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Abstract

Big Data has been a recent global transformation of smart technology paving the way to just about
everything around daily lives. Although this concept has been around for a few years, nowadays,
most organizations have come to understand the significant value they get from capturing and
applying analytics to all the data that streams into their businesses.

Big data is really just large amounts of data near real-time or real-time from various sources.
And "big" in fact can mean, not the actual size of the data, but in fact, can be relative to the size of
a company, meaning more data than the company can actually handle.

It is in this context, that the dissertation was defined and developed. HUUB, a small start-
up, born in 2015, providing an integrated ecosystem for fashions brands manage all the supply
chain, end-to-end, realized how much advantage could take from experiencing Big Data and use
to improve daily business and decisions.

The company offers a Software as a Service, SaaS, named Spoke, and it is interested in im-
proving the client experience while making the best decision to gain new clients and grow its
competitive advantage.

Taking advantage of the recent transition of the company from a monolithic architecture to-
wards microservices, and using Event Sourcing as a way for communicating between services
through a Kafka Message Broker, the main goal of this thesis was to study all these technologies
and provide for a solution that would allow the company to ingest relevant data in real-time, with
high throughput, capable to handle Big Data.

A few steps within the company had already been made, but had took more that one hour,
with low throughput, and was still dependent from legacy data. At the end of the dissertation, the
solution allowed for ingestion of events, around, 100 times higher in the beginning. Going from
a couple of events consumed per second, and available for reporting one hour later, to hundreds
of events being consumed per second, and made available in the data warehouse within a few
minutes. This was made possible through a process of micro-batching, that not only allowed for
availability of data in large amounts available only in a few minutes.

To conclude, this dissertation opens up a new way for real-time data ingestion and reporting,
being this subject so poorly reviewed in the literature. Describing a possible architecture, dis-
cussing technologies and experiments for an improved way for consuming data in less time, and
more throughput.
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Resumo

Recentemente, Big Data tem sido considerada uma transformação global da tecnologia inteligente,
abrindo o caminho para solucionar variados problemas do quotiadiano. Embora esse conceito já
exista há alguns anos, hoje em dia, a maioria das organizações tem compreendido melhor o valor
que esta tecnologia pode trazer na captura e aplicação de análises a todos os fluxos de dados do
negócio.

Big data são grandes quantidades de dados, quase em tempo real ou em tempo real, vindo de
várias fontes. E na verdade, "Big Data", pode significar, não o tamanho real dos dados, mas a
relação entre o tamanho de uma empresa e os dados que esta pretende manipular.

É nesse contexto que a dissertação foi definida e desenvolvida. A HUUB, uma pequena em-
presa nascida em 2015, que fornece um ecossistema integrado para marcas de moda que geren-
ciam toda a cadeia de abastecimento, percebeu a vantagem que traria lidar com esta tecnologia,
em tempo real, para melhorar na decisão diária dos fluxos e de métricas de negócio.

A empresa oferece um Software como Serviço, SaaS, chamado textit Spoke, e está interes-
sado em melhorar a experiência do cliente, enquanto toma a melhor decisão para conquistar novos
clientes e aumentar sua vantagem competitiva. Por todas as razões mencionadas, o objetivo prin-
cipal desta dissertação é melhorar a forma como a empresa lida com dados em tempo real e alta
taxa de transferência.

Aproveitando a recente transição da empresa de uma arquitetura monolítica para microsserviços,
e utilizando Event Sourcing como forma de comunicação entre serviços através de Kafka Message
Broker, o principal objetivo desta tese foi estudar todas essas tecnologias e fornecer uma solução
que permita à empresa ingerir dados relevantes em tempo real, com alta taxa de transferência, a
custos reduzidos.

A empresa já tinha feito alguns avanços dentro desta tema, mas os dados representam uma
latência com mais de uma hora, com baixo rendimento, que dependiam de dados antigos. No final
da dissertação, a solução permitiu a ingestão de eventos, cerca de 100 vezes maior que no início.
Sendo que no início, apenas um ou dois eventos eram capazes de ser consumidos por segundo, e
estando disponível para análise uma hora depois, para centenas de eventos a serem consumidos
por segundo e disponibilizados no armazém de dados, em poucos minutos.

Tudo isto foi possível por meio de um processo de microtatching, que não apenas permitiu a
disponibilidade de dados com alta taxa de transferência, sem comprometer a latência, e a custos
reduzidos para a empresa, uma vez que os dados são armazeandos num armazém de dados na
nuvem.

Para concluir, esta dissertação abre um novo caminho para a ingestão e comunicação de dados
em tempo real, sendo este tema está fracamente representado na literatura, sendo tão recente. É
ainda descrito uma possível arquitetura de dados para o caso tratado, discutodas as diferentes tec-
nologias e são feitas ainda experiências de forma a comprovar a nova forma proposta de consumir
eventos, usando um Algoritmo de Batching com alta taxa de transferência e baixa latência.
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“Any time scientists disagree, it’s because we have insufficient data.
Then we can agree on what kind of data to get; we get the data;

and the data solves the problem. Either I’m right, or you’re right,
or we’re both wrong. And we move on.”

Neil deGrasse Tyson
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Chapter 1

Introduction

This dissertation was conducted at HUUB, a Portuguese start-up, founded in 2015, focused on

logistics and supply chain management, for distinctive fashion brands. HUUB is responsible for

handling all stages of the supply chain in all sales channels: wholesale and e-commerce.

Being responsible for the supply chain of dozens of brands, and accountable for delivering the

best business solutions regarding costs of transportation amount of stock available and forecasting

methods, has a tremendous component of reporting and analysis, that must be met as real-time as

possible.

1.1 Context

With the explosion of data, new ways of structure it, store it and analyze it has to be defined. In the

industry is tightly connected to controlling complex technological processes, facilities or business

decisions [DDM14].

The topic is often associated with Data Analytics [DDM14], since Big Data is often desired

by companies in order to create new knowledge and help with decision making instead of using

human expertise and intuition [MB12].

According to a governmental study, conducted by Kaisler et al. (2013) [KAEM13], there

are three big issues when dealing with such amounts data, being them the storage, the manage-

ment, and processing issues. Concluding that to process 1K petabytes of data would require a

total processing time of roughly 635 years. Thus, effective processing of exabytes of data will

require extensive parallel processing and new analytics algorithms in order to provide timely and

actionable information.

Analogous to Big Data, new architectures have, recently, started to appear, in the field of

development of big systems, known as microservices. As defined by Sam Newman, Microservices

are small, autonomous services that work together [NMMA16], and further explored in the State

of the Art of this dissertation, in chapter 2.1.
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Introduction

Figure 1.1: HUUB’s posititioning relative to its stakeholders.

With the increasing number of microservices, and the number of distributed systems a new

architecture started to be adopted, Event Sourcing, where entities keep their entire history in an

event log, and are usually asynchronous, message-based interaction of loosely coupled, modular

components and, when highly distributed, event-driven architectures represents a significant per-

formance bottleneck and also a single point of failure [EMH+17], and will be discussed in more

detail further in the dissertation.

These recent technologies are adopted by big enterprises, such as Netflix, Spotify [NMMA16]

and LinkedIn. Additionally, these technologies have been, recently, is being adopted by the Por-

tuguese logistics start-up HUUB.

The company provides logistics services by integrating all entities and steps of the supply

chain into one dynamic ecosystem: customers, end users, suppliers, alliance partners, through a

web platform, called Spoke.

This platform grants full visibility and control to all end users, being brand owners, warehouse

workers, or analysts. Bringing together, in just one platform, as seen in Fig. 1.1, a business-

oriented layer, by connecting brands and sales channels, but also supply chain management layer,

integrating vendors, inbound transport, warehouse network, outbound transport, and delivery.

HUUB is Product Driven, being SPOKE a big part of their business model, it is crucial for

the company to present a well designed and user-friendly application, hence a constant pursuit for

state of the art technologies and architectures is a big concern for the Tech Team. Additionally,

scalability is key for continuing to provide the best service possible, while the company continued

to grow. To ensure this, recently, the company has taken some decisions regarding the architecture

of the application, moving towards a microservice architecture. However, a more deep explanation

of this transition will be presented in the next section.

Secondly, it is Data Driven, since all data collected is important, considering that it can im-

prove business performance by supporting decision making. Spoke intents are to provide action-
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able feedback and business insights based on knowledge, rather than instinct. To achieve this,

HUUB has a strong Business Intelligence team, where data is treated to provide historical, current

and predictive views of business operations.

Finally, it is AI Driven, focusing on guaranteeing optimal efficiency through Artificial In-

telligence and Data Science, managing every decision in the supply chain, through forecasting,

machine learning, and deep learning models.

Spoke, HUUB’s software started as a monolith meaning all components are combined into one

single tiered platform. This was the best solution, in the beginning, since the start-up was still in

an early stage, having only a few clients and a small set of features available on the application.

However, the company started to grow and incorporate more features into the application,

which started to create some problems in the web platform, whilst for a company like HUUB,

in a stage of exponential growth, it is important to deliver the best software possible to make it

easier for end-users and improve everyone’s business. With the increase of overall features and

data transactions, the monolith started to perform below the expectations and the business needs.

Considering this, a new approach had to be studied. Following current trends mentioned above,

the monolith was set to be broken into small microservices, where each service would be built

around a business capability and could be deployed independently.

This new decision brought a lot of changes to the architecture of the application, as well as

how data flows would be ingested in order to continue to provide valuable metrics for decision

making, at a faster pace, creating new data sources and new ways of data ingestion, through Event

Sourcing and Event-Driven ETL, which will be discussed further.

1.2 Motivation

As mentioned before, HUUB holds a lot of responsibility regarding business decisions not inter-

nally, but for the entire supply chain of their clients.

Competitiveness of the 21st century, means, not only big companies, but also small to medium

enterprises, struggle to incorporate into their core business technologies, that allow them to handle

and create competitive advantages, such as Big Data, analytics and reporting, recommendation

systems, and others.

Consequently, being HUUB a start-up in the most important years to succeed, it has to deliver

the best service possible. Being in the process of microservices migration, some interesting opti-

mizations could be done at the data ingestion level. Allowing the company to perform reporting

and analysis much faster than was performing.

1.3 Goals of the Dissertation

The aim of the company is to provide the best logistic service for its brands, controlling the entire

supply chain, while increasing profit and automating processes.

3
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Taking into consideration the current changes in the system architecture of the company, and

the need for consuming data as fast as possible for analysis and reporting, the goals of the disser-

tation are:

• Study all the technologies regarding this new architectures, underlying advantages and dis-

advantages for each technology.

• Observe what technologies are being applied at HUUB and how studying all the process

as-is of the company.

• Design a valid architecture for ingestion of events, by streaming, to a data warehouse, ap-

plied for Big Data.

• Implement the solution designed at the company and see how the process of ingestion of

events improves in the company, experimenting and validating the approach designed.

1.4 Structure of the Dissertation

Additionally to the Introduction, this chapter contains more 6 chapters.

In chapter 2, the author lays out background information, several concepts, and definitions

about the subject matter.

In chapter 3, there is an analysis of the state of the art in terms of real-time data warehouses,

new approaches for data ingestion and new Extract, Transform and Load tools.

In chapter 4, describes the architecture of the company of the dissertation development. Later,

exposes the problem statement and set of achievements meant to accomplish.

In chapter 5, describes the implementation of the problems defined in the chapter before, at

HUUB.

In chapter 6, it is described as a set of experiments, with a range variety of cases, realized at

HUUB, showing the goals achieved.

Finally, in chapter 7, it is concluded the difficulties during the development of the dissertation,

the contributions of the work realized and details possible future work.

4



Chapter 2

Background

In this chapter, it will be presented a few background knowledge of subjects regarding the thesis

development, that are not commonly known.

2.1 Monolithic and Microservices Architecture

Microservices are the opposite of the monolithic architecture, where applications are usually de-

ployed as a single package on a web container [TLPJ17]. The server-side of the application han-

dles HTTP requests, executes domain logic, retrieves and updates data from the database and

selects and populates HTML views to be sent to the browser. This design approach can rapidly

become a bottleneck to fast continuous build, test, and deployment [SML18].

The modification of one single feature, in a monolithic system, involves building and deploy-

ing a new version of the server-side application, which also means scaling has to be made through

the entire application, which takes greater resources [Lew14].

Within the last few years, a new architectural trend has been emerging and becoming estab-

lished for a huge set of applications . This architectural trend is Microservice architecture and big

companies like Netflix, Spotify, Twitter, and Amazon are already delivering their core business

through microservice-based-solutions [STV18].

This architecture trend was first, formerly, introduced by Lewis and Fowler in their blog, in

2014, defining Microservices as "an approach to developing a single application as a suite of small

services, each running in its own process and communicating with lightweight mechanisms, of-

ten an HTTP resource API" [Lew14]. Microservices are loosely coupled architectural elements

that can be independently deployed by fully automated machinery, often achieved by exploiting

lightweight, container-based platforms [STV18], like Docker 1. This results in two different ar-

chitectures as seen in Fig. 2.1

Each microservice should be an isolated business functionality, allowing the service to be

independent and autonomous and be easily replaceable when no longer fits the business core,

without crashing other services important for the application [HB16].

1https://www.docker.com/resources/what-container
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Figure 2.1: Comparison between a monolithic and microservices architecture.
Extracted from [Lew14]

Regarding the migration of a monolithic architecture to a microservice architecture, in a survey

[TLPJ17], conducted during the 17th International Conference on Agile Software Development

(XP), among developers experienced in microservices, whose goal was to analyze the motivations

as well as the pros and cons of migrating from one architecture to another, unveiled the need for

extra machinery, imposing substantial costs and effort in the beginning, when transitioning to a

microservice architecture.

Moreover, some issues in the adoption of the new architecture were also outlined. Regarding

some technical issues, related to the fact this migration requires experienced developers. Also

some economic issues, due to the fact of the aforementioned technical issues and the need for a

DevOps infrastructure. Finally, some psychological issues, since changing completely the whole

system is risky and depends on developers with an open-minded and inquisitive mindset [TLPJ17].

Nonetheless, the main benefits in the adoption of the architecture were confirmed by the partic-

ipants in the survey, who in the beginning, when considering the issues claimed, thought the Return

On the Investment (ROI) would be perceived as an issue, but on the contrary. In the long run, the

need for maintenance is smaller, than in a monolithic architecture, and the scalability easier, thus

the extra effort is compensated after a period of between two years (33% of the interviewees) and

three years (66% of the interviewees) [TLPJ17].

2.2 Event Sourcing

Event sourcing refers to all changes of states in an application are stored as a sequence of events,

allowing to not only query events, as well as, cluster all events building an event log, and recon-

struct past states [Fow05].
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The basic premise is to guarantee every change in the state of a application is captured as an

event object, and these events are stored in an ordered sequence.

This architecture is more straightforward and less consuming than querying databases to find

the current state of an application entity. Moreover, to build a historical change of states, it is

necessary a persistent database, additional to the main database. Whenever a new query update

happens in the main database, a new row is added to the historical database. With Event sourcing,

for each change in the application, an event is produced and stored immeadiately in a pipeline of

ordered events [NMMA16].

There are a few more advantages to event sourcing [Fow05]:

• Do a complete rebuild, discarding the current state of the application and rebuild it by re-

running all events stored in the event log.

• Determine the state of the application at a specific time, by re-running the events until that

time.

• Replay events in case of past events have been incorrect or computed wrong.

2.2.1 Apache Kafka

”Kafka was created to address the data pipeline problem at LinkedIn. It was designed to provide

a high-performance messaging system that can handle many types of data and provide clean,

structured data about user activity and system metrics in real time. Data really powers everything

that we do.”

—Jeff Weiner, CEO of LinkedIn

Apache Kafka is commonly designated as a "distributed messaging system" or, more specifi-

cally, a "distributed streaming platform" [Neh10]. A publish/subscribe messaging system is when

a piece of data follows a pattern, defined by the publisher (sender), classifying the type of message.

Afterward, the receiver subscribes to receive certain types of messages, instead of the publisher

directly send the message to the receiver. To facilitate this process, there is a central message

broker.

A topic can be compared to a table, in relational databases, where each topic has a type of

message. A Kafka message is an array of bytes and a message can have a specific format, referred

to as key. Kafka is described as "distributed" because a topic can hold one or more partitions, and

the keys are used to differentiate how messages are organized through the partitions, in a more

controlled way.

Messages are stored according to the time they were created and sent to the topic, however, if

a topic contains more than one partition, Kafka can provide total order over records only within a

partition and not between different partitions in a topic, as described in Fig. 2.2

This data distribution also provides additional protection against failures, as well as signifi-

cant opportunities for scaling performance, since each partition can be hosted on different servers
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Figure 2.2: Representation of a topic with multiple partitions.
Extracted from [Neh10]

and thus a topic can be scaled horizontally and throughout multiple servers, improving overall

performance.

Users of the system are designated as Kafka clients, and there are only two types: producers

or consumers.

Producers are responsible for creating new messages and publish these messages to specific

topics, negligent of how many, or which, consumers will it reach. As mentioned above, messages

can be written to specific partitions if a key is defined and messages with the same key will be

stored in the same partition.

Consumers read messages. Consumers label themselves with a consumer group and subscribe

to one or more topics and messages are read according to the order they were produced. While

messages are read, a few metadata stores the position of the last message consumed, called the

offset. Storing this offset allows consumers to stop and restart, within a partition, without losing

track of the last message it consumed. In Fig. 2.3, it can be observed how a consumer group,

with three different consumers, are distributed between four different partitions. Consumer 1 is

responsible for consuming messages from two different partitions. Furthermore, if a consumer

fails, the rest of the consumers in the group rebalance and partitions affected are taken over by

other consumer members.

In conclusion, a Kafka server is a broker, which receives messages from producers. An offset

is assigned to each producer and messages are stored on disk. Consumers connect to this central

broker and read messages, by order, from partitions in a topic. A set of brokers is called a cluster.

A partition is owned by a broker in the cluster and it is the leader of the partition. A partition can

be replicated through multiple brokers, providing redundancy in case of failure. Messages from

a specific partition always have to be written to the partition leader, but a consumer can be read

from a replication.

Kafka holds a lot of advantages when comparing to other message brokers systems. Some of

these advantages are the retention factor, which means messages can be stored for a long period of

time and can be changed at any time. It allows for scalable solutions, by having multiple clusters,

which hold multiple brokers, and also distribute messages through partitions inside the same topic,

being flexible and easy to handle any amount of data.
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Figure 2.3: A consumer group reading from a topic.
Extracted from [Neh10]

2.3 Data Warehousing

Data warehousing was defined by Bill Inmon in 1990, “A warehouse is a subject oriented, inte-

grated, time variant and nonvolatile collection of data in support of management’s decision making

process” [Inm02].

Data warehouses are Subject Oriented since a DW can focus on one single business. For

example, inside a company, it is possible to analyze data from sales specifically. It is Integrated,

due to the fact data in DWs comes from all different sources and must put this data into a consistent

format, resolving naming conflicts and other inconsistencies. They are also nonvolatile, which

means that once data is inside the data warehouse, it must not change. And, finally, Time-Variant,

which means that, in order to discover new trends and find new solutions and patterns, a large

amount of data is needed and it has to change over time [Inm02].

When designing a DW, the most important aspect is the issue of granularity.

"Granularity refers to the level of detail or summarization of the units of data in the data ware-

house" [SA12], so the more detail there is, the lower the level of granularity. Therefore, it is one

of the biggest issues in the DW environment, since it influences the amount of data it exists and,

consequently, the type of query that can address it. However, granular data can be really useful,

after all, within a corporation, different departments require different data and different levels of

granularity. No data goes completely to waste.

Additionally, DWs can take enormous volumes of data from independent heterogeneous oper-

ational data-sources and create a single view of the organization. When comparing to traditional

relational databases, the costs of building this architecture and maintaining the interface is miti-

gated over time, it is easily expandable and new subject areas can be always added [SA12].

However, the new business requirements demand up-to-second updated information, and more

complex and enormous amounts of data, resulting in the need to come up with new ways of

architect more complex Data Warehouses [BNG17].

When researching about warehousing, data modeling is essential, since it provides users to see

how the data relate to one another. Mainly, there are two different and predominant designs, being
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the Relational Model and the Dimensional Model [SCT11].

The main difference between them is in the structure of the logical schema, while relational

models represent themselves by the traditional relational schema, dimensional models are rep-

resented by using Star Schema [KR02]. However, there are other alternatives for dimensional

models, the Snowflake Schema and the Star Cluster Schema [MK00].

• The Flat Schema Model is the simplest schema model for data warehousing. This solution

minimizes the number of tables and usages of joins when querying data. Information is all

normalized, ending up with one table for each minimal entity. However, there is a lot of

redundancy, since entries are repeated across multiple tables. Despite the fact the number

of tables is minimized, the complexity of each table increases given that the number of

attributes also increases [SCT11] [KR02].

• The Star Schema Model is represented by one central table, the fact table, and smaller

tables, called dimension tables, that radiate from the fact table, like a star. The fact ta-

ble contains measurements, or metrics, interesting for the business, like amounts of sales

[MK00]. Each dimension is aggregated to the fact table and, each dimension only has a

one-dimensional table and cannot have sub-dimension tables, being represented in the fact

table has a foreign/surrogate key. It represents a much simpler representation than tradi-

tional relational schemas. Dimensional models are most common when dealing with data

warehousing, and described as "the only viable technique for designing end-user delivery

databases" [SCT11]. The main reason to use star schema is the fact that it reduces the num-

ber of tables in the database, the number of relationships between tables and the number of

joins that has to be used in queries [MK00], decreasing the level of complexity in the overall

modeling.

• The Snowflake Schema is a star schema, but with dimensions expanded out, normalized.

So, each dimension table can contain multiple independent hierarchies, and the child ta-

bles inherit all relationships to component entities and key attributes from the parent entity.

However, some can argue that this schema is undesirable, since by adding new hierarchies it

adds complexity to the schema, being more difficult to design and understand, and requires

extra joins when querying. So the Star Schema and Snowflake Schema do not fulfill all

needs to design the model, since on has fully collapsed hierarchies and it is too simple, the

other has full expanded hierarchies and it is too complex [SCT11].

• The Star Cluster Schema is represented has the schema with the "minimal number of

tables while avoiding overlap"[MK00]. It is a balance between the two last schemes and

selectively separates hierarchical sub-dimensions. For each transaction, the entity is formed

a fact table and hierarchies should be collapsed down until it reaches a component entity,

then a sub-dimension should be formed. After sub-dimension is formed, collapsing starts

again and when it reaches a component entity again, a dimension table should be formed
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Figure 2.4: ETL System Flow in a Data Warehouse Environment
Extracted [SAS+17]

and so on [MK00]. This schema is the perfect balance between star schema and snowflake

schema. Being simple while contributing to consistency between dimensions [SCT11].

2.4 ETL: Extract, Transform and Load

”ETL is a tool for technicians work in the area of business intelligence, which facilitated the

consolidation of information in a central repository called data warehouse.”, described in the paper

Agile ETL, by Xavier Cristiano [XM14].

Extract, Transform and Load (ETL) System is a broad presentation of data movement and

transactional processes from extraction of multiple application sources, transforming data into

dimensional fact table and conformed format to feed data into data warehouse environment such

as data marts or other target systems, [SABTU] but also provides data from different sources to be

analyzed and structured together [XM14].

It involves cleaning, integrating and staging the data before transporting and channeling the

transformed data to target systems. Proved to be a choice standard for managing and sustaining

the movement and transactional process of the valued big data assets [SAS+17]

ETL system needs to have the capacity to address change of directions and to support new

data demand which is becoming more huge volume, endless streaming, a wider variety of types

and sources, request for real-time user requirements and new analytics, extreme integration, avail-

ability of new technologies and more powerful tools [SAS+17].
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Chapter 3

Literature Review

The topic of real-time data and event-driven systems are still poorly unexplored subjects in the

literature, being mainly investigated by companies and IT individuals. As a result, the state of the

art will be reviewing the work developed by companies, such as Netflix, Spotify, and LinkedIn,

who are the great pioneers and examples to follow when stepping towards these architectures.

First, will be briefly described the evolution from Traditional Data Warehouses to Real-Time

Data Warehouses, where some approaches to handling ETL will also be researched in the litera-

ture. Lastly, recent approaches to address Big Data and streaming of messages will be discussed,

considering the recent trend of Event Sourcing.

3.1 Real Time Data Warehouse

Traditional Data Warehouses have a major drawback since data content is not updated according

to business needs and bad decisions can be made. These situations do not correspond to the

new business requirements which require up-to-second updated information to perform better-

informed decisions and resulting in new ways to architect more complex Data Warehouses, such

as Real Time Data Warehousing[BNG17].

According to the literature, there is no official definition regarding real-time data warehouses.

However, it can be defined, in a more generic way, and according to the business’s needs, as a

system that represents the characteristics and the actual situation of the organization, so RTDWs

are meant to contain current data, thus, the refreshing frequency plays a predominant role, but also

the structure of the system needs some changing [BNG17].

3.1.1 Architecture of Vassiliadis

One of the first real-time architectures was proposed by Vassiliadis[VS08], in 2009.

In this architecture, there is a continuous loading as opposed to the periodic batches in a

traditional approach. It has three main parts. The Data Source Area, the Data Processing Area,

where data is processed and transformed and is added to the Data Warehouse, the third part of this

architecture[VS08], the full architecture can be seen at Fig, 3.1.
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Figure 3.1: Real-time Data Warehouse Architecture proposed by Vassiliadis.
Extractred from [VS08]

What distinguishes this architecture from traditional architectures is the fact that each part

hosts a Flow Regulator Module, that has different functionalities for each part of the process. The

Data Source Flow Regulator (SFlowR) is in charge of the identification of relevant changes and

extracts data at periodic or convenient intervals, depending on the policy chosen by the adminis-

trators of this system. The Data Processing Flow Regulator (DPFlowR) is responsible for deciding

which source is ready to transmit data, but in fact has a lot of tasks, depending on the needs of

the system, but mainly acts as an intermediary between the Data Source Area and the Data Ware-

house, and data is prepared to go through the process of ETL (Extraction, Transform and Load),

and regulates the traffic. Once the ETL process is over, the Warehouse Flow Regulator (WFlowR)

is responsible to orchestrate data into the Data Warehouse, based on the current workload[VS08].

3.1.2 Architecture of Obali

Obali proposed an RTDW that assures near real-time data from different data sources. The com-

ponents of this architecture are Web Service Client, Web Service Provider, Metadata, ETL, Real

Time Partition, Data Warehouse and Real-Time Data Integration [ODEG13]. The full architecture

can be seen in Fig. 3.2. The Web Service Client is responsible for getting data changes from raw
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Figure 3.2: Web Services based Real Time Data Warehouse Arquitecture.
Extracted from [ODEG13]

data in data sources and sends it to the Web Service Provider and adds it to the Real Time Parti-

tion. This component gets Data Transfer Object which is sent by RTDW Web Service Client and

decomposed into two parts: data and metadata. RTDW Web Service uses metadata to generate

SQL via SQL-Generator for inserting data to RTDW log tables then executes this generated SQL

on RTDW database and inserts data[ODEG13]

The component Real-Time Data Integration is used to integrate data both in Real Time Parti-

tion and the Data Warehouse, thus, if a query only needs historical data, then this component sends

the query to Data Warehouse; if query wants both historical and instant data, then this component

rewrites the query to get and integrate data[ODEG13][BNG17].

3.1.3 A Generic Architecture, by Cardinale

A Big Data analytical approach architecture, proposed by Cardinale[CGR18], is composed of four

main components:

• Data Sources referring to heterogeneous sources of data.

• Data Ingestion Module are responsible for moving source data into a system where it can

be stored and analyzed. Data can be ingested asynchronously, continuously, in real-time,

batched or both, real-time and batched, referred as Lambda Architecture.

• Analytic Processing Module can have three different layers:

– The Data Storage Layer, describing where the data is going to be stored. These can

be persisted locally, placed in the cloud or cached in memory, such as a file system

(Hadoop1), a NoSQL repository, a parallel RDBMS or a Graph Database.

1More information about Hadoop at https://hadoop.apache.org/docs/r1.0.4/
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Figure 3.3: Generic architecture for a Big Data Analytical approach.
Extractred from [CGR18]

– The Programming Model Layer, where programming models are set (for example,

MapReduce2) and corresponding frameworks (Hadoop, Storm3, Spark4, Kafka, etc.).

The choice of the framework will depend on the priorities regarding latency, through-

put, along with the type of analytics solution, or other needs.

– The Data Analysis Layer. containing one or more analytics tools (ML, Query Lan-

guage/Engine, OLAP, Search Engine, Graph analytics).

• Analytical Requests, related to Visualization, Reporting, BI, Dashboards, etc.

The architecture defined above can be visualized in fig. 3.3.

3.2 Real Time Big Data Systems

Nowadays, companies struggle to remain valuable and important in the market, with an increasing

number of competitors. The market has been overrun by this idea of data-driven business models.

With the increasing availability of Big Data technologies, the more information a company has the

more competitive advantage it holds [Rag18].

2More Information about MapReduce at: https://hadoop.apache.org/docs/r1.0.4/mapredtutorial.html
3Learn more about Storm at: http://storm.apache.org/releases/current/index.html
4More information on Spark can be found here: https://spark.apache.org/docs/latest/

16



Literature Review

However, to take advantage of Big Data, it is important to build a robust data management

architecture strong enough to support and deliver on-demand, real-time business insights to the

company analysts [GCLZ18].

According to Cuzzocrea, data stored in these scenarios have four specific characteristics, being

the first how to deal withlarge-scale data, the size and the distribution of data repositories, the

second one being the scalability issues, which refers to the capacity if the systems to run on a large

and growing-in-size scale, the third one is the necessity of more advanced Extract, Transformation

and Loading (ETL) approaches to somehow present more structured information and the last one

the need to design and develop more advanced and easy analytics repositories to extract useful

knowledge from Big Data [CSU13].

Some of the Big Data tools first created were tools such as Hadoop and MapReduce. The

Hadoop Distributed File System, HDFS, is the core element of Hadoop, it is highly fault-tolerant

and is designed more for batch processing, providing high throughput access to applications with

large data sets, rather than for low latency of data access [SM13]. MapReduce is a framework

for processing large data sets in parallel on a cluster, data has loaded a part of the ETL process,

and the second phase consists in a mapping data to worker nodes and reducing, and giving a

final output. It is a cloud-based, easy scalable framework. Cloud-based computing provides a

number of benefits for implementing Big Data since are easily accessible and have low up-front

costs with high capacity for scaling [SM13]. Although these technologies represent a major step

towards Big Data, it does not perform well for real-time processing [RSA+18], that requires low

latency messaging and event processing, as close to real-time as possible [PLA18], where popular

technologies choices are Apache Kafka, Spark Streaming, Apache Flume, Amazon Kineses, and

so on.

Big companies like Netflix, Twitter, Facebook, and LinkedIn have made huge improvements

in delivering a real-time system, capable of handling Big Data analytics [PP15].

For, Twitter, an application with millions of users and millions of interactions per second, it

is of great importance to have a Big Data platform capable of handling millions of data coming

in real-time. In 2013, the company had already observed that the typical Hadoop approach would

never meet the needs of the latency requirements of the application [MDL+13].

3.3 ETL in a Real Time Environment

In a traditional Data Warehouse, data integration, usually, occurs with the system offline, at dead

hours or overnight, and a very large and heterogeneous set of data goes through the whole process

of being extracted, transformed and loaded, known as ETL processing [FMF13][SAS+17].

However, in recent past, many industries are starting to require the most current information

possible in their data warehouses and up-to-date information for analysis and reporting[FMF13].

The key features to achieve Near Real-Time ETL are High Availability, Low Latency of inter-

vals between transactions and Horizontal Scalability for performance improvement[SAS+17]:
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• High Availability is important since, in a near real-time environment, data is key to perform

decisions and should always be updated and made available. Therefore, no data should be

lost and to ensure this, distribution and replication are important factors to take into account,

so, when data is lost, it can always be recovered. Unlike batch data which are distributed

periodically, change of fresh data is less frequent and the same batch data can be used

repeatedly.

• Low Latency means delivering fresh data as fast as possible, and it is the time between data

arrival and data made available. Hence, smaller the time, smaller the latency and faster the

access to new and fresh data. Unlike batch data which are distributed periodically, change of

fresh data is less frequent and the same batch data can be used repeatedly. Traditional ETL

was designed to accommodate batch processing where data refreshment can be done during

off-peak hours of which operational activities can be temporarily suspended: could not

produce an accurate result for near real-time analysis where stream data flow continuously.

• Horizontal Scalability is an important factor when discussing the improvement of perfor-

mance and scalability. It mitigates the risk of interruption of seamless data flow, by adding

independent servers to a cluster of servers, handling different tasks.

A few near real-time ETL frameworks were studied in order to understand how traditional

ETL could be improved to handle real-time streaming.

3.3.1 Big Data ETL

Big ETL is a parallel/distributed ETL approach for Big Data. This framework consists of MapRe-

duce ETL techniques, where each ETL process is distributed on a cluster of computers[BBA15].

Data coming from data sources is partitioned and an ETL process is run, in parallel, for each

one. The novelty of this framework is the Vertical Distribution of Functionalities, VDF, which

consists of the distribution of ETL tasks, of one particular ETL process. In other words, for an

ETL instance, such as creating the SK, to insert in two tuples. being CUSTOMER and PRODUCT,

this instance will be running in one cluster, but the ETL task of creating the SK for CUSTOMER

and the SK for PRODUCT will be running in different nodes, in parallel, as can be seen in Fig.

3.4. The framework showed improvements of, roughly, five minutes saved, when testing for more

than two billions of tuples and with five to six tasks running in parallel.

3.3.2 Event-Driven ETL

The first event-driven framework studied was NMStream, a scalable event-driven ETL framework

for processing heterogenous streaming data [XLWW18].
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Figure 3.4: Vertical Distribution approach. One step from the ETL process, with multiple nodes
for 5 different contexts.
Extracted from [BBA15]

This application follows an event-driven architecture and addresses heterogeneous and dis-

tributed data by integrating Apache Flume5, responsible for handling ETL processes, and Cassan-

dra DB6. And is described as an effective manner to feed traditional and real-time data warehouses

or data analytical tools.

Apache Flume was built as a distributed and reliable service, robust and fault tolerant, and

responsible for gathering, aggregating and moving various types of streaming data into HDFS.

Agents form Flume workflow and messages between two agents are called events, and the agent

responsible for deliver events is called Channel and for filtering events uses Inceptors agents.

Cassandra is a NoSQL fully distributed and highly scalable database, and clusters can run on

different commodity servers and across multiple data centers.

Each agent can be linked with one or more interceptors, which are used to transform or filter

an event, and can form a data flow and after being filters and transformed can be written in the

database, instantly.

Lastly, the last framework studied was Striim, an end-to-end distributed platform that enables

rapid development and deployment of streaming platforms [PKS+18]. It holds built-in adapters to

extract and load data in real-time from legacy, can transform events using a SQL-based extension

inject custom logic and has built-in data validation to make sure data arrives at the destination.

Striim has a distributed scale-out architecture running on several clusters, horizontally for

scalability, and can, continuously, ingest massive amounts of data and then process it using a

transformation engine with high throughput and low-latency. ETL tool runs in a scalable and fault-

tolerance cluster of nodes, extracting data from sources and applying transformations necessary

and results are loaded, or streamed, into the targets. The overall architecture and organization of

the platform can be seen in Fig. 3.5.

To extract real-time transactional data from databases it uses the CDC technique, capturing

transactional changes and sends data in the form of an event stream, using Apache Kafka as a

5More information about Apache Flume at https://flume.apache.org/documentation.html
6More information about Cassandra DB at: http://cassandra.apache.org/doc/latest/
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Figure 3.5: Striim Architecture.
Extracted from [PKS+18]

messaging system. However, it uses a lot of dependencies from internally developed languages

and is not open-sourced.

3.4 Real Time Distributed Messaging System at LinkedIn

Taking advantage of Kafka distributed, low-latency and high throughput qualities, a recent trend

has been emerging where activity data is used in the form of a log system or event messages to

capture user and server activity. This data is the core of many recommendation services, as well as

fulfilling its traditional role in analytics in reporting, that is becoming more real-time demanding.

Being Kafka a framework developed by LinkedIn, a social network with millions of users,

and billions of interactions per day, a deep study was developed in how this company handled the

number of events produced in the system and how fast could they ingest this data for reporting and

analytics.

The company did not always use this distributed publish/subscribe messaging system. Several

years ago, it had two separate systems, a batch-oriented system, designed purely to load data

into the data warehouse, and a second system, handling server metrics and logging but only for

the monitoring system. These systems were point-to-point data pipelines, with no integration

between. The system was too complex and had to high latency, not responding to the business

needs [GKK12].

It started a quest for integrating a real-time infrastructure, but no solution seemed to target the

requirements for high-volume scale-out and low latency deployment. Kafka was then built.

LinkedIn handles more than 10 billion messages writes per day, resulting, on average, 172,000

messages per second. Holding dozens of subscribing systems and delivering more than 55 billion

messages to these consumers, each day. There are a total of 40 real-time consumers that consume
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one or more topics. The average end-to-end latency through the pipeline is 10 seconds, and in the

worst case, takes 32 seconds [GKK12].

Kafka uses three techniques to improve efficiency:

• Partitioning up data, so producers, broker, and consumers are all handled by clusters of

machines, that can be easily scaled as load increases.

• Batching messages, sending larger chunks at once.

• Shrinking data to make the total data sent smaller in size, without data loss.

Batching fundamental technique is to induce a small amount of latency to a small group of

messages to improve throughput. This latency is a precise timeout and message count, guarantee-

ing that a batch never has more than a predefined number of messages, and data is never held for

more than then the time desired by the user. When tested, showed high efficiency for high-volume

and low-volume Kafka Topics, by a factor of 3.2 for producers, a 51.7 factor, for brokers and 20.1

factors for consumers, considering throughput [GKK12]. The algorithm used is similar to Nagle’s

algorithm, used in TCP implementation. The pseudocode can be seen below, in table 3.1.

Table 3.1: Pseudo-code for Nagle’s Algorithm

1 IF there is new data to send
2 IF the window size >= MAXIMUM_SEGMENT_SIZE and available data is >=

MAXIMUM_SEGMENT_SIZE
3 send complete MAXIMUM_SEGMENT_SIZE segment now
4 ELSE
5 IF there is unconfirmed data still in the pipe
6 enqueue data in the buffer until an acknowledge is received
7 ELSE
8 send data immediately
9 END IF

10 END IF
11 END if

Shrinking Data helped LinkedIn to handle with bottlenecks related to bandwidth between

data center facilities. There are two approaches for shrinking data:

• Exploiting explicit structure in message serialization

• Exploiting implicit structure using compression

Kafka allows for batch compression of multiple messages into a single intricate message. The

compression algorithm used by LinkedIn is GZIP7 and results in a compression ratio of 3 times

and a 30% improvement in throughput [GKK12].

7More information about GZIP at: https://www.gnu.org/software/gzip/manual/gzip.html
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3.5 Conclusions

Due to the nature of this thesis, where it shall be improved the data ingestion for higher throughput

and lower latency, providing a scalable solution capable of handling Big Data, there is no doubt the

paper from LinkedIn, in how they build there real-time activity data pipeline, brought an interesting

vision in how much advantages could be taken away from Kafka especially the micro-batching

algorithm, due to the improvement factor it showed for amount of data consumed, without causing

too much latency.
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Problem Definition

In this chapter, it shall be presented the context and the definition of the problem studied during

the period of the development of the dissertation.

The dissertation was developed on a Portuguese logistics company, HUUB, therefore a small

description of the company technologies and architecture will be presented, along with how the

company positions itself on the state of the art and pinpoint some architectural problems studied

during the first weeks of the internship that helped to define the problem.

4.1 SPOKE Architecture

As mentioned before, HUUB is currently on the process of transitioning from a monolithic system

to microservices. At the moment, the platform presents the architecture described in Fig. 4.1.

Most business processes still depend a lot from the legacy system, nonetheless, there are three

independent services deployed. The services correspond to Quality Control Service, Tracking

Service, and Delivery Service.

Quality Control Service was the first independent deployed service. Registers all entries from

the quality control team in warehouses about quality and state of the products.

Tracking Service is related to the tracking experience launched by the company. This ser-

vice allows clients to trace orders from purchase to delivery. It displays information, such as the

expected date of arrival, and sent out email notifications.

Delivery Service carries a lot of important information useful for reporting and analytic teams.

After an order is confirmed, there are some pending requirements to allow its process, delivery

will fulfill all those requirements and calculates when the delivery must be processed.

An important aspect when considering the transition from a monolithic architecture to mi-

croservices is how would these new services communicate. The approach followed was to have an

event-driven lightweight communication mechanism, HUUB chose the message broker Apache

Kafka.
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Figure 4.1: Spoke Architecture: Legacy(in grey), Microservices(blue and green) and Kafka Mes-
sage Broker(in blue)

There are 4 Kafka Brokers, as seen in fig. 4.2 distributed in two different clusters, one in the

Staging Environment1, and three brokers in the Production Environment. For every type of event,

there is one topic where messages are published, and, there are, currently, 40 topics in production,

allowing communication between all three services built up to now.

Each Topic is divided, by default, in 16 Partitions, and each message carries a header. Mes-

sages that share the same header are published in the same partition, guaranteeing consistency.

Additionally, every topic as, by default, a replication factor of three, having one leader and two

non-leader replicas, to guarantee consistency and partition tolerance.

Nonetheless, HUUB still has a long way before completely discard the monolith, meaning

there is still a high dependency on business capabilities from legacy, and only a small set of

features are independently deployed as a small set of services.

Legacy was built around out-dated and not very scalable technologies. Front-end uses HTML

and CSS, PostgreSQL is used as the database and all back-end was build using Node.js, Web2Py,

PHP and Laravel. The new architecture uses Angular for front-end, Python and Django for back-

end and PostgreSQL as database.

1Staging Environment in HUUB is a development stage similar to the Production Environment, used for software
testing. Ensuring quality under a production-like environment before deployment.
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Figure 4.2: Kafka Clusters at HUUB

4.2 Data Platform Architecture

Being Data and AI Driven, the company had to design a solution to ingest all data in a way that

could be easily accessible and readable.

The current architecture of data capturing, at HUUB, can be separated in two different catego-

rizations: Iterative Batch from legacy data and Streaming data from Event Sourcing. The schema

for each type of data ingestion are synthesized below, in fig 4.3 and 4.5, respectively.

The most valuable data comes from Spoke. Being the core of the company to handle the whole

supply chain, from end-to-end, and improve clients business, HUUB uses Business Intelligence, to

organize and structure data in a Data Warehouse, separating each business capability into a Data

Mart. Despite the fact that data is already available on Spoke, traditional operational databases

only represent the current state of business, while data warehouses are designed to give a historical,

long-range view of data and provide analytics which represents more of a comprehensive view of

company’s history.

The DW used, by the company, is Google BigQuery2, which is a column-based, structured

data store on the cloud. It allows streaming 1000 rows of data per second, to the same table, being

a great tool for Big Data.

Even though data extracted comes from Spoke, there are two types of sources. The vast ma-

jority of data handled still comes from the legacy system. As it is usual for monolithic systems,

the application has the main DB, which can be called Spoke Main DB. This DB holds the current

state of the application, being a non-persistent DB. Regardless, for every entry inserted, data is

also added to a persistent DB, containing all history of every transaction in the application. This is

the first process of ETL, and a more comprehensive description of this process will be described

below.

2More information about Google BigQuery at: https://cloud.google.com/bigquery/docs/reference/
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Figure 4.3: Architecture for legacy data, coming from iterative batch

Figure 4.4: Architecture for event sourcing data, coming from streaming
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Figure 4.5: ETL timeline: data collected by orchestrator to go through ETL

4.2.1 ETL Orchestrator

The process of extracting, transforming and loading data to a data warehouse, as discussed in

chapter 2, is ETL.

BI team developed its own ETL framework, having a Main Orchestrator. The Orchestrator

can handle different types of data sources and it is easily adaptable and scalable. It was developed

using Python and runs on an automation server, Jenkins3.

The orchestrator has 4 stages. The first stage queries a configuration table, that has all table

names that will go through the process of ETL. It carries all information needed, such as source

table name, destination table name, if it is run weekly, daily, hourly or sequentially, and references

for SELECT, UPDATE and AUDIT SQL files, for each different source of data.

The orchestrator ran every hour, to treat all data from Spoke. It started by querying data

coming in batches from Spoke persistent DB and adding it to the respective staging table (e.g.

pre_tablename), according to the business capability it represents. However, to guarantee data

consistency, when querying data to add to the staging area, it will only fetch data that was created

in an interval between the current time, of the run of the orchestrator, and an interval of time

defined. In this case, is of sixty minutes.

The third step consists of querying data from staging to dimensions in the star schema, and, at

last, into facts.

The 4 stages of the ETL take around fifteen minutes, which means overall as the latency of

one hour and fifteen minutes, on average.

Regarding data ingestion of data coming from microservices systems, only a few moves had

been made then, but a more profound explanation will be portrayed in the next section.

4.2.2 Event-Driven ETL

Due to the high relevance of Delivery Service events, the company started to make progress in

how could they take advantage of event sourcing to populate the Data Warehouse of the company

as near to real-time as possible.

3More information about Jenkins can be found at: https://jenkins.io/doc/
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Data from new independent services is slightly different, each service has a topic, a pipeline

where messages produced are stored, for as long as the user wants. Each message holds infor-

mation about a record that was created, if it did not exist, or suffered an update. As read in the

background chapter in 2.2.1, an advantage of using Kafka is the fact any system, can consume

events produced in real-time, being another microservice, or any other independent system, such

as an ETL framework.

In other words, data can be extracted and used to reporting way faster than traditional transac-

tional databases, given the fact in a traditional database data must be queried into a batch, and it

consumes a lot of resources.

To consume messages from a topic, it only has to be connected to a Kafka consumer to it,

and events are consumed as soon as made available. This was implemented using a Kafka library,

Confluent Kafka Consumer4, and was automatically built and ran using Docker Compose5, which

handles and restarts the Consumer in case it goes down.

Each event consumed is serialized to a JSON format, containing all information about a spe-

cific Delivery. A more thorough description of how information is organized will be displayed in

the Implementation section.

4.3 Identified Problems

Studying the process as-is of HUUB allowed to understand what were a few of the problems that

can be encountered when transitioning from a traditional Data Warehouse, dependant of batch

processing and rudimentary ETL tools.

Overall, the architecture that HUUB is trying to achieve proves to follow recent trends in the

state of the art, as seen during the literature review, but only mentioned by big social networks

or streaming media services companies. However, the latency and throughput HUUB achieves in

event sourcing for data ingestion and reporting, does not fit the current needs if the company and

it does not prove to fulfill future business needs.

As seen during the Literature Review, at section 3.3, Latency is the time it takes for data to

be consumed and made available since it has been produced. Therefore, the minimum latency, in

this proof of concept, is the minimum amount of time it takes for data produced at Spoke to be

Extracted, Transformed and Loaded into the DW, and made available for reporting. Whilst, the

maximum latency is the maximum amount of time HUUB desires the process mentioned above to

last.

The first problem identified was the fact HUUB was using a simple, Kafka Consumer, where

only one consumer was ingesting events from the entire Delivery Topic, and only polling one event

at a time.

4More information about Confluent Kafka Consumer can be found at:
https://docs.confluent.io/5.0.0/clients/confluent-kafka-python/index.htmlconsumer

5More information about Docker Compose can be found at: https://docs.docker.com/compose/
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For example, to build the Data Mart for Delivery, it was necessary to consume events from

Kafka, as seen above. However, the solution was not optimized and went against the vision of

scalability and Big Data the company was trying to set to itself. This conclusion was made by

making a few calculations, at the beginning of the dissertation. By only having one consumer

polling one event at a time and sending it to the DW. Polling an event and send it to the DW took

approximately 0.755 milliseconds, meaning to consume 1 million of events, which is not even

approximately to Big Data, would take almost 8 days.

Secondly, although these events were being consumed near to real-time (for the number of

events being produced at the time, which was, on average, 10.000 events per day), to insert data

into the Star Schema, it would have to wait and carry the same latency as data coming from legacy,

due to the fact it holds dependencies on instances that should be initialized before the addition of

a delivery.

4.4 Proposed Solution

The goal of the company is to provide the best logistics solution for their clients. Being so depen-

dent from data and investing in the new approach of services and event sourcing, the problem to

tackle became obvious, and a better solution for ingesting events, at a higher throughput and lower

latency had to be defined.

Kafka holds a lot of advantages, some of them, were not being used by the company approach

for faster data ingestion. To this matter, the solutions proposed for the improvement of this tech-

nology was:

• First, take advantage of some features from Kafka Confluent library and change the con-

sumer class, from fetching one event at a time, and return a list of events already available

in the partition.

• Another step was to take advantage of multi-partitioning and create multiple consumers and

see how could this affect the throughput and latency of events ingestion.

• To finish, in order to handle Big Data, implement a Batching Algorithm, with a maximum

latency, creating small batches of events in order to send more events at a time for the DW,

without compromising latency.

When continuing to study the process at HUUB, as mentioned before, one of the biggest prob-

lems was to handle legacy data and event sourcing data. Such as the coherence and dependency

of context. To solve this problem, not only for data legacy but future event sourcing data coming

every second, an ID reservation had to be done to every context that an event held from other

legacy entity.
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Implementation

After studying all processes at HUUB related to event sourcing with Kafka and ETL orchestration,

it was easy to see how poorly the solution was optimized to handle with high throughput real-time

data ingestion, coming from event sourcing.

There were two problems to tackle. First, how could the current real-time Kafka Consumer

be scaled in a way it could handle millions of events per day, i.e., increasing throughput without

neglecting latency. Secondly, due to the fact, HUUB still depends much on legacy data, how events

could be added to the data warehouse despite these dependencies.

5.1 Setup

To run Kafka Server it is used a Docker Compose1, defining the database, Zookeeper, Cassandra

DB, and other specifications. For the thesis development, it was created a Kafka server, hosted

locally in the machine. When Docker is up, it is possible to list all topics that exist locally in the

machine, using the following command shell, in table :listka f katopics.

Table 5.1: List all Kafka Topics

1 # kafka-topics --zookeeper my_kafka_zookeeper:[NUM_PORT] --list

Afterward, it was created a topic where events produced could be stored, without compromis-

ing flows in the company. The default topic is created with only one partition and a replication

factor of one. The code necessary to create a topic is listed in table 5.2.

1More about Docker Compose at: https://docs.docker.com/compose/overview/
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Table 5.2: Create Kafka Topic

1 # kafka-topics --create --topic my_topic --partitions 1 --replication-

factor 1 --if-not-exists --zookeeper my_kafka_zookeeper:[NUM_PORT]

Partitions can be added to a topic and this can be listed using the commands registered in table

5.3.

Table 5.3: Alter number of partitions in a topic and list all partitions

1 # kafka-topics --alter --zookeeper my_kafka_zookeeper:[NUM_PORT] --topic

my_topic --partitions [NUM_PARTITIONS]

2 # kafka-topics --describe --topic my_topic --zookeeper my_kafka_zookeeper:[

NUM_PORT]

5.2 Building Kafka Producer

This implementation could not be performed at the Production level, and, even though Delivery

Service was already up and used as an experiment to start building HUUB’s real-time activity data

pipeline, it did not produce the necessary amounts of data to test a Big Data approach.

To overcome this problem, it was designed and implemented, locally, a Producer of dummy

events, similar to Delivery. This was adapted from previously created producers built in the system,

using ConfluentKafkaProducer2. The code used to create this producer is available in appendix F.

To create dummy delivery events it was built a python script, that initialized the producer class

and continuously creates new events. The code for this implementation can be seen at appendix

??.

5.3 Improving Kafka Consumer Class

The consumer built for consuming events from Delivery, to the Data Warehouse was, as mentioned

before, poorly optimized. This first consumer was built using the same library from Confluent

Kafka Consumer. This consumer used the method poll which returns one message at a time. It

also used the method subscribe, which told the consumer the list of topics to subscribe to.

To take advantage of Kafka partitioning, it was built a new Consumer class, that inherited most

of the methods from the superclass, but with a few modifications:

• When defining the attributes for the class, the consumer would not be subscribed to a list

of topics, but instead, it would be assigned to a list with one or more partitions, for a given

2ConfluentKafkaProducer
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topic. This was implemented using the method assign, with the parameter LIST_PARTITIONS,

telling which partitions shall the consumer connect too.

• Secondly, after a consumer is initialized, instead of using poll, which tells the consumer to

only fetch one event, it calls the method consume, where it passes the maximum number of

messages it fetches, returning a list of messages, or empty in case of timeout.

• This last change, meant a different return type, so a few alterations had to be done to the

function of deserializing, previously done.

The code for this part of the implementation can be seen in appendix A.

5.4 Consumer Parallelization through Multiprocessing

In the beginning, it was thought that the best way for consuming as many events as possible from a

topic, it was by initializing as many consumers as the number of partitions that existed. However,

as seen in the State of the Art, especially in the paper from LinkedIn[GKK12], despite having a

lot of topics and consuming millions of messages, it only holds a few dozens of consumers.

For each consumer initialized, more resources are consumed. Therefore, the approach de-

signed was to initialized consumers depending on the number given by the user. Meaning, the

user can monitor flows and create less or more consumers depending on the needs of the system.

To automate, using chron jobs, and use some custom commands developed, previously, in

the old Kafka Consumer, it is used Django Custom Management Commands. The code is avail-

able in appendix B. The main class Command instantiates all configurations necessary to create

Kafka Consumers and communicate using a signal dispatcher that helps to communicate between

decoupled operations.

5.4.1 Distributed/Parallel Consumers

When a consumer is created, through the new class developed, it passes a list of partitions. The list

of partitions is defined depending on the number of partitions a topic has and how many consumers

the user wishes to initiate. So the list of partitions per consumer is calculated using the following

expression:

PART IT IONS_PER_CONSUMER =CEILING(
εPART IT IONS
εCONSUMERS

)

Partitions are identified using only the partition number, therefore, after calculating the number

of partitions, it is defined the list with the partitions that each consumer will be connected to.

Which can be observed at table 5.4.

33



Implementation

Table 5.4: Function responsible for creating the list of partitions to be consumed for each Kafka
Consumer

1 def get_partitions_by_consumer(list_partitions, PARTITIONS_PER_CONSUMER):

2 for i in range(0, len(list_partitions), n):

3 yield list_partitions[i: i + n]

If a there are 8 partitions and only 3 consumers, the final list would be:

list_partitions = [ [Partition 0, Partition 1, Partition 2], [Partition 3, Partition 4, Partition 5],

[Partition 6, Partition 7] ]

After the list of partitions is set, consumers must be initiated. Since Kafka only provides total

order over records within a partition, consumers can be run concurrently, maximizing number of

events read per time frame.

To run this process in parallel it was used the library, from Python, Multiprocessing, more

specifically, the Process package. This allowed launching parallel consumers, taking into con-

sideration the number of consumers and the partitions it had to read from. The code for the

Multiprocessing is described in table 5.5

Table 5.5: Code for Parallel Kafka Consumers

1 for i in range(0, len(list_partitions)):

2 p = Process(target=consumer_init, args=(self, list_partitions[i], i,

options,))

3 logger.info("LAUNCHING {} CONSUMER(s) FOR PARTITION(s): {}".format(

NUM_CONSUMERS, list_partitions[i]))

4 processes.append(p)

5 p.start()

6

7 for process in processes:

8 process.join()

When a process is started, the first step is to instantiate the consumer, using the Confluent

Kafka Consumer class designed, previously. When the consumer is created and partitions are

assigned, it is possible to start reading from the topic. This is done by calling consumer method

consume(), with the parameters NUM_MAX_ROWS and POLL_TIMEOUT.

5.5 Micro Batch Implementation

As discussed before, the Kafka consumer can return a list of messages, instead of consuming one

event at a time. Also, Google BigQuery, the DW used by the company, can stream 1,000 rows
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per second. One message equals to one row. Considering these features from both technologies,

a micro batch, with low latency, inspired by Nagle’s Algorithm [MSMV07], can be designed in

a way of improving throughput and make HUUB capable of consuming hundreds of millions of

events per day.

The restrictions applied to this algorithm were:

• For each loop, the maximum latency is, currently, 1.5 seconds, but can easily be changed

depending on the number of events being produced.

• The loop does not end while the maximum latency has been reached or the list of events is

less than 100000 rows since, for each stream, BigQuery can only handle 100000 events.

When one loop ends, events are denormalized and sent to BigQuery, by using the API library

streaming method. The code for the micro-batch implementation and sending data to BigQuery is

available in appendix D.

5.6 ETL Improvement

As discussed before, data coming from event sourcing can cause problems with data coming from

legacy (and in the future, events coming from other entity). If new events arrive every second,

some instances present in those events will be out of context, due to dependencies coming from

legacy.

To solve this problem, there was a study of how data goes through the orchestrator. When

a new row is added to a table in the star schema, it holds an ID, created in Spoke. This ID,

when added to the dimension tables is inserted under the column DD_COD. However, And an

incremental SK (Surrogate Key) is also created, in order to keep a certain order in the DW.

Delivery holds data from legacy. For example, Sales Order, Shipping Address, Customer and

Customer Address, and others. This data was previously created in Spoke, but since is legacy it

suffers a bigger latency in ETL. To solve this problem, when a Delivery is added from staging to

a dimension table, a verification is made. If a DD_COD, from dependency from legacy, does not

exist in the dimension table correspondent, an ID reservation is made, where the DD_COD from

the entity is added, along with an SK. Later, when ETL for legacy data runs, that row is updated

and the rest of the data is filled in.

Being Delivery the only service producing events ready to be consumed and holding important

information, all implementation was done to this entity. However, this solution is capable of being

reproduced in all contexts.

To the insert file on dimension delivery, it was added the piece of SQL code where it is verified

if all dependencies are already instantiated or not, as seen below in table 5.6.
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Table 5.6: Instantiate dependencies from legacy in INSERT_DIM_DELIVERY

1 INSERT ‘star_schema.dim_sales_order‘ (

2 SK_SALES_ORDER

3 ,COD_SALES_ORDER

4 a)

5 SELECT

6 source.SK_SALES_ORDER

7 ,source.COD_SALES_ORDER

8 FROM (

9 SELECT

10 ROW_NUMBER() OVER (PARTITION BY innerQ.serial_generator ORDER BY innerQ.

COD_SALES_ORDER) + (SELECT CASE WHEN MAX(SK_SALES_ORDER) IS NOT NULL

THEN MAX(SK_SALES_ORDER) ELSE 0 END AS max_sales_order FROM ‘

star_schema.dim_sales_order‘) AS SK_SALES_ORDER

11 ,innerQ.COD_SALES_ORDER

12 FROM (

13 SELECT

14 1 AS serial_generator

15 ,so.delivery_order_id AS COD_SALES_ORDER

16 FROM (SELECT distinct delivery_order_id FROM ‘staging.pre_delivery‘ AS d) so

17 WHERE so.delivery_order_id NOT IN (SELECT DISTINCT COD_SALES_ORDER FROM ‘

star_schema.dim_sales_order‘)

18 ORDER BY so.delivery_order_id

19 ) AS innerQ

20 ) source

21 ORDER BY source.SK_SALES_ORDER

This only for one dependency, in appendix E it is possible to see the whole INSERT file, as

well a few other small changes made to the orchestrator to handle these new features.

5.7 Conclusions

All the features added were tested in the Staging Environment of the company, showing great

improvement and responding well. The goals were all answered, the new framework of Kafka

Consumer proved to run effectively and consuming a lot more events, much faster, without com-

promising ETL processing, due to the deep study to the company orchestrator and improvements

made.

However, a few experiments were set in order to provide a better comparison and prove the

goals achieved during the dissertation, in the next chapter.
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Experiments and Results

6.1 Experiments Setup

The experiments took place on a processor of 2,9 GHz Intel Core i5 machine, with 16 GB of RAM,

in a macOS Mojave operating system.

The intents of the experiment were to compare the solution presented before and after the

implementation of the subject of the dissertation. Being the whole goal of this project to lower

the latency of data availability and throughput, the final objective was to set different cases of a

number of events, number of partitions, number of consumers and different times of maximum

latency in the batch algorithm, throughout different types of consumers.

The experiment has 3 different types of consumers:

• Old Consumer: the consumer applied in the company before the dissertation. It has only

one partition and one consumer, and no batching algorithm.

It also uses the method poll to consume events, which means it fetches one event at a time,

from the Kafka pipeline, and since it has no batching sends one event at a time for the DW.

This consumer is compared to a consumer, holding the same conditions, but using the

method subscribe from Kafka Confluent library, opposite to poll, meaning it is retrieved

more than one event at a time, sending a list of events to the DW, but it does not go through

the batching algorithm.

• Multi Consumer With No Batching Algorithm: For this experiment, the number of par-

titions and consumers can vary, however, it does not hold any batching algorithm. This

consumer allows to experiments with the basic features of Kafka, such as taking advan-

tage of multi partitions and consumers. Holds two types for fetching of events, it compares

multi partitioning and multi consumers with the methods poll and subscribe, retrieving and

sending to the DW, one event or a list of events, respectively.

• New Consumer: Tests times for the new consumer proposed in this solution. Using multi

partitioning and multiple consumers, using only the method subscribe from the Kafka Con-

fluent library, as well as, the Batching Algorithm proposed, with different maximum latency
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times depending on how much events are being produced.

Each set of experiments will focus on each type of consumer and for two different amounts

of data: 1.000, 10.000 and 100.000 events.

Each experiment, for each type of consumer, was run three times and the result is an average

of the latency experienced.

6.2 Experiments for 1 Partition and 1 Consumer Latency

The first experiments to took place were for the case of only having one Kafka partition for

each topic and only one consumer assigned to the topic. The goal was to record how much

longer it would take the different consumers to ingest 1.000 and 100.000 events.

The experiment was divided into two:

– First, not using the Batching Algorithm developed during the implementation.

The consumer was run using the original poll method, prior to the dissertation, fetching

one event at a time.

However, a second experiment was done, running the consumer using the subscribe

Kafka method talked during implementation, added in the custom Kafka Consumer,

where a list of events was fetched, depending on the events in the Kafka Partition.

The latency for this experiments can be seen in the table 6.2.

– Secondly, using not only the custom Kafka Consumer Class, by using the method

subscribe, as well as, the Batching Algorithm, for 3 different maximum latencies

(MAX_LATENCY): 0.5 seconds, 1.0 seconds and 1.5 seconds.

The results for this experiments can be seen in table 6.2. This values refer to the

amount of time the MicroBatching Algorithm waits while consuming new events,

stored in the same frame.

Table 6.1: Latency, in milliseconds, for 1 partition and 1 consumer, when producing 1.000, 10.000
and 100.000 events, using previously used Kafka Consumer class and customized Kafka Con-
sumer class

NUM EVENTS LATENCY w/ poll() LATENCY w/ subscribe()
1.000 00:11:35,500 00:00:06,408
10.000 01:45:00,500 00:00:45,285

100.000 16:15:00,500 00:09:50,468

6.2.1 Multiple Partitions and Consumers

The second set of experiments was conducted by adding more partitions in the Kafka topic

and by assigning more consumers. Similar to the experiences above, the experiments were
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Table 6.2: Latency, in milliseconds, for 1 partition and 1 consumer, when producing 1.000, 10.000
and 100.000 events, using customized Kafka Consumer class and Batching Algorithm

NUM EVENTS MAX LATENCY: 0.5 sec MAX LATENCY: 1.0 sec MAX LATENCY: 1.5 sec
1000 00:00:04,154 00:00:04,738 00:00:03,974

10.000 00:00:35,468 00:00:32,161 00:00:29,442
100.000 00:04:16,731 00:04:08,147 00:03:49,320

tested by seeing how much time it would take the consumers to ingest 1.000 and 100.000

events, for both cases, of using, and not using, the Batching Algorithm.

The results for the multiple consumers without using the Batching Algorithm are in table

6.2.1. The results for the multiple consumers using the Batch Algorithm are in table 6.2.1.

Table 6.3: Latency, in milliseconds, for multipartitioning and multiple consumers, when producing
1.000, 10.000 and 100.000 events, using customized Kafka Consumer class

NUM PARTITIONS NUM CONSUMERS NUM EVENTS W/O BATCHING ALGTH
2 2 1.000 00:00:05,150
2 2 10.000 00:00:38,180
2 2 100.000 00:07:57,234
4 2 100.000 00:06:28,163
4 4 100.000 00:06:31,227

Table 6.4: Latency, in milliseconds, for multipartitioning and multiple consumers, when produc-
ing 1.000, 10.000 and 100.000 events, using customized Kafka Consumer class and Batching
Algorithm

NUM PARTITIONS NUM CONSUMERS NUM EVENTS MAX LATENCY: 0.5 sec MAX LATENCY: 1.0 sec MAX LATENCY: 1.5 sec
2 2 1.000 00:00:07,979 00:00:05,944 00:00:06,794
2 2 10.000 00:00:31,936 00:00:31,198 00:00:32,103
2 2 100.000 00:01:31,654 00:01:16,316 00:00:51,938
4 2 100.000 00:03:57,507 00:03:23,187 00:03:01,654
4 4 100.000 00:03:37,199 00:03:32,380 00:03:27,515

6.3 Conclusions

From the results exposed, it is possible to identify a few conclusions and improvements.

When using thesubscribe method from Kafka Confluent class, it is possible to verify a dras-

tic decrease in latency, with improvement around 100 times less time. After analyzing

latencies between maximum latencies for the same quantity of events, or the same number

of partitions and events, the difference is really small, but in a scenario of Big Data, and

higher throughput, a few milliseconds, can make a difference.

Using the Batching Algorithm and the subscribe method, brings advantages, allowing for

more throughput in less time. In some cases of multi-partitioning and multiple consumers

is not so necessary. At least not when dealing with Big Data. Since the resources spent on

the distribution system do not compensate in the end. However, when comparing latencies
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of the usage of the custom Kafka Consumer class without the Batching Algorithm, it is

possible to see an increase in times. When ingesting 100.000 events, it is possible to see a

decrease of 50% of latency when having 1 Partition and 1 Consumer, or even when having

multiple partitions and consumers.

In conclusion, the time it takes data to be produced, consumed and made available for report-

ing, went from hours, as seen in table 6.2, to last only a few minutes, even when consuming

10 or 100 times more events.
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Chapter 7

Conclusions

This chapter discusses the entire work developed during the dissertation, what were the

goals to be achieved and the final motivation. Moreover, the difficulties of implementation,

paths for improvement and the goals attained.

7.1 Difficulties

One of the biggest difficulties around this topic was how little literature there was to search.

Microservices and Event Sourcing are subjects with few scientific contributions. Most of

the material found on these subjects come from approaches explored and developed by

enterprises. Additionally, the topic of Data Warehouses and ETL tools are, too, subjects of

a more business character.

Another difficulty was having to learn such specific technologies so fast in order to, not only

contribute with a novelty to the scientific community, but also create a solution that would

bring the most value for HUUB.

7.2 Contributions

As mentioned before, being this a topic with hardly any documentation, this document does

not only presents a real-time ingestion data platform, in the cloud but on top of that, how

can a message broker be used to retrieve important information that can be used for report

and analytics.

Although developing the solution provided in a company, restricted the technologies that

were going to be used, such as Apache Kafka and BigQuetry. Those proved to be state of the

art technologies capable of handling Big Data and good approaches to follow. Additionally,

the Batching Algorithm can be used in fact in other message brokers who do not serve the
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same features as Kafka, increasing throughput without damaging latency and real-time data

ingestion.

This work also provides explicitly the times of ingestion that can be used later for reference

or benchmarking.

7.3 Future Work

In terms of future work, it would be interesting to analyze a Non-Relational Database, since

these are better for large amounts of data, or even explore Data Lakes.

Moreover, it would be interesting to test a few more use cases and experiment with the

algorithm to follow the scalability and resilience of it when entering an era of Big Data in

the company.

Another possible future work could be to automate the number of partitions, consumers and

maximum latency depending on the number of events being produced per second, adapting

to the needs of the platform. As well as, a tool to monitor all topics and consumers assigned.

7.4 Conclusions

Altogether, this dissertation allowed to gain new knowledge about new technological trends,

that are gaining every day more importance in the scientific community and in the market,

due to the expansion of microservices and distributed systems. Lastly, the author believes

the dissertation brings new value when considering new ways of improving business intelli-

gence approaches to increase competitive advantage.
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Appendix A

Kakfa Consumer Class

1 from confluent_kafka.cimpl import Consumer, TopicPartition,

KafkaException

2 from io import BytesIO

3 from messaging.consumer import ConfluentKafkaConsumer,

ConsumerException

4

5 class ConfluentKafkaConsumerCustom(ConfluentKafkaConsumer):

6 def __init__(self, conf, topics, partitions, logger: (Logger,

None)):

7 super(ConfluentKafkaConsumerCustom, self).__init__(conf,

topics, logger)

8 self.partitions = partitions

9

10 def __enter__(self):

11 self.consumer = Consumer(self.conf)

12 if isinstance(self.partitions, list):

13 list_topic_partitions = []

14 for partition in self.partitions:

15 list_topic_partitions.append(TopicPartition(self.

topics[0].name(), partition))

16 self.consumer.assign(list_topic_partitions)

17 else:

18 self.consumer.assign([TopicPartition(self.topics[0].name

(), self.partitions)])

19 self.__consumer_assignment_report(self.topics[0].name(), self

.partitions)

20

21 return self

22

23 def consume(self, num_max_messages, timeout):

24 messages=self.consumer.consume(num_messages=num_max_messages,

timeout=timeout)

25 if messages is None:
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26 return None

27 return self.deserialize_messages_values(messages)

28

29 def consume_messages(self, num_max_messages, timeout):

30 messages = self.consumer.consume(num_messages=

num_max_messages, timeout=timeout)

31 if messages is None:

32 return None

33 if messages.error():

34 if messages.error().fatal():

35 raise ConsumerException() from KafkaException(

messages.error())

36 return None

37 return messages

38

39 def deserialize_messages_values(self, messages):

40 list_msgs_deserialized = []

41 for msg in messages:

42 topic = next(x for x in self.topics if x.name() == msg.

topic())

43 item_type_name = dict(msg.headers())[’item_type_name’].

decode(’utf-8’)

44 with BytesIO(msg.value()) as buff:

45 list_msgs_deserialized.append(topic.deserialize(buff,

item_type_name))

46 return list_msgs_deserialized

47

48 def __consumer_assignment_report(self, topic, partitions):

49 self.__log_info_msg(’Topic: {} | Partitions assigned: {}’.

format(topic, partitions))

50

51 def __log_info_msg(self, message):

52 if self.logger is None:

53 print(message)

54 else:

55 self.logger.info(message)
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Appendix B

Initialization of Main Process

1 class Command(BaseCommand):

2 must_exit = Event()

3

4 def __init__(self):

5 super().__init__()

6 self.help = ’Launch a Kafka consumer’

7 self.config = settings.KAFKA[’consumer’]

8 self.poll_timeout = settings.KAFKA[’consumer_service’][’poll.timeout’

]

9 self.topics = settings.CONSUMER_TOPICS

10 signal.signal(signal.SIGINT, Command._handle_SIGINT)

11

12 @staticmethod

13 def _handle_SIGINT(signal, frame):

14 Command.must_exit.set()

15

16 def add_arguments(self, parser):

17 parser.add_argument(

18 ’--env’,

19 action=’store’,

20 dest=’env’,

21 default=’uat’,

22 choices=[’prod’, ’uat’, ’dev’],

23 help=’Specifies whether the environment is production, user

acceptance testing or development.’

24 )
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Appendix C

Parallel Kafka Consumers

1 def handle(self, *args, **options):

2 start_time = time.time()

3 processes = []

4 list_partitions = list(range(0, NUM_PARTITIONS))

5

6 partitions_per_consumer = math.ceil(NUM_PARTITIONS / NUM_CONSUMERS)

7

8 list_partitions = list(get_partitions_by_consumer(list_partitions,

partitions_per_consumer))

9 logger.info(list_partitions)

10

11 for i in range(0, len(list_partitions)):

12 p = Process(target=consumer_init, args=(self, list_partitions[i], i,

options,))

13 logger.info("LAUNCHING {} CONSUMER(s) FOR PARTITION(s): {}".format(

NUM_CONSUMERS, list_partitions[i]))

14 processes.append(p)

15 p.start()

16

17 for process in processes:

18 process.join()
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Appendix D

Micro Batch Implementation

1 def consumer_init(self, partitions, process_num, options):

2 total_number_evts = 0

3 loop = 1

4 with ConfluentKafkaConsumerCustom(settings.KAFKA[’consumer’], TOPICS,

partitions, logger) as consumer:

5 for _ in range(100000):

6 list_evts = []

7 end_time = datetime.now() + timedelta(seconds=MAX_LATENCY)

8 sub_loop = 1

9 while datetime.now() < end_time and len(list_evts) <

BIG_QUERY_NUM_MAX_ROWS: # max number or rows per stream:

100.000

10 try:

11 num_max_rows=BIG_QUERY_NUM_MAX_ROWS-len(list_evts) #

to prevent errors

12 evts_returned = consumer.consume(num_max_rows,

POLL_TIMEOUT)

13

14 list_evts += evts_returned

15 total_number_evts += len(evts_returned)

16 sub_loop += 1

17

18 except Exception as e:

19 logger.info(e)

20

21 loop += 1

22 logger.info(

23 "PROCESS {} | PARTITION {} | LOOP {} | SUBLOOPS {} | NUM

EVENTS FOR LOOP: {} | "

24 "TOTAL NUM EVENTS: {} | NOW: {}".format(process_num,

partitions, loop, sub_loop, len(list_evts),

total_number_evts, time.time()))

25
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26 if list_evts:

27 logger.info("PROCESS {} | Sending to BigQuery...".format(

process_num))

28 signals.dummy_evts_signal.send(sender=self.__class__,

list_evts=list_evts, process_num=process_num, env=options

[’env’])

29 delay_time = random.randrange(500, 1500)

30 time.sleep(delay_time/1000)

31

32 logger.info("PROCESS {} | NOW IS: {}".format(process_num,

time.time()))

33 else:

34 logger.info("PROCESS {} | Nothing to send to BigQuery".format

(process_num))
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Appendix E

ETL Orchestrator Improvement

1 INSERT ‘star_schema.dim_delivery‘ (

2 SK_DELIVERY,

3 COD_DELIVERY,

4 COD_DELIVERY_NUM,

5 DSC_DELIVERY_STATUS,

6 DSC_SHIPPING_SERVICE_LEVEL,

7 DAT_BRAND_DELIVERY_DATE,

8 DAT_EXPECTED_DELIVERY_DATE,

9 BOOL_IS_HOME_DELIVERY,

10 CREATED_AT,

11 UPDATED_AT,

12 COD_TIMESTAMP

13 )

14 SELECT(

15 (...)

16 )

17 (...)

18 ORDER BY source.SK_DELIVERY

19 --NEXT QUERY --

20 INSERT ‘star_schema.dim_sales_order‘ (

21 SK_SALES_ORDER

22 ,COD_SALES_ORDER

23 )

24 SELECT

25 source.SK_SALES_ORDER

26 ,source.COD_SALES_ORDER

27 FROM (

28 SELECT

29 ROW_NUMBER() OVER (PARTITION BY innerQ.serial_generator ORDER BY innerQ.

COD_SALES_ORDER) + (SELECT CASE WHEN MAX(SK_SALES_ORDER) IS NOT NULL

THEN MAX(SK_SALES_ORDER) ELSE 0 END AS max_sales_order FROM ‘

star_schema.dim_sales_order‘) AS SK_SALES_ORDER

30 ,innerQ.COD_SALES_ORDER
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31 FROM (

32 SELECT

33 1 AS serial_generator

34 ,so.delivery_order_id AS COD_SALES_ORDER

35 FROM (SELECT distinct delivery_order_id FROM ‘staging.pre_delivery‘ AS d)

so

36 WHERE so.delivery_order_id NOT IN (SELECT DISTINCT COD_SALES_ORDER FROM ‘

star_schema.dim_sales_order‘)

37 ORDER BY so.delivery_order_id

38 ) AS innerQ

39 ) source

40 ORDER BY source.SK_SALES_ORDER

41 --NEXT QUERY --

42 INSERT ‘star_schema.dim_customer‘ (

43 SK_CUSTOMER

44 ,COD_CUSTOMER

45 )

46 SELECT

47 source.SK_CUSTOMER

48 ,source.COD_CUSTOMER

49 FROM (

50 SELECT

51 ROW_NUMBER() OVER (PARTITION BY innerQ.serial_generator ORDER BY innerQ.

COD_CUSTOMER) + (SELECT CASE WHEN MAX(SK_CUSTOMER) IS NOT NULL THEN

MAX(SK_CUSTOMER) ELSE 0 END AS max_customer FROM ‘star_schema.

dim_customer‘) AS SK_CUSTOMER

52 ,innerQ.COD_CUSTOMER

53 FROM (

54 SELECT

55 1 AS serial_generator

56 ,so.customer_id AS COD_CUSTOMER

57 FROM (SELECT distinct customer_id FROM ‘staging.pre_delivery‘ AS d) so

58 WHERE so.customer_id NOT IN (SELECT DISTINCT COD_CUSTOMER FROM ‘

star_schema.dim_customer‘)

59 ORDER BY so.customer_id

60 ) AS innerQ

61 ) source

62 ORDER BY source.SK_CUSTOMER

63 --NEXT QUERY --

64 INSERT ‘star_schema.dim_customer_address‘ (

65 SK_CUSTOMER_ADDRESS

66 ,COD_CUSTOMER_ADDRESS

67 )

68 SELECT

69 source.SK_CUSTOMER_ADDRESS

70 ,source.COD_CUSTOMER_ADDRESS

71 FROM (

72 SELECT
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73 ROW_NUMBER() OVER (PARTITION BY innerQ.serial_generator ORDER BY innerQ.

COD_CUSTOMER_ADDRESS) + (SELECT CASE WHEN MAX(SK_CUSTOMER_ADDRESS) IS

NOT NULL THEN MAX(SK_CUSTOMER_ADDRESS) ELSE 0 END AS

max_customer_address FROM ‘star_schema.dim_customer_address‘) AS

SK_CUSTOMER_ADDRESS

74 ,innerQ.COD_CUSTOMER_ADDRESS

75 FROM (

76 SELECT

77 1 AS serial_generator

78 ,so.customer_address_id AS COD_CUSTOMER_ADDRESS

79 FROM (SELECT distinct customer_address_id FROM ‘staging.pre_delivery‘ AS

d) so

80 WHERE so.customer_address_id NOT IN (SELECT DISTINCT

COD_CUSTOMER_ADDRESS FROM ‘star_schema.dim_customer_address‘)

81 ORDER BY so.customer_address_id

82 ) AS innerQ

83 ) source

84 ORDER BY source.SK_CUSTOMER_ADDRESS

85 --NEXT QUERY --

86 INSERT ‘star_schema.dim_customer_address‘ (

87 SK_CUSTOMER_ADDRESS

88 ,COD_CUSTOMER_ADDRESS

89 )

90 SELECT

91 source.SK_CUSTOMER_ADDRESS

92 ,source.COD_CUSTOMER_ADDRESS

93 FROM (

94 SELECT

95 ROW_NUMBER() OVER (PARTITION BY innerQ.serial_generator ORDER BY innerQ.

COD_CUSTOMER_ADDRESS) + (SELECT CASE WHEN MAX(SK_CUSTOMER_ADDRESS) IS

NOT NULL THEN MAX(SK_CUSTOMER_ADDRESS) ELSE 0 END AS

max_shipping_address FROM ‘star_schema.dim_customer_address‘) AS

SK_CUSTOMER_ADDRESS

96 ,innerQ.COD_CUSTOMER_ADDRESS

97 FROM (

98 SELECT

99 1 AS serial_generator

100 ,so.shipping_address_id AS COD_CUSTOMER_ADDRESS

101 FROM (SELECT distinct shipping_address_id FROM ‘staging.pre_delivery‘ AS

d) so

102 WHERE so.shipping_address_id NOT IN (SELECT DISTINCT

COD_CUSTOMER_ADDRESS FROM ‘star_schema.dim_customer_address‘)

103 ORDER BY so.shipping_address_id

104 ) AS innerQ

105 ) source

106 ORDER BY source.SK_CUSTOMER_ADDRESS
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AUDIT files add also to be changed. In order to update all rows, since before it was up-

dating only rows that carried a smaller ID than the one saved in the audits. The lines were

commented.

1 (...)

2 FROM ‘staging.pre_sales_order‘ AS so

3 --WHERE so.id <= (@#id)

4 --AND so.cod_updated_at > (@#cod_date)

5 ORDER BY so.id

6 ) AS innerQ

7 (...)

The Orchestrator also had to change. It was set to read a dmlFile with only one query. After

adding the code to handle dependencies, this INSERT files has more than one INSERT

query. So the file had to be split up and for each INSERT, and the orchestrator runs for each

query.

1 (...)

2 if dmlFile is not None:

3 # Get update query

4 ss_all_queries = fileHelper.read_file(file_name=dmlFile, layer=

package[’DSC_TABLE_DESTINATION_DATASET’])

5

6 ss_queries_list = ss_all_queries.split(’--NEXT QUERY --’)

7

8 for ss_query in ss_queries_list:

9 -- (...) starts replacing dmlFiles and insert in star schema
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Producer Kafka Class

1

2 def produce_create_delivery(event_id):

3

4 with ConfluentKafkaProducer(KAFKA[’producer’], None) as p:

5 for _ in range(NUMBER_OF_EVENTS):

6

7 try:

8 cmd = delivery_data(event_id, time.time_ns())

9 payload = CreateDeliveryV2Command(**cmd)

10 logger.info(’Payload: {}’.format(payload))

11 p.produce_sync(DeliveryCommandsV2Topic(), payload)

12 ts = time.time()

13 logger.info(’EVENT {} produced at {} - PUBLISHED’.format(

event_id, datetime.fromtimestamp(ts).strftime(’%Y-%m-%d %

H:%M:%S,%f’)))

14 event_id += 1

15

16 except ProducerException:

17 logger.info(’ERROR ON PRODUCER’)

18 raise

19

20 logger.info("PRODUCTION OVER")
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