
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Automatic Group Formation

João Vítor Meireles Chaves

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Ana Paula Rocha

July 24, 2019

Automatic Group Formation

João Vítor Meireles Chaves

Mestrado Integrado em Engenharia Informática e Computação

July 24, 2019

Abstract

Group formation and the way communities group themselves is a task that occurs in the most
diverse contexts, such as political movements, all kinds of professional organizations or even work
groups of students in classes. This task can become a complex process due to the large number of
criteria, more or less quantifiable, that can be used to group people.

This report describes the problem of automatic group formation, which has become a more
current problem, due to the importance given to concepts like Collaborative Learning and Learning
Management Systems. So, it focuses on the formation of work groups in classes, based on the
students’ personal data and competences (social and academic), which can be achieved mainly
by clustering techniques Therefore, the goal is to use a methodology to create groups that can be
heterogeneous or homogeneous, depending on the goal, that is, the type of activity to develop.

There are already some tools that address this topic. They focus on the formation of groups
in different environments. The implementations are done by using several methodologies, like
clustering (making use of different algorithms) and multi-agent systems. They also differ in terms
of the criteria used to group the students.

This work proposes a solution with a similar goal of the existing methodologies. However,
it improves the process of clustering by combining the clustering of homogeneous and hetero-
geneous groups in the same algorithm. The solution implemented starts by briefly explaining
the problem of data acquisition and how to overcome it. Then, there is presented the algorithm
developed, which is based in one of the most known clustering algorithms, k-means.

The project is finalized with some experiments done with the methodology implemented, along
with conclusions that demonstrate the efficiency of the algorithm developed.

i

ii

Resumo

A formação de grupos, e a forma como comunidades se agrupam, é uma tarefa que ocorre nos
mais diversos contextos, desde movimentos políticos, organizações profissionais, até grupos de
estudantes em aulas. Esta tarefa pode-se tornar complexa, devido ao grande número de critérios,
mais ou menos quantificáveis, que podem ser usados para agrupar pessoas.

Este relatório descreve o problema da formação automática de grupos, que se tem tornado
cada vez mais um problema corrente, devido à importância dada a conceitos como Collabora-
tive Learning e Learning Management Systems. Sendo assim, foca-se na formação de grupos de
estudantes em unidades curriculares, com base em dados pessoais dos estudantes, bem como com-
petências sociais e académicas. Isto pode ser feito através de técnicas de clustering. O objetivo é,
portanto, utilizar uma metodologia para criar grupos que podem ser homogéneos ou heterogéneos,
dependendo da atividade a realizar.

Já existem algumas ferramentas que tentam resolver este problema, focando-se na formação de
grupos em ambientes diferentes. As implementações são feitas utilizando metodologias diferentes,
como clustering (por meios de algoritmos diferentes) e sistemas multi-agente. As implementações
também diferem nos atributos utilizados para agrupar os estudantes.

Este relatório propõe uma solução com finalidade semelhante à das metodologias existentes.
No entanto, tenta melhorar o processo de agrupamento de estudantes combinando o clustering de
grupos homogéneos e homogéneos no mesmo algoritmo. A solução implementada começa por
explicar de uma forma breve o problema da aquisição de dados e como ultrapassá-lo. De seguida,
é apresentado o algoritmo desenvolvido, o qual é baseado num dos algoritmos de clustering mais
conhecidos, o k-means.

O projeto é finalizado com algumas experiências realizadas com a metodologia implementada,
bem como conclusões que demonstram a eficácia do algoritmo desenvolvido.

iii

iv

Acknowledgements

Firstly, I would like to thank my supervisor, Ana Paula Rocha, for all the guidance given through-
out the whole project and for the availability to discuss every aspect of the work developed, as
well as all the help in the investigation process.

I would also like to thank in a a general way to everyone I met in the past five years at FEUP,
everyone whom I learned with and helped me in this experience.

I would like to express my special thanks to my friends, the ones that were always there for
me, had to listen to all my complaints and gave me motivation to want to achieve more in this
journey.

Last but not the least, I thank my family, in particular my parents and my sister, for all the
patience and unconditional support throughout all my years of study.

Thank you all.

João Chaves

v

vi

“I have not failed.
I’ve just found 10,000 ways that won’t work.”

Thomas Edison

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Project . 1
1.3 Motivation and Objectives . 2
1.4 Document Structure . 2

2 Literature Review 3
2.1 Introduction . 3
2.2 Clustering implementations . 5

2.2.1 Clustering . 5
2.2.2 K-Means Algorithm . 6
2.2.3 Tabu Search . 9
2.2.4 Multi-agent systems . 10

2.3 Reinforcement Learning . 11
2.4 Conclusions . 12

3 Automatic Group Formation 13
3.1 Problem definition . 13
3.2 Proposed Solution . 14
3.3 Data Acquisition . 15
3.4 Results evaluation . 15
3.5 Data Generation . 15

3.5.1 Fixed values . 15
3.5.2 Using normal distribution . 16
3.5.3 Using normal distributions and cumulative probabilities 19

4 Implementation 21
4.1 K-medoids . 21
4.2 Adapted k-medoids . 22
4.3 Algorithm implemented . 24

5 Experiments and Evaluation 27
5.1 Experiments with fixed values . 27
5.2 Experiments using normal distributions and cumulative probabilities 28

5.2.1 Experiment 1 - 12 students . 28
5.2.2 Experiment 2 - 24 students . 31

5.3 Experiments changing the weights of the course units 32
5.4 Homogeneity inside clusters . 34

ix

CONTENTS

5.5 Conclusions . 34

6 Conclusions and Future Work 37
6.1 Final conclusions . 37
6.2 Future Work . 38

References 39

A Experiments with 24 students 43
A.1 Dataset . 43
A.2 Results of the students working in pairs . 44
A.3 Results of the students working in groups of 6 46
A.4 Results of the students working in groups of 4 49

x

List of Figures

2.1 Clustering of three groups . 6
2.2 Clustering of two groups . 6
2.3 Basic Tabu Search algorithm. Extracted from [Hüb10] 9
2.4 Markov Decision Process. Extracted from [SB98] 12
2.5 Example of agent/environment interactions. Extracted from [PKLMH96] 12

3.1 Model of the proposed solution . 14
3.2 Example of a Bell Curve . 16

4.1 Selection of a mean and a medoid. Extracted from [JH10] 22

5.1 Means of the homogeneous clusters . 30
5.2 Means of the heterogeneous clusters . 30
5.3 Means of the homogeneous clusters . 31
5.4 Means of the heterogeneous clusters . 31
5.5 Standard deviation of the homogeneous clusters 32
5.6 Standard deviation of the heterogeneous clusters 32

A.1 Means of the homogeneous clusters . 45
A.2 Means of the heterogeneous clusters . 45
A.3 Means of the homogeneous clusters . 47
A.4 Means of the heterogeneous clusters . 47
A.5 Standard deviation of the homogeneous clusters 48
A.6 Standard deviation of the heterogeneous clusters 48
A.7 Means of the homogeneous clusters . 50
A.8 Means of the heterogeneous clusters . 50
A.9 Standard deviation of the homogeneous clusters 51
A.10 Standard deviation of the heterogeneous clusters 51

xi

LIST OF FIGURES

xii

List of Tables

2.1 Results of clustering with Skmeans and EM. Extracted from [MOW17], adapted. 8

3.1 Hard coded students’ grades . 16
3.2 Example of course units means and standard deviations 17
3.3 Grades generated according to the means of each course unit 18
3.4 Possible grades of a student . 18
3.5 Grades generated according to the means of each student 18
3.6 Cumulative probabilities of the course units . 20
3.7 Grades generated using normal distribution and cumulative probabilities 20

4.1 Distances between different points in heterogeneous groups 24
4.2 Example of output file with the results . 26

5.1 Dataset of 12 students using fixed values . 27
5.2 Homogeneous groups, k=3 . 28
5.3 Heterogeneous groups, k=3 . 28
5.4 Dataset of 12 students created with normal distribution 29
5.5 Results of homogenous groups . 29
5.6 Results of heterogeneous groups . 29
5.7 Dataset of 12 students created with normal distribution and cumulative probabilities 30
5.8 Results of homogenous groups . 30
5.9 Results of heterogeneous groups . 31
5.10 Dataset of 12 students generated by fixed values 33
5.11 Groups formed using the same weights for each course unit 33
5.12 Groups formed using different weights for each course unit 33
5.13 Variation of the intra-cluster homogeneity with k 34
5.14 Execution time of the algrithm with different input parameters 35

A.1 Dataset of 24 students created with normal distributions and cumulative probabilities 43
A.2 Results of the homogeneous groups created . 44
A.3 Results of the heterogeneous groups created . 44
A.4 Results of the homogeneous groups created . 46
A.5 Results of the heterogeneous groups created . 46
A.6 Results of the homogeneous groups created . 49
A.7 Results of the heterogeneous groups created . 49

xiii

LIST OF TABLES

xiv

Abbreviations

AGDP Automated Group Decomposition Program
CL Collaborative Learning
CSCL Computer-Supported Collaborative Learning
DOH Degree of Heterogeneity
EM Expectation Maximization
FEUP Faculdade de Engenharia da Universidade do Porto
LMS Learning Management System
RL Reinforcement Learning
VARK Visual, Aural, Read/Write and Kinesthetic

xv

Chapter 1

Introduction

1.1 Context

Group formation and the way communities group themselves to achieve a given goal is a task that

occurs in the most diverse contexts. It is an inherent process in the creation of political movements,

the formation of professional organizations, even in the formation of students work groups.

However, this process requires that one needs to know what criteria defines a group, in order

to define who should be part of it and who shouldn’t. It implies that it is also necessary to know

the characteristics of each person.

This composes the challenge of defining what criteria defines the best a person and how to

quantify and/or qualify some aspects that can not be easily measurable or even known, which can

be somehow complex. Another challenge is the one of defining which people should belong to

which groups, in order to fulfil the objective required.

1.2 Project

This dissertation addresses the problem of automatically creating work groups of students in

classes. In this specific context, there are some things to consider, such as what are the groups

intended to achieve. For example, if the goal of an activity is to make the students learn with

each other, the best option will be to create groups where the students’ skills diverge the most.

Therefore, the less skilled ones can learn with the others.

Other important thing to consider is what attributes should qualify the most a student, in order

to assign him to a group. In this work, it is intended to understand more about what attributes

can define the profile of a student, like academic competences, personality, personal data, among

others. Besides that, the final goal is develop a methodology capable of clustering different types

of groups, based on the students’ grades, without having to perform any type of pre-processing.

1

Introduction

1.3 Motivation and Objectives

In this dissertation, the goal is to solve the problem of assigning students to work groups, recurring

to clustering techniques that, given a set of data, allow to create clusters (groups) based on a

similarity degree. A methodology will be implemented that will allow to create homogeneous

(with a very similar profile) or heterogeneous (with very different profiles) groups, according to

what is intended from the activities.

It aims to change the way this is done in classes, where most of the times the students choose

their own groups or the groups are chosen randomly, often leading to conflicts. Therefore, it is

intended that this different way of creating groups improves not only the learning rate of students

in a given class, but also the experience of working with groups different from the ones they are

used to.

Ideally, in case of success in this implementation, it can be applied in real situations and impact

the way groups are created. Not only this facilitates the job of the teachers but, most important,

it promotes collaborative learning and interaction between students, leading to better results in

classes.

1.4 Document Structure

Besides the Introduction, this document is composed of three more chapters.

In chapter 2, it is presented a literature review of some approaches that address this matter.

These approaches focus on clustering methodologies, but also mention other techniques, such as

collaborative filtering and reinforcement learning.

In chapter 3, the problem is described in a more extensive way. A solution proposal is de-

fined, describing the steps of the implementation done. The chapter also discusses the problem

of data acquisition and presents a section of data generation, in which there are described differ-

ent techniques used to generate data. It is concluded by a section explaining how the results are

evaluated.

Chapter 4 defines the methodology implemented, describing what algorithms it is based on

and detailing all the steps followed.

In chapter 5, there are performed several experiments with the implementation and are pre-

sented the results of the groups created. There are also presented some conclusions about the

results obtained.

Finally, chapter 6 wraps up the contents of this document, with the final conclusions about this

dissertation and the future work to be done.

2

Chapter 2

Literature Review

2.1 Introduction

Throughout the years, the terms Collaborative Learning (CL) and Learning Management Systems

(LMS) have become more and more fashionable. In a brief overview, collaborative learning, within

the scope of education, is concerned with the way people can learn together, considering all levels

of formal education [SKS06]. Computer-Supported Collaborative Learning is a branch of CL that

takes advantage of the advances in computer science and associates them to collaborative learning,

allowing students that have different characteristics to cooperate with each other in common tasks

[SB15].

This can bring a beneficial effect on learning for the students involved. Therefore, Learning

Management Systems (LMS) appear as platforms that enable the set up of a collaborative learning

environment, that can be used to gather information about students and create collaborative activ-

ities. One of the most known LMS is Moodle. These LMS can make use of external data and/or

student activity to create groups that are suitable for the tasks to develop.

This raises the question of finding out what groups can be formed, and with what character-

istics and goals. There are two types of groups, homogeneous and heterogeneous. As expected,

homogeneous groups have students with similar characteristics while heterogeneous groups are

formed of students with a high diversity of characteristics.

There are advantages of using both types. For example, according to [KDHB17], homoge-

neous groups can be preferred in collaborative learning activities that are suitable for a specific

level of knowledge and/or learning style. On the other hand, heterogeneous groups may also be

advantageous, because they encourage communication and interaction between students, leading

to better results.

However, what characteristics should we consider? This is one of the problems within the

task of group formation. Surely there are some attributes that don’t have that much relevance

when trying to group a person with other individuals. In the context of grouping students, there

3

Literature Review

are some aspects that can be considered. The first one is the academic component. In fact, it is

important to know the degree of knowledge and how skilled a student is when trying to assign him

to a collaborative learning activity, which can be found by looking at his grades. After that, we can

group him with students that have similar skills or students that have completely different capac-

ities, depending on whether we want a homogeneous or heterogeneous group, respectively. This

characteristic is the most common used when forming groups within the context of collaborative

learning, as it is objective (doesn’t depend on anyone’s subjectivity) and easily measurable.

However, there are other characteristics that should be considered, specially when the activities

require interaction between students. Some of these criteria are:

• communication skills;

• group working attitude;

• thinking styles;

• visual, aural, read/write and kinesthetic (VARK) learning styles, established by [Fle01];

• gender;

• demographic information (there can be a preference for students to work with others that

come from the same place as them);

• among others.

As it can be seen from the previous characteristics, although there are some that are measur-

able, such as gender and demographic information, most of them are very qualitative and depend

on the subjectivity of someone to become measurable, hence used in an algorithm.

These qualitative, yet important, characteristics, constitute another problem in the selection of

criteria in automatic group formation. In order to solve this problem, we may need the input of

the person in charge of the group formation, based on previous interactions, for example. Most

importantly, we may need the input of the student themselves, because no one better than them,

knows about how they rank themselves in terms of such qualitative and subjective characteristics.

One approach is to ask them to fill some questionnaires that then calculate discrete values, based on

the answers given (the VARK questionnaire, for example, calculates a score in the end, classifying

the student [LSS10]).

This shows that the process of group formation is not entirely independent from students and

they should have an input in the task of assigning to the groups, along with the one in charge

[Hüb10].

Having all the data available, and decently measured, the next step is to develop a methodol-

ogy, in order to implement an algorithm that effectively groups the students. There are different

techniques that can be used to perform this grouping process. In the next section, there are de-

scribed some of them, mainly relying on clustering algorithms, and also on multi-agent systems.

4

Literature Review

Besides these main methodologies, there are other techniques that can be used in order to

improve the process of group formation. One example is collaborative filtering.

Collaborative filtering is often related to Recommender Systems, which goal is to "...apply

knowledge discovery techniques to the problem of making personalized recommendations for

information, products or services during a live interaction." [SKKR01]. In these systems, collabo-

rative filtering works by building a database of preferences of items for the users. So, the database

will match a new user with others users that had the same preferences of items.

Transposing this example to the context of group formation, if we consider that the "items" are,

for example, the preferences of students, this technique can work as a way of grouping students,

thus improving the process.

2.2 Clustering implementations

2.2.1 Clustering

Conceptual clustering is defined by [SM80], as cited in [AMCM83], as “...grouping objects into

conceptually simple classes based on attribute values.”. Thus, it is expected that the clusters

(groups) created have similarities that makes them differentiate from one another. Clustering is

adequate for some problems, such as grouping, decision-making and pattern classification, among

others [JMF99].

[JD88], as cited in [JMF99] describe five steps in the process of clustering: pattern represen-

tation, pattern proximity, grouping, data abstraction and output assessment.

Pattern representation is related to the representation of the data; pattern proximity refers to

defining a distance measure function1 that calculates the distance between two patterns; grouping

can be performed according to several algorithms2; data abstraction is concerned with the inter-

pretation of what each cluster means and is only performed if needed; output assessment is related

to characterizing if the clustering process had good or bad results [JMF99].

Figs. 2.1 and 2.2 depict how clustering is done in a two-dimensional data set. Supposing we

need to group the set A, B, C, D, E and F in clusters, if we want to group them in three clusters, the

result would be similar to Fig. 2.1. If we wanted, for instance, two groups, the result would be like

Fig. 2.2. As it can be seen, the groups are created based on the distance between the data objects,

which rely on the distance metrics mentioned above. The following sections describe some of the

different methodologies already used in the clustering problem.

1Some examples of distance measures are Euclidean, City block, Minkowski or Chebyshev. Details about each and
more distance metrics can be found in [Sun07].

2The techniques can be divided in hierarchical (such as the agglomerative single-link clustering algorithm or the ag-
glomerative complete-link clustering algorithm) and partitional (squared error clustering method or k-means clustering
algorithm) approaches [JMF99].

5

Literature Review

Figure 2.1: Clustering of three groups Figure 2.2: Clustering of two groups

2.2.2 K-Means Algorithm

K-Means algorithm is a partition clustering algorithm, which goal is to split the data into k clusters,

each one representing a group. It is one of the most used clustering algorithms, due to the fact that

it is "...simple, easy, understandable, scalable and can be adapted to deal with streaming data and

very large datasets" [AA13].

The algorithm starts by randomly defining k centroids in the data set. Then, the process of

partitioning the data follows an objective function. One function widely used is minimizing the

square error between the centroids and the data points. This function can be given by [AA13]:

E = ∑∑ || p− ci ||2 (2.1)

,where E is the square error, ci is the centroid and p is a data object.

The algorithm also requires a distance function to calculate the distance between the data

points and the centroids of the cluster. These functions are the ones mentioned in 2.2.1.

The implementation of this technique can be divided in five steps, as mentioned in [AA13]:

• 1: specify the k number of clusters (usually the number of groups one wants to achieve);

• 2: the algorithm randomly selects k centroids;

• 3: use of the distance function to assign data objects to a cluster;

• 4: recompute new centroids based on the points of a cluster;

• 5: repeat the process until a convergence criterion is reached.

6

Literature Review

2.2.2.1 Approach to group formation: Spherical K-Means and Expectation Maximization

In [MOW17], based on the premise that group members work better when they are satisfied with

their group, the authors proposed an approach to group the students based on some of their char-

acteristics, instead of random grouping. Therefore, the authors made use of the LMS Moodle to

categorize the students, according to their activity in a Moodle discussion forum.

So, the students were classified taking into account three levels of collaboration: indepen-

dence (students that posted more ideas than replies), interdependence (participation in a discus-

sion, counting the number of responses to questions) and synthesis of information (relation be-

tween the comments of a student and the final product). These three elements promote effective

CL, according to [MOW17].

In order to perform the grouping, the authors used two objective-function-based machine

learning algorithms: Spherical K-Means (Skmeans) and Expectation Maximization (EM).

Skmeans is a variant of the K-means algorithm. It normalizes the features in order to solve

the problem where there are different lengths of features. It then applies then cosine dissimilarity

[HFKB12] based on the angle between the feature vectors, which can be calculated by:

d(p,ci) = 1− cos(p,ci) = 1− 〈p,ci〉
|| p |||| ci ||

(2.2)

, being p the data object and ci the centroid. This algorithm is computationally faster than hierar-

chical clustering when dealing with a large number of variables [MOW17].

Expectation Maximization is an iterative optimization method that has the advantage of es-

timating data parameters that are missing or hidden [MOW17] [Del02]. Therefore, it finds the

maximum likelihood estimates of parameters.

In order to run the clustering algorithms, the authors used the Weka software, which is an

open source software that allows to apply algorithms related to data mining and machine learning

[HFH+09], namely the Skmeans and EM.

In this approach, the goal was to differentiate three types of students, based on skills related

to collaborative competence levels, within the discussion forum. Therefore, the students were

supposed to be divided in three clusters, representing the levels, which could be high, medium or

low.

After retrieving the data from Moodle and cleaning it, the authors in [MOW17] fed it to the

Weka program, using three different data sets. Table 2.1 shows the results of running Skmeans and

EM algorithms to the data sets. N is the number of students and C the clusters.

The results show that both algorithms returned similar distribution patterns in the number of

students in different clusters. It was also found that the clusters with the lowest values repre-

sented students classified as high according to the collaborative competence levels, so ranking

was required to be done in the clusters, in order to check which clusters represented each level

[MOW17].

7

Literature Review

Table 2.1: Results of clustering with Skmeans and EM. Extracted from [MOW17], adapted.

N 36 109 151
C Sk EM Sk EM Sk EM
0 9 (25%) 10 (28%) 12 (11%) 61 (56%) 35 (23%) 44 (29%)
1 6 (17%) 18 (50%) 39 (36%) 14 (13%) 35 (23%) 77 (51%)
2 21 (58%) 8 (22%) 58 (53%) 34 (31%) 81 (54%) 30 (20%)

In the end, the clusters created were used to create heterogeneous groups, using an intelligent

grouping algorithm.

2.2.2.2 Approach to group formation: AGDP tool

In [SS15], the authors implement a tool called Automated Group Decomposition Program (AGDP),

which can be used to form homogeneous, heterogeneous or a mixture of homogeneous and het-

erogeneous groups of students for the purpose of effective collaborative learning.

Based on the fact that interaction takes a major role in collaborative learning (because people

want to defend their viewpoint of subjects, which causes them to have a deeper understanding of

the subject), the authors came up with two sets of scores to evaluate the students [SS15]:

• A-scores: sum of scores obtained in communication skills, fluency in computer usage and

group work attitude;

• B-scores: measure of the subject knowledge possessed by each student.

AGDP uses the k-means algorithm and the concept of constraint satisfaction to create groups

in an intelligent way. In the study, the constraint to be satisfied is the degree of heterogeneity

(DOH), which can be given by (adapted from [SS15]:

DOH o f each cluster =
Number of ranges of B-scores present in the cluster

Cluster size
(2.3)

The implementation of the algorithm is done this way:

• the students are divided into k (defined by the instructor) homogeneous groups, based on

the A-scores;

• the clusters are equalized to make sure every group as the same amount of students;

• based on the B-scores, the clusters are heterogenized according to an implementation that

satisfies the DOH.

By comparing the tool with other algorithms, the authors concluded that this method of cre-

ating heterogeneous groups reaches a balance in complexity between the more complex heuristic

methods and the simpler random selection methods.

8

Literature Review

Figure 2.3: Basic Tabu Search algorithm. Extracted from [Hüb10]

2.2.3 Tabu Search

As described in [Glo89], "Tabu search is a strategy for solving combinatorial optimization prob-

lems...". Although it may seem different from clustering, it is not. In fact, clustering can be seen

as an optimization problem: we want the optimize the allocation of objects to groups, following a

specific criteria.

However, while cluster analysis try to optimize a certain similarity measure between centroids

and the data points, this algorithm’s focus is to minimize the distance between two points within

a cluster and its center [AS95]. Since Tabu Search is a meta-heuristic method, it is not guaranteed

that it finds an optimal solution each time it runs [Hüb10]. Nevertheless, it overcomes other

optimization heuristics, such as the Hill Climbing Heuristic, by surpassing the problem of being

stuck in a local maximum. It climbs to a local maximum, and then forbids movements that were

similar to the ones already made (making them tabu movements). This makes sure that it is not

going back to a local maximum, although it requires a systematic use of memory, to keep a history

of all the moves made [Hüb10].

Tabu Search algorithm requires that the evaluation function, tabu restrictions and aspiration

criteria are defined, additionally to the common elements of heuristic methods. The steps of the

algorithm are described in Fig. 2.3.

As it can be seen, the algorithm repeatedly generates states in the neighborhood (that can

be reached within one move) of the current state and then moves to the one that maximizes the

evaluation function, since it doesn’t violate any tabu restriction. To do that, it keeps track of

the globally best solution. There can be times where a restriction tries to prevent a good move

from being made. In cases like this, the aspiration criteria is used to override the tabu restriction

[Hüb10].

9

Literature Review

2.2.3.1 Approach to group formation: the heuristic Tabu Search algorithm

In [Hüb10], the authors propose the formation of groups based on general criteria, such as aca-

demic skills in certain areas, and context-specific criteria, specifically related to the work to de-

velop. In the experiment, the context-specific criteria used are the preferences of the students in

working or not with other colleagues, as well as the preferences of the teacher to distribute subsets

of students and to assign students to specific groups.

So, a Tabu Search heuristic is used to create maximally diverse groups (heterogeneous) and

evenly skilled groups (homogeneous). In the given case, the evaluation function had to consider

the skills of the students and the information about the preferences. One good example of how

the tabu restrictions and the aspiration criteria impact the algorithm, in this case is: suppose that

one of the tabu restrictions is that student A wants to avoid working with student B; however, the

next move is to assign student A to a group, which already contains student B. In this situation the

move can either be blocked due to the restriction, or it can be overridden by the aspiration criteria,

despite of the restriction, if the tabu move leads to a better solution.

By evaluating the computational results of using Tabu Search, the authors in [Hüb10] con-

cluded that running the algorithm took 20-40 seconds (and it is not optimized for speed), which is

equivalent to 2 hours work for doing it manually. They also found out that the results were good

and the best solution was always optimal with respect to the skills of the students.

Regarding the educational results, the experience was very positive as well. When testing,

the evenly skilled group approach was the chosen, because it was the most suitable to the kind

of work to develop. In the end, the experience resulted in very few interpersonal problems and

positive reactions when the groups were announced.

2.2.4 Multi-agent systems

A multi-agent system is a system composed of several interacting units, the so called agents.

The system provides an environment, entities and a set of operations that can be applied to the

entities, in order to change the environment, being the agents the ones who act within the system.

Therefore, an agent is an entity that understands the environment, acting and communicating with

other agents. Agents are expected to have the following properties [Woo09]:

• reactivity: as they understand the environment, agents can act upon a change in order to

satisfy a given objective;

• proactiveness: agents can have a goal-oriented behaviour by taking initiative in satisfying

the objective;

• social ability: agents can interact with other agents in order to satisfy the objective.

Nowadays, multi-agent systems have their main applications in different scenarios such as

problem solving, multi-agent simulation, construction of synthetic worlds, among others.

10

Literature Review

2.2.4.1 Approach to group formation: Multi-agent group formation

In [KS10], there is implemented a collaborative Wiki called ClassroomWiki, which goal is to

track all students’ activities and build detailed student models that represent their contributions

toward their groups. It also provides a multi-agent framework, the Multi-agent Human Coalition

Formation (MHCF) framework, that uses the student models to form students groups in order to

improve the collaborative learning of students.

Therefore, the MHCF framework assigns an intelligent agent to each of the participating stu-

dents, where each agent maintains the model of its assigned student and utilizes that model to

estimate the contribution of a student towards his group’s Wiki.

The MHCF agent negotiates with others allowing it to solve the current collaborative task

well and to improve its knowledge through collaboration to solve future tasks well by forming

heterogeneous student groups [KS10].

The formation of groups occurs through a negotiation phase, where a random agent negotiates

with other agents in the framework to form a group for its assigned student. The negotiation has

three steps: the proposition, where the proposer selects other agents and proposes a group formed

by the agents chosen; the consideration, where the proposed-to agent checks the model of the

proposer agent and decides if it should join its group or not; the notification phase, in which, if

all the proposed-to agents agree to join the proposer’s group, the proposer sends a confirmation

message to them notifying they now belong to the new group.

To test the system, 145 students were divided in control (groups created randomly) and treat-

ment (groups created using MHCF). Regarding the impact of group formation using MHCF, it

was concluded that the treatment set students achieved higher individual scores and also achieved

significantly lower standard deviations than the control set students, suggesting that that the col-

laboration was better in the members of the treatment set.

2.3 Reinforcement Learning

Reinforcement learning (RL) can be described as a "...problem faced by an agent that must learn

behavior through trial-and-error interactions with a dynamic environment." [PKLMH96]. There-

fore, it works as a way of programming agents by reward and punishment (so that the agents can

"learn"), without having to specify the task to solve. The agent has the goal of maximizing the

rewards.

It can be achieved by two main strategies: search between the possible behaviors to find the one

that performs the best in the environment; using statistical techniques and dynamic programming

methods to estimate the utility of taking certain actions. RL can be modeled as a Markov Decision

Process, as depicted in Fig. 2.4.

One example for understanding how the agent relates to its environment is depicted in Fig. 2.5.

As it can be seen, the agent knows what state it is in and what options it has. Then it chooses an

action and receives a reward or punishment, moving to the next state. So, there is no way of

11

Literature Review

Figure 2.4: Markov Decision Process. Ex-
tracted from [SB98]

Figure 2.5: Example of agent/environment
interactions. Extracted from [PKLMH96]

knowing which action would be better in the long-term. Instead, it learns by trial and error. This is

one of things that differ RL from other learning paradigms, such as supervised learning. Another

difference is that the evaluation of the systems occurs concurrently with learning.

RL algorithms are already used to simulate human behavior in several situations. For example,

in [MKS+15], an intelligent agent is developed, recurring to the training of deep neural networks,

which is able to achieve the same performance of a professional games tester across 49 different

games, using the same algorithm, network architecture and hyper-parameters. Besides applica-

tions in game theory, there are others, such as in information theory and operations research.

However there aren’t implementations directly related to group formation.

2.4 Conclusions

In a brief conclusion about all the methodologies, algorithms, techniques and implementations

mentioned below, it can be said that most of them already are directly related to the problem of

automatic group formation. However, most of the implementations rely on the use of objective

and academic related criteria (grades, participation in forums, thinking and learning styles), and

lack in some attributes, like students preferences and some of their personal data.

Finally, it can also be noticed that the the there isn’t often a combination of methodologies and

techniques, which could improve the process of group formation.

12

Chapter 3

Automatic Group Formation

This dissertation aims to provide a solution to the task of grouping people. More specifically, the

main focus is the automatic formation of groups of students in classes. This process is relevant,

mainly due to the importance given to concepts like Collaborative Learning, Learning Manage-

ment Systems and Computer-Supported Collaborative Learning.

In this chapter, we describe the problem we want to solve, along with the solution proposed.

We also approach the problem of data acquisition, that arised with the development of the project.

It is followed by a section in which we explain how we overcame this issue, presenting some

methodologies that were developed and used to solve this problem. The chapter is finalized by a

section explaining how the results were evaluated.

3.1 Problem definition

Nowadays, collaborative learning is an emerging concept in the field of Education. It is believed

that, besides the tradicional way of learning (individually, from a teacher), students can also learn

from each other. Taking this into account, the way the students are grouped is important to ensure

that the groups are well balanced, so that all students can benefit from the experience of working

with each other.

In this dissertation, the problem we want to solve is the one of creating groups of students,

based on specific criteria. It is intended to create two types of groups: homogeneous (groups where

the students have similar characteristics) and heterogeneous (groups where the characteristics of

the students diverge) groups. These types are defined by the user and are chosen according to the

activity to develop. This grouping task is pretended to be done by means of clustering techniques.

In order to create such groups, it is important to define what criteria to use. The main attribute

to consider is the academic component, the grades of the students, since it is what characterizes

them the most. However, there are other interesting attributes that can be considered.

13

Automatic Group Formation

Figure 3.1: Model of the proposed solution

One of them is the personal data of the students, like their location. Students may work better

with people that come from the same place, either for cultural reasons or simply because they

know each other.

Another interesting feature can be looking at the preferences of the students, because they can

prefer working with some people and avoid working with other. This makes the task of grouping

more complete, since the decision isn’t left intirely to the teacher, and students feel included in the

process.

In this project we propose a solution that only uses the grades of the students as input for

clustering. This obviously doesn’t discard the importance of the other attributes mencioned. In

fact, they should be used in future implementations, to add a more personal component to the

students’ profiles.

3.2 Proposed Solution

The solution proposed in this dissertation has similar goals to the implementations proposed in

Section 2. However, it aims to improve the implementations that already exist by adding more

options to the clustering process, like the ability of clustering by the differences of students, with

the goal of providing a wider range of choices to the user in charge of the grouping task.

Therefore, the main objective of this dissertation is to automatically form groups of students

recurring to clustering algorithms. In addition to that, the solution includes a section of data gen-

eration, in which are used some methods to create data, with an approximation to real situations.

To achieve that, techniques like normal distributions and cumulative probabilities are used, as

we will explain in the following sections. Fig. 3.1 depicts the model for the proposed solution.

The implementation can be described in the following four steps:

• phase 1: understand what attributes can be used to group students;

• phase 2: generate data using normal distributions and cumulative probabilities;

• phase 3: implement a methodology, based on clustering techniques, and test it with the

data;

• phase 4: evaluate the results.

14

Automatic Group Formation

3.3 Data Acquisition

According to [ABRA+18], there are three main data sources: existing databases with real data,

data simulation and empirical data. Originally, the goal was to use real data from FEUP students.

This would make easier the process of evaluating the results, that could be done by testing the

groups formed by the students involved and checking the results. However, due to problems

related to data protection, acquiring such data was not possible.

So, another option would be to use real data from available data sets related to students in-

formation. There are data sets online that fit this purpose, like [Stu]. However, most of them are

unavailable. Also, they often don’t have all the information required for this implementation. For

example, they tend to be very complete in terms of grades and activity of the students, but they are

poor in terms of personal data and preferences of students.

Based on that, the data acquisition method that will be used in this dissertation is data simula-

tion, since it is one of the most common approaches and we don’t need to depend on third parties

to have complete data. As expected, the data will not be randomly simulated. By doing that, one

could get data that does not simulate well a real environment. For example, if one predicted that

all grades from all students were 0, this would heavily impact the groups created.

Instead, the goal is to make use of distributions that try to approximate the most the data

simulated to real situations. By doing that, we can make sure the results can be adapted to real

scenarios.

3.4 Results evaluation

In terms of evaluating the results, several experiments were conducted, using different data gener-

ation methods, datasets and number of groups.

Also, we calculated some statistics that allowed to define the profile of the clusters. These

statistics include the means, standard deviation and homogeneity of the resulting clusters, provid-

ing useful information for the analysis of the results.

3.5 Data Generation

As mentioned in Chapter 3, the data used in the experiments was acquired through data simulation.

In this chapter there are presented the techniques used to overcome the problem of generating the

data required. The data generated are the course units’ grades, for each student. The data simu-

lation was performed through three aproaches presented in the following sections: fixed values,

using normal distributions, and using normal distributions and cumulative probabilities.

3.5.1 Fixed values

The first approach, and most simple, was to hard code values in order to create Low, Medium

and High tier students (where the Low tier represents students with lower grades and the High tier

15

Automatic Group Formation

represents the opposite). An example of this approach can be found in Table 3.1, where students

are identified in rows, unit courses in columns, and grades are the cells’ values between 0 and 20.

Table 3.1: Hard coded students’ grades

UC1 UC2 UC3 UC4 UC5 UC6
A 10 10 10 10 10 10
B 10 10 10 10 10 10
C 10 10 10 10 10 10
D 14 14 14 14 14 14
E 14 14 14 14 14 14
F 14 14 14 14 14 14
G 16 16 16 16 16 16
H 16 16 16 16 16 16
I 16 16 16 16 16 16
J 20 20 20 20 20 20
K 20 20 20 20 20 20
L 20 20 20 20 20 20

The data created through this method, besides not being accurate nor representing a good

simulation of reality, plays an important role in the interpretation of the results obtained, after the

clustering. The clear differences in the groups created allow us to take some conclusions about the

methodology implemented, since data can be generate in a way to demonstrate typical or extreme

situations. This is shown in more detail in the following chapters.

So, the approaches presented next rely on a Normal Distribution to define the academic profiles

of each student.

3.5.2 Using normal distribution

In the next attempts, we tried to use normal distributions of some attributes in order to obtain

realistic data.

In a brief explanation, the normal distribution (or Gaussian distribution) is a probability func-

tion, describing how the values of some attribute are distributed. This distribution can be repre-

sented by a bell curve, as depicted in Fig. 3.2.

Figure 3.2: Example of a Bell Curve

16

Automatic Group Formation

The normal distribution has some parameters that define the shape of the curve. The main

parameter is the mean, that defines the peak of the curve. The values of the distribution have

higher probability of being close to the mean value. Other important parameter is the standard

deviation. It defines how wide is the normal distribution and how far can the values diverge from

the mean.

Applying this concept to the problem in question, the mean parameter represents the mean of

the course units’ grades, in some cases, or the mean of the students’ grades, in others, as presented

next.

3.5.2.1 Mean of the course units

In the first attempt using a normal distribution, the goal was to generate grades for 12 students,

based on 6 course units1. Therefore, the values for the mean and standard deviation were arbitrary

chosen. An example is shown in Table 3.2.

Table 3.2: Example of course units means and standard deviations

Mean Standard Deviation
UC1 12 2
UC2 13 2
UC3 15 2
UC4 17 2
UC5 16 2
UC6 14 2

We opted to vary the values of the mean of each course unit from a range from 12 and 17, in

an attempt to simulate easier and harder course units, respectively. The standard deviation used

was 2 for each course unit.

When generating the distribution for the 12 students, the grades of each student were restricted

to a range of values from 7 to 20 (it is unrealistic to have students with grades lower than 7),

although the probability of obtaining these border values is low, according to the definition of the

normal distribution. An example of the results can be shown in Table 3.3.

However, this implementation presents a major setback. Since the grades of each course unit

are independent from each other, there can be a case where a student has very high grades in some

course units and very low grades in others. An example can be ssen in Table 3.4.

Student X represents an unrealistic case, because students often have similar grades in the

majority of the course units, and the values don’t diverge to extremes. This issue can be solved by

considering also the mean of students’ grades, as described next.

1The values 12 and 6 are for illustration purposes only. The methodology implemented allows to use any number of
students and course units.

17

Automatic Group Formation

Table 3.3: Grades generated according to the means of each course unit

UC1 UC2 UC3 UC4 UC5 UC6
A 14 13 17 19 18 14
B 12 12 16 18 14 17
C 10 15 15 20 15 12
D 8 13 12 20 18 15
E 17 16 16 15 13 16
F 16 13 17 14 16 15
G 13 15 16 17 14 15
H 15 13 14 16 13 17
I 12 14 12 15 17 11
J 9 14 18 16 17 14
K 13 11 14 14 16 13
L 16 10 15 11 16 13

Table 3.4: Possible grades of a student

UC1 UC2 UC3 UC4 UC5 UC6
X 10 9 11 17 18 19

3.5.2.2 Mean of the students’ grades

In the following approach, we aimed to improve the quality of the data generated by attempting

to solve the problem of extreme values in the grades. In order to do that, we decided to create a

normal distribution of the values of the means of the students.

Using the same set of students as in the previous experiment, we calculated a a normal dis-

tribution of the means of the student, using the parameters mean = 14 and standard deviation =

2.

After that, for each student we calculated a new distribution, using the mean of the student as

the mean parameter and keeping the standard deviation with the value of 2. This distribution was

used to calculate the grades of each course unit, for each student. The final results are presented

in Table 3.5.

Table 3.5: Grades generated according to the means of each student

Mean UC1 UC2 UC3 UC4 UC5 UC6
A 17 15 15 15 14 16 17
B 13 12 11 17 16 14 14
C 17 14 10 13 15 14 15
D 20 12 13 17 18 18 12
E 14 14 12 16 16 15 15
F 13 12 11 15 14 16 15
G 19 16 17 18 14 16 14
H 14 12 13 16 11 15 18
I 13 13 18 13 12 16 16
J 18 16 14 15 11 16 16
K 14 14 19 16 14 15 17
L 17 13 12 17 14 13 18

18

Automatic Group Formation

This experiment allowed us to obtain a more accurate generation of results, eliminating unre-

alistic cases, thus solving the problem of the previous solution.

3.5.3 Using normal distributions and cumulative probabilities

Although the previous solution presents plausible results, we decided to take the data generation

problem one step further, by combining the normal distribution of the course units’ grades and the

means of the students at the same time. An algorithm was developed and it works as follows:

Algorithm 1: Generate Population
Input: nStudents,mean,nUcs
GenPopulation (nStudents,mean,nUcs)

population := [];
names := generateNames(nStudents);
means := generateMeans(nStudents,mean);
ucsMeans := generateUcsMeans(nUcs,mean);
foreach mean mi ∈ means do

grades := generateRandomGrades(mi);
while not allGradesAssignedToUcs do

cumulProb := generateCumulativeProbabilities(ucsMeans)
g := getHighestGradeNotAssigned(grades);

rand := generateRandomNumber01();
ucAssigned := assignGradeToUc(g,rand);
removeUcAssigned(ucAssigned);
removeGrade(g);

end
student := appendNametoGrades(grades,names);
appendStudentToPopulation(student);

end
return population;

Algorithm 1 has 3 input parameters: n_students, the number of students to generate the grades

for; mean, the mean value of the students’ means; n_ucs, the number of course units to take into

account.

In the first step of the algorithm, it generates names for the students, represented by capital

letters (e.g. A, B, C, ...), as well as the means of each student. When generating the means, the

data created follows a normal distribution, using the mean parameter as input of the distribution.

There are defined the names of the course units, represented by the prefix "UC", followed by

a number (e.g. UC1, UC2, ...). Also, the list of course unit grades is created, using a normal

distribution with the mean parameter, and narrowing the values from 12 to 17. The reason for this

is that it is not plausible that a course unit has a mean of very high or very low values.

The second step is a loop that generates the grades of each student. Therefore, using the mean

of the student in question, a list of grades (with size equal to the n_ucs parameter) is created,

following a normal distribution. The list is then sorted by ascending order.

The third and final step is to assign each grade of the student to a specific course unit. So, in

first place, a list with the cumulative probabilities of each course unit is created (Table 3.6).

19

Automatic Group Formation

Table 3.6: Cumulative probabilities of the course units

Mean P(UCi) Cum P(UCi)
UC1 12 0.1363636364 0.1363636364
UC2 13 0.1477272727 0.2840909091
UC3 15 0.1704545455 0.4545454545
UC4 15 0.1704545455 0.625
UC5 16 0.1818181818 0.8068181818
UC6 17 0.1931818182 1

Then, using the highest grade of the students’ grades, it is assigned to a specific course unit,

using a random function that generates a value between 0 and 1. Both the highest grade and the

course unit it is assigned to are removed from the equation and the process is repeated until all

grades are assigned to a course unit.

This is done for all students. An example of the final results is shown in Table 3.7, for twelve

students and six unit courses.

Table 3.7: Grades generated using normal distribution and cumulative probabilities

UC1 UC2 UC3 UC4 UC5 UC6
A 11 12 12 12 12 12
B 14 12 13 12 14 12
C 11 14 13 15 14 14
D 15 16 16 17 17 18
E 13 12 15 14 12 14
F 12 12 12 12 12 11
G 18 16 16 17 16 16
H 13 15 14 14 14 15
I 11 13 12 13 12 11
J 11 14 13 15 12 12
K 12 13 12 12 13 12
L 12 11 11 10 11 12

20

Chapter 4

Implementation

As explained before in this dissertation, we want to solve the problem of assigning students to

groups, according to a specific criteria. Also, we aim to solve this problem using clustering tech-

niques. After looking to some of the existent implementations and techniques used to approach

this topic (presented in chapter 2), we decided to use an adaptation of the k-medoids algorithm,

which is a variation of the k-means algorithm.

4.1 K-medoids

The k-medoids algorithm works in a very similar way of the k-means algorithm, presented in 2.2.2.

One difference and advantage of k-medoids is in the step of selecting the centroid. In k-means,

the centroids are space points, representing the mean of the data points of each cluster. This

presents a drawback because, in case of extreme data points, the recalculation of the centroids can

result in improper clustering [Bha14]. Thus, k-means is sensitive to outliers.

K-medoids solves this problem because the centroids (medoids) chosen are the data points that

minimize the dissimilarity of the cluster. The dissimilarity is the difference between the point

labeled as the center of the cluster and the other points assigned to that cluster.

The impact of this difference in both algorithms is depicted in Fig. 4.1. In the figure we can

check that the rightmost data point is an outlier of the cluster. When calculating the centroid in

k-means the outlier will impact the mean of the cluster. However, when calculating the medoid in

k-medoids, since the medoid is a data point, it will be closer to all the others than to the outlier.

When trying to recompute the medoids, the k-medoids algorithm tries to find which point of

each cluster minimizes the intra-cluster dissimilarities. In order to do that, the algorithm swaps

each non-medoid point of the cluster with the medoid, trying to find the point that minimizes the

dissimilarity. This point is then used as medoid for the next iteration of the algorithm. When none

of the medoids change, it means the distance intra-cluster is minimal, and the algorithm as reached

a solution.

21

Implementation

Figure 4.1: Selection of a mean and a medoid. Extracted from [JH10]

Similarly to k-means, k-medoids also uses the same distance functions to calculate the distance

between points.

4.2 Adapted k-medoids

In our implementation, we use an adaptation of the k-medoids algorithm. It differs in some aspects,

because it is directed to the problem of creating groups of students.

So, the first difference is that we want to create groups of students of the same size and none

of the clustering techniques presented satisfies this restriction. Both k-means and k-medoids return

clusters of different sizes, depending on the profile of the data points.

To solve this problem, we added a restriction in the function used to assign a point to a cluster.

In first place, the cluster is characterized as full if the number of data points assigned to it is equal

to the total number of data points divided by k. Then, when assigning a new point to a cluster, if

it isn’t full, the point is added to that cluster. Otherwise, the algorithm checks if there is any point

of the cluster that has a distance to the centroid higher than the distance from the new point to

the centroid. If this happens, the point in the centroid is removed and replaced by the new point

and it has to be assigned to a new centroid. This is done until all points are assigned to a cluster.

Algorithm 2 explains this process.

The second difference is related to the distance function used. The most common used are the

Euclidean and Manhattan distance metrics. However, in our case, a simple distance metric isn’t

enough, since we want to be able to create homogeneous and heterogeneous groups. Also, another

component added to our algorithm is the fact that the user can give a weight to each of the unit

courses. This was done to give the ability to chose which course units have more or less impact

in the groups formed. It is useful because there are situations where some unit courses are more

related to the course unit in which we want to create the groups. Exemplifying, let’s suppose we

want to group students of a class in a course unit related to the subject of Artificial Intelligence.

Assuming we have information about the grades of 3 unit course grades of the students and that the

subjects of those course units were Machine Learning, Artificial Intelligence and Data Mining, it

makes sense that the unit course grades of the course unit with the subject of Artificial Intelligence

should impact the outcome the most.

22

Implementation

Algorithm 2: Assign point to cluster
Input: point,centroids,clusters
AssignoToCluster (point,centroids,clusters)

clusterToAssign := getClosestCluster(point,centroids);
if clusterToAssign is full then

if found newPoint with higher distance then
addToCluster(point,clusterToAssign);
assignToAnotherCluster(newPoint);

end
else

assignToNextClosestCluster(point);
end

end
else

addToCluster(point,clusterToAssign);
end

Therefore, in case of homogeneous groups, we used a variation of one of the most common

metrics. It was based on the Euclidean distance function, in which the distance between two points

is given by:

d(p,q) =

√
n

∑
i=1

(pi−qi)2 (4.1)

, where p and q are the data points and n is the number of attributes of the points.

Adding the weights to each class, the distance metric we used is defined by:

d(p,q) =

√
n

∑
i=1

(pi−qi)2 ∗weighti (4.2)

In case of heterogeneous groups, there isn’t any metric function that groups points by the

differences between them. So, we defined a new distance function with the purpose of solving this

problem. It is given by:

d(p,q) = MAX_GRADE−
n

∑
i=1

(| pi−qi | ∗weighti) (4.3)

, where d and p are data points, n is a the number of attributes of the points and MAX_GRADE

is the maximum grade a student can have (in our experiments, the value used was 20).

Through this equation, we can minimize the distances between points that are very different.

Table 4.1 shows an example of some points and the distance between them, applying the equation

presented in equation 4.3 and using the same weight to each unit course. As it can be seen, the

23

Implementation

Table 4.1: Distances between different points in heterogeneous groups

ATTR_1 ATTR_2 ATTR_3
A 20 20 20
B 18 18 18
C 2 2 2

DIST A B C
A - 18 2
B 18 - 4
C 2 4 -

distance between points A and B (d(A,B) = 18) is much greater than the distance between A and C

(d(A,C) = 2), although A is more similar to B than C.

4.3 Algorithm implemented

After solving these two issues, we came up with Algorithm 3.

Algorithm 3: Adapted K-Medoids pseudocode
Input: point,centroids,clusters
AdaptedKMedoids (data,k,metric)

centroids := choseRandomCentroids(data,k);
bestSolution := f alse;
while not bestSolution do

bestSolution := true;
clusters := calcClusters(data,centroids,metric);
cost := calcTotalCost(clusters,centroids,metric);
checked := [];
while checked.length() < data.length() - k do

newCentroids := calcNewCentroids(Data,checked,centroids,clusters);
newClusters := calcClusters(data,newCentroids,metric);
newCost := calcCost(newClusters,newCentroids,metric);
if newCost < cost then

bestSolution := f alse;
centroids := newCentroids;
cost := newCost;
checked := [];

end
else

checkd.append(newCentroids);
end

end
end
return clusters, cost;

The algorithm has three input parameters, the data we want to group, k, representing the num-

ber of groups to create, and the metric, which defines if the groups formed should be homogeneous

or heterogeneous (defined by the integers 0 and 1, respectively).

24

Implementation

First, there are arbitrated (in the method choseRandomCentroids()) k data points to be the

initial centroids of the clusters. Then, the algorithm begins a While cycle, where it initially assumes

it has the best solution. In the cycle, the clusters are calculated, using the centroids defined earlier,

along with the associated cost of the clusters formed. The total cost of the clusters is the sum of

the intra-cluster distances (described in equations 4.2 and 4.3, according to the metric defined).

Next, an array checked is created. This array is responsible for storing the centroids that

already were verified.

After that the algorithm enters a new loop, that tries to replace the current centroids with other

data points and check if the total cost of the clusters created decreases. If that happens, the points

selected become the new centroids, and the cycle repeats the process. If not, the non-centroid

points are added to the checked list. If, after trying all thenon-centroid data points, the total cost of

the clusters doesn’t decrease, it means the algorithm has reached the best solution, thus returning

the clusters created and the associated cost.

This implementation follows the principles of the K-medoids algorithm. Because of that, it

may present a problem, because k-medoids converges to a local optimum solution, meaning that

the final result depends on the data points selected as initial centroids. If the algorithm choses

initial centroids that decrease the most the intra-cluster cost it may not change and return that

solution. However, this doesn’t mean we couldn’t obtain a better solution by swapping some

points between different clusters.

Therefore, it is possible that the final solution isn’t necessarily the best overall solution. To

solve this probem, what we did was to run the algorithm several times, with different starting

points. After adding this, the final algorithm is defined in Algorithm 4. Although this solution

doesn’t guarantee the best solution, it highly decreases the probability of the algorithm being

stuck in a local optimum.

Algorithm 4: Group students pseudocode
Input: point,centroids,clusters
GroupStudents (data,k,metric)

cost := MAX_INT ;
clusters := [];
for i = 0 to 10 do

newclusters,newcost := AdaptedKMedoids(data,k,metric);
if newCost < cost then

clusters := newClusters;
cost := newCost;

end
end
return clusters, cost;

The implementation of all the pseudocode presented before was done using the Python pro-

gramming language, for its ease with working with lists and arrays. All the code is presented in

the Appendix.

25

Implementation

Table 4.2: Example of output file with the results

UC1 UC2 UC3 CLUSTER
A 10 20 20 cluster_0
B 20 20 20 cluster_0
C 16 16 16 cluster_0
D 13 13 13 cluster_0
E 10 10 10 cluster_1
F 10 10 10 cluster_1
G 2 2 2 cluster_1
H 2 2 2 cluster_1

Also, a simple command line interface was developed. Before calling the GroupStudents

method, the user has the ability of inserting a csv file with the data he wants to group or to use

automatic generation of data, described in section 3.5. He is also presented an option to define

weights for each course unit or to give the same weight to each course unit. In the end, the program

presents him the results in a file called groupedStudents.xlsx which contains the attributes of the

students and the group they were assigned to. An example can be seen in Table 4.2.

In the next chapter we will present some experiments done with this methodology and make

an analysis of the results obtained.

26

Chapter 5

Experiments and Evaluation

In order to conclude about the methodology implemented, some experiments were conducted

using the data generated in 3.5. So, in this chapter we will present what data was used and the

final results obtained with it. We will start by presenting results obtained with fixed and distinct

values, followed by results of experiments with data generated through normal distributions and

cumulative probabilities.

5.1 Experiments with fixed values

The purpose of this first experiment was to easily see how the process should work and how the

methodology behaves. The data used clearly divides the students in several levels and it is easy to

analyze the groups created and see that the algorithm worked as it should. This data is shown in

Table 5.1.

Table 5.1: Dataset of 12 students using fixed values

UC1 UC2 UC3
A 20 20 20
B 20 20 20
C 20 20 20
D 20 20 20
E 16 16 16
F 16 16 16
G 16 16 16
H 16 16 16
I 10 10 10
J 10 10 10
K 10 10 10
L 10 10 10

Using this dataset, let’s suppose we wanted to group the students in homogeneous groups of

4 students. Looking at the table, we can easily group the students by their similar grades, putting

27

Experiments and Evaluation

students A, B, C and D in a group, E, F, G and H in another and finally I, J, K and L. Similarly,

if we wanted to create groups of the 3 students, but heterogeneous, the groups would be [A, E, I],

[B, F, J], [C, G, K], [D, G, L], or variations of it (the restriction being that students with the same

grade can’t be in the same group).

As expected, the algorithm also returns the same results. We put this data in a csv file and

then fed it to the algorithm. In the first experiment, we used parameters k = 3 and metric = 0

(homogeneous groups). In the second experiment, we changed the parameters to be k = 4 and

metric = 1 (heterogeneous groups). The results of both experiments are presented in Tables 5.2

and 5.3, respectively.

Table 5.2: Homogeneous groups, k=3

UC1 UC2 UC3 CLUSTER
A 20 20 20 cluster_1
B 20 20 20 cluster_1
C 20 20 20 cluster_1
D 20 20 20 cluster_1
E 16 16 16 cluster_2
F 16 16 16 cluster_2
G 16 16 16 cluster_2
H 16 16 16 cluster_2
I 10 10 10 cluster_0
J 10 10 10 cluster_0
K 10 10 10 cluster_0
L 10 10 10 cluster_0

Table 5.3: Heterogeneous groups, k=3

UC1 UC2 UC3 CLUSTER
A 20 20 20 cluster_0
B 20 20 20 cluster_3
C 20 20 20 cluster_1
D 20 20 20 cluster_2
E 16 16 16 cluster_0
F 16 16 16 cluster_2
G 16 16 16 cluster_3
H 16 16 16 cluster_1
I 10 10 10 cluster_3
J 10 10 10 cluster_0
K 10 10 10 cluster_1
L 10 10 10 cluster_2

Although the result of the second experiment isn’t exactly like the one predicted in the begin-

ing, it follows the same principle, which was to assign students with the same grades to different

groups. As stated before, this experiment is for demonstration only, since the values of the grades

used don’t represent real situations.

5.2 Experiments using normal distributions and cumulative proba-
bilities

In the following experiments, we will present the results obtained using the generation of data

shown in Sections 3.5.2 and 3.5.3. In all the experiments, the attribute used for the mean parameter

of the distribution was 14. The first experiment was based on a dataset of 12 students and the

second uses a dataset of 24 students, with the objective of representing a real class environment.

5.2.1 Experiment 1 - 12 students

In this experiment, we tried to group 12 students in homogeneous and heterogeneous groups. We

chose a value of k = 4, and then compared the mean grade of each cluster created by the algorithm.

The dataset used was generated by the method described in 3.5.2. It can be consulted in Table 5.4.

28

Experiments and Evaluation

Table 5.4: Dataset of 12 students created with normal distribution

UC1 UC2 UC3 UC4 UC5 UC6
A 15 15 15 14 16 17
B 12 11 17 16 14 14
C 14 10 13 15 14 15
D 12 13 17 18 18 12
E 14 12 16 16 15 15
F 12 11 15 14 16 15
G 16 17 18 14 16 14
H 12 13 16 11 15 18
I 13 18 13 12 16 16
J 16 14 15 11 16 16
K 14 19 16 14 15 17
L 13 12 17 14 13 18

The results of running the algorithm to form both types of groups are shown in Tables 5.5 and

5.6.

Table 5.5: Results of homogenous groups

Homogeneous Groups
Clusters Cluster 0 Cluster 1 Cluster 2 Cluster 3
Names C E F A H J B D L G I K
UC1 14 14 12 15 12 16 12 12 13 16 13 14
UC2 10 12 11 15 13 14 11 13 12 17 18 19
UC3 13 16 15 15 16 15 17 17 17 18 13 16
UC4 15 16 14 14 11 11 16 18 14 14 12 14
UC5 14 15 16 16 15 16 14 18 13 16 16 15
UC6 15 15 15 17 18 16 14 12 18 14 16 17

Table 5.6: Results of heterogeneous groups

Heterogeneous Groups
Clusters Cluster 0 Cluster 1 Cluster 2 Cluster 3
Names E F K A D J B I L C G H
UC1 14 12 14 15 12 16 12 13 13 14 16 12
UC2 12 11 19 15 13 14 11 18 12 10 17 13
UC3 16 15 16 15 17 15 17 13 17 13 18 16
UC4 16 14 14 14 18 11 16 12 14 15 14 11
UC5 15 16 15 16 18 16 14 16 13 14 16 15
UC6 15 15 17 17 12 16 14 16 18 15 14 18

For better analysis of the groups created, we built charts with the means of the grades of the

students, for each cluster. They are presented in Figs. 5.1 and 5.2.

The results are very inconclusive about whether or not the algorithm performed well. As it can

be seen by the figures, there is not much difference in terms of the means of the clusters created.

Despite the fact that the students’ grades were generated through a normal distribution, their means

don’t vary that much. This could be related to two factors: the first being that the number of data

29

Experiments and Evaluation

Figure 5.1: Means of the homogeneous clusters Figure 5.2: Means of the heterogeneous clusters

generated was small (only 12 students); the second related to the standard deviation used, which

didn’t allow the means to be different from each other.

In order to find the source of this problem, we generated new data, but following the algorithm

developed in section 3.5.3. The dataset generated is shown in Table 5.7.

Table 5.7: Dataset of 12 students created with normal distribution and cumulative probabilities

UC1 UC2 UC3 UC4 UC5 UC6
A 13 14 14 13 13 12
B 16 14 15 16 17 14
C 8 9 9 9 11 8
D 9 10 9 11 10 10
E 13 11 10 12 13 13
F 18 18 17 18 18 17
G 12 12 14 12 15 13
H 15 14 13 13 14 15
I 13 12 13 12 14 12
J 14 15 14 15 14 13
K 15 14 15 15 14 15
L 14 12 16 14 15 16

Running the same methodology implemented in this data, the results were different, as it can

be seen in Tables 5.8 and 5.9 and Figs. 5.3 and 5.4.

Table 5.8: Results of homogenous groups

Homogeneous Groups
Clusters Cluster 0 Cluster 1 Cluster 2 Cluster 3
Names C D E B F L A G I H J K
UC1 8 9 13 16 18 14 13 12 13 15 14 15
UC2 9 10 11 14 18 12 14 12 12 14 15 14
UC3 9 9 10 15 17 16 14 14 13 13 14 15
UC4 9 11 12 16 18 14 13 12 12 13 15 15
UC5 11 10 13 17 18 15 13 15 14 14 14 14
UC6 8 10 13 14 17 16 12 13 12 15 13 15

Through this method of data generation, we can easily see the differences in the clusters cre-

ated. When creating homogeneous groups, the mean of the clusters is very different. We can

30

Experiments and Evaluation

Table 5.9: Results of heterogeneous groups

Homogeneous Groups
Clusters Cluster 0 Cluster 1 Cluster 2 Cluster 3
Names E F I A B G C K L D H J
UC1 13 18 13 13 16 12 8 15 14 9 15 14
UC2 11 18 12 14 14 12 9 14 12 10 14 15
UC3 10 17 13 14 15 14 9 15 16 9 13 14
UC4 12 18 12 13 16 12 9 15 14 11 13 15
UC5 13 18 14 13 17 15 11 14 15 10 14 14
UC6 13 17 12 12 14 13 8 15 16 10 15 13

Figure 5.3: Means of the homogeneous clusters Figure 5.4: Means of the heterogeneous clusters

obviously see that the students were divided by tiers. In the example of Fig. 5.3, the values di-

verge from a mean of 10 to 16. However, when we try to cluster the same set of students in an

heterogeneous way, the groups are much more balanced, only diverging from a mean of 13 to 14.

5.2.2 Experiment 2 - 24 students

The previous experiments allowed us to see how the data can impact the outcome of the method-

ology developed. However, the purpose of this experiment was to perform clustering in a dataset

that could represent a real life environment. Because of that, we used a dataset composed by 24

students that was generated by the algorithm developed in section 3.5.3. It can be consulted in

Appendix A, in A.1, as well as the results of the experiments conducted.

Several tests were conducted to simulate real class situations where the students have to group

themselves. The first test simulates a situation where the students have to work in pairs. Applying

our algorithm to this situation, we get the results presented in Figs. A.1 and A.2.

In the second experiment, the goal was to create 4 groups of 6 students each. We finally added

a third experiment, where we grouped the 24 students in 6 groups of 4 students. The results are

depicted in Figs. A.3, A.4, A.7 and A.8, for both tests.

For the last 2 experiments, we also calculated the standard deviation of the grades inside each

cluster. For the last experiment, Fig. 5.5 shows the standard deviation in homogeneous groups and

Fig. 5.6 in heterogeneous groups.

The graphics clearly indicate that the standard deviation in homogeneous groups reaches much

lower values than the standard deviation in heterogeneous groups. This is understandable, since

31

Experiments and Evaluation

Figure 5.5: Standard deviation of the homogeneous clusters

Figure 5.6: Standard deviation of the heterogeneous clusters

the means of students inside each homogeneous group are much similar to each other than the

means inside an heterogeneous group, where the students have very different grades.

5.3 Experiments changing the weights of the course units

This experiment had the goal of showing how the weights in the course units can impact the profile

of the groups created. In order to have results we could easily interpret, we used a dataset of fixed

values, presented in Table 5.10.

As the table shows, all students have the same grades in course units UC2 and UC3, being

UC1 the only that is different. When running the algorithm to form homogeneous groups with the

same weight applied to all course units, the result will be influenced by the grades of UC2 and

UC3, that define the best the profile of each student. The result of the clustering is shown in Table

5.11.

Now let’s assume that the activity we want to group students for is highly related to unit course

UC1. It would make sense to give a higher weight to this course unit than to the other two. So,

we defined weights of 60%, 20% and 20% for course units UC1, UC2 and UC3, respectively.

Running the algorithm again with these new parameters, the results were different, as described in

Table 5.12.

32

Experiments and Evaluation

Table 5.10: Dataset of 12 students generated by fixed values

UC1 UC2 UC3
A 20 10 10
B 10 10 10
C 20 10 10
D 10 10 10
E 16 16 16
F 20 16 16
G 16 16 16
H 20 16 16
I 16 20 20
J 16 20 20
K 10 20 20
L 10 20 20

Table 5.11: Groups formed using the same weights for each course unit

UC1 UC2 UC3 CLUSTER
A 20 10 10 cluster_0
B 10 10 10 cluster_0
C 20 10 10 cluster_0
D 10 10 10 cluster_0
E 16 16 16 cluster_1
F 20 16 16 cluster_1
G 16 16 16 cluster_1
H 20 16 16 cluster_1
I 16 20 20 cluster_2
J 16 20 20 cluster_2
K 10 20 20 cluster_2
L 10 20 20 cluster_2

Table 5.12: Groups formed using different weights for each course unit

UC1 UC2 UC3 CLUSTER
A 20 10 10 cluster_1
B 10 10 10 cluster_0
C 20 10 10 cluster_1
D 10 10 10 cluster_0
E 16 16 16 cluster_2
F 20 16 16 cluster_1
G 16 16 16 cluster_2
H 20 16 16 cluster_1
I 16 20 20 cluster_2
J 16 20 20 cluster_2
K 10 20 20 cluster_0
L 10 20 20 cluster_0

It shows that the algorithm gave much more importance to the grades of course unit UC1 than

the others, grouping the students according to that criteria.

33

Experiments and Evaluation

5.4 Homogeneity inside clusters

An interesting metric also tested in the experiments was the homogeneity inside clusters. This was

tested in homogeneous groups. Therefore, using the dataset of A.1, we ran the algorithm several

times, with different values for k. Each time, for each cluster, we calculated the amplitude of the

means of the cluster, given by the difference between the students of the cluster with the highest

and lowest mean. Then, we calculated the mean of the amplitudes of all clusters to get the average

amplitude of each run. The results can be consulted in Table 5.13. It shows that the homogeneity

intra-cluster is inversely proportional to the value of k.

Table 5.13: Variation of the intra-cluster homogeneity with k

k 3 4 6 8 12
Amplitude 3.67 3.25 2.03 1.25 0.64

5.5 Conclusions

After doing the previous experiments, we can conclude that the algorithm fulfills its purpose. It

can create groups in which the students have very similar grades and groups where the grades

diverge the most. This is mostly visible in the last experiments, where the dataset is large and

there is a higher probability of the students having different grades and means.

This said, it is also important to notice the relevance of the methods used for data generation.

As seen in the experiments, not all methods allowed to conclude about the efficiency of the al-

gorithm. In the case of the experiments done in Section 5.2.1, in which the data was generated

according to 3.5.2, the results were inconclusive, because both methods of grouping (homoge-

neous and heterogeneous) returned similar results. This happened due to the lack of diversity in

the data created, which makes us conclude that this methodology is somehow not useful in classes

where the characteristics of the students are all very similar. However, that is not the case in most

situations.

Another conclusion that can be made about the results is that, when creating heterogeneous

groups, the results of the means of the cluster tend to be closer to the mean parameter defined in

the data generation. In this specific case, all experiments were performed using a mean of 14, so

the clusters’ mean tend to be closer or equal to this value.

Concerning the weights of the course units, it can also be concluded that adding different

weights effectively impacts the outcome of the results in the clustering process.

With respect to the homogeneity intra-cluster, in homogeneous groups, we concluded that

the larger the group, the higher is its amplitude, since the means of the students, besides being

similar, will diverge more. This means that, when clustering homogeneous groups, we should

create groups with a small number of elements, in order to take advantage of the homogeneity of

the group.

34

Experiments and Evaluation

Finally, in terms of temporal efficiency of the algorithm, we present the runtimes of the several

experiments done in this phase. They are shown in Table 5.14.

Table 5.14: Execution time of the algrithm with different input parameters

Data k Type Time (ms)
Fixed 12 3 Homogeneous 49
values 12 4 Heterogeneous 54

12 4 Homogeneous 77
12 4 Heterogeneous 145

Normal 24 12 Homogeneous 226
distributions and 24 12 Heterogeneous 384

cumulative 24 4 Homogeneous 344
probabilities 24 4 Heterogeneous 376

24 6 Homogeneous 320
24 6 Heterogeneous 563

As expected, the greater the dataset is, the greater is the running time of the algorithm. How-

ever, the table shows that even for the same dataset the runtimes are not that consistent, as seen in

the last two experiments runtimes, for example. This can be due to the initial centroids selected.

If the algorithm selects the worst centroids in the beggining, it will take much longer to converge

to an optimum solution. On the other hand, if it choses the best points to be the centroids, it will

reach the best solution very fast.

Also, we can conclude that there is no clear relationship between the type of groups to form

and the runtime of the algorithm. Overall, it can be said that the runtime of the methodology is

preety fast, since it can run in less than a second for groups of 24 students, independently of the

number of groups to create.

35

Experiments and Evaluation

36

Chapter 6

Conclusions and Future Work

6.1 Final conclusions

In this dissertation there was presented the problem of automatic group formation, within the

scenario of effectively creating students groups in classes. The importance being given recently to

collaborative learning in the field of Educations makes this a current problem. So, it is crucial to

develop methodologies that aim to solve it.

In first place, we conclude that grouping students isn’t a standard clustering problem. It is not

as simple as grouping people by their similarities, since the groups depend on the type of activity

to develop. Also, we should give importance to all the atributes that can be used to characterize a

student. Not only the grades, but also more personal criteria, like preferences of the students. All

characteristics can impact the final result, depending on their weight.

Also, we conclude that, besides having good attributes, it is very important to gather enough

data to test the implementation. Specifically in our case, that wasn’t possible, so we had to resort

to data generation techniques. However, This data generated had a good approximation to reality,

combinig normal distributions of the course units’ grades and the means of students. It allowed us

to perform good experiments and have interesting results.

About the methodology implemented, it can be said that we managed to develop a solid algo-

rithm that is able to perform both types of clustering (homogeneous and heterogeneous) in very

fast runtimes, for considerable amounts of data. The results obtained by it are what was expected,

even when we defined diffrent weights for the attributes. The experiments conducted, along with

the statistics obtained from the results corroborate this conclusion.

In general, we can conclude that this was a challenging but rewarding project, that can be very

impactful in the future. Despite that, there is stil some work to be done, to ensure our methodology

is ready to be used in a real environment.

37

Conclusions and Future Work

6.2 Future Work

The first enhancement that can be done in the future is to add other important attributes (mentioned

before) in addition to the grades, followed by a new experimentation phase to conclude about the

importance of each attribute.

Another improvement that should be implemented in this project is to include a mechanism

of reinforcement learning that is able to take the results of an activity and use them to help future

processes of grouping. Also, the grouping process should not be static, but continuous instead, a

students’ preferences or grouping requirements can change with time.

Finally, after adding these two components, the methodology should be subjected to real life

environments, to evaluate its efficiency in the task of grouping students.

38

References

[AA13] Raed T Aldahdooh and Wesam Ashour. DIMK-means "Distance-based Initializa-
tion Method for K-means Clustering Algorithm". Intelligent Systems and Applica-
tions, 02:41–51, 2013.

[ABRA+18] Ewa Andrejczuk, Rita Berger, Juan A. Rodriguez-Aguilar, Carles Sierra, and Víc-
tor Marín-Puchades. The composition and formation of effective teams: computer
science meets organizational psychology, volume 33. 2018.

[AMCM83] John R. (John Robert) Anderson, Ryszard S. (Ryszard Stanisław) Michalski, Jaime
G. (Jaime Guillermo) Carbonell, and Tom M. (Tom Michael) Mitchell. Machine
learning : an artificial intelligence approach. M. Kaufmann, 1983.

[AS95] Khaled S. Al-Sultan. A Tabu search approach to the clustering problem. Pattern
Recognition, 28(9):1443–1451, 9 1995.

[Bha14] Aruna Bhat. K-medoids clustering using partitioning around medoids for perform-
ing face recognition. International Journal of Soft Computing, Mathematics and
Control, 3(3):1–12, 2014.

[Del02] Frank Dellaert. The Expectation Maximization Algorithm. Technical report, 2002.

[Fle01] Neil D. Fleming. Teaching and learning styles : VARK strategies. Neil Fleming,
2001.

[Glo89] Fred Glover. Tabu Search - Part I. Technical Report 3, 1989.

[HFH+09] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H. Witten. The WEKA data mining software. ACM SIGKDD Explorations
Newsletter, 11(1):10–18, 11 2009.

[HFKB12] Kurt Hornik, Ingo Feinerer, Martin Kober, and Christian Buchta. Spherical k-Means
Clustering. Journal of Statistical Software, 50(10):103–114, 2012.

[Hüb10] Roland Hübscher. Assigning students to groups using general and context-specific
criteria. IEEE Transactions on Learning Technologies, 3(3):178–189, 2010.

[JD88] Anil K. Jain and Richard C. Dubes. Algorithms for clustering data. Prentice Hall,
1988.

[JH10] Xin Jin and Jiawei Han. K-Medoids Clustering, pages 564–565. Springer US,
Boston, MA, 2010.

[JMF99] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM Computing
Surveys, 31(3):264–323, 9 1999.

39

REFERENCES

[KDHB17] Tina Knez, Martina Holenko Dlab, and Natasa Hoic-Bozic. Implementation of
group formation algorithms in the ELARS recommender system. International
Journal of Emerging Technologies in Learning, 12(11):198–207, 2017.

[KS10] Nobel Khandaker and Leen Kiat Soh. ClassroomWiki: A collaborative Wiki for
instructional use with multiagent group formation. IEEE Transactions on Learning
Technologies, 3(3):190–202, 2010.

[LSS10] Walter L Leite, Marilla Svinicki, and Yuying Shi. Attempted Validation of the
Scores of the VARK: Learning Styles Inventory With Multitrait-Multimethod Con-
firmatory Factor Analysis Models. Validity Studies Educational and Psychological
Measurement, 70(2):323–339, 2010.

[MKS+15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, He-
len King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis.
Human-level control through deep reinforcement learning. Nature, 518, 2015.

[MOW17] Elizaphan M. Maina, Robert O. Oboko, and Peter W. Waiganjo. Using Machine
Learning Techniques to Support Group Formation in an Online Collaborative Learn-
ing Environment. International Journal of Intelligent Systems and Applications,
9(3):26–33, 2017.

[PKLMH96] Leslie Pack Kaelbling, Michael L Littman, Andrew W Moore, and Smith Hall. Re-
inforcement Learning: A Survey. Technical report, 1996.

[SB98] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. IEEE Trans-
actions on Neural Networks, 9(5):1054–1054, 9 1998.

[SB15] Ivan Srba and Maria Bielikova. Dynamic group formation as an approach to collab-
orative learning support. IEEE Transactions on Learning Technologies, 8(2):173–
186, 2015.

[SKKR01] Badrul Sarwar, George Karypis, Joseph Konstan, and John Reidl. Item-based col-
laborative filtering recommendation algorithms. In Proceedings of the tenth inter-
national conference on World Wide Web - WWW ’01, pages 285–295, New York,
New York, USA, 2001. ACM Press.

[SKS06] G. Stahl, T. Koschmann, and D. Suthers. Computer-supported collaborative learn-
ing: An historical perspective. Cambridge handbook of the learning sciences, pages
409–426, 2006.

[SM80] Ryszard S. Michalski. Knowledge Acquisition Through Conceptual Clustering: A
Theoretical Framework and an Algorithm for Partitioning Data into Conjunctive
Concepts. Journal of Policy Analysis and Information Systems, 4:219–244, 1980.

[SS15] Anurag Sarkar and Dibyabiva Seth. A New Approach to Collaborative Group For-
mation. 128(3):7–14, 2015.

[Stu] Students’ Academic Performance Dataset | Kaggle.

40

REFERENCES

[Sun07] Sung-Hyuk Cha. Comprehensive Survey on Distance/Similarity Measures between
Probability Density Functions. International Journal of Mathematical Models and
Methods in Applied Sciences, 1(4):300–307, 2007.

[Woo09] Michael J. Wooldridge. An introduction to multiagent systems. John Wiley & Sons,
2009.

41

REFERENCES

42

Appendix A

Experiments with 24 students

A.1 Dataset

Table A.1: Dataset of 24 students created with normal distributions and cumulative probabilities

UC1 UC2 UC3 UC4 UC5 UC6
A 13 12 11 12 11 13
B 17 14 16 16 15 14
C 14 16 14 12 14 14
D 16 16 16 17 17 16
E 7 8 9 9 9 7
F 12 13 12 12 13 11
G 11 15 13 15 13 12
H 14 14 14 13 13 13
I 15 15 16 15 15 17
J 11 12 11 10 11 11
K 11 12 11 12 12 11
L 12 13 14 11 13 14
M 14 13 15 17 14 13
N 14 15 14 14 12 13
O 14 17 14 15 15 15
P 16 16 16 17 17 19
Q 14 14 16 15 15 15
R 10 11 10 10 9 10
S 15 15 16 15 16 16
T 12 11 10 10 11 9
U 16 13 13 13 14 14
V 15 15 13 15 14 14
W 19 17 18 18 19 19
X 16 14 15 15 15 14

43

Experiments with 24 students

A.2 Results of the students working in pairs

Table A.2: Results of the homogeneous groups created

Homogeneous Groups
Clusters Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
Names G M U V D S F L H N B X
UC1 11 14 16 15 16 15 12 12 14 14 17 16
UC2 15 13 13 15 16 15 13 13 14 15 14 14
UC3 13 15 13 13 16 16 12 14 14 14 16 15
UC4 15 17 13 15 17 15 12 11 13 14 16 15
UC5 13 14 14 14 17 16 13 13 13 12 15 15
UC6 12 13 14 14 16 16 11 14 13 13 14 14

Homogeneous Groups
Clusters Cluster 6 Cluster 7 Cluster 8 Cluster 9 Cluster 10 Cluster 11
Names J K E R A T I Q P W C O
UC1 11 11 7 10 13 12 15 14 16 19 14 14
UC2 12 12 8 11 12 11 15 14 16 17 16 17
UC3 11 11 9 10 11 10 16 16 16 18 14 14
UC4 10 12 9 10 12 10 15 15 17 18 12 15
UC5 11 12 9 9 11 11 15 15 17 19 14 15
UC6 11 11 7 10 13 9 17 15 19 19 14 15

Table A.3: Results of the heterogeneous groups created

Heterogeneous Groups
Clusters Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
Names R S G U A B I K C M L Q
UC1 10 15 11 16 13 17 15 11 14 14 12 14
UC2 11 15 15 13 12 14 15 12 16 13 13 14
UC3 10 16 13 13 11 16 16 11 14 15 14 16
UC4 10 15 15 13 12 16 15 12 12 17 11 15
UC5 9 16 13 14 11 15 15 12 14 14 13 15
UC6 10 16 12 14 13 14 17 11 14 13 14 15

Heterogeneous Groups
Clusters Cluster 6 Cluster 7 Cluster 8 Cluster 9 Cluster 10 Cluster 11
Names H V N X E W F O D J P T
UC1 14 15 14 16 7 19 12 14 16 11 16 12
UC2 14 15 15 14 8 17 13 17 16 12 16 11
UC3 14 13 14 15 9 18 12 14 16 11 16 10
UC4 13 15 14 15 9 18 12 15 17 10 17 10
UC5 13 14 12 15 9 19 13 15 17 11 17 11
UC6 13 14 13 14 7 19 11 15 16 11 19 9

44

Experiments with 24 students

Figure A.1: Means of the homogeneous clusters

Figure A.2: Means of the heterogeneous clusters

45

Experiments with 24 students

A.3 Results of the students working in groups of 6

Table A.4: Results of the homogeneous groups created

Homogeneous Groups
Clusters Cluster 0 Cluster 1
Names C F H L M N B D I P Q S
UC1 14 12 14 12 14 14 17 16 15 16 14 15
UC2 16 13 14 13 13 15 14 16 15 16 14 15
UC3 14 12 14 14 15 14 16 16 16 16 16 16
UC4 12 12 13 11 17 14 16 17 15 17 15 15
UC5 14 13 13 13 14 12 15 17 15 17 15 16
UC6 14 11 13 14 13 13 14 16 17 19 15 16

Homogeneous Groups
Clusters Cluster 2 Cluster 3
Names A E J K R T G O U V W X
UC1 13 7 11 11 10 12 11 14 16 15 19 16
UC2 12 8 12 12 11 11 15 17 13 15 17 14
UC3 11 9 11 11 10 10 13 14 13 13 18 15
UC4 12 9 10 12 10 10 15 15 13 15 18 15
UC5 11 9 11 12 9 11 13 15 14 14 19 15
UC6 13 7 11 11 10 9 12 15 14 14 19 14

Table A.5: Results of the heterogeneous groups created

Heterogeneous Groups
Clusters Cluster 0 Cluster 1
Names G H L N O U C M Q T V X
UC1 11 14 12 14 14 16 14 14 14 12 15 16
UC2 15 14 13 15 17 13 16 13 14 11 15 14
UC3 13 14 14 14 14 13 14 15 16 10 13 15
UC4 15 13 11 14 15 13 12 17 15 10 15 15
UC5 13 13 13 12 15 14 14 14 15 11 14 15
UC6 12 13 14 13 15 14 14 13 15 9 14 14

Heterogeneous Groups
Clusters Cluster 2 Cluster 3
Names B D E I P S A F J K R W
UC1 17 16 7 15 16 15 13 12 11 11 10 19
UC2 14 16 8 15 16 15 12 13 12 12 11 17
UC3 16 16 9 16 16 16 11 12 11 11 10 18
UC4 16 17 9 15 17 15 12 12 10 12 10 18
UC5 15 17 9 15 17 16 11 13 11 12 9 19
UC6 14 16 7 17 19 16 13 11 11 11 10 19

46

Experiments with 24 students

Figure A.3: Means of the homogeneous clusters

Figure A.4: Means of the heterogeneous clusters

47

Experiments with 24 students

Figure A.5: Standard deviation of the homogeneous clusters

Figure A.6: Standard deviation of the heterogeneous clusters

48

Experiments with 24 students

A.4 Results of the students working in groups of 4

Table A.6: Results of the homogeneous groups created

Homogeneous Groups
Clusters Cluster 0 Cluster 1 Cluster 2
Names B I Q X D P S W C H N O
UC1 17 15 14 16 16 16 15 19 14 14 14 14
UC2 14 15 14 14 16 16 15 17 16 14 15 17
UC3 16 16 16 15 16 16 16 18 14 14 14 14
UC4 16 15 15 15 17 17 15 18 12 13 14 15
UC5 15 15 15 15 17 17 16 19 14 13 12 15
UC6 14 17 15 14 16 19 16 19 14 13 13 15

Homogeneous Groups
Clusters Cluster 3 Cluster 4 Cluster 5
Names E J R T A F K L G M U V
UC1 7 11 10 12 13 12 11 12 11 14 16 15
UC2 8 12 11 11 12 13 12 13 15 13 13 15
UC3 9 11 10 10 11 12 11 14 13 15 13 13
UC4 9 10 10 10 12 12 12 11 15 17 13 15
UC5 9 11 9 11 11 13 12 13 13 14 14 14
UC6 7 11 10 9 13 11 11 14 12 13 14 14

Table A.7: Results of the heterogeneous groups created

Heterogeneous Groups
Clusters Cluster 0 Cluster 1 Cluster 2
Names J M Q V A F T W B O R X
UC1 11 14 14 15 13 12 12 19 17 14 10 16
UC2 12 13 14 15 12 13 11 17 14 17 11 14
UC3 11 15 16 13 11 12 10 18 16 14 10 15
UC4 10 17 15 15 12 12 10 18 16 15 10 15
UC5 11 14 15 14 11 13 11 19 15 15 9 15
UC6 11 13 15 14 13 11 9 19 14 15 10 14

Heterogeneous Groups
Clusters Cluster 3 Cluster 4 Cluster 5
Names D G H L E I P S C K N U
UC1 16 11 14 12 7 15 16 15 14 11 14 16
UC2 16 15 14 13 8 15 16 15 16 12 15 13
UC3 16 13 14 14 9 16 16 16 14 11 14 13
UC4 17 15 13 11 9 15 17 15 12 12 14 13
UC5 17 13 13 13 9 15 17 16 14 12 12 14
UC6 16 12 13 14 7 17 19 16 14 11 13 14

49

Experiments with 24 students

Figure A.7: Means of the homogeneous clusters

Figure A.8: Means of the heterogeneous clusters

50

Experiments with 24 students

Figure A.9: Standard deviation of the homogeneous clusters

Figure A.10: Standard deviation of the heterogeneous clusters

51

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Project
	1.3 Motivation and Objectives
	1.4 Document Structure

	2 Literature Review
	2.1 Introduction
	2.2 Clustering implementations
	2.2.1 Clustering
	2.2.2 K-Means Algorithm
	2.2.3 Tabu Search
	2.2.4 Multi-agent systems

	2.3 Reinforcement Learning
	2.4 Conclusions

	3 Automatic Group Formation
	3.1 Problem definition
	3.2 Proposed Solution
	3.3 Data Acquisition
	3.4 Results evaluation
	3.5 Data Generation
	3.5.1 Fixed values
	3.5.2 Using normal distribution
	3.5.3 Using normal distributions and cumulative probabilities

	4 Implementation
	4.1 K-medoids
	4.2 Adapted k-medoids
	4.3 Algorithm implemented

	5 Experiments and Evaluation
	5.1 Experiments with fixed values
	5.2 Experiments using normal distributions and cumulative probabilities
	5.2.1 Experiment 1 - 12 students
	5.2.2 Experiment 2 - 24 students

	5.3 Experiments changing the weights of the course units
	5.4 Homogeneity inside clusters
	5.5 Conclusions

	6 Conclusions and Future Work
	6.1 Final conclusions
	6.2 Future Work

	References
	A Experiments with 24 students
	A.1 Dataset
	A.2 Results of the students working in pairs
	A.3 Results of the students working in groups of 6
	A.4 Results of the students working in groups of 4

