
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Implementing a Multi-Approach
Debugging of Industrial IoT Workflows

Andreia Cristina de Almeida Rodrigues

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Hugo Sereno Ferreira

Second Supervisor: João Pedro Dias

External Supervisor: José Pedro Silva

July 3, 2019

Implementing a Multi-Approach Debugging of Industrial
IoT Workflows

Andreia Cristina de Almeida Rodrigues

Mestrado Integrado em Engenharia Informática e Computação

Approved in oral examination by the committee:

Chair: Prof. Filipe Figueiredo Correia, PhD

External Examiner: Prof. Ângelo Martins, PhD

Supervisor: Prof. Hugo Sereno Ferreira, PhD

July 3, 2019

Abstract

Industry 4.0 is revolutionizing the way factories compete in the market, aiming to achieve a higher
level of operational efficiency and productivity by augmenting the level of automatization in fac-
tories.

Industrial Internet-of-Things (IIoT), the subset of the Internet of Things specific to industrial
applications, results from the addition of sensing and actuating capabilities to industrial environ-
ments to improve the overall manufacturing processes. It focuses on making the manufacturing
process more efficient, sustainable and autonomous, resulting in overall money and time savings.
Supply chains become dynamic interconnected systems, boosting operational efficiency and re-
ducing detection and troubleshooting time through the collection of data captured by the sensors
and actuators integrated into the shop-floor machinery. This enables real-time monitoring of the
production line which supports the advanced maintenance process, meant to ensure optimal per-
formance of the manufacturing system at all times, avoiding machine downtime and detecting
execution failures as soon as they happen with suitable debugging systems. These failures are
hard to reproduce due to the nature of IIoT systems, with the non-determinism of concurrent pro-
cesses, the time-sensitive nature of applications and partial failures that may occur. Therefore, the
debugging system needs to be directly connected to the device when the exception or crash occurs,
capturing information from these devices in real-time.

Some of these systems have highly-complex tasks and operations and need to be programmed
accordingly. The use of visual programming (i.e. visual workflows) is common in these systems
due to the abstraction they provide. The integration of workflows in the maintenance process
simplifies the representation of operations and thus the understanding of the system’s execution,
allowing the common factory worker with close to none IT-knowledge to accurately identify and
report system failures as soon as they happen. However, these programming environments have
several deficiencies on what regards debugging capabilities, mostly due to the constraints that
difficult the use of traditional mechanisms.

The work presented in this dissertation approaches these issues, delving into the design and
implementation of a multi-strategy debugging mechanism into a commercial-grade Manufacturing
Execution System. We intend to design, construct and test/evaluate a prototype to demonstrate the
feasibility of both synchronized and snapshot remote debugging applied to IIoT automation work-
flows. The main goal is to achieve is a 0-downtime workflow remote debug approach, contem-
plating the design and implementation of a suitable debugging protocol and a supporting platform
where workflows can be easily configurable, monitored and debugged.

To validate the approach, a proof-of-concept was developed and validated against different
debugging scenarios. Such solution eases the maintenance process, providing the means for the
detection of failures for both simulated and real-time production shop-floor execution systems,
thus minimizing incorrect machinery behavior and machine inactivity due to failures, consequently
reducing resource losses and improving production efficiency.

i

ii

Resumo

A Indústria 4.0 está a revolucionar a maneira como as fábricas competem no mercado, tendo
como objetivo alcançar um mais alto nível de eficiência operacional e de produtividade, através
do aumento do nível de automatização nas fábricas.

A Internet das Coisas Industrial (IIoT), o subconjunto da Internet das Coisas específica para
aplicações industriais, resulta da adição de capacidades de deteção e atuação a ambientes indus-
triais para melhorar os processos gerais de fabrico. Este tipo de IoT concentra-se em tornar o
processo de manufatura mais eficiente, sustentável e autónomo, resultando na poupança de tempo
e dinheiro. As cadeias de fornecimento tornam-se sistemas dinâmicos e interconectados, aumen-
tando a eficiência operacional e reduzindo o tempo de deteção e resolução de problemas através
da recolha dos dados capturados pelos sensores e atuadores integrados nas máquinas em execução
no chão de fábrica. Isso permite a monitoração da linha de produção, em tempo real, suportando o
processo de manutenção avançada, garantindo o desempenho ideal do sistema de manufatura em
todos os momentos, evitando paragens inesperadas de máquinas e detetando falhas de execução
assim que estas ocorrem, com sistemas de debugging adequados. Estas falhas são difíceis de re-
produzir devido à natureza dos sistemas IIoT, com o não determinismo de processos concorrentes,
a sensibilidade à passagem do tempo e a falhas parciais que podem ocorrer. Por estas razões, um
sistema de debugging deve estar diretamente ligado aos dispositivos IIoT quando as anomalias ou
falhas ocorrem, capturando informações dos dispositivos em tempo real.

Alguns destes sistemas têm tarefas e operações altamente complexas e precisam ser progra-
mados adequadamente. O uso de programação visual (ou seja, representação visual dos fluxos de
trabalho) é comum nesses sistemas devido à abstração que é fornecida. A integração de fluxos de
trabalho, através de programação visual, no processo de manutenção simplifica a representação
das operações e, assim, a compreensão da execução do sistema, permitindo que um trabalhador
comum da fábrica, sem conhecimento específico de IT, consiga identificar e comunicar com pre-
cisão as falhas do sistema assim que elas ocorrem. No entanto, esses ambientes de programação
têm algumas deficiências em relação aos recursos para fazer debugging, principalmente devido às
restrições deste tipo de sistemas, que dificultam o uso de mecanismos tradicionais.

O trabalho apresentado nesta dissertação aborda essas questões, através do design e da imple-
mentação de um mecanismo de debugging multiestratégia num Manufacturing Execution System
comercial. Pretendemos fazer o design, construir e testar/avaliar um protótipo para demonstrar
a viabilidade de debug remoto, em modo sincronizado ou com snapshots, aplicada aos fluxos
de trabalho de automação em sistemas IIoT. O principal objetivo é alcançar uma abordagem de
debugging remoto de um fluxo de trabalho sem latência, contemplando a construção e a imple-
mentação de um protocolo de debugging adequado e de uma plataforma para suporte, na qual os
fluxos de trabalho podem ser facilmente configurados e monitorados, permitindo o debug destes
fluxos durante a sua execução.

Para validar a abordagem, foi desenvolvida e validada a prova de conceito elaborada, con-
siderando diferentes cenários de debugging. Esta solução facilita o processo de manutenção,

iii

fornecendo meios para a deteção de falhas em sistemas de execução simulados ou em tempo real
aquando em produção, minimizando o comportamento incorreto e a inatividade das máquinas no
chão de fábrica, devido à ocorrência de falhas, consequentemente reduzindo as perdas de recursos
e melhorando a eficiência da produção.

iv

Acknowledgements

First of all, I would like to thank my supervisor Hugo Sereno Ferreira and co-supervisor João
Pedro Dias for the help and guidance given during the realization of this dissertation. Without
their suggestions on how to improve my work, this project would not have achieved the present
quality.

I would also like to thank my supervisors at Critical Manufacturing, José Pedro Silva for the
suggestions on how to improve the development of this project and Micael Queiroz for the constant
availability to provide input regarding the project’s state and all the time spent helping me figure
out why my code wasn’t working.

Special thanks to my boyfriend Eduardo Leite for all the support and motivation, inspiring me
every day to learn more and to get better at what I do.

Last but not least, I want to express my gratitude to my friends and family, for the support and
trust, allowing me to make my own decisions which took me to where I am now.

Andreia Cristina de Almeida Rodrigues

v

vi

“Things that matter most must never be at the mercy of things that matter least.”

Johann Wolfgang von Goethe

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Aims and Goals . 3
1.4 Dissertation Structure . 4

2 Background 7
2.1 Industry 4.0 . 7

2.1.1 Internet of Things . 9
2.1.2 Industrial Internet Of Things . 10
2.1.3 Summary . 12

2.2 Manufacturing Execution Systems . 13
2.2.1 Overview . 13
2.2.2 Critical Manufacturing MES . 17
2.2.3 Summary . 21

2.3 Software Development Life Cycle . 22
2.3.1 Software Development Life Cycle For Industrial Systems 24
2.3.2 Software Maintenance . 26
2.3.3 Software Maintenance in Industrial Systems 29
2.3.4 Summary . 30

2.4 Debugging . 31
2.4.1 Remote Debugging . 32
2.4.2 Debugging on Industrial Systems . 32
2.4.3 Summary . 34

2.5 Conclusions . 35

3 Related Work 37
3.1 Remote Debugging . 37

3.1.1 JPDA/JVM . 37
3.1.2 TOD . 38
3.1.3 Visual Studio Remote Debugger . 38
3.1.4 GDB . 38
3.1.5 Rivet . 39
3.1.6 Vorlon . 39
3.1.7 ELIoT . 39
3.1.8 SLDSharp . 40
3.1.9 Summary . 40

3.2 Workflow Debugging . 40

ix

CONTENTS

3.2.1 Real-Time Workflow Monitor . 41
3.2.2 Stampede . 41
3.2.3 Node-RED . 41
3.2.4 Zenodys . 42
3.2.5 Summary . 42

3.3 Remote Debugging Protocols . 43
3.3.1 GDB Remote Serial Protocol . 43
3.3.2 Java Debug Wire Protocol . 43
3.3.3 JSON/HTTP Communication Protocol 43

3.4 Conclusions . 44

4 Problem Statement 45
4.1 Current Issues . 45
4.2 Case Study . 46
4.3 Desiderata . 47
4.4 Solution Proposal . 48
4.5 Methodology . 49
4.6 Conclusions . 49

5 Solution Overview 51
5.1 Connection Preparation . 54
5.2 Debug Session . 56
5.3 Conclusions . 63

6 Evaluation 65
6.1 Experimental Setup . 65
6.2 Simulated Scenarios . 67

6.2.1 Scenario 1 - Available machines running the workflow 67
6.2.2 Scenario 2 - Handling disconnections 67
6.2.3 Scenario 3 - Successful connection with a machine 67
6.2.4 Scenario 4 - Handling connection events (disconnection and re-connection)

with a machine . 67
6.2.5 Scenario 5 - Synchronous session correctly receives the workflow state

upon reaching a breakpoint . 69
6.2.6 Scenario 6 - Synchronous session ignores any other events whilst waiting

for a “Resume” command . 70
6.2.7 Scenario 7 - Snapshot session correctly receives the workflow state upon

reaching a breakpoint and doesn’t interfere with the workflow’s execution 70
6.2.8 Scenario 8 - Snapshot session holds to an execution context and ignores

all events from other execution contexts 70
6.2.9 Scenario 9 - Profiler session captures all events from all execution contexts

and shows this registry in chronological order upon reaching the “replay
mode” . 70

6.2.10 Scenario 10 - Workflow availability whilst involved in a synchronous de-
bug session . 72

6.2.11 Scenario 11 - Workflow availability whilst involved in one or more snap-
shot or profiler debug sessions . 72

6.2.12 Scenario 12 - Synchronous debug session breakpoint changes 75
6.2.13 Scenario 13 - Synchronous debug session breakpoint state changes 75

x

CONTENTS

6.2.14 Scenario 14 - Snapshot and profiler debug session breakpoint changes dis-
abled . 76

6.2.15 Scenario 15 - Debug sessions of the same workflow happening in different
machines don’t compromise the workflow availability of each other . . . 77

6.3 Conclusions . 77

7 Conclusions and Future Work 79
7.1 Summary . 79
7.2 Main Contributions . 81
7.3 Future Work . 81

References 83

xi

CONTENTS

xii

List of Figures

2.1 Timeline from the first industrial revolution to Industry 4.0. 8
2.2 Statistics based upon 1600 enterprise IoT projects circa 2018. 10
2.3 Three-tier IIoT system architecture. 13
2.4 Automation pyramid. 15
2.5 Critical Manufacturing MES V7 modules. 18
2.6 Automation Controller workflow designer interface. 21
2.7 IoMT (Internet of Manufacturing Things) architecture. 21
2.8 Software development life cycle phases. 23
2.9 Analog input and output to a PLC. 24
2.10 A simple PLC application. 26
2.11 SDLC V-Model. 26
2.12 Example of the maintenance process. 27
2.13 Example of error propagation. 29
2.14 Example of an environment for remote debugging of an application. 33

5.1 Dropdown list added to the MES interface for choosing the debug mode to debug
the selected workflow. 52

5.2 Visual representation of the protocol messages interaction to query the Automation
Controller instance availability. 54

5.3 Available Automation Controller instances list. 55
5.4 Visual representation of the protocol messages interaction to initialize the commu-

nication between the selected Automation Controller instance and the MES instance. 56
5.5 Example of workflow unavailability. 57
5.6 Visual representation of the protocol messages interaction to ensure the connection

between the Automation Controller instance and the MES instance, and to obtain
the workflow’s running and availability status. 58

5.7 Visual representation of the protocol messages interaction for starting a debug
session. 59

5.8 Example of the task inputs provided by the user for the Mock Debug. 59
5.9 Example of an active breakpoint and how it is shown to the user. 60
5.10 Illustration of the different execution contexts that are created when a change is

detected in the equipment. 60
5.11 Visual representation of the protocol messages interaction for notifying the MES

instance of variable changes (with breakpoints) on the Automation Controller in-
stance. 62

5.12 Visual representation of the protocol messages interaction for stopping a debug
session. 63

xiii

LIST OF FIGURES

5.13 Visual representation of the protocol messages interaction for changing the break-
points during a synchronous debug session. 63

6.1 OPC UA server used for simulating variable changes in an equipment using the
OPC UA protocol. 66

6.2 Workflow used for validating the functionalities implemented in the solution. . . 66
6.3 Illustration of the simulated scenarios 6.2.1 and 6.2.3 68
6.4 Illustration of the simulated scenarios 6.2.2 and 6.2.4. 69
6.5 Illustration of the simulated scenario 6.2.5. 71
6.6 Illustration of the simulated scenario 6.2.6. 72
6.7 Illustration of the simulated scenarios 6.2.7 and 6.2.8. 73
6.8 Illustration of the simulated scenario 6.2.9. 74
6.9 Illustration of the simulated scenario 6.2.10. 75
6.10 Illustration of the simulated scenario 6.2.11. 76
6.11 Illustration of the simulated scenario 6.2.14. 77

xiv

List of Tables

2.1 Set of functions assigned to Manufacturing Execution Systems according to ISA-
95, MESA, and VDI. 16

2.2 MES solutions comparison. 19
2.3 Features used for the MES solutions comparison. 20
2.4 IoMT (Internet of Manufacturing Things) components. 20
2.5 Software maintenance categories. 28

3.1 Comparison between the different remote debugging solutions presented. 40
3.2 Comparison between the different workflow debugging solutions presented. . . . 42

5.1 Remote debugging protocol developed. 53

xv

LIST OF TABLES

xvi

Abbreviations

ACI Automation Controller Instance
CPPS Cyber-Physical Production Systems
CPS Cyber-Physical Systems
IIoT Industrial Internet of Things
IoMT Internet of Manufacturing Things
IoT Internet of Things
MES Manufacturing Execution Systems
MOM Manufacturing Operational Management
PLC Programmable Logic Controller
SDLC Software Development Life Cycle

xvii

Chapter 1

Introduction

Contents
1.1 Context . 1

1.2 Motivation . 2

1.3 Aims and Goals . 3

1.4 Dissertation Structure . 4

This Chapter presents an overview of the scope of this project, as well as the problems it aims

to solve. Section 1.1 presents contextualization of the main concepts related to this work. Sec-

tions 1.2 and 1.3 present, respectively, the motivation that drives this project and the goals trying

to be achieved. To finalize, Section 1.4 presents the overall structure of this document.

1.1 Context

Ever since the beginning of industrialization, increasing efficiency in manufacturing systems has

been a constant endeavor. Companies thrive to improve productivity and reduce costs without

compromising quality, enhancing the efficiency of the manufacturing process.

The birth of Internet-of-Things followed by its application to industrial environments, viz. In-

dustrial Internet of Things (IIoT), pushes the efforts of improving the manufacturing processes

even further, towards the so-called Industry 4.0. It unifies the concept of objects, machines, as-

sembly lines and whole factories leading to the “smart factory” vision with the implementation of

cyber-physical systems (CPS), where the physical and virtual worlds converge. CPS are physical

objects with embedded software and computing power. The manufacturing equipment will turn

into cyber-physical production systems (CPPS) where the computational and communication re-

sources of a device can be used directly for various control, supervisory, or monitoring functions.

Factories become more intelligent, flexible, dynamic and autonomous, leading to the growth of

1

Introduction

productivity, reduction of costs, increase of effectiveness and efficiency and improvement of the

overall quality of the products [PGPM19, Lu17, AL15, IML+16a].

The use of networked sensors and intelligent devices to collect data about the manufacturing

processes, boost operational efficiency and reduce detection and troubleshooting time, hence re-

sulting in overall money and time savings. The computational elements that control the physical

entities (the equipment), using sensors and actuators feedback in real-time, enable the detection

and prevention of failures to avoid major losses. The software controlling these devices requires

support for management, configuration, control and debug of operations, especially during the

maintenance process [Orab, Zer].

Despite the adoption of Industry 4.0 and IIoT in the manufacturing industry revealing many

positive consequences, the recent mass customization trend has contributed to the increase in the

complexity of manufacturing systems [Sza19, BXW14]. This, along with the heterogeneous na-

ture of the manufacturing environment, increases the need for maintenance of automated produc-

tion systems, required to ensure the software’s quality and reliability overtime [VHFR+15]. With

a fast changing market and customers demanding a higher level of product customization, indus-

trial software must be constantly updated and re-configured, imposing pressure over the need for

software development and maintainability [MUK00].

The maintainability process benefits from the analysis and management of the information

gathered by the sensors and actuators integrated within the machinery, enabling life cycle obser-

vation to ensure that the solution is operating according to the stated requirements [MBRB17,

VHFR+15].

Ultimately, the increasing complexity of manufacturing systems, resulting from particularities

as the heterogeneity, large-scale, highly-dynamic topologies, real-time needs, human-in-the-loop

considerations and wide-range of application scenarios of IoT, along with coordination and col-

laboration between different CPS systems (systems of systems), is manifested in many ways,

including non-linear hybrid systems with behaviors which are hard to predict and verify, com-

posed of many interacting parts and properties, making software faults very hard to locate and

debug given the amount of complexity involved. This imposes a need for continuous software

adaptation, maintenance and life cycle observation of the production machinery, which can be

greatly assisted with suitable debugging techniques, to ensure the software’s quality and reliabil-

ity [VHFR+15, MZ16, WTO15, DFF18].

1.2 Motivation

Both developing and debugging IoT systems is hard. These processes become even harder when

we target manufacturing environments. The debugging needs of IIoT systems are still lacking in

terms of tools, approaches, and methodologies that can be used for such. The problem grows when

considering that, commonly, these systems are programmed using visual workflows, that typically

lack tools for debugging. These workflows are an abstraction of the different tasks to be executed

by the equipment, creating blocks that aggregate some of the steps to be performed, receiving

2

Introduction

inputs from the previous tasks and delivering outputs to be used by the following [AGB93, SP07,

DFF18].

In industrial systems, the increasing need for production efficiency and flexibility require ac-

tive and real-time maintenance from technicians to reduce machine downtime. For expensive ma-

chines, usually, often downtime is more expensive than the actual repair in terms of lost production

resource. Real-time monitoring, advanced maintenance, and debugging systems, through visual

notations for the abstraction of the machinery workflow, can play a significant role in tackling this

issue. Since IIoT systems are characterized by their time-sensitive, non-determinist processes, it’s

important to detect the software failures in real-time and remotely, through communication with

the device where the exception or crash occurred [MZ16, MBC+17, SP07].

A Manufacturing Execution System (MES) is an information system that focuses on the digiti-

zation of shop-floor activities, controlling and optimizing the manufacturing production processes

in near real-time, aiming to achieve and maintain a constant high performance in the highly com-

petitive and rapidly changing manufacturing environment [WWB18, Mani].

This dissertation was proposed in the context of Critical Manufacturing’s Manufacturing Ex-

ecution System. It is a software platform that provides manufacturers with information for moni-

toring, controlling and assuring the correct execution of the production processes, gathering infor-

mation along the process and providing tools for analyzing this information in order to optimize

procedures and make the production process more efficient [Mani]. A module for the abstraction

of automation workflows being carried out by the machines in production, as well as equipment

integration, was introduced in this MES solution, along with local debugging capabilities for sim-

ulation of equipment execution through inputs and outputs provided by the user [Mand, Mang].

In order to prevent machinery downtime and to assure maximum production efficiency and ef-

fectiveness, real-time remote maintenance should be implemented as an extension of the currently

available IoT module, providing remote debugging of operations’ workflows being followed by

the machines in the production line. This can be achieved by adapting the currently existent work-

flow engine and interface to enable receiving the workflow inputs and outputs directly, in real-time,

from the equipment in execution, showing the debugging process in a user-friendly way to allow

workers with close to none IT-knowledge to operate with this platform. This will provide manufac-

turers with a real insight into the machine’s operations, extending the already existing monitoring

and controlling capabilities of the production process.

1.3 Aims and Goals

The main goal of this work is, by studying the best practices for debugging different kinds of

systems, to design and develop a debugging approach (and protocol) that can be used for IIoT

and meet the requirements of a real-world Manufacturing Execution System. To validate both the

approach and the underlying protocol, a proof-of-concept was implemented on top of the Critical

Manufacturing’s Manufacturing Execution System, allowing us to run a set of preliminary tests to

verify its viability.

3

Introduction

The requirements we wish to fulfill, simultaneously, with this solution are the following:

1. Provide a remote connection to a specific physical device running elsewhere without com-

promising its current execution;

2. Abstraction of the physical device’s sequenced execution tasks through a workflow;

3. Ability to remotely debug the workflow being executed by the physical device in real-time.

These are expected to be answered through (a) the development of a prototype that aims at

adapting a traditional remote debug session to the manufacturing environment, connecting the de-

bugger with some physical equipment executing elsewhere through an intermediary, that will be

listening to any changes that happen in the machinery, (b) the development of a remote debugging

protocol which will have defined messages for informing or notifying the receiver of something

that happened or must happen, related with each distinct action, generalizing the request messages

as much as possible to simplify the protocol’s usage, (c) the management of the debug sessions,

ensuring that sessions debugging the same equipment are not interfering with each other, often

checking if there are any data inconsistencies, using the developed protocol, (d) the creation of

an abstraction of the execution tasks using a representation through workflows that is expected to

provide a better understanding of the machines’ execution, allowing to detect failures in real-time

and to better identify what is causing the incorrect behavior, (e) handling all types of connection

events and connection issues that may arise, always keeping the user updated on what is happen-

ing and immediately trying to take the debugging application back to a stable state if something

unexpected happens.

The expected final result of the present work is a functional prototype of a tool, as the process’s

proof-of-concept, that fulfills the aforementioned functional requirements, capable of debugging

both simulated and real-time production shop-floor execution systems, granting a better insight of

the production machinery. It is expected that the clarity of the machines’ operations provided by

this prototype has a greater impact on reducing incorrect machinery behavior, detecting execution

failures immediately as they happen and machine inactivity due to failures, consequently reducing

resource losses and improving production efficiency.

1.4 Dissertation Structure

The current dissertation is structured as follows:

Chapter 2 provides a contextualization of the main concepts related to this dissertation.

Chapter 3 presents some of the current approaches on debugging, remote debugging, debug-

ging of workflows and remote debugging protocols, while simultaneously identifying the short-

comings of the current approaches w.r.t. remote debugging of IIoT workflows.

Chapter 4 describes the current challenges of debugging IIoT systems, regarding the current

solutions found, and presents the proposed solution, all the features to be implemented and how it

will be evaluated.

4

Introduction

Chapter 5 details the proposed solution, explaining the main software components, the in-

teraction between the protocol messages and the techniques used to tackle some of the issues

encountered to make the software as reliable as possible.

Chapter 6 presents the evaluation done to validate the proof-of-concept developed and all the

simulated scenarios that were used.

Finally, Chapter 7 presents a brief summary of this dissertation, the main contributions and

conclusions of this work, and the future goals for this project.

5

Introduction

6

Chapter 2

Background

Contents
2.1 Industry 4.0 . 7

2.2 Manufacturing Execution Systems . 13

2.3 Software Development Life Cycle . 22

2.4 Debugging . 31

2.5 Conclusions . 35

In order to understand the concepts covered in this document, this Chapter provides an overview

of the main subjects related to the topics of the dissertation.

It starts with a presentation of the Industry 4.0 and Internet of Things concepts, their history,

and definition and the relation with one another. It is followed by the definition of a Manufac-

turing Execution System and information found relevant regarding Critical Manufacturing’s MES

solution. Afterward, this Chapter presents the phases of the software development life cycle, as

well as how the maintenance phase is performed and how is it adapted for the context of industrial

systems. Lastly, it covers the description of the debugging process and how it can be applied in

factories for the machinery maintenance process.

2.1 Industry 4.0

Ever since the beginning of industrialization and over the course of history, technological advance-

ments and the appliance of new resources to improve industrial processes have led to paradigm

shifts named “industrial revolutions” [LFK+14].

7

Background

To this day, the industry has had three major revolutions (illustrated in Figure 2.1) that led

to changes in the social structure of society, shaping the way people live, work and relate to one

another [PGPM19].

The first industrial revolution started at the end of the 18th century and revolutionized the field

of mechanization. It ensured the transition from manual to machine labor and it’s connected to the

use of water and steam power to mechanize production. The second big revolution occurred nearly

a century later, and it was related to the intensive use of electrical energy to create mass production.

The third revolution happened in the 20th century with the widespread of digitalization. It used

both electronics and information technology to automate production [LFK+14, PGPM19, Lu17].

The fourth industrial revolution, known as “Industry 4.0”, emerged in Western countries in the

21st century with the goal of achieving a higher level of operational efficiency and productivity by

augmenting the level of automatization in factories [Lu17].

Figure 2.1: Timeline from the first industrial revolution to Industry 4.0 (Source: German Research Center
for Artificial Intelligence (DFKI), 2011).

Industry 4.0 dictates the end of traditional centralized applications for production control and

encompasses numerous technologies and associated paradigms, such as the Internet of Things

(IoT), Enterprise Resource Planning (ERP), Radio Frequency Identification (RFID), Cloud Com-

puting and Big Data [Lu17, AL15].

This concept describes primarily IT-driven changes in manufacturing systems [Lu17] and is

defined as “the integration of complex physical machinery and devices with networked sensors

and software, used to predict, control and plan for better business and societal outcomes” [II13].

8

Background

It unifies the concept of objects, machines, assembly lines and whole factories [PGPM19] lead-

ing to the “smart factory” vision with the implementation of cyber-physical systems (which “ex-

tend real-world physical objects by interconnecting them all together and providing their digital

descriptions” [SSH+18]), fulfilling the demanding requirements of production. Factories become

more intelligent, flexible, dynamic and autonomous, leading to the growth of productivity, reduc-

tion of costs, an increase of effectiveness and efficiency and improvement of the overall quality of

the products [Lu17].

As a result, Industry 4.0 will accelerate industry to achieve unprecedented levels of operational

efficiencies and growth in productivity [TS16].

2.1.1 Internet of Things

The Internet-of-Things is an emerging paradigm where everyday objects can be equipped with

identifying, sensing, networking and processing capabilities, allowing these objects to communi-

cate with one another and with other devices and services over the Internet to accomplish some

objective [WADX15]. It conceptualizes a world where there is a seamless integration of peo-

ple and devices to converge the physical world with human-made virtual environments [BVD16],

in which all things are wirelessly and seamlessly connected and can be controlled remotely and

exchange data at any time [LXZ15].

As a complex cyber-physical system (or system of systems), IoT devices are equipped with

embedded software and computer power through sensors, actuators, processors, and transceivers.

Sensors and actuators are devices that help to interact with the physical environment. While sen-

sors provide inputs about the device’s current state (internal state and environment), an actuator

performs actions to affect the environment or device in some way. The combination of these

elements can enable objects to simultaneously be aware of their environment and interact with

people, both goals of IoT. Manufacturing equipment will develop into cyber-physical production

systems (CPPS), software enhanced machinery with autonomous computing power and embedded

devices. CPPS know their state, their capacity, and their configuration options and are capable of

taking decisions autonomously [II13, WADX15, SS17, AL15].

The IoT paradigm opens the doors to new innovations that will build new interactions among

things and humans, enabling the attainment of smart cities, infrastructures, and services for en-

hancing the quality of life and usage of resources. Objects and devices in IoT will, therefore, “be

mobile, dynamic, and will generate massive amounts of frequently changing information” derived

from both sensors and actuators feedback [BVD16, WADX15].

IoT finds various applications in health care, fitness, education, entertainment, social life,

energy conservation, environmental monitoring, home automation, and transport systems [SS17].

An IoT Analytics report [Scu] that analysed the top IoT enterprise-level segments pointed out

that the most relevant segments are Smart City, Industrial IoT, Smart Building, Smart Car, Smart

Energy/Grid, eHealth, Smart Supply Chain, Smart Agriculture, and Smart Retail, by this order

of relevancy (illustrated in Figure 2.2). However, consumer-level IoT was not considered in this

report (e.g. wearables and home automation). IoT enterprise applications usually fall under the

9

Background

following three categories: (1) monitoring and actuating, (2) business process and data analysis,

and (3) information gathering and collaborative consumption. The report also mentions that most

IoT enterprise projects focus on cost-reduction, the main value driver for about 54% of the projects

that were analyzed. The other main concerns were related to increasing revenue (about 35%) and

to increase in overall safety (24%) [BVD16, Scu].

Figure 2.2: Statistics based upon 1600 enterprise IoT projects circa 2018, excluding consumer level IoT
projects (Source: [Scu]).

The Internet of Things is “the trend and direction for the new industrial revolution”, Industry

4.0. By providing a connection between humans and machines, it’s possible to obtain new infor-

mation and knowledge, thus improving the efficiency and effectiveness of knowledge development

and management in today’s world [II13].

2.1.2 Industrial Internet Of Things

Industrial Internet of Things (IIoT), also referred to as Industrial Internet, is the subset of IoT

specific to industrial applications. Smart and efficient manufacturing can be achieved with IIoT,

connecting the shop-floor to production management. The fact that machines can perform spe-

cific tasks such as data acquisition and communication more accurately than humans has boosted

the adoption of IIoT over the last few years, becoming a popular interest among big high-tech

companies [BVD16, Azi19].

IIoT is about connecting all the industrial assets, including machines and control systems, with

the information systems and the business processes. It focuses on the manufacturing stage of the

product’s life cycle, aiming for a quick and dynamic response to demand changes by equipping

10

Background

high-tech products such as sensors and actuators, software and wireless connectivity in the produc-

tion equipment [Lu17]. These generate large amounts of data that can be collected and analyzed

with the goal of getting a better understanding of the manufacturing process and enable a more ef-

ficient and sustainable production system, reducing costs without compromising quality, by bring-

ing transparency about the machines’ operations, the materials used, the facility logistics, and even

the human operators, feeding analytic solutions and leading to optimal industrial operations. The

analysis of the data collected can aid the machinery maintenance process, as it will allow to under-

stand and identify the top causes of failure and predict component failures to avoid unscheduled

machine downtime, which usually leads to company resource losses [LGS17, SSH+18].

Industrial IoT has grown from a variety of technologies and their interconnections. It “cov-

ers the domains of machine-to-machine (M2M) and industrial communication technologies with

automation applications”, as well as big data analysis and machine learning techniques [BVD16,

SSH+18]. Some of the most important technologies are described below:

Cyber-physical Systems CPS are automated systems responsible for the connection of opera-

tions of the physical reality with computing and communication infrastructures. It com-

prises a set of interacting physical and digital components, which may be centralised or

distributed, providing a combination of sensing, control, computation and networking func-

tions, to influence the real world outcomes through physical processes [BHCW18, Lee08,

RLSS10].

Cloud Computing A cloud computing system provides computing services (e.g. computing,

storage) from cloud resource pools to particular manufacturing tasks. It provides high re-

liability, scalability, and interoperability, which can improve the efficiency of computing

resource utilization in IIoT systems, keeping files in a cloud-based storage system rather

than on local storage devices [SWYS11, Fra19].

Edge Computing Edge computing brings the computer data storage closer to the location it is

needed. Unlike cloud computing, it leverages computing resources from network edge de-

vices. As the computing services are located close to end-devices, these services are pro-

vided with much better latency performance [SWYS11].

Big Data Analytics Big data in IIoT refers to the huge volume, velocity and veracity of the data

that is gathered from the industrial sensors, actuators and devices embedded in the manufac-

turing equipment. Enabling big data sharing and analytics is important in order to improve

the efficiency of manufacturing process through the monitoring of large-scale industrial sys-

tems [SWYS11].

AI and Machine Learning Machine learning is a subset of artificial inteligence that can use huge

amounts of data, of different types and sources, collected from the sensors and actuators

embedded in the manufacturing equipment to find highly complex and non-linear patterns

11

Background

and transform raw data into feature spaces, which are then applied for prediction, detec-

tion, classification, decision, regression, or forecasting of data related to manufacturing pro-

cesses. For a manufacturing control system, it can enable self-awareness, self-diagnosis

and self-healing, efficient management, effective resource utilization, and timely mainte-

nance [SWYS11, WWIT16].

The architecture of an IIoT system must highlight the extensibility, scalability, modularity, and

interoperability among heterogeneous devices using different technologies, providing an higher

level of abstraction that helps identifying issues and challenges for different application scenarios.

Several reference architecture frameworks have been conceived in the past, in different applica-

tion contexts, for both IoT and IIoT. The Industrial Internet Consortium has recently released

a reference architecture for IIoT systems, which has been widely accepted, focusing on various

viewpoints (e.g. business, usage, functional and implementation views), providing models for

each one. It is characterized by three-tiers: edge, platform and enterprise (illustrated in Fig-

ure 2.3) [SSH+18, Inf18, II19]:

Edge Tier Collects data from the edge nodes, which comprises assets, edge devices, sensors and

control systems, interconnected by an independent local area network to communicate with

the edge gateway, which in turn connects to larger networks of the platform tier, providing

global coverage;

Platform Tier Integration platform which enables the integration of the assets, consolidating pro-

cesses and analyzing data flows, providing management functions for devices and assets. It

receives, processes and forwards control commands from the enterprise tier to the edge tier;

Enterprise Tier Implements domain-specific applications, decision support systems and pro-

vides end user interfaces. It receives data flows from both edge and platform tiers, also

sending control commands to conduct them.

Industrial IoT “affects all the industrial value chain and is a requirement for smart manufac-

turing” [SSH+18].

2.1.3 Summary

Industry 4.0 is an emerging concept that aims at a higher level of operational efficiency and pro-

ductivity in factories by increasing the level of automation in manufacturing systems [Lu17].

The idea of a “smart factory” where objects, machines, assembly lines and whole factories are

connected through a single network that can communicate in real-time to achieve a meaningful

purpose is achieved with the implementation of IoT in the manufacturing process [WADX15],

through the integration of embedded sensors, actuators, processors, and transceivers. The feedback

received from these sensors and actuators generates massive amounts of data that allow the gaining

of new information and knowledge about the factory’s operations, leading to a better understanding

of the manufacturing process [LGS17, SSH+18].

12

Background

Figure 2.3: Three-tier IIoT system architecture proposed by the Industrial Internet Consortium
(Source: [II19]).

The subset of the Internet of Things specific to industrial applications (IIoT) is, therefore,

the trend and direction for the current industrial revolution, Industry 4.0, focusing on making the

manufacturing process more efficient, sustainable and autonomous, resulting in overall money and

time savings [Azi19, LGS17].

2.2 Manufacturing Execution Systems

A Manufacturing Execution System (MES) is “an information system that drives the execution of

manufacturing operations” [Manf]. It is “at the heart of industrial organizations’ endeavors” and

focuses on the digitalization of shop-floor activities with the collection, analysis, and exchange of

information captured in real-time during this process [WWB18]. This type of system aims to

achieve and maintain constant high performance in the highly competitive and rapidly changing

manufacturing environment [Mani].

2.2.1 Overview

Since the 90’s, Manufacturing Execution Systems have been attracting more and more attention

from manufacturers [QZ04]. According to MESA, or Manufacturing Enterprise Solutions Associ-

ation, a manufacturing execution system is a dynamic information system that ensures the effective

execution of the manufacturing operations through the gathering of real-time data, guiding, trig-

gering and reporting on shop-floor activities as events occur. It “manages production operations

from the point of order release into manufacturing to the point of product delivery into finished

goods” [Manb].

13

Background

By obtaining current and accurate data directly from the shop-floor, MES guides, initiates, re-

sponds to and reports on plant activities as they occur. The rapid response to changing conditions,

coupled with a reduction on activities that don’t add value to the manufacturing process, increases

the effectiveness of these operations and processes. This system improves the return on operational

assets, on-time delivery, inventory turns, gross margin and cash-flow performance [dUAP09].

Back in 1997, MESA defined the principal MES functionalities, as follows [Int97]:

Resource Allocation and Status Manages resources (e.g. machines, tools, materials, documents)

and tracks all the operations they are involved in, in the production process;

Operations/Detail Scheduling Schedules all the activities to be performed, taking into account

their duration of time, execution sequence, amount of resources available and attributes of

specific production units, for optimizing the manufacturing process performance;

Dispatching Production Units Manages the flow of production units in the form of jobs, orders,

batches, lots, and work orders, controlling these units and dispatching them to where they

need to be;

Document Control Controls records and forms that must be maintained with the production unit

(e.g. work instructions, recipes, drawings, standard operating procedures, part programs,

batch records and engineering change notices) managing and distributing them when re-

quired. Also gathers certification statements of work and work conditions;

Data Collection/Acquisition Monitoring, gathering and organising data about processes, materi-

als and operations;

Labor Management Tracking and management of personnel during a shift based on their quali-

fications, work patterns and business needs;

Quality Management Real-time analysis of data collected from the manufacturing process to

ensure the product’s quality and identify problems;

Process Management Production monitoring, directing the flow of work in the production pro-

cess based on the planning and the current production activities;

Maintenance Management Tracks and directs the activities to maintain the equipment and tools,

ensuring their availability for the manufacturing process;

Product Tracking and Genealogy Provides visibility of where work is at all times and its status

information;

Performance Analysis Provides real-time reporting of manufacturing operations results, com-

paring them to past history and expected business results.

This way, by implementing these functionalities, MES systems are responsible for monitor-

ing and assuring the correct execution of the production process on the shop-floor, monitoring

14

Background

and controlling the material used for this process, gathering information along the way and pro-

viding the tools required for the analysis of the data obtained, in order to optimize production

efficiency. The delivery and management of work instructions also fall under its responsibilities,

as well as the providence of the tools necessary for solving problems that may come up during

production [Mani].

Manufacturing execution systems focus on the vertical integration of manufacturing processes

with business processes, working as a middle-layer, by bridging enterprise information systems

(ERPs) with the shop-floor equipment, implementing manufacturing operational management

(MOM) functions in the enterprise. It sets a connection between ERP, as a system of decision

support, and the shop-floor, mostly concerned with automated control [RMK16, WWB18].

Figure 2.4: Automation pyramid (Adapted from: [WWB18]).

The automation pyramid classifies industrial systems into five distinct layers as it is illustrated

in Figure 2.4. On top of the pyramid is ERP, which “supports the execution of business processes,

such as order fulfillment or inventory control”. The bottom levels are related to automated con-

trol using real-time sensors and actuators and are specifically hardware oriented, e.g. sensors,

programmable logic controllers (PLC), and supervisory control and data acquisition (SCADA)

systems. MES is positioned at the middle level, bridging the gap between the upper and lower

levels in the pyramid, complementing office-level information systems and extending their capa-

bilities [WWB18, QZ04].

The analysis of the data collected throughout the product’s life cycle is of growing impor-

tance for organizations. It is evident that the increasing amount of information collected from

the equipment is due to the tremendous increase in the degree of automation on the shop floor.

MES is responsible for the collection and analysis of this information, followed by the integration

and presentation of the results in the industrial production, providing real-time, accurate, granular

data which allows employees to have a better insight into the manufacturing processes, leading to

predictable manufacturing processes, decreasing cost, increasing quality and meeting efficiency

15

Background

requirements. Workers can optimize the decisions for controlling the manufacturing process by

providing accurate and timely information through real-time interfaces for the automated equip-

ment, enabling them to quickly react to any issues that may arise during the manufacturing pro-

cess. The data gathered from the manufacturing equipment should be also analyzed in real-time

to provide enterprise-wide optimal decisions such as validation of the equipment’s setup and pro-

duction schedule, monitoring of the process status and indication of the trend of product quality,

and quicker reaction to dynamic customer demands [dUAP09].

The implementation of an MES system enables companies to improve productivity in their fac-

tories, improve customer satisfaction and provide an overall competitive advantage in a dynamic

and competitive marketplace [WWB18, WWB18, QZ04].

MESA ISA-95 VDI

Operations / detail scheduling Detailed Production Detailed planning and detailed
scheduling controlResource allocation and status Scheduling

Document control Production data collection
Operating resources management

Dispatching production units
Production resource management

Performance analysis Material management

Labor management Production definition management Personnel management

Maintenance management Product tracking Data acquisition and processing

Process management Production dispatching Interface management

Quality management Production execution Performance analysis

Data collection and acquisition
Production performance analysis

Quality management

Product tracking and genealogy Information management

Table 2.1: Set of functions assigned to Manufacturing Execution Systems according to ISA-95, MESA, and
Verein Deutsche Ingenieure (VDI) at the manufacturing operational management (MOM) functions level
(Source: [IML+16b]).

These manufacturing systems have been pivotal in the performance, quality and agility needed

for the challenges created by a globalized manufacturing business. Future improvements and

enhancements to these systems should focus on the following four main pillars [AL15]:

Decentralization For a smart product, or CPS, its computing power can be elsewhere as long as

it is capable of identifying itself and connect to a physically centralized system, providing

its position and state at anytime. MES is a single application but acts decentralized by using

agents/objects to represent the shop-floor entities, that are autonomous and negotiate with

each other to provide unique products;

Vertical Integration All services provided by the CPPS are exposed, allowing their participation

in business processes for compliance or, more broadly, for processes related to quality, lo-

gistics, engineering or operations. MES systems shall be truly modular and interoperable,

logically decentralized, making all functions and services available to be consumed by any

smart shop-floor entity;

16

Background

Connectivity and Mobile Most manufacturing execution systems already provide connectivity,

but it is directed towards more sophisticated facilities with advanced equipment that allows

a direct access to the information that is generated. This connectivity should be widespread

in manufacturing facilities of different sophistication levels, providing more adaptable in-

terfaces for accessing any type of equipment;

Cloud Computing and Advanced Analysis The “smart factory” vision requires achieving an

holistic view of manufacturing operations through the integration of data from several dif-

ferent sources. Advanced analytics should be implemented for fully understanding the per-

formance of the manufacturing processes, ensure the maximum quality of the produced

products and optimize the supply chain, identifying inefficiencies and allowing corrective

or preventive actions to be performed.

A study carried out by MESA from 2006 [Int06] (the most recent study by this association

that was released to the public), providing insight of how MES systems have served manufactur-

ing enterprises with many benefits, shows that companies that had these systems implemented had

improved their operations in 31%, where 30% (vs 15% of companies that don’t use MES sys-

tems) had improved their planned vs emergency maintenance work orders and 28% (vs 10%) had

improved their production flexibility to accommodate dynamic customer demands. It also shows

that 19% of these companies had more likely, on average, made gains regarding business and fi-

nancial metrics, increasing productivity (per square foot) in about 37%, with 36% improving their

cash-to-cash cycle time.

Manufacturing Execution Systems play a critical role in Industry 4.0, as it “accommodates

the Industrial Internet-of-Things (IIoT)-enabled production marketplace”, playing a key role as

an enabler of further innovation in manufacturing [Mani, WWB18].

2.2.2 Critical Manufacturing MES

Critical Manufacturing’s MES solution is designed for complex discrete industries including solar,

electronics, semiconductor and medical devices. It is a software platform with a deep set of mod-

ular applications (more than 30, shown in Figure 2.5), that are fully interoperable, that “provides

manufacturers in complex industries with maximum agility, visibility and reliability” of manufac-

turing processes. It is a Web-based application, granting the ability to run on multi-platform and

multi-form size devices [Manf, Mana].

It claims to ensure the following [Mane]:

• Low total cost of ownership through the use of standard integrated components and having

a strong focus on simplicity and ease of use, deployment, and maintenance;

• Agility through a powerful, extensive framework, with rich functionality and ease of cus-

tomization and integration that each customer can configure for their own needs;

• Versatility thought a generic data model and a rich, extensible, customizable application

platform that runs on multi-platform and multi-form size devices;

17

Background

Figure 2.5: Critical Manufacturing MES V7 modules (Source: [Manc]).

• Optimal performance reliability through the use of standard, proven cost-effective hardware

and software solutions, implementing an architecture formulated for high performance, scal-

ability and smart database partitioning.

All three tiers of the infrastructure framework - Presentation, Business, and Analytics - are

designed to be fully customizable and extensible, “providing partitioning, modularity, and scala-

bility of applications, being designed to work seamlessly together” [Mane].

The recent advances in the integration of IIoT led to the development of one of the most

recent solutions implemented in Critical Manufacturing MES called “Connect IoT”, integrated

into the “Factory Automation” module. It is a lightweight, low footprint solution that enables

fast, easy integration of both standard equipment interfaces and new IoT devices into a distributed,

decentralized architecture in which an autonomous production network can be built, reaching

across all types of devices [Mand, Manj]. Through this module, production engineers and system

integrators can connect their shop-floor equipment to Critical Manufacturing MES, dramatically

reducing the time and effort for this very integration.

Beyond that, Connect IoT has a complete, single graphical overview of all automation work-

flows being carried out by the machines in production. It allows to “easily drag and drop equip-

ment and IoT devices into a model of the shop floor, creating a network of entities” [Mang].

This solution provides ways to create and update complex logic with no code required using a

user-friendly interface that allows workers with close to none IT-knowledge to work with this

platform [Mand]. The system automatically abstracts workflows from specific drivers and allows

re-usable, extensible workflow elements with complex logic to be created [Manj].

So far, this solution allows visual debugging of these workflows, simulating the equipment’s

execution through inputs and outputs provided by the user, as the IoT application to be debugged

is running in the background of the same machine as the debugger. This is used for testing the

equipment before deploying it in the production line [Manj].

Critical Manufacturing MES unifies the global enterprise, improving decision-making and in-

creasing production efficiency. A comparison of modules/features provided by several market

leading manufacturing execution systems can be seen in Table 2.2, where “x” means that the

18

Background

MES system implements that module/feature. We can see that Critical Manufacturing MES so-

lution is a quite complete solution through the variety of the modules it offers to manufacturers,

delivering “reliable access to detailed and timely operational information with full context and

intelligence for fast, confident decisions and profitable action” [Manc].

Critical Manufacturing Honeywell iBASEt Rockwell LillyWorks
Data Collection x x x x x
Dispatch Production Units x x x
Document Control x x x x
Labor Management x x
Maintenance Management x x x x
Performance Management x x x x x
Process Management x x x x x
Product Genealogy x x x x
Quality Management x x x x x
Resource Allocation x x x x
Scheduling x x x x
Lean Principles x
Real-Time Data x x x x
Six Sigma x
Theory of Constrains x x
Automated Test & Inspection x
Web-Based Interface x x x
Historical Data x x x x
Widely Available Platform x x x

Table 2.2: MES solutions comparison. “x” means that the manufacturing execution system implements
that module/feature. A brief description of the features used for comparison can be found in Section 2.2.1,
for the principal MES functionalities defined by MESA, and on Table 2.3, for the remaining (Adapted
from [Sar03]).

The principal MES functionalities defined by MESA that were previously mentioned consti-

tuted the first eleven comparison measures used in Table 2.2. A brief description of the remaining

eight features used for the MES solutions comparison can be found on Table 2.3.

Critical Manufacturing MES provides the backbone required to achieve the “smart factory”

vision providing a way for companies to reach new levels of efficiency and innovation, in order to

keep their business strong and competitive [Manh].

2.2.2.1 Architecture

To set up the environment necessary for the debug of a workflow in the “Connect IoT” MES

module, it’s necessary to define and relate the components presented in Table 2.4 in the Critical

Manufacturing MES, which will be defined through the MES interface.

The Automation Driver, Controller, and Monitor processes will be run in a computer physically

close to the physical device to debug. This three-component environment will be from now on

called IoMT (Internet of Manufacturing Things) agent, for easier reference (see Fig. 2.7).

19

Background

Feature Description
Lean Principles Implements the lean principles, meaning it aims to eliminate waste, the non-value-added com-

ponents in any process, still providing customers with high quality products.
Real-time Data Provides real-time information.
Six Sigma Implements the six sigma principles, meaning it focus on developing and delivering near-perfect

products and services, measuring and eliminating product defects.
Theory of Constrains Implements a methodology for identifying the most important limiting factor (i.e. constraint)

that stands in the way of achieving a goal and systematically improves that constraint until it is
no longer the limiting factor.

Automated Test and Inspection Connection to integrate inspection devices.
Web-Based Interface Graphical user interfaces are internet-enabled.
Historical Data The data that is acquired is stored in the MES database and mined for defects and performance

analysis.
Widely Available Platform Development platform is widely available.

Table 2.3: Features used for the MES solutions comparison (Adapted from [Sar03]).

The automation workflow graphs are defined in the Automation Controller workflow designer

interface (Figure 2.6). These are composed of several tasks, linked through wires that connect

outputs from one workflow task to the inputs of other tasks, enabling the passing of values between

tasks. These links may have value converters associated, which may change the type of the variable

(useful when the variable type doesn’t match with what the input is expecting) or have some small

business logic to apply to the variable before it gets to the next input. The workflow will be

executed whenever a particular event occurs, activating it (e.g. upon initialization, when a certain

device state changes or upon receiving an input from the previous task) and will be executed by

the controller’s workflow engine during runtime.

Component Description
Automation Protocol Definition of the communication protocol to be used between the Automation Driver and the physical

device (machine), such as SECS/GEM, OPC, AMQP, MQTT, HTTPS, etc. The OPC UA protocol was
chosen to be used for the testing of the developed prototype. It will be associated with the Automation
Driver process.

Automation Driver A low-level process that communicates physically with the device using the defined protocol, using it to
interpret the messages received and report the events from the device to the Automation Controller associ-
ated with this driver. In the definition of this component, the protocol to be used, the properties/variables
of the physical device we want to monitor, the events to be detected and the commands for the Automation
Controller to execute will be designated.

Automation Controller An event-driven process that executes workflows in response to events received from the Automation Driver
or directly from the MES. It can communicate with more than one driver. The definition associates the
Automation Driver(s) to the device/resource we want to monitor and defines the workflows to be executed
in response to the received events. When a controller is initialized, it originates an Automation Controller
Instance which will have a unique ID.

Automation Monitor A process that determines which processes must be started or stopped, monitoring the health of these
processes. It connects the Automation Controller and Driver(s), telling the driver processes where to find
the controller it has been associated with so that they can begin communication.

Automation Manager A process that will host one Automation Monitor and several Automation Controllers and Drivers as they
were configured in the MES interface. It is responsible for spawning and controlling these processes.

Table 2.4: IoMT (Internet of Manufacturing Things) components.

20

Background

Figure 2.6: Automation Controller workflow designer interface.

2.2.3 Summary

Manufacturing Execution System is an information system that focuses on the digitization of shop-

floor activities for the monitoring, documentation, and report of information regarding the trans-

formation of raw materials into the desired final product in an integrated manner, resulting in the

control and optimization of manufacturing production processes in near real-time [WWB18].

It aims to achieve and maintain a constant high performance in the highly competitive and

rapidly changing manufacturing environment [Mani].

This type of systems focuses on the vertical integration of manufacturing processes with

Figure 2.7: IoMT (Internet of Manufacturing Things) architecture.

21

Background

business processes by bridging enterprise information systems (ERPs) with the shop-floor equip-

ment [WWB18].

Critical Manufacturing has developed its own MES solution. This software platform has a

deep set of modular, customizable and scalable applications which claims to provide manufactur-

ers in complex industries with maximum agility, visibility, and reliability of the manufacturing

process [Manf].

The recent advances in the integration of IIoT led to the development of a module implemented

in Critical Manufacturing MES named “Connect IoT”. This factory automation module allows

the integration of IoT devices, machines, and interfaces, with the goal of dramatically reducing

the time and effort required for this process. It also allows creating a graphical overview of the

automation workflows being carried out by the machines in production and visually debug these

through the simulation of the industrial equipment [Mand].

2.3 Software Development Life Cycle

The Software Development Life Cycle (SDLC) captures the (various) systematic approaches prac-

ticed for the development and maintenance of reliable, high-quality software systems [Ras14]. It

is composed of a set of distinct (sometimes overlapping) work steps to be followed by software

specialists, analysts and developers while planning, designing, implementing, testing, delivering

and deploying software. Each work step is sequentially placed in order to use the outcome from

the previously executed step. SDLC’s main goal is of producing high-quality systems with an

enhanced development process [KG15, WKYBWYF12].

Multiple software development models or methodologies, such as the waterfall, incremental

and agile models, have hitherto been adopted, with varying degrees of success. Each has advan-

tages and disadvantages, making of extreme importance to choose the one that better suits the

type of project as it will impose a structure on the development of the software product [Ras14].

A systematic development process which is able to emphasize the understanding of the scope

and complexity of the complete development process is essential for achieving a high degree of

software integrity and robustness [WKYBWYF12].

The classic software life cycle model combines some version or derivative of the following se-

quential work phases for maximizing the chance of successful software delivery [WKYBWYF12]

(Figure 2.8):

Requirement Gathering, Analysis, and Planning Involves a deep understanding of the project

and gathering of the requirements to produce the final product. An estimation about the

length of time each phase of development will take and what resources will be required will

be performed, as well as the prediction of any problems that may arise during the software’s

life cycle [WKYBWYF12, GD15, KG15];

22

Background

Figure 2.8: Software development life cycle phases (Source: [oM]).

Software Modeling and Design Design and architectural planning, producing a technical infras-

tructure of the software to be developed, shaped as diagrams and models. It has the primary

goal of finding constraints and potential issues that the project may face as it evolves and

provide a design/blueprint of the software system, following the requirements defined on

the previous work step allowing the developers to start the implementation [WKYBWYF12,

KG15];

Coding Development phase where the code is produced until all the previously defined goals

relative to the software is attained. The work is divided into modules/units so that smaller

tasks are distributed among the team. This is the work step that takes the longest in the

software development life cycle and also the primary focus [WKYBWYF12, GD15, KG15];

Documentation On-going documentation is usually required and written as the work progresses,

for future reference as well as for guiding further development [WKYBWYF12, KG15];

Testing Testing phase to identify defects and/or bugs in the developed software system. This

work step is crucial and of extreme importance in the SDLC. It often overlaps with the

development phase to ensure issues are addressed early on since the code developed needs

to be tested properly to guarantee the security of the software created and to verify that it’s

solving the needs addressed and assembled during the requirements step [WKYBWYF12,

GD15, KG15];

Deployment and Maintenance The deployment step comes after successfully testing and ap-

proving the release of the product. It consists of the deployment of the application built

23

Background

on the client’s environment. Software maintenance starts once the system is deployed and

operational. Maintenance is used for future enhancements, new requirements that might be

necessary to implement and fixes in the application code due to unexpected bugs or incorrect

behavior [GD15, KG15].

The SDLC model selection and adoption process is crucial and maximizes the chance of a

successful software delivery [WKYBWYF12].

2.3.1 Software Development Life Cycle For Industrial Systems

Smart and efficient manufacturing can be achieved with IIoT, connecting the shop-floor to produc-

tion management [Azi19]. The increasing usage of physical entities equipped with sensors and

actuators in the manufacturing industry, through the integration of IoT in factories, provides major

feedback in real-time across a virtual network regarding the manufacturing process, enabling the

fast detection and prevention of machinery failures [LFK+14]. Known as Programmable Logic

Controllers (PLC), these computational entities are widely used in automation control and will

autonomously perform many processes within cyber-physical systems [AA16].

PLCs are “computer-based, solid-state, single processor devices” that behave like an electric

ladder diagram and are capable of controlling many types of industrial equipment and entire au-

tomated systems (illustrated in Figure 2.9) [AA16]. They are characterized by their cyclic data

processing behavior which consists of reading all input values (provided by sensors), executing

the PLC program with the received values and, when finalized, writing all output variables (which

control the actuators), later restarting the cycle [VHFR+15].

Figure 2.9: Analog input and output to a PLC (Adapted from: [WKYBWYF12]).

These controllers are highly efficient and reliable in applications which involve sequential

control and synchronization of processes in the manufacturing industry. They are also cheaper

than most other control elements [AA16], hence the reason why they are the standard industrial

platform nowadays [VHFR+15]. These controllers are widely used in safety-critical processes,

such as gas monitoring and ventilation control in mines, nuclear power plants, etc. However, as

24

Background

the complexity of these controllers gets higher, the more difficult it is to ensure their reliabil-

ity [AFMW17].

The implementation of logic and switching operations are the foundation for programming

these devices, hence the reason why the term “logic” is applied. Input devices (containing sensors)

and output devices (containing actuators) are controlled using logic operations and are connected

to the PLC where the controller is monitoring the inputs and outputs according to the machine or

process [AA16].

Diagrams, along with other graphical and model representations, have been playing a big

role in software development since the 1940s, with the debut of modern digital computers. Ini-

tially used as paper-based aids to help programmers design and understand the structure of their

programs, these diagrams started to be used directly in the design and coding of software, as a

solution for the improvement of software development tools, due to the increasing complexity of

hardware [Cox08].

A Visual Programming Language (VPL) can be defined as a language “in which significant

parts of the structure of a program are represented in a pictorial notation, which may include

icons, connecting lines indicating relationships, motion, color, texture, shading, or any other non-

textual device”. By expressing the structure of programs and data pictorially, programmers can

achieve a more concrete representation of these structures, making programs easier to build, debug,

understand and reason about [Cox08].

PLCs have been, historically, programmed using VPLs, with schematic or ladder diagrams

instead of usual computer languages [AA16]. This is done for abstracting the low-level concepts

and details into high-level logic through the use of visual metaphors [BYF03]. Examples of these

graphical languages are Ladder Diagrams (LD) (Figure 2.10), Function Block Diagrams (FBD),

and Sequential Function Charts (SFC) [VHFR+15].

Using visual programming can be helpful for reductions in time and cost when developing

software, as it has been stated by some researchers. It was also stated that improvements in pro-

ductivity and reliability were achieved and were considerably noticeable. However, even though

visual programming has several benefits, it also has some drawbacks when applied to general pur-

poses (e.g. complex control structures and recursion). Visual notations are more effective when

dealing directly with an application domain, which is the case of an IoT system [FTV02].

The SDLC model most commonly used for developing PLC-based control systems is the V-

model (Figure 2.11), an extension of the waterfall model where validation, verification, and testing

are prepared and usually performed in parallel with the requirement gathering, design, and imple-

mentation phases, respectively. It has the main advantage of including some validation before the

development phase has begun. However, if errors are found during the testing phase, the test doc-

uments, along with requirement documents, will have to be updated, which can be quite expensive

with the increase of the project’s complexity [AFMW17].

IoT systems poses new challenges for software development beyond the traditional ones, due

to the increase of complexity of developing software that targets distributed, heterogeneous and

extremely dynamic systems [AKG+19].

25

Background

Figure 2.10: A simple PLC application: (a) a hydraulic cylinder controlled by a PLC; (b) the “Ladder
Diagram” program used to control the cylinder (Source: [AA16]).

2.3.2 Software Maintenance

Software maintainability is “the ease with which a software system can be modified to correct

faults, improve performance or other attributes or adapt to a change of environment” [61190]. It

takes place once the software product has been delivered to the user [IYMD17] and can involve

Figure 2.11: SDLC V-Model (Source: Wikipedia).

26

Background

repair/modification of the software (bug fixes), implementation of new requirements (adding new

components to the existing system), or adaptive maintenance of the environment where the soft-

ware is operating (Figure 2.12) [VHFR+15].

Ensuring software quality has become a central issue because most organizations rely on soft-

ware products to run their business operations efficiently and effectively, in order to remain com-

petitive in business. Thus it is crucial to ensure the sustainable quality of a software product

throughout its life cycle and, to ensure this, a good maintenance process is required [IYMD17].

The maintenance phase ensures that the delivered software product sustains a high level of

quality and satisfies the client’s requirements, aiming at adapting or perfecting the system towards

this goal. This process is invoked both when there is a change in the software requirements and

new features need to be implemented, or when failures are detected and need to be quickly fixed

so that the software remains operational. Maintainability goes beyond corrective and preventive

maintenance and is one of the software’s quality factors, as a good maintenance process ensures a

successful service in the long run [IYMD17, SM98, ALR00].

Figure 2.12: Example of the maintenance process. (Source: [IYMD17]).

This work step of SDLC is considered one of the most costly where the estimated cost is

around 40% to 90% of the total budget given to software projects [Mom14], although previous

studies have revealed that the need for intervention will decrease over time along the software’s

operation [IYMD17].

Based on Software Engineering Body of Knowledge (SWEBOK), maintenance types are com-

prised of corrective, adaptive, and perfective maintenance (Table 2.5). IEEE 14764 added a fourth

27

Background

category of maintenance named preventive maintenance. Each of these maintenance types apply

different processes and are responsible for activities that focus on keeping the system operational

and valuable for the company [BF14].

Corrective and preventive maintenance are both used for the removal of faults during the op-

erational life of a software system. Corrective maintenance’s goal is to remove faults which have

been detected and reported due to errors that happened as a result, whist preventive maintenance is

aimed at uncovering and removing faults before they generate errors that may disturb the system’s

execution [ALR00].

Correction Enhancement

Proactive Preventive Perfective

Reactive Corrective Adaptive

Table 2.5: Software maintenance categories.

2.3.2.1 Software Dependability

Dependability is a measure of the system’s attributes that are related to the degree of confidence

one has that the software system will operate as expected. It aims at keeping the system operating

as it was stated in the requirements, without failures (as shown in Figure 2.13), and well as keeping

the maintainability of a system [ALR00].

It encompasses the following attributes [ALR00]:

Availability Readiness for correct service (software execution as stated in the software require-

ments);

Reliability Continuity of correct service (with no occurrence of failures);

Safety Absence of catastrophic consequences on the user(s) and in the environment;

Confidentiality Absence of unauthorized disclosure of information;

Integrity Absence of improper system state alterations;

Maintainability Ability to undergo repairs for service restoration (due to software failures) and

modifications of features.

For a system to be highly dependable, the combined application of the following set techniques

is required [ALR00]:

Fault Prevention Prevention of the occurrence and/or introduction of faults, usually employed

during the design of the software;

Fault Tolerance Delivery of correct service in the presence of faults, intended to preserve the

delivery of the intended service even in the presence of active faults, implemented through

the detection of errors and subsequent system recovery;

28

Background

Figure 2.13: Example of error propagation (Source: [ALR00]).

Fault Removal Reduction of the number or severity of faults, employed during development and

the operational life of a system, through verification of errors that are encountered and di-

agnose the causes that are leading to the system’s fault though debugging, leading to the

software’s fault removal;

Fault Forecasting Estimation of the present number, the future incidence, and the likely conse-

quences of faults.

The evolution of the dependability measurement over the software’s life cycle depends on

the system’s stability, growth, and decrease of failure occurrences over time. These aspects are

expected to be attained with the maintainability performed during the software’s operation after

deployment [ALR00].

2.3.3 Software Maintenance in Industrial Systems

The inherent nature of IoT systems is characterized by being highly heterogeneous, high-dimensio-

nal, dynamic and nonlinear, cross-domain and ultra-large-scale. These characteristics, amongst

others, pose new challenges on how to design, develop, and maintain industrial IoT systems

[AKG+19].

Factories require consistent professional maintenance of automated production systems. The

complexity of these systems, both hardware and software, has been increasing, and they often

require a life-span of more than 10 years since the software is deployed in the factory. For this

reason, maintaining the developed software is strongly required to ensure the software’s quality

and reliability [VHFR+15].

29

Background

Special requirements on the development and maintenance process are also needed, due to

the need for rapid adjustment of production capacity and functionality, in response to new mar-

ket conditions. With a fast changing market and customers demanding a higher level of prod-

uct customization, industrial software must be constantly updated and re-configured to cope with

changes to production processes or the introduction of new products. This imposes pressure over

the need for software development and maintainability, demanding faster development processes

while maintaining software quality [MUK00].

The analysis and management of the information gathered by the sensors and actuators inte-

grated into the manufacturing machinery can also benefit the maintenance process, taking advan-

tage of the implementation of cyber-physical systems (CPS) on factories. The information cap-

tured will allow monitoring the machine’s health condition and correctness of operation, control-

ling if the solution is operating according to the client’s requirements and detecting failures if they

happen, enabling life cycle observation. The analysis of the captured information will allow main-

taining the optimal performance that guarantees the best product quality [MBRB17, VHFR+15].

2.3.4 Summary

The Software Development Life Cycle (SDLC) captures the (various) systematic approaches prac-

ticed for the development and maintenance of reliable, high-quality software systems [Ras14]. It

is composed of a set of distinct (sometimes overlapping) work steps for planning, designing, im-

plementing, testing, delivering and deploying software. The selection and adoption of the right

SDLC model for a project is crucial and maximizes the change of a successful software deliv-

ery [WKYBWYF12].

Programmable Logic Controllers are “computer-based, solid-state, single processor devices”

capable of controlling many types of industrial equipment and entire automated systems [AA16].

They receive inputs from sensors and provide outputs for controlling the actuators. PLCs have

been, historically, programmed using visual notations, which can often become quite complex

[VHFR+15].

The SDLC model most commonly used in manufacturing software, suitable for developing

PLC-based control systems, is the V-model [AFMW17].

Software maintenance is the step of SDLC that ensures that the software product delivered

to the user still maintains a high level of quality and satisfies the client’s requirements, and can

either involve repair or modification actions, implementation of new requirements or adaptive

maintenance to the environment [IYMD17].

In industrial systems, software maintainability is especially important. With a fast chang-

ing market and customers demanding a higher level of product customization, industrial software

must be constantly updated and re-configured, imposing pressure over the need for software de-

velopment and maintainability, demanding faster development processes while maintaining the

software’s quality [MUK00].

30

Background

2.4 Debugging

Software debugging is the process of identifying errors or defects in software or in a computer sys-

tem and solving them so that the program works correctly according to specification [SD17]. Any

step of a program that performs unexpectedly is termed to be a fault. Debugging is an essential part

of the software engineering process, being an arduous, time-consuming, costly task [SBAM17].

Man-made software should not be considered to be reliable, safe, secure, or always avail-

able unless it is thoroughly tested and verified, due to the unavoidable presence or occurrence of

faults [ALR00]. Testing these systems is an important part of the software development life cycle.

After, or even during, the development phase, testing and debugging should be taken seriously

and given high priority. Without these steps, high-quality, reliable software cannot be provided in

today’s fast track based world [SBAM17].

A debugger is a tool that allows debugging a program, to see what is going on inside a pro-

gram while it executes or what it was doing at the moment it crashed. Any application software

will inevitably contain bugs during the development cycle. The distance from the defect causes to

the failure may be long in both time and space so developers require a deep understanding of the

software system and its environment to be able to follow the infection chain back to its root cause.

They require access to powerful debugging tools for the correction of these software flaws, allow-

ing them to work more efficiently and to better dig into the detailed operation of their application.

Even though modern debuggers can aid software developers in gathering information about the

system, they cannot relieve them of the selection of relevant information and the reasoning to find

the software’s issue [ALR00, PSTH17, LXWY09].

Software defects can have varying degrees of severity. This severity depends on the failure

domain, controllability, and consistency of the failures encountered and the consequences in the

environment. For example, a bug that formats output incorrectly is much less severe than one that

corrupts critical data. The time required to solve a bug is also directly related to the complexity of

the error. Complex defects like race conditions in multithreaded programs may take a substantial

amount of time and effort to correct [ALR00].

As the total number of faults encountered increases, so does the cost of software development.

Something that helps to decrease this cost is to detect and locate faults in the software in the

early stages of development. This effort reduces the costs of maintenance and accelerates the

development of the software (as less time will be wasted on testing) [SBAM17].

Different types of faults can be encountered such as system faults, business logic faults, func-

tional faults, graphical user interface faults, behavior faults, security faults, etc. Software pro-

cessing levels have different debugging approaches because, for example, parallel programs pro-

duce different types of errors than multithreaded programs, due to the non-deterministic nature of

threads. Debugging is used in the fault removal technique used to improve the software system’s

dependability and, whatever debugging technique is chosen as the most suitable considering the

nature of the software, aggregates the following work phases [SD17, SBAM17]:

31

Background

Fault Detection Identification of erratic or unforeseen behavior;

Fault Localization Identification of the origin(s) of the problem;

Repair Correction of the problem by either replacing or modifying the existing code(s) or part(s)

of the program identified in the previous phase.

Handling software faults through testing and debugging plays a vital role in the software engi-

neering process as it helps to provide high-quality reliable software [SBAM17].

2.4.1 Remote Debugging

Traditionally, software applications are debugged in an environment in which the debugger is exe-

cuting on the same computing device as the application being debugged. In some cases, resources

such as memory, processing power, and network are consumed by the installation and execution

of a development and debugging environment (e.g. via an integrated development environment

(IDE)). This is a critical factor because such computing devices may have limited resources, for

example, storage, processing, and communication. In these cases, using traditional debugging

techniques may not be an option, and a remote debugger seems to be a reasonable solution [LJ15].

In the remote debugging, or cross-debugging, technique, the debugger runs on a host machine,

while the program to be debugged is running on a specific hardware platform of a target machine

(Figure 2.14). The application is launched using a remote debug module executing on the host

machine, and it communicates with the target machine via a communication channel that can be

set through a serial port, parallel port or network card interface, taking control of this machine to

run the program [LXWY09, LJ15].

During a debugging session, debug commands are sent from the host machine to the target pro-

gram and these commands are employed for debugging the application on the remote host device.

The commands may include the launch of the application to be debugged, setting breakpoints for

pausing the execution of the application at a certain execution point, resuming execution following

a breakpoint, stepping through instructions of the application or terminating it. Debug commands

may also ask for information regarding the state of the application such as the values stored in

variables, parameters, registers and program counters of the application, stack traces for the call

stack of the application, dumps of active memory following a crash or failure and such [LJ15].

This debugging technique is especially useful for debugging embedded software, and it requires

cooperation between the host and target machines [WDDZ11].

2.4.2 Debugging on Industrial Systems

Nowadays, companies are competing fiercely to provide high-quality software at the lowest pos-

sible cost. Software maintenance plays a crucial role since it preserves the software quality after

deployment, implementing new features and fixing errors that show up during execution. Debug-

ging tools are used in this phase of the software development life cycle to help identify where the

software faults are and what is the condition that leads to them [MZ16].

32

Background

Figure 2.14: Example of an environment for remote debugging of an application (Adapted from: [LJ15]).

Additionally, in industrial systems, the increasing need for production efficiency and flexibil-

ity require active and real-time maintenance from skilled technicians in order to reduce machine

downtime. For expensive machines, usually, often downtime is more expensive than the actual

repair in terms of lost production resource. Thus, real-time monitoring, advanced maintenance,

and debugging systems play a significant role in solving the problem remotely [MZ16].

Cyber-physical systems are similar to traditional distributed embedded systems, consisting

of several interconnected devices with limited resource constraints. However, its main goal is

to remain responsive to environmental changes and network commands. They “are distributed

applications that track, observe and analyze large collections of data from computerized enti-

ties”. Debugging these distributed systems is hard because developers have to deal with the non-

33

Background

determinism of concurrent processes, the time-sensitive nature of applications and partial failures

that may occur. This makes the debugging task arduous since an error detected in one execution

might not manifest itself in the next one [MBC+17].

Bugs in CPS systems are hard to reproduce and thus to fix, and for this reason, remote debug-

ging techniques are helpful in the maintenance process because the debugger is connected to the

device when an exception or crash occurs. Capturing information from these devices in real-time

helps to identify and track where the causes of failure are situated [MBC+17].

The use of visual metaphors as abstraction mechanisms have been around the manufacturing

and automation industry for a long time [AGB93]. In the manufacturing industrial environment,

graphical input support and display interfaces can be used for better visualizing the control of

the workflow of a specific machine. A typical workflow process is composed of a series of tasks

and events, the order in which they must occur and the script to be executed as a result of each

event [SP07].

Developing a workflow can be a complex process involving many system components. For

this reason, running the workflow alongside a debugger in order to identify and fix issues is cru-

cial [SBP+06].

Conventional debuggers are inadequate for the debug of workflows. The ideal environment,

considering the context of a manufacturing system, is the availability for remote debug of work-

flows running on any shop-floor machine in production, through a user interface that allows a cer-

tain level of abstraction regarding the control of automation functions, either it is for controlling

an industrial process programmable controller (PLC) or for programming the motion controller of

a processing or production machine [SP07].

2.4.3 Summary

Software debugging is the process of identifying errors or defects in software or a computer system

and solving them so that the program works correctly accordingly to specification [SD17]. Debug-

ging is an essential part of the software engineering process, being an arduous, time-consuming,

costly task. It is crucial since no software can be considered reliable unless it is thoroughly tested

and verified, in order to make sure that there are no system anomalies [SBAM17, ALR00].

Debuggers allow the debugging of a program, to see what is going on inside a program while

it executes and what the application was doing at the moment it crashed [LXWY09].

Nowadays, companies are competing fiercely to provide high-quality software at the lowest

possible cost. Software maintenance plays a crucial role since it preserves the software quality

after deployment. Debugging tools are used in this phase of the software development life cycle to

help identify where the software faults are and what are the conditions that lead to them [MZ16].

Traditionally, software applications are debugged in an environment in which the debugger

is executing on the same computing device as the application being debugged. Such computing

devices may have limited resources, e.g. storage, processing, and communication, as it is the case

of the ones commonly used in industrial systems. The debug of these systems has to be done

through remote debugging. In this debugging technique, the debugger runs on a host machine,

34

Background

while the program to be debugged is running on a specific hardware platform of a target machine.

The application is launched using a remote debug module executing on the host machine, and

communicates with the target machine via a communication channel, using it to send the debug

commands [LXWY09, LJ15].

The use of visual metaphors as abstraction mechanisms have been around the manufacturing

and automation industry for a long time [AGB93]. They can be used for better visualizing the

control of the workflow of the tasks to be executed by a specific machine [SP07].

Developing a workflow can be a complex process involving many system components. For

this reason, running the workflow alongside a debugger in order to identify and fix issues is cru-

cial [SBP+06]. In the ideal environment, the availability for remote debug of workflows running

on any shop-floor machine in production, through a user interface that allows a certain level of

abstraction regarding the control of automation functions, should be provided [SP07].

2.5 Conclusions

From the background explored, several conclusions can be made.

Industry 4.0 is revolutionizing the way factories compete in the market, aiming to achieve a

higher level of operational efficiency and productivity by augmenting the level of automatization

in factories.

The integration of IoT in the manufacturing process was the big step into the current industrial

revolution, with the integration of embedded sensors, actuators, processors, and transceivers. Man-

ufacturing execution systems focus on the digitalization of shop-floor activities with the collection,

analysis, and exchange of the information received in real-time from these devices, allowing better

control and optimization of manufacturing production processes.

An adaptation of the software development life cycle for industries has certainly been a de-

termining factor on the achievement of smart and efficient manufacturing. Because most orga-

nizations rely on software products to run their business operations, good maintenance has to

be performed regularly and in real-time to ensure the sustainable quality of the software product

through its life cycle.

Industrial software requires the need to be constantly updated and re-configured, imposing

pressure over the need for maintenance of the software deployed in the industrial systems. The

maintenance process of these systems takes advantage of the implementation of CPS on factories

to monitor the machine’s health condition and correctness of operation in the production line, in

real-time, in order to maintain optimal performance of the manufacturing system at all times. For

an expensive machine often downtime is more expensive than the actual repair in terms of lost

production resource. This makes it even more important to detect execution failures as soon as

they happen through real-time monitoring, advanced maintenance, and debugging systems.

Failures in CPS systems, are hard to reproduce due to the non-determinism of concurrent

processes, the time-sensitive nature of applications and partial failures that may occur. Remote

35

Background

debugging techniques are helpful in the maintenance process of these systems because the debug-

ger is connected to the device when an exception or crash occurs, capturing information from these

devices in real-time.

IIoT systems are usually programmed by the means of visual workflows, performing an ab-

straction of the different tasks to be executed by the equipment, representing the workflow of tasks

in a simplistic way. Due to the nature of these systems, it’s important to run the workflow along-

side a debugger in order to identify and fix any occurring issues, helping the maintenance process

of IIoT systems.

36

Chapter 3

Related Work

Contents
3.1 Remote Debugging . 37

3.2 Workflow Debugging . 40

3.3 Remote Debugging Protocols . 43

3.4 Conclusions . 44

This Chapter aims to present some of the current approaches on debugging, remote debugging,

debugging of workflows and remote debugging protocols, while simultaneously identifying the

shortcomings of the current approaches w.r.t. remote debugging of IIoT workflows.

3.1 Remote Debugging

Remote debugging, or cross-debugging, is the process of debugging a program running on a differ-

ent system from the debugger. The debugger runs on a host machine, whilst the program to be de-

bugged is running on a specific hardware platform of a target machine. The host machine executes

the debugger, which sets a communication channel for communicating with the target machine,

controlling the program’s execution and sending the debug commands [LXWY09, LJ15].

In this Section, we will look at some of the existing remote debugging solutions.

3.1.1 JPDA/JVM

Java Platform Debugger Architecture (JPDA) [Orab] is Java’s debugging framework stack con-

sisting of a mirror interface (JDI), a communication protocol (JDWP) and the debugging support

running on the target virtual machine to debug (JVM TI). It splits the debugging process into the

program which is being debugged and the user interface of the debugger application (JDI). The

37

Related Work

debuggee application is running in the back-end while JDI runs in the front-end. They communi-

cate using the JDWP protocol through a communication channel set between the two processes,

thus supporting the remote debug process by running the debug process (running in the virtual

machine) in a different machine from the debugger.

This framework is already included in IDEAs like IntelliJ IDEA, IBM Eclipse, Sun NetBeans,

and many others [PBF+15].

3.1.2 TOD

TOD [PTP07] is an omniscient debugger solution that enables navigation backward in time within

a program execution trace. It records the events that occur during the execution of the program

to be debugged and lets the user conveniently navigate through the obtained execution trace and

evaluate what may have possibly gone wrong during the execution.

Even though omniscient debugging isn’t within the scope of this document, this particular

solution relates through the event-driven architecture that TOD implements. It uses object-oriented

instrumentation events for the organization and storing of execution traces, like the ones used to

order the executing program to halt and return the control to the debugging environment through

a breakpoint within the debugging of an application, or to write in a variable of the executing

program [PBF+15, PTP07].

3.1.3 Visual Studio Remote Debugger

The Visual Studio Remote Debugger solution [Docb] provides, other than the regular debugging

environment (which allows to “break the execution of a program to examine the code, examine

and edit variables, view registers, see the instructions created from the source code, and view the

memory space used by the application”), a snapshot debugger which targets live ASP.NET apps in

Azure App Service. It takes a snapshot of the in-production apps when the executing code reaches

an established point, through snappoints and logpoints, capturing the state of the program’s exe-

cution at that particular moment. It allows seeing what went wrong with the executing application

without impacting the traffic of said application, dramatically reducing the time it takes to solve

issues that occur in production environments. Both this functionality and the regular debugger

support debugging remote environments [Doca].

The debug of software deployed on a different computer, pre-proposes a dedicated debugging

deployment. On the remote device or server where the application to debug is, rather than the

Visual Studio machine, it’s required to download and install the remote tools provided by Mi-

crosoft [Docc].

3.1.4 GDB

GDB (also known as GNU Debugger) [GDBb] is a portable debugger that offers extensive facili-

ties for tracing and altering the execution of applications. These applications might be executing

on the same machine as GDB (native), on another machine (remote), or on a simulator.

38

Related Work

For the remote debugging functionalities, a dedicated process named gdb-server is used on

the target machine in order to attach the running processes [PBF+15]. GDB uses a generic se-

rial protocol which can be used with remote stubs (the code that runs on the remote system) to

communicate with GDB, using serial communication or a TCP/IP connection [Fou].

3.1.5 Rivet

Rivet [Mic12] is an experimental framework solution developed by Microsoft which provides

browser-agnostic remote debugging of client-side web applications. It allows developers to “in-

spect and modify the state of live web pages that are running inside unmodified end-user web

browsers”, allowing to explore real application bugs in the context of the actual machine in which

those bugs occur. The communication between the client and the server side is made using stan-

dard HTTP requests.

3.1.6 Vorlon

Volron [Volb] is an “open source, extensible, platform-agnostic tool for remotely debugging and

testing JavaScript applications”. This framework can be used on both Web and Node.js applica-

tions (with some restrictions for Node.js, since it does not provide DOM elements). It allows to

remotely load, inspect, test and debug JavaScript code running on any device with a web browser.

It creates a small web server that communicates with the remote devices using standard HTTP

requests and hosts a visual dashboard to present the information to the user. It shows the list of

connected available remote clients and a view to allow the user to go through the client’s DOM

elements and modify them in real-time. After the Vorlon script is injected into the client’s appli-

cation, it is possible to debug the deployed application remotely [Vola].

3.1.7 ELIoT

ELIoT [Siv14] (ErLang for the Internet of Things) is a development platform for smart devices

connected through the network that “provides an abstraction over the hardware on which the

applications will be executed”. It targets IoT smart-home applications and provides IoT-specific

inter-process communication functionalities, supporting parallel and distributed programming and

thus providing the ability to be used in naturally distributed systems like CPS. The main goal is

to allow programmers to write concise code and easy to maintain, debug and test after deploy-

ment [SMC16].

It grants remote communication with the applications running on the IoT devices, having the

ability to query sensors or sending a command to an actuator using CoAP (Constrained Applica-

tion Protocol) services [Siv14, SMC16].

39

Related Work

3.1.8 SLDSharp

SLDSharp [TI19] is a debugger for iteractive and/or real-time programs that keeps track of both

the currently executing statement in a program and the changes in values of the expressions of

interest, visualizing them in real-time. It allows the programmer to dig into the possible causes

of a bug without having to suspend the program’s execution or check a log file. The targets of

this debugging method are functionality bugs that cause logical errors in the repeated execution

process in the flow, which receives input events to obtain computation results, thus originating

outputs.

The programmer selects the granularity of the real-time visualization of the executed parts

of the program and the sections and conditions for its visualization, observing the values of the

expressions of interest whilst debugging the program. To implement the debugger, it embeds code

fragments into the program’s original code to obtain the information needed for debugging [TI19].

3.1.9 Summary

Table 3.1 displays a brief comparison between the different remote debugging solutions presented

in this Section, in regards to the features they offer and that are of interest for the context of this

dissertation. “x” means that the solution supports the feature mentioned in that column.

Solution Remote debugging? Reverse debugging? Snapshot debugging? Web oriented? IoT oriented?
JPDA x
TOD x
VS x x x x
GDB x x
Rivet x x
Vorlon x x
ELIoT x x
SLDSharp x x

Table 3.1: Comparison between the different remote debugging solutions presented. “x” means that the
solution supports that feature.

3.2 Workflow Debugging

Workflow management systems have surfaced as a solution for addressing the diversified nature

of data and ease the execution of business processes, providing a better representation of the

process tasks, relevant resources, and documentation of the execution process. These systems are

“widely used in real-world applications within a wide scope of subjects including data mining,

scientific computing, and concurrent programming”, where all referred applications consist of

many sequential subroutines (which in some cases some can be aggregated), executed one after

the other, each represented by a block for simplification [RWM+18].

40

Related Work

In complex heavily-distributed scenarios, these subroutines may even be distributed across

several computing nodes. Such tasks require that many subroutines are chained together in a pre-

determined sequence, forming a more complex workflow, and it’s often difficult to monitor the

execution of these tasks in real-time [RWM+18]. In this Section, we will look at some of the

existing workflow debugging solutions.

3.2.1 Real-Time Workflow Monitor

RTWM [RWM+18] (Real-Time Workflow Monitor) provides “a cloud service and a client li-

brary to monitor complex workflow systems in real-time”. It claims to provide the progress of

the execution of each task of the workflow in real-time, monitoring the execution order and fault

occurrences of the system remotely, presenting it asynchronously through a user interface. The

interface provides an infrastructure for setting up the workflow system, monitoring performance

and debugging a chained set of tasks.

A web server runs the main application for debugging and receives events from the com-

puting units through WebSocket connections, then providing visualization for monitoring on the

web app. The UI Layer uses HTTP and WebSocket connections for communication with the de-

vice’s lower layers in real-time. The initial configuration messages are communicated through

an HTTP REST API and a WebSocket connectivity is set for the communication of events from

the computing units. Additionally, the notifications of the occurrence of these events are pushed

through the WebSocket handler to the client applications that are actively monitoring a workflow

system [RWM+18].

3.2.2 Stampede

Stampede [GDS+11] (Synthesized Tools for Archiving, Monitoring Performance and Enhanced

Debugging) “intends to apply an offline workflow log analysis capability to address reliability and

performance problems for large, complex scientific workflows”. It works as an execution infor-

mation capture and analysis system, streaming and storing information about the performance of

workflows in real-time on a log file written during execution. It also supports distributed environ-

ments.

The components of this tool’s architecture can be divided into a workflow execution engine,

log collection components, and archival and analysis components. During the execution of a

workflow, it writes a log file in near real-time containing the status of each job, inputs, and outputs

of tasks, and the pre and post-execute scripts [GDS+11].

Higher-level analyzing tools can mine the generated logs in real time to determine current

status, predict failures, and detect anomalous performance [RWM+18].

3.2.3 Node-RED

Node-RED [NRb] is a programming tool for creating flow-based programs that connect hardware

devices, APIs and online services. It provides a browser-based graphical editor for building the

41

Related Work

workflows, wiring the nodes that represent each task, each with a well-defined purpose that re-

ceives data as input, runs a function and passes the data onto the next node as it is defined in the

network’s flow.

These flow-based programs can be deployed to the runtime in a single click and functions

programmable in JavaScript can be easily tied to each node of the flow [NRa].

This tool can be run locally, on a physical device or in the cloud, allowing to visually represent

the flow of tasks with an abstraction level that provides the user with the ability to break down

a problem into easier steps and look at what each produces, in order to understand what it is

doing and detect any failure that may be happening on the program’s execution without having to

understand the individual lines of code within each node [NRb, NRa].

3.2.4 Zenodys

The Zenodys Platform [Zen] has a workflow builder that allows users to create their own work-

flows by wiring elements together, with a powerful browser drag-and-drop interface, in order to

build any kind of application backend or decentralized application. It simplifies the creation of

data management scenarios and to apply complex operations like AI, machine learning, demand

response, predictive maintenance, etc. The workflow is executed in the computing engine devel-

oped by Zenodys and stored locally, remotely or in a decentralized system.

Then, the UI builder allows building a custom user interface directly inside Zenodys ecosys-

tem, allowing the visualization, reporting, action triggering and other business and application

functionalities. It allows visually debugging the created workflows and remote operations on the

physical device the workflow is connected to (including remote debugging)[Zen].

3.2.5 Summary

Table 3.2 displays a brief comparison between the different workflow debugging solutions pre-

sented in this Section, in regards to the features they offer and that are of interest for the context

of this dissertation. “x” means that the solution supports the feature mentioned in that column.

Solution Workflow builder? Remote debugging? Web oriented? IoT integration?
RTWM x x x
Stampede x x x
Node-RED x x
Zenodys x x x x

Table 3.2: Comparison between the different workflow debugging solutions presented. “x” means that the
solution supports that feature.

42

Related Work

3.3 Remote Debugging Protocols

In this Section, we will look at some of the existing remote debugging protocols used for the

communication between entities involved in a remote debug session, with some relevance to this

project.

3.3.1 GDB Remote Serial Protocol

The GDB RSP [GDBa] (Remote Serial Protocol) is a high-level protocol that allows GDB to

remotely connect through a serial port. On the target, it must be linked to the debugging stub

file that implements the GDB remote serial protocol. After the communication setup process is

finalized, the debugger can use the usual commands to examine and change data and to stop or

continue the remote program’s execution. This protocol supports a wide range of connection types

and the different command types are distinguished by the message’s first character.

3.3.2 Java Debug Wire Protocol

The JDWP [Oraa] (Java Debug Wire Protocol) is the protocol used for communication between a

debugger and the JVM where the program is running. It does not specify the transportation of the

messages, only details the format and the layout, and it accepts any transport mechanism that is

suitable for the target debugger/target VM combination through a simple API.

In JDWP, when the transportation connection between the two machines is established, a hand-

shake must occur between the two sides before any packets are sent. The packets of the messages

exchanged are defined as command or reply packets. The first can be used by the VM to request

information about the application’s internal variables, to control the program’s execution, or by

the running application to notify the debugger of some event such as the reach of a breakpoint

or an exception. Reply packets are sent in response to a command packet, providing informa-

tion regarding the success or failure of the command to what it is replying, carrying some data if

requested [Oraa].

3.3.3 JSON/HTTP Communication Protocol

A JSON/HTTP based communication protocol was designed by F. Pereira and L. Gomes [PG18]

to allow CPS systems to support reliable communication between components of naturally dis-

tributed applications. It encompasses remote debugging and monitoring functionalities for the de-

tection and quick resolution of system failures that lead to the incorrect behavior of applications,

supporting step-by-step execution and breakpoint definition capabilities. The developed proto-

col employs publisher-subscriber and client-server patterns for establishing the interconnection

between the remote components.

43

Related Work

3.4 Conclusions

This Chapter presented some of the currently available solutions for debugging, remote debugging,

debugging of workflows and remote debugging protocols. The solutions were here introduced as

a result of an extensive search that was made using the standard literature platforms as well as

commercial platforms since the subjects of this search were more practical rather than theoretical

and not many solutions were documented in the platforms first mentioned.

Through an analysis of the solutions encountered, some alternatives for the debug of work-

flows and for remote debugging are offered, but none of them seems complete as a whole for

these two combined and contextualized in the manufacturing industry. The maintenance process

for the manufacturing production line should be aided with remote control and monitoring of the

machines in execution in the shop-floor through a network and in real-time, enabling the detec-

tion of failures in the equipment as soon as they happen, thus avoiding unwanted monetary and

resource losses. It should support the use of visual metaphors as an abstraction mechanism for the

equipment’s execution tasks for easier understanding of the cause that triggered the system failure

since visual programming languages are a common way of simplifying the software’s execution

in manufacturing systems.

The communication protocols that were examined also don’t suit the needs of the proof-of-

concept to be developed, therefore requiring the design and implementation of a suitable protocol

to connect the visualization of the workflow to be monitored to the physical device where it is

running.

44

Chapter 4

Problem Statement

Contents
4.1 Current Issues . 45

4.2 Case Study . 46

4.3 Desiderata . 47

4.4 Solution Proposal . 48

4.5 Methodology . 49

4.6 Conclusions . 49

The goal of this Chapter is to describe what are the current challenges of debugging IIoT systems,

regarding the current solutions for IoT remote debugging and workflow debugging presented in

the previous Chapter. It presents the proposed solution for these challenges as well as the context

in which it was implemented. Then, the relevant features of the solution are presented, along with

the means for evaluating the solution’s success.

4.1 Current Issues

Current solutions, as presented in Chapter 3, offer some alternatives for the debug of workflows

and for remote debugging, but none of them seems complete as a whole for these two combined

and contextualized in the manufacturing industry. To ensure the maintenance process for the

manufacturing production line, remote control and monitoring of machines in execution through

a network should be possible at any time to detect failures as soon as they happen and avoid any

resource losses resulting from an unscheduled stop of a machine on the shop-floor.

To allow a better understanding of the information obtained through the real-time monitoring

of the equipment’s behavior, the use of visual metaphors as abstraction mechanisms seems suit-

able, since such approaches have been around the manufacturing and automation industry for a

45

Problem Statement

long time [AGB93]. Visual programming is simply a formalization of the workflow of the tasks

to be carried by the operational system. A typical workflow process is made up of a series of

tasks and events, the order in which they must occur, and the script that is executed for each

event [PGPM19, RWM+18]. A communication protocol is required to connect the visualization

of the workflow to be monitored to the physical device where it is running. None of the solutions

presented fully answer these demands simultaneously:

1. Remote connection to a specific physical device running elsewhere without compro-
mising its current execution - the debugger connects to the physical device through an

intermediate that translates the device’s variable events according to the communication

protocol that the equipment is using, notifying the debugger of the execution events, allow-

ing bi-directional communication for the debugger to transmit the debug commands to the

equipment;

2. Abstraction of the physical device’s sequenced execution tasks through a workflow
- the sequenced execution tasks of the physical equipment are translated into a workflow,

where there is an abstraction of each task (encapsulated in a box and including some sort of

internal business logic) receiving inputs, applying the business logic, and generating outputs

which are then passed onto the next workflow task, until it reaches the final one, which has

no output;

3. Ability to debug the workflow being executed by the physical device in real-time (with
or without interrupting its execution) - with the remote connection to a specific physical

device running elsewhere, whenever there is an event that triggers the initialization task of

the equipment’s workflow, it begins execution. The interface of the debugger allows the

user to set breakpoints in the task’s inputs or outputs, which will get activated whenever a

variable passes in that specific point, showing the workflow’s state in its entirety so that the

user can evaluate what went wrong (if something went wrong) by analyzing the workflow’s

internal variables that show the state of the physical equipment it is debugging. It must

have a debug mode which interrupts the device’s execution when a breakpoint is reached

for identifying exactly where the system failures start to arise, and a debug mode that never

interrupts the device’s execution, for debugging the machine whilst it is in execution in the

factory’s production line, just for value analysis, without interfering with its execution.

Thus, we consider that to fulfill the needs of IIoT systems maintenance, there should be a

solution that addresses the challenges mentioned, providing a way to remotely debug IIoT systems

with an abstraction of the shop-floor equipment’s execution tasks through a workflow.

4.2 Case Study

The proposed solution was developed in the context of Critical Manufacturing’s Manufacturing

Execution System. It is a software platform with a deep set of modular, fully interoperable, appli-

46

Problem Statement

cations which claims to “provide manufacturers in complex industries with the maximum agility,

visibility, and reliability” of the manufacturing process [Manf].

The recent advances in the integration of IIoT led to the development of the “Connect IoT”

module. This platform is a low-code solution that enables production engineers and system inte-

grators to connect their shop-floor equipment to Critical Manufacturing MES. It has the goal to

dramatically reduce the time and effort for this very integration, allowing to create a graphical

overview of the automation workflows being carried out by the machines in production [Mand].

It has a single graphical view of automation workflows, providing ways to create and up-

date complex logic via a user-friendly, no-code interface that allows workers with close to none

IT-knowledge to fulfil their needs [Mand]. So far, Connect IoT allows to visually debug these

workflows and simulate the equipment, with inputs and outputs provided by the user, as the IoT

application is running on the background in the same machine as the debugger for the testing of

this manufacturing environment before deploying it in the production line.

Machinery downtime should be avoided at all cost since it causes dreadful resource losses for

companies [SS17]. To prevent this and to assure maximum production efficiency and effective-

ness, real-time remote maintenance is required, which can be achieved through remote debugging

of the operations’ workflow being followed by the machines in the production line. We implement

it as an extension of the currently available module in Critical Manufacturing MES, by receiving

the workflow inputs and outputs directly from the equipment.

4.3 Desiderata

In the context of the development of the proof-of-concept, this Section describes the base require-

ments that we aim to tackle in this work. Most of the functionalities that are proposed already

exist in current products with generalized applications, but not directed towards the manufacturing

industry and its requirements. The development of these functionalities is essential for the valida-

tion of the solution proposed in this dissertation, in order to prove that IIoT systems greatly benefit

from remote debugging functionalities.

The proposed solution pretends to support the following features:

DS1. There should be an adaptation of a debug session to the manufacturing environment, where

there are events defined to be triggered by a certain change in the machine itself (though the

integrated sensors and actuators) which will then have to be communicated to the debugger

by an intermediary that will be listening to those changes;

DS2. The remote debugging protocol developed should be simplified and generalized so that the

number of messages is reduced and can be used for the different debug modes. Each mes-

sage should have the purpose of informing or notifying the receiver of something that hap-

pened or must happen and must be related to a distinct action;

DS3. The debugger should be aware of all the debug sessions it is a participant of, and there

should be a frequent checkup for inconsistencies, using the debugging protocol, regarding

47

Problem Statement

sessions that remain available, the debug mode type of each session, etc., according to the

availability rules to be defined in Chapter 5, so that the machine’s execution is not being

interrupted when it shouldn’t;

DS4. The solution should be able to handle all connection events and issues that may arise, always

informing the user of that is happening through the visual interface, trying to reconnect with

other entities as soon as it is possible;

DS5. Creating an abstraction of the execution tasks using a representation through workflows

should provide a better understanding of the machine execution and allow to detect failures

in real-time and what is causing the incorrect behavior, avoiding losses resulting from ma-

chinery downtime. This can be achieved through a simple interface that allows knowing

what inputs were received and what outputs were generated by a task and the variable’s

evolution through the workflow path, presenting the debug information intuitively so that

the general factory worker with close to none IT knowledge can operate with it;

DS6. The remote debugging method should provide a better insight of the production machinery,

even if it is in execution (through the snapshot debug mode), in a real-life production line.

The aforementioned desiderata items are the base requirements for this project and is essential

that the proof-of-concept developed in this dissertation answers these demands to prove that remote

debugging can be applied to an IIoT workflow and improve the maintainability process of IIoT

manufacturing systems.

4.4 Solution Proposal

This dissertation delves into the challenges of debugging IIoT systems, namely remote debugging

strategies. A prototype to demonstrate the feasibility of both synchronized and snapshot remote

debugging applied to an IIoT workflow was designed, constructed, and tested/evaluated. The main

goal of this approach is to achieve is a 0-downtime workflow remote debug approach, contemplat-

ing the design and implementation of a suitable debugging protocol and a supporting platform

where workflows can be easily configurable, monitored and debugged while developing or during

production, choosing to interrupt or not the workflow’s operations while debugging.

It will allow factory workers to debug a working machine over the network to access the

feedback provided by the sensor devices and control the execution through the setup of breakpoints

in the machine’s workflow. This will provide access to the input and output values of each task,

allowing to detect what may be causing incorrect behavior, resulting in an erroneous service in the

production line. The proposed solution includes four debug modes:

Mock Debug All the workflow inputs are manually inserted into the UI of the debugger applica-

tion. The IoT application runs in the same machine as the debugger just for simulating the

execution of the real manufacturing environment;

48

Problem Statement

Remote Synchronous Debug The workflow inputs are received directly from the manufacturing

equipment and/or from MES. When the execution of the workflow stops on a breakpoint,

the entire workflow stops and the developer can check and modify the state of the internal

variables, before proceeding with the execution;

Remote Snapshot Debug Similar to the previous approach, but in this case the workflow devel-

oper can only check the current state of the workflow execution, not interrupting the source

system;

Remote Profiler Debug Same as the Snapshot Debug mode approach, changing only in regards

to the way the information is presented to the user.

By achieving a 0-downtime workflow remote debug approach, it is expected that the prototype

developed provides a better debugging environment for both simulated and real-time production

shop-floor execution systems, having a greater impact on reducing machine downtime during pro-

duction and leading to the reduction of resource losses.

4.5 Methodology

The developed debugging functionalities will be tested through replication of common use case

scenarios of a debugging system applied to a manufacturing system and the validation of the results

obtained will be done by comparing them to the ones expected in those scenarios.

In order to evaluate the success of this work, most of the use cases will be directed towards

the validation of the protocol implementation. The main goal is to guarantee that the interaction

between entities and the different debugging modes is being done correctly considering the avail-

ability rules defined and that will be explained in Chapter 5. Every interaction will be covered,

including invalid scenarios and the management of connection between entities, and thoroughly

tested in order to validate the protocol developed.

It is expected that the main contributions of the developed work, focused on the implementa-

tion of IoT in the manufacturing industry, are related with the usage of real-time remote debugging

during the maintenance phase, whilst in production, and how it can help minimize incorrect ma-

chinery behavior and, consequently, resource losses, also aiming at a higher production efficiency.

4.6 Conclusions

The solution here presented is an approach to remote debugging of IIoT systems, using visual

metaphors as an abstraction mechanism for the equipment’s execution tasks through workflows.

This proof-of-concept aims at the demonstration of the feasibility of both synchronized and snap-

shot remote debugging applied to IIoT automation workflows. The solution will provide a total of

four different debugging modes:

49

Problem Statement

1. Debug of a simulation of the workflow’s execution for testing before it is deployed in the

production line;

2. Synchronous debugging of the shop-floor equipment that is not in active production;

3. Snapshot debugging of the shop-floor equipment in production;

4. Profiler debugging of the shop-floor equipment in production (captured just like the snapshot

debugging mode but presenting the feedback received in a different way).

It aims at easing the maintenance process and providing the means for the detection of failures

for both simulated and real-time production shop-floor execution systems. The debugging of the

automation workflows being carried out by machines in production is done through a graphical

user-friendly overview, where the workflows can be easily created, configured and monitored using

the debug functionalities mentioned above.

It is expected that this solution, if successfully implemented, will provide a better debugging

environment for both simulated and real-time production shop-floor execution systems, having

a greater impact on reducing incorrect machinery behavior, as well as machine inactivity due to

failures, consequently reducing resource losses and improving production efficiency.

50

Chapter 5

Solution Overview

Contents
5.1 Connection Preparation . 54

5.2 Debug Session . 56

5.3 Conclusions . 63

This Chapter details the proposed solution, explaining its main software components and the tech-

niques used to tackle the development problems.

Our approach focuses on updating the existing components of the MES software to support

the new functionalities, more specifically, the Automation Controller process, mentioned in Sub-

section 2.2.2.1, and the Automation Controller view on MES where it is possible to build the

workflows and debug them locally.

Because it is the Automation Controller process that will be running the workflow, receiving

the events from the Automation Driver(s) connected to the device we want to debug, the commu-

nication between this component and the MES instance is essential to allow the remote debugging

functionalities that this work aims to implement. For this, the modified components have to behave

accordingly with the definition of the remote debugging protocol developed.

After the environment setup is done on MES (as mentioned in Subsection 2.2.2.1), in the

Automation Controller workflow view of the MES interface, a dropdown list was added to allow

the selection of the debug mode (Figure 5.1):

Mock Debug Debug of a simulation of the workflow’s execution for testing before it is deployed

in the production line;

Synchronous Remote Debug Synchronous debugging of the shop-floor equipment that is not in

active production;

Snapshot Remote Debug Snapshot debugging of the shop-floor equipment in production;

51

Solution Overview

Profiler Remote Debug Profiler debugging of the shop-floor equipment in production (captured

just like the snapshot debugging mode but presenting the debug information in a different

way).

Figure 5.1: Dropdown list added to the MES interface for choosing the debug mode to debug the selected
workflow.

The Mock Debug mode debugs an IoT application running in the same machine, as the de-

bugger uses workflow inputs which are manually inserted into the UI of the debugger application.

The workflow engine is running locally. This is useful for simulating the execution of a real

manufacturing environment.

The remaining debug modes in the list interact with an IoT application running remotely, in

physical devices executing in a real production factory environment, receiving the workflow inputs

directly from the manufacturing equipment.

Because these modes require a connection with remote entities (the IoMT agents), a commu-

nication protocol was developed. To sent the messages between these entities, the message bus

that was already implemented in the Critical Manufacturing MES, which uses WebSockets, was

used. This way, all the messages will go directly to the message bus gateway, being diffused

by all the MES instances and by the IoMT agents running the Automation Controller instances

close to the physical machines. Four of the implemented methods in the message bus were used

by this communication protocol: publish (sends a message asynchronously), sendRequest (sends

a message synchronously and waits for the response), reply (replies to a sendRequest message),

subscribe (subscribes to a message of a certain subject and registers the callback to be called when

a message of this type is received).

In the remote debugging protocol, each message identifies the components it wants to be as-

sociated with as attachments to the message subject. An overview can be found in Table 5.1.

52

Solution Overview

Message Flow Type Description Parameters Reply
onCommunicationStarted IoMT-MES Async Connection attempt from an IoMT agent upon initial-

ization with all the MES instances available. It is sent
to start/restart the communication between them and
inform if the workflow instance selected on the de-
bugger page is running in that server.

automationCon-
trollerInstanceId:
string

onCheckWorkflowRunning-
_(automationControllerIn-
stanceId)

onCommunicationAttempt-
_(automationControllerIn-
stanceId)

MES-IoMT Sync Connection attempt from a MES instance upon se-
lection of the Automation Controller instance to de-
bug, repeated every 10 seconds to ensure it detects a
change in the connection if it happens.

reply: function reply

onCheckWorkflowRunning-
_(automationControllerIn-
stanceId)

MES-IoMT Async
/
Sync

Communicates with the selected Automation Con-
troller instance to know if the workflow instance se-
lected on the debugger page is running in that server.
The answer is received in the MES instance through
the onCheckWorkflowRunningResponse_(automa-
tionControllerInstanceId)_(workflowId) message, in
case of async request, or through a reply in the start
debug function, in case of sync request (this will get
a reply if it is running or get no reply otherwise).

workflowId:
string, sessionId:
string, reply?:
function

onCheckWorkflowRunning-
Response_(automationCon-
trollerInstanceId)_(work-
flowId), reply

onCheckWorkflowRunning-
Response_(automationCon-
trollerInstanceId)_(work-
flowId)

IoMT-MES Async Checks if, according to the sessionIds related with the
selected workflow instance, the workflow is available
for debugging or not.

running: boolean,
sessionsId: De-
bugSessionInfo[]

onBreakpointChange_-
(automationControllerIn-
stanceId)_(workflowId)

MES-IoMT Async Adds or removes a breakpoint on the selected work-
flow instance.

sessionId: string,
breakpoint:
BreakpointDefi-
nition

onBreakpointToggle_-
(automationControllerIn-
stanceId)_(workflowId)

MES-IoMT Async Enables or disables a breakpoint on the selected work-
flow instance.

sessionId: string,
breakpoint:
BreakpointDefi-
nition

onStartDebug_(automation-
ControllerInstanceId)

MES-IoMT Async Initializes a debug session in the selected Automation
Controller instance, if available, generating a unique
debug session Id and updating the workflow break-
points associated with the session.

mesId: string,
workflowId:
string, de-
bugMode:
DebugMode,
breakpoints:
BreakpointDefi-
nition[]

onDebugStarted_(mesId)_-
(automationControllerIn-
stanceId)_(workflowId)

onDebugStarted_(mesId)_-
(automationControllerIn-
stanceId)_(workflowId)

IoMT-MES Async Communicates the newly created debug session Id to
the MES instance that asked for the start of that debug
session.

sessionId: string

onStopDebug_(automation-
ControllerInstanceId)

MES-IoMT Async Stops an existing debug session. sessionId: string onDebugStopped_(automa-
tionControllerInstanceId)_-
(sessionId)

onDebugStopped_(automa-
tionControllerInstanceId)_-
(sessionId)

IoMT-MES Async Updates the session registry array. sessionId: string,
registry: De-
bugSessionIn-
foEntry[]

onSessionRenewal_(auto-
mationControllerInstanceId)

MES-IoMT Async Renews an existing debug session. This is necessary
to guarantee that the session hasn’t expired and re-
mains active over time.

sessionId: string

onBeforeSetOutputs_(auto-
mationControllerInstanceId)_-
(sessionId)

IoMT-MES Async
/
Sync

Notifies the MES instance debugging a certain work-
flow that a variable on a task output with a breakpoint
has been changed, changing the visual representation
of the workflow in the interface.

workflowId:
string, reg-
istryEntry:
DebugSessionIn-
foEntry, reply?:
function

reply

onAfterSetInputs_(automa-
tionControllerInstanceId)_-
(sessionId)

IoMT-MES Async
/
Sync

Notifies the MES instance debugging a certain work-
flow that a variable on a task input with a breakpoint
has been changed, changing the visual representation
of the workflow in the interface.

workflowId:
string, reg-
istryEntry:
DebugSessionIn-
foEntry, reply?:
function

reply

onReceivedExecutionCon-
text_(automationController-
InstanceId)_(workflowId)

MES-IoMT Async Saves the execution context of an snapshot debug ses-
sion it wants to follow.

sessionId: string,
executionCon-
text: string

onAvailableACIRequest MES-IoMT Async Requests an update of all running Automation Con-
troller instances of the current running state of the se-
lected workflow in the debugger page.

workflowId:
string

onAvailableACIRequest-
Response_(workflowId)

onAvailableACIRequest- Re-
sponse_(workflowId)

IoMT-MES Async Updates the currently available Automation Con-
troller instances array with the information received
regarding the automation controller instance.

automationCon-
trollerInstanceId:
string, running:
boolean

Table 5.1: Remote debugging protocol developed.

53

Solution Overview

5.1 Connection Preparation

When reaching the debugger page, both the debug mode and workflow to debug are already se-

lected so, from there on, when remaining in this page, all the communication will be regarding

that workflow and will have in consideration the debug mode that was selected. The only element

to select that remains missing is the Automation Controller instance (ACI) we wish to connect

with to begin the debug of the workflow. For that, the onAvailableACIRequest message is

broadcasted to all the entities connected to the message bus, sending the ID of the selected work-

flow. The Automation Controller instances subscribed to this message will reply with the message

onAvailableACIRequestResponse informing their unique ID and the execution state of the

workflow in that controller instance. According to the response received, the MES instance will

gather the IDs of the Automation Controller instances where the selected workflow is running. If

there is more than one positive response, the IDs will be displayed in a dialog for the user to select

which controller instance he wishes to debug (Figure 5.3). If only one controller instance replied

within 5 seconds, the MES instance will assume it is the only one running the workflow and will

automatically select it.

Figure 5.2: Visual representation of the protocol messages interaction to query the Automation Con-
troller instance availability. The onAvailableACIRequest is broadcasted to all the entities listening,
to which the Automation Controller instances will reply with the availability state of the workflow sent
in the message’s body (if it is running or not) with the onAvailableACIRequestResponse message.
This interaction is repeated every 30 seconds to ensure data consistency and continuously update the list of
available Automation Controller Instances to debug.

Once the Automation Controller instance selection is over, the communication between this

instance and MES begins, ensuring the connection between these over time until the user stops the

communication (for example, by leaving the debugger page). Once the controller instance selec-

tion is done, the MES instance sends an onCheckWorkflowRunning to know if the workflow

is still running and if it is available for debugging in the selected mode. This message is more re-

fined than the previous one used to know if the workflow is running because it will also receive the

debug sessions (and respective mode type) associated with it, determining its availability status:

54

Solution Overview

Figure 5.3: Available Automation Controller instances list. It is presented as a dialog for the user to
select which one he wishes to debug.

• Only one synchronous debug session can be active at once, and no other debug sessions are

allowed until that session has ended (synchronous, snapshot or profiler);

• There can be more than one snapshot session at the same time since they don’t interfere with

the machine’s execution, but no synchronous session can start until all snapshot or profiler

sessions have ended.

The workflow’s availability status only depends on the debug sessions being performed in the

Automation Controller instance that is selected.

The response, onCheckWorkflowRunningResponse, will determine, according to these

rules and the chosen debug session, if the workflow is available for debugging or not, determining

the state of the “Start Debug” button (enabled/disabled).

To keep the consistency of the information presented, both onAvailableACIRequest and

onCommunicationAttempt requests are sent periodically, with the intervals of 30 and 10 sec-

onds respectively. In case the onCommunicationAttempt message got a positive response, it

will lead to the dispatch of the onCheckWorkflowRunning request, along with the message to

renew the debug session state, if it has one, onSessionRenewal.

The session renewal state ensures that the sessions that unexpectedly disconnect over time

are wiped by the IoMT agents periodically (every 30 seconds). The same is done regarding the

available controller instances, which have a renew state that wipes the ones that unexpectedly

stopped replying to the onAvailableACIRequest messages, every 30 seconds. If for some

reason, the connection between the two entities (MES and IoMT) drops because the selected IoMT

agent has disconnected, it will send an onCommunicationStarted message upon initialization

in case it was connected to an MES instance to quickly re-establish the connection.

55

Solution Overview

Figure 5.4: Visual representation of the protocol messages interaction to initialize the com-
munication between the selected Automation Controller instance and the MES instance. The
onCheckWorkflowRunning is sent in response to the onCommunicationStarted message (sent
by the selected IoMT agent upon reconnection, in case the connection dropped), or automatically when
the Automation Controller instance is selected, to query if the workflow remains running and is available
for debugging according to the rules specified. The Automation Controller instance responds with the
onCheckWorkflowRunningResponse. This interaction is absolutely necessary since it verifies that the
new debug session won’t interfere with an already existing session on that machine.

5.2 Debug Session

To start the debugging session, when the “Start Debug” button is clicked, the onStartDebug

request is sent to the selected Automation Controller instance. It will re-check all the conditions

previously mentioned to know if the workflow is available for debugging and if so, it will generate

a unique session ID and update the workflow breakpoints associated with the debug session. The

session ID will be communicated to the respective MES instance through the onDebugStarted

message, using the unique MES instance identifier.

In the Automation Controller, during the equipment setup, the engine that is running the work-

flow will associate the Automation Driver to each task so that when a variable change happens, the

driver will detect the changes and will emit an event subscribed by the respective task input/output

(the subscription is done during the engine’s workflow setup). When this event is detected by the

task, it will trigger the onBeforeSetOutputs or the onAfterSetInputs hook respectively

in case it was a task output or input. This process is common to all debug modes (remote or not).

In the case of the Mock Debug, the workflow engine is running next to the MES instance,

receiving the task inputs directly from the user (Figure 5.8), and the hooks behave slightly differ-

ently. The functions associated with the hooks are directly injected in the local engine, detecting

the modifications in the task’s inputs or outputs, which will then trigger the breakpoint, if there is

any, in the modified variable, stopping the workflow execution when a breakpoint is reached until

the “Resume” button is pressed.

When working with a remote Automation Controller instance, when these hooks are triggered,

56

Solution Overview

Figure 5.5: Example of workflow unavailability. The availability of a running workflow to debug is
defined by the availability rules defined above. In this figure, a snapshot session was already active for this
workflow in this Automation Controller instance, and for this reason, it is unavailable for starting a new
synchronous session. This information is shown in the interface in the ribbon above the workflow and with
the disabling of the “Start Debug” button.

it will identify the debug sessions associated with the workflow where the changes were detected

and, for each, it will check if there are any breakpoints in the modified variable.

In the case of the Synchronous Debug, if there is a breakpoint in that variable, it will stop the

engine’s execution, send an onAfterSetInputs or onBeforeSetOutputs message, respec-

tively in the case of an input or output, notifying the MES instance of the workflow state when

the breakpoint was reached, the variable changes and the triggered breakpoint. The Automation

Controller instance will then wait until it receives a reply to these messages.

When receiving the previously mentioned messages, the MES instance will trigger the respec-

tive breakpoint, update the workflow task instances to show the workflow state when the changes

were detected and stop the engine’s execution until the “Resume” button is pressed (Figure 5.9),

which will then resume execution of both MES and Automation Controller instance workflow

engines by replying to these messages.

Because when the engine is stopped the hooks will still get triggered when a variable is

changed, in this mode, all the hooks triggered while waiting for the “Resume” command will

be ignored by the engine, along with the propagation of these new variables in the workflow. This

debug mode is only suitable for manufacturing systems that are not in production at the moment

when the synchronous debugging session is started since it will alter the equipment’s execution

state.

57

Solution Overview

Figure 5.6: Visual representation of the protocol messages interaction to ensure the connection be-
tween the Automation Controller instance and the MES instance, and to obtain the workflow’s run-
ning and availability status. The onCommunicationStarted message is sent every 10 seconds to
maintain data consistency. If it doesn’t get a reply, it means the connection with the Automation Controller
instance dropped. Upon receiving a reply it will check the availability and running state of the workflow
with the onCheckWorkflowRunning message and, if there is a debug session active at that moment, it
will renew the session state on the Automation Controller instance with the onSessionRenewal mes-
sage, notifying that it remains active. If any state changes are received from these requests it will be shown
to the user through the MES interface (e.g. the workflow becomes unavailable and the debug session is
terminated, the connection with the Automation Controller instance drops, etc).

In the case of the Snapshot or Profiler Debug, if there is a breakpoint in the modified variable,

it will check the execution context where this change was detected, and update the registry of

changes on that execution context.

This introduces the concept of a “flow” of the workflow, which begins when an equipment

event is triggered and ends at the end of the workflow branch where there is no output link. Each

flow will have its own execution context and will not interfere with the execution of another flow.

This was a mechanism made for dealing with asynchronous workflows where, for example,

two variables will trigger the same output, but at different times. Imagining that two variables

will change consecutively, and the concept of flows hasn’t been implemented, and variable A

will change prior to variable B but will take longer to reach the common output. The presented

information to the user will be var A→ var B→ out put B→ out put A. Assuming that the output

will be the result of calculations with the received variables but the user does not have insight of

those calculations, it will assume the output with variable B was actually gotten using the variable

A, since that one was changed first. With the introductions of flows, the user will be presented

with only one workflow flow and the information of different execution contexts will not get

58

Solution Overview

Figure 5.7: Visual representation of the protocol messages interaction for starting a debug ses-
sion. Firstly, it is made sure that the workflow is running and available for debug through the
onCheckWorkflowRunning request. If this gets a positive response, it requests the start of a new debug
session with the onStartDebug message, to which the Automation Controller instance will generate a
new unique session ID and will transmit it back to the MES instance using the onDebugStarted mes-
sage.

mixed, making the workflow much easier to debug. Whenever an equipment event is triggered

by a variable change, it creates a new execution context which will follow the evolution of that

variable through the workflow (Figure 5.10).

The Snapshot and Profiler Debug modes work similarly, changing only in regards to the way

they present the information to the user. In the case of the Snapshot Debug, we only want to follow

the most recent detected execution context. One snapshot session debugs only one execution

Figure 5.8: Example of the task inputs provided by the user for the Mock Debug.

59

Solution Overview

Figure 5.9: Example of an active breakpoint and how it is shown to the user. On the synchronous or
snapshot debug modes, when a breakpoint is triggered, the workflow task instances are updated to show
the workflow state when the changes were detected (on the right side of the interface) until the “Resume”
button is pressed.

Figure 5.10: Illustration of the different execution contexts that are created when a change is detected
in the equipment. A new execution context is created whenever an equipment event is triggered by a
variable change, following the evolution of that variable through the workflow independently. If any of
the variables MyString or MyOtherString is changed in the “OnEquipmentEvent” task of the workflow
presented in this figure, it will create a new execution context, illustrated with different colors.

context to understand exactly what was the evolution of a variable through the workflow and the

path it took. When a variable change is detected, if there is a breakpoint in this variable, the

Automation Controller instance will send an onAfterSetInputs or onBeforeSetOutputs

60

Solution Overview

message, respectively in the case of an input or output, notifying the MES instance of the workflow

state when the breakpoint was reached, the variable changes and the triggered breakpoint. This

will not affect the execution of the engine, and the workflow will keep triggering the event hooks,

communicating the respective messages.

When receiving these messages, the MES instance will trigger the received breakpoint, update

the workflow task instances to show the workflow state when the changes were detected and stop in

that breakpoint until the“Resume” button is pressed. Because the engine’s execution is not altered,

when receiving a message while waiting at a breakpoint, it will stack the breakpoint promises. So

when the “Resume” button is pressed, it will go to the next triggered breakpoint, if there is any, or

wait for the next message.

Upon receiving the first variable change message, it will check the execution context in which

this event was triggered and will send the onReceivedExecutionContext request to inform

the Automation Controller instance that it wishes to follow that execution context. This will act

as a filter in the event hooks to know which messages should be sent to the MES instances and

ignore all variable changes with a different execution context as the one that was chosen for this

debug session.

In the case of the Profiler Debug, it will collect the information of the different execution

contexts passively, without notifying the user of the changes that are happening in the machine,

until the session is stopped. This will allow the user to check all the events that happened while the

debug session was active, chronologically. When the session is stopped, if the debug mode selected

is the Profiler mode, the Automation Controller instance will reply with the onDebugStopped

message which will sort the registry entries of all created execution contexts chronologically since

the beginning of the debug session and send them to the MES instance. The MES interface will

then change to allow a “Replay Mode” which will go through the received registry so that the

user can carefully analyze the collected data. When the registry is discarded, a new profiler debug

session may begin.

To stop any remote debug session, the onStopDebug message is sent when the “Stop Debug”

button is clicked. After sending the necessary information to finalize the debug session to the

MES instance, it will delete all the session information kept on the IoMT agent (chosen execution

context, registry, breakpoints, etc). The information kept in the MES instance is erased differently

according to the debug mode:

• Synchronous: done immediately after the session is stopped;

• Snapshot: done after the last breakpoint promise is resumed;

• Profiler: done when discarding the session registry.

Regarding the workflow breakpoints, they are associated with a debug session, allowing mul-

tiple snapshot sessions to have their breakpoints independently. The breakpoints are immediately

set as they are displayed in the workflow debugger page when a debug session is started. The

snapshot or profiler type sessions do not allow any breakpoint changes while a session is ac-

tive (or while the session registry wasn’t discarded in the case of the profiler mode) because this

could cause some unexpected results when receiving the events of a breakpoint that was changed

61

Solution Overview

Figure 5.11: Visual representation of the protocol messages interaction for notifying the MES
instance of variable changes (with breakpoints) on the Automation Controller instance. The
onBeforeSetOutputs communicates the state of the workflow before the output was set (if the vari-
able that changed was a task output) and onAfterSetInputs communicates the state of the workflow
after the input was set (if the variable that changed was a task input). If the debug session these messages
are related to is a synchronous debug mode session, then the messages will be sent synchronously, and
the Automation Controller instance will be waiting to continue the execution until it get a reply from the
MES instance (sent by pressing the “Resume” button, when waiting at an active breakpoint). If the debug
session is a snapshot debug mode session, the messages will be sent asynchronously and the execution of
the Automation Controller instance will continue unaltered.

62

Solution Overview

Figure 5.12: Visual representation of the protocol messages interaction for stopping a debug session.
The onStopDebug message ends the session and removes all information related to it from the IoMT
agent. Before erasing all the information, if the session was for the Profiler debug mode, the registry entries
of that session will be communicated through the onDebugStopped message.

while the session was active. For the synchronous session, it is possible to change the break-

points while the session is active. Breakpoints can be added or removed in the workflow display

through the onBreakpointChange request or can be toggled to enabled or disabled through the

onBreakpointToggle request.

Figure 5.13: Visual representation of the protocol messages interaction for changing the break-
points during a synchronous debug session. In order to change (add or remove) a breakpoint, the
onBreakpointChange request is sent, and to change the state of a breakpoint without removing it (enable
or disable), the onBreakpointToggle message is sent.

5.3 Conclusions

This Chapter presented an overview of the solution proposed for multi-approach debugging of

industrial IoT workflows. It presented all the details of the remote debugging protocol developed

to support this approach and how the different entities interact throughout the entire debugging

63

Solution Overview

process, from the preparation of the debugging environment with the selection of the workflow,

debug mode and physical machine to debug, to the actual debugging session.

The approach explained in this Chapter is considered innovative in the area of debugging of

industrial IoT workflows with the implementation of a multi-strategy debugging mechanism into

a commercial-grade Manufacturing Execution System. It is important to state that this approach

is a concept that is meant to show the advantages of using real-time remote debugging in the

industrial context, during the maintenance phase of the deployed software, whilst in production,

for minimizing incorrect machinery behavior, as well as machine inactivity due to failures in order

to reduce resource losses. Chapter 6 will present the conducted experiments for the validation of

this solution and the results obtained.

64

Chapter 6

Evaluation

Contents
6.1 Experimental Setup . 65

6.2 Simulated Scenarios . 67

6.3 Conclusions . 77

In contemplation of the solution presented in Chapter 5, it was proceeded to carry out an eval-

uation of the approach itself. This was done in order to evaluate the reliability, feasibility, and

applicability of the designed approach under different scenarios, to understand how the imple-

mented features work in the already existing environment, if they behave like it was defined in the

solution overview, and if the debugging modes interact with one another like they are supposed

to, using the developed protocol. Scenarios regarding the management of connection between the

entities were also considered.

6.1 Experimental Setup

To test the debugger application easily, an OPC UA server was used for simulating real-time

variable changes (Figure 6.1). These servers play a key role as a communication gateway, al-

lowing OPC UA clients to access HMI or PLC data by subscribing to tags to receive real-time

updates [Tec]. For this reason, the Automation Driver with the OPC UA protocol associated was

the one used for testing the application.

The workflow used for simplification and to ease the understanding of the debugging func-

tionalities developed can be seen in Figure 6.2 and consists of an event to be triggered when a

variable in the equipment changes, named “OnEquipmentEvent”. The variables where named

MyString and MyOtherString for simplification. These variables will go through an asynchronous

task where one input (connected to the MyString variable) will take 2 seconds to be passed as an

65

Evaluation

Figure 6.1: OPC UA server used for simulating variable changes in an equipment using the OPC UA
protocol.

output and the other 10 seconds (connected to the MyOtherString variable), then being printed in

the console through the “Log Message” task.

Figure 6.2: Workflow used for validating the functionalities implemented in the solution.

66

Evaluation

6.2 Simulated Scenarios

The simulated scenarios and respective results are presented in the following Sections. These

were made in order to answer the requirements defined in Section 4 and to ensure that the solution

developed did encompass all test cases and everything is working as it was defined in the proposal.

All of the results obtained matched the expected results and can be observed in the different figures

shown in this Section.

6.2.1 Scenario 1 - Available machines running the workflow

• Scenario: MES instance receives information about the availability of the selected work-

flow on an Automation Controller.

• Expected Behaviour: If available, the ID of the Automation Controller instance will show

up in the Automation Controller list for selection.

• Desiderata Items: 4.3.4.

• Notes: This scenario can be observed in figure 6.3.

6.2.2 Scenario 2 - Handling disconnections

• Scenario: MES instance receives information that an Automation Controller previously

available and running the selected workflow has disconnected.

• Expected Behaviour: ID of the Automation Controller that disconnected stops showing up

on the Automation Controller list. It the Automation Controller instance has been selected,

it will show up as “Unavailable” in the ribbon on top of the workflow in the MES instance

interface.

• Desiderata Items: 4.3.4.

• Notes: This scenario can be seen in figure 6.4.

6.2.3 Scenario 3 - Successful connection with a machine

• Scenario: MES instance connects to the selected Automation Controller instance.

• Expected Behaviour: ID of the selected Automation Controller shows up in the ribbon on

top of the workflow in the MES instance interface, along with the current availability of the

workflow.

• Desiderata Item: 4.3.4.

• Notes: This scenario can be observed in figure 6.3.

6.2.4 Scenario 4 - Handling connection events (disconnection and re-connection)
with a machine

• Scenario: MES instance can handle a disconnect, followed by a reconnect, of the selected

Automation Controller instance.

67

Evaluation

Figure 6.3: Illustration of the simulated scenarios 6.2.1 and 6.2.3 Screenshots of the MES interface
are presented to show the list of Automation Controller instances available for debugging and the selection
process of an Automation Controller instance. When none is selected, no ID will show in the workflow top
ribbon and both the “Start” and “Machines” buttons will open a dialog with the list for the selection. When
it is selected, the top workflow ribbon shows the selected debug mode, Automation Controller instance ID
it is actively connected with and the workflow debug availability. The “Machines” button allows to change
the selected instance at any time, terminating the active debug session if there is one.

• Expected Behaviour: Connect/Disconnect messages will show up and the state of both the

workflow availability and the “Start Debug” button will change accordingly. Will stop any

active debug session upon disconnection.

• Desiderata Items: 4.3.4.

• Notes: This scenario can be seen in figure 6.4.

68

Evaluation

Figure 6.4: Illustration of the simulated scenarios 6.2.2 and 6.2.4. Screenshots of the MES interface
are presented to show how it handles connection/disconnection events, showing the user what is happening
through the interface and with information being shown on top of the page.

6.2.5 Scenario 5 - Synchronous session correctly receives the workflow state upon
reaching a breakpoint

• Scenario: MES instance can begin a synchronous debug session and show the variable

changes as they are received.

• Expected Behaviour: When there is an equipment variable change and a breakpoint is

linked to that variable, the Automation Controller gets a notification and transmits it to the

MES instance. This activates the breakpoint in the interface (the task gets a slight highlight)

and shows the state of the workflow at the moment the breakpoint was triggered (in the right

69

Evaluation

panel of the interface), until the “Resume” button is pressed.

• Desiderata Items: 4.3.1, 4.3.2, 4.3.6.

• Notes: This scenario can be seen in figure 6.5.

6.2.6 Scenario 6 - Synchronous session ignores any other events whilst waiting for
a “Resume” command

• Scenario: Automation Controller instance ignores any variable change when waiting for a

response from the MES instance during a synchronous debug session.

• Expected Behaviour: Nothing happens in the MES instance whilst it is waiting at a break-

point.

• Desiderata Items: 4.3.1, 4.3.2.

• Notes: This scenario can be seen in figure 6.5.

6.2.7 Scenario 7 - Snapshot session correctly receives the workflow state upon reach-
ing a breakpoint and doesn’t interfere with the workflow’s execution

• Scenario: MES instance can begin a snapshot debug session and show the variable changes

as they are received, stacking the breakpoints received if required.

• Expected Behaviour: Same as the synchronous debug, but if there are any changes whilst

waiting for a “resume” response, the breakpoint promises stack and the next breakpoint will

activate when the “Resume” button for the current breakpoint is pressed.

• Desiderata Items: 4.3.1, 4.3.2, 4.3.6.

• Notes: This scenario can be seen in figure 6.7.

6.2.8 Scenario 8 - Snapshot session holds to an execution context and ignores all
events from other execution contexts

• Scenario: MES instance doesn’t show any variable change during a snapshot debug session

if it is not from the chosen execution context.

• Expected Behaviour: Variable changes from other execution contexts are ignored and noth-

ing relative to those is shown in the MES instance.

• Desiderata Items: 4.3.6, 4.3.5.

• Notes: This scenario can be seen in figure 6.7.

6.2.9 Scenario 9 - Profiler session captures all events from all execution contexts
and shows this registry in chronological order upon reaching the “replay
mode”

• Scenario: MES instance can begin a profiler debug session and show the variable changes

collected by the Automation Controller instance, chronologically, through “replay mode”.

70

Evaluation

Figure 6.5: Illustration of the simulated scenario 6.2.5. Screenshots of the MES interface are presented
to show how a synchronous debug session is presented to the user. Every time a variable connected to
the “OnEquipmentEvent” is changed, it triggers a new flow and, if in its workflow path a breakpoint is
activated, the workflow will stop, the workflow’s state will be presented to the user and the Automation
Controller instance will wait until the “Resume” button is pressed to continue the execution.

71

Evaluation

Figure 6.6: Illustration of the simulated scenario 6.2.6. Screenshots of the MES interface are presented to
show how a synchronous debug session handles receiving any events whilst waiting for a resume command.
The interface will remain the same and ignore any variable changes that happen whilst it is waiting for the
command.

• Expected Behaviour: Collects variable changes from all execution contexts during the

debug session. When stopped, sends the information to the MES instance where the user

will see all changes that happened, chronologically, whilst debugging, using the breakpoint

activation method used in the snapshot debugging.

• Desiderata Items: 4.3.1, 4.3.2, 4.3.6.

• Notes: This scenario can be seen in figure 6.8.

6.2.10 Scenario 10 - Workflow availability whilst involved in a synchronous debug
session

• Scenario: MES instance doesn’t let any other debug session start if there is already a syn-

chronous debug session for the selected workflow and Automation Controller instance.

• Expected Behaviour: “Start Button” of all other debug sessions related to the same Au-

tomation Controller instance is disabled if there is already a synchronous debug session.

• Desiderata Items: 4.3.1, 4.3.3.

• Notes: This scenario can be seen in figure 6.9.

6.2.11 Scenario 11 - Workflow availability whilst involved in one or more snapshot
or profiler debug sessions

• Scenario: MES instance doesn’t let any synchronous debug session start if there is at least

one snapshot or profiler debug session for the selected workflow and Automation Controller

72

Evaluation

Figure 6.7: Illustration of the simulated scenarios 6.2.7 and 6.2.8. Screenshots of the MES interface
are presented to show how a snapshot session is presented to the user. Every time a variable connected to
the “OnEquipmentEvent” is changed, it generates a new execution context and the snapshot session picks
a execution context and follows the variable’s path along the workflow, not interfering with the workflow’s
execution. To follow another execution context, a new snapshot debug session has to be initialized.

instance.

• Expected Behaviour: “Start Button” of all synchronous debug sessions related to the same

Automation Controller instance is disabled if there is at least one snapshot or profiler debug

session.

• Desiderata Items: 4.3.1, 4.3.3.

73

Evaluation

Figure 6.8: Illustration of the simulated scenario 6.2.9. Screenshots of the MES interface are presented
to show how a profiler session is presented to the user. The registry of all breakpoints activated during the
debug session is captured and ordered chronologically, presenting them to the user through the replay mode,
after the session is finished.

• Notes: This scenario can be seen in figure 6.10.

74

Evaluation

Figure 6.9: Illustration of the simulated scenario 6.2.10. Screenshots of the MES interface are presented
to show how a synchronous debug session on a Automation Controller instance affects the availability of
the other debug modes in that Automation Controller.

6.2.12 Scenario 12 - Synchronous debug session breakpoint changes

• Scenario: MES instance allows changing breakpoints during a synchronous session, and

they are immediately updated in the Automation Controller instance.

• Expected Behaviour: Clicking in the workflow input/outputs adds/removes breakpoints.

The debug session will act according to the modifications made (will stop on the newly

added breakpoint or will continue execution upon reaching the variable where the breakpoint

was removed).

• Desiderata Items: 4.3.1, 4.3.2, 4.3.6.

6.2.13 Scenario 13 - Synchronous debug session breakpoint state changes

• Scenario: MES instance allows changing the breakpoints active state during a synchronous

session, and they are immediately updated in the Automation Controller instance.

75

Evaluation

Figure 6.10: Illustration of the simulated scenario 6.2.11. Screenshots of the MES interface are presented
to show how a snapshot or profiler debug session on a Automation Controller instance affects the availability
of the other debug modes in that Automation Controller.

• Expected Behaviour: Clicking in the workflow input/outputs enables/disables breakpoints.

The debug session will act according to the modifications made (will stop on enabled break-

points or will continue execution upon reaching disabled breakpoints).

• Desiderata Items: 4.3.1, 4.3.2, 4.3.6.

6.2.14 Scenario 14 - Snapshot and profiler debug session breakpoint changes dis-
abled

• Scenario: MES instance doesn’t allow changing breakpoints during a snapshot/profiler de-

bugging session.

• Expected Behaviour: Clicking on a breakpoint whilst in an snapshot or profiler session

won’t do anything and a warning message will be displayed.

• Desiderata Items: 4.3.1, 4.3.2, 4.3.6.

• Notes: This scenario can be seen in figure 6.11.

76

Evaluation

Figure 6.11: Illustration of the simulated scenario 6.2.14. Screenshots of the MES interface are presented
to show that breakpoint changes are not allowed during a snapshot or profiler debug session and how it is
presented to the user through a warning.

6.2.15 Scenario 15 - Debug sessions of the same workflow happening in different
machines don’t compromise the workflow availability of each other

• Scenario: MES instance debugs the same workflow running on different machines (Au-

tomation Controller instances) without compromising its availability status. The availability

of a workflow is determined for each Automation Controller instance and the debug sessions

of the different instances don’t interfere with each other.

• Expected Behaviour: Since each machine is an individual Automation Controller instance

and the workflow executions are independent, it is possible to perform multiple debug ses-

sions for the same workflow (that would normally interfere with the workflow’s availability

status) but running on different Automation Controller instances. The workflow’s availabil-

ity status is individual for each Automation Controller instance and dependents only on the

debug sessions being performed in each.

• Desiderata Items: 4.3.3.

6.3 Conclusions

The simulated scenarios demonstrate that the proof-of-concept developed is a rather complete

solution in terms of debugging IIoT automation systems.

The wide variety of scenarios made for the verification that all the communication interactions

between the manufacturing execution system and the equipment(s) it was communicating with

77

Evaluation

were being performed as expected (Scenarios 6.2.1, 6.2.2, 6.2.3 and 6.2.4), also taking into con-

sideration faulty scenarios. The most critical faulty scenario is the one in which the Automation

Controller instance disconnects during a debugging session (Scenario 6.2.4), with the software

system maintaining the user informed of every action that has happened through the user inter-

face and reconnecting with the Automation Controller instance as soon as it is available again,

notifying the user of the new state of availability upon reconnection.

All scenarios related to the debugging sessions were validated (Scenarios 6.2.5, 6.2.6, 6.2.7,

6.2.8 and 6.2.9) with success, as the prototype behaved according to the expected results in each

scenario and all the actions performed corresponded to the requirements of this proof-of-concept.

The system proved itself to be very capable and able to perform all the debug sessions according

to what was stated in Chapter 5.

Scenarios related to the breakpoint management were also simulated (Scenarios 6.2.12, 6.2.13

and 6.2.14), taking into account the selected debug mode, testing if a change in the user inter-

face regarding addition, removal or state changes of breakpoints would affect the next events to

be triggered, or not, in the variable where the breakpoint was placed/removed or the state was

enabled/disabled.

Lastly, scenarios regarding the workflow’s availability state were evaluated to see if it followed

the availability rules defined in Chapter 5. Regarding the same selected Automation Controller

instance:

• Scenario 6.2.10 validated that the workflow was unavailable for incoming debug sessions

(being displayed and behaving according to what was stated in the availability rules) when

a synchronous debug session was already active in that equipment;

• Scenario 6.2.11 validated that the workflow was unavailable for incoming synchronous de-

bug sessions (being displayed and behaving according to what was stated in the availability

rules) when one or more snapshot or profiler debug sessions were already active in that

equipment.

Regarding different Automation Controller instances, Scenario 6.2.15 validated that debug-

ging a workflow running on different equipment, does not affect the workflow’s availability for

the selected Automation Controller instance.

Judging by the results of the tested scenarios, it can be assumed that the solution was properly

implemented and it was possible to design a multi-approach debugging of industrial IoT work-

flows. The protocol developed to support the solution prototype was able to fulfill the desired

objectives, enabling all the functionalities that were described in the solution proposal. This so-

lution ensures the coherence of data at all times and the continuous connection between entities,

when required, taking faulty scenarios into account and being able to deal with them, always

returning to a stable state.

78

Chapter 7

Conclusions and Future Work

Contents
7.1 Summary . 79

7.2 Main Contributions . 81

7.3 Future Work . 81

This final Chapter of the dissertation presents the main contributions and conclusions of this work,

ending with a description of the future work that is planned.

7.1 Summary

From the background and related work explored in this dissertation, regarding Industry 4.0, manu-

facturing execution systems, software development life cycle and debugging, several conclusions

can be made. These conclusions essentially defined the process and approach that was taken to

develop this proof-of-concept.

Industry 4.0 is revolutionizing the way factories compete in the market, aiming to achieve a

higher level of operational efficiency and productivity by augmenting the level of automatization

in factories. The integration of IoT in the manufacturing process with embedded sensors and ac-

tuators enable the digitalization of shop-floor activities with the collection, analysis, and exchange

of the information received in real-time from these devices.

Because of the recent implementation of CPS in factories, an adaptation of the software de-

velopment life cycle for industries has been crucial for the achievement of smart and efficient

manufacturing. Industrial software requires the need to be constantly updated and re-configured,

imposing pressure over the need for maintenance of the software deployed in the industrial sys-

tems. Real-time monitoring of the production line should also be considered during the mainte-

nance process to allow optimal performance of the manufacturing system at all times, avoiding

79

Conclusions and Future Work

machine downtime and detecting execution failures as soon as they happen with suitable debug-

ging systems.

Due to the failures of CPS systems being hard to reproduce due to the non-determinism of

concurrent processes, the time-sensitive nature of applications and partial failures that may occur,

remote debugging can aid the maintenance process since the debugger is connected to the device

when the exception or crash occurs and captures information from the device in real-time. To help

understand, identify and fix occurring issues in these type of systems, a remote debugger should

be run alongside an abstraction of the different tasks to be executed by the equipment, using visual

workflows, to represent the different actions to be performed by the machines in a simplistic way,

allowing the common factory worker with close to none IT-knowledge to accurately identify and

report system failures as soon as they happen.

An extensive search was done to find different solutions that were already researched and

validated in the fields of debugging, remote debugging, debugging of workflows and remote de-

bugging protocols. None of the solutions that were examined seemed complete for the remote

debugging of workflows and was adapted for the manufacturing industry. The remote debugging

protocols found did also not cover what was necessary for the fulfillment of the defined require-

ments.

To allow a better understanding of the information obtained through the real-time monitoring

of equipment feedback, using visual metaphors as abstraction mechanisms, the demands presented

in the following list have to be simultaneously answered:

1. Remote connection to a specific physical device running elsewhere without compromising

its current execution;

2. Abstraction of the physical device’s sequenced execution tasks through a workflow;

3. Ability to debug the workflow being executed by the physical device in real-time (with or

without interrupting its execution).

With these requirements in mind, a functional prototype to demonstrate the feasibility of both

synchronized and snapshot remote debugging applied to an IIoT workflow was designed, con-

structed, and tested/evaluated. A debugging protocol was defined to support all the features that

were intended to be implemented in the multi-approach debugging solution proposed, along with

how the different system entities will interact throughout the entire debugging process, from the

preparation of the debugging environment with the selection of the workflow, debug mode and

physical machine to debug, to the actual debugging session. The remote debugging protocol mes-

sages and their interaction can be found in Table 5.1. The proof-of-concept that was developed

is intended to show the advantages of using real-time remote debugging in the industrial con-

text, during the maintenance phase of the deployed software, whilst in production, for minimizing

incorrect machinery behavior, as well as machine inactivity due to failures in order to reduce

resource losses.

This prototype was developed in the context of Critical Manufacturing’s Manufacturing Exe-

cution System. A MES is an information system that focuses on the digitalization of shop-floor

80

Conclusions and Future Work

activities through the collection, analysis, and exchange of the information captured in real-time

during the manufacturing process. Due to the increase in the level of automation in manufacturing

systems in recent years, it is understandable why remote debugging applied to IIoT workflows is

a desired feature and should be integrated into an already available MES system.

The solution was thoroughly tested using a list of simulated scenarios that verified that every

functionality that was developed was correctly implemented and that there weren’t any data in-

consistencies and the different entities were communicating as intended. By the results obtained,

it can be said that the solution was properly implemented and it was possible to design a multi-

approach debugging of industrial IoT workflows, fulfilling all the desired objectives and enabling

all the functionalities that were described in the solution proposal, also taking faulty scenarios into

account.

7.2 Main Contributions

The main contributions of this work are focused on the possibility to use an abstraction of the

production machines’ execution tasks through workflows to remotely debug them in real-time

with real data provided by the sensors and actuators of said machine and how that can help to

quickly identify and fix any occurring issues, thus minimizing incorrect machinery behavior and

machinery downtime, helping the maintenance process of IIoT systems:

1. Synchronous, snapshot and profiler remote debugging functionalities that support the man-

ufacturing environment’s needs;

2. A simplified generalized remote debugging protocol that serves the particularities of each

debugging mode implemented (synchronous, snapshot and profiler), taking into considera-

tion all elements that might interfere with their correct execution;

3. An intuitive, user-friendly interface for presenting the debug information, allowing the gen-

eral factory worker with close to none IT knowledge to operate with it by creating an ab-

straction of the machine’s execution tasks by using a representation through workflows. The

simplified interface provides a better understanding of the machine execution and allows to

detect in real-time what can be causing incorrect behavior.

Another contribution to be aware of was the development of a scientific article. The article

summarized the state of art of this dissertation and the solution proposed, along with how it was

implemented and the simulated scenarios that were used for its validation.

7.3 Future Work

As for the future work to improve the current solution, testing it in a real-life environment is

required. The impact of its usage in the production environment should be measured to know if

there is a better insight of the production machinery, as expected, and incorrect behavior is being

81

Conclusions and Future Work

detected more quickly than without this debug solution. This evaluation shall be made to perfect

the existing solution and improve its usability and efficiency.

Another improvement that should be done is that when using the Synchronous Debug mode, it

should not only be possible to see the values of the variables, but also to change them in real-time

while a task’s execution is stopped by a breakpoint, affecting the execution of the target device

being debugged.

Lastly, another improvement that should be implemented would be to be able to choose the

target machine/resource to debug directly through the target’s IP address. The target Automation

Controller identification should also be more detailed (in the proof-of-concept developed, the only

identification used for these entities was the randomized ID it is given).

82

References

[61190] IEC 61131-3. Programmable logic controllers – part 3: Programming lan-
guages. In IEC Standard 61131-3, 1990.

[AA16] Ephrem Ryan Alphonsus and Mohammad Omar Abdullah. A review on the ap-
plications of programmable logic controllers (plcs). Renewable and Sustainable
Energy Reviews, 60:1185–1205, 2016.

[AFMW17] A. Almohammad, J. F. Ferreira, A. Mendes, and P. White. Reqcap: Hierarchi-
cal requirements modeling and test generation for industrial control systems.
In 2017 IEEE 25th International Requirements Engineering Conference Work-
shops (REW), pages 351–358, 2017.

[AGB93] William A. Gruver and Jack Boudreaux. Intelligent Manufacturing: Program-
ming Environments for CIM. Springer Verlag, 01 1993.

[AKG+19] M. Aly, F. Khomh, Y. Guéhéneuc, H. Washizaki, and S. Yacout. Is fragmenta-
tion a threat to the success of the internet of things? IEEE Internet of Things
Journal, 6(1):472–487, Feb 2019.

[AL15] Francisco Almada-Lobo. The industry 4.0 revolution and the future of manufac-
turing execution systems (mes). Journal of Innovation Management, 3(4):16–
21, 2015.

[ALR00] A. Avizienis, J. C. Laprie, and B. Randell. Fundamental concepts of depend-
ability. In 3rd IEEE Information Survivability Workshop (ISW-2000), Boston,
Massachusetts, USA, pages 7–12, 10 2000.

[Azi19] A. Azizi. Modern manufacturing. In SpringerBriefs in Applied Sciences and
Technology, pages 7–17. Springer, Singapore, 2019.

[BF14] Pierre Bourque and Richard E. Fairley, editors. SWEBOK: Guide to the Soft-
ware Engineering Body of Knowledge. IEEE Computer Society, version 3.0
edition, 2014.

[BHCW18] Hugh Boyes, Bil Hallaq, Joe Cunningham, and Tim Watson. The industrial
internet of things (iiot): An analysis framework. Computers in Industry, 101:1
– 12, 2018.

[BVD16] Rajkumar Buyya and Amir Vahid Dastjerdi. Internet of Things: Principles and
Paradigms, pages 3–23. Morgan Kaufmann, 2016.

83

REFERENCES

[BXW14] Z. Bi, L. D. Xu, and C. Wang. Internet of things for enterprise systems of mod-
ern manufacturing. IEEE Transactions on Industrial Informatics, 10(2):1537–
1546, May 2014.

[BYF03] Mohammed Bani Younis and Georg Frey. Formalization of existing plc pro-
grams: A survey. 08 2003.

[Cox08] Philip T. Cox. Visual Programming Languages, pages 1–10. American Cancer
Society, 2008.

[DFF18] J. P. Dias, J. P. Faria, and H. S. Ferreira. A reactive and model-based ap-
proach for developing internet-of-things systems. In 2018 11th International
Conference on the Quality of Information and Communications Technology
(QUATIC), pages 276–281, Sep. 2018.

[Doca] Microsoft Docs. Debug apps using visual studio - visual studio. Accessed:
2019-01-31.

[Docb] Microsoft Docs. Debugging your apps - visual studio. Accessed: 2019-01-31.

[Docc] Microsoft Docs. Remote debugging - visual studio. Accessed: 2019-01-31.

[dUAP09] B. Saenz de Ugarte, A. Artiba, and R. Pellerin. Manufacturing execution system
– a literature review. Production Planning & Control, 20(6):525–539, 2009.

[Fou] Free Software Foundation. Debugging with gdb: Remote debugging. Accessed:
2019-01-31.

[Fra19] Jake Frankenfield. Cloud computing definition, May 2019. Accessed: 2019-
06-26.

[FTV02] Filomena Ferrucci, Genoveffa Tortora, and Giuliana Vitiello. Visual Program-
ming. American Cancer Society, 2002.

[GD15] M. Geogy and A. Dharani. Prominence of each phase in software develop-
ment life cycle contributes to the overall quality of a product. In 2015 Inter-
national Conference on Soft-Computing and Networks Security (ICSNS), pages
1–2, 2015.

[GDBa] GDB. Debugging with gdb - the gdb remote serial protocol. Accessed: 2019-
02-5.

[GDBb] GDB. Gdb: The gnu project debugger. Accessed: 2019-01-31.

[GDS+11] Dan Gunter, Ewa Deelman, Taghrid Samak, Christopher Brooks, Monte Goode,
Gideon Juve, Gaurang Mehta, Priscilla Moraes, Fabio Silva, Martin Swany,
and Karan Vahi. Online workflow management and performance analysis with
stampede. In 2011 7th International Conference on Network and Service Man-
agement, CNSM 2011, pages 1–10, 01 2011.

[II13] Consortium II. Fact sheet, 2013.

[II19] Consortium II. The industrial internet of things volume g1: Reference architec-
ture, 2019. Accessed: 2019-06-27.

84

REFERENCES

[IML+16a] S. Iarovyi, W. M. Mohammed, A. Lobov, B. R. Ferrer, and J. L. M. Lastra.
Cyber–physical systems for open-knowledge-driven manufacturing execution
systems. Proceedings of the IEEE, 104(5):1142–1154, May 2016.

[IML+16b] S. Iarovyi, W. M. Mohammed, A. Lobov, B. R. Ferrer, and J. L. M. Lastra.
Cyber–physical systems for open-knowledge-driven manufacturing execution
systems. Proceedings of the IEEE, 104(5):1142–1154, 2016.

[Inf18] Infosys. Interoperability between iic architecture & industry 4.0 reference ar-
chitecture for industrial assets, 2018. Accessed: 2019-06-27.

[Int97] MESA Internacional. Mes functionalities & mrp to mes - data flow possibilities,
March 1997. Accessed: 2019-06-20.

[Int06] MESA Internacional. Metrics that matter: Uncovering kpis that justify opera-
tional improvements, October 2006. Accessed: 2019-06-20.

[IYMD17] K. S. K. Ibrahim, J. H. Yahaya, Z. Mansor, and A. Deraman. Towards the qual-
ity factor of software maintenance process: A review. In Journal of Telecom-
munication, Electronic and Computer Engineering (JTEC), volume 9, pages
115–118, 2017.

[KG15] S. K. Khatri and A. Garg. Evolving a risk-free, requirement centric and goal ori-
ented software development life cycle model. In 2015 4th International Confer-
ence on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends
and Future Directions), pages 1–6, 2015.

[Lee08] E. A. Lee. Cyber physical systems: Design challenges. In 2008 11th IEEE
International Symposium on Object and Component-Oriented Real-Time Dis-
tributed Computing (ISORC), pages 363–369, May 2008.

[LFK+14] Heiner Lasi, Peter Fettke, Hans-Georg Kemper, Thomas Feld, and Michael
Hoffmann. Industry 4.0. Business and Information Systems Engineering,
6(4):239–242, 2014.

[LGS17] P. Lade, R. Ghosh, and S. Srinivasan. Manufacturing analytics and industrial
internet of things. IEEE Intelligent Systems, 32(3):74–79, 2017.

[LJ15] M. Lachwani and Srinivasan J. Remote application debugging, October 2015.
US 9,170,922 B1.

[Lu17] Yang Lu. Industry 4.0: A survey on technologies, applications and open re-
search issues. Journal of Industrial Information Integration, 6:1–10, 2017.

[LXWY09] H. Li, Y. Xu, F. Wu, and C Yin. Research of “stub” remote debugging technique.
In 2009 4th International Conference on Computer Science Education, pages
990–994, July 2009.

[LXZ15] Shancang Li, Li Da Xu, and Shanshan Zhao. The internet of things: a survey.
Information Systems Frontiers, 17(2):243–259, 2015.

[Mana] Critical Manufacturing. Brochure mes v6 generic. Accessed: 2019-02-1.

85

REFERENCES

[Manb] Critical Manufacturing. Critical manufacturing - a brief history of manufactur-
ing execution systems. Accessed: 2019-01-02.

[Manc] Critical Manufacturing. Critical manufacturing - complete modular solution.
Accessed: 2019-06-21.

[Mand] Critical Manufacturing. Critical manufacturing - connect iot. Accessed: 2019-
02-1.

[Mane] Critical Manufacturing. Critical manufacturing - critical manufacturing mes |
infrastructure framework for manufacturing equipment integration, data analy-
sis and business intelligence. Accessed: 2019-02-1.

[Manf] Critical Manufacturing. Critical manufacturing - critical manufacturing mes |
integrated manufacturing execution system. Accessed: 2019-02-1.

[Mang] Critical Manufacturing. Critical manufacturing - integration and automation.
Accessed: 2019-02-1.

[Manh] Critical Manufacturing. Critical manufacturing - press releases - the future of
manufacturing at hannover messe. Accessed: 2019-06-18.

[Mani] Critical Manufacturing. Critical manufacturing - what is mes? Accessed: 2019-
01-02.

[Manj] Critical Manufacturing. Critical manufacturing releases v6, new version of its
industry 4.0-ready mes: Connect with the future. Accessed: 2019-05-29.

[MBC+17] M. Marra, E. G. Boix, S. Costiou, M. Kerboeuf, A. Plantec, G. Polito, and
S. Ducasse. Debugging cyber-physical systems with pharo an experience report.
In IWST 2017 - Proceedings of the 12th International Workshop on Smalltalk
Technologies, in conjunction with the 25th International Smalltalk Joint Con-
ference, 2017.

[MBRB17] Elaheh Maleki, Farouk Belkadi, Mathieu Ritou, and Alain Bernard. A tailored
ontology supporting sensor implementation for the maintenance of industrial
machines. Sensors, 17(9), 2017.

[Mic12] James Mickens. Rivet: Browser-agnostic remote debugging for web applica-
tions. In Proceedings of the 2012 USENIX Conference on Annual Technical
Conference, USENIX ATC’12, pages 30–30. USENIX Association, 2012.

[Mom14] H. Momeni. Aspect-oriented software maintainability assessment using adap-
tive neuro fuzzy inference system (anfis). In Journal of Mathematics and
Computer Science, volume 12, pages 243–252, 2014.

[MUK00] M. G. Mehrabi, A. G. Ulsoy, and Y. Koren. Reconfigurable manufacturing
systems: Key to future manufacturing. Journal of Intelligent Manufacturing,
11(4):403–419, Aug 2000.

[MZ16] Pieter J. Mosterman and Justyna Zander. Cyber-physical systems challenges:
a needs analysis for collaborating embedded software systems. Software &
Systems Modeling, 15(1):5–16, Feb 2016.

86

REFERENCES

[NRa] Node-Red. Node-red. Accessed: 2019-02-5.

[NRb] Node-Red. Node-red: About. Accessed: 2019-02-5.

[oM] University of Melbourne. Software development lifecycle. Accessed: 2019-01-
18.

[Oraa] Oracle. Java debug wire protocol. Accessed: 2019-02-5.

[Orab] Oracle. Java platformer debugger architecture. Accessed: 2019-01-30.

[PBF+15] N. Papoulias, N. Bouraqadi, L. Fabresse, Ducasse S., and Denker M. Mercury:
Properties and design of a remote debugging solution using reflection. Journal
of Object Technology, 14(2):1:1–36, May 2015.

[PG18] F. Pereira and L. Gomes. A json/http communication protocol to support the
development of distributed cyber-physical systems. In 2018 IEEE 16th Interna-
tional Conference on Industrial Informatics (INDIN), pages 23–30, July 2018.

[PGPM19] U. A. Pozdnyakova, V. V. Golikov, I. A. Peters, and I. A. Morozova. Genesis
of the revolutionary transition to industry 4.0 in the 21st century and overview
of previous industrial revolutions. In Studies in Systems, Decision and Control,
volume 169, pages 11–19. Springer International Publishing, 2019.

[PSTH17] Michael Perscheid, Benjamin Siegmund, Marcel Taeumel, and Robert
Hirschfeld. Studying the advancement in debugging practice of professional
software developers. Software Quality Journal, 25(1):83–110, 2017.

[PTP07] Guillaume Pothier, Éric Tanter, and José Piquer. Scalable omniscient debug-
ging. In Proceedings of the 22Nd Annual ACM SIGPLAN Conference on
Object-oriented Programming Systems and Applications, OOPSLA ’07, pages
535–552. ACM, 2007.

[QZ04] R. G. Qiu and Mengchu Zhou. Mighty mess - state-of-the-art and future manu-
facturing execution systems. IEEE Robotics Automation Magazine, 11(1):19–
25, March 2004.

[Ras14] Vanshika Rastogi. Software development life cycle models - comparison, con-
sequences. In International Journal of Computer Science and Information Tech-
nologies (IJCSIT), Vol. 6, pages 168–172, 2014.

[RLSS10] R. Rajkumar, I. Lee, L. Sha, and J. Stankovic. Cyber-physical systems: The
next computing revolution. In Design Automation Conference, pages 731–736,
June 2010.

[RMK16] Vasja Roblek, Maja Meško, and Alojz Krapež. A complex view of industry 4.0.
SAGE Open, 6(2):2158244016653987, 2016.

[RWM+18] D. Rathnayake, A. Wickramarachchi, V. Mallawaarachchi, D. Meedeniya, and
I. Perera. A realtime monitoring platform for workflow subroutines. In
2018 18th International Conference on Advances in ICT for Emerging Regions
(ICTer), pages 41–47, 2018.

87

REFERENCES

[Sar03] Roland B. Sargeant. Functional Specifiction of a Manufacturing Execution Sys-
tem. PhD thesis, Massachusetts Institute of Technology, 2003.

[SBAM17] S. Soomro, M. R. Belgaum, Z. Alansari, and M. H. Miraz. Fault localization
models in debugging. In 2017 International Conference on Infocom Technolo-
gies and Unmanned Systems (Trends and Future Directions) (ICTUS), pages
57–62, Dec 2017.

[SBP+06] A. J. Sagar, A. G. Bhandarkar, D. Pilarinos, D. K. Shukla, M. Mehta, S. Chub,
and V. Kalra. Workflow debugger, December 2006. US 2006/0288332 A1.

[Scu] Padraig Scully. The top 10 iot segments in 2018 – based on 1,600 real iot
projects. Accessed: 2019-06-18.

[SD17] S. Srivastva and S. Dhir. Debugging approaches on various software processing
levels. In 2017 International conference of Electronics, Communication and
Aerospace Technology (ICECA), volume 2, pages 302–306, 2017.

[Siv14] A. Sivieri. Eliot: A programming framework for the internet of things, 2014.
PhD thesis, politecnico di milano.

[SM98] M. J. C. Sousa and H. M. Moreira. A survey on the software maintenance
process. In Proceedings. International Conference on Software Maintenance
(Cat. No. 98CB36272), pages 265–274, Nov 1998.

[SMC16] A. Sivieri, L. Mottola, and G. Cugola. Building internet of things software with
eliot. Computer Communications, 89-90:141 – 153, 2016. Internet of Things:
Research challenges and Solutions.

[SP07] R. Schmitt and Wagner P. Method for debugging flowchart programs for indus-
trial controllers, November 2007. US 7,302.676 B2.

[SS17] Pallavi Sethi and Smruti R. Sarangi. Internet of things: Architectures, protocols,
and applications. Journal of Electrical and Computer Engineering, 2017:25,
2017.

[SSH+18] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund. Industrial inter-
net of things: Challenges, opportunities, and directions. IEEE Transactions on
Industrial Informatics, 14(11):4724–4734, 2018.

[SWYS11] Jianhua Shi, Jiafu Wan, Hehua Yan, and Hui Suo. A survey of cyber physi-
cal systems. Proc. of the Int. Conf. on Wireless Communications and Signal
Processing, 11 2011.

[Sza19] Andrea Szalavetz. Industry 4.0 and capability development in manufacturing
subsidiaries. Technological Forecasting and Social Change, 145:384 – 395,
2019.

[Tec] Tecon. Opc ua server. Accessed: 2019-05-02.

[TI19] H. Tanno and H. Iwasaki. Suspend-less debugging for interactive and/or re-
altime programs. 12th IEEE Conference on Software Testing, Validation and
Verification (ICST), April 2019.

88

REFERENCES

[TS16] Lane Thames and Dirk Schaefer. Software-defined cloud manufacturing for
industry 4.0. Procedia CIRP, 52:12 – 17, 2016. The Sixth International
Conference on Changeable, Agile, Reconfigurable and Virtual Production
(CARV2016).

[VHFR+15] B. Vogel-Heuser, J. Fischer, S. Rösch, S. Feldmann, and S. Ulewicz. Challenges
for maintenance of plc-software and its related hardware for automated pro-
duction systems: Selected industrial case studies. In 2015 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages 362–371,
2015.

[Vola] Volron.js. documentation. Accessed: 2019-01-31.

[Volb] Volron.js. Volron.js. Accessed: 2019-01-31.

[WADX15] Andrew Whitmore, Anurag Agarwal, and Li Da Xu. The internet of things—a
survey of topics and trends. Information Systems Frontiers, 17(2):261–274,
2015.

[WDDZ11] C. Wenyu, H. Dongpu, T. Dongcheng, and H. Zongbo. A model of remote
debugger supporting multiple types of connection. In 2011 International Con-
ference on Electronics, Communications and Control (ICECC), pages 642–645,
Sep. 2011.

[WKYBWYF12] Loo Wooi Khong, Leau Yu Beng, Tham Wai Yip, and Tan Fun. Software devel-
opment life cycle agile vs traditional approaches. In 2012 International Con-
ference on Information and Network Technology (ICINT 2012), 02 2012.

[WTO15] Lihui Wang, Martin Törngren, and Mauro Onori. Current status and advance-
ment of cyber-physical systems in manufacturing. Journal of Manufacturing
Systems, 37:517 – 527, 2015.

[WWB18] S. Waschull, J. C. Wortmann, and J. A. C. Bokhorst. Manufacturing execu-
tion systems: The next level of automated control or of shop-floor support? In
Ilkyeong Moon, Gyu M. Lee, Jinwoo Park, Dimitris Kiritsis, and Gregor von
Cieminski, editors, Advances in Production Management Systems. Smart Man-
ufacturing for Industry 4.0, pages 386–393. Springer International Publishing,
2018.

[WWIT16] Thorsten Wuest, D Weimer, Chris Irgens, and Klaus-Dieter Thoben. Machine
learning in manufacturing: Advantages, challenges, and applications. Produc-
tion & Manufacturing Research, 4:23–45, 06 2016.

[Zen] Zenodys. Zenodys native computing engine. Accessed: 2019-06-09.

[Zer] ZeroTurnaround. Jrebel - jrebel 2018.x documentation. Accessed: 2019-01-30.

89

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Aims and Goals
	1.4 Dissertation Structure

	2 Background
	2.1 Industry 4.0
	2.1.1 Internet of Things
	2.1.2 Industrial Internet Of Things
	2.1.3 Summary

	2.2 Manufacturing Execution Systems
	2.2.1 Overview
	2.2.2 Critical Manufacturing MES
	2.2.3 Summary

	2.3 Software Development Life Cycle
	2.3.1 Software Development Life Cycle For Industrial Systems
	2.3.2 Software Maintenance
	2.3.3 Software Maintenance in Industrial Systems
	2.3.4 Summary

	2.4 Debugging
	2.4.1 Remote Debugging
	2.4.2 Debugging on Industrial Systems
	2.4.3 Summary

	2.5 Conclusions

	3 Related Work
	3.1 Remote Debugging
	3.1.1 JPDA/JVM
	3.1.2 TOD
	3.1.3 Visual Studio Remote Debugger
	3.1.4 GDB
	3.1.5 Rivet
	3.1.6 Vorlon
	3.1.7 ELIoT
	3.1.8 SLDSharp
	3.1.9 Summary

	3.2 Workflow Debugging
	3.2.1 Real-Time Workflow Monitor
	3.2.2 Stampede
	3.2.3 Node-RED
	3.2.4 Zenodys
	3.2.5 Summary

	3.3 Remote Debugging Protocols
	3.3.1 GDB Remote Serial Protocol
	3.3.2 Java Debug Wire Protocol
	3.3.3 JSON/HTTP Communication Protocol

	3.4 Conclusions

	4 Problem Statement
	4.1 Current Issues
	4.2 Case Study
	4.3 Desiderata
	4.4 Solution Proposal
	4.5 Methodology
	4.6 Conclusions

	5 Solution Overview
	5.1 Connection Preparation
	5.2 Debug Session
	5.3 Conclusions

	6 Evaluation
	6.1 Experimental Setup
	6.2 Simulated Scenarios
	6.2.1 Scenario 1 - Available machines running the workflow
	6.2.2 Scenario 2 - Handling disconnections
	6.2.3 Scenario 3 - Successful connection with a machine
	6.2.4 Scenario 4 - Handling connection events (disconnection and re-connection) with a machine
	6.2.5 Scenario 5 - Synchronous session correctly receives the workflow state upon reaching a breakpoint
	6.2.6 Scenario 6 - Synchronous session ignores any other events whilst waiting for a "Resume" command
	6.2.7 Scenario 7 - Snapshot session correctly receives the workflow state upon reaching a breakpoint and doesn't interfere with the workflow's execution
	6.2.8 Scenario 8 - Snapshot session holds to an execution context and ignores all events from other execution contexts
	6.2.9 Scenario 9 - Profiler session captures all events from all execution contexts and shows this registry in chronological order upon reaching the "replay mode"
	6.2.10 Scenario 10 - Workflow availability whilst involved in a synchronous debug session
	6.2.11 Scenario 11 - Workflow availability whilst involved in one or more snapshot or profiler debug sessions
	6.2.12 Scenario 12 - Synchronous debug session breakpoint changes
	6.2.13 Scenario 13 - Synchronous debug session breakpoint state changes
	6.2.14 Scenario 14 - Snapshot and profiler debug session breakpoint changes disabled
	6.2.15 Scenario 15 - Debug sessions of the same workflow happening in different machines don't compromise the workflow availability of each other

	6.3 Conclusions

	7 Conclusions and Future Work
	7.1 Summary
	7.2 Main Contributions
	7.3 Future Work

	References

