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Abstract

Glaucoma, an eye condition which leads to permanent blindness, is typically asymptomatic and
therefore difficult to be diagnosed in time if a doctor is not seen regularly. However, if diagnosed
in time, Glaucoma can effectively be slowed down by using adequate treatment, therefore an early
diagnosis is of utmost importance.

Nonetheless, the conventional approaches to diagnose Glaucoma adopt expensive and bulky
equipment that requires qualified experts, making it difficult, costly and time-consuming to diag-
nose large amounts of people.

Considering the aforementioned, this work proposes a solution to this problem, by developing
a computer-aided diagnosis system that is capable of diagnosing Glaucoma, in an autonomous
way, using fundus images. These images contain the necessary morphological features to deter-
mine the presence of Glaucoma and can be obtained with considerably more affordable equipment,
being therefore very relevant for the task at hand.

Several computer-aided systems for Glaucoma assessment with fundus images have already
been proposed, however, they lack in several aspects. This work is a step forward in the field, by
improving existing techniques and addressing still unexplored fields.

The developed solution uses Deep Learning techniques powered by a collection of public
datasets and an acquired private dataset to construct an interpretable Glaucoma assessment pipeline
that runs offline in mobile and embedded devices.

This pipeline is then integrated on the EyeFundusScope android application, developed by
Fraunhofer AICOS, which is part of a larger system that already provides solutions for fundus
image acquisition and Diabetic Retinopathy detection.

The result demonstrates the potential that these systems can have in the contribution to an early
Glaucoma diagnosis and enhances the EyeFundusScope system, turning it into a more complete
screening tool.
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Resumo

O Glaucoma é uma condição ocular que conduz à cegueira permanente, geralmente é assin-
tomático e, portanto, difícil de ser diagnosticado a tempo se um médico não for visitado regu-
larmente. No entanto, se diagnosticado a tempo, o Glaucoma pode ser efetivamente abrandado
através de tratamento adequado, desta forma, um diagnóstico precoce é de extrema importância.

No entanto, as abordagens convencionais para diagnosticar o Glaucoma recorrem a equipa-
mentos caros e volumosos que exigem especialistas qualificados, tornando difícil, dispendioso e
demorado o diagnóstico de uma grande quantidade de pessoas.

Este trabalho propõe uma solução para este problema, desenvolvendo um sistema de diagnós-
tico assistido por computador capaz de diagnosticar o Glaucoma, de uma forma autónoma, usando
imagens do fundus. Estas imagens contêm as características morfológicas necessárias para de-
terminar a presença de Glaucoma e podem ser obtidas por equipamentos consideravelmente mais
acessíveis, sendo por isso muito relevantes para a tarefa em questão.

Vários sistemas auxiliados por computador para avaliação do Glaucoma com imagens do fun-
dus foram já propostos, no entanto, estes carencem em diversos aspetos. Este trabalho é um passo
em frente nesta área, melhorando as técnicas existentes e abordando tópicos ainda não explorados.

A solução desenvolvida usa técnicas de Deep Learning, contruídas com um conjunto de
datasets públicos e um dataset privado para construir uma pipeline interpretável de avaliação
do Glaucoma que pode ser executada offline em dispositivos móveis e embebidos.

Esta pipeline é posteriormente integrada na aplicação android EyeFundusScope, desenvolvida
pela Fraunhofer AICOS, que faz parte de um sistema maior que já fornece soluções para aquisição
de imagens do fundus e detecção de Retinopatia Diabética.

O resultado do trabalho desenvolvido demonstra o potencial que estes sistemas podem ter na
contribuição para um diagnóstico precoce do Glaucoma e melhora o sistema EyeFundusScope,
transformando-o numa ferramenta de triagem mais completa.
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Chapter 1

Introduction

In this chapter the context and motivation of this work are briefly explained in section 1.1, followed

by the work main goals in section 1.2. The chapter provides the reader with an overview of the

problems addressed in this work as well as the vital methodologies that are used. Finally, the

chapter closes with an explanation of the remaining structure of the document in section 1.3.

1.1 Context and Motivation

Glaucoma is a group of chronic eye diseases and a leading cause of irreversible blindness world-

wide [FCX+18a], being therefore considered a great public health concern.

Glaucoma occurs due to an inappropriate intraocular pressure, related with an inability of the

eye to properly manage the balance between the fluid produced in the eye and the fluid that leaves

the eye through its drainage canal [HKT+18]. The undesired pressure inside the eye ends up dam-

aging the optic nerve head, which starts to progressively create blind spots in the peripheral vision,

that gradually convey to the center [Shr16]. As mentioned, Glaucoma is a group of diseases, these

diseases differ between each other in the way this abnormal level of pressure is achieved inside

the eye.

Currently, primary open angle Glaucoma (POAG) is the most common type of Glaucoma,

accounting for 74% of all Glaucoma cases [QB06]. In POAG the level of intraocular pressure

increases due to the clogging of the drainage canal in the eye [Shr16].

Additionally, Glaucoma is known as a ‘silent thief of sight’, as it typically does not have any

early symptoms, turning its diagnose into a challenging task if a doctor is not seen regularly.

The traditional methods to diagnose Glaucoma consist in a comprehensive eye examination,

including slit lamp examination, tonometry to measure the intraocular pressure, gonioscopy to

examine the angle of the anterior chamber, perimetry to detect functional defects in the visual

field and others [TLP11]. All the mentioned methods require bulky and expensive equipment as

well as highly qualified professionals to operate them. Additionally, due to the high costs incurred
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by these methods, some of them are only performed if Glaucoma is already suspected. This turns

Glaucoma diagnosis into a rather challenging task, prone to human errors, which can lead to a

substantial number of undiagnosed cases.

This number of undiagnosed cases is a big concern in the healthcare community since, despite

being irreversible, Glaucoma can be effectively slowed down with appropriate treatment, therefore

reducing the risk of total blindness. Hence, achieving an early diagnosis of Glaucoma is of utmost

importance. This results in the demand for new diagnose techniques that aid or replace the existing

ones, turning Glaucoma assessment into a more efficient process.

To respond to this demand, fundus images have been used; these images contain the necessary

morphological features to identify Glaucoma and other diseases. Furthermore, fundus images can

be obtained with considerably more affordable and portable cameras, turning them into a very

relevant research topic nowadays.

In the past decade, a considerable amount of research has been done on how to use this im-

ages to build new CAD systems for Glaucoma detection and new emerging techniques inside the

machine learning field have been widely used. The term ‘machine learning’ generally refers to

any pattern-classification method that requires a training scheme, and inside the machine learning

field, deep learning is the newest and fastest growing topic; it can be considered as a brute-force

approach to determine the most appropriate image-processing filters and tools that can quantify

various biomarkers of a disease [GORT18]. These techniques need large amounts of data and

computational power for a successful application, especially considering deep learning techniques.

This has been an issue in the past, but nowadays these requirements are starting to be fulfilled at a

growing pace, making these approaches very suitable for Glaucoma diagnosis.

A variety of CAD systems have already been developed and surveyed [Shr16, HKT+18, TJ18,

SBS+18] using fundus images and machine learning techniques. These systems provide a quick

diagnose of Glaucoma taking a fundus image as an input and are considerably less costly when

compared to the typical techniques. However, there isn’t still a CAD system that provides high

usability, efficiency, affordability and interpretability that could be used in practice for Glaucoma

detection.

One system that aims at solving these issues, is the EyeFundusScope1, developed by Fraun-

hofer AICOS. The system consists of an Android application and a custom optical prototype that

can be attached to an Android smartphone, and acquire fundus images. This system was already

explored to be used for Diabetic Retinopathy diagnosis, although, at the present moment, it isn’t

capable of diagnosing other diseases, like Glaucoma.

1.2 Goals

The main goal of this work consists in the development of a CAD system that provides high

usability, efficiency, affordability and interpretability for Glaucoma detection with fundus images.

1https://www.fraunhofer.pt/content/dam/portugal/en/documents/Flyers/
EyeFundusScope%20-%20FhP-AICOS%20Project%20Brochure.pdf

2

https://www.fraunhofer.pt/content/dam/portugal/en/documents/Flyers/EyeFundusScope%20-%20FhP-AICOS%20Project%20Brochure.pdf
https://www.fraunhofer.pt/content/dam/portugal/en/documents/Flyers/EyeFundusScope%20-%20FhP-AICOS%20Project%20Brochure.pdf
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To accomplish these properties, the system should be able to run efficiently in an android device,

and then be integrated into the Fraunhofer EyeFundusScope system mentioned in section 1.1,

resulting in an end-to-end mobile-based Glaucoma diagnosis system.

The underlying goals of this work are then to enable massive Glaucoma screenings, increas-

ing the chance of detecting Glaucoma at an earlier stage and hence decrease both individual and

economic burdens caused by Glaucoma.

1.3 Document Structure

Besides the present introductory chapter, this document contains 9 additional chapters. In chapter

2, the relevant background is uncovered, providing the reader with the necessary knowledge about

the main concepts of the work. Chapter 3 reviews the state-of-the-art, disclosing the main tech-

niques, resources, and related work. Moreover, chapter 4 goes into more detail about the problem

that this work addresses, giving a clear overview of all its nuances, and how they will be handled,

by defining in detail the proposed solution.

Then, the chapters related to the implementation arise, first, chapter 5 reveals the construction

of the datasets used throughout the development of this work and, chapter 6 addresses the main

preprocessing techniques applied to the images that constitute the datasets. Furthermore, the im-

plemented segmentation and classification models are addressed in chapters 7 and 8, respectively

and, then, the insights of all the previous chapters are combined in chapter 9, where a complete

overview of the developed CAD system is provided.

Lastly, in chapter 10, the main conclusions of this work along with the main suggestions for

future work are presented.
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Chapter 2

Background

This chapter uncovers the main concepts of this work, providing the necessary background for

understanding its contents.

Firstly, in section 2.1, Glaucoma is explained in detail. Then on section 2.2, fundus images

are addressed explaining why these images are relevant for Glaucoma detection, describing their

morphology, and identifying features that have been extracted from these images to diagnose Glau-

coma.

Moreover, in section 2.3, an overview of machine learning and deep learning techniques is

given, describing both classifiers and commonly used metrics. Additionally, on section 2.4, the

importance of CAD systems in healthcare is analyzed with some examples of current applications

of these systems.

Finally, a summary and some conclusions of the chapter are given in section 2.5.

2.1 Glaucoma

Glaucoma is a cluster of eye diseases that damage the optic nerve head, leading to a progressive

and irreversible vision loss. The optic nerve head is responsible for carrying visual information

from the retina to the brain, allowing the human to visualize the outside world [TJ18]. When this

nerve is damaged, peripheral vision losses start to occur. These losses gradually converge to the

center of the vision, ending in permanent blindness in the worst case scenario.

The rise of intraocular pressure (IOP) inside the eye is considered the main cause of Glaucoma;

this pressure starts to damage the optic nerve as can be seen in figure 2.1. This is usually related to

an inability of the eye to properly manage the balance between the amount of fluid that is produced

in the eye and the amount that is drained [HKT+18]. Although it is confirmed that the “raised”

intraocular pressure is a causal risk factor for Glaucoma and the only one that can be treated, it is

neither sufficient nor necessary for the diagnosis of the disease [TLP11].

Besides the increase in IOP, there are other identified risks for Glaucoma [SBS+18], like:
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Figure 2.1: Increase in intraocular pressure leading to Glaucoma [Pra18]

• Family history;

• Having a cardiovascular disease;

• Africa, Latino or US ancestry;

• Being over 70 years;

• Blood pressure rate, Steroid use;

• Having myopia.

In the majority of Glaucoma cases, no early symptoms or pain occur, and for that reason,

Glaucoma is often called a ‘silent thief of sight’. Glaucoma damage is relatively asymptomatic in

most cases because of redundancy in the sensory system and the binocular nature of vision, that is,

one eye may compensate for early losses in the other [VLGK11]. This turns Glaucoma diagnoses

into a very challenging task if a doctor is not seen regularly.

The usual approaches for diagnosing Glaucoma are performed by ophthalmologists and con-

sist of a comprehensive eye examination. This encompasses an external examination of the eye,

ocular mobility, examination of the pupil, slit lamp examination, tonometry to measure the in-

traocular pressure, gonioscopy to examine the angle of the anterior chamber and perimetry to

detect functional defects in the visual field [TLP11]. All these methods require trained profession-

als and expensive equipment, therefore, due to the high costs incurred by these methods, some

of them are only performed if Glaucoma is already suspected which contributes to the increasing

number of undiagnosed Glaucoma cases.

Furthermore, although Glaucoma cannot be reversed, it can be treated and effectively slowed

down; therefore, performing an early diagnosis of the disease is extremely important.
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The treatment of Glaucoma diseases depends on the type of Glaucoma [TJ18], although it

always aims at managing the intraocular pressure inside the eye. The treatment can be pharma-

ceutical using eye drops or surgical, consisting in either trabeculectomy, laser surgery or drainage

implants [SBS+18].

Currently, Glaucoma is a leading cause of irreversible blindness worldwide, with a continu-

ously growing prevalence over the last years, it is expected that in 2020 there will be around 79.6

million people affected by Glaucoma [QB06]. Therefore, Glaucoma is considered a great public

health issue.

2.1.1 Types of Glaucoma

As mentioned, Glaucoma consists of a group of diseases, although the prevalence of Glaucoma

can be explained mainly by two of them, the Primary Open-Angle Glaucoma (POAG) and Angle-

Closure Glaucoma (ACG). Glaucoma prevalence studies usually only feature these types of Glau-

coma.

Below an overview of Glaucoma types can be found [SBS+18, Shr16].

• Primary open-angle Glaucoma (POAG) - This is the most common type of Glaucoma,

usually, when people only mention Glaucoma they are referring to POAG. It is caused by

a slow clogging of the drainage canal, that leads to the rise of IOP, and consequently optic

nerve damage. It has no early symptoms and continues to progress for many years until a

substantial vision loss has been achieved.

• Angle-closure Glaucoma (ACG) - This is a painful and abrupt Glaucoma. In this type,

the drainage canals are blocked and a sudden rise in IOP occurs. Symptoms like, vomiting,

extreme eye, and head torment and obscured vision can occur. Immediate medical treatment

is needed otherwise blindness will occur within two days.

• Normal tension Glaucoma - This is sometimes called low-tension Glaucoma. In this type,

there is no increase in the IOP, but the normal pressure of the eye is already causing damage

to the optic nerve head. It usually occurs due to poor blood quality and can be associated

with vascular diseases.

• Congenital Glaucoma - This is ordinarily present since the moment of birth. It can be the

result of incomplete or abnormal development of the eye’s drainage canal or other disorders

in the eye or body.

• Secondary Glaucoma - This type of Glaucoma occurs due to other eye diseases/issues. It

can happen in situations like surgeries or inflammations.
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2.2 Fundus Images

Fundus images are photographs of the fundus of the eye, this is the interior surface of the eye

opposite to the lens; an example of these images can be seen in figure 2.2. These images turned

into a very relevant research topic due to their morphological characteristics, since they have the

necessary morphological features to diagnose several important eye conditions. One of them is

Glaucoma, the topic of this work, although other leading causes of blindness such as age-related

macular degeneration (AMD) and diabetic retinopathy (DR), can also be diagnosed recurring to

these images. [HKT+18].

Combining the previously stated with the fact that these images are acquired with fundus

cameras, that can be handheld and are considerably more affordable when compared to the existing

equipment for diagnosing this diseases, makes the use of these images a very compelling option.

2.2.1 Morphology

Fundus images contain several elements, that can be seen in figure 2.2. Firstly a variety of retinal

vessels can be easily spotted, these are usually identified as veins or arteries and are useful for

the diagnose of various diseases like diabetic retinopathy [HKT+18]. The Macula is a darkly

pigmented area in the center of the retina that acts as a sunblock and subdivides into the Fovea that

is the darkest region of the fundus image. It consists of a small and slightly concave area without

any vessels [TJ18]. Exudates are not featured in figure 2.2, but they are also relevant features

commonly used for detecting diabetic retinopathy and consist in bright scattered sections that are

formed after the leakage of the retinal vessels [TJ18].

The most relevant structures present in these images for Glaucoma diagnosis are all within a

region named as the region of interest (ROI). This region can be divided into four sections, the

superior section in the top of the image, inferior section in the bottom of the image, on the left

of the image the temporal section and lastly on the right of the ROI there is the nasal section. In

the ROI, 3 important elements can be identified as shown in figure 2.3, these elements are the

following.

• Optic Disc - This is the central yellowish part of the retina, it has an elliptical shape and is

an entry point for outgoing vessels into the retina. This area is also a blind spot since it does

not contain any rods or cones [TJ18].

• Optic Cup - The Optic cup is the bright central depression in the Optic Disc [TJ18].

• Neuro-Retinal Rim - This Rim is the region between the edge of the optic cup and the edge

of the optic disc [Shr16].

Besides these 3 elements, the state of the retinal nerve fiber layer can also be inferred from

Fundus images and it will be further explained in section 2.2.2.
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Figure 2.2: Fundus Image [Mor11]
Figure 2.3: Region of interest (ROI) in fundus
image [ABWAN+18]

2.2.2 Morphological Features for Glaucoma Detection

Various morphological features can be inferred from these images that are useful for Glaucoma

detection. The most commonly used is the cup to disc ratio (CDR) [TLP11]. An overview of these

features can be found below.

• Cup to Disc Ratio (CDR) - As the name suggests it consists of a ratio between the cup and

the disc. It can be calculated based on the horizontal length, vertical length or area of the cup

and the disc [TJ18], however, the clinical convention consists in using the vertical lengths.

The enlargement of this ratio is known as ‘cupping’ [HKT+18] and can be classified into

mild (CDR up to 0.4), moderate (CDR between 0.5 and 0.7) and severe (CDR above 0.7)

Glaucoma classes [SBS+18]. In figure 2.4, an example of a fundus image with a normal

CDR (on the left) and an abnormal CDR (on the right) can be seen.

Figure 2.4: Fundus images with and without cupping [Joy17]
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• Disk damage likelihood scale (DDLS) - This likelihood scale was proposed by [Hen06],

and claims to be superior to the CDR ratio when describing Glaucomatous eyes from non-

Glaucomatous. The intuition is that the CDR can misclassify large optic nerves as Glauco-

matous and small optic nerves as normal. Secondly, focal changes that are usually associated

with Glaucoma are not reflected in CDR. To address those issues, this scale uses the radial

NRR width and the disc diameter and consists of the following expression:

DDLS =
MinNRRWidth

DiscWidth
(2.1)

In the expression, MinNRRWidth is the radial NRR width at the thinnest point and DiscWidth

is the diameter of the disc in the same axis. Although some of the CDR issues are solved

by the DDLS, this feature also carries some disadvantages, since it is not very capable of

characterizing tilted optic nerves and it is not capable of identifying new areas of NRR

damage if there is already an NRR area with more damage. The DDLS classifies Glaucoma

in 10 stages.

• NRR and the ISNT rule - The ISNT rule states that in normal eyes the NRR width in

the inferior section (I) of the ROI is greater than in the superior section (S) which in turn

is greater than the area in the nasal section (N) which in turn is greater than the area in

temporal section (T); this can be translated by the following inequation.

I > S > N > T (2.2)

It has been declared that the compliance of this rule is useful in differentiating normal from

Glaucomatous optic nerves and is not affected by race [Sci14].

• Atrophy of the Retinal Nerve Fiber Layer (RNFL) - Another Glaucoma flag that can

be inferred from fundus images is the atrophy of the RNFL, this translates to thickness

variations of the RNFL, more precisely a decrease in RNFL thickness. In fundus images

without the red color channel, the RNFL can be observed as a bright striped pattern on the

background. Furthermore, this pattern modifies its visual appearance (becoming darker in

abnormal cases) in accordance with thickness changes, and this, although not necessarily,

can indicate Glaucoma [Jan14]. A comparison between a normal and an abnormal RNFL in

a fundus image can be seen in figure 2.5.

• Peripapillary Atrophy (PPA) - PPA is one of the risk factors of Glaucoma [Shr16, MHS+11,

HKT+18, Jon05], it can be perceived as a bright region in the fundus image that sometimes

is confused with the disc by automatic tools [MHS+11]. As stated by [Jon05], PPA can be

divided into two zones 2.6, alpha, and beta, both located outside the optic disc with the beta

zone being always the closest to the disc. This zones can co-occur or occur in isolation and
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Figure 2.5: Normal fundus image on the left and Glaucomatous fundus image on the right with a
visible atrophy of the RNFL translated by the darkening of the image [Jan14]

are considerably bigger in Glaucomatous images. Besides signalizing Glaucoma, PPA is

also useful to distinguish between various types of Glaucoma.

Figure 2.6: Alpha zone and Beta zone in PPA [Shr16]

2.3 Machine Learning

2.3.1 Overview

Machine learning (ML) is one of the most active research fields at the moment, it can be defined

as a set of methods to detect patterns in data. These methods can learn by analyzing data and then

make new predictions on unseen data. The learning process can be supervised when labeled data

is available or unsupervised when the data is unlabeled. Furthermore, when the prediction variable

is a continuous value, the training process is called regression yet when it is a discrete variable, it

is called classification. [LJC+17]
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The most relevant topic for this work is supervised classification, therefore an overview of the

most common models used for this task can be found below:

• Naive Bayes - These models focus on the probability distribution of the input data, and as

the names suggest are based on the application of the Bayes theorem. The name ‘Naive’

comes from the fact that these models assume that features are conditionally independent of

each other in a given class. This is naive because it is almost never true [LJC+17].

• Support Vector Machines (SVM) - Support vectors are a distance based classifier that

generates a decision hyperplane with the maximum possible margin to the existing samples.

The samples on the margin are defined as support vectors [VRN16].

• k-nearest neighbors (KNN) - A very simple classifier, as the name suggests a new sample

is labeled based on its k-nearest neighbors, with k being a hyperparameter.

• Random Forests - Random forests consist in the combination of several random decision

trees and are therefore considered an ensemble.

• Ensembles - Combination of different models.

Deep Learning (DL) is a branch of machine learning that is rapidly evolving, inspired by the

multilayered human cognition system [LJC+17]. Contrary to what might be thought, deep learning

techniques are not new, although they only became popular a few years ago. This is due to 3 key

elements, the computational power increase, available data increase and algorithm advances in

deep learning research.

Deep learning techniques originated from artificial neural networks, and try to learn hierar-

chical representations of the data with multiple non-linear combinations between layers. They

require more data and computational power than machine learning techniques to achieve good

performances but have better modeling power. [ZYC+18] One very relevant DL technique for

image classification and segmentation is Convolutional neural networks (CNN’s) which consist of

multiple layers connected by neuron-like connections as in classic neural networks and can be de-

scribed by three typical layers [LJC+17]. These can be seen in figure 2.7 and are shortly described

below.

• Convolution layers - These layers detect edges, lines, and other visual components by per-

formming mathematical operations called convolutions, hence the name. After performing

a convolution a feature map is generated that is then passed to the next layer.

• Pooling layers - Pooling layers are used to reduce the dimensions of the feature maps, the

most used approach is max pooling, where the maximum value of a window is selected and

the window is replaced by that value.

• Fully connected layers (FC) - These layers accommodate all the features gathered from the

last layers, connecting to every neuron from the previous layer and provide the final result.
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Convolution and pooling layers sequences are usually repeated several times to increase the

modeling power of the network. Due to this increase, CNN’s are very prone to overfitting, which

essentially means that the network can memorize the data instead of generalizing. To account for

this, regularization techniques have been proposed. One popular technique is Dropout, it consists

of randomly deactivating a group of neurons for each sample during training. Other ways of

regularizing the network are data augmentation and the use of pre-trained networks that already

have learned meaningful weights and now only need fine-tuning. To conclude, CNN’s major

advantage is that they do not require feature engineering, so full images can be passed to the

network and then the best features will be learned instead of engineered [LJC+17].

Figure 2.7: Convolution Neural Network example [LJC+17]

2.3.2 Metrics

In order to evaluate these models, several metrics are available [TJ18]. First, it is important to

introduce 4 intuitive concepts1. The initial two are associated with correct classification, True

Positive (TP) is the outcome where the model correctly predicts the positive class. Likewise, True

Negative (TN) is the outcome where the model correctly predicts the negative class. Similarly, the

other two concepts are related with an incorrect classification from the model, False Positive (FP)

is the outcome where the model incorrectly predicts the positive class and False Negative (FN) is

the outcome where the model incorrectly predicts the negative class.

Now addressing the most common performance metrics for binary classification, first we have

the accuracy, which is the degree of similarity of the predicted results with the ground truth.

Accuracy =
T P+T N

T P+T N +FP+FN
(2.3)

Sensitivity is the ability of correctly detecting a positive class, it is also called Recall and true

positive rate (TPR).

1https://developers.google.com/machine-learning/crash-course/classification/
true-false-positive-negative
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Sensitivity =
T P

T P+FN
(2.4)

Specificity is the ability of correctly detecting a negative class.

Speci f icity =
T N

T N +FP
(2.5)

Precision is a metric for how precise the model is out of those predicted positive. It is a relevant

metric for when the cost of predicting FP is large.

Precision =
T P

T P+FP
(2.6)

F1 is a function of precision and sensitivity, it is useful when a balance between these two

metrics is desired and the number of TN is not relevant for the problem.

F1 = 2× Precision×Sensitivity
Precision+Sensitivity

(2.7)

False positive rate (FPR), is the rate of predicting the positive class when the outcome is the

negative class and can be calculated through the two following equations.

FPR =
FP

FP+T N
(2.8)

FPR = 1−Speci f icity (2.9)

Additionally, TPR and FPR can also be used to plot the ROC curve, by plotting the TPR on

the y-axis and the FPR on the x-axis from 0 to 1. This curve explains the model capability to

distinguish both classes. Finally, the area under the curve (AUC) is an extensively used metric

that consists, as the name suggests, on the area under the ROC curve, where a 0.5 value is random

guessing and 1.0 represents perfection.

Now changing the subject from supervised classification to supervised segmentation tasks, in

here, the most important metric is intersection over union (IoU). It is a simple metric that given

the ground truth mask and the prediction mask, can be computed dividing the area of overlap of

the two masks by the area of union.

IoU =
T P

T P+FP+FN
(2.10)

Finally, when these models are being trained a loss function is required, this is a function cal-

culated between the ground truth and the prediction that acts as an error between the two instances.

The result of the loss function is then used to slightly update the model weights in the direction
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that will minimize the loss function [LJC+17]. A loss function with value zero indicates a perfect

model.

Several loss functions exist, however, the most commonly used for binary classification is

cross-entropy loss, also called log loss, it rapidly increases as the model predicted probability

diverges from the ground truth and slowly decreases in the opposite case. The equation 2.11 rep-

resents the cross entropy loss for the binary classification problem and equation 2.12 generalizes

this loss for the multiclass classification.

CrossEntropyLoss(binary) =−(ylog(p)+(1− y)log(1− p)) (2.11)

In 2.12, yo,c is a binary label with value 1 if the class label c is the correct classification for

observation o and 0 otherwise, while po,c stands for the predicted probability that observation o is

of class c.

CrossEntropyLoss(multiclass) =−
C

∑
c

yo,clog(po,c) (2.12)

When considering segmentation tasks, an alternative loss to the cross-entropy called Dice-

Loss is also widely used. This is based on the Dice coefficient and was first introduced as a loss

in [MNA16]. It is a measure of overlap between the ground truth and the prediction that doesn’t

require class weights when the background and foreground classes are widely imbalanced.

Moreover, in [FCX+18a], a multi-label dice loss was introduced, adding a weight per class

(Wc) to the Dice coefficient and summing the results for all classes. In the equation for this loss

(2.13), y, p, C and N represent the ground truth, prediction, class and pixel number, respectively.

DiceLoss = 1−
C

∑
c

2Wc ∑
N
i (y∩ p)c,i

∑
N
i yc,i +∑

N
i pc,i

,
C

∑
c

Wc = 1 (2.13)

2.4 CAD Systems in Healthcare

Healthcare professionals usually have to analyze a huge collection of data from different body

structures during their work routine which is a tiring and challenging task with a high degree of

associated responsibility.

With this mind, Computer-aided diagnosis (CAD) systems have been widely developed dur-

ing the last decades to help these professionals. These systems, as the name suggests, assist

professionals in interpreting medical images and other types of data, providing ‘second opinions’,

allowing a faster patient triage, and sometimes act as end-to-end solutions for an initial diagnose

of several conditions.

Therefore, the main goals of these systems consist in reducing the burdens caused by the

intense workload of a healthcare professional, reduce errors caused by fatigue, improve diagnostic

accuracy, reduce inter-reader and intra-reader variability and of course automate the screening

process, allowing massive screenings for various diseases that weren’t possible before [FUN+08].
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The recent growth in the development of these systems can be justified by the successive im-

provements in machine learning/deep learning and computer vision fields in combination with the

increasing availability of biomedical data. This new data is continuously being obtained by clinical

imaging, electronic health records (EHRs), genomes and wearable devices, bringing exceptional

opportunities and challenges for the development of new CAD systems [MWW+17].

Furthermore, as in other research topics, it can be noticed that during the last years, deep

learning CAD systems are gradually surpassing all of the state-of-the-art systems.

Early diagnosis of Alzheimer disease from brain Magnetic Resonance Imaging (MRI), diagno-

sis of breast nodules and lesions from ultrasound images, classification of cancer types using gene

profiles, and knee cartilage MRIs to predict the risk of osteoarthritis are just a few of the examples

of recent CAD systems using deep learning techniques, surveyed by [MWW+17]. Particularly in

the field of this work, ophthalmology, CAD systems for predicting cataracts from cross-sectional

slit lamp images are being developed and the addressed fundus images are also being widely used

to build these systems, not only for Glaucoma but also for other retinal disorders, such as age-

related macular degeneration (AMD) and diabetic retinopathy (DR) [GORT18].

2.5 Summary and Conclusions

This chapter aimed at introducing the reader with the main concepts of this work, connecting these

different topics between each other.

It can be understood that Glaucoma is a very relevant group of eye conditions that damage

the optic nerve head, furthermore, fundus images contain the necessary morphological features to

detect Glaucoma or at least aid the detection, and can be acquired in relatively affordable ways.

Additionally, the continuous growth in Artificial intelligence, namely machine learning/deep

learning techniques is allowing the development of new and better CAD systems with biomedical

data, such as fundus images.

In conclusion, CAD systems can allow faster and improved diagnosis of several conditions,

namely Glaucoma.
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Chapter 3

Glaucoma CAD Systems Based on
Fundus Images

In this chapter, the state-of-the-art techniques and resources for Glaucoma detection with fundus

images are exposed. The chapter starts with an overview of the fundamental technologies for the

development of CAD systems 3.1. Moreover, section 3.2, describes the typical pipeline used when

building CAD systems for Glaucoma detection, with an overview of the main techniques used in

each step by the current approaches. Then, in section 3.3, several implementations of these CAD

systems are reviewed and compared, additionally, some of the current implementations of these

systems have already turned into commercial solutions and in section 3.4, an overview of the main

ones is provided. Finally, on section 3.5, the main conclusions of this chapter are drawn and the

development opportunity is briefly introduced.

3.1 Technologies

Several frameworks/libraries exist to aid the developers in the development of these systems. The

main ones serve as abstractions of several computer vision and machine learning/deep learning

techniques. The most relevant technologies are briefly introduced below.

3.1.1 OpenCV

OpenCV1 is one of the most, if not the most popular open-source computer vision library, pro-

viding several modules to perform image operations, being therefore widely used to process and

augment fundus images.

1https://opencv.org/
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3.1.2 imgaug

The imgaug2 library is an open source library for image augmentation. It uses OpenCV as its

backbone and acts as a simple interface to build complex augmentation pipelines to augment

images, key-points, bounding boxes, heat maps, and segmentation maps.

3.1.3 Scikit-Learn

Scikit-Learn3 is a machine learning library in python, providing a very simple API for tasks such as

classification, regression, clustering, dimensionality reduction, model selection and preprocessing.

This library covers the basics of machine learning and is therefore very limited when it comes to

deep learning.

3.1.4 TensorFlow

Tensorflow4 is a more robust and complete machine learning library that has a slightly higher

learning curve, but is a lot more powerful when compared to Scikit-Learn and widely used for

deep learning. Furthermore, it has an extension called TensorFlow Lite5 that allows the integration

of developed models in mobile and embedded devices with low latency. Tensorflow Lite can be

very useful for the development of a more affordable mobile-based CAD system for Glaucoma

detection.

3.2 Typical Pipeline

The development of conventional machine learning based systems follows a common pipeline, and

CAD systems for Glaucoma detection are no exception. This pipeline is expressed in figure 3.1

and explains the path between a fundus image and the final classification. In the following sections,

every step of this procedure will be addressed in isolation, shortly explaining in what it consists

and providing an overview of the most common techniques used in that section, considering the

existing CAD systems for Glaucoma detection.

Figure 3.1: Typical pipeline followed by CAD systems for Glaucoma detection

2https://imgaug.readthedocs.io/en/latest/
3https://scikit-learn.org/stable/
4https://www.tensorflow.org/
5https://www.tensorflow.org/lite
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3.2.1 Pre-processing

Fundus images often contain noise or artifacts that may affect or hinder the subsequent steps.

Therefore they are usually pre-processed to enhance the desired structures for Glaucoma detection

and as a way of regularizing and eradicating undesired noise from them [VRN16].

The main approaches consist in the normalization of the RGB values, Contrast limited adap-

tive histogram equalization (CLAHE) to improve the contrast [HKT+18], blood vessels removal,

illumination correction [VRN16] and conversion from the RGB to the HSV plane [SGA16]. The

transformation of the fundus images from the Cartesian coordinate system to the polar coordinate

system is also a pre-process approach that has shown good results in recent applications, since it

can enlarge the cup region, balancing the cup proportion in the image which facilitates its segmen-

tation [FCX+18a]. Additionally, extracting the ROI from all the images by cropping them down

is also helpful since as mentioned in section 2.2 this region is the important section of the fundus

images when considering Glaucoma assessment.

Finally, mostly when considering deep learning approaches, resizing and data augmentation is

also performed to increase image heterogeneity [LHK+18].

3.2.2 Segmentation

Segmentation is a vast research topic, which also assumes great importance in some Glaucoma

CAD systems, being sometimes the most demanding component of the pipeline.

The most desired structures to segment in these images are the optic disc and optic cup since

they allow the calculation of relevant morphological features for Glaucoma screening [FCX+18a].

The main techniques to achieve segmentation on fundus images where surveyed by [ABRL15]

and [TJ18]. Firstly, there is the level-set approach that uses the concept of curves and surfaces

for segmentation. Furthermore, thresholding, as the name suggests, simply uses a threshold and

can be based on color, contrast, intensity values of the pixels and others. Then, tactics with a

focus on the shapes and boundaries of the region that will be segmented are characterized as ac-

tive shape modeling approaches and active contour modeling approaches, respectively. Moreover,

when similar pixels are grouped together in specified ranges they form clusters that can be in-

terpreted as segments, this is therefore called clustering based segmentation. Then there is also

the component-based approach, that extracts features from the image based on image components

such as intensity pixels and colors. Besides all this, U-Net, a deep learning technique that consists

in a U-shape convolution neural network is now being used and achieving very good performances

[LHK+18, FCX+18b].

Finally, all these methods can be combined, creating a hybrid segmentation approach.

3.2.3 Feature Extraction

First of all, it is important to notice that this step of the pipeline mainly concerns machine learning

techniques, since the most used deep learning techniques, such as convolutional neural networks

do not require feature extraction as addressed in section 2.3.
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The previous step stated the main techniques used to perform segmentation in fundus images,

and in this step, Glaucoma features are extracted/calculated recurring to these segmentations and

the initial fundus image.

The morphological features addressed in 2.2.2 are some of the commonly extracted features

but there are several other non-morphological features that are usually extracted from fundus im-

ages for Glaucoma detection, as surveyed by [HKT+18].

Firstly, there is wavelet decomposition, which consists of the decomposition of the image into

coefficients. One type of wavelet decomposition is Discrete Wavelet Transform (DWT), which is

a multi-scale analysis method where the analysis can be performed on various levels and scales

[SDP+16], another type of wavelet decomposition is Empirical Wavelet Transform (EWT), this,

unlike DWT, is a signal dependent decomposition technique, furthermore the EWT decomposes

the signal into elements of different frequency bands [MPA17].

Another feature extraction technique is image descriptors, these describe visual features from

the fundus images, one example is the GIST descriptor.

Then there are non-linear feature extraction methods, which are widely used to detect pixel

variations in fundus images, an example being Correntropy, a non-linear kernel based measure of

similarity [MPA17].

Moreover, multiple textural features can be extracted, such as textons, which are the most basic

microstructures in normal images [ABK+17].

Finally, transformation feature extraction techniques like Gabor transform, modified census

transformation (MCT) and radon transform (RT) [HKT+18] are also used.

3.2.4 Feature Selection

When feature extraction is accomplished, feature selection is usually also performed, in order to

select the best subset of features to perform the classification, thus reducing dimensionality issues.

Common methods for feature selection include principal component analysis, linear discrimi-

nant analysis, independent component analysis, locality sensitive discriminant analysis, and marginal

fisher analysis [HKT+18]. Additionally, the t-test algorithm that ranks features based on their t-

value [MPA17] and genetic algorithms [SDP+16] are also used in these systems.

3.2.5 Classification

After gathering the best representation of the fundus images, several classification techniques are

commonly used.

The most simple is to determine Glaucoma based on some kind of threshold, for example, just

verifying if the CDR is above some pre-determined value [SGA16].

The most common approaches, however, use machine learning and deep learning classifiers.

As surveyed by several authors [HKT+18, VRN16, SBS+18, TJ18], the most widely used clas-

sifiers until recently were SVM, KNN, Naive Bayes and Random Forests, with the SVM being

the most used and usually best-performing technique. Nowadays this is rapidly changing and is
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not the truth anymore. A number of approaches using deep learning classifiers like CNNs and

pre-trained CNNs have now been proposed, and are obtaining increasingly better performances.

3.3 Current Implementations

The first relevant implementations of these systems started to arise in 2008 [HKT+18], and since

then a significant collection of approaches have been proposed.

In 2016, A. Singh et al.[SDP+16] achieved a state-of-the-art performance at the time with

94.7% accuracy. They started by identifying the center of the disc, performing the disc segmen-

tation afterward. Then, the intuition that blood vessels represent noisy pixels that affect the per-

formance of the system led to the removal of these vessels from the obtained optic disk images.

After this, feature extraction was accomplished using first level discrete wavelet decomposition

that resulted in a feature vector of 18 features. For feature selection two approaches were tried,

genetic algorithms and PCA, and the final feature vectors of each technique were then tested with

several classifiers (SVM, KNN, Random Forest, Naive Bayes and ANN). Since the fundus images

are from a local dataset of 63 images, which is rather small, leave-one-out cross-validation was

also performed to account for overfitting issues. The best performing models were the SVM and

KNN, with PCA feature selection that resulted in only 2 components. Both of these classifiers

obtained the 94.7% accuracy in the described dataset.

Moreover, Sanjivani Shantaiya et al. [SGA16] used morphological features for Glaucoma

detection, namely the CDR and NRR ratio in the ISNT quadrants. The images were pre-processed

extracting the ROI, the green plane and the V-plane, after converting the images to HSV. Then

the green plane was converted into grayscale and threshold segmentation using pixel intensity was

performed to segment the cup. Regarding the segmentation of the disc, this was accomplished

with both the V-plane and the green plane using threshold segmentation as well. Then the NRR

was obtained simply by performing an AND operation between the disc and the cup. The areas

of these structures were collected by counting the white pixels in the segmented map, in order to

calculate the CDR and NRR area in the ISNT quadrants. Finally, the classification was obtained

directly, detecting Glaucoma if the CDR is above 0.3 and the ISNT rule is violated. An accuracy

of 98.8% was obtained on a rather small dataset.

Moving now to approaches published in the last year (2018), where the trend in the application

of deep learning techniques to these systems is clearly noticed.

U.Raghavendra et al. [RFB+18] proposed what they claim to be the first fully automated

CNN architecture for Glaucoma detection. The architecture consists of 18 layers, starting with

a convolution layer, followed by batch normalization, then Relu and finally max-pooling. This

is repeated for four times with different filter sizes, forming the first 16 layers. To finalize the

architecture a fully connected layer and a soft-max layer for classification are added. Regarding

the optimization of the network, stochastic gradient descent momentum was used in combination

with several learning rates. The private dataset used contained a total of 1426 fundus images (589

normal images and 837 Glaucoma images), and all the images were resized to 64x64 before being
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fed to the network. The highest accuracy of 98.13% was obtained with a learning rate of 0.001

and without any pre-processing on the images.

Furthermore, a new segmentation approach of the optic disc was published by H.Fu et al.

[FCX+18a]. The novelty of this work consists of the joint segmentation of the optic disc and optic

cup since the majority of the approaches achieve this segmentation separately. To deal with this

joint segmentation the work also proposes a new joint loss metric. The first step of this method

is the transformation of the fundus images to the polar coordinate system, in order to enlarge

the cup, after this the segmentation is performed with a U-Net, this consists of four key parts,

the multi-scale input layer, the U-shape CNN a side output layer and the mentioned multilabel

loss metric. Several tests were performed in different conditions and it was concluded that the

polar transformation attains a relevant performance gain. Glaucoma screening was then performed

calculating the CDR value and an AUC of 0.8997 in the private SCES dataset was obtained. The

code for this work is available online 6.

A few months later, the same authors published another work [FCX+18b], iterating over the

existing one. It consists of an ensemble model that combines four models into a final classification.

First, the complete fundus image is classified with a CNN, then a U-Net is used to segment the

disc in the fundus image, and from this U-Net other classification is obtained by attaching fully-

connected layers after the encoding path of the U-Net. Having segmented the disc, this is then used

to crop the initial fundus image ending with an image of the ROI. This image is then transformed

to the polar coordinate system and both images are used in separate CNNs to obtain the remaining

two classifications. All the previously mentioned CNNs follow the ResNet-50 architecture and

are initialized with the weights of the ImageNet competition, being, therefore, pre-trained CNNs.

This approach increased by almost 2% the result of the last method, obtaining an AUC of 0.9183

in the SCES dataset. The code for this work is also available online 7.

An even more recent approach (from August 2018) by Z.li et al. [LHK+18], also uses a CNN.

Instead of developing a CNN from scratch, similar to the previous, this approach uses an existing

architecture, namely the Inception-v3 architecture [SVI+15] that has already proven its success in

other tasks. The images were resized to 229x229 and the RGB values were normalized between

0 and 1 before feeding the images to the network. A minibatch gradient descent of 32 was used

in combination with the ADAM optimizer and a 0.002 learning rate. But the key aspect of this

approach is its dataset since a total of 70000 fundus images were downloaded from an unlabeled

dataset8 and 48116 of those images were selected after verifying that they include a visible disc.

After this, 21 trained ophthalmologists performed the classification of these images in an online

platform and multiple interpretations of each image were obtained for quality control. The result

was 39745 images, where 31745 were used as a training set and 8000 as a validation set. The

system achieved an AUC of 0.986 with 95.6% sensitivity and 92% specificity, which demonstrates

the relevance of the dataset size and provides further evidence about the success of deep learning

6https://github.com/HzFu/MNet_DeepCDR
7https://github.com/HzFu/DENet_GlaucomaScreen
8http://www.labelme.org/
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techniques for Glaucoma detection.

3.4 Commercial Solutions

In the last couple of months, some implementations of the trending deep learning based CAD

systems for Glaucoma diagnosis have already reached the product state and are now available as

commercial solutions.

An example is Yanbao [ZFZ+18], it is a mobile application already available in popular mar-

ketplaces 9, that allows the user to upload a fundus image to a server where 4 types of feedback are

generated, CDR analysis, NRR analysis, glaucoma confidence level, and doctor diagnosis. The

first three topics are reportedly returned in about 10 seconds and the doctor analysis is dependent

on a professional expert that will interpret the images. In order to provide this feedback, the optic

disc is first localized and used to crop the full fundus image and obtain the ROI image, then, joint

segmentation of the optic disc and cup are performed with an enhanced U-net, trained and tested

on the ORIGA dataset. These segmentations are then used to perform the CDR and NRR analysis

by calculating several morphological features, afterwise, feature selection is accomplished and the

selected features are used by an SVM classifier that outputs the glaucoma confidence level. The

performances are then evaluated once again on the ORIGA dataset.

Another commercial approach that is gaining traction in Glaucoma screening is Retinalyze

Glaucoma10. This is an algorithm within the Retinalyze11 product spectrum, that has been released

on the 1st of May 2018 and already performed 60.000 examinations. It computes the optic nerve

head hemoglobin levels by analyzing the image. This is accomplished because regions of the

optic nerve head with high hemoglobin levels mainly reflect red light while blue and green light is

usually more reflected in regions with low hemoglobin. Then it uses optic nerve hemoglobin (ONH

Hb) across the vertical disc diameter (8&20 Hb), estimated cup-disc ratio (C/D) and the glaucoma

discriminant function (GDF), which combines the slope of Hb amount with the mean in 8&20 Hb.

It was tested and compared with Optical Coherence Tomography (OCT) and confocal tomography

(HRT III) and the authors show similar diagnosis capabilities [MHRUG+16]. Furthermore, the

algorithm is under active development and in recent presentations12 deep learning techniques are

applied for segmentation and classification tasks to identify the differences in the hemoglobin

distribution in glaucomatous and non-glaucomatous eyes achieving better results than some well

established clinical practices.

9http://url.cn/57tk9jT
10https://www.retinalyze.com/post/retinalyze-glaucoma-a-revolution-in-glaucoma-

screening
11https://www.retinalyze.com
12https://www.retinalyze.com/post/prof-gonzalez-de-la-rosa-presents-new-

groundbreaking-performance-of-the-laguna-onhe-retinalyze-glaucoma-algorithm
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3.5 Summary and Conclusions

Several conclusions can be drawn from this literature review. First, a considerable variety of

implementations have been and continue to be proposed, indicating the relevance in developing

a CAD system for Glaucoma diagnosis, furthermore, the proposed techniques are rather different

between each other.

Comparing the existing techniques directly it’s also a rather challenging task since most of the

approaches use their own private datasets.

Despite the aforementioned, it has been clearly acknowledged by the research community that

deep learning approaches are capable of obtaining the best results and are evolving very quickly.

Finally, even knowing that these systems are constantly being improved and published, there

are no found reports of offline mobile-based CAD systems, neither classification metrics of the

existing systems on a mobile environment. Therefore, this is identified as a research and develop-

ment opportunity.
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Chapter 4

Problem Definition and Proposed
Solution

The goal of this chapter is to precisely describe what are the motivations, goals, and context

leading to the development of this work, as well as the proposed solution to solve the identified

issues. At first, section 4.1, discloses the problem by exposing the relevance of an early Glaucoma

diagnosis and the weaknesses of existing methods to perform this diagnostic. This powers the rea-

soning that culminates in the definition of the problem statement. Secondly, section 4.2, provides

a detailed overview of the solution that will be developed, identifying the main requirements it

should accomplish. Lastly, section 4.3 wraps this chapter, summarizing and pinpointing the main

conclusions that can be derived from it.

4.1 Problem

In order to accurately describe the problem that this dissertation addresses, it is useful to further

understand the context that surrounds Glaucoma. The following subsections will, therefore, aid the

reader in that direction, by explaining prevalence, burdens and current limitations in the diagnosis

of this group of diseases, culminating with a compact problem statement.

4.1.1 Glaucoma Prevalence

The representative majority of Glaucoma prevalence studies primarily targets, angle-closure Glau-

coma (ACG) and primary open angle Glaucoma (POAG) since these are the most prevalent types

of Glaucoma and therefore representative of the total Glaucoma prevalence.

In these studies [QB06, BTF+16, KCF+16], a correlation between age, ethnicity, gender and

Glaucoma prevalence is usually made. Throughout the time it is possible to see changes in the

gender and ethnic groups that are most affected by Glaucoma, but one constant factor is the age.

Older populations are undoubtedly more affected by Glaucoma than younger populations.
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The overall conclusion of these studies is that Glaucoma prevalence is continuously growing.

Furthermore, a total of 80 million people is expected to have Glaucoma in 2020 [QB06]. The

continuous grow in prevalence can be intuitively associated with the aging of the population.

4.1.2 Glaucoma Burdens and Challenges

Glaucoma burdens can be divided into both economic and individual burdens. Individual burdens

of Glaucoma largely impact the patient quality of life, these impacts consist in the fear of blindness,

depression, social withdrawal, the inability to perform certain activities as the disease progresses,

inconvenience, cost of the treatment and others. The impact in the patient quality of life can occur

even if he is unaware that he has the disease, and expand linearly with the amount of vision loss.

Despite this, these individual burdens can be attenuated if Glaucoma starts to be treated as soon as

possible [VLGK11, BAA16].

Now addressing the economic burdens, a 2006 study [LWD+06] performed in the United

States classified Glaucoma in 6 stages of increasing severity, going from the earliest Glaucoma

(stage 0) to blindness (stage 5). The study concluded that Glaucoma management costs increase

with the severity of the disease as can be seen in figure 4.1. Although the study has been performed

some time ago, and the values may now differ, this trend still holds and can also be observed in

Europe [VLGK11].

One of the main challenges in Glaucoma management is, therefore, its early detection. This is

of utmost importance since it can reduce both individual and economic problems. But the current

methods to diagnose Glaucoma are both expensive, bulky and require trained professionals as

mentioned in 2.1, increasing the demand for new ways to detect Glaucoma.

Figure 4.1: Economic burdens of Glaucoma in different stages (values correspond to direct annual
costs). Copyright c© by American Medical Association. All rights reserved. [LWD+06]
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4.1.3 Issues with Current Glaucoma CAD Systems

CAD systems for Glaucoma detection are the most promising approach to increase the chance of

an early Glaucoma diagnosis, considering that they can automate part of the Glaucoma screening

process and reduce misclassified cases.

The research community has acknowledged the aforementioned and several CAD systems

have been developed as addressed in more detail on the previous chapter 3.

These approaches are evolving quickly but there are still some issues/limitations with them.

At our knowledge, it does not yet exist a complete standalone CAD system capable of acquiring

fundus images and classifying them as Glaucomatous or not. Moreover, the current systems run

on expensive computer hardware and are only capable of classifying high-quality fundus images.

Finally, classification performance can still be improved.

4.1.4 Problem Statement

Considering the 3 preceding sections, it is clear that Glaucoma is a major health concern, it pro-

gressively affects more people economic and personal life, becoming more relevant as time goes

by. To address this issue a solution to diagnose Glaucoma as early as possible is needed, CAD

systems seem to be the answer but the current approaches still have relevant limitations.

4.2 Proposed Solution

The proposed solution aims at filling the gap in the Glaucoma diagnosis spectrum, by iterating

over existing techniques for Glaucoma detection using fundus images.

Therefore the proposed solution consists in the development of an end-to-end CAD system

that can be used to help professionals quickly diagnose patients and ultimately by non-experts in

big Glaucoma screenings.

To achieve this, deep learning techniques will be used, following the main steps of the pipeline

addressed in section 3.2 to produce an algorithm that is able to run remotely in an (Android)

smartphone. The algorithm should be capable of processing and classifying fundus images as

Glaucomatous or not with high efficiency, meaning that it should be fast during evaluation time

on a mobile device, have good accuracy and high sensitivity. This is important to reduce, as

much as possible, the number of false negatives detected since false negatives consist in a fundus

image identified as non-Glaucomatous that was indeed Glaucomatous and that is the worst possible

outcome.

Furthermore, despite the use of deep learning techniques, the developed solution should not

act as a black box, by just receiving an image and outputting a Glaucoma confidence level. The

developed solution should have a good degree of interpretability, providing an explanation of how

the final decision was computed.
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After the development of this algorithm, it will be integrated into the Fraunhofer AICOS Eye-

FundusScope 1 system. This system consists of an Android application and a custom optical pro-

totype that can be attached to an Android smartphone, and acquire fundus images. The acquired

images by the prototype have lower quality when compared to the ones acquired by dedicated

fundus cameras, however, new versions of the prototype are continuously being developed and

the lower quality of this images might not be an issue in the near future. The developed solution,

should be robust to high-quality fundus images and ultimately try to cope with the current quality

restrictions of the images acquired with the EFS prototype.

If successful, besides turning the Fraunhofer AICOS EyeFundusScope system into a more

complete screening tool while keeping the system low production costs, this work will fulfill its

ultimate goal, develop a highly usable, efficient and affordable system for Glaucoma detection.

This will allow cheap and extensive Glaucoma screenings, resulting in the detection of this

group of diseases at an earlier stage. Thus reducing Glaucoma burdens through adequate treat-

ment, that will promptly follow the diagnose.

4.3 Summary and Conclusions

Glaucoma is a major health concern, with a growing prevalence mainly due to the aging of the

population. This groups of diseases pose several limitations to the affected individual, but an early

diagnosis can greatly decrease these limitations. Several CAD systems have been proposed to ad-

dress this problem, but there are still significant limitations in the available solutions. To address

this problem a new highly usable, efficient and affordable CAD system capable of detecting Glau-

coma is desired. The solution proposed by this work aims at providing that solution by developing

a mobile-based end-to-end CAD system, that, if successful, will be a very relevant contribution to

boost Glaucoma management.

1https://www.fraunhofer.pt/content/dam/portugal/en/documents/Flyers/
EyeFundusScope%20-%20FhP-AICOS%20Project%20Brochure.pdf

28

https://www.fraunhofer.pt/content/dam/portugal/en/documents/Flyers/EyeFundusScope%20-%20FhP-AICOS%20Project%20Brochure.pdf
https://www.fraunhofer.pt/content/dam/portugal/en/documents/Flyers/EyeFundusScope%20-%20FhP-AICOS%20Project%20Brochure.pdf


Chapter 5

Data Gathering

The present chapter brings to light the foundation of the proposed solution, the data. In section

5.1, publicly available fundus images datasets are addressed. Then in section 5.2 the details of a

private dataset developed in the context of this dissertation are unveiled.

Furthermore, the insights of the previous sections are merged and in section 5.3, the con-

structed datasets used to power this work are disclosed. To wrap everything up, section 5.4,

presents the main conclusions of the chapter.

5.1 Fundus Image Datasets for Glaucoma Detection

For the development of CAD systems, properly annotated data is of ultimate importance, since the

success of the machine learning/deep learning techniques used in the construction of these systems

is greatly correlated with dataset size and quality.

These datasets are not easy to assemble, since they require big collections of representative

fundus images, meaning that there should be a relatively good distribution of both classes (Glau-

coma and no-Glaucoma), and, the annotation of these images needs to be made by trained profes-

sionals.

Luckily, there are various fundus images datasets that were made publicly available for re-

search and educational purposes. Below an overview of publicly available datasets that can be

used for Glaucoma detection is presented:

• ORIGA-light - The ORIGA-light dataset was initially published in 2010 [ZYL+10], and

remains one of the most used datasets by the research community, mainly because it has a

satisfactory size and is very well annotated for Glaucoma diagnosis, which is not the case

for the majority of the publicly available datasets. This dataset consists of 650 images,

with annotations of the eye side, CDR, ISNT rule, RNFL, PPA, Notch in the NRR, Disc

Hemorrhage, optic disc and cup boundaries, and a binary Glaucoma label. Despite being a

public dataset, getting access to the ORIGA dataset is not easy since it is difficult to contact
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the authors and to the best of my knowledge the dataset is not freely available on the web.

Nonetheless, the dataset was acquired through the author of a recent work [SHO18], where

the dataset was used. In this version, not all dataset annotations were present, counting just

with the CDR, eye side, optic disc and cup boundaries, and Glaucoma label.

• iChallenge-GON - This dataset was made publicly available in a context of an online com-

petition1 with an on-site part that took place at the MICCAI 2018 conference. The dataset

consists of a total of 1200 images equally split in 3 datasets (training, offline validation and

on-site test) that were stratified to keep the same Glaucoma percentage in all of them. From

the 1200 images, 120 are Glaucomatous and the test labels are not publicly available since

this is a competition, resulting in a total of 800 publicly available images. Annotations for

the disc, cup, fovea and a Glaucoma label are provided.

• Drishti-GS - The Drishti-GS dataset2 [SKD+14] consists in 101 images. The ground truth

of this dataset includes the cup to disc ratio, a glaucoma label, and a segmentation map for

both the optic disc and cup.

• RIM-ONE - The RIM-ONE dataset3 counts with 3 different releases, published from 2011

to 2015 that are essentially three different datasets.

RIM-ONE r1 - The first release [FAS+11], published in 2011, contains 169 ROI fun-

dus images. The images are classified into four different glaucoma levels (none, early,

moderate and deep) which is not common, since the majority of the datasets only classify

Glaucoma as present or not present. Additionally, some of the images are classified in a fifth

category, ocular hypertension. Disc boundary annotations are also provided.

RIM-ONE r2 - The second release consists of 455 ROI fundus images, containing

annotations of the optic disc boundary and a label indicating the presence of Glaucoma in

each fundus image.

RIM-ONE r3 - The third and last release [FdlR15] was published in 2015, containing

159 stereo fundus images, with annotations of the cup and disc by two experts and two

labels, healthy fundus image and Glaucoma/Suspect fundus image. This dataset consists of

stereo images, two images of the same eye taken from two slightly different angles, enabling

the recovery of part of the 3D perspective which provides some depth information, leading

to easier and more accurate annotations of the optic disc and cup structures.

• RIGA - The RIGA (Retinal images for Glaucoma analysis) dataset4 [ASA+17] was released

in 2018 and consists of 750 fundus images. These images were derived from three different

sources, the Messidor dataset (460 images), Bin Rushed Ophthalmic Center (195 images)

and Magrabi Eye Center (95 images), the images were then manually annotated by six

1http://ai.baidu.com/broad/introduction?dataset=gno
2http://cvit.iiit.ac.in/projects/mip/drishti-gs/mip-dataset2/Home.php
3http://medimrg.webs.ull.es/research/downloads/
4https://deepblue.lib.umich.edu/data/concern/data_sets/3b591905z
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ophthalmologists. The annotations consist in the optic disc and cup boundaries, an important

highlight is that this dataset does not contain labels to classify each image as Glaucomatous

or not and it is therefore only useful for segmentation tasks.

In figure 5.1 sample images of each dataset can be found.

(a) Origa (b) iChallenge (c) Drishti-GS

(d) RIM-ONE r1 (e) RIM-ONE r2 (f) RIM-ONE r3

(g) RIGA-Messidor (h) RIGA-Bin Rushed (i) RIGA-Magrabi

Figure 5.1: Sample fundus images from public datasets

5.2 SCAS Dataset

Since this dissertation is associated with the EyeFundusScope system developed by Fraunhofer,

the need for the creation of a dataset acquired with the prototype emerged. In order to suppress

this need, a dataset was created during the ’Semana das ciências aplicadas à saúde’ (SCAS) at

Coimbra’s Alma Shopping, along 4 full days. This dataset was created with the cooperation of

David Azevedo, a Fraunhofer collaborator that helped to perform the on-site acquisitions.

In the next sections a more detailed explanation of the EyeFundusScope system, how it was

used and the main characteristics of this dataset can be found.
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5.2.1 EyeFundusScope System

The EyeFundusScope system (figure 5.3) was initially built to explore Diabetic Retinopathy and

consists of a smartphone coupled to a 3D printed optical device and an android mobile application

that manages the acquisition process.

In fact, there are two main applications used with the prototype, an official application, and a

test application. The official application is targeted at the general public and currently functions as

a CAD system for Diabetic Retinopathy, however, since it is a more stable and controlled version

it doesn’t allow full customization of the camera and prototype parameters. That’s where the test

application comes in, it is a simple and straightforward application with the essential functionality

to perform an acquisition with the prototype that allows the full customization of the parameters.

Considering that the conditions of the environment where the acquisitions were going to be

performed were not priorly known, the test application was selected to construct this dataset,

allowing an on-site adaption and customization of the camera and prototype parameters. These

parameters encompass exposure, focus, white balance related parameters as well as parameters

deeply related to the prototype workflow that cannot be disclosed. They are very relevant to

ensure that the collected fundus images are properly illuminated, with low amounts of noise, good

contrast and small or no reflections.

To better suit the test application to the acquisition environment needs, the ability to edit and

save patient information, namely the id and the eye that was being acquired, was added to the test

application in the context of this work. In figure 5.2, the main screens of the test application are

illustrated.

Figure 5.2: EyeFundusScope improved test application

5.2.2 Acquisition

In order to facilitate the acquisition process, the patient pupil should be as dilated as possible.

The pupil can be intuitively seen as the window to the retina, so a larger window means an easier

alignment of the prototype for each patient and consequently a better image. Since the prototype

is intended to be used in large screening programs with restricted resources, eye drops for pupil
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Figure 5.3: EyeFundusScope prototype

dilation should not be used, therefore the patient was brought to a relatively dark room (figure 5.4),

where he stayed for a couple of minutes, allowing his pupil to dilate.

During this time a detailed explanation of the acquisition process was given to the patient and

the informed consent (annex A) was signed.

After that the patient was told to look at a bright fixed spot on the wall (red circle in figure

5.4), making it easier to acquire an optic disc centered fundus image.

Figure 5.4: Acquisition Environment

Performing the acquisition on both eyes took approximately 3-5 minutes for each patient and

2-3 photos were taken to each eye.
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5.2.3 Dataset Overview

A total of 100 patients participated in this study, the majority of them above 40 years old, in order

to maximize the possibility of finding positive glaucoma cases. The result was a collection of 525

images, however, some of them were invalid, due to:

• Images acquired by accident (i.e: images of the ground, hands, and others);

• Images with very large reflections, turning the majority of the image into white;

• Images without the optic disc.

After the removal of all the images in one or multiple of the above categories, a total of 434

images were selected and in the context of this dissertation, each image was considered as an

individual case. Some samples of the SCAS dataset can be observed in figure 5.5.

Figure 5.5: SCAS image samples

5.2.3.1 Issues

Performing the acquisition was not trivial, due to the handheld nature of the prototype and the

inferior camera sensor present in the smartphone when compared to the ones present in full fundus

cameras. It is challenging to get a good alignment at all times and even more challenging to tune

the prototype parameters appropriately, for the environment and for each patient, since the number

of diopters and other ocular conditions that the patient might have required some adjustments to

the prototype.

These adversities were reflected in the quality of the acquired images, the selected parameters

were not optimal in a large percentage of the acquisitions, which resulted in very noisy images,

making it difficult/impossible to see the optic cup in the images and posing some challenges for

the segmentation and classification tasks with this images.

Furthermore, only 3 patients reported that they had Glaucoma, which unfortunately results in

a heavily unbalanced dataset, less useful for Glaucoma classification.
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5.2.3.2 Ground Truth

Before performing the acquisitions, it was intended to elaborate the ground truth with ophthalmol-

ogists annotations. These annotations would concern the optic disc and cup boundary and a label

indicating if the image was indeed Glaucomatous or not. However, given the limitations of the

acquired images, it was not viable to annotate the optic cup boundary in a big portion of the im-

ages, or ask the ophthalmologists to annotate the images as glaucomatous or not, since the patients

questionnaire already made clear that the percentage of Glaucoma cases was very low, therefore

not justifying the cost of having ophthalmologists annotating the images.

The dataset ground truth was then built with the optic disc boundary annotation. This anno-

tation was performed by myself using a publicly available annotation tool [FdlR15], that can be

seen in figure 5.6 with an annotation example.

Figure 5.6: SCAS annotation
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5.3 Dataset Construction

Considering the previously addressed datasets (sections 5.1 and 5.2) briefly described in table

5.1, their annotations, and the desire to explore both segmentation and classification tasks, three

datasets where created.

Dataset Glaucoma No-Glaucoma Total
Origa 168 482 650
Drishti-GS 70 31 101
RIM-ONE r1 40 118 158
RIM-ONE r2 200 255 455
RIM-ONE r3 148 170 318
iChallenge 80 720 800
RIGA 749 749
SCAS 434 434

Table 5.1: Image count per dataset

Firstly, a dataset for segmentation tasks of both the optic disc and optic cup was created merg-

ing the Origa, Drishti-GS, iChallenge, RIM-ONE r3, and RIGA datasets, since they all had in

common optic disc and cup annotations. In the datasets where several annotations were provided

for the same image, the considered ground truth was the region of agreement between the anno-

tators. Considering, for instance, the RIGA dataset, where 6 ophthalmologists annotated all the

images, the considered annotation was the result of the AND operation of all the 6 annotations.

Secondly, in order to validate part of the developed solution with images acquired by EyeFun-

dusScope, the SCAS dataset was used.

Lastly, for the classification task, Origa, Drishti-GS, RIM-ONE (r1,r2,r3) and iChallenge got

merged, given that they have glaucoma annotations. Furthermore, only two classes were consid-

ered, Glaucoma and No-Glaucoma, since the majority of the datasets only included a binary classi-

fication for Glaucoma. In situations where the glaucoma classification was not binary (RIM-ONE

r1) or the Glaucoma cases where mixed with Glaucoma suspects (RIM-ONE r3), the samples were

all considered as Glaucoma, since in CAD systems for glaucoma detection the goal is to achieve

a good sensitivity hence every image that poses a doubt about its classification is considered as

Glaucomatous in the ground-truth of the classification dataset.

Additionally when considering the RIM-ONE r3 dataset, which consisted of stereo images,

each of these images was divided into two, and considered as a separate case. With this in mind

the number of images in this dataset, present in both the segmentation and classification datasets,

increased from 159 to 318. To summarize, a quick overview of these three datasets can be found

on table 5.2.
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Dataset Description Total
Segmentation Origa + Drishti-GS + RIM-ONE r3 + iChallenge + RIGA 2618
Segmentation-SCAS SCAS 434
Classification Origa + Drishti-GS + RIM-ONE (r1,r2,r3) + iChallenge 2482

Table 5.2: Final segmentation and classification datasets

5.4 Summary and Conclusions

The created datasets for segmentation and classification are rather small when considering the

usual Deep Learning practice, nonetheless, when compared with the datasets used by some of the

state-of-the-art approaches in CAD systems for Glaucoma diagnosis, the gathered datasets have

comparable or sometimes better size. Additionally, the fact that several datasets were merged,

increases the variability within the dataset, contributing to a better generalization capacity in Ma-

chine Learning/Deep Learning approaches [AFLC+19]. It is also important to notice that there are

several private/paid datasets that are being used in the development of CAD systems for Glaucoma

detection. In fact, most of the published systems use their own private datasets [HKT+18].

As a final conclusion, unfortunately, the nonexistence of a dataset of EFS images with glau-

coma, optic disc, and optic cup annotations, turns impossible the full validation of the developed

solution solely in the EFS context, but on the other side, the accomplished merge of public datasets

result in a robust dataset.
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Chapter 6

Image Pre-processing

In order to enhance the images that build the 3 datasets used in this work (section 5.3) and make

them more suitable for the learning process, several image processing techniques were performed.

In the present chapter, a detailed overview of each of the experimented techniques is provided.

6.1 Crop

Given that the images come from several different datasets having therefore different aspect ratios,

it is important to normalize this situation. This is accomplished by cropping the image and not

resizing it since the shape of the structures in the region of interest should be kept because several

morphological features are calculated based on widths and areas of this structures and a resize

would introduce errors.

The goal was to keep a 1:1 aspect ratio since this is the ratio used in the majority of deep

learning architectures inputs, and will also be used in the approaches used by this work, to enable

the use of pre-trained networks. Considering the aforementioned two types of crops were executed.

First, a center crop was performed when it was necessary to change the image aspect ratio to 1:1.

The second type of crop consisted of cropping the ROI region using the annotated disc bound-

ary since this region contains the most relevant features for Glaucoma assessment. An example of

both types of crops can be seen in figure 6.1.

6.2 Data Normalization and Standardization

This is a simple and common pre-processing technique used in machine learning/deep learning

approaches [HLVW17, MZZS18]. Data normalization consists in keeping the intensity values of

the images between 0 and 1, this is done by simply dividing the original the image intensities in all

channels by 255. Additionally, data standardization consists of re-scaling the data so that it ends

with 0 mean and a standard deviation of 1 [Bro19].
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Original image Center Crop ROI Crop

Figure 6.1: Crop showcase

Data normalization and standardization improves the convergence of the models because the

data is distributed in a more consistent way, avoiding that specific samples with different ranges

have a greater effect than the desired in the model weights.

An example of this transformation can be found in figure 6.2.

Figure 6.2: Normalization example, with normal image on the left and feature-wise mean sub-
tracted image on the right

6.3 Contrast Limited Adaptive Histogram Equalization (CLAHE)

CLAHE [Zui94], first introduced in 1994, its a technique to enhance the contrast of an image,

based on histograms, it has its roots in medical imaging but has already been used in a variety of

other contexts.

Histogram equalization, its based on the assumption that a good image will have its pixel

intensities distributed by the full histogram and not confined to a single region, it is therefore ac-

complished by effectively distributing the brighter intensities through the full histogram, allowing

for areas with low contrast to be more noticeable, figure 6.3 provides an illustration.

There is however a problem with this approach, the brighter pixels of the images might also

be caused by undesired areas, especially noisy areas, resulting in the enhancement of the contrast

of these undesired areas. To solve this issue, Adaptive Histogram Equalization (AHE) was intro-

duced, in this approach instead of using the full image context, the images are divided into a grid

of contextual regions of a defined size and histogram equalization is performed on each contextual
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Figure 6.3: Histogram Equalization (extracted from OpenCV documentation)

region with bilinear interpolation in the boundaries of the regions to avoid the visualization of ar-

tifacts. Despite this, a contextual area with noise would still increase the noise representation and

that’s were CLAHE finally comes in, introducing a clip limit parameter that is used to clip pixels

in a histogram bin that doesn’t respect this limit and distribute them between other bins before

applying the histogram equalization.

In the context of fundus images, CLAHE has already been used in several approaches [ZFZ+18,

SSS+19, ABRL15, TJ18], in this work, CLAHE was used with a contextual area of size 8x8, this

was the one used in the original paper and usually gives good results, with regards to the clip limit,

2 was the selected value. Moreover, since CLAHE is based on the pixel intensities of one channel,

it should be applied to intensity-related channels, for this, instead of applying CLAHE to each

RGB channel a different approach was followed. The RGB fundus images were transformed to

the LAB color space, composed of 3 channels, lightness (L), red to green value (A) and blue to

yellow value (B). CLAHE was then applied to the lightness channel, and after that, the image was

re-converted to RGB color space.

In figure 6.4 an example of the application of this algorithm to both high-quality fundus images

and EFS fundus images can be found.

6.4 Polar Transformation

A point in the polar coordinate system is represented by two coordinates, a distance (r) from a

reference point and an angle (θ ) from a reference direction [Wik19]. In the context of fundus

images, this transformation is useful if the reference point is the disc center and the reference

direction is the positive direction of the x-axis, given that the disc center is the origin. This results

in a simpler separation between the disc and the cup, that are the most important structures for

the Glaucoma diagnosis. Besides this, the cup proportion with respect to the image background is

also enhanced.

The conversion between the polar coordinates system and vice versa, can be accomplished

with equations 6.1 and 6.2.

An example of this transformation can be found in figure 6.5.
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Figure 6.4: CLAHE example (left: normal; right: enhanced)

Cartesian =

{
x = rcosθ

y = rsinθ
(6.1) Polar =

{
r =

√
x2 + y2)

θ = atan2(y,x)
(6.2)

Cartesian coordinate system image Cartesian coordinate system mask

Polar coordinate system image Polar coordinate system mask

Figure 6.5: Polar transformation example

This transformation has already been used for segmentation [FCX+18a] and classification

tasks [FCX+18b] in Glaucoma diagnosis with fundus images, as addressed in section 3.3, and will

also be explored in this work.
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6.5 Denoising/Smoothing

Considering that one of the main issues of the SCAS dataset is the huge amount of noise present in

the images (section 5.2.3.1), some denoise/smoothing techniques were performed on these images

to combat this issue. This was only performed on the SCAS images since the images from public

datasets do not present any noticeable noise.

First, gaussian blur was performed, where a Gaussian kernel is used through the image, how-

ever, the increased blur made the image seem rather unfocused.

Then, median blur was used; this takes the median of all the pixels in a window with a specified

dimension and replaces the center pixel with the result. It gave better visual results than a gaussian

blur, nonetheless, this technique does not preserve retinal vessels with small areas.

Bilateral filtering [TM98] was then tested. This technique its recognized for its simplicity and

effectiveness and was introduced for edge-preserving smoothing, which is very useful to mitigate

the issue with the retinal vessels previously described. It uses two filters, a spatial filter that

measures spatial distances to enforce that only nearby pixels are considered and a range filter, that

measures intensity differences, to ensure that just pixels with intensities similar to the central pixel

are blurred. This allows the edges to be preserved, since edge pixels have significant variations in

their intensities, thus not being considered for blurring. This method has already been applied to

fundus images in the past [HZZ+17] and provided satisfactory results with the SCAS images as

well.

Additionally, OpenCV (3.1.1) provides an implementation for Non-local Means Denoising1,

it builds from the assumption that noise is usually considered a random variable with zero mean

and in order to find it, instead of considering a local area like in the previous methods, a pixel can

be averaged between multiple similar patches of the images and the result will hopefully be the

value of the pixel without noise, since noise is assumed to have zero mean. This was also tested

and the results were good, nonetheless, the bilateral filter continued to do a better job at preserving

retinal vessels with small areas. In figure 6.6 a sample of the results obtained by the addressed

techniques can be found.

Figure 6.6: Denoise techniques performed on SCAS dataset

1https://docs.opencv.org/3.2.0/d5/d69/tutorial_py_non_local_means.html
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6.6 Augmentation

A good augmentation pipeline, that enhances the existing datasets in a representative way by sys-

tematically creating transformed images is of ultimate importance, especially when considering

deep learning approaches where a greater amount of data is needed to achieve a good generaliza-

tion and decrease overfitting issues.

For this, real-time data augmentation approaches were used, since they are robust and easy

to implement, not requiring additional disk space to save the augmented images and providing

different augmented images in every batch of data.

Given that the goal is to create new data, but at the same time ensure that the data is repre-

sentative for the task, in this augmentation pipeline no geometric augmentations were performed,

since for instance a random horizontal/vertical flip or other geometric changes might affect the

calculation of morphological features in the image and therefore the final classification decision,

because the ISNT quadrants might be swapped or the shape of some structures like, the disc and

cup can be changed, inducing errors in the classification.

The augmentation pipeline was built using the imgaug library (section 3.1.2). It consists of 4

main steps that are applied in random order and from augmentation to augmentation some of them

might even be skipped. The first step consists in the application of blur to the image, this blur

can be either a gaussian blur an average blur or a median blur. Secondly, contrast normalization

is performed by moving the pixel values away or closer to 128. Then brightness changes are

performed per channel. Finally, the images might be sharpened with a sharpening kernel.

In figure 6.7, an example of the results of this pipeline can be found.

Figure 6.7: Augmentation example

6.7 Summary and Conclusions

All the addressed techniques in this chapter were already explored in the context of Glaucoma

CAD systems backed by fundus images, and are therefore relevant and useful for this problem.

In the following chapters, several combinations of these preprocessing techniques will be ex-

perimented and discussed with a variety of deep learning approaches.
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Chapter 7

Segmentation Approaches for
Glaucoma Diagnosis

Accurate segmentation of the optic disc and the optic cup is a very relevant task in a CAD sys-

tem for Glaucoma diagnosis since it allows the calculation of several morphological features that

can aid the classification decision. Lately, deep learning based approaches are surpassing the

traditional segmentation approaches as addressed in section 3.2.2 and, in this chapter, several im-

plemented deep learning techniques are explored and discussed with a focus on mobile inference.

In section 7.1, a careful description of the models architectures is provided. Then an overview

of the training process can be found on section 7.2, followed by a discussion of the final results in

section 7.3 and the main issues faced by the models in section 7.4.

Finally, the morphological features that were calculated with the segmentation results are ex-

plained and the main conclusions from this chapter are disclosed in section 7.5 and 7.6, respec-

tively.

7.1 Architectures

7.1.1 Building Blocks

In order to construct the networks, several major building blocks addressed and tested in the liter-

ature were used. Below a description of each one is unveiled.

• U-shape architecture - This architecture consists of an encoding path, where the convolu-

tion and pooling operations are performed and a decoding path, where the pooling operators

are replaced by up-sampling operators. Additionally, the number of filters used is the same

or at least similar in both the encoding and decoding paths at the same depth level, result-

ing in a symmetric architecture, hence the ‘U’ in the name. This type of architecture was
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first applied with success on segmentation tasks in U-net [RFB15], and since that has been

widely used.

• Skip Connections - Skip connections consist of copying and concatenating feature maps

from the encoding path to the decoding path at the same depth level. This is useful for seg-

mentation tasks since the information from the earlier layers contains more spatial context

from the initial images, and adding that information to the last layers will positively aid the

up-sampling operation and consequently enhance the segmentation results [DVC+16].

• Multiple inputs/outputs - Multiple inputs of different scales, have similar advantages to

the skip connections, providing more context in advanced layers on the encoding path. On

the other side, multiple outputs can alleviate the vanishing gradients problem, since these

outputs help back-propagate the loss to earlier layers in the decoder. For this, the final output

should consist of an operation that combines the multiple outputs, for instance, an average

operation [FCX+18a].

• Relu 6 - This consists of using Relu as the activation function between layers with a max

value of 6, which results in a more robust non-linearity for low-precision computation

[SHZ+18]. The previously mentioned makes the use of Relu 6 very appealing for mod-

els that are intended to run in embedded devices and mobile environments.

• Spatial Pyramid Pooling (SPP) - SPP [HZRS15b] was originally proposed to address the

fact that arbitrary input sizes could be used with convolutional layers, yet, when consider-

ing fully connected layers this is not the case. Therefore SPP acts as a new layer between

convolutional and fully connected layers that can map any input size to a fixed output size,

solving the mentioned issue. This is achieved by dividing the image in a number of spatial

bins with size proportional to the input size. The number of bins is fixed and independent

of the input. Additionally, the division of the image in spatial bins is performed at different

levels, in example, a layer with 16 bins divides the image in a 4x4 grid, another layer of 4

bins will divide the image in a 2x2 grid and a layer with 1 bin will consider the full image.

In each of these layers, pooling is performed in all bins, the layer is flattened and then all

the layers are concatenated. Since the number of bins is fixed, this concatenation will al-

ways lead to a fixed length representation. Furthermore, this module also acts as a global

context prior and it is therefore very useful for segmentation tasks. An example is Pyramid

Scene Parsing (PSP) [ZSQ+17], which has demonstrated outstanding performances on sev-

eral segmentation problems using a variation of the addressed SPP module. In PSP, pooling

is also applied at different scales but instead of flattening and concatenating the result, each

layer goes through a pointwise convolution (1x1 kernel) to reduce the number of filters and

keep the weight of the original feature map since afterwise, the layers at different scales are

upsampled to the original resolution and concatenated between themselves and the original

feature map, as illustrated in figure 7.1. For this work, variations of the PSP spatial pyramid

pooling module were used.
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Figure 7.1: SPP module in Pyramid Scene Parsing [ZSQ+17]

• Atrous Spatial Pyramid Pooling (ASPP) - This module is inspired in the previously ad-

dressed SPP module and was used in several iterations of DeepLab models [CPK+16,

CPSA17, CZP+18], that is currently the state-of-the-art model in several segmentation

benchmarks. ASPP is based on atrous convolutions (also called dilated convolutions), these

are convolutions with a dilation rate, where a value of 1 is equivalent to a normal convo-

lution, and a greater value allows the enlargement of the receptive field or in other words,

the field of view of the filters, allowing a better incorporation of context in the downscaling

process. In figure 7.2 an example of two dilation rates can be found. In the ASPP module,

instead of using pooling operations at different rates, like in SPP, dilated convolutions are

used at various rates. This can alleviate the loss of information related to object boundaries

caused in pooling or strided convolutions.

Figure 7.2: Example atrous/dilated convolutions at different rates

7.1.2 GFI-SPP

This was the first developed architecture to perform the segmentation of both the optic disc and

the optic cup. An illustration is provided in figure 7.3. It consists of a symmetric encoder and

decoder path and a spatial pyramid pooling module.

The encoding path consists of 4 depth levels and is similar to typical CNNs architectures.

In each level, two padded convolutions with relu6 activation’s and 3x3 kernels are performed,
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the number of filters starts at 32 and is then doubled on every transition to next depth level, this

transition is performed through average pooling with a pool size of 2. Average pooling was se-

lected in detriment of max pooling since the literature reports better results with it on similar tasks

[ZSQ+17]. Furthermore, two inputs are used in the network in the first two depth levels and skip

connections between the encoder and decoder path are present at every depth level.

When it comes to the transition from the encoder to the decoder path, an SPP model was used,

in this implementation, it consists of 4 different pooling levels, the first considering the full image

and performing average pooling, and the following three dividing the image into 4 bins, 16 bins,

and 49 bins, and then performing the average pooling. This results in 1x1, 2x2, 4x4 and 7x7

filters that then go through pointwise convolutions in order to keep global context and later are

upsampled and concatenated.

Now we reach the decoding path, it is very similar to the encoding one, however, in here, the

transition to an upper level leads to the decrease in the number of filters in each convolution by

a factor of 2 and is done with nearest interpolation. Finally, in the first two depth levels of the

decoder, two outputs are generated and then averaged to form the final segmentation prediction.

Wrapping up, this architecture consists of a total of 1,963,126 parameters and 61 layers.

Figure 7.3: GFI-SPP architecture diagram

7.1.3 GFI-ASPP

This architecture is very similar to GFI-SPP (7.1.2), in fact, as the name suggests, the only differ-

ence is the module used in the transition between the encoder and the decoder path.

In here, an ASPP module was chosen, it consists of 4 parallel padded atrous convolutions with

dilation rates of 1, 2, 4 and 7. Additionally, image-level features obtained by performing a global

average pooling on the original feature map are also used. This is done because when the dilation

rate increases, the number of filters weights that are applied to the valid feature region (region

without the padded zeros) declines. The inclusion of image-level features helps to mitigate this
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problem and include more global context in the network as addressed in [CPSA17]. Finally, the

result of each level of the ASPP module and the image-level features are concatenated.

This architecture consists of a total of 1,940,662 parameters and 57 layers and is represented

in figure 7.4.

Figure 7.4: GFI-ASPP architecture diagram

7.1.4 Variants

Having the previously addressed architectures in mind (sections 7.1.2 and 7.1.3), three slightly

different architecture variations were implemented:

• GFI-SPP-Depth and GFI-ASPP-Depth - These two variations consist of the replacement

of all convolution blocks in the encoder and decoder paths by depthwise separable convolu-

tion blocks illustrated in figure 7.5. These blocks are inspired in the MobileNet architectures

[HZC+17, SHZ+18], and help further reduce both the time and space complexity of the net-

work while having minor or no impact on the performance, turning these architectures more

suitable for mobile inference. With this change, the number of parameters in GFI-SPP-

Depth and GFI-ASPP-Depth drops to 1,175,325 and 1,152,131, respectively.

• GFI-SPP-Depth-simple - This network is a simplified version of GFI-SPP-Depth, intended

to be used just for disc segmentation since this is a rather simpler task than the joint disc/cup

segmentation or the cup segmentation alone. Two considerable adjustments have been made,

first, the starting number of filters in the first depth layer is 16 instead of 32, and is then

decreased and increased in the same way as the parent architecture. Secondly, the SPP-

model as also been massively simplified, including only a global average pooling operation.

The transition between the encoder and decoder path consists therefore in the concatenation

of the original feature map, the SPP model result and the result of a convolution block

applied to the original feature map also introduced in this architecture.
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Figure 7.5: Depthwise separable convolution block

7.2 Training

With regards to the training process, firstly a validation approach was selected and used through-

out all training sessions, in order to allow a consistent comparison between the trained models.

The validation approach consists of a train/val/test split with 80/10/10 proportions of the original

dataset.

When considering strategies of experimentation to continuously tune the model hyperparam-

eters and increase the model performance, three options are often used, best guess, that consist in

tuning one hyperparameter at a time, based on a ’guess’. Nested validation, that optimizes one

hyperparameter, and then moves to another assuming that the previous one is optimal and lastly,

grid-search, that consists in performing all possible combinations and selecting the best model.

When training the segmentation models all of these approaches were used with a greater focus on

nested-validation, due to time constraints.

Now, starting with the training process itself, first, the ADAM optimizer [KB14] was selected

and never changed, since it usually achieves good results and is widely used in the literature. Loss

wise, experiments with both cross-entropy loss and dice loss (2.3.2) were done, and it was verified

that optimizing the dice-loss results in better end values for both the dice and cross-entropy losses,

leading to an improvement of up to 0.02 and 0.37 in the final values of dice and cross-entropy

losses, respectively. The dice-loss used was multi-label and the class weight (Wc) was 0.5 for both

the optic disc and cup since both of these structures are equally important and should contribute

equally to the loss value calculation. However in networks were just the disc is being segmented,

the Wc of the disc is 1, as expected. At the end of each training session, the IoU was also calculated

for both the disc and the cup and the hyperparameter optimization decisions were mainly based on

this metric value.

Furthermore, callbacks were used in every training session, to save the model every time

the validation loss decreases and to reduce the learning rate or perform an early stopping if the

validation loss is not decreased for several epochs. With these callbacks the number of epochs was

set to 200, considering that in the superiority of the cases, the early stopping occurred first, giving

a complete perception of what the model could reach.

Considering the Segmentation dataset (section 5.3), several learning rates were explored and

0.0001 was selected since both lower and higher rates (values experimented with variation by a

factor of 10 in both directions) conducted the model to local minimums in the majority of the cases

with final IoU scores up to 0.17 lower. With regards to the batch size, a size of 32 was impossible

to use due to hardware limitations, therefore 16 was the selected batch size for the experiments.
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When it comes to augmentation since these models are built for segmentation, geometric trans-

formations were tried, given that the limitation of these transformations addressed in section 6.6

only affects classification networks. These transformations consisted of small flips, shifts, and

rotations, nonetheless, the augmentation pipeline specified in section 6.6 produced slightly better

results more often and was then used in the final models.

Now addressing the preprocessing done to the images before applying augmentation and start-

ing the train, initially, the center cropped fundus images with data standardization were used to

reach the aforementioned parameters. Then experiments with the ROI cropped images (section

6.1) showed improvements up to 0.05 in the loss values and 0.02 in IoU and applying CLAHE

(section 6.3) afterwise proved to increase the performance, even more, resulting in about 0.05

improvements in the average optic disc/cup IoU. Additionally, given that the green channel on

these images has very good contrast and is sometimes used alone for segmentation tasks, train-

ing just with the green channel was also tried, however, the results were poor when compared to

the previous approach. Next, Polar images (section 6.4) were tested on the ROI cropped images

with CLAHE, and the obtained results were very similar to the previously obtained without the

polar transformation, this transformation was then discarded, in order to simplify the pipeline.

Furthermore, in all the mentioned tests, the images were all being resized to 224x224 before being

provided to the networks, other dimensions where tried, like 400x400 images (with a batch size

of 8 due to hardware restrictions), but no significant improvements were verified, and therefore

224x224 was the kept input size.

Since the images cropped on the ROI gave considerably better results for the joint segmenta-

tion of the optic disc and cup, networks just for disc segmentation were trained to power the crop of

the ROI region. Given that this is a rather easier task, GFI-SPP-Depth-simple architecture was the

chosen one. In the disc segmentation using CLAHE doesn’t lead to better performances since the

optic disc contrast, contrary to the cup, is already very good, so CLAHE wasn’t used in disc-only

segmentation tasks. Lastly, it was verified that the data standardization wasn’t bringing significant

performance increases, so to ease the integration of the pipeline in other system and prevent carry-

ing the mean and standard deviation arrays, necessary to perform the same standardization every

time, this preprocessing technique was also discarded.

In figure 7.6, an example of the losses convergence of one of the networks during train is

shown, the plots are very similar in other architectures, with rather fast convergence in the be-

gin and then, stabilization with the model converging at a very low rate until early stopping is

eventually performed.

Now considering the Segmentation-SCAS dataset (section 5.3), in here, only disc segmenta-

tion models were experimented, since the dataset doesn’t have cup labels. The training with this

dataset was accomplished after the aforementioned experiments and similar hyperparameters were

used. However, in these training sessions, the weights were initialized with the results from the

training with the high-quality images. With this in mind, a lower learning rate of 0.00001 was

used, and a batch size of 32 was adopted since with this dataset the hardware restrictions didn’t

pose any issue.
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Figure 7.6: GFI-ASPP-Depth training losses

Despite, the disc segmentation being considerably easier to segment than the cup, with the

Segmentation-SCAS dataset, the GFI-SPP-Depth-simple architecture didn’t achieve results com-

parable to the more complete networks, such as GFI-ASPP-Depth, with differences greater than

0.3 in IoU values. This can be justified by the added difficulty of identifying the disc in this dataset,

resulting in the necessity of a network with more modeling power.

With regards to the preprocessing, the center cropped images were used initially, then denois-

ing using bilateral filtering was applied and increased the IoU up to 0.03. Afterward, CLAHE was

also tried, however in this case, no improvements were verified for the same reason stated above

and because the SCAS images are rather noisy, which sometimes result in contrast enhancement

of noisy regions, affecting the segmentation performance.

An illustration of the loss values during the training is presented in figure 7.7, in here the

convergence, in the beginning, is even faster when compared to figure 7.6, which can be justified

by the fact that this approach already starts with meaningful weights considering that transfer

learning is being used.

Figure 7.7: GFI-ASPP-Depth (Disc-SCAS) training losses
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7.3 Results

In tables 7.1, 7.2 and 7.3 the best results of each developed model are revealed for the train,val

and test sets, respectively. In each table, three highlighted models can be found, they represent

the selected models for three different tasks, joint optic disc and cup segmentation (GFI-ASPP-

Depth), disc segmentation (GFI-SPP-Depth-Simple (Disc)) and disc segmentation on the SCAS

images 5.2 (GFI-ASPP-Depth (Disc-SCAS)).

Model Multi-label Dice Loss Log Loss IoU Disc IoU Cup
GFI-SPP 0.05 0.07 0.92 0.81
GFI-SPP-Depth 0.049 0.05 0.91 0.84
GFI-ASPP 0.05 0.07 0.92 0.81
GFI-ASPP-Depth 0.03 0.04 0.93 0.86
GFI-SPP-Depth-simple 0.08 0.09 0.89 0.73
Model One-label Dice Loss Log Loss IoU Disc IoU Cup
GFI-SPP-Depth-simple (Disc) 0.05 0.02 0.90 -
GFI-ASPP-Depth (Disc-SCAS) 0.03 0.005 0.92 -

Table 7.1: Train set segmentation results

Model Multi-label Dice Loss Log Loss IoU Disc IoU Cup
GFI-SPP 0.08 0.12 0.91 0.74
GFI-SPP-Depth 0.08 0.10 0.91 0.75
GFI-ASPP 0.08 0.10 0.91 0.75
GFI-ASPP-Depth 0.08 0.10 0.91 0.74
GFI-SPP-Depth-simple 0.10 0.12 0.88 0.71
Model One-label Dice Loss Log Loss IoU Disc IoU Cup
GFI-SPP-Depth-simple (Disc) 0.06 0.02 0.89 -
GFI-ASPP-Depth (Disc-SCAS) 0.10 0.02 0.80 -

Table 7.2: Val set segmentation results

Model Multi-label Dice Loss Log Loss IoU Disc IoU Cup
GFI-SPP 0.08 0.10 0.91 0.75
GFI-SPP-Depth 0.08 0.08 0.91 0.75
GFI-ASPP 0.08 0.08 0.91 0.75
GFI-ASPP-Depth 0.08 0.09 0.91 0.75
GFI-SPP-Depth-simple 0.10 0.09 0.89 0.71
Model One-label Dice Loss Log Loss IoU Disc IoU Cup
GFI-SPP-Depth-simple (Disc) 0.06 0.02 0.89 -
GFI-ASPP-Depth (Disc-SCAS) 0.07 0.01 0.86 -

Table 7.3: Test set segmentation results
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Now, drawing some observations from the results obtained in each set, it is easily noticeable

that the results between the validation and test splits are very similar and sometimes equal in the

bulk of the models, this is very good since this sets indicate the generalization capacity of the

models. However, when looking to the differences between the train set and the others, it is possi-

ble to see some considerable differences between the obtained losses, these can be justified by the

difference of up to 0.12 in the cup IoU, indicating some slight overfitting in the cup segmentation

during training. Nonetheless, this can be eventually justifiable due to the relatively small dataset

size for deep learning tasks and the difficulty of segmenting the cup.

Regarding how these results were achieved, this can somewhat be inferred from the training

section 7.2, but will be made explicit in the next paragraphs.

All the models used the online augmentation pipeline addressed in section 6.6 after resizing the

images to 224x224 and performing data normalization (section 6.2), data standardization was not

performed. In respect to the loss used, multi-label dice loss was selected, moreover, the ADAM

optimizer was used on all models with a learning rate of 0.0001 on the models using the high-

quality images and a learning rate of 0.00001 on the model using the SCAS images, since transfer

learning was being performed. Additionally, the learning rate was reduced during the learning

process by a factor of 2 if the validation loss was not improved in the last 10 epochs. Furthermore,

the model was trained for 200 epoch with early stopping if, no improvements are verified in the

validation loss after 20 epochs.

Now, considering GFI-ASPP-Depth in particular, the input images fed to the network consist

in the ROI images with the application of CLAHE (section 6.3) and the model was trained with

a batch size of 16 for a total of 74 epochs, since early stopping occurred. In the GFI-SPP-Depth-

simple case, a batch size of 16 was again used, but the input images were the center cropped full

fundus images, the model was trained for a total 94 epochs with early stopping occurring again.

Lastly, GFI-ASPP-Depth (Disc-SCAS) was initialized with the weights of the same model trained

in the segmentation dataset of high-quality fundus images. In here a batch size of 32 was used and

the SCAS images were first center cropped and denoised using bilateral filtering (section 6.5), the

model was early stopped at epoch 76.

The results between the models are similar, therefore, the selected models were the ones with

lower complexities, both spatial and time wise.

Example results for each of the three selected models can be found in figure 7.8.

7.3.1 State-of-the-art Comparison

To further evaluate the robustness of the developed models, the achieved results are compared with

state-of-the-art approaches in table 7.4, based on the IoU metric.

One issue when comparing these models is that the used datasets often differ quite a lot,

making a direct comparison unfair in some cases. In order to mitigate this issue, the M-net model

[FCX+18a] without polar transformation (PT), was trained with the segmentation dataset used

in the implemented models. Then the results of this model can be directly compared with the

GFI-ASPP-Depth model that is the best all around developed model performance wise.

54



Segmentation Approaches for Glaucoma Diagnosis

GFI-ASPP-Depth

GFI-ASPP-Depth-simple

GFI-ASPP-Depth (Disc-SCAS)

Figure 7.8: Segmentation predictions examples (images from the validation sets)

Furthermore, the state-of-the-art results extracted from [FCX+18a], compare conventional

methodologies with deep learning approaches and are comparable between themselves. Hence,

by comparing the obtained M-net result with the result in the referred paper and then with the

other state-of-the-art methods, it is possible to establish a point of comparison between all models.

Method IoU Disc IoU Cup
State-of-the-art results (Adapted from [FCX+18a])

R-Bend [JSK11] 0.871 0.605
ASM [YLO+11] 0.882 0.687
Superpixel [CLX+13] 0.898 0.736
LRR [XDL+14] - 0.756
QDSVM [CTWL17] 0.89 -
U-net [RFB15] 0.885 0.713
M-net [FCX+18a] 0.917 0.715
M-net + PT [FCX+18a] 0.929 0.770

Achieved results
M-net (self-trained) [FCX+18a] 0.87 0.70
GFI-ASPP-Depth 0.91 0.74
Table 7.4: Performance comparison with state-of-the-art

The results indicate that the developed model outperforms the existing methods while being

considerably faster and smaller, given that for instance in comparison with the M-net model the

number of parameters in GFI-ASPP-Depth is around 7 times smaller.
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7.4 Issues

When observing the obtained results is possible to see a clear difference between the optic disc

and optic cup IoU metric, this is an expected issue due to the increased difficulty in segmenting

the optic cup since the accurate boundary of this structure is sometimes almost impossible to

determine. This occurs due to the very modest intensity changes in the transition between the

NRR and the optic cup.

The aforementioned is not an issue just for Deep Learning classifiers, the annotations of the

optic cup for the same image by different ophthalmologists usually differ quite a lot, showing that

this is also a hard task for humans. In figure 7.9 an example of this situation is given, the images

in the RIGA dataset contain annotations from 6 different ophthalmologists and it is noticeable the

difference in the cup boundary annotations from different ophthalmologists.

Figure 7.9: Riga image sample annotated by 3 different ophthalmologists

Furthermore, when considering the SCAS dataset, the heavy noise and the presence of arti-

facts not usually encountered in high-quality fundus images justify the reduced disc IoU in this

model (GFI-ASPP-Depth (Disc-SCAS)), since this characteristics pose some great challenges to

the model.

When performing a more careful analysis of the model predictions it is clear that the model

is not robust to very low contrasts in the optic disc region and some artifacts in these images, like

reflections. This is illustrated in figure 7.10, with an example of an image with various reflections

and an image with very low contrast, alongside with the respective ground truths and segmentation

results.

This issue is justified by the similarity that some of these reflections have with the optic disc

and the fact that the majority of the dataset images don’t have big reflections and usually present

good contrast in the optic disc region, turning the robustness of the algorithm to these situations

into a very challenging task.

7.5 Morphological Feature Calculation

The previously addressed segmentation models for the joint optic disc and cup segmentation can

now be used to generate segmentation maps that power the calculation of several morphological

features, addressed in section 2.2.2, for Glaucoma diagnosis. In figure 7.11, the majority of the
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Figure 7.10: Segmentation issues in the SCAS dataset

values to calculate these features are illustrated, these are, the VDD (Vertical disc diameter), VCD

(Vertical cup diameter) and the NRR (Neuro-Retinal Rim) widths in each of the four quadrants of

a fundus image.

A total of eight morphological features were calculated, first the CDR was estimated based

on the optic disc and cup areas, additionally, CDR was also calculated following the clinical con-

vention by using the vertical diameters and was called VCDR. Furthermore, RDAR (Rim to Disc

Area Ratio) that is similar to DDLS and was used in [FCX+18a] was calculated using the NRR

and disc areas as the name suggests. Moreover the NRR widths in each quadrant are the next four

morphological features and lastly, the value indicating if the ISNT rule is followed or not is also

computed.

Figure 7.11: Concepts for Glaucoma morphological feature calculation
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7.6 Summary and Conclusions

Several custom architectures were developed from the ground up and explored with a variety of

preprocessing techniques and hyperparameters in this chapter.

The chapter has three main outputs, these are, GFI-ASPP-Depth, GFI-SPP-Depth-Simple

(Disc) and GFI-ASPP-Depth (Disc-SCAS), a total of three segmentation models for three dif-

ferent tasks, joint optic disc, and cup segmentation, disc segmentation and disc segmentation with

SCAS images, respectively.

The obtained results are very promising, considering that it was possible to achieve simi-

lar/better performances than the ones in the literature, while massively reducing time and space

complexity.
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Chapter 8

Classification Approaches for Glaucoma
Diagnosis

This chapter follows an identical structure to chapter 7, however, in here, Glaucoma classification

techniques are addressed.

Once again, deep learning models are used and in sections, 8.1 and 8.2 both the developed

architectures and the details of the training process are revealed, respectively. Afterward, the

final model results are disclosed and compared to the state-of-the-art approaches in section 8.3,

followed by the main identified issues in section 8.4.

To wrap everything up, a brief summary of the chapter with some conclusions is provided in

section 8.5.

8.1 Architectures

8.1.1 Building Blocks

Considering the network construction phase, solely deep learning techniques were used, namely

CNNs, since in the machine learning spectrum a lot has already been explored, as addressed in

the section 3.3, and nowadays the results of deep learning techniques have proven to be capable of

improving the state-of-the-art and are therefore worthwhile being explored.

Given the relatively low amount of training data for deep learning approaches, pre-trained

networks were used in an attempt to transfer the knowledge of other tasks to the Glaucoma classi-

fication task and mitigate this issue.

Three main building blocks were employed to construct the networks, a backbone network,

fully connected layers, and dropouts, below a description of each one of them can be found.
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• Backbone network - This backbone consists of a network trained for other tasks, such as

ImageNet, and powers the transfer learning process. Only the convolutional blocks of these

networks, known as the feature extractors, are used as the backbone.

• Fully connected layers - Also called dense layers, these layers have already been introduced

in the brief deep learning section (2.3, and, are an essential block in CNNs. They connect

every neuron in one layer to every neuron in other layer and are the last layers in CNNs.

• Dropout - This consists in random deactivation of neurons during training, acting as a

network regularizer, preventing overfitting situations.

8.1.2 GFI-Classification

Considering that this work is intended to be integrated into a mobile environment, the selected

backbone for this architecture was MobileNetV2 [SHZ+18], since it has proven to be a robust

model with close to state-of-the-art performances in tasks like ImageNet while being considerably

smaller and more efficient for mobile inference scenarios. This is achieved due to depthwise

convolution blocks, inverted residual connections to help the flow of gradients through the network

and expansion and projection layers.

After the MobileNetV2 block, pooling is performed to flat the features maps and then, two

fully connected layers, interleaved by heavy dropouts are performed.

The result is an architecture with 2,299,521 parameters and 162 layers, a simple illustration of

the network is available in figure 8.1.

Figure 8.1: GFI-classification (MobileNetV2) architecture diagram

8.1.3 Variants

Several variations of GFI-Classification were created, either by changing the backbone or by

changing the fully connected layers.

With regards to the backbone changes, 4 new different backbones have been used, the first

two are VGG16 and VGG19 [SZ15], these architectures consist of convolution layers with 3x3

filters with max-pooling layers in-between some of them and finally 3 fully connected layers. The

difference between VGG16 and VGG19 is only the number of weight layers each one has, 16 and
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19, respectively. The novelty of this network was the increased depth when compared to other

approaches at the time.

InceptionV3 [SVI+15] is another used backbone, the first version consists of using multiple

sized convolutional filters at the same depth level, and the following versions until V3, enhance the

model by factorizing large convolutional filters to lower ones and using a regularization component

called label smoothing, that can be added to the loss and helps to prevent overfitting.

Lastly, ResNet50 backbone [HZRS15a], is also used, this architecture helps to solve the prob-

lem of training very deep architectures by introducing shortcut connections in a plain network,

turning it into a residual network. These connections are useful in very deep networks since they

allow a proper propagation of the gradients, ResNet50, in particular, is a residual network with 50

weighted layers.

Regarding the changes in the fully connected layers, the details of these changes and the rea-

soning behind them will be discussed in the next section (8.2).

8.2 Training

Similarly to the training process followed by the segmentation models (section 7.2), in here, the

validation approach consists in a stratified train/val/test with 80/10/10 dimensions, the hyperpa-

rameters where mainly optimized one at a time (nested validation), the ADAM optimizer was once

again used on all experiments and the number of epochs was likewise set to 200, with callbacks

to reduce the learning rate and perform early stop if the validation loss hasn’t improved for a

considerable amount of epochs.

Now, addressing specific training details of the classification models, first, the optimized loss

was binary cross-entropy, and this was the main metric used for comparing intermediate results,

additionally, for each training session, accuracy, sensitivity, specificity, F1 score and AUC were

also computed. With regards to the dataset imbalance issue, since Glaucoma images constitute just

about 1/3 of the dataset, class weights were used in all experiments in order to penalize the loss at

a greater rate when it miss-classifies a Glaucoma case and mitigate the class imbalance issue. In

all experiments, the backbones were first initialized with ImageNet weights and the input images

resized to 224x224.

Then, a learning rate of 0.0001 and a batch size of 32 were used with the MobileNetV2 back-

bone to explore the impact of the final dense layers. Initially, two consecutive dense layers of 512

and 256 with intermediate dropouts were trained in various settings. However, the large number

of parameters of these layers led to a considerable gap between the training and validation results

indicating some overfitting to the train set. Then the number of units in the two dense layers was

reduced to 32 and 16, which alleviated the previous issue. Tests with just one dense layer and

with other dropout rates were also achieved, but the previous results were more consistent. There-

fore, the 32 and 16 dense layers with 0.5 dropouts are the ones present in the GFI-Classification

architecture (section 8.1.2).
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After that, the GFI-Classification architecture was used to explore whether freezing the weights

of the first layers would benefit the network or not. The layers were totally frozen and partially

frozen at several different levels, but as initially expected, re-training all the layers was the best

approach. This can be explained by the fact that classifying retinas as Glaucomatous or not is a

very different task than ImageNet. Freezing the layers led to increases in the validation loss up to

0.20 in these experiments.

After deciding that all the layers would be trained, a bigger batch size of 64 was selected

along with a smaller learning rate of 0.00001, to prevent losing the advantage of having meaning-

ful weight initialization. Then, analogous to the segmentation approaches, several preprocessing

techniques were tested, first the network was trained with raw center cropped images to create a

baseline, then, ROI cropped images (section 6.1) were used, which resulted in a significant de-

crease in the validation loss, reaching in some experiments 0.21, additionally, CLAHE (section

6.3) was applied contributing to a slight decrease of 0.01. Moreover, polar transformations (sec-

tion 6.4) were also performed, however, it led to a big increase in validation loss and was therefore

discarded.

With respect to the followed augmentation approaches, geometric transformations, including

flips and rotations conducted to a slightly better validation loss, but they greatly affected the ability

to predict the Glaucoma class (sensitivity) in up to 0.15 in some cases, which can be justified by

how these geometric transformations destroy relevant morphological information as addressed in

section 6.6. The final used augmentation was, therefore, the pipeline addressed in section 6.6

which conducted to the best results, exposed in the next section 8.3.

Experiments with the morphological features calculated with the segmentation masks (in sec-

tion 7.5) were also achieved, by adding the computed features to the last dense layer of the net-

work, but it didn’t result in any improvement, in fact, the results got significantly worse and the

direct integration of the features in the network was not explored any further due to time con-

straints.

In figure 8.2, the evolution of the binary cross-entropy loss and accuracy during training is

illustrated, showing a good convergence rate.

Figure 8.2: GFI-classification accuracy and loss during train
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Lastly, the best hyperparameters were kept and GFI-Classification was also trained with the

VGG16, VGG19, InceptionV3 and ResNet50 backbones.

8.3 Results

In this section a complete view of the obtained classification results is provided. In figure 8.3,

a confusion matrix, illustrates the GFI-Classification inference results per class alongside a ROC

curve, these results were obtained on the test split.

Figure 8.3: GFI-classification confusion matrix and ROC curve (test split)

Since the model should have a high sensitivity as addressed in section 4.2, different decision

thresholds were tried besides the default 0.5, in order to better tune the sensitivity/specificity trade-

off. In figure 8.4, a confusion matrix on the same split is illustrated, this time, obtained with a

threshold of 0.25.

Figure 8.4: GFI-classification 0.25 threshold
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In order to have a more complete view of the performance of different models, the tables 8.1,

8.2 and 8.3 provide all the computed metrics for each model in the train, validation and test split.

In these tables, Acc, Sens, and Spec stand for accuracy, sensitivity, and specificity, respectively.

Model Loss Acc Sens Spec Precision F1 AUC
GFI-Classification 0.15 0.95 0.97 0.94 0.88 0.92 0.99
GFI-Classification (Thresh=0.25) 0.15 0.84 1.0 0.78 0.64 0.78 0.99
GFI-Classification (Dhristhi-GS) 0.21 0.90 0.94 0.88 0.75 0.84 0.98
GFI-Classification-VGG16 0.12 0.95 1.0 0.93 0.85 0.92 0.99
GFI-Classification-VGG19 0.09 0.97 0.99 0.96 0.92 0.95 1.0
GFI-Classification-InceptionV3 0.05 0.99 0.99 0.99 0.99 0.99 1.0
GFI-Classification-ResNet50 0.07 0.98 0.98 0.99 0.97 0.97 1.0

Table 8.1: Train set classification results

Model Loss Acc Sens Spec Precision F1 AUC
GFI-Classification 0.35 0.85 0.81 0.87 0.71 0.75 0.93
GFI-Classification (Thresh=0.25) 0.35 0.79 0.94 0.73 0.57 0.71 0.93
GFI-Classification (Dhristhi-GS) 0.51 0.79 0.81 0.74 0.87 0.84 0.87
GFI-Classification-VGG16 0.37 0.86 0.84 0.87 0.71 0.77 0.92
GFI-Classification-VGG19 0.39 0.85 0.72 0.90 0.75 0.73 0.91
GFI-Classification-InceptionV3 0.35 0.89 0.75 0.94 0.85 0.80 0.92
GFI-Classification-ResNet50 0.37 0.85 0.77 0.89 0.73 0.75 0.92

Table 8.2: Val set classification results

Model Loss Acc Sens Spec Precision F1 AUC
GFI-Classification 0.37 0.87 0.85 0.88 0.74 0.79 0.93
GFI-Classification (Thresh=0.25) 0.37 0.81 0.92 0.76 0.61 0.73 0.93
GFI-Classification (Dhristhi-GS) - - - - - - -
GFI-Classification-VGG16 0.28 0.86 0.81 0.88 0.73 0.77 0.95
GFI-Classification-VGG19 0.27 0.87 0.83 0.89 0.76 0.79 0.95
GFI-Classification-InceptionV3 0.30 0.90 0.80 0.94 0.85 0.82 0.95
GFI-Classification-ResNet50 0.32 0.88 0.83 0.90 0.77 0.80 0.93

Table 8.3: Test set classification results

A total of 7 models were evaluated, first the GFI-Classification introduced in section 8.1.2,

then, 4 of them consist of backbone variations with self-explanatory names, moreover, GFI-

Classification (Thresh=0.25) is the GFI-Classification model with a threshold of 0.25 when per-

forming the binary classification and finally GFI-Classification (Dhristhi-GS) consists of the GFI-

Classification model trained on every dataset except the Dhristhi-GS, since this dataset was solely

used for validation purposes in order to further evaluate the generalization capabilities of the de-

veloped model, by testing on a dataset completely uncorrelated with the training data.
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All the models were trained with a batch size of 64, a learning rate of 0.00001, resized 224x224

ROI cropped images with CLAHE transformation as input and online augmentation using the

pipeline addressed in section 6.6. Furthermore, callbacks to reduce the learning by a factor of 2

after 10 epochs and interrupt the training session after 20 epochs, if no improvements are achieved

in the validation loss, were also used. With regards to the backbones, ImageNet weights were used

on all networks and all the layers were trained.

Now comparing the results exposed on the tables, it is possible to identify almost perfect

results in the training set, especially when considering models with bigger backbones, such as

GFI-Classification-InceptionV3. This could mean a heavy overfit, however, when looking to the

validation and test set results, it is possible to see that they are quite equal and, despite being

considerably worse than the training results, they demonstrate a consistent generalization capacity

of the models in unseen data, with results that are still very pleasant.

GFI-Classification is in bold, since it was identified as the best model for the task at hand, given

the comparable results to the models with other backbones and superior results when concerning

size and time complexities, mainly due to the MobileNetV2 backbone. Additionally, the GFI-

Classification (Dhristhi-GS) shows that the model is robust to the outside world, since, despite

the slightly lower achieved results, the metrics are still very compelling for a previously unseen

dataset that has the particularity of having 2/3 of its images being Glaucomatous. The previously

mentioned makes this validation approach turn the training set into an even more unbalanced one,

which may justify, in part, the performance decrease.

When considering the model with a bigger threshold, it was not selected since the increase in

sensitivity was not considered sufficient to justify the decrease in specificity, given that besides

being important to accurately predict the positive class, false-positives should also be carefully

managed to prevent filling hospitals with incorrect screening results.

8.3.1 State-of-the-art Comparison

The main state-of-the-art approaches are surveyed in table 8.4 ordered from top to down chrono-

logically.

Similar to what was reported with the segmentation methods on section 7.3.1, in here, the

different approaches differ quite a lot between themselves in terms of the followed validation

strategy as well, using different metrics and datasets, making it challenging to perform accurate

comparisons.

Despite the aforementioned, it is noticeable that the developed model (DL 7) is on par with

other approaches, and accomplishes very similar results to the most recent method (DL 6), which

was built by following a similar strategy, merging multiple public and private datasets and using

pre-trained networks.

Moreover, the developed model is the only one who was conceived with mobile inference in

mind and is, therefore, the most efficient model for this specific task. Other models like the DL 6

have around 30 million parameters while the developed model has just 2,299,521 parameters and

more optimized operations.
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Method Datasets Acc Sens Spec AUC
State-of-the-art results (Adapted from [AFLC+19])

ML 1 - [MPA17]
RIM-ONE (250+/255-)
Private (30+/30-)

0.81-0.98 - - -

ML 2- [ABK+17] Private (559+/143-) 0.95 - - -
DL 1- [ABANATZ17] RIM-ONE (200+/255-) 0.88 0.85 0.89 -

DL 2- [FCX+18b]
ORIGA (168+/482-)
SCES (46+/1636-)

- 0.84 0.92 0.91

DL 3- [LHK+18] Private (48116) - 0.95 0.92 0.98
DL 4- [CBB+18] Private (5633+/9189-) - 0.88 0.95 0.91
DL 5- [MFT+18] Private (1364+/1768-) - - - 0.96

DL 6- [AFLC+19]
Private (113+/1333-)
RIM-ONE r1,r2,r3 (311+/455-)
Drishti-GS (70+/31-)

0.88 0.87 0.89 0.94

Achieved results

DL 7- GFI-Classification Classification (706+/1776-)
Dataset (5.3)

0.87 0.85 0.88 0.93

Table 8.4: Performance comparison with state-of-the-art methods. In the methods column, ML
and DL, indicate whether the method consists in a machine learning or deep learning approach,
respectively. Considering the datasets column, the number of No-Glaucoma cases are marked with
‘-’ and the number of Glaucoma cases are marked with ‘+’. Furthermore, the metrics Acc, Sens
and Spec stand for accuracy, sensitivity, and specificity, respectively.

8.4 Issues

The main concern in the classification step of this work is the lack of annotated data for Glaucoma

taken by the EyeFundusScope prototype addressed in section 5.2.1. This makes the fine-tuning of

the developed models for the more restricted conditions of the prototype images impossible and

invalidates the validation of the models with these images as well.

Other issues were also faced, like, the small amount of data for deep learning tasks and the

class imbalance in the dataset. These issues, however, were partially solved by using pre-trained

networks and class weights, respectively.

8.5 Summary and Conclusions

A variety of architectures were built, explored and validated in this chapter for the Glaucoma

classification task.

The use of pre-trained architectures with ImageNet weights has proven to be a good way to

suppress the low amount of data issue.

This chapter closes with the identification of a model that fulfills the expectations, by providing

acceptable results when compared with the existing approaches in literature while being suitable

for mobile environments.
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Chapter 9

Developed CAD System

In this chapter, the implemented CAD system is described by combining the insights and solutions

developed and addressed in the last chapters.

Starting with an overview of the full pipeline for Glaucoma assessment in section 9.1, after,

the integration of the mentioned pipeline in the EFS system is revealed and discussed in section

9.2.

Next, one of the main requirements of the pipeline, the interpretability, is examined in section

9.3, and finally, the chapter closes with an overview of the main chapter topics and conclusions in

section 9.4.

9.1 Pipeline

By gathering the insights of the available data and its characteristics (chapters 5 and 6), as well as

the developed segmentation and classification models (chapters 7 and 8), a pipeline for Glaucoma

assessment was constructed.

It was developed for high-quality fundus images; images acquired with dedicated fundus cam-

eras and not the EFS system. The reason for this is that, as illustrated in the previous chapters,

the prototype images have different characteristics that at the present moment don’t allow the

generalization of the developed models to these images. Moreover, the lack of annotated data

for Glaucoma assessment with prototype images also prevented the exploration of classification

approaches with them.

Now addressing the pipeline itself, in figure 9.1, a diagram with an overall illustration is pre-

sented.

The pipeline starts with an acquired full fundus images, this image is then center cropped and

the GFI-SPP-Depth-simple (DISC) model, introduced in section 7.1.4, is employed to segment the

disc in step ‘(1)’, this segmentation is then used to transform the full fundus image in a ROI image

during step ‘(2)’, and then apply the CLAHE transformation.
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Figure 9.1: Classification pipeline

The CLAHE ROI image is then utilized for two different tasks that build the pipeline outputs.

First, in step ‘(3)’, GFI-ASPP-DEPTH, discussed in section 7.1.4, is used to obtain a fine optic

disc and cup segmentation. This powers the calculation of several morphological features (section

7.5), that contribute to the interpretability of the decision.

Additionally, step ‘(5)’, consists of running the images outputted from step ‘(2)’ through the

GFI-Classification network, addressed in section 8.1.2, this results in a Glaucoma confidence level.

Finally, the decision is built, merging the Glaucoma confidence level with the calculated mor-

phological features.

9.2 Pipeline Integration in the EyeFundusScope System

In this section the previously addressed pipeline is integrated into the official Android EFS appli-

cation, that was briefly introduced in 5.2.1. This application is focused on Diabetic Retinopathy,

and now, the functionality for Glaucoma screening was added. The acquisition flow of the applica-

tion consists in acquiring the image, answering a small questionnaire and then several services run

in the background to perform image quality checks and run the assessment pipelines for Diabetic

Retinopathy and now, Glaucoma.

The integration of the pipeline in this application, consisted in the creation of a background

service that used TensorFlow Lite (section 3.1.4) to run the trained models on a mobile environ-

ment and OpenCV (section 3.1.1), with a Java wrapper, to manage the images throughout the

pipeline. This service runs for every acquired image and continuously notifies the user about the

progress of the Glaucoma evaluations in their acquisitions.

Furthermore, the acquisition flow was slightly changed, by re-designing the questionnaire

activity, including new questions besides the existing ones that were only related to Diabetic

Retinopathy. These are questions that can be easily answered in a screening environment and

assess some Glaucoma risk factors addressed in section 2.1, like age, family history, and Cardio-

vascular incidents. They are not used in the current pipeline but are persisted in the patient profile

to enable further studies with new techniques.

In figure 9.2, screenshots of the acquisition process focused on Glaucoma screening are ex-

posed.
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Figure 9.2: Android integration: Acquisition process

After the background service that performs Glaucoma assessment is completed, the user is

able to see their acquisitions and for each one of them, the intermediate results of the pipeline

are shown, namely, the first disc segmentation, the cropped image and the joint optic disc/cup

segmentation.

Finally, the result of the morphological feature calculation, as well as the glaucoma confidence

level, are accessible in a dialog. This is illustrated in the figure 9.3.

Figure 9.3: Android integration: Pipeline inference results

9.2.1 Results

After converting the developed segmentation and classification models to the TensorFlow Lite

format, several strategies exist to further optimize the mobile inference times and the size of the

final model.
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First, the model can be kept with floating point precision or be quantized which reduces the

precision to 8 bits. Quantization improves both size and time requirements of a model, however,

it has a small negative effect on the model performance.

Furthermore, the model can then be run on the CPU or on the GPU, the GPU delegate has been

recently introduced, it allows a speed up in time performance and since GPUs always compute at

16-bit or 32-bit floating point numbers, quantization is not advantageous anymore. Moreover, the

number of threads where the model runs can also be tweaked.

In table 9.1, several times and size metrics of the models integrated into the Glaucoma assess-

ment pipeline are exposed. The time metrics were obtained by performing 3 runs in isolation on

the same mobile device and averaging times.

Model CPU (ms) GPU (ms) Size (mb)
GFI-SPP-Depth-simple ≈ 250 ≈ 215 1.1
GFI-SPP-Depth-simple_quantized ≈ 280 ≈ 220 0.3
GFI-ASPP-Depth ≈ 580 ≈ 450 4.6
GFI-ASPP-Depth_quantized - - 1.7
GFI-Classification ≈ 80 ≈ 25 9.0
GFI-Classification_quantized ≈ 110 ≈ 120 2.3

Table 9.1: Metrics of the models used in the Glaucoma assessment pipeline (Obtained on a Sam-
sung Galaxy S8)

By analyzing the table it is concluded that running the models on GPU is preferred than quan-

tizing and running on the CPU since the times are better and no performance losses will occur.

Moreover, multi-threaded execution was also tried, but this leads to performance variability, de-

pending on what is being concurrently executed on the device and no improvements in the results

were verified in the performed experiences, so, no more exhaustive tests were done. The selected

models are highlighted in the table.

9.2.2 Issues

Tensorflow Lite is a very powerful tool, however, it still has some limitations/issues that can affect

the development process. For instance, several operations are not yet supported and the error

messages are not clear about what is wrong. This might be a big issue when first converting a

model to the Tensorflow Lite format, for example, during this work, when first converting GFI-

ASPP-Depth, an unclear error appeared. This was due to the type of interpolation used in the

up-sampling layers, since bilinear was not yet supported and changing it to nearest interpolation

solved the problem. Nonetheless, this was a network detail and it is not trivial to find what is

causing the issue, leading to significant increases in the implementation time.

Furthermore, some models can be converted to the Tensorflow Lite format, but then have

problems running in the mobile environment, this happened with GFI-ASPP-Depth_quantized, it

was successfully converted to the desired format, but when running in an Android environment,
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errors related to memory allocation in the Java heap occurred, that’s the reason why this model

doesn’t have times in table 9.1.

Finally, the biggest issue of this pipeline implementation is that despite being integrated into

the EFS prototype, the pipeline is intended to be used with professional fundus images, not fulfill-

ing the ultimate goal of building a complete end-to-end system by using images acquired by the

prototype.

9.3 Interpretability

As mentioned in section 4.2, the developed solution shouldn’t act as a black-box, it should achieve

a good degree of interpretability. This is, however, the main Achilles heel of deep learning models,

since, despite having exhibited superior performances in plenty of tasks, it’s difficult to make sense

of these types of models when compared to machine learning approaches [ZZ18]. This mainly oc-

curs because the feature representation is not engineered by the developer, but by the network

itself, turning its translation into representative values challenging. Nowadays, deep learning in-

terpretability is a hot topic of research [ZZ18].

Also, this topic is not only important to further understand the inner workings of a model

and ease the development process, but it is also essential or even mandatory for regulations and

other bureaucracies, needed in case these methods are intended to be integrated into commercial

solutions, especially in a medical context.

The proposed solution has 3 interpretability measures, some of them have already been par-

tially addressed, but below a complete description is provided.

• Pipeline intermediate results - These results are evidenced in figure 9.3 and were inte-

grated into the system to allow quick confirmation of the final results, since completely

wrong segmentations may eventually happen, and having the possibility to visualize those

results enables the user to discard some final results right away.

• Morphological features - These have already been addressed multiple times along this

document, explaining their meaning (section 2.2.2) and their calculation (section 7.5). In

the developed solution, the joint segmentation of the optic disc and cup is only performed

to power the calculation of these features and they help turn the model more interpretable

since they have a defined and studied meaning among the ophthalmologist community. De-

spite not being directly used in the model that outputs the Glaucoma confidence level, the

combination of the two output values turns the decision more trustworthy.

• Activation Maps - The used activation maps are gradient class activation maps (Grad-

CAM) [SCD+17]. These are a generalization of class activation maps (CAM) [ZKL+15]

that can be computed in CNNs with fully connected layers. In Grad-CAM, the relevant

image regions for the decision are identified by using the gradient information flowing into

the last convolution layer, since this layer is the last one that retains spatial information.
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These maps were calculated in the GFI-Classification network and an illustration of the re-

sults with images from both classes can be found in figure 9.4. In the figure, the images

are overlayed with the calculated Grad-CAM maps and blue tones indicate the area was not

important to the classification, while redder tones indicate a big influence of that region for

the final decision. By analyzing the images it is noticeable that the network is looking to

the same structures that ophthalmologists inspect, like the optic disc, cup, retinal vessels

topology, and more interesting, in the last two images of the Glaucoma cases a focus on

the PPA region (addressed in section 2.2.2) is visible, which is an identified Glaucoma risk

factor. All these insights greatly contribute to further increase the confidence in the network

predictions. These maps are not available in the pipeline integration in the EFS system due

to Tensorflow Lite limitations, since the library is only targeted at inference. Nonetheless,

they are available in a desktop environment and can be very useful to make the pipeline

more believable and help in regulatory processes.

Figure 9.4: Grad-cam activation maps [SCD+17] of the GFI-Classification network

9.4 Summary and Conclusions

This chapter described the final developed pipeline for Glaucoma assessment, the implementation

details of this pipeline in an Android environment and the all-around solution that was built to

perform Glaucoma screenings within this work.

The main goals initially set for this solution in section 4.2 have been fulfilled with the de-

veloped solution, that achieved high sensitivities, good interpretability and low latency in mobile

environments.

The only missed piece is the complete integration of the pipeline with the EFS prototype, how-

ever, this was not possible since no Glaucoma annotated images of the prototype were available

during the development of the present work.
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Chapter 10

Conclusions and Future Work

This chapter wraps this document, reflecting about the main difficulties (section 10.1), contri-

butions (section 10.2) and conclusions (section 10.3) of this work and then addressing the most

relevant topics to enhance the developed solution in the future work section 10.4.

10.1 Main Difficulties

The first big challenge of this work consisted in gathering all the necessary public datasets. The

majority of them were freely available and had easy access, nonetheless, the Origa dataset, that

is probably the most popular dataset in Glaucoma research was not the case. This forced me to

contact the authors of the original paper and several other authors from papers published in the

last two years that have used the Origa dataset in their work. Luckily I got one answer with the

dataset after two weeks of contacts and now, looking back, this was a key part for the success

of this work. With regards to private datasets, despite having acquired the SCAS dataset (section

5.2), the context where it was acquired didn’t allow the gathering of sufficient Glaucoma positive

cases, which resulted in a considerable limitation of this work.

After collecting all the desired data, the main adversity consisted of developing segmentation

networks from scratch, the possibilities are endless and the added performance concern, due to

the fact that the models should run on mobile devices with reasonable inference times, turned the

work even harder. It required a lot of exploration and research about the best performing blocks

that could be useful for the work needs. With respect to the classification networks, the task was

slightly easier due to the use of pre-trained networks that allowed relatively good performances

right from the start.

Another struggle of this work, that is common to the deep learning research community, was

the proper tuning of the network hyperparameters, deciding the optimal input image to feed to the

network in combination with the parameters to start the training session is not trivial and things
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can get out of hand really quickly, furthermore, the huge training times of these models, reaching

sometimes more than one day in the segmentation networks, turns the process a lot less agile.

Lastly, as mentioned in section 9.2.2, the conversion of the models to the Tensorflow Lite

format was not always trivial since some models wouldn’t be able to convert and finding the root

of the issue was a time-consuming task as well.

10.2 Main Contributions

The main contribution of this work is the fact that this Glaucoma assessment pipeline runs offline

in Android devices in milliseconds, which to the best of my knowledge is the only approach in the

Glaucoma CAD system spectrum to achieve these statements.

Moreover, this was achieved while having comparable and sometimes even better results in the

segmentation and classification tasks of the developed system, contributing to the enhancement of

the state-of-the-art in these topics as well.

Additionally, the focus on interpretability, with the topics addressed in section 9.3, is also a

novelty, since the vast majority of techniques in the literature do not even address interpretability

and the ones who do, have a more incomplete solution than the one implemented in this work.

Lastly, in order to share the findings of this work with the scientific community, a paper was

submitted to the journal "Computer Methods and Programs in Biomedicine" and can be found in

appendix B.

10.3 Conclusions

The main conclusion of this work is that CNNs are indeed capable of powering a robust Glaucoma

CAD system that can be used in massive screening campaigns, and this structures can be used

within mobile and embedded devices to further power this campaigns.

The achieved results were quite good considering the restrictions, the system isn’t, however, a

complete end-to-end CAD system as desired, this is due to the use of high-quality fundus images

and not EFS acquired fundus images in the Glaucoma assessment pipeline. Nonetheless, this was a

factor out of my control, since no Glaucoma annotated data of the prototype was available, making

it impossible to build and validate complete models with these images.

Despite the aforementioned, the quality of the acquired images by the prototype is continu-

ously increasing and a new version of the prototype with code LISBOA-01-0247-FEDER038400 1,

is already under active development, this will decrease the gap between the quality of the images

acquired by the prototype and images acquired by dedicated cameras. The previously mentioned

can mean that the developed pipeline will, in the best scenario, work directly with images acquired

by the EFS system images.

1https://lisboa.portugal2020.pt/np4/%7B\protect\T1\textdollarclientServletPath%
7D/?newsId=47&fileName=Lista_Op_PO_LISBOA_30_04_2019_site.pdf
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10.4 Future Work

In the future, the first big task to consider should be the acquisition of a big dataset of EFS images

with Glaucoma annotations, to power new studies with these images and refine the existing system

to be a complete end-to-end system. This would also require the exploration of new preprocess-

ing techniques in terms of denoising and reflection removal to turn the prototype images more

appropriate for the task at hand.

Additionally, multimodal and longitudinal studies could also be considered in future approaches,

by using data from multiple sources and time frames to augment the existing system.

Moreover, in the addressed segmentation approaches, the resulting masks were directly used

to perform the following operations in the pipeline, however, ellipse fitting could be first applied

to these masks. This might positively influence the calculation of the morphological features by

reducing the boundary variation in the predicted masks.

Furthermore, despite the good results on the segmentation models when considering the Glau-

coma assessment pipeline, these results are still not quite enough to perform real-time segmen-

tation. This could enable other use cases for the developed models, like, guiding the acquisition

process by continuously segmenting relevant structures and providing feedback to the user about

when he should take the picture or even take the picture automatically. With this in mind, further

research to increase even more the performance of the developed segmentation models will bring

increased value to the solution.
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Abstract

Background and Objective: Glaucoma, an eye condition which leads to permanent blindness, is typically
asymptomatic and therefore difficult to be diagnosed in time. However, if diagnosed in time, Glaucoma can
effectively be slowed down by using adequate treatment; hence, an early diagnosis is of utmost importance.
Nonetheless, the conventional approaches to diagnose Glaucoma adopt expensive and bulky equipment that
requires qualified experts, making it difficult, costly and time-consuming to diagnose large amounts of people.
Consequently, new alternatives to diagnose Glaucoma that suppress these issues should be explored.

Methods: This work proposes an interpretable computer-aided diagnosis (CAD) pipeline that is capable of
diagnosing Glaucoma using fundus images and run offline in mobile devices. Several public datasets of fundus
images were merged and used to build Convolutional Neural Networks (CNNs) that perform segmentation
and classification tasks. These networks are then used to build a pipeline for Glaucoma assessment that
outputs a Glaucoma confidence level and also provides several morphological features and segmentations
of relevant structures, resulting in an interpretable Glaucoma diagnosis. To assess the performance of this
method in a restricted environment, this pipeline was integrated into a mobile application and time and
space complexities were assessed.

Results: Considering the test set, the developed pipeline achieved 0.91 and 0.75 of Intersection over
Union (IoU) in the optic disc and optic cup segmentation, respectively. With regards to the classification,
an accuracy of 0.87 with a sensitivity of 0.85 and an AUC of 0.93 were attained. Moreover, this pipeline
runs on an average Android smartphone in under two seconds.

Conclusions: The results demonstrate the potential that this method can have in the contribution to
an early Glaucoma diagnosis. The proposed approach achieved similar or slightly better metrics than the
current CAD systems for Glaucoma assessment while running on more restricted devices. This pipeline can,
therefore, be used to construct accurate and affordable CAD systems that could enable large Glaucoma
screenings, contributing to an earlier diagnose of this condition.

Keywords: Computer-aided diagnosis (CAD), Fundus Images, Glaucoma, Deep Learning

1. Introduction

Glaucoma is a group of chronic eye diseases and
a leading cause of irreversible blindness worldwide
[1].

The rise of intraocular pressure (IOP) inside the5

eye is considered the main cause of Glaucoma. This
pressure damages the optic nerve and is usually re-
lated to an inability of the eye to properly manage

∗Corresponding author
Email address: filipe.soares@fraunhofer.pt (Filipe

Soares)

the balance between the amount of fluid that is pro-
duced and the amount that is drained [2]. Although10

it is confirmed that the raised intraocular pressure
is a causal risk factor for Glaucoma and the only
one that can be treated, it is neither sufficient nor
necessary for the diagnosis of the disease [3].

In the majority of Glaucoma cases, no early15

symptoms or pain occur, and for that reason, Glau-
coma is often called a ‘silent thief of sight’.

Furthermore, the usual approaches to diagnose
Glaucoma are performed by ophthalmologists and

Preprint submitted to Computer Methods and Programs in Biomedicine July 22, 2019



consist of a comprehensive eye examination. This20

encompasses an external examination of the eye,
ocular mobility, examination of the pupil, slit lamp
examination, tonometry, gonioscopy and perimetry
[3]. These methods require trained professionals
and expensive equipment, therefore, due to the high25

costs incurred by them, some are only performed if
Glaucoma is already suspected, which contributes
to an increasing number of undiagnosed Glaucoma
cases.

This number of undiagnosed cases is a big con-30

cern in the healthcare community since, despite be-
ing irreversible, Glaucoma can be effectively slowed
down with appropriate treatment, pharmaceutical
or surgical [4], therefore reducing the risk of total
blindness. Hence, achieving an early diagnosis of35

Glaucoma is of utmost importance. This results in
the demand for new diagnose techniques that aid
or replace the existing ones, turning Glaucoma as-
sessment into a more efficient process.

To respond to this demand, fundus images can be40

used. These images, illustrated in figure 1, have the
necessary morphological features to diagnose sev-
eral eye conditions, like Glaucoma, the topic of this
work.

Figure 1: Fundus image [5].

The region of interest (ROI), illustrated in figure45

2, shows the most relevant structures for Glaucoma
diagnosis present in fundus images. These struc-
tures are the optic disc and optic cup.

This work contributes to improve Glaucoma
management by proposing an interpretable pipeline50

for Glaucoma detection powered by fundus images
that can run offline on mobile devices and achieves
better or comparable results to the state-of-the-art
techniques in classification and segmentation tasks.

Figure 2: Fundus Image ROI [6].

2. Related work55

The first relevant implementations of CAD sys-
tems for Glaucoma detection with fundus images
started to arise in 2008 [2]. Since then a significant
collection of approaches have been proposed.

In 2016, A. Singh et al.[7] achieved an accuracy60

of 0.947. They started by identifying the center of
the disc, performing the disc segmentation after-
ward. Then, the intuition that blood vessels rep-
resent noisy pixels that affect the performance of
the system led to the removal of these vessels from65

the obtained optic disc images. After this step, fea-
ture extraction was accomplished using first level
discrete wavelet decomposition that resulted in a
feature vector of 18 features. For feature selection,
two approaches were tried, genetic algorithms and70

Principal Component Analysis (PCA). The final
feature vectors of each technique were then tested
with several classifiers (Support Vector Machine
(SVM), K-Nearest Neighbors (KNN), Random For-
est, Naive Bayes, and Artificial Neural Networks75

(ANN)). Since the fundus images are from a local
dataset of 63 images, which is rather small, leave-
one-out cross-validation was also performed to ac-
count for overfitting issues. The best performing
models were the SVM and KNN, with PCA feature80

selection that resulted in only 2 components. Both
of these classifiers obtained 0.947 accuracy.

More recently, Deep Learning approaches are
proving to be capable of surpassing the existing
techniques and are being heavily applied.85

H. Fu et al. [1] proposed a new segmentation
approach of the optic disc and cup. The novelty
of this work consists in the joint segmentation of
the optic disc and optic cup since most approaches
achieve this segmentation separately. To deal with90

this joint segmentation the work also proposes a

2



new joint loss metric. The first step of this method
is the transformation of the fundus image to the
polar coordinate system, in order to enlarge the
cup representation. Next, the segmentation is per-95

formed with a CNN, this consists of four key parts,
the multi-scale input layer, U-shape architecture, a
side output layer, and the mentioned joint loss met-
ric. Several tests were performed in different condi-
tions and it was concluded that the polar transfor-100

mation attains a relevant performance gain. Glau-
coma screening was then performed calculating the
cup to disc ratio value and an AUC of 0.899 in the
private SCES dataset was obtained.

A more recent approach by Z. li et al. [8] uses the105

Inception-v3 architecture, that has already proven
its success in other tasks. The images were resized
to 229x229 and the RGB values were normalized
between 0 and 1 before feeding the images to the
network. A minibatch gradient descent of 32 was110

used in combination with the ADAM optimizer and
a 0.002 learning rate. The key aspect of this ap-
proach is its dataset since a total of 70000 fundus
images were downloaded from an unlabeled dataset
and 48116 of those images were selected after ver-115

ifying that they include a visible optic disc. After
this, 21 ophthalmologists performed the classifica-
tion of these images in an online platform and mul-
tiple interpretations of each image were obtained
for quality control. The result was 39745 images,120

where 31745 were used as a training set and 8000
as a validation set. The system achieved an AUC of
0.986, 0.956 sensitivity and 0.920 specificity, which
demonstrates the relevance of the dataset size and
provides further evidence about the success of deep125

learning techniques for Glaucoma detection.
These approaches, however, do not target mobile

devices and despite the better results achieved in
the last approaches with deep learning techniques,
these solutions have little or no concerns in respect130

to the interpretability of the decision.

3. Proposed methodology

The proposed methodology explores deep learn-
ing techniques to build a Glaucoma assessment
pipeline with a focus on interpretability and space135

and time complexities.

3.1. Datasets

To construct a robust dataset for the two main
tasks of this work, segmentation and classification,

several publicly available datasets, listed in table 1,140

were merged.

Dataset G NG Total
Origa [9] 168 482 650
Drishti-GS [10] 70 31 101
RIM-ONE r1 [11] 40 118 158
RIM-ONE r2 [12] 200 255 455
RIM-ONE r3 [12] 148 170 318
iChallenge [13] 80 720 800
RIGA [14] 749 749

Table 1: Image count per dataset. G and NG represent
Glaucoma and No-Glaucoma, respectively.

Firstly, a dataset for segmentation tasks of both
the optic disc and optic cup was created merging
the Origa, Drishti-GS, iChallenge, RIM-ONE r3,
and RIGA datasets, resulting in a total of 2618145

images. In the datasets where several annotations
were provided for the same image, the considered
ground truth was the region of agreement between
the annotators.

Lastly, for the classification task, Origa, Drishti-150

GS, RIM-ONE (r1,r2,r3) and iChallenge were
merged, resulting in 2482 images. Furthermore,
only two classes were considered, Glaucoma and
No-Glaucoma, since most datasets only included a
binary classification for Glaucoma.155

Additionally, when considering the RIM-ONE r3
dataset, which consisted of stereo images, each of
these images was divided into two, and considered
as a separate case. With this in mind, the number
of images in this dataset increased from 159 to 318.160

3.2. Augmentation

Real-time data augmentation was used since it is
robust and easy to implement, not requiring addi-
tional disk space to save the augmented images and
providing different images in every batch of data.165

The augmentation pipeline consists of four main
steps that are applied in random order and from
augmentation to augmentation some of them might
even be skipped. The first step consists in the appli-
cation of blur to the image, this blur can be either170

a gaussian, average or a median blur. Secondly,
contrast normalization is performed by moving the
pixel values away or closer to 128. Then, changes
in the brightness and sharpness of the images are
also employed.175
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3.3. Segmentation

When considering Glaucoma, the optic disc and
optic cup are the most important structures to seg-
ment, since they can power the calculation of sev-
eral morphological features and the crop of the ROI180

in the full fundus image.

To target this task, an architecture entitled GFI-
ASPP-Depth was developed. It has a U-shaped
structure where the encoding path consists of four
depth levels.185

In each depth level, two depthwise separable con-
volution blocks, inspired in the MobileNet architec-
tures [15, 16], are employed with 3x3 kernels, the
number of filters starts at 32 and is then doubled
on every transition to the next depth level.190

The transition to the next depth level is per-
formed through average pooling with a pool size
of 2. Average pooling was selected in detriment of
max pooling since the literature reports better re-
sults on similar tasks [17]. Furthermore, two inputs195

are used in the network in the first two depth lev-
els and skip connections between the encoder and
decoder path are present at every depth level to
provide more spatial context to the decoding path.

When it comes to the transition from the encoder200

to the decoder path, an ASPP module [18, 19, 20]
was chosen, consisting of four parallel padded
atrous convolutions with dilation rates of 1, 2, 4
and 7. Additionally, image-level features obtained
by performing a global average pooling on the origi-205

nal feature map are also used. This is done because
when the dilation rate increases, the number of fil-
ters weights that are applied to the valid feature
region (region without the padded zeros) declines.
The inclusion of image-level features helps to miti-210

gate this problem and include more global context
in the network [19].

Then, the result of each level of the ASPP module
and the image-level features are concatenated and
the decoding path starts. This is very similar to the215

encoding path, however, in here, the transition to
an upper level leads to the decrease in the number
of filters in each convolution by a factor of 2 and
is done with nearest interpolation. Finally, in the
first two depth levels of the decoder, two outputs220

are generated and then averaged to form the final
segmentation prediction.

This architecture consists of a total of 1,152,131
parameters and is represented in figure 3.

Additionally, given that the segmentation of225

the optic disc is a simpler task than the joint

disc/cup segmentation or the cup segmentation
alone, a smaller architecture entitled GFI-SPP-
Depth-simple was created. In here, the starting
number of filters in the first depth layer is 16 instead230

of 32 and is then increased and decreased in the
same way as the GFI-ASPP-Depth. Moreover, the
transition between the encoder and decoder path
consists solely in the concatenation of global aver-
age pooling performed on the original feature map,235

the result of a convolution block applied to the orig-
inal feature map and the original feature map itself.
Resulting in an architecture with 271,929 parame-
ters.

Both networks were trained after resizing the im-240

ages to 224x224 and performing data normaliza-
tion. The multi-label dice loss was selected [1], to-
gether with the ADAM optimizer with a learning
rate of 0.0001. Additionally, the learning rate was
reduced during the learning process by a factor of245

2 if the validation loss was not improved in the last
10 epochs. Furthermore, the model was trained for
200 epochs with early stopping if no improvements
are verified in the validation loss after 20 epochs.

Considering GFI-ASPP-Depth in particular, the250

input images fed to the network consist of the ROI
images with the application of CLAHE [21] and the
model was trained with a batch size of 16. This
model was used for joint segmentation, of the optic
disc and optic cup, both with 0.5 weights in the255

multi-label dice loss.
In the GFI-SPP-Depth-simple case, a batch size

of 16 was again used, but the input images were the
center cropped full fundus images. This network
was solely used for disc segmentation.260

The validation approach consists of a stratified
train/val/test split with 80/10/10 proportions of
the original dataset. The achieved results of both
networks on the test set are exposed in table 2,
along with the results of other methods.265

One issue when comparing these models with
the literature is that the used datasets and, conse-
quently, the validation approaches often differ quite
a lot, making a direct comparison unfair in some
cases. To mitigate this issue, the M-net model270

[1] without polar transformation (PT), was trained
with the segmentation dataset used in the devel-
oped models. Afterward, the results of this model
can be directly compared with GFI-ASPP-Depth
and GFI-SPP-Depth-Simple.275

Furthermore, the state-of-the-art results ex-
tracted from [1], compare conventional methodolo-
gies with deep learning approaches and are com-
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Figure 3: GFI-ASPP-Depth architecture diagram.

Method IoU Disc IoU Cup
Transcribed from [1]

R-Bend [22] 0.871 0.605
ASM [23] 0.882 0.687
Superpixel [24] 0.898 0.736
LRR [25] - 0.756
QDSVM [26] 0.89 -
U-net [27] 0.885 0.713
M-net [1] 0.917 0.715
M-net + PT [1] 0.929 0.77

Achieved results
M-net (self-trained) [1] 0.87 0.70
GFI-ASPP-Depth 0.91 0.74
GFI-SPP-Depth-Simple 0.89 -

Table 2: Segmentation performance comparison with state-of-the-art. Results obtained on the test set.

parable between themselves. Hence, by comparing
the obtained M-net result with the result in the re-280

ferred paper and then with the other state-of-the-
art methods, it is possible to establish a point of
comparison between all models.

The results indicate that the developed model
outperforms the most recent methods while be-285

ing considerably faster and smaller. For instance,
in comparison with the M-net model, the num-
ber of parameters is around 7 times smaller in
GFI-ASPP-Depth and 31 times smaller GFI-ASPP-
Depth-Simple.290

3.4. Morphological features

The segmentation predictions of the optic disc
and cup obtained by the developed models can then

be used to calculate several morphological features.

In this work, the cup to disc ratio was calculated295

based on both the vertical length (VCDR) and the
area of the cup and the disc (CDR). The enlarge-
ment of this ratio is known as ‘cupping’ [2] and can
be classified into mild (CDR up to 0.4), moderate
(CDR between 0.5 and 0.7) and severe (CDR above300

0.7) Glaucoma classes [4]. Rim to disc area ratio
(RDAR), was also calculated as it also provides an
interpretation of the optic nerve head shape.

Furthermore, the ISNT rule states that, in nor-
mal eyes, the Neuro-Retinal Rim (NRR) width in305

the inferior section (I) of the ROI is greater than
in the superior section (S) which in turn is greater
than the area in the nasal section (N) which in turn
is greater than the area in the temporal section (T);
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this can be translated by the following inequation.310

I > S > N > T (1)

It has been declared that the compliance of this
rule is useful in differentiating normal from Glau-
comatous optic nerves and is not affected by race
[28]. Therefore, the ISNT values and rule compli-
ance were also computed.315

3.5. Classification

To obtain a Glaucoma confidence level, a clas-
sification network, entitled GFI-Classification, was
created using MobileNetV2 [16] feature extractor as
a backbone.320

After the MobileNetV2 block, global average
pooling is performed to flat the feature maps and
then two fully connected layers, interleaved by
heavy dropouts, are performed, resulting in an ar-
chitecture with 2,299,521 parameters.325

To better assess the impact of the MobileNetV2
backbone, other backbones have also been experi-
mented, namely, VGG16 and VGG19 [29], Incep-
tionV3 [30] and ResNet50 [31].

All the models were trained with a batch size of330

64, a learning rate of 0.00001, and resized 224x224
ROI cropped images with CLAHE transformation
as input. Furthermore, callbacks to reduce the
learning rate by a factor of 2 after 10 epochs and
interrupt the training session after 20 epochs, if no335

improvements are achieved in the validation loss,
were also used. With regards to the backbones,
ImageNet weights were used on all networks and
all the layers were trained.

Table 3 discloses the achieved results on the test340

set and the results of other literature methods. The
proposed approach accomplishes very similar met-
rics to the most recent method (DL 6), that consists
of a network with around 30 million parameters,
and is, therefore, more suitable for integration in345

computational restricted devices.

3.6. CAD Pipeline

The developed segmentation and classification
models along with the calculation of the morpho-
logical features were then assembled to construct350

an interpretable Glaucoma CAD pipeline.
The pipeline, illustrated in figure 4, starts with

an acquired full fundus image; this image is then
center cropped and the GFI-SPP-Depth-simple
model is employed to segment the disc in step ‘(1)’.355

This segmentation is then used to transform the full
fundus image in a ROI image during step ‘(2)’, fol-
lowed by the CLAHE transformation. The CLAHE
ROI image is then utilized for two different tasks
that build the pipeline outputs. First, in step ‘(3)’,360

GFI-ASPP-Depth is used to obtain an optic disc
and cup segmentation. This powers the calculation
of several morphological features, that contribute
to the interpretability of the decision. Additionally,
step ‘(5)’, consists of running the images outputted365

from step ‘(2)’ through the GFI-Classification net-
work, resulting in a Glaucoma confidence level.

Finally, the decision is built, consisting of the
Glaucoma confidence level and the calculated mor-
phological features.370

3.7. Mobile integration

To validate the performance of the developed
pipeline in a restricted environment, it was inte-
grated into a mobile application. This integration
consisted on the creation of a background service375

that used TensorFlow Lite to run the developed
models on a mobile environment. This service is
run for a given fundus image and notifies the user
when the pipeline is completed.

Afterward, the user can see the pipeline results,380

including the first disc segmentation, the cropped
image and the joint optic disc/cup segmentation.
Furthermore, the result of the morphological fea-
ture calculation, as well as the glaucoma confidence
level, are also exposed in a dialog view. This visu-385

alization of the pipeline results contributes to the
interpretability of the Glaucoma diagnosis, as can
be seen in figure 5.

In table 4, several times and size metrics of the
developed classification and segmentation models390

after being converted to the TensorFlow Lite format
are exposed. The time metrics were obtained by
performing 3 runs in isolation on the same mobile
device and averaging times.

By analyzing the table, it is concluded that run-395

ning the models on GPU is preferred than quan-
tizing and running on the CPU since the times are
better and no performance losses will occur. The
selected models are highlighted in the table, and the
pipeline can run in under two seconds per fundus400

image.

3.8. Interpretability

Interpretability is one of the main Achilles heels
of deep learning models, since, despite having ex-
hibited superior performances in plenty of tasks, it405
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Method Acc Sens Spec AUC
Transcribed from [32]

ML 1 - Maheshwari et al. [33] 0.81-0.98 - - -
ML 2 - Acharya et al. [34] 0.95 - - -
DL 1 - Al-Bander et al. [35] 0.88 0.85 0.89 -
DL 2 - Fu et al. [36] - 0.84 0.92 0.91
DL 3 - Li et al. [8] - 0.95 0.92 0.98
DL 4 - Christopher et al. [37] - 0.88 0.95 0.91
DL 5 - Mitsuhashi et al. [38] - - - 0.96
DL 6 - Antón et al. [32] 0.88 0.87 0.89 0.94

Achieved results
DL 7 - GFI-Classification 0.87 0.85 0.88 0.93
DL 8 - GFI-Classification-VGG16 0.86 0.81 0.88 0.95
DL 9 - GFI-Classification-VGG19 0.87 0.83 0.89 0.95
DL 10 - GFI-Classification-InceptionV3 0.90 0.80 0.94 0.95
DL 11 - GFI-Classification-ResNet50 0.88 0.83 0.90 0.93

Table 3: Classification performance comparison with state-of-the-art methods. In the methods column, ML and DL, indicate
whether the method consists in a machine learning or deep learning approach, respectively. The metrics Acc, Sens and Spec
stand for accuracy, sensitivity, and specificity, respectively. Results obtained on the test set.

Figure 4: Proposed pipeline.

Model CPU (ms) GPU (ms) Size (mb)
GFI-SPP-Depth-simple ≈ 250 ≈ 215 1.1
GFI-SPP-Depth-simple quantized ≈ 280 ≈ 220 0.3
GFI-ASPP-Depth ≈ 580 ≈ 450 4.6
GFI-ASPP-Depth quantized - - 1.7
GFI-Classification ≈ 80 ≈ 25 9.0
GFI-Classification quantized ≈ 110 ≈ 120 2.3

Table 4: Metrics of the models used in the Glaucoma assessment pipeline (Obtained on a Samsung Galaxy S8).

is difficult to make sense of these types of mod-
els when compared to machine learning approaches
[39]. This mainly occurs because the feature rep-
resentation is not engineered by the developer, but
by the network itself, turning its translation into410

representative values challenging.

Also, this topic is not only important to further
understand the inner workings of a model and ease

the development process, but it is also essential, or
even mandatory, for regulations and other bureau-415

cracies, needed in case these methods are intended
to be integrated into commercial solutions, espe-
cially in a medical context.

The proposed solution has three interpretability
measures, some of them have already been partially420

addressed, but below a complete description is pro-
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Figure 5: Pipeline integration in a mobile environment.

vided.

Pipeline intermediate results - These re-
sults are evidenced in figure 5 and were integrated
into the system to allow quick confirmation of the425

pipeline outcome, since wrong segmentations may
eventually happen. Having the possibility to visu-
alize those results enables the user to discard them
right away, if necessary.

Morphological features - These features make430

the model more interpretable since they have a de-
fined and studied meaning among the ophthalmolo-
gist community. Despite not being directly used in
the model that outputs the Glaucoma confidence
level, the combination of the two output values435

turns the decision more trustworthy.

Activation Maps - The used activation maps
are gradient class activation maps (Grad-CAM)
[40]. These maps were calculated in the GFI-
Classification network and an illustration of the re-440

sults with images from both classes can be found in
figure 6. In the figure, the images are overlayed with
the calculated Grad-CAM maps and blue tones in-
dicate the area was not important to the classifica-
tion, while redder tones indicate a bigger influence445

of that region for the final decision. By analyz-
ing the images, it is noticeable that the network
is looking to the same structures that ophthalmol-
ogists inspect, such as the optic disc, cup, retinal
vessels topology, and more interesting, on the left450

Glaucoma case, a focus on the Peripapillary Atro-
phy (PPA) region is visible, which is an identified

Glaucoma risk factor [41, 42, 2, 43]. All these in-
sights contribute to increase the confidence in the
network predictions. These maps are not available455

in the mobile pipeline integration due to Tensor-
flow Lite limitations, since the library is only tar-
geted at inference. Nonetheless, they are available
in a desktop environment and can be useful to make
the pipeline more believable and help in regulatory460

processes.

Figure 6: Grad-cam activation maps of the GFI-
Classification network.

4. Conclusions

The main novelty of this work is the fact that
the developed Glaucoma assessment pipeline runs
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offline in mobile devices in seconds.465

Moreover, this was achieved while having com-
parable, and sometimes even better, results in the
segmentation and classification tasks of the devel-
oped system, contributing to the enhancement of
the state-of-the-art in these topics as well.470

Furthermore, the developed pipeline can be used
to enable massive Glaucoma screenings in settings
that were not possible before since it does not re-
quire an internet connection and runs on affordable
mobile devices. This can increase the chance of de-475

tecting Glaucoma at an earlier stage and contribute
to decrease both individual and economic burdens
caused by the disease.
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