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Abstract

Breast cancer is one of the most diagnosed diseases in the world, with a high burden of
incidence and mortality. When caught in early stages, the treatment of choice is a conservative
surgery, followed by radiotherapy.

The planning of the radiotherapy treatment is done by delineating anatomical structures of
interest in medical images, to be used for radiation dose computation. This delineation is usually
done manually, which translates in a time-consuming process.

Despite the trend into machine learning and methods based in previous knowledge, whom
learn from training sets to be able to provide a segmentation, the variability of the human breast
and the difficulty of establishment of objective ground truth create opportunity to methods based
in pixel intensity information to aid the praticioner in the consuming task of delineation.

Automatic segmentation methods presented in this work aim to use pixel information to be
able to provide a breast contour, reducing the burden of manual delineation. For that purpose,
minimum cost path algorithm between relevant anatomical structures like the sternum and the
latissimus dorsi muscle is computed. Methods for estimation of those points were also developed,
as well as a tumor bed detection algorithm.

When measuring the breast detection against a pre-established ground truth, the euclidean
difference is in a magnitude order of millimeters. Tumor bed segmentation has several limitations,
e.g., it depends on the feeding of breast masks, only segmenting over breast tissue. Despite that,
when measuring the distance between the detected 3D volume centroid and the ground truth 3D
centroid, the result is in a magnitude order of centimeters.

The developed work creates a window of opportunity for future work, e.g., into studying the
impact of the detected contour distance to ground truth into difference in radiation dosage ap-
plied to the tissue, or into developing algorithms for estimation and segmentation of the enclosing
structures.
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Chapter 1

Introduction

1.1 Context

Radiation Therapy (RT) is a medical treatment technique where tissues are irradiated in high

concentration doses, aiming to attack and kill cancer cells [5]. Cancer is a generic term given to

a large set of diseases [6, 7], defined by abnormal cell growth, beyond their boundaries, invading

adjoining organs and spreading, in what is known as metastasizing [6].

Cell growth is a normal process, where human cells grow, reproduce to form newer cells,

and cease functions. If this process breaks down it results in what is called a neoplasm, i.e., an

abnormal cell growth. If the neoplasm is malignant, classified as such due to a number of factors

e.g., cell growth rate, then is diagnosed as cancer. Usually, the neoplasm forms a solid mass,

named tumor in that circumstance [7].

Oncology diseases are presently identified as the world leading cause of death and the main

barrier to increasing life expectancy. Data from 2018 reports 18.1 million new cancer diagnosis

and 9.6 million cancer-related deaths worldwide [8, 9].

Cancers are usually named according to the tissues from where they originate [6]. Thus,

there are over than 100 different types of cancer. Breast cancer is one of the most common cancer

types, with more than 2 million new diagnoses estimated in the globe [7, 10]. It is the leading

cause of death of women worldwide [11, 8]. In the United States of America (USA), estimations

for 2019 point breast cancer in women as the most diagnosed type of cancer, with 280 thousands

new diagnoses and the second leading cause of cancer-related deaths, with 42 thousand reported

deaths [11]. In a study of the cancer burden in Europe from 2018, female breast cancer is the most

frequently diagnosed cancer site, accounting 522 thousand new cases and 138 thousand related

deaths [12].
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During decades the main treatment for breast cancer was the mastectomy, i.e., surgery to

remove the whole breast that has cancer and axillary lymph nodes [13, 14]. Since then, conser-

vative breast surgery, also known as a partial mastectomy, where the tumor is removed together

with a margin of healthy breast tissue, combined with post-surgery RT, has become the treatment

of choice in most women diagnosed with early-stage breast cancer [15], as it presents equivalent

survival rates [16] and a better aesthetic result for the majority of patients [13].

1.2 Motivation

Adjuvant RT after conservative breast surgery requires a patient-specific treatment planning,

to deliver accurate high radiation doses to the target, sparing healthy tissues and maximizing re-

sults [17]. Radiation doses are calculated over the delineation of relevant anatomical structures.

Therefore, clinical target volume (CTV) and organs at risk (OAR) delineation are essential steps

in the treatment planning process [18, 19].

Medical image segmentation is defined as the partitioning of an image into a series of regions

that correspond to an anatomical structure [20, 21, 22]. Radiology experts do the RT incidence

planning based on computed tomography (CT) scans [19]. Each region of interest (ROI) is delin-

eated manually over CT scans by experts, in a challenging and time-consuming process [4, 23, 17].

This process is also subjective with respect to definition of structure boundaries, and for that rea-

son, it presents considerable variability [24]. Thus segmentation methods that allow decreasing

patient treatment planning times and reduce process variability are valuable and desired tools.

An automatic segmentation tool that allows even a minimum decrease in treatment planning

time per patient is a valuable tool, given the number of patients that it will perform on [25, 16].

Studies have found that general-purpose commercial automatic segmentation tools can accelerate

planning times and reduce delineation variability [4].

Therefore, there is a need for tools that allow the practitioner to work more efficiently, main-

taining treatment quality and mitigating the inherent subjectivity in targets delineation [17].

1.3 Goals

This work aims to develop segmentation algorithms based in pixel intensity information,

allowing to improve the workflow of RT treatment planning.

The output of the developed algorithms should provide a starting point for radiologists seg-

ment the anatomical structures.
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To ensure a quality planning for the patient, it is of the foremost importance to segment as

accurate as possible the breast tissue, the tumor bed and the adjacent structures that define the

spatial localization of the breast. Having a starting point would benefit the practitioner, decreasing

segmentation temporal expenditure.

1.4 Contributions

This work presents a set of methods and algorithms that:

1. Determination of body contours in computed tomography scans using information encoded

in the file data structure that holds the image data;

2. Computation of the patient mass center by averaging the centroid of the body for each slice,

obtained by using body contour first order moment;

3. Two-level Otsu method application to obtain optimum threshold values;

4. 3D segmentation of the sternum obtained by thresholding axial and sagittal views;

5. Through muscle contour gradient analysis, provides a average point for dorsi detection;

6. Breast outer and inner contour in computed tomography images are detected by a shortest

path algorithm.

1.5 Dissertation Structure

This thesis is structured into four chapters, where all the work done is presented and de-

scribed.

Chapter 1 presents the problem context and motivation, as well as the main goals and contri-

butions of the work done;

In the following chapter, Chapter 2, is provided a state of the art review of all the topics

related with the problem, e.g., body anatomy, medical imaging techniques, image segmentation

algorithms;

Afterwards, Chapter 3 describes the set of developed algorithms as a system where CT scans

are viewed as inputs, and breast masks are viewed as the final output of the system. In each section

is described the algorithms to process and segment the image, namely, how to and why segment the

body, sternum and dorsi, and how the breast contours are detected using a shortest path algorithm.

Finally, Chapter 4 presents the conclusion of the thesis, as well as some future work topics

that are identified.
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Chapter 2

Literature Review

In this chapter is done a literature review of the state of the art. In the first section, section

2.1, we will look at a brief review about the human body anatomy and some anatomical regions of

interest about the breast. Afterwards, we review medical imaging technologies, section 2.2, and

how medical images are stored in files (subsection 2.2.3). In the section 2.3 are described the main

segmentation algorithms reviewed.

2.1 Thorax anatomy

The thoracic segment of the torso, also known as thorax, is shaped as an irregular cylinder.

The thorax houses vital organs like the heart, the lungs, and great vessels. It also provides a means

for the breathing process. Its musculoskeletal wall consists of vertebrae, ribs, muscles and the

sternum, enclosing and protecting the thoracic cavity. The breasts are in the pectoral region on

each side of the anterior thoracic wall (Figure 2.1) [1].

2.1.1 Breasts

The breasts are located in the pectoral region, overlying the pectoralis major muscle. Al-

though they vary in size, are normally positioned between the second and sixth ribs vertically, and

between the sternum to as far as the latissimus dorsi muscle transversely (Figure 2.5) [1].

The breasts consist of mammary glands, associated skin, and connective tissues. Each gland

extends around the lower margin of the pectoralis major muscle and enters the axilla, forming

the axillary process of the breast. Mammary glands are a series of ducts and associated secretory

lobules, converging onto the nipple, on the surface. The nipple is surrounded by a pigmented area

of skin termed the areola (Figure 2.2) [1, 3].
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Figure 2.1: Representation of the thorax anterior view. It also scheme the breasts, the pectoralis
major and the sternum. Image retrieved from [1].

Figure 2.2: Surface view of the breasts. Image retrieved from [2].

It is possible to see in Figure 2.3 that the breast is tear-shaped, where fat surrounds the mam-

mary glands and extends throughout the structure that has no muscle tissue. This subcutaneous fat

covers the network of ducts formed between the mammary glands and the nipple [1].

2.1.2 Chest muscles

The pectoral region contains three main muscles - the pectoralis major, pectoralis minor and

subclavius muscles. These muscles form the anterior thoracic wall and the anterior wall of the

axilla (Figure 2.4). The pectoralis major is the largest and most superficial, being directly under

the breasts, only separated from it by loose connective tissue. It originates from the anterior surface
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Figure 2.3: Sagittal representation of the breast. Image retrieved from [3].

of the clavicle, the sternum, and related costal cartilages. Its functions are adduction, rotation and

flexion of the humerus at the shoulder joint [1].

The pectoralis minor and subclavius underlie the pectoralis major. Both have the function of

pulling the tip of the shoulder inferiorly. The small subclavius passes laterally from the anterior

and medial part of the first rib to the inferior surface of the clavicle, while the pectoralis minor

passes from the anterior surfaces of the third to the fifth rib to the scapula [1].

Figure 2.4: Representation of the chest muscles. Image retrieved from [1].



8 Literature Review

2.1.3 Latissimus dorsi

Latissimus dorsi is a superficial back muscle. It is triangular-shaped, large and flat.

Originates from the lower portion of the back and inserts into the humerus anteriorly, and as

a result, has functions of extension, adduction, and rotation of the humerus [1].

Being a back muscle that inserts into the anterior portion of the humerus, its location defines

the breast posterior portion, as seen in Figure 2.5.

Figure 2.5: Representation of the relation of the breast with adjoining structures. Image retrieved
from [1].
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2.1.4 Sternum

The sternum (represented on the center of the thorax in Figure 2.1) is an anterior medial bone

that consists of the elements [1]:

1. The broad manubrium, superiorly positioned. Forms part of the bony framework of the neck

and the thorax. The manubrium and the body join together at the sternal angle, where the

junction forms a slight bend;

2. The flat narrow body of the sternum, longitudinally oriented. It has articulations with the

ribs. The inferior end is attached to the xiphoid process;

3. The smallest part of the sternum is named xiphoid process, It is inferiorly positioned.

The chest muscles originate from the sternum. Due to that, the sternum defines the breast

anterior medial portion (Figure 2.5).

2.2 Medical Imagining

Medical imaging allows medical researchers and doctors to see anatomical structures inside

the living body. It was German physicist Wilhelm Röntgen (1845–1923) that discovered the "X-

ray" image, a "mysterious and invisible ray" that passed through his flesh and left an outline of

his bones on a screen coated with a metal compound, while experimenting with electrical cur-

rent [26]. In 1895 he produced the first radio graphic exposure of his wife’s hand [1]. This

discovery rewarded him with the Nobel Prize for physics [26].

2.2.1 Anatomical planes

For describing the location of structures relative to the body or other structures, there are

three major pairs of terms that are used [1]:

• Anterior and posterior relate the structure with the front and the back of the body. For

example, the sternum is anterior the the latissimus dorsi muscle, with the former being

posterior to the latter;

• Medial and lateral describe the relation between structures and the middle sagittal plane of

the body. For example, the nose is medial to the eyes, and the thumb is lateral to the little

finger;

• Superior and inferior describe the location of structures regarding the vertical axis of the

body.
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Assuming a standard position, there is three major groups of planes that pass through the

body.

Figure 2.6: Anatomical planes and reference. Image retrieved from [1].

Those are:

• The axial planes, that divide the body into superior and inferior parts;

• The sagittal planes, vertically oriented, which divide the body into left and right;

• The coronal planes, also vertically oriented, but instead divide the body into anterior and

posterior parts.

Figure 2.6 shows the three major planes sectioning the body, while also exemplify the posi-

tional reference terminology used.
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2.2.2 Computed Tomography

Also called Computerized Axial Tomography, CT was invented by Sir Godfrey Hounsfield,

Nobel Prize winner in Medicine in 1979 [1]. In this technique, the patient lies in a motorized

platform while a CT scanner (Figure 2.7) obtains X-ray images in the axial plane by rotating 360

degrees around the patient. A computer combine these forming a axial view of the area, or "slice"

(Figure 2.8) [26].

Figure 2.7: CT scanner. Image retrieved from [1].

According to [1], air attenuates X-ray the least, bone the most, and fat attenuates more than

air but less than water. Due to this, things on the image will be whiter (higher pixel intensity) the

less they attenuate X-ray, and darker the more they absorb.

The images are viewed such that the observer looks from below and upward toward the head.

By implication the right side of the patient is the left side of the image, and the uppermost border

is anterior.

2.2.3 DICOM files

Digital Imaging and Communications in Medicine (DICOM) is a protocol for storage and

transmission of medical information. It was developed by the American College of Radiology

(ACR) and National Electrical Manufacturers Association (NEMA). After the development of the
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Figure 2.8: Ct slice example. Axial view. Imaging data provided by Fundação Champalimaud.

CT scanner and other imaging devices, it was very difficult for anyone other than the manufacturers

of the devices to decode the images generated. DICOM was released in 1993, based on previous

standards developed by ACR/NEMA [27].

One DICOM file has the information contained into data objects, which consists of a number

of attributes, for example, patient data, machine information and other detailed information. This

way, the image can never be separated from the patient data, with the image (Figure 2.8) itself

being a data object of the DICOM file [27].

2.3 Image Segmentation Algorithms

A image is, in a broad sense, a representation of an object. Image segmentation tries to

partition an image according to some meaning [28] or common property [20]. Segmentation of

medical images aims to locate anatomic structures [17] and tissue types [29]. According to [30],

image segmentation is one of the most critical tasks of image analysis.

In a study by [17], the author identifies segmentation algorithms used in images meant for

RT planning. He classifies the algorithms into methods that are not using prior-knowledge, and
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methods powered by prior-knowledge, as well as hybrid methods, that are composed by methods

of both groups.

Traditional autosegmentation methods are based in image content like pixel intensity and

gradient. Among them, methods such as thresholding, graph cuts and watershed segmentation

have been used for RT planning [17].

2.3.1 Thresholding

Thresholding are some of the simplest segmentation methods. It transforms an image into a

binary, dividing the image into two segments [21]. It can be defined as [28]:

IT (x,y) =

{
1, if I(x,y)> T

0, if I(x,y)≤ T
(2.1)

T can be a constant (global thresholding) applied to the whole image or a function of x and y,

in that case the method is named adaptive thresholding [21]. Its value can be found by analysing

the image pixel intensity histogram, and choosing the minimum value between peaks (optimum

with bi-modal histograms). This is known as the Otsu method [31].

According to [30], one of it main limitations is that it does not take into account spatial

characteristics of an image.

2.3.2 Clustering algorithms

The goal of this family of algorithms is to segment the image in a set of disjoint groups, or

clusters. Different properties can define a cluster. These algorithms are common when the number

of classes is known beforehand.

K-means clustering is a type of clustering algorithms, where each pixel belongs to one of k

groups after each of n observations, in which the observation belongs to the cluster with the nearest

mean. According to [28], this is an NP-hard problem, but some efficient heuristic algorithms can

converge to a local optimum.

Adaptions of this algorithm exist, e.g., fuzzy C-means for fuzzy clustering, where each pixel

can belong to more than one cluster [28].

2.3.3 Edge detection

An edge is a high-intensity gradient between neighbors pixels in an image, i.e., an edge is a

group of pixels that present a rapid transition in intensity, when compared to their neighbors [28].
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Rebelo, J. [28] reviewed active contour models algorithm, which tries to segment images

along the edges keeping a smooth segmentation border. The algorithm, also known as snakes,

describes parametrically defined contours (snake) that move in a image as v(s) = [x(s), y(s)],

where x(s) and y(s) are the coordinates of the contour for part s. These contours move while

trying to minimize their energy composed of an internal and external component. The internal

energy is controlled by the deformations made to the snake, while the external energy consists of

a combination of constraints introduced by the user and forces of the image [28].

Detecting edges can also be viewed as a problem of finding the minimum cost path in a

directed weighted graph [32].

2.3.4 Region Based Algorithms

Region-based segmentation algorithms build disjoint regions by merging neighbor pixels with

similar characteristics together, according to predefined criteria [31, 28, 30]. There are two main

types of these methods: region growing and region splitting and merging.

2.3.4.1 Region growing

Starting from a group of pre-established seed pixels, the region is iteratively increased, ap-

pending similar neighboring pixels [28]. The seed pixels belong to the structure of interest [31].

This procedure ends when no more pixels can be added to the given region, i.e., some stopping

criterion is met [28]. It is possible that at the end of the iterative process, some pixels are not

labeled [31]. According to [31] this method is similar to breadth-first search.

According to [20] region growing is especially useful when the structures are separated spa-

tially. [31] the results of this algorithm depend strongly on the selection of the homogeneity

criterion. Another problem identified by the same author is different starting points not growing

into identical regions.

2.3.4.2 Region Splitting and Merging

The main difference between this and the previous method is that in region splitting and

merging there is not a choice of seed points, but the image is iteratively divided into a set of

unconnected regions and then when no further splitting is possible, those regions are merged [28]

according to the previous criterion.
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2.3.5 Watershed

Watershed is a region-based algorithm that uses image morphology. It sees the image as a

topographic relief, where the grey level is seen as the altitude in the relief [31].

“Water” flows from the points where the altitude, and therefore the pixel intensity, is lower.

Then, the watersheds in the topographic landscape will be flooded at a constant rate, and when are

about to merge, a watershed line is created. This continues until all the landscape is flooded, i.e.,

until the pixel with maximum intensity [20]. The watershed lines mark segmentation borders [28].

This algorithm is deemed to be a powerful tool for segmentation [31], being used in medical

imaging segmentation in RT planning [17]. However, it tends to over-segmentation when the

images are noisy or the desired structures have low Signal-to-Noise Ratio (SNR) [31].

2.3.6 Atlas based segmentation

In atlas based segmentation prior knowledge is used. It is applied using a reference image,

an atlas, in which structures are already segmented. The goal is to find the optimal transformation

between the atlas image and the test image.

The atlas has a crucial role in the segmentation. The morphology of the ROI should be similar

in atlas and test images to establish valid correspondences. The usage of a general anatomy patient

atlas improve the segmentation results [17].

According to [4], in a study of the performance of an atlas-based autosegmentation software

for delineation of target volumes for RT of breast and anorectal cancer, this automatic segmen-

tation method show promise to reduce contouring time and variability, but still have to undergo

further improvement.

To quantify results, Anders et al. [4] defined three parameters, the Dice Similarity Coefficient

(DSC), the logit transformation of the DSC and percent overlap.

DSC is used to evaluate the similarity of manually and automatically segmented structures

and is defined as

DSC(A,B) =
A∩B
A+B

2

(2.2)

where A and B refer to the manually segmented and the auto-segmented structures, respectively.

The need for the logit transformation arises from the fact that DSC results in values between 0 and

1, and there is a tendency to often approach 1.

Satisfactory results were retrieved, which are presented in table 2.1. Anders et al. [4] point

out that it seems that the decisive factor for the results of auto-segmentation is the shape of the

breast and not so much the breast volume itself – that being suggested by the results of the medium
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atlas over all the nine patients. Simultaneous truth and performance level evaluation (STAPLE)

algorithm, which employs a strategy of multi-atlas fusion for autosegmentation to improve the

accuracy of the segmentation process, further improves these results by integrating the three atlases

covering the whole spectrum of breast geometries.

CTV
Atllas/patient DSC Logit(DSC) PO

Small/1-2 0.86 1.82 75.50%
Small/1-9 0.86 1.83 75.96%

Medium/3-6 0.89 2.12 80.75%
Medium/1-9 0.90 2.19 81.44%

Large/7-9 0.91 2.36 82.30%
Large/1-9 0.87 1.96 76.89%

STAPLE/1-9 0.91 2.27 82.89%
Table 2.1: Results from Anders et al.. Retrieved and adapted from [4].

2.3.7 Statistical models

The use of statistical shape and appearance models typically provide closed and anatomically

correct surfaces [17]. The final segmentation result is restricted to plausible shapes described by

a model. It undergoes a training phase were the model learns from an set of images with correct

delineation of structures. The main disadvantage of this methods is its low flexibility, due to being

limited by the training set size.

2.4 Conclusion

RT planning needs accurate delineations of anatomical relevant structures for maximum ef-

ficiency of treatment. Automatic image segmentation can decrease contouring time consumption,

and reduce variability, but due to the variability of the breasts size and shape, methods based on

prior knowledge and/or shape can still be aided by methods based on pixel information.

Despite the trend of knowledge based algorithms, breast segmentation lacks of an established

ground truth. Even using state of the art algorithms like STAPLE, the breast shape and volume

difference to the reference atlas used has implications on the segmentation results. Also due to this

variability, statistical models need a large training data set to be able to cover a broad spectrum of

different breast geometries.

Due to CT scan nature, where different types of tissues show different pixel intensity, some

relevant information can be obtained. While the breast is mostly composed by fat, the adjacent

anatomical structures are mainly composed of muscle (chest wall) and bone (sternum). Due to
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this, and as on CT images, breast tissue will have pixel intensities lower than muscle tissue, edge

based detection algorithms are natural candidates to obtain a contour of the breast.

Edge detection by finding the minimum cost path in a directed weighted graph has advantages

over methods such as watershed, whom tends to provide a closed contour but over-segment images,

or snakes algorithm that cannot handle contour splitting or merging [33].

Thresholding algorithms have a part on the processing stage of the segmentation workflow,

enabling to adjust, focus and obtain different ROI, e.g., allowing to easily obtain a bone structure

view from images like Figure 2.8.
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Chapter 3

Breast Segmentation

This chapter presents the main design choices for the developed algorithms, problems that

arose from the implementation and possible improvements. For breast contour and tumor bed

detection algorithms validation, data provided by Fundação Champalimaud is used, with the first

algorithm being validated within six sets of images, and

3.1 System requirements

The aim of this work is to develop a system capable of receiving as an input a series of

DICOM data elements that represent a CT study of the chest of a patient, and outputs masks

corresponding to the breast and tumor bed ROI. Given the nature of the problem, the system is

realized as a Python program.

Figure 3.1: System schematic.

3.1.1 Image handling

Medical image is encoded in DICOM format, as seen in section 2.2.3. Pydicom Python

module was used to extract, view and manipulate image pixel data, which provides a easy to use

way of reading DICOM data structures into Python code. This also allowed to develop a simple

19
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interface to use open-source library OpenCV bindings for Python, since both modules rely on the

NumPy package for scientific computing for containing image data.

It was developed a package that allows to, given a set of DICOM files, read and view a 3D

representation of the data. It also allows to retrieve the axial, sagittal and coronal 2D views. It

contains a set of methods to process the images and obtain masks for various anatomical structures,

like the sternum, breast and tumor bed.

All image processing is done by using OpenCV methods.

3.1.2 Utility functions

To help with the manipulation of the images, it was developed some utility functions:

• Setting the window of visualization of the CT image, given the Window Width and Window

Center DICOM attributes;

• Obtaining axial, sagittal and coronal views from the 3D volume of images;

• Image normalization and conversion to 8 bits unsigned (DICOM uses 16bit unsigned en-

coding);

• Cartesian to polar and vice-versa image transformation.

• Mass center computation, by using OpenCV moments function, which compute polygons

image moments up to the third order.

3.1.3 System Breakdown Structure

To obtain the breasts and tumor masks, given the CT scan images, the system must be able

to detect where is the breast origin and termination point. As seen in section 2.1, breast tissue lies

over the thoracic wall, originating from the sternum in the anterior medial portion, and extends to

the latissimus dorsi muscle in the posterior portion. For that reason, the system must detect those

anatomical structures, that will work as seed points for the minimum cost path algorithm to work

on.

Nevertheless, the system should also be capable of extracting pixel information about the

anatomical structures. As different types of tissues have different pixel intensity values according

to X-ray absorption rate, as seen in section 2.2, a coarse categorization of those pixels provide

valuable information, e.g., it allows to threshold the image to obtain only pixels that can be seen

as bone tissue or a X-ray absorption rate equivalent. As such, a coarse body segmentation is also

an important part of the system.

A system breakdown structure scheme can be seen in Figure 3.2.
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Figure 3.2: System Breakdown Structure.

3.2 Body Information

As seen in section 3.1.3, one requirement is to segment the body in the CT scan, given that it

provide information about the patient center of mass together with the segmentation masks. These

masks allows to remove artifacts from the CT scanner, such as the table contours, as can be seen

in Figure 3.3.

(a) Table artifacts on image. (b) Image clear of artifacts.

Figure 3.3: Effect of clearing artifacts from the image in axial view.

By removing the artifacts and focusing on the body as a ROI, it is also possible to apply a
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multi-level Otsu algorithm to retrieve two optimal pixel values from the image histogram. I.e.,

we assume that there is three main classes of pixels, where very low intensity pixels represent

air, fat and other tissues that have small X-ray attenuation coefficients, very high intensity pixels

represent bone tissue and other structures with high X-ray attenuation, and between those two

values are represented soft tissues like muscles, e.g.. In Figure 3.4, those thresholds are applied to

Figure 3.3b, resulting in different views of the body.

(a) Soft tissue view of the body.

(b) Bone structures view of the body.

Figure 3.4: Thresholding the image with multi level Otsu values result in obtaining different views
of the body.

This algorithm assumes that the body contour is the contour with the highest contour area in

the image, as highlighted in Figure 3.5, where the drawn red contour represents the contour with
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highest area and the blue contours are all the other external contours detected. It also uses previous

masks information for detecting if smaller contours are still connected with the body, given that

the patient scan position is in dorsal recumbency (i.e., face-up on the table) with their arms raised

next to the head, as seen in the mask represented on Figure 3.6.

Figure 3.5: Highest area contour represented upon the respective slice.

(a) Axial slice of the superior body portion,
where the arms are raised next to the head.

(b) Body mask outputted by the body segmenta-
tion algorithm.

Figure 3.6: Mask retrieved from body segmentation algorithm in superior slices, properly detect-
ing the arms raised next to the head.
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The algorithm is presented in Algorithm 1:

Algorithm 1: Body segmentation algorithm.
Input: 3D set of CT images

Output: 3D body masks, body mass center pixel and thresholds

# Initialization

Create structure for masks with same shape as 3D representation

Obtain axial view

Mass center vector = []

Thresholds vector = []

# Detection loop

while n < number slices do
Create binary representation

Obtain detected contours

Sort contours by area, highest first

foreach cnt in Contours do
if Overlay with previous masks then

cnt is body

else
continue

Mass center vector[n] calculation using contour moments

Image artifacts removal

Multi-level Otsu algorithm to compute thresholds[n]

MC = mean of all the 2D slice mass centers

Thresholds = mean of all the thresholds

3.2.1 Center of Mass

The center of mass is computed by retrieving the body contour moments and obtaining the

contour centroid pixel position:

Cx =
m10

m00
; Cy =

m01

m00
(3.1)

Image moments are weighted average of the image pixel intensities. They are computed

according:

Mpq =
∫

∞

−∞

∫
∞

−∞

xp · yq · I(x,y) ·dx ·dy (3.2)

where I(x,y) is the image.
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3.2.2 Multi-level optimum threshold values

Due the nature of the CT scan, where different tissues with different radio-density appear

with varying gray scale intensity, it was implemented a method to retrieve two optimal thresholds

values. This allows to bin pixels into three groups such as air or fat tissue, soft tissues like muscle

and bone. The implemented algorithm was described in Ref. [34].

The correspondence coarsely can be done like represented in Figure 3.7, where we can see an

histogram of a slice, after removing artefacts caused by the scanner. In it, the red and blue vertical

bars mark the obtained threshold values.

Figure 3.7: Histogram with two optimum thresholds.

3.3 Segmentation of the Sternum bone

The sternum is the most medial bone in the anterior portion of the body from which originate

the chest muscles, forming the thoracic wall and as such, it marks the breast anterior medial limit.

For that reason, the implemented breast contour detection algorithm relies on being feed with a set

of masks that segment the sternum.

As such, a sternum segmentation algorithm was developed and implemented (Algorithm 2).

Since the CT scan is done to the thoracic portion of the body, it is assumed that the axial slice in

the iz coordinate such as iz = max(z)/2 always contains a view of the sternum (Figure 3.8a), and

that it is the most anterior contour after obtaining a thresholded image to represent only the bone

structures in the CT image, as in Figure 3.8c. I.e., contours are ordered according to the distance
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between them and the point given by the cmx and the y of the body bounding box, identified in

Figure 3.8b.

(a) Axial slice in the middle of the
z axis of the 3D volume of im-
ages. The algorithm assumes that
the sternum is always represented
is this slice.

(b) Thresholded view of the bone
structures, and representation of
the point from which distance to
contours is measured.

(c) Obtained contour represented
over the image.

Figure 3.8: First step of the sternum detection algorithm.

This assumption provides a 3D set of seed voxels, allowing to employ a region growing

algorithm to obtain the full segmentation of the structure, in two steps. First, using a sagittal view,

allowing to spread seed voxels along the z axis, as seen in Figure 3.9, and finally looping through

all the axial slices. This is done by thresholding the image to obtain a representation of the bones,

and then checking which contours overlap the seed points.

The algorithm outputs the 3D volume of the segmented structure and a number of computed

parameters that improve the workflow of the developed algorithms, e.g., the index of the z axis of

the first and last detection of the sternum, and a projection of the sternum centroid in the yx plane.

(a) Sagittal slice of the sternum center of mass. (b) Contour which overlap the seed points ob-
tained in the previous step.

Figure 3.9: Seed points obtained by detecting the sternum in a sagittal image.
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Algorithm 2: Sternum segmentation algorithm.
Input: 3D images, Body 3D masks, Body center of mass, Threshold for obtaining bone

structure view

Output: 3D sternum masks, sternum start slice, sternum end slice and mass center point

# Initialization

Create structure for masks with same shape as 3D representation

Obtain axial view

Obtain sagittal view

# Obtaining seed points

Obtain mid-slice in axial view (img = axial_view[nr_slices/2])

Threshold that image using threshold value related with bone structures

Define limit_point = body_mcx, body_contoury

Obtain contours and sort them by distance to limit_point, lowest distance first

Save mask obtained from the contour in sternum 3D structure

Obtain mass center for that slice

img = sagittal_view[sternum_mass_center_x]

Threshold that image using threshold value related with bone structures

Given the seed points obtained by the axial detection, obtain the contour which the points

lie within

Save mask on 3D structure

Find slices where sternum 3D structure is non-zero in z axis

# Looping through axial slices

for axial slice in (sternum_start, start_end) do
Given the seed points obtained by the previous detections, obtain which contour the

points lie within

end
Compute sternum structure centroid

3.4 Dorsi Points

Dorsi detection allows the algorithm to set a breast contour termination, since the breast

contour detection algorithm searches for the minimum cost path between two points.

It was developed an algorithm (Algorithm 3) for detection of an estimation of the location of

the latissimus dorsi, taken from a user-defined number of slices that search in axial slices close

to the medial z coordinate of the sternum, i.e., the algorithm detects the dorsi in half of the user-

defined number of slices above the starting slice, and other half below.
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This design choice arose from the fact that the latissimus dorsi shape variation between slices

is considerable, but in the mentioned before ones the muscle has a peaked shape in the axial view

(Figure 3.10). This allows to search in a soft tissues (muscles) only view where the muscle contour

tangent is constant, being that pixel taken as the dorsi point. In the developed algorithm, a secant

function is used, since if the slope of the secant approaches a limit value, then that limit defines

the slope of the tangent line at that given point.

The algorithm outputs the average of all detections, providing a projection in the yx plane for

the latissimus dorsi location in the slice.

Figure 3.10: Axial slice in the medial z coordinate of the sternum, where the latissimus dorsi
muscle has a peaked shape.

Figure 3.11: Latissimus dorsi estimation in the middle slice (Figure 3.3.)
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Algorithm 3: Dorsi segmentation algorithm.
Input: Number of slices to scan, 3D images volume, 3D Body masks, Sternum medial z

coordinate, Thresholds

Output: Right and left dorsi pixels estimation

# Initialization

Obtain axial view

n = 0

up_down = False

# Looping through axial slices

while n < n_slices_dorsi do
idx = mid_sternum+n+(−2 ·n ·up_down)

img = axial_view[idx]

Obtain muscle view and muscle contour from img

Obtain gradient image from img

From gradient image indexes, find minimum and maximum x coordinate of the

muscle contour

Find corresponding y coordinates for each ix
The contour must start from the previous computed edge points and grow in the y

coordinatesa

secant_vector_le f t = secant(le f t_sorted_contour)

secant_vector_right = secant(right_sorted_contour)

dorsi_le f t = le f t_sorted_contour[argminb(secant_vector_le f t)]

dorsi_right = right_sorted_contour[argmin(secant_vector_right)]

up_down =!up_down

n+= 1

end
Dorsi pixel estimation is the mean of the points where the computed secant value is

minimal.

aContour ordering to obtain a clockwise ordered contour starting at previous edge point for the left side of the image.
OpenCV detects contours and creates a list of points ordered by lowest to highest y coordinate, ordering the x coordinate
counter-clockwise.

bargmin is the index of the minimum in the vector.

3.5 Breast

The breast is composed by subcutaneous fat, that appears as lower intensity pixels in CT

images than the adjoining structures, usually. As seen in section 2.1, the sternum bone and the

latissimus dorsi define the anterior and posterior limits of the breast, respectively. Given that,

breast segmentation can be seen as an edge detection problem or a minimum cost path in a graph

between those points.
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In the developed algorithm (Algorithm 4), breast contours are detected using an algorithm to

detect the minimum cost path between two points. Margin points are computed from the sternum

centroid and the estimated point for the dorsi muscle. For the external contour, the point in the

body contour closer (in euclidean distance) to the sternum centroid and the dorsi pixel is the

chosen. For the internal contour, the dorsi point is itself the margin point, while in the sternum it

is chosen the point on its contour closer to its center of mass.

This algorithm segments both breasts in the extension of the sternum bone, along the z axis.

While for the external contour detection there is no processing done to the image (Figure 3.3), for

the internal contour the image is thresholded to retrieve a view of muscle tissue (Figure 3.4a). This

allow the performance of the algorithm to increase, since while searching for the inner contour

created by the chest wall, very high and very low intensity pixels will not affect the results.

The algorithm loops through all the axial slices where the sternum masks are present. Con-

tours are taken one at a time, starting with the computation of the margin points, followed by the

transformation in a polar image between the given angle. The polar image is then inverted and

its gradient is obtained, which is fed to the minimum cost path algorithm, that outputs the polar

contour. Finally, for each breast the contours are concatenated and the axial mask is drawn.

The output of this developed algorithm is two 3D volumes of masks, one for the right and

another for the left breast.

Algorithm 4: Breasts segmentation algorithm
Input: 3D images volume, 3D Body masks, 3D Sternum masks, Dorsi pixel index,

Thresholds, Angle resolution

Output: Right and left 3D breasts masks.

# Initialization

Initialization of both 3D structures

Definition of the function object to obtain minimum path algorithm margin points

# Looping through axial slices between sternum z coordinates

for minsternumz < n < maxsternumz do
internal_image = Threshold image to obtain a soft-tissue only view

# For each contour

Create polar image from img

Compute polar coordinates of the margin points

Invert image

Obtain gradient of the image

Apply minimum cost path algorithm

# # #

Create mask from detected contours

end
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3.5.1 Minimum cost path algorithm

A minimum cost path detection algorithm is a graph cost minimization algorithm. Treating

the image as a graph, given a point that is enclosed by a path and transforming the image into

polar coordinates, that closed path transforms into the shortest path between opposite margins,

given that the wanted point is the origin [33]. The implemented algorithm is presented in [35].

The implemented version is fed by the gradient of an image, and applies a cost function

over it. After that, it does the computation of the cost matrix, and finally iterates over it to find

the minimum cost path between the margins. Search type is a parameter between point to point,

margin to margin or any combination between them.

The parameters used in the weight function

f (g) = fl +( fh− fl)∗
exp(β · (255−g))−1

exp(β ·255)−1
[35]

were fl = 2, fh = 128 and β = 0.25, where g is the derivative of the image. For 8-neighbour pixels

the weight was set to
√

2 times that value.

Figure 3.12 shows the result of the algorithm applied to the external contour of the breast. As

the image is in polar coordinates, Figure 3.12a presents the same contour, but plotted in Cartesian

coordinates in the full picture.

(a) Polar coordinates. (b) Cartesian coordinates

Figure 3.12: Minimum cost path algorithm result in computing a breast external contour.
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Table 3.1: Breast external contour segmentation results. All the values are expressed in pixel
distance.

Contour to
Ground Truth

Ground Truth to
Contour

Euclidean
Distance

Hausdorff
Distance

Euclidean
Distance

Hausdorff
Distance

Patient Mean SD Mean SD Mean SD Mean SD
1

Left Breast 1.90 0.59 10.66 7.67 1.69 0.63 8.27 5.78

2
Left Breast 1.55 1.10 13.1 10.0 0.97 0.50 4.49 2.64

3
Right Breast 1.51 0.15 4.69 2.87 1.49 0.22 5.38 3.85

4
Right Breast 4.69 4.36 42.28 20.02 1.25 0.65 9.08 7.55

5
Left Breast 2.26 1.85 21.61 11.54 1.15 0.83 5.94 6.68

6
Left Breast 2.83 2.40 26.60 12.63 1.38 1.95 3.91 4.36

Average 2.46 1.74 19.82 10.79 1.32 0.79 6.17 6.17

3.5.2 Results

To validate the obtained contours, they were compared to contours provided by experts that

will be considered as ground truth. Comparison metric was chosen to be the Hausdorff distance

and the average distance between the detected contour and ground truth, and vice-versa. This

metric was chosen because it represents the worst case scenario, as stated in [36]. Results for the

external contour detection are presented in Table 3.1 and results for the internal contour detection

are presented in Table 3.2.

The Hausdorff distance between two sets of points is defined as

h(A,B) = max
a∈A

min
b∈B

‖ a−b ‖ [36]

where ‖ · ‖ is the Euclidean distance.

Despite pixel spacing being different among the test subjects, it presents an average ratio of

1 pixel to 1mm, with σ = 0.02. This results show that the algorithm is capable of detect con-

tours close to what is taken as ground truth, having low average and Hausdorff distances between

contours.

One of the main advantages of the algorithm when compared with other methods is that it

does not depend directly of a previous set of images to segment the breasts, and as such, it is able

to perform in the full spectrum of body and breast shapes and sizes.
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Table 3.2: Breast internal contour segmentation results. All the values are expressed in pixel
distance.

Contour to
Ground Truth

Ground Truth to
Contour

Euclidean
Distance

Hausdorff
Distance

Euclidean
Distance

Hausdorff
Distance

Patient Mean SD Mean SD Mean SD Mean SD
1

Left Breast 1.29 0.54 8.96 3.64 1.18 0.73 8.14 5.13

2
Left Breast 2.51 2.88 10.86 8.90 2.00 2.17 9.24 7.05

3
Right Breast 1.41 0.94 9.13 4.71 1.05 0.63 6.83 3.94

4
Right Breast 6.17 4.36 22.67 11.63 4.41 3.86 16.30 9.75

5
Left Breast 2.85 1.86 14.29 4.27 2.60 2,03 12.4 7.05

6
Left Breast 3.29 1.28 18.16 8.39 2.43 1.27 10.24 3.90

Average 2.92 1.97 14.01 6.92 2.28 1.78 10.34 6.14

Despite the positive results, it is shown that the algorithm performance is completely degraded

by errors in the choice of the margin points for the minimum path algorithm. In the example given

by Patient 4, due an error in the dorsi point computation, the point taken as the external point

for the latissimus dorsi muscle is more posterior than the ground truth posterior origin of the

breast 3.13.

(a) Patient 4 slice. (b) Breast mask drawn from the
contours obtained by the mini-
mum cost path algorithm.

(c) Overlay of the body with the
breast mask, where part of the
dorsi muscle is visible.

Figure 3.13: Implications of an error at computing margin points.

Due to the algorithm assumption that fat has a lower pixel intensity value than muscle tissue,

the algorithm has low performance where this does not hold true. Some breast tissue can have

higher pixel intensity than what is taken as the muscle tissue threshold. In that case, results are not
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coherent, i.e., the detected contour may not be only muscle tissue, and as such it does not define

the chest wall and the inner breast contour, as seen in Figure 3.14 and Figure 3.15. The previous

cause of error is closely related to this, since dorsi points are computed under the assumption that

the latissimus dorsi is the wider contour within the given pixel intensity range and when it does

not hold truth, the results present a large margin of error.

Figure 3.14: Higher pixel intensity in breast tissue.

(a) Higher pixel intensity in breast
tissue.

(b) Breast mask drawn from the
contours obtained by the mini-
mum cost path algorithm.

(c) Overlay of the body with the
breast mask, where breast fat was
taken as chest wall.

Figure 3.15: Implications of high pixel intensity on breast fat.

Nevertheless, the fact that the algorithm is implemented in a highly dynamic programming

language, with a strong emphasis in modularity, allow that the detection of the dorsi points and

the algorithm to bin the pixel intensity into categories to be improved in the future.
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3.6 Tumor detection

Since RT planning is done post surgery for removal of the tumor, what is in fact segmented

as the tumor bed are markers placed by the surgeon. Those markers have the peculiarity of being

X-ray attenuators, and so they are translated into the image with a high pixel intensity. For that

reason, the implemented algorithm is fed by the 3D volume of breast masks, and, in the axial view,

thresholds the breast area.

This algorithm has an associated error due to the fact that that patients are lied with their arms

raised, and if they have a tumor bed in the axillary process above the minsternumz coordinate,

it will not be properly segmented. Also, this algorithm does not take into account tumor beds

that spread into the chest wall, given that it only searches within the breast mask area. Future

improvements could add support to check within the chest wall, provided a proper segmentation

of that structure.

Region growing algorithms are also not capable of segment properly in those conditions,

given the fact that the markers do not necessarily make a close region.

Algorithm 5: Tumor bed segmentation algorithm.
Input: 3D images volume, 3D Breast masks, Thresholds

Output: 3D tumor mask

# Initialization

Obtain axial view

# Looping through axial slices

for n in nr_slices do
Obtain image

Using breast mask as ROI, threshold the image

Thresholded image is the tumor mask

end

3.6.1 Results

Given that the tumor bed segmentation is done based on the 3D contents of the images volume

and the breasts masks, the metric chosen to evaluate the segmentation was the computation of the

3D tumor masks centroid and comparison with some known ground truth, through the euclidean

distance.

For validation, four sets of images provided by Fundação Champalimaud were used. Ground

truth manual delineations of the breast were fed into the developed tumor bed detection algorithm,

and then the resulting 3D volume of binary masks was used into the metric calculation.
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Table 3.3: Results for the tumor segmentation validation. Distance in pixels.

Patient Euclidean
Distance

1 1.07
2 2.75
3 2.28
4 5.06

Average 2.79
Standard
Deviation 1.45

This results show that simple thresholding algorithms combined with the knowledge of how

different tissues have different gray-scale pixel intensity in CT scans is a powerful tool to provide

a starting point to radiologists in the process of delineating structures and lesions for improving

radiotherapy. Plus, the described algorithm has an inherent error due to its limitations, that can be

further improved.

Despite this, this metric is sensible to any false-positive detection in the breast segmentation,

e.g., if any CT artefact is delineated together with breast tissue, as it affects the detection centroid.

3.7 Conclusion

With the goal of providing a breast and tumor segmentation, it was developed a set of algo-

rithms that fulfill that objective, and also segment some adjoining structures. This chapter pre-

sented a detailed description of the makings, the inputs and outputs of each of those algorithms,

as well as validation results for the breasts and tumor bed detection algorithms.

To segment the breast, we have proposed a algorithm that detect the contours of this anatom-

ical structure, by minimization of the cost of the contours within the image, when interpreting the

image as a graph. Despite the trend into machine learning and knowledge based algorithms, those

algorithms have the need for a large training data, to cover the spectrum of breast shapes and sizes.

The proposed algorithm overcomes that limitation by relying on the pixel intensity information.

For the tumor bed, the proposed algorithm focus on the ROI created by the breast tissue,

given by the breast mask fed into the algorithm. With that information, it thresholds the ROI to

find the tumor markers. It main limitations are that it is not able to fully segment the tumor bed on

the axillary process and on the chest wall, and it is prone to error from the breast segmentation.
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Conclusions

Breast cancer is one of the most common malignancies, and also one of the most deadly

diseases mankind is facing today. Despite treatment plans for early-stage breast cancer allow for

survivability rates to increase, the dynamic nature of the disease, as well the time burden of the

tasks involved in the treatment planning stage urge for tools that are able to improve the workflow

of the treatment.

Despite the existence of new methods for automatic segmentation of the breast in CT scans,

that use knowledge through learning, methods that rely on pixel information can improve the

outcome of the final segmentation, since the human body in general, and the breast specifically,

presents great variability in the shape and size of it anatomical structures. That variability requires

that knowledge based methods, e.g., atlas based segmentation, to rely on large training data, that

is not possible.

The main goal of this work was to develop and implement an algorithm capable of auto-

matically detect and segment anatomical structures to improve the workflow of the RT planning

stage, post breast conservative surgery for removal of a tumor. As such, this work focused on

segment the breast and the tumor bed, such as the sternum and the latissimus dorsi muscle, whose

segmentation masks fed the breast detection algorithm.

To segment the breast, given the previous segmentation of the enclosing anatomical struc-

tures, we chose to see the problem as a cost minimization problem, in order to find the desired

contours. As such, implementing a minimum cost path algorithm, segmentation results presented

in Table 3.1 and Table 3.2 show that between the algorithm detection and a delineation from an

expert, the contour distance is in the order of millimeters. Despite those positive results, Hausdorff

distance on some patients is in the order of centimeters. It is due to the assumptions that we did

designing the algorithm, e.g., that between the pixel intensity of fat tissue and muscle tissue there

is an optimum threshold level, that does not verify to all patients.
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As these algorithms are to work in CT images taken after breast conservative surgery, where

the tumor has been removed, and the tumor bed is marked by the surgeon, a first take on a tumor

bed segmentation algorithm was to search for the highest intensity pixels within the breast tissue.

This provide a starting point to the radiologist, allowing to relieving the burden of fully manual

delineation, but does not provide a complete segmentation of the tumor bed, since it does not

search for the tumor in the chest wall, and it may not search for it in the full extension of the

axillary process. Measuring the distance between center of mass of the tumor bed detection, it

shows that as seen in the results at Table 3.3, average distance between center of mass of the

tumor detection and the ground truth is in the order of millimeters.

4.1 Future Work

Analysing the contributions made by this work, it is of the outermost importance to validate

results against different data.

The developed algorithms were designed to retrieve useful information from the pixel data,

but were developed taking into account external data input, i.e., they are modular. For instance,

breast detection algorithm does not rely on our sternum detection algorithm, as it only needs a

volume of 3D sternum masks of the same size as the remaining volumes. This create a window of

opportunity to develop new methods to aid the detection done by the algorithm, further improving

the obtained results, e.g., estimations the margin points for the detection of the breasts contours or

methods to obtain different views of the image, within the scope of the DICOM Window Center

and Window Width attributes, for instance.

Regarding the tumor detection algorithm, two main topics should be addressed in the future,

namely the ability to segment the tumor within the chest wall and the ability to fully segment the

axillary process portion of the breast.

Other metrics could had been chosen for results validation, e.g., DSC or percent overlap [4].

The mentioned metrics and the euclidean distance measure the approximation between the de-

tected contour and some ground truth. But according to Gooding et. al. [37], these measurements

may not reflect clinical adequacy. Further study about the relation between the presented error

and real dosage difference is a step forward into providing insight about the quality of automatic

segmentation methods.
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