parking
Reservation
System for

Mobile Phones
[Yan et al., 2011]

PRS
Parking Sellers

and Buyers.
X X

aid drivers to
“loosely” reserve
parking spots by
crowd-sourcing
their availability,

and detect
malicious users

Agent negotiation
for different

needs in smart
parking allocation
[Di Napoli et al.,

2014]

SP
User and Parking
Manager Agents

X
Negotia-

tion

Use automated
negotiation to
select parking

spaces by fulfilling
all entities’

different needs

A Social-Aware
Smart Parking

Application
[Nocera et al.,

2014]

SP
User and Parking
Manager Agents

X
Dynamic
pricing

Based on
[Di Napoli et al.,
2014], negotiate

parking conditions
between all entities

with dynamic
pricing related to
distance from red

zones and
availability

City Parking
Allocations as a

Bundle of
Society-Aware
Deals [Barile
et al., 2017]

SP
Driver and

Parking Manager
Agents

X
Dynamic
pricing

Use negotiation to
increase global
utilitarian social
welfare of the

system, simulating
the city of Naples
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B.1 Driver Process Model

Figure B.1: Driver behaviour process model
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B.2 Parking Manager Process Model

Figure B.2: Parking manager process model
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B.3 Improved Parking Manager Process Model

Figure B.3: Parking manager process model (improved)
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Complete tables

C.1 Driver evaluation metrics

Table C.1: Driver metrics in experiment 1

Lot id Number of drivers
Average

Utility Price Distance Choice
Run 1 63 3.444 0.924 137.594 2.762
1147 7 3.741 1.571 96.350 1.143

1149 1 3.000 1.500 37.778 2.000

2051 1 3.784 3.000 30.161 1.000

2054 3 3.318 1.633 199.474 1.333

2058 3 3.897 0.333 46.033 1.000

2059 18 3.636 0.300 203.526 1.778

2061 21 3.767 1.000 122.412 1.143

2062 1 3.000 0.700 26.449 4.000

2068 4 3.692 1.500 94.643 1.000

Not parked 4 0.000 — — 23.000

Run 2 476 3.597 0.895 160.904 1.462
1101 48 3.745 1.563 93.431 1.146

1104 5 3.000 1.000 176.738 2.400

1107 168 3.671 0.373 207.128 1.101

1111 2 3.489 1.500 26.477 3.000

1112 26 3.278 0.408 186.986 1.500

1113 50 3.736 2.670 96.350 1.160
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Lot id Number of drivers
Average

Utility Price Distance Choice
1115 23 3.274 1.248 182.493 1.130

1116 56 3.854 0.400 187.882 1.000

1117 64 3.791 0.992 94.643 1.063

1118 23 3.000 0.409 195.285 2.435

1121 5 3.145 1.500 60.427 2.200

1122 1 3.000 0.200 318.417 9.000

Not parked 5 0.000 — — 23.000

Run 3 354 3.569 0.995 162.122 1.980
1128 28 3.749 1.821 94.643 1.464

1130 1 3.720 0.700 37.778 1.000

1133 43 3.626 3.000 96.350 1.326

1135 31 3.748 1.839 88.457 1.419

1138 1 3.743 0.200 320.827 10.000

1139 2 3.472 3.000 11.927 4.000

1140 79 3.824 0.339 168.631 1.380

1142 135 3.644 0.360 213.393 1.526

1143 3 3.890 0.667 36.167 1.000

1144 15 3.191 0.967 216.605 2.667

1146 5 3.685 1.100 40.574 2.200

Not parked 11 0.000 15.545

Run 4 121 3.353 1.897 126.347 3.917
1124 2 3.639 1.000 168.631 7.000

1126 8 3.845 2.625 96.350 1.625

1128 26 3.522 2.038 94.643 2.385

1130 1 3.000 2.000 51.829 2.000

1132 62 3.463 1.742 127.722 2.968

1133 1 3.620 2.000 165.341 14.000

1134 1 3.000 3.000 332.115 8.000

1136 1 3.000 2.000 318.417 13.000

1137 1 3.000 1.000 38.711 8.000

1139 9 3.678 1.889 212.503 2.778

1140 1 3.719 2.000 64.745 2.000

1143 3 3.000 2.333 95.031 4.667
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Lot id Number of drivers
Average

Utility Price Distance Choice
Not parked 5 0.000 — — 23.000

Run 5 415 3.049 1.347 134.207 1.812
1101 1 3.000 2.000 0.000 6.000

1104 4 3.673 0.500 29.839 3.000

1105 1 3.000 1.000 37.778 2.000

1106 1 3.982 1.500 5.562 1.000

1107 116 3.233 1.267 115.536 1.526

1110 56 2.559 3.143 96.350 1.375

1112 23 3.351 0.409 129.658 1.957

1113 106 3.390 0.372 212.290 1.547

1117 6 3.599 1.167 254.203 1.500

1119 76 2.986 1.908 94.643 1.921

1122 3 3.307 2.500 155.246 2.000

1123 8 3.454 0.300 23.451 3.625

Not parked 14 0.000 — — 5.571

Run 6 831 2.974 1.330 139.186 1.945
1124 106 2.546 3.717 96.350 1.349

1125 3 3.000 0.700 65.082 4.000

1127 1 3.000 1.000 188.508 4.000

1128 26 3.560 0.354 145.436 1.115

1129 200 3.297 0.361 199.553 1.360

1130 2 2.364 2.000 57.144 3.500

1132 25 3.426 0.920 118.233 2.080

1136 138 3.202 1.359 94.643 2.188

1137 100 3.297 0.396 187.882 2.250

1138 2 3.000 2.000 44.450 5.000

1140 2 3.309 0.700 194.369 2.000

1144 10 3.848 0.380 27.424 2.100

1145 168 3.103 1.768 113.138 1.530

1146 1 3.195 4.000 155.246 2.000

Not parked 47 0.000 — — 5.872

Grand Total 2260 3.246 1.205 145.864 1.953
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Table C.2: Driver metrics in experiment 2

Lot id Number of drivers
Average

Utility Price Distance Choice
Run 1 619 3.143 0.937 144.004 2.191
1101 18 3.135 1.028 202.589 2.056

1102 173 3.377 0.375 223.500 1.775

1107 7 3.851 0.343 24.821 1.000

1111 2 3.458 0.700 3.781 3.500

1112 17 3.425 0.306 167.483 1.706

1114 23 3.409 0.804 196.250 1.435

1116 122 3.266 1.302 105.270 1.557

1118 113 3.332 1.559 96.350 1.460

1119 105 3.422 0.929 94.643 3.181

Not parked 39 0.000 — — 6.333

Run 2 515 3.112 0.760 179.926 4.318
1501 42 3.619 2.019 96.350 1.976

1509 175 3.210 0.368 254.593 2.034

1511 12 3.560 0.917 119.826 2.583

1513 41 3.623 2.122 94.643 2.098

1515 42 3.000 0.357 200.538 5.929

1516 2 3.482 1.250 24.538 4.500

1517 50 3.818 1.050 85.316 1.980

1520 103 3.631 0.367 168.631 2.010

Not parked 48 0.000 — — 23.000

Run 3 493 3.134 0.789 151.251 3.016
1103 10 3.521 0.400 31.178 2.800

1106 4 2.770 0.350 268.157 37.000

1108 3 3.000 1.400 33.644 2.000

1110 2 3.463 1.400 1.813 3.000

1111 165 3.352 0.365 207.349 1.697

1112 2 3.254 1.500 238.299 1.000

1115 49 3.412 1.653 87.303 1.224

1116 64 3.560 0.969 94.643 1.641

1117 1 3.000 1.000 168.631 2.000

1119 22 3.554 0.318 124.445 1.500
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Lot id Number of drivers
Average

Utility Price Distance Choice
1120 68 3.407 0.382 187.882 2.838

1121 60 3.488 1.698 96.350 1.133

1122 2 3.000 1.000 194.369 12.000

Not parked 41 0.000 — — 12.976

Run 4 195 2.905 0.691 151.312 2.400
1101 1 3.885 1.000 11.927 1.000

1103 16 3.383 2.000 94.643 1.125

1104 29 3.451 0.366 188.653 2.138

1107 4 3.864 0.300 21.846 1.000

1109 3 3.854 0.667 32.625 1.000

1110 48 3.254 0.296 230.719 1.479

1114 37 3.631 0.735 96.350 1.162

1121 19 3.528 1.179 85.316 1.211

1122 7 3.406 0.400 196.053 2.000

Not parked 31 0.000 — — 7.387

Run 5 434 3.076 0.647 142.824 3.901
1102 22 3.383 0.355 141.739 2.636

1103 120 3.567 0.390 94.643 5.500

1107 1 3.000 1.500 169.748 8.000

1110 53 3.325 1.360 96.350 1.151

1113 1 3.276 1.500 37.778 1.000

1118 72 3.562 0.944 94.783 1.389

1119 11 3.525 1.336 93.000 2.000

1121 113 3.141 0.370 252.149 2.124

Not parked 41 0.000 — — 13.244

Run 6 525 3.267 0.767 153.160 3.010
1102 6 3.315 1.050 172.232 1.000

1105 6 3.605 0.933 238.299 1.000

1108 3 3.738 0.800 35.595 1.000

1109 108 3.764 0.800 96.350 1.287

1110 56 3.765 0.839 94.643 1.607

1111 3 3.627 1.167 4.437 1.333

1113 1 3.000 1.000 188.508 45.000
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Lot id Number of drivers
Average

Utility Price Distance Choice
1114 26 3.694 0.338 131.663 1.731

1116 60 3.547 2.150 85.316 1.383

1118 217 3.278 0.372 219.703 2.493

1120 2 3.962 1.000 13.517 1.000

1121 1 3.321 2.100 172.869 1.000

Not parked 36 0.000 — — 17.083

Grand Total 2781 3.132 0.785 153.931 3.167

Table C.3: Driver metrics in experiment 3

Lot id Number of drivers
Average

Utility Price Distance Choice
Run 1 579 3.314 1.199 189.620 2.509
1104 34 3.607 0.521 208.977 1.324

1106 46 3.340 0.744 215.568 1.717

1107 4 3.937 0.575 19.261 1.000

1108 1 3.000 0.950 188.508 2.000

1110 20 3.610 0.393 145.483 1.650

1112 87 3.252 0.398 233.924 2.356

1117 106 3.649 1.578 110.119 1.406

1118 31 3.199 0.381 436.099 2.581

1119 87 3.671 1.130 94.643 2.540

1120 4 3.000 0.912 182.410 5.000

1122 81 3.600 3.263 96.350 1.247

1123 51 3.137 0.375 434.559 1.608

Not parked 27 0.000 — — 16.000

Run 2 758 3.278 0.591 132.299 3.133
1103 155 3.677 0.593 94.643 3.400

1104 246 3.710 0.555 114.608 1.740

1105 14 3.693 0.400 62.999 1.929

1106 85 3.741 1.188 96.350 1.176

1110 35 3.584 0.341 148.875 1.714

1116 3 3.548 0.200 39.974 2.667

1120 97 3.263 0.404 238.919 2.660
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Lot id Number of drivers
Average

Utility Price Distance Choice
1121 37 3.048 0.384 249.989 2.378

1122 18 3.733 0.386 88.661 1.444

Not parked 68 0.000 — — 12.544

Run 3 445 2.945 0.930 135.175 5.007
1102 2 3.988 0.660 0.000 1.000

1104 47 3.552 2.011 96.350 1.468

1106 4 3.699 1.120 172.232 1.000

1109 5 3.629 0.430 203.216 1.200

1114 4 3.303 0.613 236.178 1.750

1115 11 3.739 1.010 51.502 2.091

1116 4 3.735 0.937 17.217 2.000

1117 24 3.391 0.354 186.217 2.000

1118 128 3.723 1.153 121.071 1.375

1121 138 3.447 0.474 158.183 6.138

Not parked 78 0.000 — — 13.308

Run 4 805 3.199 1.805 91.543 4.935
1150 3 2.559 2.667 155.246 34.333

1502 239 3.427 1.757 85.316 3.368

1505 1 3.000 1.000 189.464 4.000

1507 238 3.486 1.857 96.350 2.206

1508 56 3.239 1.786 122.832 2.696

1511 191 3.227 1.770 94.643 6.335

1512 23 3.055 1.957 15.854 4.609

1513 3 2.727 2.667 165.341 41.000

1516 5 3.136 1.600 19.857 5.400

1517 6 3.372 1.667 31.892 3.333

1518 1 3.523 3.000 37.778 2.000

Not parked 39 0.000 — — 23.000

Run 5 631 3.275 0.835 136.838 3.225
1103 78 3.712 1.462 96.350 1.385

1112 6 3.312 1.025 72.596 4.833

1113 29 3.384 0.618 212.407 1.828

1114 3 3.381 0.317 240.103 2.000
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Lot id Number of drivers
Average

Utility Price Distance Choice
1117 138 3.586 0.705 94.643 4.790

1118 206 3.619 0.862 121.241 1.786

1120 110 3.315 0.520 232.148 1.518

1122 12 3.633 1.249 102.985 3.250

Not parked 49 0.000 — — 12.327

Run 6 965 3.434 0.614 141.516 2.298
1108 5 3.264 0.360 188.098 3.200

1109 33 3.361 0.379 224.665 1.152

1110 143 3.350 0.389 215.054 1.741

1111 220 3.769 0.709 104.791 1.350

1112 1 3.866 0.400 38.523 4.000

1113 64 3.124 0.384 237.224 4.594

1114 20 3.660 0.373 81.763 1.700

1115 12 3.817 0.325 31.462 1.583

1116 86 3.627 0.391 170.642 1.977

1118 106 3.615 1.441 96.350 1.396

1120 35 3.381 0.391 207.876 2.257

1122 164 3.780 0.569 94.643 1.811

1123 33 3.709 0.318 102.951 1.424

Not parked 43 0.000 — — 12.233

Grand Total 4183 3.268 0.992 135.552 3.414

Table C.4: Driver metrics in experiment 4

Lot id Number of drivers
Average

Utility Price Distance Choice
Run 1 129 3.283 0.400 119.229 2.233
1101 29 3.682 0.384 92.032 1.379

1102 2 3.895 0.500 15.261 1.000

1103 1 3.000 0.350 40.883 3.000

1104 1 3.510 0.200 238.299 1.000

1106 14 3.811 0.554 94.643 1.571

1107 17 3.483 0.329 157.244 1.647

1108 7 3.248 0.450 187.882 4.143
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Lot id Number of drivers
Average

Utility Price Distance Choice
1112 2 3.310 0.600 27.206 5.500

1113 1 3.957 0.200 24.538 1.000

1114 3 3.887 0.350 32.369 1.333

1116 6 3.164 0.425 226.245 3.167

1117 1 2.512 0.200 165.341 2.000

1120 8 3.591 0.350 193.776 1.375

1121 25 3.785 0.386 96.350 1.440

Not parked 12 0.000 — — 6.583

Run 2 1037 3.230 0.501 133.041 2.614
1102 56 3.371 0.371 133.194 1.679

1103 54 3.320 0.381 238.299 1.519

1105 28 3.558 0.407 45.886 2.036

1106 54 3.208 0.414 187.882 2.963

1107 5 3.839 0.600 17.812 1.400

1108 96 3.255 0.390 189.408 1.375

1110 159 3.709 0.723 96.350 1.465

1111 6 3.354 0.333 193.453 1.667

1112 238 3.615 0.550 105.364 1.601

1113 5 2.856 0.320 256.496 1.000

1114 4 3.515 0.460 1.942 1.500

1115 40 3.639 0.400 168.631 1.225

1117 76 3.253 0.342 161.057 1.474

1118 1 2.668 0.600 257.203 1.000

1119 23 3.266 0.339 188.508 2.609

1120 2 3.534 0.600 22.634 1.000

1122 6 3.143 0.317 156.315 2.333

1123 103 3.702 0.569 94.643 1.903

Not parked 81 0.000 — — 13.704

Run 3 762 3.361 0.479 132.608 2.248
1520 139 3.752 0.407 94.643 1.626

1522 3 3.866 0.267 32.267 1.667

1523 26 3.484 0.373 127.524 1.846

1524 213 3.720 0.433 112.746 1.315



C.1 Driver evaluation metrics 85

Lot id Number of drivers
Average

Utility Price Distance Choice
1525 50 3.377 0.368 195.554 1.420

1526 32 3.225 0.341 237.224 2.438

1527 83 3.716 1.189 96.350 1.265

1528 43 3.548 0.330 168.631 1.326

1530 6 3.576 0.367 16.859 3.167

1534 2 3.305 0.400 268.157 3.000

1535 47 3.473 0.283 206.676 1.319

1538 2 3.889 0.300 93.593 1.000

1540 22 3.439 0.345 187.882 2.091

1541 20 3.522 0.310 57.155 2.350

1542 21 3.189 0.362 238.299 1.476

Not parked 53 0.000 — — 11.887

Run 4 457 3.241 0.556 131.835 2.840
1101 10 3.541 0.390 214.683 1.200

1104 40 3.650 1.532 96.350 1.200

1105 1 3.975 0.300 0.000 1.000

1108 34 3.570 0.341 168.631 1.324

1113 134 3.702 0.499 118.017 1.537

1114 86 3.684 0.529 94.643 2.756

1116 1 3.761 0.400 20.104 1.000

1117 1 3.760 0.600 204.199 1.000

1118 22 3.595 0.386 133.129 1.364

1119 12 3.276 0.383 220.985 2.167

1120 3 3.845 0.333 6.006 1.000

1121 60 3.265 0.353 205.329 1.567

1122 4 3.650 0.350 24.836 2.500

1123 4 3.343 0.450 96.487 2.250

Not parked 45 0.000 — — 12.778

Run 5 577 3.285 0.533 142.156 2.584
1125 44 3.373 0.405 208.802 1.614

1126 1 3.734 0.400 187.882 1.000

1127 26 3.354 0.371 200.415 2.692

1130 125 3.754 0.489 106.349 1.328
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Lot id Number of drivers
Average

Utility Price Distance Choice
1131 3 3.564 0.200 21.791 3.000

1134 104 3.775 0.650 96.350 1.279

1135 17 3.473 0.774 141.505 1.412

1136 68 3.415 0.388 200.625 1.397

1137 50 3.618 1.012 94.643 2.340

1139 7 3.677 0.436 76.442 1.000

1140 7 3.178 0.507 150.720 3.143

1141 16 3.209 0.381 247.345 2.375

1142 14 3.117 0.393 207.066 3.786

1143 1 3.473 1.050 238.299 1.000

1144 45 3.416 0.346 168.631 1.444

1146 3 3.708 0.333 155.246 3.000

Not parked 46 0.000 — — 13.261

Run 6 632 3.300 0.566 129.147 2.552
1102 60 3.525 0.383 169.784 1.483

1103 78 3.398 0.382 158.077 1.385

1105 98 3.709 0.668 94.643 1.786

1106 2 3.187 0.200 231.436 1.000

1107 5 3.343 0.360 19.481 4.200

1109 18 3.364 0.422 180.502 1.667

1112 40 3.216 0.351 238.299 3.150

1113 3 3.580 0.483 12.104 2.000

1114 4 3.155 0.400 44.513 4.000

1116 13 3.599 0.277 86.569 1.231

1118 7 3.548 0.343 168.631 1.000

1119 10 3.387 0.340 231.666 1.500

1122 82 3.745 0.794 96.350 1.305

1123 165 3.622 0.676 107.152 1.933

Not parked 47 0.000 — — 12.255

Grand Total 3594 3.282 0.516 133.084 2.536
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Table C.5: Parking manager metrics in experiment 1

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Average

Road Ids ∑profit Average
occupancy ∑profit Average

occupancy ∑profit Average
occupancy ∑profit Average

occupancy ∑profit Average
occupancy ∑profit Average

occupancy profit Occupancy

Closed 19.00 0.138% 482.40 1.985% 177.30 1.011% 35.40 0.555% 291.60 1.012% 545.20 1.860% 258.48 1.093%
2ca1egzvj 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%

3662m23xu 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
3cz5rurcs 19.00 1.376% 482.40 19.852% 177.30 10.111% 35.40 5.553% 283.60 9.759% 531.20 17.886% 254.82 10.756%

4g5eo749w 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
bgcnenw9y 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
c2nii9l2q 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%

jobl1mgw3 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
kvsi32e0u 0 0% 0 0% 0 0% 0 0% 7.20 0.330% 6.80 0.229% 2.33 0.093%

m7mnatybo 0 0% 0 0% 0 0% 0 0% 0.80 0.028% 7.20 0.485% 1.33 0.085%
wzma72mga 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%

Open 75.86 1.019% 207.07 2.988% 434.23 6.720% 559.25 10.122% 998.20 8.402% 1253.32 11.990% 587.99 6.874%
1725588183 0 0% 2.20 0.679% 0.20 0.086% 0 0% 83.35 28.682% 3.15 0.303% 14.82 4.958%
1788788609 1.17 0.084% 0 0% 8.50 0.727% 4.75 1.118% 3.55 1.222% 6.85 2.306% 4.14 0.910%
1788788622 0.42 0.061% 15.19 1.875% 0.35 0.043% 0.50 0.118% 2.25 0.155% 2.28 0.219% 3.50 0.412%
1788788626 32.38 1.920% 25.95 3.940% 16.63 1.422% 20.25 2.382% 6.95 0.860% 17.40 2.929% 19.93 2.242%
4468836872 1.81 0.187% 11.17 0.985% 29.25 5.004% 41.50 9.765% 20.15 6.934% 36.75 4.949% 23.44 4.637%
4598151009 4.17 0.302% 80.63 9.954% 152.00 13.003% 254.00 59.765% 568.50 39.126% 530.95 51.077% 265.04 28.871%
4598151018 0 0% 38.09 11.757% 87.95 37.618% 4.75 1.118% 14.38 1.979% 112.70 37.946% 42.98 15.070%
4598151026 19.44 2.813% 18.00 1.111% 92.25 7.891% 219.00 51.529% 299.08 29.405% 481.00 32.391% 188.13 20.857%
4720649125 0 0% 1.17 0.072% 47.10 20.145% 3.25 0.765% 0 0% 0 0% 8.59 3.497%
4720649127 0 0% 14.67 4.528% 0 0% 0 0% 0 0% 61.75 20.791% 12.74 4.220%
4720649129 0 0% 0 0% 0 0% 6.75 1.588% 0 0% 0 0% 1.13 0.265%
4720649131 16.47 5.964% 0 0% 0 0% 4.50 1.059% 0 0% 0.50 0.034% 3.58 1.176%

Total 94.86 0.636% 689.47 2.552% 611.52 4.238% 594.65 5.963% 1289.80 5.189% 1798.52 7.586% 846.47 4.360%
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Table C.6: Parking manager metrics in experiment 2

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Average

Road Ids ∑profit Average
occupancy ∑profit Average

occupancy ∑profit Average
occupancy ∑profit Average

occupancy ∑profit Average
occupancy ∑profit Average

occupancy Profit Occupancy

Closed 235.136 1.652% 93.2 0.494% 191.16 1.259% 61.152 1.905% 108.64 1.317% 123.136 1.609% 135.404 1.373%
2ca1egvj 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%

3662m23xu 0 0% 0 0% 0.36 0.028% 0 0% 0 0% 1.632 0.260% 0.332 0.048%
3c5rurcs 235.136 16.522% 93.2 4.945% 190.8 12.566% 61.152 19.055% 108.64 13.175% 103.648 14.087% 132.096 13.392%

4g5eo749w 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
bgcnenw9y 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
c2nii9l2q 0 0% 0 0% 0 0% 0 0% 0 0% 5.712 0.519% 0.952 0.087%

jobl1mgw3 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
kvsi32e0u 0 0% 0 0% 0 0% 0 0% 0 0% 10.416 0.947% 1.736 0.158%

m7mnatybo 0 0% 0 0% 0 0% 0 0% 0 0% 1.728 0.275% 0.288 0.046%
wma72mga 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%

Open 744.075 10.337% 427.375 5.910% 593.55 8.626% 232.275 6.692% 426.75 10.890% 397.325 5.348% 470.225 7.967%
1725588183 0 0% 91.65 31.647% 4.75 0.662% 26.4 24.000% 79.7 33.829% 0 0% 33.75 15.023%
1788788609 4.45 1.759% 21.5 7.424% 0 0% 0.5 0.091% 12.15 5.157% 5.375 0.821% 7.329 2.542%
1788788622 0 0% 2.25 0.311% 11.2 1.116% 0 0% 3.375 0.573% 0 0% 2.804 0.333%
1788788626 10.1 1.848% 0 0% 15.2 1.778% 8.8 4.000% 4.5 0.382% 8.4 0.458% 7.833 1.411%
4468836872 29.25 4.625% 17.75 2.452% 13.95 4.864% 3.375 1.227% 26.95 3.268% 8.65 3.304% 16.6542 3.290%
4598151009 310.25 49.051% 195 13.467% 248.5 34.658% 130.5 23.727% 184.7 78.396% 108.5 16.578% 196.242 35.979%
4598151018 33.75 5.336% 0 0% 115.2 40.167% 0 0% 0 0% 0 0% 24.825 7.584%
4598151026 251.125 28.360% 51.625 5.093% 133.25 9.292% 41.65 10.818% 115.375 19.588% 174 13.293% 127.836 14.407%
4720649125 105.15 41.561% 47.6 16.436% 0.5 0.035% 0 0% 0 0% 0 0% 25.541 9.672%
4720649127 0 0% 0 0% 49.85 17.381% 0 0% 0 0% 0 0% 8.308 2.897%
4720649129 0 0% 0 0% 1.15 0.401% 21.05 19.136% 0 0% 90.15 34.435% 18.725 8.995%
4720649131 0 0% 0 0% 0 0% 0 0% 0 0% 2.25 0.172% 0.375 0.029%

Total 979.211 6.561% 520.575 3.555% 784.71 5.423% 293.427 4.611% 535.39 6.728% 520.461 3.722% 605.629 5.100%
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Table C.7: Parking manager metrics in experiment 3

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Average

∑profit Average
occupancy ∑profit Average

occupancy ∑profit Average
occupancy ∑profit Average

occupancy ∑profit Average
occupancy ∑profit Average

occupancy Profit Occupancy

Closed 272.409 1.57% 70.873 0.93% 70.999 0.91% 383.200 2.94% 61.484 0.91% 166.655 1.56% 170.937 1.47%
2ca1egvj 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%

3662m23xu 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
3c5rurcs 272.409 15.75% 70.873 9.30% 59.263 7.43% 376.000 28.88% 61.484 9.07% 166.655 15.59% 167.781 14.34%

4g5eo749w 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
bgcnenw9y 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
c2nii9l2q 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%

jobl1mgw3 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
kvsi32e0u 0 0% 0 0% 9.604 1.26% 7.200 0.55% 0 0% 0 0% 2.801 0.30%

m7mnatybo 0 0% 0 0% 2.132 0.40% 0 0% 0 0% 0 0% 0.355 0.07%
wma72mga 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%

Open 884.781 11.80% 395.966 8.66% 473.131 8.86% 1481.500 8.75% 514.616 10.01% 659.456 10.49% 734.908 9.76%
1725588183 47.250 13.14% 0 0% 0 0% 0 0% 29.903 10.01% 40.741 10.88% 19.649 5.67%
1788788609 2.688 0.94% 8.100 3.18% 0 0% 5.000 0.38% 0 0% 5.975 1.93% 3.627 1.07%
1788788622 60.225 19.13% 0 0% 0 0% 8.750 0.67% 0.438 0.18% 0 0% 11.569 3.33%
1788788626 30.241 4.87% 11.150 2.01% 21.950 3.93% 75.750 2.91% 32.072 3.94% 12.025 1.85% 30.531 3.25%
4468836872 19.875 7.49% 17.825 6.81% 16.716 3.74% 90.500 6.95% 13.594 2.18% 11.788 3.80% 28.383 5.16%
4598151009 371.212 52.42% 188.713 49.95% 258.900 67.47% 815.500 62.63% 230.250 58.07% 221.675 45.27% 347.708 55.97%
4598151018 66.391 15.48% 0 0% 0 0% 22.250 1.71% 0 0% 47.025 13.94% 22.611 5.19%
4598151026 268.566 28.89% 150.166 41.10% 174.128 35.55% 463.250 35.58% 208.359 51.86% 249.509 37.09% 252.330 38.35%
4720649125 0 0% 0 0% 1.438 0.57% 0 0% 0 0% 24.313 7.05% 4.292 1.27%
4720649127 0 0% 20.013 7.48% 0 0% 0 0% 0 0% 44.969 12.21% 10.830 3.28%
4720649129 16.850 6.09% 0 0% 0 0% 0 0% 0 0% 0 0% 2.808 1.01%
4720649131 1.484 0.12% 0 0% 0 0% 0.500 0.04% 0 0% 1.438 0.47% 0.570 0.11%

Total 1157.190 7.36% 466.838 5.30% 544.130 5.40% 1864.700 6.23% 576.100 6.05% 826.111 6.61% 905.845 6.16%
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Table C.8: Parking manager metrics in experiment 4

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Average

Road Ids ∑profit Average
occupancy ∑profit Average

occupancy ∑profit Average
occupancy ∑profit Average

occupancy ∑profit Average
occupancy ∑profit Average

occupancy Profit Occupancy

Closed 37.264 3.240% 107.520 2.380% 68.708 1.376% 74.444 1.075% 110.228 2.528% 75.172 2.241% 78.889 2.140%
2ca1egvj 0.384 0.369% 28.464 8.236% 0 0% 0 0% 1.728 0.569% 7.632 2.574% 6.368 1.958%

3662m23xu 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
3c5rurcs 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%

4g5eo749w 5.504 4.931% 0 0% 21.728 5.906% 8.800 2.137% 0 0% 0 0% 6.005 2.162%
bgcnenw9y 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
c2nii9l2q 11.744 10.323% 0.192 0.060% 0 0% 0 0% 0.048 0.016% 26.928 8.680% 6.485 3.180%

jobl1mgw3 0.240 0.230% 0 0% 0 0% 0.192 0.051% 0 0% 3.984 1.346% 0.736 0.271%
kvsi32e0u 0 0% 1.584 0.493% 0 0% 0 0% 0 0% 0 0% 0.264 0.082%

m7mnatybo 19.392 16.544% 77.280 15.007% 46.980 7.856% 65.452 8.562% 108.452 24.692% 36.628 9.807% 59.031 13.745%
wma72mga 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%

Open 88.631 4.989% 591.666 9.969% 443.359 7.192% 760.000 8.215% 648.725 10.946% 572.256 7.408% 517.440 8.120%
1725588183 0 0% 4.813 1.439% 0 0% 0 0% 72.363 16.133% 8.238 2.712% 14.235 3.381%
1788788609 4.313 3.975% 1.563 0.467% 1.625 0.450% 1.125 0.286% 1.125 0.355% 0 0% 1.625 0.922%
1788788622 0.438 0.230% 3.844 0.934% 0.563 0.156% 3.750 0.954% 12.613 3.890% 8.738 2.839% 4.991 1.501%
1788788626 8.663 3.946% 28.453 4.083% 16.038 2.204% 8.375 1.066% 20.838 3.189% 2.500 0.421% 14.144 2.485%
4468836872 3.081 2.650% 19.991 5.624% 16.919 4.478% 20.313 4.882% 30.869 7.405% 8.159 2.271% 16.555 4.552%
4598151009 32.225 20.507% 191.538 34.978% 173.088 32.123% 340.075 40.872% 216.738 31.793% 224.225 38.394% 196.315 33.111%
4598151018 0.188 0.173% 67.900 17.265% 0 0% 64.109 13.311% 76.438 21.011% 5.013 1.661% 35.608 8.903%
4598151026 32.988 23.502% 151.206 28.999% 167.041 34.129% 273.691 32.729% 135.956 32.089% 310.784 46.110% 178.611 32.926%
4720649125 0 0% 46.772 12.126% 21.813 5.861% 31.750 7.761% 41.262 11.592% 4.600 1.472% 24.366 6.469%
4720649127 6.738 5.933% 53.187 13.472% 8.800 2.282% 0 0% 1.125 0.355% 0 0% 11.642 3.674%
4720649129 0 0% 0 0% 2.750 0.761% 1.688 0.429% 27.400 7.622% 0 0% 5.306 1.469%
4720649131 0 0% 22.400 6.129% 34.725 8.852% 15.125 3.435% 12.000 3.673% 0 0% 14.042 3.681%

Total 125.895 4.229% 699.186 6.669% 512.067 4.664% 834.444 5.110% 758.953 7.286% 647.428 5.161% 596.329 5.520%
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