
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

An optimization-based wrapper
approach for utility-based data mining

José Francisco Cagigal da Silva Gomes

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Carlos Manuel Milheiro de Oliveira Pinto Soares

Co-Supervisor: Yassine Baghoussi

September 6, 2019

An optimization-based wrapper approach for
utility-based data mining

José Francisco Cagigal da Silva Gomes

Mestrado Integrado em Engenharia Informática e Computação

Approved in oral examination by the committee:

Chair: Doctor Rui Carlos Camacho de Sousa Ferreira da Silva
External Examiner: Doctor Nuno Miguel Pereira Moniz

Supervisor: Doctor Carlos Manuel Milheiro de Oliveira Pinto Soares
September 6, 2019

Abstract

Traditional data mining focuses on finding patterns that are more frequently observed in data.
However, there are tasks where rarer instances can be translated into high utility, such as fraud and
environmental catastrophe detection. In real-world scenarios, decision making is often influenced
by those regions of the data space, which are not too populated.

Standard machine learning algorithms usually focus on commonly used measures, such as root
mean squared error, mean squared error and mean absolute error (for regression problems). These
measures lead to models which are likely to make large errors on rarer instances. Therefore, these
measures fall short when high accuracy is particularly important in specific areas of the data set,
such as the ones with less density. Utility-based data mining assume non-uniform costs in data.
As such, these approaches could be used on the aforementioned problems by developing utility
functions that give higher importance to rare instances rather than common ones.

Most of the work on utility-based data mining focuses on classification problems. Thus, we
concentrate on regression problems. In this dissertation, we propose a utility-based data mining
wrapper approach that can be used on cost-sensitive tasks. The idea is to iteratively change the
weight of the training set according to a given utility measurement. As this approach is domain
independent, it can be used for regression and classification tasks.

To test our approach, we used artificial and UCI data sets. Results show that in 100% of the
tests performed, it was possible to have a higher utility when compared to the machine learning
algorithm using the original training set. We also developed a domain-specific utility measure to
test this approach on a retail case study. The goal, in this case, was to predict daily net sales using
the created metric. We obtained a higher utility score in all stores that were analyzed.

Keywords: Data Mining, Utility Based Data Mining, Utility Based Regression, Wrapper Ap-
proach Data Mining, Resampling Methods

i

ii

Resumo

A extração de conhecimentos tradicional foca-se em encontrar padrões que são observados com
mais frequência nos dados. No entanto, há problemas em que instâncias mais raras podem ser
traduzidas em alta utilidade, como deteção de fraude e de catástrofes ambientais. Em cenários do
mundo real, a tomada de decisão é frequentemente influenciada por essas regiões do espaço de
dados, que não são muito populadas.

Os algoritmos de aprendizagem automática, geralmente focam-se em medidas comumente us-
adas, como o raiz do erro quadrático médio, o erro quadrático médio e o erro absoluto médio
(para problemas de regressão). Estas medidas levam a que os modelos provavelmente obtenham
grandes erros em instâncias mais raras. Portanto, as medidas são insuficientes quando a alta pre-
cisão é particularmente importante em áreas específicas do conjunto de dados, como aquelas com
menor densidade. Utility-based data mining pressupõe custos não uniformes nos dados. Assim,
estas abordagens poderiam ser usadas nos problemas mencionados anteriormente, desenvolvendo
funções de utilidade que dão maior importância a instâncias raras, em vez das mais comuns.

A maior parte da pesquisa em utility-based regression foca-se em problemas de classificação.
Desta forma, o nosso foco é em problemas de regressão. Nesta dissertação, propomos uma abor-
dagem de utility-based regression que pode ser usada em problemas cujo o custo não seja uni-
forme. A ideia é alterar iterativamente o peso do conjunto de treino de acordo com uma medida
de utilidade. Como esta abordagem não depende do domínio, pode ser usada para problemas de
regressão e classificação.

Para testar o método proposto, usamos conjuntos de dados artificiais e UCI. Os resultados
mostram que em 100% dos testes realizados, foi possível obter uma utilidade maior quando com-
parado ao algoritmo de extração de conhecimento usando o conjunto de treino original. Também
desenvolvemos uma medida de utilidade específica ao domínio do caso de estudo no retalho para
poder testar a abordagem proposta. O objetivo, neste caso, era prever vendas líquidas diárias
usando a métrica criada. Obtivemos uma pontuação mais alta de utilidade em todas as lojas anal-
isadas.

iii

iv

Acknowledgements

Firstly, I would like to thank my supervisor, Carlos Soares, for his guidance throughout this disser-
tation and for introducing me to the area of utility-based data mining. I am very thankful for all the
countless questions answered and the provided scientific expertise that made this thesis possible.

I would also like to thank João Guichard and Miguel Arantes for sharing their vast knowledge
regarding the retail industry.

I must also express my gratitude to Yassine Bhougassi and André Correia for supporting my
work and being present when I needed them.

A sincere thank you to all my friends, colleagues and teachers who supported me and directly
or indirectly contributed to my academic path.

Lastly, I send my special thanks to my family. Especially my mother, father, and brother for
always believing and supporting me throughout my life.

This work is financed by INOVRETAIL, through the SONAE IM.Lab@FEUP - Research and
Development Laboratory, within the project “2018/INOVRETAIL/Utility Regression".

Francisco Cagigal

v

vi

“Information is the oil of the 21st century,”
“and analytics is the combustion engine”

Peter Sondergaard

vii

viii

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Goals and contributions . 2
1.3 Document Structure . 2

2 Background 5
2.1 Genetic algorithm . 5

2.1.1 Fitness function . 5
2.1.2 Chromosome representation . 6
2.1.3 Population generation . 6
2.1.4 Selection . 7
2.1.5 Genetic operators . 7

2.2 Utility-Based Data Mining . 7
2.2.1 Definition . 8
2.2.2 Classification problems . 9
2.2.3 Regression algorithms . 10

3 Approach 13
3.1 Algorithm formulation . 13

3.1.1 Chromosome representation . 13
3.1.2 Selection process . 15
3.1.3 Crossover operator . 15
3.1.4 Mutation operator . 16

3.2 Utility measures . 16
3.3 Experiments . 19

3.3.1 Experiment I . 19
3.3.2 Experiment II . 25
3.3.3 Experiment III . 30
3.3.4 Experiment IV . 35

4 Empirical Study 41
4.1 Benchmark data sets . 41

4.1.1 Experimental setup . 41
4.1.2 Results and discussion . 42

4.2 INOVRETAIL case study . 49
4.2.1 Data analysis . 49
4.2.2 Utility function . 50
4.2.3 Experimental setup . 52

ix

CONTENTS

4.2.4 Results and discussion . 53

5 Conclusions and Future Work 59
5.1 Future Work . 60

A Experiment II results 61

B Experiment III results 65

References 67

x

List of Figures

2.1 Common architecture of a genetic algorithm. 6
2.2 Example of crossover strategies reproduced from [21] 8
2.3 Example of an utility surface. reproduced from [25] 11

3.1 Architecture of the proposed solution. 14
3.2 Example of 1-point crossover. 15
3.3 Frequency distribution graph of the target’s variable of an artificial data set with a

possible relevance function. P1 - Minimum value; P2 - Median; P3 - Maximum
value; . 19

3.4 Training set for the artificial data set. 21
3.5 testing set for the artificial data set. 21
3.6 A) Result of linear regression on the original training set. B) Result of linear

regression on the training set obtained by our approach. 22
3.7 Weight attributed to each example in training set using our approach. 23
3.8 Results regarding Test I: A) Resulting model using our approach. B) Distribution

of weights obtained in the training set. 24
3.9 Results regarding Test II: A) Resulting model using our approach. B) Distribution

of weights obtained in the training set. 25
3.10 A) Data set that will be used for training. B) Data set that will be used for testing. 26
3.11 Linear regression model using the original created training set. 27
3.12 Results regarding Test I: A) Resulting model using our approach. B) Distribution

of weights obtained in the training set. 28
3.13 Results regarding Test II with 99% of zeroes per individual: A) Resulting model

using our approach. B) Distribution of weights obtained in the training set. 29
3.14 Results regarding Test II with 95% of zeroes per individual: A) Resulting model

using our approach. B) Distribution of weights obtained in the training set. 29
3.15 Training set used in experiment III and corresponding linear regression model. . . 31
3.16 Results regarding Test I of experiment III with 90% of zeroes per individual: A)

Resulting model using our approach. B) Distribution of weights obtained in the
training set. 32

3.17 Distribution of weights obtained for the training set in Test II of experiment III. . 34
3.18 Variation if maximum utility per iteration in Test II of experiment III. 35
3.19 Distribution of weights obtained for the training set in Test I of experiment IV. . . 38
3.20 Sequence of distribution of weights obtained for the training set in Test II of ex-

periment IV separated by 1000 iterations. 39

4.1 Comparison of predictions’ errors between the model with the original training set
and Approach I. 45

xi

LIST OF FIGURES

4.2 Distribution of weights on the training set. A) Housing training set using regres-
sion tree; B) Housing training set using SVM; C) Orders training set using regres-
sion tree; D) Orders training set using SVM; . 45

4.3 Representation of the utility function used for INOVRETAIL case study. 52
4.4 Comparison between real net sales and predicted net sales of Store 7 using real

values for conversion ration and footfall. 54
4.5 Comparison between real net sales and predicted net sales of Store 7 using pre-

dicted values for conversion ration and footfall. 55
4.6 Comparison between real net sales and predicted net sales of Store 1. 57

A.1 Results regarding Test II with 90% of zeroes per individual: A) Resulting model
using our approach. B) Distribution of weights obtained in the training set. 62

A.2 Results regarding Test II with 80% of zeroes per individual: A) Resulting model
using our approach. B) Distribution of weights obtained in the training set. 62

A.3 Results regarding Test II with 60% of zeroes per individual: A) Resulting model
using our approach. B) Distribution of weights obtained in the training set. 63

B.1 Results regarding Test I of experiment III with 80% of zeroes per individual: A)
Resulting model using our approach. B) Distribution of weights obtained in the
training set. 66

B.2 Results regarding Test I of experiment III with 60% of zeroes per individual: A)
Resulting model using our approach. B) Distribution of weights obtained in the
training set. 66

xii

List of Tables

3.1 Parameters used in experiment I. 21
3.2 Parameters that were used to run both tests. 27
3.3 Parameters used to run Test I of experiment III. 31
3.4 Parameters used to run Test II of experiment III. 33
3.5 Parameters used to run Test I and Test II of experiment IV. 37

4.1 Information regarding used data sets. 42
4.2 Parameters used for data set Servo. 44
4.3 Comparison of utility and RMSE values between the two approaches and the ML

algorithm in use. In this case the it is used a decision tree for regression. 46
4.4 Comparison of utility and RMSE values between the two approaches and the ML

algorithm in use. In this case the it is used SVM. 47
4.5 Utility results obtained used the expected weight distribution on SVM and Deci-

sion Tree algorithms. 48
4.6 Information regarding tables provided by INOVRETAIL. 49
4.7 Details about stores used in the experiment. 51
4.8 Utility results for each store with different setups. 55
4.9 RMSE results for each store with different setups. 56

xiii

LIST OF TABLES

xiv

Abbreviations

DT Decision Tree
GA Genetic algorithm
ML Machine Learning
RF Random Forest
RMSE Root mean squared error
SVM Support Vector Machine
UBDM Utility-based data mining

xv

Chapter 1

Introduction

Data-driven decisions are an essential way to achieve competitive advantage [23]. This is the

process of making a decision which its basis lies within data analysis. One of the most predominant

types of analytics is predictive analysis. It takes into account data previously recorded to make

predictions of what might happen in the future. It is used in different areas such as marketing,

financial services, communications industry, retail, pharmaceuticals, social networking, among

others.

Usually, in real-world situations, the problem at hand may not require the discovery of frequent

patterns spread throughout the data domain. Sometimes a more insightful data knowledge can be

derived if we focus on specific parts of a data set. This knowledge can be translated into high

utility as it is significantly impactful on decision making. Therefore, the business user has reasons

to be more interested in a lower error on these specific parts of the data set domain rather than

others.

One integral part of predictive analysis is model evaluation. It allows the understanding of how

a model fits a set of data so we can compare different models. In order to evaluate models, there

are standard measures such as Root Mean Squared Error (RMSE), accuracy, among others. Most

of these measures do not take into consideration the different error costs throughout the domain

of the target variable. Thus these measures are unfit for cost-sensitive tasks. Usually, Machine

Learning (ML) algorithms use these metrics to optimize their predictions. Consequently, these

algorithms fall short when the cost is not uniform across the domain of data.

Utility-based data mining is a type of cost-sensitive learning where the costs and benefits

of the accuracy/error for each prediction are considered differently. This means that instead of

attributing a uniform relevance to each instance in our data, such importance may vary with each

instance. This data mining branch has a wide range of applications in areas such as fraud detection,

catastrophes prediction, network attacks, rare disease diagnosis, among others [24]. On all these

scenarios, there is a clear interest in a subset of its domain. Usually, the accuracy on rare examples

is the most interesting from the user’s point of view.

The proponent of this thesis is INOVRETAIL 1. This is a company that provides data driven

1https://www.inovretail.com/

1

Introduction

solutions to retailers. One of their services is predicting targets for stores. Targets represent a

sales goal that an employee has to achieve during his shift. If the employee can meet the proposed

goal, he is rewarded. The global target is the sum of all employees target during a day in a store.

The proposed problem by INOVRETAIL, and the one which is addressed in this thesis, is to make

predictions for net sales values in stores that take into account a store’s potential to grow their

sales. For instance, there are days where it is usual to have some operational complications. If

these complications were to be properly addressed and solved, it would be possible to increase net

sales. As such, an overprediction in this type of days does not hold the same significance as an

underprediction.

1.1 Motivation

We are addressing the proposed problem by INOVRETAIL of net sales prediction. In this task, the

error costs of predictions varies throughout data’s domain. So, utility-based data mining should

be regarded. However, most of these approaches focus on classification problems [27, 13, 12,

6, 31, 26, 4, 3, 10]. On the other hand, considering regression problems, research done on the

topic is still on the early stages [1, 24]. Therefore, this thesis centers exclusively on utility-based

regression.

1.2 Goals and contributions

The main goal of this thesis is to develop a wrapper based approach for utility-based data mining.

This approach is algorithm-independent, which means it can be used with any ML algorithm.

Regarding our case study, the goal is to use this approach to address the net sales prediction’s

problem. In this task, the cost of underprediction and overprediction varies across the data’s

domain.As such, we need to define a function that is able to translate these misclassification costs.

So, another goal of this thesis is the development of an utility measure for the retail case study.

1.3 Document Structure

The remainder of this document is structured as follows:

• Chapter 2, Background, starts by explaining the concept of genetic algorithms and detailing

some strategies used on genetic operators. Finally, it introduces the concept of utility-based

data mining for classification and regression problems;

• Chapter 3, Approach, starts by detailing the developed approaches and justifies some deci-

sions made. Some experiments on artificial data used to understand the behaviour of the

proposed method are also discussed;

2

Introduction

• Chapter 4, Empirical study, starts by detailing the experiments done in UCI data sets and

discussed the corresponding results. Then, it presents the approach followed on the case

study to predict sales goals. Finally, the corresponding results are discussed.

• Chapter 5, Conclusions & Future Work, holds the main conclusions and points out possible

future works.

3

Introduction

4

Chapter 2

Background

This chapter presents the two main areas of interest for this project, Genetic Algorithms and

Utility-based Data Mining.

2.1 Genetic algorithm

Genetic algorithms were introduced by John Holland in the mid-1960 [16]. Darwin’s theory of

evolution inspires these algorithms. They are based on the application of different evolutionary

operators such as selection, crossover, and mutation to a population of solutions. These types

of algorithms are often used in optimization and search problems. A common architecture of a

genetic algorithms is presented in Figure 2.1.

Genetic algorithms try to combine exploration and exploitation approaches. Exploration con-

sists of searching in a global area of the optimization function with the single goal of finding

reasonable solutions that are still unrefined. This mechanism prevents the algorithm from being

stuck in a local optima. On the other hand, exploitation entails the refinement of a solution that is

assumed to be close to the global optimum. Of course, if exploitation is applied to solutions that

are not near the optimal solution, it may be a risk that it can be stuck at a local optimum [20].

2.1.1 Fitness function

In every GA, there is a need to evaluate each chromosome according to the goal of the algorithm.

This evaluation is performed by a fitness function. It is a domain-specific and user-defined func-

tion. This is an integral part of the algorithm as it allows to distinguish chromosomes that are good

solutions from those that aren’t. Naturally, chromosomes that carry food genes have a likelier

chance of surviving throughout the iterations of the algorithm. Thus, there will be more and more

fittest chromosomes as the number of iterations increase. As such, optimizing a fitness function

will bring better solutions for the task, which is the goal.

5

Background

Figure 2.1: Common architecture of a genetic algorithm.

2.1.2 Chromosome representation

In order to use a GA, the design of the chromosome needs to be specified. A chromosome is a set

of genes. These genes carry the information of the solution. They translate an encoding method

to a domain solution.

Usually, the representation of chromosomes is domain-specific. One of the most common

ways of approaching this problem is using binary encoding. In this type of encoding, each gene

corresponds to the value 0 or 1. It is also possible to encode chromosomes using a larger range of

numeric values. Another type of encoding is string encoding, in which each gene corresponds to

a string code.

2.1.3 Population generation

The population is an essential component of genetic algorithms. Chromosomes, which are also

referred to as individuals are what composes a population. The algorithm changes values, with the

goal of generating better solutions as the iterations go by.

Regarding its generation, there are two main discussion topics: the size of the population and

how this population is created. Regarding the size of the population, some studies suggest a low

population size can lead to suboptimal solutions [15, 22]. However, having a higher population

size is computationally costly, and the algorithm may take more time than what is necessary [19,

18]. There are also some studies suggesting that the population size should be proportional to the

complexity of the space search [32].

6

Background

With regards to how the initial population is created, there are two main techniques: randomly

generating genes or using a heuristic approach. Usually, random values are used to generate the

population. However, it is also possible to use heuristic functions that may generate chromosomes

with good fitness. These heuristic functions are associated with increases in maximum fitness

when compared to random generation [28]. However, creating all the individuals of the population

with a heuristic function can lead to premature convergence, in which turn leads to suboptimal

solutions.

2.1.4 Selection

Selection is the process of choosing chromosomes to go to the next generation and discarding the

remaining. This is usually a fitness-based process, in which the fittest individuals have a higher

chance of being selected. The fitness function is domain-dependent and represents the translation

of the problem.

Selection may include elitism. This is when the best individuals of the population are allocated

in the next generation unchanged. As such, they do not undergo the process of mutation nor

crossover. Saving these individuals for the next generation avoids the loss of the best solutions [9].

2.1.5 Genetic operators

The two most common genetic operators are crossover and mutation. However, it is not required

that both of them should be used in a genetic algorithm.

Crossover is the process of selecting two individuals to recombine their genes in order to create

two offspring. Two standard ways to recombine genes is uniform crossover and k-point crossover

and are represented in Figure 2.2. The latter happens when both parents are separated in the same k

genes, and each child will have a genetic segment from one parent, followed by the next segment

from another parent. In uniform crossover, each gene has an independent probability of being

chosen from the corresponding gene of each of their parents.

Usually, mutation is a genetic operator used to maintain population diversity. It alters 1 or

more genes in a chromosome. There are two standard approaches to mutation: intergene and

intragene. In intergenic mutation, every gene has an independent chance of being mutated, while

in intragenic mutation, the chromosome must first be randomly selected for mutation and only

then can a gene of that chromosome be randomly replaced. Usually, low mutation rates can lead

to premature convergence because of low genome diversity.

2.2 Utility-Based Data Mining

This section defines utility-based data mining and the research done in this field, including both

regression and classification problems.

7

Background

Figure 2.2: Example of crossover strategies reproduced from [21]

2.2.1 Definition

Conventional methods of measuring error such as MAE, MSE, RMSE are inefficient in real-world

scenarios [24]. Measuring accuracy in imbalanced data sets can lead to a wrong perception of

how good a model can be. This happens because having lower errors in common regions than

rare regions of the data set may not be relevant in real-world problems [5]. Moreover, the cost of

errors may differ between classes since the main objective could be to have a model that is good

at detecting a type of class or outliers. For these scenarios, we need to use a different kind of error

measurements that depends on the importance derived from the primary goal of the model. This

kind of problems can be expressed as an utility-based data mining problem. Consider the example

of a bank deciding whether or not to grant a loan to a set of clients. The goals of the bank can be

to minimize the bank loss on granted loans. A bank loses money on a loan if the client is unable

to pay for it. So an approach to solving this problem would be to maximize the accuracy of the

class of clients that default a loan. Minimizing the error on this class allows the bank to lose less

money with this class of clients in detriment of a higher error on the opposing class. Achieving a

good accuracy on the former class can be done by having a higher error cost on that class than on

the latter class.

Elkan [11] defines utility as a combination of benefits and costs that are specific to the domain

of the application. There are two main methods for these type of problems: resampling the training

sample and cost-sensitive ML. The first one corresponds to changing the weights of the examples

in the training set before applying the ML algorithm. The latter is based on adapting already

existent ML algorithms into being cost-sensitive or developing a new one that can maximize utility.

For regression problems, utility is defined as a function of both the error of the prediction and

the relevance attributed to the domain of the target variable and of the prediction.

8

Background

State of the art for this field is divided into regression and classification problems as follows

in Section 2.2.2 and Section 2.2.3, respectively.

2.2.2 Classification problems

Regarding classification problems, there is a lot of study in different topics. This research entails

relational costs in training set examples [27], quantification tasks [13], using evaluation measures

as an utility function [12], imbalanced data sets [6], data collection [31], multi and binary classifi-

cation tasks [3, 10].

In this Section, we will discuss Metacost in greater detail because it is a wrapper approach for

classification problems.

Introduced by Pedro Domingos [8], Metacost is a wrapper algorithm that deals with different

costs per class. The Bayes optimal prediction is the basis of this method which goal is to minimize

the conditional risk R(i|x), i.e., expected cost. The formula is as follows:

R(i|x) = ∑
j

P(j|x)C(i, j) (2.1)

where P(j|x) is the probability that given an example x it belongs to class j and cost(i, j) is

the cost associated with the miss-classification of an example that belongs to class i predicted to

belong to class j. This implies a partition of the example space into j regions, with class j being the

least costly prediction in the j region. If the miss-classification of class j becomes more expensive

than the miss-classification of other classes, then "parts of the previously non-class i regions shall

be re-assigned as region i since it is now the minimum expected cost prediction" [29].

This method is a variant of the bagging method (also called bootstrap aggregating). Bagging

is an ensemble algorithm that works as follow: given a training set of size s, it generates x new

training sets of size s using replacement by sampling uniformly from the training set. Models are

produced using each of the training samples created. The results are computed by averaging all

the established models for regression or by voting for classification. The difference with Metacost

lies on the fact that the number of examples of each generated training set may be smaller than

the training set size [8]. It estimates all the class probabilities taking into account all the models

made and relabels each training example with a rated optimal class using equation 2.2. Finally,

the process repeats itself once again with the relabelled training sets to generate the final model.

classx = argmini ∑
j

P(j|x)C(i, j) (2.2)

One advantage of this approach is that it is a wrapper method as it can be used with any

classification learning ML algorithm without prior knowledge of it. The main disadvantage is the

processing time since it has to run the ML algorithm s amount of times. Results demonstrate that

this approach has reduced costs when compared to error-based classification and stratification. It

was also concluded that it scales well with large data sets [8].

9

Background

2.2.3 Regression algorithms

Despite extensive research on utility-based classification approaches, there is still a lack of re-

search in regression problems. Utility is not often considered for these latter problems, even

though its importance as it is common to have asymmetric costs [7].

In order for a problem to be considered to have an imbalanced domain and asymmetric domain

relevance, one of the following properties must be verified [2]:

1. L(y,y)= L(x,x);U(y,y)=U(x,x): perfect predictions may output a different utility value;

2. L(y1,y2) = L(x1,x2); U(y1,y2) = U(x1,x2): the same error may output a different utility

value;

3. A combination of the above options.

Ribeiro adressed the problem of utility based regression based on the concepts of relevance

functions and utility surfaces [24].

2.2.3.1 Relevance functions

A relevance function is used in attributing importance to values in the data domain according to

the application domain. A function φ() maps the target variable’s values to the range [0,1] where

0 corresponds to the minimum importance and 1 to the maximum relevance.

Branco et al. describes the benefits of this method as follows [2]:

• It is easier to define a relevance function based on the target variable’s domain (y) rather

than taking into account two variables ŷ and y;

• Utility functions require more information to be defined when compared to relevance func-

tions. The former needs a deeper domain knowledge to be specified.

2.2.3.2 Utility surface

Utility surface is a function that takes into account the relevance of the predicted values and the

real ones as well as the error of the prediction and turns it into utility. In [24], utility is a measure

of the error between the estimated and actual results as well as the relevance that the domain user

attributes to ŷ and y. Figure 2.3 illustrates an example of a utility surface.

This utility surface is what distinguishes a standard regression problem from an utility-based

one. The former assumes the error (L(y, ŷ)) is uniform across the data domain. On the other hand,

the latter, besides depending on the same loss function, also takes into account the relevance of the

variables ŷ and y.

10

Background

Figure 2.3: Example of an utility surface. reproduced from [25]

The conditional density of the target variable is used to estimate the utility of a prediction.

This conditional density function can be seen in equation 2.3 where fX ,Y (x,y) represents the join

density function of X and Y , and f X(x) is the marginal density of X [1].

fY |X(y|X = x) =
fX ,Y (x,y)

fX(x)
(2.3)

It was also introduced in [24] a utility measure that best suits utility-based regression problems

as demonstrated. The formula is called mean utility and goes as follows:

MU =
1
n

n

∑
i=1

U p
φ
(ŷi,yi) (2.4)

where n is the number of predictions generated, φ the relevance function, p the penalizing costs

factor, ŷ represents the predicted value and y the real observed value.

2.2.3.3 ubaRules

Proposed by Rita Ribeiro [24], ubaRules is an ensemble method applied to regression problems to

optimize a utility function. Its main goal is to obtain an accurate model according to a specified

utility measure. The author’s intent was that it should be interpretable for the domain user because

relevant values are usually associated with costly/beneficial decisions [24]. Thus the choice of

opting for a rule-based formalism for the representation of the models as they are easily under-

standable. This ensemble method is divided into the following two steps.

11

Background

Firstly, different regression trees are generated using various samples from the training set.

Regression rules are extracted from these models. A regression rule is defined as follows [24]:

rk(x) =Uk

ρ

∏
j=1

I(x j ∈ χ
k
j) (2.5)

In equation 2.5, χk
j represents a subset of the domain values for input variable j, x j is the value

of x on input variable j, I represents a function which returns 1 or 0 depending on if the argument

inside it, is true or false, respectively. ρ is the number of input variables and Uk represents the

constant prediction of rule k for the target variable Y . The rule is equal to Uk if every input

variable satisfy the conjunction of tests proposed by the rule. Otherwise it is equal to 0.

Given that the rules have been obtained from different regression trees, the next step is to

choose the rules with which to generate the final model. However the number of rules increases

with the number of models used, and although it can improve the accuracy of the model, it may

also reduce its interpretability as the complexity of the model increases with the number of rules.

So there is a need for a process that reduces the number of rules by selecting only the best ones.

Each rule is evaluated individually using a utility metric U . The rules are ordered in decreasing

order of their estimated utility to form a ranking system. Finally, the best n rules are selected to

generate the final ensemble.

2.2.3.4 Sampling approaches

Most ML algorithms focus on the most common cases on the data sets but may not cover regions

that are of the most importance to the user.

In [30], Torgo et al. propose two approaches that are adapted from existing sampling methods.

The first one consists of undersampling common values. The goal of this approach is to have a

better ratio between common examples, which have reduced importance, and rare cases where its

importance is significant.

The second one is an adaptation of SMOTE sampling. SMOTE is a sampling method used

for unbalanced data sets in classification problems. It entails adding synthetic examples to the

minority class so it has the same occurrence as the majority class. The authors propose that this

method should be adapted to regression by defining regions of interest. This approach should

oversample the region of interest, which functions as the minority class, and undersample the

uninteresting region, which corresponds to the majority class.

Results show that these approaches are significantly better than using the original training set

with the same ML algorithm.

12

Chapter 3

Approach

This chapter presents the proposed wrapper approach for utility-based data mining. It also details

experiments performed on artificial data. Finally, it explains how some changes to the approach

came to fruition.

3.1 Algorithm formulation

We are assuming that errors in a prediction are not always strongly correlated with its impact on

the utility. As such, our approach consists of reweighting the examples in the training process in

a way that more importance is given to examples with a higher impact on utility. We reweight

the examples by resampling. The question is how how to define the right weights. We follow a

wrapper approach, where the method iteratively searches for the best weights, evaluating solutions

by learning and testing the model with the proposed weights. The search algorithm is a genetic

algorithm.

A chromosome represents the weights assigned to each example (in the training data) and the

fitness function is the utility of the model obtained with the training set reweighted according to

the chromosome. Thus we could use a genetic algorithm for our resampling strategy.

3.1.1 Chromosome representation

To use genetic algorithms, we need to define what is the population, chromosomes, and genes

in our problem (Section 2.1). Per the general definition, the population is a set of chromosomes

(individuals). In our problem, a chromosome is used to transform the original training set in

another that will be used for modelling. The chromosome has a fixed number of genes that is

equal to the number of rows in the training set. Genes compose a chromosome and represent the

weight of each instance in the training set. So each chromosome functions as a mask of the training

set. For instance, if the first gene has the number 10 in it, the first instance of the original training

set appears ten times in the new training set. In summary, each gene represents an example from

the training set and its value (weight) corresponds to the number of times this example is going

to be replicated in this set. Thus we would have the number of times each instance appears in the

13

Approach

Figure 3.1: Architecture of the proposed solution.

training set changing throughout the algorithm. The goal is to find the best combinations of genes

that optimize a fitness function.

3.1.1.1 Fitness function

When we test the fitness of each chromosome, we use a fitness function. In this case, our fitness

function is the utility evaluation metric. Firstly, to evaluate each individual of the population, we

need to use the new generated training set to create a model. Then we measure the performance

of this model on a testing set using a utility metric (3.1). The utility of a chromosome is given by

equation 3.1, where i is an instance from the testing set, n the total number of cases in this set, yi

the real value of the target variable, ŷi the prediction value, and u(y) the importance attributed to

this instance of a testing set. This formula represents the preference of the error in the domain of

the target variable. Since this formula is proportional to the error on the predictions, we want to

minimize its output. However, GA tries to maximize their fitness functions. To handle this issue,

we used equation 3.2 to transform the minimization problem into a maximization one. At the end

of the selection process, we have the same number of individuals that we had at the beginning.

U(c) =
n

∑
i

u(y)∗ |(yi− ŷi)| (3.1)

US =
1

U(c)+1
(3.2)

The following sections describe the GA operations such as selection, crossover, and mutation.

We developed two approaches based on the same concept. The second was developed based on

preliminary experiments with the first one but, for convenience, we describe both of them before

the experiments. As such, for clarity purposes, the first approach is referred to as Approach I,

while the latter approach is referred to as Approach II. These approaches differ in the selection

14

Approach

Figure 3.2: Example of 1-point crossover.

and mutation stages. Therefore, in the next sections, these operations are going to be divided into

subsections for each of the strategies.

3.1.2 Selection process

This section details the selection process used for Approach and Approach II.

For Approach I, at the beginning of each iteration of the algorithm, the population must be

evaluated according to a fitness function in order to use roulette wheel. The fittest individuals

according to this function have a higher chance of being selected for the next phase. However, in

our algorithm, we also guarantee the n fittest individuals are present in the crossover step. This

process differs from the general elitist approaches as the chosen individuals go through crossover

and mutation, unlike standard elitist methods. We chose this strategy as modeling of an individual

is a costly process, and disregarding some individuals for crossover and mutation seemed wasteful.

As for Approach II, after evaluating the fitness of each individual of a population, these are

ordered by their fitness value. The worst n individuals are removed from the population. The best

n individuals are replicated once, creating two sets of these individuals. The first set goes directly

into the next iteration without going through crossover or mutation processes. The second sample

joins the rest of the population in crossover and mutation.

3.1.3 Crossover operator

In the crossover, we generate chromosomes by combining two of the parents of the population.

Parents are randomly selected for the process. Some individuals may not participate in this task as

they may not be selected. This operator is associated with a probability. Since each chromosome

has an independent probability of being selected, that may not happen for all cases. There are

many crossover strategies, but we chose to implement single point crossover (3.2). The reason

behind this choice was the building block hypothesis [14]. This hypothesis consists of recombining

building blocks, which are low order sequences of genes with above average fitness. In our case,

the examples of the training set are ordered according to their target variable. As such, a building

block could be a part of the domain which is given a high or low relevance.

15

Approach

3.1.4 Mutation operator

Mutation consists of replacing gene values by other values which are randomly generated. There

are two types of mutation operators, intragene and intergene. Intragene mutation requires that an

individual is randomly drawn for mutation and then one or more genes from that individual are

changed to other randomly generated values. In intergenic mutation each gene has an independent

probability of being mutated. In our algorithm, we opted for the intergenic mutation the mutations

have a higher chance of being more equally dispersed between the chromosomes. Thus, we have

a higher probability of changing more chromosomes per iteration.

3.1.4.1 Mutation process I

This process in Approach I is a common intergenic mutation with a fixed rate. Each gene has an

independent probability of being changed to another value randomly generated.

3.1.4.2 Mutation process II

In this strategy, the mutation is not a fixed value but rather a varying one. At the beginning of

the algorithm, the mutation rate is set to a high value. Then we must define a parameter i which

represents the number of iterations needed for the mutation rate to drop while the best solution

found remains unchanged. For instance, if i is equal to 10, it would require ten iterations for the

mutation rate to drop. However, if the utility of the fittest individual increased, the counter is

reset. In this situation, it would take another ten iterations for the mutation rate to decrease. The

mutations rate is reduced by a determined factor r. It stops dropping when it hits the minimum

mutation rate specified. Algorithm 1 translates the specified operator into pseudo-code.

3.2 Utility measures

Utility functions quantify the importance of different areas of the data domain. The utility func-

tion is typically determined by the application domain. However, to validate the approach we

would like to test it on artificial data and also benchmark data sets. This is also important for

reproducibility, as the data from the case study used in this project is not public domain. Thus, we

need to arbitrate a utility function for the experiments with artificial and benchmark data. As in

some real-world problems, there is a more significant interest in extreme and rarer values on the

data domain [24], we followed the same line of thought. As such, we give more importance to

values that are on the extreme of the data domain rather than the middle of it. In our methodology,

we are relaxing the definition of a utility function to a relevance function in order to simplify our

experiments.

We test this approach on data sets which target variable has more examples in the middle of

its domain rather than the extremes. For instance, if the domain of the target variable resembles a

normal distribution, it is guaranteed that we have more examples in the middle region and fewer

instances in the extremes. Thus it allows us to accomplish our goal of attributing higher importance

16

Approach

Algorithm 1: Mutation for Approach II.

mut_i←− initialmutationmutationvalue;
mut_ f ←− lowestmutationvalue;
dec_r←− decayingrateo f themutation;
n←− numbero f iterationswithoutimprovementstodecreasethemutationrate;
begin

counter←− 0;
best_solution←− 0;
current_mutation←− mut_i;
while genetic_algorithm_termination_condition do

if current_solution > best_solution then
best_solution = current_solution;
counter = 0;

else
counter += 1;

end
if counter == n then

current_mutation = current_mutation x dec_r;
counter = 0;

end
if current_mutation >= mut_ f then

current_mutation = mut_ f ;
end

end
end

17

Approach

to extreme values rather than values located in the middle of the data domain. If this does not occur,

it will not bear meaning to use this utility measure to demonstrate how our algorithm works as the

values on the extremes would be common and easily predicted. Moreover, the utility function

should adapt to the scale of the target variable. As such, it is data-independent, i.e., can be used

with any data sets without previous knowledge.

Figure 3.3 represent how the variable Y is distributed across the domain for an artificial data

set. As previously said, it is essential that these data sets’ distribution is similar to a normal

distribution to create our utility measures. As we can see from that figure, the closer the examples

of Y variable gets to the extremes, the less frequent they are. This allows us to create a utility

metric by giving more importance to extreme cases and lesser significance to examples around

the mean. Taking into account the distribution in figure 3.3, we can calculate the displayed utility

function in three steps. Firstly, we find the minimum (P1), maximum (P3) and median (P2) value

of the target variables (Y). Then we calculate a positive quadratic function, which we will call F1,

using P2 as the minimum and P1 as an auxiliary point. Lastly, we calculate a quadratic function

F2 with the values P2 and P3 following the same logic. We end up with two equations F1 and

F2. When evaluating a model on a testing set, if the value of the target variable is lower than the

median, we use F1, while if its higher we use F2.

The reasoning behind this decision of having two quadratic functions was to correct the possi-

bility of our target variable being skewed towards one of the sides. If the right side of the median,

which corresponds to the side which the maximum is in, represented considerably higher impor-

tance than the left side it would devalue the importance given to the left side and thus would not

meet the purpose of the experiments. For instance, in the previously mentioned data set, if the

maximum of the Y variable is 1, and we would only use one quadratic equation, it would result in

a significant discrepancy between the two extremes of the data domain.

As we can notice, figure 3.3 does not have a vertical axis. Its absence happens because we

want to be able to set y-coordinate of the aforementioned points to whatever we see fit. With that

in mind, we established that P2 would still be given a positive value as its y-coordinate because

we want it to carry importance higher than 0, however small that influence may be. Regarding

the values of P1 and P3, we used different values as its y-coordinate. By attributing different

values, we could be able to change the curve and analyze how it behaves with our approach. This

parameter will be referred to as K. Equation 3.3 details the formulation of the utility function with

b being the minimum importance given to the the median, k the maximum importance given to

both extremes, and m the values of the maximum and the minimum of the domain depending on

what quadratic function is being formulated.

y(x) = (((K−b)/(m−median)2)∗ (x−median)2 +b) (3.3)

18

Approach

Figure 3.3: Frequency distribution graph of the target’s variable of an artificial data set with a
possible relevance function. P1 - Minimum value; P2 - Median; P3 - Maximum value;

3.3 Experiments

In this section, we will discuss some experiments done with artificial data and the obtained results.

These experiments were made so that we can validate our approach. We are also analyzing the

best training set obtained, i.e., the weights attributed to the examples in the training set.

3.3.1 Experiment I

Firstly we are going to test the approach using the artificial data set. Let us consider the construc-

tion of the following data set. Firstly, we randomly create a list of 1000 numbers that range from

-0.5 and 0.5 of mean 0 and standard deviation of 0.2. We will refer to this list as Y . Then we

create the X variable that results from cubing all the numbers in Y . The final data set consists

of aggregating the variablesX and Y , where Y is the target variable. Thus Y should have fewer

examples on the extremes and more in the middle. This data set is randomly divided into a testing

set and training set. 75% of the examples are placed in the training set, and the remaining 25%

is placed in the testing set. Figures 3.4 and 3.5 represent the obtained training set and testing set

respectively.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat

ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget,

consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi

tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus

rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor

19

Approach

gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem

vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis

ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu,

accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non

justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed

accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl

hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque

penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla

ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique,

libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing

semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie

nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum.

Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim.

Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus.

Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate

metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer

tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut

imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim.

Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo

velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue

quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget

erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo

facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero

dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras

nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est.

Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu.

Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut

lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque

vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec

luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit.

Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit

sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst.

Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed,

20

Approach

Figure 3.4: Training set for the artificial data
set.

Figure 3.5: testing set for the artificial data
set.

volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui

lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu

ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum

vel, eleifend faucibus, vehicula eu, lacus.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique,

libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing

semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie

nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum.

Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim.

Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus.

Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate

metus eu enim. Vestibulum pellentesque felis eu massa.

For this experiment, the parameters used are detailed in Table 3.1. The initial population is

generated randomly from values of 5 to 20, with a mean of 10 and a standard deviation of 3. All

elements of the population are available for crossover and mutation. The ML algorithm used was

linear regression. Regarding the utility metric, we used the one explained in Section 3.2 with a

simple modification: all examples in the training set which Y variable is between -0.25 and 0.25

do not contribute to the utility value, i.e., their error is not considered for utility purposes.

Parameters for tests run
Parameter Test

Training set size 5
Population size 10

Elitist rate 10%
Crossover rate 75%
Mutation rate 0.2%

Number of iterations 10000
K 20

Table 3.1: Parameters used in experiment I.

21

Approach

Figure 3.6: A) Result of linear regression on the original training set. B) Result of linear regression
on the training set obtained by our approach.

Figure 3.6 compares our approach I with a linear regression algorithm and the linear regression

model with the original training set. As it was expected using our method, we got a model that

better fits our utility function. This fitness can be verified by comparing the angle between the

line and X axis wherein our approach the angle is smaller. Consequently, the line is closer to the

extremes of the target variable (Y), which we attribute higher importance. Moreover, the value of

utility using our approach is 0.049 while using the original data set is 0.026. Even though there

is a small difference between utility values, when looking at the produced models, we can see a

clear difference.

Figure 3.7 shows the best distribution of weights per training set example we were able to

achieve. We expected that the weights would reflect our utility measure. So if an example was in

an area of great importance, its weight should be higher. However, this does not necessarily happen

(Figure 3.7). We found out that it indeed gives higher weights to the extreme examples, though

in the left side of this figure we only have one instance with maximum weight and right next to

it there is a significant drop. This fall can be explained by looking at our training set and testing

set distribution in Figures 3.4 and 3.5. We can see that the training set has only 1 example near

the highest value region while the next one is still at a relatively large distance from the former.

We believe that if the algorithm had given higher importance to the second lowest example in

the training set, according to Y variable, it would lower the utility value formerly obtained. This

assumption was proven correct by manually changing the obtained distribution. Looking at the

right side of the figure, we can see that there are a lot more examples that are near the maximum

weight. Comparing with the left side, there are more examples in higher importance areas on the

right side, where the Y value is higher than on the left. This could be used to justify the higher

weights on that region. We can also verify that there is a drop in weights just like it happened

on the left side of the figure. The most exciting aspect and the one we were not expecting is the

region in the middle. There are a lot of examples that have a high weight associated with them

22

Approach

Figure 3.7: Weight attributed to each example in training set using our approach.

even though they are in the area that doesn’t contribute to the utility function. This region is a little

skewed to the right because there are more values on the right side than on the left in the training

set. Our hypothesis for this result is that examples that are next to regions of really high relevance

affect more the resulting model than examples on the middle part where the Y variable is close to

0. So the weights attributed to the middle would work as a sort of balancing mechanism to the

linear regression model.

We decided to run a few more tests to see if this behavior was consistent. The tests are as

follows:

• Test I - We used the same approach as before with the same training and testing sets. How-

ever in this case when calculating utility we would only look at two values from the testing

set - the minimum and the maximum. The genetic operators used are the same as the first

test. It would be expected that the regression model would come closer to both extreme

points.

• Test II - We combined the former training and testing set as our new training set and created

a new testing set. This sample is composed of 100 values which the Y variable ranges

from -0.5 to 0.5 equally separated by 0.01 and the X variable is the cubing of the Y values.

The genetic operators and utility function used are the same as the first test. As the test

set is symmetric, it should be more noticeable the appearance of a pattern on the weight

distribution.

The resulting model and distribution of weight for Test I are represented in Figure 3.8. We

can observe that the line is close to the points that represent the maximum and the minimum of

the Y variable. Thus it is working as would be expected. However, it is unlikely that this is the

best model possible to be achieved. When looking at the obtained distribution of weights, we can

see a clearer image of what was captured before. It is attributed a higher importance to both of

23

Approach

Figure 3.8: Results regarding Test I: A) Resulting model using our approach. B) Distribution of
weights obtained in the training set.

the extreme regions, right and left. Then appears a fall in relevance attributed to the next closest

examples. After that, it starts increasing again as it gets nearer to the middle.

The resulting model and distribution of weight for Test II are represented in Figure 3.9. When

analyzing the obtained model, we can see that the line is inclined towards the region of most

significant importance.

Concluding this experiment, we can verify that Approach I behaves similarly throughout the

different tests. So we hypothesize that the fall that happens in the distribution is due to those

areas being the ones that most negatively affect utility. On the other hand, the ones in the middle

does not hurt as much because they are near the region the line should cross. They can also

work as a balancing mechanism that applies small changes to the linear model without affecting it

significantly. Consequently, it makes sense that the algorithm is not prioritizing these changes and

instead is focusing on the regions where the dip in weights happens.

Regarding the obtained models, we can notice the approach is working towards a good so-

lution, but there is not clear evidence of how good the obtained model is when compared to the

optimal solution. This uncertainty is due to the range of possible combinations available. Using a

training set of 375 examples in which the weights may vary between 0 and 20 gives 21375 possible

combination of possible training samples. Since this number is too high, it is computationally

unfeasible to test all the possible models. However, it is our opinion that the algorithm is not be-

ing given enough time to compute to achieve a better solution. This inefficiency mainly happens

because there are too many values that may need to change.

24

Approach

Figure 3.9: Results regarding Test II: A) Resulting model using our approach. B) Distribution of
weights obtained in the training set.

3.3.2 Experiment II

In the second experiment, we addressed some of the limitations of the previous one (section 3.3.1),

namely regarding the difficulties in evaluation and the complexity of the search space.

Regarding the difficulty in evaluating of the model and how close it is to the best possible

solution, we decided to create a new data set in which we would be able to know which is the

perfect model. The data set is organized as follows: for the Y variable, we have four aggregated

sequences. The first one is composed of 450 values that range from 0.05 to 0.24 equally dis-

tanced between themselves by 0.000423. The second sequence is constituted by 450 values that

range from -0.05 to -0.24 equally distanced between themselves by 0.000423. For both of these

sequences, the X variable corresponds to −Y . The third sequence consists of 50 values that range

from 0.25 to 0.5 equally distanced between themselves by 0.0051. Finally, the last series com-

prises 50 values that range from -0.25 to -0.5 equally distanced between themselves by 0.0051.

For both of these sequences, the X variable is equal to the Y variable. This data set will be used for

training of the linear regression model. Regarding the testing sample, it is composed of only two

examples. These examples are the points which the coordinates are (-0.49,-0.49) and (0.49,0.49).

A representation of the training and test sets can be observed in Figure 3.10. When looking at

the training set, we can see that the vast majority of examples (90%) forms a line with a negative

slope. Thus these examples will have significant impact in a linear regression model. This impact

can be verified by looking at the resulting model using this training set in Figure 3.11. However,

when looking at our testing set, we can notice that the generated model has a very bad utility value

because the line does not come close to any point on this set. From the perspective of the utility

function defined, we expect that the weights in the middle would gradually decrease to 0 while

25

Approach

Figure 3.10: A) Data set that will be used for training. B) Data set that will be used for testing.

the weights in the extremes would increase significantly. Using this training set to learn a model

that maximizes utility, the weights of examples with Y ∈ [−0.24,0.24] should be very low or even

zero.

Concerning the search space, we carried out two tests. The first one (Test I) is a small scale

of the training set mentioned earlier, containing only five examples where there are three in the

middle region and one in each extreme. This test should be simple enough that the algorithm

should find the best model within a few iterations. The second test (Test II) consists of changing

a percentage of the initial population weights to zero. The population is randomly generated as

detailed in Section 3.3.1. However, after we have obtained the initial set of individuals, we change

a fixed percentage of values to zero. This is done in a way that guarantees that the set of weights

for each example in the initial population include a zero and a non-zero value. In other words,

for each training example, there will be at least one chromosome which has a zero value in the

corresponding gene and at least one other chromosome with a non-zero value in the corresponding

gene. What we are expecting is that by setting a large number of weights to zero it would decrease

the computational effort of the algorithm to find the best solution. The parameters for both tests in

this experiment are defined in Table 3.2.

After running Test I, we were able to obtain the results shown in Figure 3.12. As expected,

we obtained the perfect fit for our data. The values in the middle region were all given weights

of zero, while the two values on the extremes were given non-zero values. As a consequence, the

resulting linear model crosses the two points. Thus the model is achieving the maximum utility.

Since this test only had five examples in the training set, it only serves as a proof of concept.

For Test II we ran the algorithm with different percentages of zeroes per individual: 99%, 95%,

90%, 80%, 60% as is specified in Table 3.2. What we were expecting is that as we decrease the

percentage of zeroes, it would become harder and would take longer for the algorithm to find the

best distribution. Figures 3.13,3.14,A.1,A.2 and A.3 represent the results obtained from this Test

II. With a 99% of zeroes per individual, we can obtain a very good model as Figure 3.13 shows.

26

Approach

Figure 3.11: Linear regression model using the original created training set.

Parameters for tests run
Parameter Test I Test II

Training set size 5 1000
Population size 10 100

Elitist rate 10% 10%
Crossover rate 75% 75%
Mutation rate 0.2% 0.2%

Number of iterations 10000 10000
K 20 20

Percentage of zeroes non-applicable 99%,95%,90%,80%,60%
Table 3.2: Parameters that were used to run both tests.

27

Approach

Figure 3.12: Results regarding Test I: A) Resulting model using our approach. B) Distribution of
weights obtained in the training set.

At first sight, it resembles a perfect model because the line appears to cross those two points in the

testing set. But there still exists an error however small it may be. Thus this model is not perfect.

This inference is corroborated by looking at the distribution of weights and notice that there are

two examples in the middle that are given non-zero weights. Thus the utility obtained is close to

the maximum value but has yet to reach the optimal solution.

Interestingly enough, when we try to modify the weight of each of those examples individually

to zero, we obtain a lower value of utility. This occurrence means that the only way that we can

achieve the perfect model is to change both of those weight to zero at the same iteration. This

training set has 1000 examples in it, and with a mutation rate of 0.2%, we can expect an average

of two mutations per individual and iteration. Moreover, these two mutations should occur to

the individual that has this distribution. Also, the two examples of the training set must be those

specific two examples that have a non-zero value. Furthermore, the mutations that can range in

the interval [0;20] must randomly select the value zero for both of those examples. We can see

that although it is not impossible to achieve the best model, it seems rather unlikely that we would

reach it in a reasonable time.

When comparing Figure 3.13 with Figure 3.14, we can see that the obtained linear regression

model is pretty identical. Nonetheless, the latter is slightly worse, with more errors that generate a

lower utility value. Furthermore, there are more examples in the middle region that are non-zero,

which justifies the lower utility. One thing to notice is that almost all those non-zero weight values

are near the very middle of the graph. The closer the Y variable is to 0.05 and -0.05 which are

the absolute minimums possible obtainable from our training set, the less impact they have on the

model. So the algorithm is "cleaning" the examples that are on the outer sides of the middle region

first because they have more of a negative impact on the model.

28

Approach

Figure 3.13: Results regarding Test II with 99% of zeroes per individual: A) Resulting model
using our approach. B) Distribution of weights obtained in the training set.

Figure 3.14: Results regarding Test II with 95% of zeroes per individual: A) Resulting model
using our approach. B) Distribution of weights obtained in the training set.

29

Approach

Analyzing Figures A.1,A.2 and A.3, we can see that the quality of our model decreases when

the percentage of zeroes given to the individuals of the population also decreases.

One of the main problems before this experiment was evaluating the resulting model. Using

a simple testing set like it was demonstrated in this experiment eased the evaluation of the model

because we know how the best model would look like and how its weight is distributed across the

training set. The experiments also confirmed that the complexity of the search space affects the

behaviour of the algorithm. They also showed that by increasing the number of zeroes in the initial

population allowed the algorithm to work faster. Even though the best model was not achieved,

there were some that came close to it.

However, another problem was found when analyzing the distribution of weights in this ex-

periment. It resides in randomly choosing which example from the training set should change

its weight. The algorithm assumes that the weights are independent. That is, when replacing the

weights in the middle region to 0 one by one, it would increase the utility value. This assumption

is not valid, as demonstrated by the analysis of Figure 3.13. We need to handle these dependencies

in the training set (in this case, a sort of balance in the training set) so we could be able to obtain

the fittest model to our testing set.

3.3.3 Experiment III

In the previous experiment detailed in Section 3.3.2, we observed that dependencies between the

weights of examples may affect the behaviour of the proposed approach significantly. In the

particular case of the artificial data we used, there seems to be a balance between the weights of

the training examples that is important. The first analysis in Figure 3.13 reveals that those two

examples in the middle region of the distribution of weights are one in each side of the area. This

separation could mean that the reason we aren’t able to increase utility by changing each of those

examples’ weights individually to 0 is due to a dependency between these two points that are

located on opposite sides of the line y = 0. So we can hypothesize that if we remove one set of the

middle region containing 450 examples we can also remove this dependency. Thus the algorithm

may be able to randomly change the weights of the central area without decreasing the utility

value.

The test set used in this experiment is the same as in Section 3.3.2 and is depicted in Fig-

ure 3.10. Regarding the training set, it can be obtained by removing all examples from the previ-

ous experiment which Y variable ranges from [0,05;0,24]. The resulting training sample which is

used in this experiment as well as the resulting model is represented in Figure 3.15.

In this experiment, we will apply the same strategy as in the previous one regarding replacing

the initial population with a percentage of zeroes. It is expected that the distribution of weights

would suit better when compared to the previous experiment. This expected result is because there

are fewer examples in the training set. Moreover, as we removed a part of the training set that could

generate some balance, it is hypothesized that now the algorithm could lower the examples’ weight

from the middle region without any constraint. The parameters used to run these tests are shown

in Table 3.3.

30

Approach

Figure 3.15: Training set used in experiment III and corresponding linear regression model.

Parameters for tests run
Parameter Test I

Training set size 550
Population size 10

Elitist rate 10%
Crossover rate 75%
Mutation rate 0.2%

Number of iterations 10000
K 20

Mutation values [0;21]
Percentage of zeroes 90%,80%,60%

Table 3.3: Parameters used to run Test I of experiment III.

31

Approach

Figure 3.16: Results regarding Test I of experiment III with 90% of zeroes per individual: A)
Resulting model using our approach. B) Distribution of weights obtained in the training set.

The results of this experiment is shown in Figures 3.16, B.1 and B.2. Comparing these results

to the ones obtained in the previous experiment (Figures A.1, A.2 and A.3) we observe that there

are fewer examples’ weight that needed to be changed to zero in this experiment. This observation

is more noticeable in the case of 90% replacement of the initial population by zeroes. It was part

of the expected behavior since there are less 450 examples in the training set. Thus the number of

values that need to be changed is reduced to half. However, it was expected that we would be able

to achieve better models. It was also predicted that the number of non-zero weights in the middle

region from the test with 80% of zeroes would be higher when compared to the 90% test. What

was not expected was this steep increase in the number.

Since these results were not wholly expected, further analysis of the training set was needed.

Manual manipulation of the weight distribution obtained from the test with 80% of zeroes was

performed to understand why we were getting so many non-zeroes. After some analysis, it became

apparent that it was not guaranteed that changing the weight of examples in the middle region

to zero would increase utility. Thus the dependency in the training set that was intended to be

eliminated is still present. However, it is present in a different way than before. In this case, we

can change individually every weight to zero and guarantee an increase in utility if a determined

order of replacement is followed. This order represents the sequence in which each individual

weight is changed to zero. It does not mean that there is only one possible way of replacing the

weights but rather a determined value for changing. For instance, if we change the weight of an

example that is lower than the determined value, we will decrease utility. On the other hand, if we

change the weight of an instance that is higher than the specified value, we will increase utility.

So the hypothesis that the dependencies in the set of weights would be removed if we changed

the sample is not entirely truthful. We were indeed able to remove the previous "balance", but we

uncovered another one.

32

Approach

Parameters for tests run
Parameter Test I

Training set size 550
Population size 10

Elitist rate 10%
Crossover rate 75%
Mutation rate 0.2%

Number of iterations 1000
K 20

Mutation values [0;1]
Table 3.4: Parameters used to run Test II of experiment III.

Since the goal of this experiment was to reduce the impact of dependencies in the set of weights

by manipulating the training sample, the test was not a success. Another way we could increase

the chances to achieve our goal is to decrease the range of possible values in the mutation. In our

previous experiments, these values’ range is [0;20], but we know that in this experiment we can

get the perfect model with mutation values ranging from 0 to 1. So when it occurs a mutation, it

would only have two possible values to change instead of twenty-one. Thus it would increase our

chances of finding the best model. This idea is the basis for Test II of this experiment. The same

training set and testing set are used, and the parameters are the same as Test I, which are displayed

in Table 3.4. However, in this test, the replacement of the initial population by a percentage of

zeroes is not applied.

The results for Test II are presented in Figure 3.17. It can be verified that all the weights in the

middle region are either zero or one. On the other hand, the extreme areas have some examples’

weight higher than one, which confirms that these examples were not mutated. Since 82% of the

training set examples are in the middle region and 9% in each extreme, it would be rather unlikely

that every instance in the central area was mutated without some utility measure that resembles

the one in use. Thus we can conclude that the algorithm is trying to achieve its goal of a perfect

model in attempting to mutate each gene that damages the algorithm to zero. However, we still

aren’t able to achieve our goal. There are still a reasonably high number of examples in the middle

region, which weight is higher than zero.

When analyzing our selection approach, we guarantee that the fittest 10% individuals of the

population are selected while the remaining 90% are randomly selected according to a fitness func-

tion. And as usual, the fitness function gives a higher chance of selection to the fittest individuals.

At the end of the selection process, all the individuals are set to go to the crossover phase and

afterwards to the mutation phase. In these two phases, the individuals may be changed. In the next

generation, we can have a very different set of individuals from before. One of the individuals that

may change is the fittest one. This individual may change its utility for better or worse. Therefore

using this selection approach, it is not guaranteed that the next population will have an increase

in efficiency. When the next generation’s utility decreases, we lose the fittest chromosome which

may be hard to recover. If there are successive iterations where the fitness is decreased, then it is

33

Approach

Figure 3.17: Distribution of weights obtained for the training set in Test II of experiment III.

harder to regain the distribution of the fittest individual from generations before. The reason being

that if this individual was the fittest one and it loses some utility, it may stop being the fittest one

in the next generation. And if this happens, this individual may even fail to be selected for the

next iteration. So what may be occurring is that throughout the algorithm iterations, the utility of

the fittest individual may be taking steps back and forth without being able to reach the desired

combination of genes in a reasonable time.

Further analysis of the algorithm performance revealed that this hypothesis was correct, as can

be observed in Figure 3.18. In the first 350 iterations, there is almost always a steady increase

in utility because, in the beginning, it is easier to achieve higher fitness. As the algorithm hits

iteration 400, the utility starts to decrease slowly until it reaches iteration 600. By then it starts

increasing again until the iteration 800 where it starts to decrease again. It resembles a cycle in

which the utility goes back and forth just like we hypothesized.

We also analysed population diversity at different stages of the population. It was considered

that a converged allele translates into 95% of the population sharing the same value for a given

gene [17]. In test II, after one hundred iterations, the percentage of allele genes was higher than

90%. This occurrence means that the population is converging in the initial stages of the algo-

rithm, which reduces population diversity. Consequently, it also reduces the chances of getting

increasingly better solutions.

In a general problem, premature convergence causes the solution to stagnate at a local optimum

instead of the global optimum. When the solution is stuck at a suboptimal stage, it may be difficult

34

Approach

Figure 3.18: Variation if maximum utility per iteration in Test II of experiment III.

or impossible to encounter the optimal stage without diversity across the population. However,

in this problem, this does not apply because even without population diversity, it will always be

possible to reach the optimal solution. If all the individuals of the population shared the same

values for each gene, the crossover process would be redundant, and the algorithm is entirely

dependent on mutations. If this is the case in our problem, it would just be a matter of time until

it reaches the desired solution. Thus not having population diversity does not preclude the search

for the optimum solution, it only delays it. In this problem, premature convergence may be due

to a combination of factors: low population size, aggressive fitness function, and flat mutation

rate. If an individual had a considerably higher fitness of than its remaining peers, the chances

that this individual is replicated more times in the next generation is increased, which contributes

to premature convergence. With a low mutation rate, the individuals don’t change much from

their previous self, which results in smaller population diversity. Coupling these factors with a

moderate population size, increases even more, the chances of an early convergence.

3.3.4 Experiment IV

In the previous section, two main issues were identified: early convergence and the fact that the

utility was not systematically increasing but instead was iteratively increasing and decreasing. For

these reasons, changes were made into the first approach.

The selection process was changed because the algorithm was not being capable of having

a consistent increase in utility. As verified in the previous experiment, the fitness of the best

individual was going back and forth after a few iterations. So if we managed to save the best n

35

Approach

individuals of the population to the next generation, we would guarantee that they would still be

there (elitism). If some of these n individuals managed to get a better utility through crossover

or mutation, then the algorithm has achieved a better utility value. On the other hand, if the

individual’s fitness decreases, there is always a fallback to the original individual that was placed

directly in the next generation. This mechanism is a trial and error method because it tries to get a

better solution and if it does not achieve it, it tries again because we saved the initial state intact,

i.e., the n best individuals of the population. Of course, by removing the n worst individuals of the

population, we are discarding some genetic information, which reduces the population’s diversity.

To counteract premature convergence, the mutation rate is set to a high value. This measure

would generate individuals quite different from the ones that were saved for the next generation.

Consequently, the population maintains a broad genetic pool across iterations. Moreover, an initial

high mutation rate also may increase utility quicker because the initial set of individuals are not

expected to be very good, given the size of the search space. This is true because the population is

being created randomly, and we are disregarding heuristic approaches for the initial population’s

creation.

Since the mutation rate is set to a high value, there is the danger of the algorithm performing

a random search, rather than a search guided by the quality of the previous solutions. So if the

algorithm doesn’t find a fitter chromosome in i iterations, the mutation rate drops by a factor of r.

And it keeps dropping until eventually reaches a minimum value for mutation. As the mutation

rate drops, the genetic diversity across the population is expected to decline as well. And finally,

we turn from an exploration strategy to an exploitation strategy. In the initial iterations of the

algorithm, we have a high mutation rate. Thus we are in an exploration phase because there are

many genes of the individuals changing at once. In later iterations, we are in an exploitation

phase because the mutation rate is lower, which causes a decrease in the population’s diversity. As

the individuals are increasingly close to each other, the search for an optimal solution becomes a

local search because it is assumed that the current best solution only needs some of refinement to

reach the corresponding optimum. The parameters i, r are the ones that regulate the trade-off that

happens in the algorithm between exploitation and exploration.

This mutation operator is inspired in simulated annealing. Without going into too much detail,

it is an algorithm that aims to find the global optimum in the space search. It consists of changing

the solution, possibly accepting worst solutions based on a random draw. And the probability of

accepting worse solutions is progressively changed towards zero.

Moreover, we also increased the population size due to low population diversity. Using Ap-

proach II, we performed the same tests as in the previous experiment. The parameters for the tests

are represented in Table 3.5.

The distribution of weights after Test I is shown in Figure 3.19. It is possible to see that

when using Approach II, we were able to obtain the best possible distribution in under a thousand

iterations. All the weights from the middle region are set to zero while there are non-zero weights

at each end of the distribution, which was what we were expecting. Comparing this result with the

corresponding test from the previous experiment, we conclude that this approach behaved better

36

Approach

Parameters used for tests
Parameter Test I Test II

Training set size 550 550
Population size 50 50

Population retaining rate (selection) 10% 10%
Crossover rate 75% 75%

Initial mutation rate 40% 60%
Number of iterations 1000 INF

K 20 20
Mutation values [0;1] [0;20]

Minimal mutation rate 0,01% 0,01%
Minimal number of iterations for decaying mutation rate 10 10

Mutation decaying ratio (r) 25% 25%
Table 3.5: Parameters used to run Test I and Test II of experiment IV.

as it was capable of reaching its goal in the same number of iterations.

After successfully achieving the goal for Test I, the mutation range values can be extended

again to [0;20] for Test II. The goal for this test is to check if the algorithm is capable of finding

the optimal solution and how much time does it take if the maximum number of iterations is set to

infinite. Figure 3.20 shows the sequence of weight distributions for different iterations. The plot

represents the state of the execution with a difference of 1000 iterations.

It took 19,000 iterations to achieve the perfect distribution of weights. Comparing the first

5000 iterations, it is clear that the weight’s distribution is following a pattern. The higher weight

of variable Y from the middle region are the first ones to be reduced. This reduction pattern

happens because these examples are the ones that most hurt the utility function. What is also

possible to notice is that the values of variable Y of the middle region that are closer to zero have

non-zero weight. Just like we had discovered from experiment III, replacing the importance of

these examples to zero would decrease the utility value. Another visible occurrence is that the

weights of the extreme regions are increasing throughout the iterations. In the end, almost all of

these examples have an influence of 20. Even though the best solution does not require that all the

instances from the extreme regions have a weight of 20, it does increase the utility value between

iterations. If we increase the relevance of these examples, it increases the number of instances

from those regions in the new training set and thus forces the linear regression algorithm to adapt

to those values, which leads to increased utility.

Concluding this experiment, it is possible to say that this Approach II is working moderately

better than the Approach I for these types of problems. We were able to find the best model on Test

I in under 1000 iterations while in the corresponding test from Section 3.3.3 that did not happen.

Moreover, it was possible to find the best solution in Test II without replacing the initial population

with a percentage of zeroes. Analyzing how Approach II performs throughout its iterations, it is

concluded that the algorithm is moving towards the best solution, which is the end goal.

However, this Approach II must be used with care. If the parameters are incorrectly set, it

37

Approach

Figure 3.19: Distribution of weights obtained for the training set in Test I of experiment IV.

could mean that the exploration stage is minimal, and it all depends on the refinement of a local

solution, i.e., the exploitation stage. This lack of exploration could mean that when the algorithm

reaches the exploitation stage, the population is located in a local optimal and won’t be able to

achieve the global optimum. In our test, we used aggressive parameters for the exploration phase,

i.e., setting the minimum number of iterations for the decaying mutation rate to 10. This setup

was possible because even if the mutation rate sharply decreases, which diminished exploration,

it would always be possible to reach the best solution.

38

Approach

Figure 3.20: Sequence of distribution of weights obtained for the training set in Test II of experi-
ment IV separated by 1000 iterations.

39

Approach

40

Chapter 4

Empirical Study

This chapter presents the empirical analysis of results obtained in two different scenarios. In the

first scenario, we used UCI data sets. In the second one, we used data provided by INOVRETAIL.

4.1 Benchmark data sets

This section discusses the experimental setup, results. It also details all data sets collected on the

UCI website. The goal is to compare how the two approaches perform on real data sets with the

same ML algorithm using the original training set(i.e. without reweighting). It is expected that

both methods perform better than the ML algorithm, with Approach II also beating Approach I.

4.1.1 Experimental setup

This section details how the experiments were performed and how the data was collected. For these

experiments, we used UCI data sets 1 for regression problems. The chosen data sets are Concrete,

Housing, Orders, Traffic, Servo, Processor, Students, Airfoil, and Network. These data sets were

chosen due to the similarity of the distribution of the target variable with a normal distribution

and their small number of instances. The distribution of the target is important because the utility

function we are using focuses on the extreme parts of the target’s variable domain. These values

are rare and, in many application, the most relevant ones. Regarding the number of instances in

a data set, we opted for a low number of cases since this approach is computationally heavy. A

summary of the data sets can be seen in table 4.1.

Each data set was randomly split to form a training set with 75% of the instances and a testing

set with the remaining 25%.

Regarding the utility evaluation, the same process used in Chapter 3 is applied here to deter-

mine the utility function. Thus it is given more importance to the extreme regions rather than the

middle. In these data sets, different values for the K parameter of the utility function are used to

evaluate how different utility functions affect the performance of the algorithm. The values for the

K parameter of the utility function are 20, 60, and 100.

1https://archive.ics.uci.edu/ml/datasets.php

41

Empirical Study

Table 4.1: Information regarding used data sets.

Data set # Examples # Features
Orders 60 12
Traffic 135 17
Servo 167 4
Processor 209 9
Students 395 32
Housing 414 6
Network 630 9
Concrete 1030 8
Airfoil 1504 5

For these tests, the initial population used is created randomly with values ranging from 5

to 20. These values have a mean of 10 and a standard deviation of 3. The population size for

Approach I is 10, and for Approach II is 50. The number of individuals chosen by the elitist

mechanism is equivalent to 10% of the population, and the crossover probability is 75%. The

mutation rate for Approach I is fixed at 0.2% while for the second approach it varies between 60%

and 0.01%. The speed at which the mutation probability drops depends on the time it takes to

compute the models per iterations. Models that take longer to compute, due to the high number

of instances and features, will have an increased rate of mutation variation so that we can obtain

results in a reasonable time.

Furthermore, the ML algorithms used were Decision Tree and SVM.

4.1.2 Results and discussion

The results obtained for DT and SVM are presented in Table 4.3 and 4.4 respectively. These tables

compare utility and RMSE values between the two approaches developed and the ML algorithm

in use.

One of the first things to notice is small utility values. These small utility values are expected

unless the model was almost perfect across the domain of the target variable. The error of an

example from the testing set is multiplied by its importance. The evaluation metric consists of

dividing 1 by the sum of these multiplications, which results in low utility values.

When comparing either approach with the ML algorithm used for each test, it is possible to

verify that in 100% of the tests, the utility value is higher using the developed approaches. This

occurrence was the expected result because these approaches were developed to take into account

utility while the ML algorithm doesn’t consider it, but instead tries to minimize RMSE.

By comparing the results of different K values for the same data set with the same algorithm, it

is noticeable that the more significant K is, the lower its utility is. This result was expected because

the higher K, the higher is the importance given to the extreme examples. Following the same logic

explained above, having a greater K implies multiplying the errors by a more significant value. It

is not expected that the error decreases with increasing K but the utility should be lower..

42

Empirical Study

Somewhat surprisingly, the RMSE is generally lower when using the proposed approaches

than when using the ML algorithm directly on the training data. Given that the algorithms attempt

o minimize error, we expect that they would achieve worse results in terms of utility but better

results in terms of error. The reason for this may be that the rare extreme values have a higher

chance of being harder to predict and thus have a high error. Since our approaches give more

focus to extreme regions, they have a higher chance of reducing the error on such examples. This

would lead our approaches obtaining both better utility and lower error.

When comparing the proposed approaches, the second one usually achieves the better utility

value. This behavior is expected as the second approach makes a more extensive search than the

first one. Therefore more models are generated, so the probability of finding a fitter model is higher

using the latter. Moreover, Approach II was developed to fix some limitations of Approach I.

However, Approach II is not guaranteed to perform better than Approach I as can be verified in the

test results. This difference in performance has happened mainly due to incorrect parameterization.

If in Approach II, the parameter i has a low value, it has little chance of finding a better utility

so it is further reduced. Since in this approach, the minimum mutation probability is 0.01%,

when it reaches this stage, it is unlikely to occur any mutation due to the small training sample

size. Therefore there may be many iterations without actually existing an attempt to increase

utility, considering that at this stage, the algorithm is in the exploitation phase, and the population

diversity is close to null. The evidence to support this hypothesis, is that in most of the cases

where Approach I has a better utility than Approach II, the training sample size is small. And

if the training set is small, the lowest value of mutation rate is almost meaningless, which leads

to bad performance. To correct this parameterization problem, one needs to change the lowest

mutation rate to a relevant value and to increase the i parameter, i.e., the number of iterations

required for the mutation rate to drop, where there is not an increase in utility.

To prove this hypothesis, we tried to find appropriate parameters for the Servo data set. To

model this data set we use the decision tree algorithm. Since Approach I obtained better utility

values than Approach II for every K with the decision tree, obtaining a better model with improved

parameters for Approach II would add evidence in favor of our hypothesis. The parameters are

shown in Table 4.2. The most significant difference is the minimum mutation rate that was changed

from 0.01 % to 0.8%. This change allows an average of 1 mutation per chromosome when it

reaches that stage. As such, instead of wasting computation costs with a low mutation rate, where

only very few chromosomes are affected, every individual has a higher chance of mutation and

thus contributing to the search. The utility value obtained from this test was 0.0533 which is not

only higher than the previous recorded value for Approach II, but is also higher than the utility

obtained with Approach I, which was the main goal of this test.

Figure 4.1 shows the comparison of individual prediction errors between Approach I and the

regression tree with the original training sample in the Processor data set. The red dots represent

the errors when using our method, while the blue dots correspond to the error when using the

original training set. This was one of the data sets with the largest improvement in utility achieved

by the proposed approaches. Even though utility values are low, it is possible to notice that the

43

Empirical Study

Parameter Value
Population size 50

Population retaining rate (selection) 10%
Crossover rate 75%

Initial mutation rate 60%
Number of iterations INF

K 20
Mutation values [0;20]

Minimal mutation rate 0,8%
Minimal number of iterations for decaying mutation rate 100

Mutation decaying ratio (r) 10%
Table 4.2: Parameters used for data set Servo.

difference in errors for some examples is quite large. When evaluating extreme region examples,

which is the focus of our approach, and more specifically, the two instances that are on the far

right of the figure, we can see a relevant difference in errors. Our approach was able to predict

with relatively high accuracy these cases, while the regression tree with the original training set

was not able to.

Analyzing the distribution obtained in the models presented in Figure 4.2, the results are

far from what would be expected. Since the utility function has a shape of a positive quadratic

function, we give more importance to extreme regions rather than examples in the middle area.

Therefore it would be expected that the weight distribution would take the form of this quadratic

function. The closer to the extremes, the higher the weights and vice-versa. However, that is not

always the case. Looking at plots A, B, and C, the weight distribution looks random without any

noticeable pattern. Example D is the only example that shows some resemblance to the expected

distribution, with lower weights in the middle region and higher weights in the extreme areas. In

general, these results may also be due to the way data are split into training and test sets. Since

extreme values are rare, it it possible that there are no such values in the test set, which means that

there is no need to assign high weights to extreme values to obtain high utility.

Regarding the SVM model (case B and D) there are more examples with a zero weight when

compared to the decision tree algorithm. This may indicate that the algorithm stopped too early

and, thus, the distribution is not what was expected. Moreover, by manual manipulation of weight

values on some results, it was possible to increase the utility value on some data sets. So, the

difficulty in finding the best or even a reasonable solution (due to the size of the search space) may

be another reason why the expected distribution is not achieved. Finally, since some importance,

even if small, is given to examples with a target value near the median, which are likely easier

to predict, this may conduct the algorithm to focus on these small gains. Thus, the search would

be stuck in a local optimum, making it harder to obtain higher benefits in regions that are more

valuable.

Further analysis was done to test if what would be the expected weight distribution would

indeed contribute to the best model or close to it. The results are presented in Table 4.5. The

44

Empirical Study

Figure 4.1: Comparison of predictions’ errors between the model with the original training set and
Approach I.

Figure 4.2: Distribution of weights on the training set. A) Housing training set using regression
tree; B) Housing training set using SVM; C) Orders training set using regression tree; D) Orders
training set using SVM;

45

Empirical Study

Table 4.3: Comparison of utility and RMSE values between the two approaches and the ML
algorithm in use. In this case the it is used a decision tree for regression.

Approach I Approach II ML algorithm
Data set K Utility RMSE Utility RMSE Utility RMSE

Concrete
20
60
100

0,00030
0,00012
0,00008

3,7
3,9
3,8

0,00035
0,00015
0,00010

3,5
3,5
4,4

0,00013
0,00006
0,00003

7,5

Housing
20
60
100

0,00070
0,00031
0,00020

6,0
6,7
6,4

0,00074
0,00035
0,00025

5,8
6,9
8,7

0,00043
0,00020
0,00013

8,0

Orders
20
60
100

0,00032
0,00011
0,00007

28,1
27,4
27,1

0.00033
0.00011
0,00007

28,3
31,4
35,7

0,00013
0,00004
0,00003

46,2

Traffic
20
60
100

0,00368
0,00130
0,00075

1,9
1,9
1,9

0,00353
0,00153
0,00098

2,6
2,7
2,8

0,00160
0,00060
0,00037

3,1

Servo
20
60
100

0,03980
0,02050
0,01348

0,2
0,2
0,2

0,02890
0,01290
0.00780

0,5
0,5
0,7

0,00917
0,00305
0,00191

0,6

Processor
20
60
100

0,00072
0,00032
0,00020

15,1
13,0
14,8

0,00048
0,00022
0,00014

21,3
26,9
26,8

0,00005
0,00002
0,00001

143,7

Students
20
60
100

0,00294
0,00132
0,00076

1,4
1,2
1,3

0,00385
0,00202
0,00123

1,2
1,3
1,2

0,00167
0,00068
0,00043

1,8

Airfoil
20
60
100

0,00037
0,00016
0,00010

1,9
2,0
2,0

0,00048
0,00019
0,00013

1,9
2,1
2,2

0,00020
0,00008
0,00005

3,4

Network
20
60
100

0,05130
0,02351
0,01606

0,03
0,03
0,03

0,05532
0,02403
0,01469

0,04
0,05
0,05

0,01805
0,00769
0,00488

0,09

46

Empirical Study

Table 4.4: Comparison of utility and RMSE values between the two approaches and the ML
algorithm in use. In this case the it is used SVM.

Approach 1 Approach 2 ML algorithm
Data set K Utility RMSE Utility RMSE Utility RMSE

Housing
20
60
100

0,00063
0,00033
0,00022

6,1
6,2
6,1

0,00067
0,00034
0,00025

5,9
5,9
6,4

0,00038
0,00018
0,00011

9,3

Orders
20
60
100

0,00017
0,00006
0,00003

52,7
52,7
52,8

0,00017
0,00006
0,00004

50,3
50,4
50,3

0,00011
0,00004
0,00002

78,4

Traffic
20
60
100

0,00401
0,00164
0,00101

2,3
2,4
2,4

0,00414
0,00163
0,00101

2,3
2,3
2,4

0,00146
0,00053
0,00033

3,3

Servo
20
60
100

0,03192
0,01437
0,01009

0,4
0,6
0,5

0,03035
0,01523
0,01020

0,5
0,5
0,5

0,00531
0,00201
0,00124

0,9

Processor
20
60
100

0,00025
0,00010
0,00006

23,8
23,4
23,1

0,00045
0,00026
0,00018

41,9
40,4
44,2

0,00007
0,00003
0,00002

96,3

Students
20
60
100

0,00149
0,00062
0,00039

1,7
1,9
1,8

0,00186
0,00097
0,00051

1,7
1,8
1,9

0,00069
0,00024
0,00015

2,1

weights assigned to each example are calculated using the utility function. The maximum and the

minimum weights, respectively. For every data set and every test value of K, there were only four

times that the utility results were better than those obtained in the approaches. Moreover, these

four times occurred in the same data set. These results demonstrate that using a heuristic function,

such as used for these tests, to create a percentage of individuals of the population may lead to

better and faster results. However, this is not a general rule. The obtained results mostly contradict

what would be the expected behavior as the results are fairly worse. They are up to 55 times worse

than using the developed approaches with random generation of the population.

In conclusion, it is possible to verify that with the developed approaches, we can obtain models

that have a higher utility than the same ML with the original training set, as expected. Some

data sets have regions located near the maximums or minimum of the target variable that are

harder to predict. In these cases, the proposed approaches can be used to achieve a relevant gain

in utility. Surprisingly, we achieve this without significant loss in the accuracy of the models.

Furthermore, the expected weight distribution is not as expected. As this distribution appears

to have no detectable pattern, it is not possible to understand clearly how these approaches are

achieving their results. Further work is necessary to investigate this.

47

Empirical Study

Table 4.5: Utility results obtained used the expected weight distribution on SVM and Decision
Tree algorithms.

ML algorithms Comparison (Approach II
/ expected distribution)

Data set K DT SVM DT SVM

Concrete
20
60

100

0,00002
0,00002
0,00002

NA
NA
NA

17,50
7,50
5,00

NA
NA
NA

Housing
20
60

100

0,00004
0,00004
0,00003

0,00004
0,00003
0,00003

18,50
8,75
8,33

16,75
11,33
8,33

Orders
20
60

100

0,00026
0,00022
0,00025

0,00013
0,00014
0,00014

1,26
0,50
0,28

1,31
0,43
0,29

Traffic
20
60

100

0,00020
0,00022
0,00022

0,00023
0,00022
0,00022

17,65
6,95
4,45

18,00
7,41
4,60

Servo
20
60

100

0,00072
0,00082
0,00070

0,00065
0,00064
0,00059

40,14
15,73
11,14

46,69
23,80
17,29

Processor
20
60

100

0,00002
0,00002
0,00001

0,00002
0,00002
0,00002

24,00
11,00
14,00

22,50
13,00
9,00

Students
20
60

100

0,00018
0,00016
0,00018

0,00012
0,00011
0,00011

21,39
12,63
6,83

15,50
8,82
4,64

Airfoil
20
60

100

0,00005
0,00005
0,00005

NA
NA
NA

9,60
3,80
2,60

NA
NA
NA

Network
20
60

100

0,00190
0,00207
0,00175

NA
NA
NA

29,12
11,61
8,40

NA
NA
NA

48

Empirical Study

Table 4.6: Information regarding tables provided by INOVRETAIL.

Tables Attributes Definition
Transaction transaction_id, store_id, em-

ployee_id, date, hour, product,
quantity and price

Each row contains how many times a prod-
uct was purchased by a client on a store in a
given date and hour. It also details the total
payment and which employee performed the
transaction.

Footfall store_id, footfall, date and time Each row represents how many people en-
tered a store on a given day and time.

Target store_id, date, target Each row represents the target specified for a
store in a given day.

Schedule store_id, employee_id, date,
time_start, time_end, shift_type

Each row represents the shift attributed to an
employee of a store at a given date that starts
in time_start and ends at time_end.

4.2 INOVRETAIL case study

In this section, we present the problem proposed by INOVRETAIL and how the developed ap-

proach can be used to address it. We also discuss the experimental setup and the results. The goal

of these experiments is to verify how our approach performs in a real-world problem and how it

fares against the predicted outcome of a retailer.

INOVRETAIL is a retail intelligence company that provides data science solutions to retailers.

They focus on three different areas: sales incentives, customer experience, and improving in-store

operations. The area that we focus on is sales incentives. The goal is to provide accurate sales

targets to employees. A sales target is what is expected that a store would sale per unit of time and

employee. If the employees can meet their goals, they are granted specific bonuses that reward

their work. The closer the target is to the real sales potential, the more motivated the employees

will be to reach that goal. However, different settings have different sales potential. There are

periods where it is still possible to grow while in others, growth is an unlikely event. This is

the problem proposed by INOVRETAIL. The task is to predict the daily targets for stores. The

estimate must take into account the potential growth of a store.

4.2.1 Data analysis

This section explains the data made available by INOVRETAIL. Moreover, it also specifies the

utility function used.

INOVRETAIL provided all the data used in this case study. It includes transactions, footfall,

targets, and scheduling data. Table 4.6 describes these different types of information.

Regarding the footfall data, these numbers are recorded via infrared beams. These beams have

some obvious limitations, such as when multiple people cross the beam line, only one person is

counted. Furthermore, if its height is incorrectly set, it can miscount shopping trolleys or baby

strollers. Therefore further attention is required when analyzing these values.

49

Empirical Study

Cleaning the received data was the first step taken towards the creation of the data set. Some

tables had repeated rows that needed to be removed. Secondly, footfall data were recorded hourly.

Since the specified problem is to predict daily net sales values, it was required to group these

values per day and store while adding the footfall counter to each row. The same transformation

was done for transactions data, where we arranged all the transactions by day while summing the

net sales and counting the number of transactions. With footfall and transactions data grouped

by day, these two tables could be merged. The attributes after the merge are the date, footfall,

net sales, number of transactions. These were the attributes provided by INOVRETAIL that were

considered to be the most important to address this problem.

Now that all valuable attributes have been retrieved, the process of feature engineering be-

gins. From the date, we can extrapolate four different fields: year, month, day, and week-

day. Both weekday and month are divided into two fields. These two fields are meant to rep-

resent the cyclical properties of these features. The idea is to map the lowest value next to

the largest one. For instance, regarding months, the goal is to place January next to Decem-

ber through data values. For this we make use of cos and sin functions in the following way:

var_cos = cos(var∗ (2∗π/length(var))) and var_sin = sin(var∗ (2∗π/length(var))), where var

is either the values attributed to month or weekday. For the variable month, these values range

is [0;11] while for weekday the range is [0;6] and the length of these variables is 12 and 7 re-

spectively. Lastly, we calculate the conversion ratio from the variables footfall and number of

transactions: conversionratio = numbero ftransactions/ f oot f all. When calculating this variable,

some values were higher than 1. For these examples, the conversion ratio was replaced by the

mean.

Moreover, the footfall of these examples was also replaced by predictions using a regression

model where the X variable was the net sales, and the goal was to predict footfall. This method

was the chosen path because footfall and net sales were highly correlated variables. In the end, the

data set had the following features: year, day, month_cos, month_sin, weekday_cos, weekday_sin,

footfall, conversion_ratio, net sales.

The data provided includes seven stores from two different retailers. Details about these stores

are presented in Table 4.7. Retailer 2 had more data from previous years when compared to

Retailer 1. The reason for the different number of rows in stores with the same retailer is due

to how Sundays and holidays are interpreted in different locations. For instance, some countries

allow retailers to be open on Sundays while others restrict the number of Sundays a store can be

accessible in a year.

4.2.2 Utility function

The way we adapt our approach to the problem at hand is by changing the utility function. In the

previous experiments, the utility is measured by the domain of the target variable. The closer the

target variable is to its minimum and maximum value, the higher its relevance is. However, in this

problem, such cannot be applied. A different approach is needed. As such, it is considered that

the only way we can increase the expected sales value is to change how operations are run in the

50

Empirical Study

Table 4.7: Details about stores used in the experiment.

Store Retailer # Rows
Store 1 Retailer 1 675
Store 2 Retailer 1 645
Store 3 Retailer 1 636
Store 4 Retailer 2 1561
Store 5 Retailer 2 1574
Store 6 Retailer 2 1570
Store 7 Retailer 2 1556

store. The following list details some examples of what kind of occurrences could lead to lower

sales:

• An inadequate number of employees working in a shift;

• Bad staff recruitment. For instance, hiring people that lack social skills, technical knowl-

edge, or cannot handle pressure may lead to low performance;

• Starting staff training during high traffic days may lead to lower sales values because the

trainer has to focus on the trainee;

• Bad stock management.

These are all reasons that may cause lower sales in a day. Nonetheless, these reasons represent

data which we have no access to. Therefore a performance measure is needed that can distinguish

a bad from a good day in regards to store efficiency. The variable that was chosen to measure this

performance was the conversion ratio. It represents the percentage of potential clients, i.e., people

that walked into a store, that became clients, i.e. people that made a purchase. So if a store had a

high conversion ratio, it means that the store is already performing well and an increase in sales

is unlikely. On the other hand, if a store had a low conversion ratio, it means that the store is not

performing well and an increase in sales is possible.

We propose a utility function that segregates the data into two parts , based on a threshold

parameter. If a conversion ratio is higher than the threshold, the store is considered to have high

performance. If it is lower, then it is considered to have insufficient performance. When predicting

a determined value, there will likely be an error associated with the prediction when comparing to

the real value. This error can be an overprediction or an underprediction. The idea is to penalize

these types of error differently, depending on the class of conversion ratio. So, in the case of un-

derachieving stores, an overprediction is less penalized than an underprediction. The reason is that

if on a given day, the store is underperforming, it is likely that some problems are occurring that

should be dealt with in the future to increase sales. So, it the problems are addressed, it is more

plausible that in that day the store can easily increase their sales value. Thus an underprediction

is penalized more than an overprediction. On the other hand, if a store already has a high perfor-

mance on a given day, it is unlikely that it will still increase its net sales. This assumption is due

51

Empirical Study

Figure 4.3: Representation of the utility function used for INOVRETAIL case study.

to the hypothesis that the store has reached its full potential. Therefore an overprediction is more

penalized than an underprediction.

Figure 4.3 summarizes the utility function used. In this figure, the vertical dotted line repre-

sents the mean of the conversion ratio. The mean was the value that was selected to distinguish

good and bad performance of a store in a day. As the mean is the average of all recorded conversion

ratio, it is appropriate to use it as a threshold value. In this case, when the store is underperform-

ing, overpredicting, and underpredicting by the same factor contribute to different utility values.

In the case of an underprediction, the utility is the same as the error while overpredicting, the

utility corresponds to the root square of the error. On the other hand, when the store has a good

performance, overpredicting is more penalized than underpredicting by the same factor. So when

underpredicting, the utility is the same as the error while overpredicting, the utility is the square

of the error.

4.2.3 Experimental setup

This section details how the experiments were performed.

Regarding the experiments, two tests were performed for each store. In the first test, the real

values of conversion ratio and footfall were used. The idea is that if we were in a hypothetical

situation where we have a perfect model for predicting footfall and the number of transactions,

what would we be able to achieve regarding net sales predictions? For the second test, we replaced

the real values of the testing set with the best prediction from the following models: SVM with

different kernel functions, random forest, and gradient boosted tree.

52

Empirical Study

To evaluate these experiments, we compare the predictions obtained in the different tests be-

tween themselves and with the target variable that corresponds to the value stipulated by the store’s

manager. What is expected is that using the real values for the variables footfall and the number

of transactions we would have a better fit than using predictions for these variables concerning

utility and RMSE. When comparing both of these experiments with the targets, we would be ex-

pecting a better performance in utility with more certainty when using the real values instead of

the predicted ones. Regarding the RMSE, the expectation is unknown because it depends on how

the algorithm manages utility and how good the set targets are. Since overpredictions and under-

predictions impact the evaluation in different ways using our utility function, it is not guaranteed

that the RMSE should be smaller when using our approach.

The same time frame was used in all cases to split data into training and test sets. All instances

ranging from the first of November of 2018 to the seventh of February were placed in the testing

set, while every instanced that was recorded before these dates were placed in the training sample.

This way, the testing set entails a time space similar to a quarter of a year which is a time frame

that is commonly used for net sales prediction.

4.2.4 Results and discussion

In this section, the results obtained are presented and discussed. A comparison between the ap-

proach with real values of footfall and conversion rates as features and predicted values as features

is detailed. In both cases, evaluation is done against the target variable and the store targets orig-

inally set by the business. An in-depth analysis is also performed on results obtained across the

conversion ratio domain.

In general, when using our approach with real values for the features conversion ratio and

footfall, we were able to obtain better utility results when compared with the same approach with

predicted values for those features (Table 4.8). In the former, we have no errors in the values of

two features which are expected to be important to the target results, and, thus, a model with better

results is also expected.

However, this did not happen for Store 4, Store 5, Store 6, and Store 7 as the utility value

was higher when using the predicted conversion ratio and footfall. Figures 4.4 and 4.5 show

the comparison between the predictions and the real net sales values across the conversion ratio

domain when using real and predicted values for the features conversion ratio and footfall for Store

7, respectively. The dashed vertical line represents the mean and distinguishes between days when

the store underperforms (to the left) and overperforms (to the right). The figures are quite different

regarding the conversion ratio value. When using the predicted values, almost all of the examples

are at the left of the dashed line while when using real values, this pattern is not so clear. As

we know, conversion ratio values lower than the mean is where overpredictions are encouraged.

These type of predictions are the ones that represent the lesser cost throughout the domain of

our data because the error is root squared. Also, since in Figure 4.5 most of the examples are

overpredictions in underperformance areas, although the error is significant, the utility will not

53

Empirical Study

Figure 4.4: Comparison between real net sales and predicted net sales of Store 7 using real values
for conversion ration and footfall.

be significantly affected. So, this unexpected result is mostly due to inadequate modelling when

predicting conversion ratio and footfall.

Regarding RMSE, when using the real values for the variables mentioned above, the error was

lower when compared to the approach with the predicted values. Those two features are the most

important ones when using a decision tree model. As such, when their values are more accurate,

the error is lower as predicted.

When comparing each approach with the corresponding "baseline model", which corresponds

to the regression tree model using the original training set, we observe that the utility is always

higher when using our method. It is worth stressing that we managed to obtain a utility value,

using approach II with the real values as features, that is 269 better than its counterpart model.

Since regression trees optimize RMSE and not utility, these results come as no surprise. Regard-

ing RMSE, it is not guaranteed that when using the developed approach, the results will be better.

This behavior is due to the different penalizations on the error. Our goal is also to minimize the

error but following a different approach specified in the utility measure. For instance, sometimes

overpredicting by x may output a better utility than underpredicting by y in which x ∈]0;y2]. How-

ever, it may also generate a higher RMSE because the utility function allows that an overprediction

may reach up to a square value of the error of an underprediction. In this case, the RMSE could

be up to the square of the error associated with an underprediction.

Considering the targets stipulated by the store’s manager, there is no guarantee that our method

will output either a better utility value nor a better RMSE. This uncertainty regarding the expected

results is because we did not know how accurate these targets would be when compared to the net

sales value. If their error were minimal, even though they were not considering this utility metric,

they would be able to achieve a better utility than with our approach. As stated before, the goal of

the utility measure is also to reduce the error. If these targets are very accurate, then the error is

54

Empirical Study

Figure 4.5: Comparison between real net sales and predicted net sales of Store 7 using predicted
values for conversion ration and footfall.

small, and thus it will output a high utility value.

For every run test in each store, we were able to obtain a higher utility value than the im-

plemented targets. Even some regression tree models with the original training set were able to

outperform the targets with regards to utility. When analyzing RMSE, if we are using the real

values as features, we obtained a better RMSE for almost every store. On the other hand, when

using the predicted values as attributes, only one store was able to outperform the targets in this

metric.

Figure 4.6 presents the comparison between the real net sales values and the predictions pro-

vided by Approach II with real values. The dashed vertical line represents the mean for the variable

conversion ratio of the whole data set and not of the testing set alone. The red dots represent the

predicted values, while the blue dots corresponds to the real ones.

There is a clear trend in the figure that is aligned with the utility function specified. The left

side of the dashed line represents the area where there is an underperformance while on the right it

corresponds to overperformance. As it was specified in the utility function, in underperformance’s

Table 4.8: Utility results for each store with different setups.

Store ML algorithm Approach II ML algorithm 1 Approach II 1 Target
Store 1 4,09E-07 0,00011 7,34E-09 6,49E-08 1,23E-08
Store 2 2,02E-07 5,77E-05 5,59E-08 6,56E-07 3,69E-08
Store 3 2,56E-07 8,97E-05 5,43E-08 5,01E-07 9,22E-08
Store 4 7,09E-09 2,54E-06 1,49E-08 1,80E-07 1,49E-08
Store 5 1,90E-07 2,88E-05 3,56E-07 5,40E-06 2,94E-07
Store 6 7,73E-08 4,66E-06 1,06E-07 3,76E-06 2,22E-08
Store 7 3,64E-08 3,36E-06 9.14E07 2.70E-05 2,86E-08
1 Conversion ratio and footfall values used in this test are predicted by the author.

55

Empirical Study

Table 4.9: RMSE results for each store with different setups.

Store ML algorithm Approach II ML algorithm 1 Approach II 1 Target
Store 1 1357,76 1409,67 2326,97 2264,89 2571,03
Store 2 1203,48 607,84 1621,51 1811,16 1259,68
Store 3 922,31 598,72 1614,88 1507,49 1319,96
Store 4 2560,07 1934,69 4960,95 4575,58 2415,81
Store 5 1349,63 719,20 2633,88 1907,36 1461,50
Store 6 1473,83 1200,51 2208,32 1938,43 1245,06
Store 7 2410,97 2119,75 4372,25 5468,66 1767,04
1 Conversion ratio and footfall values used in this test are predicted by the author.

areas, an overprediction is less costly than an underprediction. As such, at the left of the traced

line, most examples represent an overprediction. On the other hand, in overperformance’s regions,

an overprediction is more costly than an underprediction. Therefore, most examples on the area

represent an underprediction.

The result obtained was the expected behavior, although it can not be guaranteed. For instance,

there may be cases in underperformance’s areas where an underprediction can still outweigh an

overprediction. Let us consider that the best value an overprediction error can get for an example

is 100. If the best value of an underprediction for the same example is 9, it outweighs the overpre-

diction. This behavior happens because when considering 92 < 100, it provides a better utility to

make an underprediction.

In conclusion, the developed approach was able to improve the utility results when compared

to the regression tree model with the original training set, and the targets. Considering RMSE,

we were only able to obtain a better result with one store using the predicted values for modeling.

However, when using the real values of footfall and conversion rate as features, we had improve-

ments in almost every store with regards to this metric. This indicates that with better models of

footfall and conversion ratio, our method would achieve a better utility and RMSE than the targets

that were proposed by the business.

Moreover, it is expected that the overpredictions and underpredictions behave as explained

before. So we can say with a reasonable degree of confidence that the approach is trying to

optimize the specified utility measure, which is its goal.

56

Empirical Study

Figure 4.6: Comparison between real net sales and predicted net sales of Store 1.

57

Empirical Study

58

Chapter 5

Conclusions and Future Work

In real-world situations, the most valuable decisions may be taken regarding some areas of a data

set. Usually, ML algorithms are not prepared to handle non-uniform costs across the data domain,

as it covers the most common values. Although there is already some research on classification

problems, there is a lack of work concerning regression problems.

In this thesis, we propose a new approach for utility based regression. In its core, it is a

sampling method. We use a genetic algorithm as a means to vary the weight of a training set

and optimize it according to a fitness function. This function is our utility measure. So what the

algorithm does, is changing the weights of the training sample for each individual while optimizing

a utility function. Regarding the case study in retail, the goal was to develop an utility measure

that can be used on misclassification costs that take into account the store’s net sales potential.

We developed two similar approaches, where the second one is a generally better approach

than the first one as it fixes some of its limitations. These approaches were tested with artificial

data, UCI data sets, and a case study in retail. Although we only tested these approaches for

regression problems, they can also be applied to classification. The only required change is a

suitable utility function.

We tested our approach using artificial data and the results obtained show that the algorithm

works as expected. However, some modifications to the genetic operators were made to get im-

proved results and surpass some encountered limitations.

Regarding UCI data sets, we were able to get better utility results in all the data sets tested

when using our approach in comparison to the ML algorithm with the original training set. It was

expected that the weight distribution would be similar to the utility function, i.e. higher weights

in extreme rare regions and lower weight in central common areas. However, when analyzing

the weight distribution of different training samples throughout its domain, that was not what was

verified. This hypothesis was only correct for one data set out of nine. In all other data sets, our

approach was able to obtain better utility results with different weight distribution. Therefore, our

results indicate that the proposed approaches work even if their behaviour is not quite as expected.

For our case study in retail, we were able to achieve better utility results for every one of the

seven stores tested when compared to targets defined by store managers.

59

Conclusions and Future Work

The main limitation of this approach is the time it takes to have significant results. Modelling

a high number of individuals per iteration is computationally costly. One way to overcome this

problem is by using a fast ML algorithm that does not scale too bad with the number of instances

or changing the approach’s parameters. However, this latter method may result in suboptimal

solutions. As such, this approach should not be considered for real-time data mining or when the

model takes too much time to compute.

5.1 Future Work

Several directions for future work can be identified. One of the proposed adjustments is changing

genetic operators functionality to a more greedy-like behaviour. For instance, the mutation could

be changed into an operator that takes into account the utility differences obtained with previous

mutations on the same gene. Thus, if the utility changes were positive, the mutation would promote

similar changes to that specific gene. Conversely, if the change leads to worst utility, the mutation

should try a different kind of change. This can not only lead to better results, but it can also lead to

a better understanding of the importance of each example in a training set. A systematic analysis

of these changes could lead to the the discovery of patterns in different data sets that could also be

applied to others that are similar and also increase their utility result as well.

60

Appendix A

Experiment II results

This appendix presents some of the results from Experiment II detailed in Section 3.3.2.

61

Experiment II results

Figure A.1: Results regarding Test II with 90% of zeroes per individual: A) Resulting model using
our approach. B) Distribution of weights obtained in the training set.

Figure A.2: Results regarding Test II with 80% of zeroes per individual: A) Resulting model using
our approach. B) Distribution of weights obtained in the training set.

62

Experiment II results

Figure A.3: Results regarding Test II with 60% of zeroes per individual: A) Resulting model using
our approach. B) Distribution of weights obtained in the training set.

63

Experiment II results

64

Appendix B

Experiment III results

This appendix presents some of the results from Experiment III detailed in Section 3.3.3.

65

Experiment III results

Figure B.1: Results regarding Test I of experiment III with 80% of zeroes per individual: A)
Resulting model using our approach. B) Distribution of weights obtained in the training set.

Figure B.2: Results regarding Test I of experiment III with 60% of zeroes per individual: A)
Resulting model using our approach. B) Distribution of weights obtained in the training set.

66

References

[1] Paula Branco, Liaad Inesc Tec, Rita P Ribeiro, Liaad Inesc Tec, Eibe Frank, Bernhard
Pfahringer, and Markus Michael Rau. Learning Through Utility Optimization in Regres-
sion Tasks. 2017.

[2] Paula Branco, Luis Torgo, and Rita Ribeiro. A Survey of Predictive Modelling under Imbal-
anced Distributions. 49(2):1–50, 2015.

[3] Deirdre B O Brien and Robert M Gray. Cost-sensitive Multi-class Classification from Prob-
ability Estimates. pages 712–719, 2008.

[4] Michael Brydon and Andrew Gemino. Classification trees and decision-analytic feedforward
control : a case study from the video game industry. pages 317–342, 2008.

[5] Nitesh V Chawla. Chapter 40 DATA MINING FOR IMBALANCED DATASETS : AN
OVERVIEW.

[6] Nitesh V Chawla, David A Cieslak, Lawrence O Hall, and Ajay Joshi. Automatically coun-
tering imbalance and its empirical relationship to cost. pages 225–252, 2008.

[7] Sven F Crone, Stefan Lessmann, and Robert Stahlbock. Utility based Data Mining for Time
Series Analysis - Cost-sensitive Learning for Neural Network Predictors. pages 59–68, 2005.

[8] Pedro Domingos. MetaCost : A General Method for Making Classifiers. pages 155–164,
1999.

[9] Agoston E. Eiben and James E. Smith. Introduction to Evolutionary Computing (Google
eBook). 2003.

[10] Charles Elkan. The Foundations of Cost-Sensitive Learning The Foundations of Cost-
Sensitive Learning. (May 2001), 2013.

[11] Charles Elkan. The Foundations of Cost-Sensitive Learning The Foundations of Cost-
Sensitive Learning. (May 2001), 2013.

[12] Tom Fawcett. PRIE : a system for generating rulelists to maximize ROC performance. pages
207–224, 2008.

[13] George Forman. Quantifying counts and costs via classification. (April):164–206, 2008.

[14] David E. Goldberg. David E. Goldberg-Genetic Algorithms in Search, Optimization, and
Machine Learning-Addison-Wesley Professional (1989).pdf, 1989.

67

REFERENCES

[15] David E. Goldberg and Martin Pelikan. Bayesian Optimization Algorithm, Population Siz-
ing, and Time to Convergence Martin Pelikan, David. E. Goldberg, and Erick Cantu-Paz.
Population (English Edition), (2000001):275–282, 2000.

[16] John H. Holland, E C Chu, and J E Beasley. Genetic Algorithms - Computer programs
that "evolve" in ways that resemble natural selection can solve complex problems even their
creators do not fully understand. Scientific American, 24(1):66–72, 1992.

[17] KA De Jong. An analysis of the behavior of a class of genetic adaptive systems, 1975, 1996.

[18] Fernando G Lobo. A Review of Adaptive Population Sizing Schemes in Genetic Algorithms.
Computer, pages 228–234, 2005.

[19] Fernando G. Lobo and David E. Goldberg. The parameter-less genetic algorithm in practice.
Information Sciences, 167(1-4):217–232, 2004.

[20] James G. March. Exploration and Exploitation in Organizational Learning. Organization
Science, 2(1):71–87, 1991.

[21] Usama Mehboob, Junaid Qadir, Salman Ali, and Athanasios Vasilakos. Genetic algorithms
in wireless networking: techniques, applications, and issues, volume 20. Springer Berlin
Heidelberg, 2016.

[22] Alan Piszcz and Terence Soule. Genetic programming: optimal population sizes for varying
complexity problems. {GECCO 2006:} Proceedings of the 8th annual conference on Genetic
and evolutionary computation, 1:451–456, 2006.

[23] Sam Ransbotham, David Kiron, and Pamela Kirk Prentice. Minding the Analytics Gap. MIT
Sloan Management Review, 56(Spring, 2015):63–68, 2015.

[24] Rita Ribeiro. Utility-based Regression. 2011.

[25] Rita P. Ribeiro and Luís Torgo. Utility-based Performance Measures for Regression. Booklet
of the 3rd Workshop of Evaluation Methods in Machine Learning - held in conjunction with
ICML’08, 1:1–4, 2008.

[26] Lior Rokach, Lihi Naamani, and Armin Shmilovici. Pessimistic cost-sensitive active learning
of decision trees for profit maximizing targeting campaigns. pages 283–316, 2008.

[27] Prithviraj Sen and Lise Getoor. Cost-sensitive learning with conditional Markov networks.
pages 136–163, 2008.

[28] Anna Syberfeldt and Lars Persson. Using Heuristic Search for Initiating the Genetic Pop-
ulation in Simulation-Based Optimization of Vehicle Routing Problems. Proceedings of
Industrial Simulation Conference EUROSIS-ETI, 2009.

[29] Kai Ming Ting. An Empirical Study of MetaCost Using Boosting Algorithms. pages 413–
425, 2000.

[30] Luís Torgo, Rita P Ribeiro, Bernhard Pfahringer, and Paula Branco. LNAI 8154 - SMOTE
for Regression. pages 378–389, 2013.

[31] Gary M Weiss and Ye Tian. Maximizing classifier utility when there are data acquisition and
modeling costs. pages 253–282, 2008.

68

REFERENCES

[32] Tian-Li Yu, Kumara Sastry, David E. Goldberg, and Martin Pelikan. Population siz-
ing for entropy-based model building in discrete estimation of distribution algorithms.
(2006006):601, 2007.

69

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Goals and contributions
	1.3 Document Structure

	2 Background
	2.1 Genetic algorithm
	2.1.1 Fitness function
	2.1.2 Chromosome representation
	2.1.3 Population generation
	2.1.4 Selection
	2.1.5 Genetic operators

	2.2 Utility-Based Data Mining
	2.2.1 Definition
	2.2.2 Classification problems
	2.2.3 Regression algorithms

	3 Approach
	3.1 Algorithm formulation
	3.1.1 Chromosome representation
	3.1.2 Selection process
	3.1.3 Crossover operator
	3.1.4 Mutation operator

	3.2 Utility measures
	3.3 Experiments
	3.3.1 Experiment I
	3.3.2 Experiment II
	3.3.3 Experiment III
	3.3.4 Experiment IV

	4 Empirical Study
	4.1 Benchmark data sets
	4.1.1 Experimental setup
	4.1.2 Results and discussion

	4.2 INOVRETAIL case study
	4.2.1 Data analysis
	4.2.2 Utility function
	4.2.3 Experimental setup
	4.2.4 Results and discussion

	5 Conclusions and Future Work
	5.1 Future Work

	A Experiment II results
	B Experiment III results
	References

