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Abstract 

Myelin is an insulating layer or sheath that forms around nerves, that is constituted by protein 

and fatty substances. In the central nervous system (CNS), this structure is produced by 

oligodendrocytes that extend their plasma membrane and enwrap neurons in a tightly 

organized way, forming an electrically insulating layer. Consequently, myelin is a fundamental 

player in the process of electric impulse conduction along the axons and is also involved in the 

crosstalk between axons and oligodendrocytes. One of the major mechanisms responsible for 

the loss of function observed in several neurological diseases is the loss of the myelin sheath. 

In the adult CNS, myelin loss can only be partially rescued by remyelination of spared axons. 

The newly formed myelin is not made by oligodendrocytes surviving an episode of 

demyelination, but from oligodendrocyte progenitor cells (OPCs), which become activated, 

proliferate and give rise to remyelinating oligodendrocytes. However, after disease 

progression, remyelination fails, leading to irreversible functional failure.  

 

Under the context of demyelinating conditions, other glial cells are also severely affected, 

namely astrocytes. These cells switch their phenotype and become activated, hence playing 

a pivotal role in the modulation of the CNS extracellular environment. In this context, a glial 

scar, mainly composed by reactive astrocytes that secrete altered signalling molecules (as 

growth factors, cytokines, and ECM constituents) may have profound impacts in demyelinating 

diseases. 

 

However, so far, little is known about the effects of reactive astrocytes on the process of 

remyelination, in particular in terms of astrocyte activation impact on OPC recruitment to the 

lesion site and differentiation to a mature state. The lack of knowledge on demyelinating 

diseases provides from the lack of screening platforms that allow the study of the specific 

influence of neural and glial cells in the progression of these diseases. 

 

Here, a 3D in vitro myelination platform composed of electrospinning polymeric 

(poly(trimethylene carbonate-co-ε-caprolactone) copolymer, P(TMC-CL)) nanofibers 

combined with a tissue engineered glial scar model of astrocytes embedded in alginate 

matrices is explored. This platform was previously established by our group therefore, this 

project aimed to deepen the study of the influence of activated astrocytes on OPC 

differentiation and myelination capacity.  

Besides, a novel in vitro platform based on poly(dimethylsiloxane) (PDMS) pillars to allow the 

study of myelination and wrapping of oligodendrocytes around pillars is also here described. 

 



xii 

OPCs were found to extensively adhere, proliferate and differentiate in oligodendrocytes 

without the need of any coating base on a cell adhesion molecule, highlighting the possibility 

of uncoupling the axons effects’ on the study of astrocyte-oligodendrocyte crosstalk. Moreover, 

astrocytes were shown to remain viable within the alginate matrices and become activated 

after three days of culturing with meningeal fibroblasts conditioned medium. When activated 

astrocytes were co-cultured with OPCs in fibers, the differentiation ability of OPCs in 

oligodendrocytes (assessed in terms of myelin basic protein gene expression) was significantly 

impaired after 5 days of culture, showing a potential negative role of the astrogliosis in the 

course of a demyelinating disease. 

 

Moreover, OPCs were also found to adhere, proliferate and differentiate in oligodendrocytes 

in a reproducible manner when cultured on PDMS micropillars. Importantly, oligodendrocytes 

have shown a vast propensity to wrap micropillars at early stages of differentiation (day 3). 

Nonetheless, detailed conclusions could not be taken regarding the process of oligodendrocyte 

wrapping, as these studies are still in their infancy. 

 

Overall, the work presented in this thesis highlights the importance exploring in vitro platforms 

that can serve as a tool to dissect myelination processes or the crosstalk between neural cell 

types. In the future, this may be of added value in the search for new therapeutical molecules 

and targets to demyelinating diseases. 

 

 

 

 

Key words: oligodendrocytes, myelin, astrogliosis, tissue engineering, high throughput 

screening platforms, electrospinning, poly(trimethylene carbonate-co-ε-caprolactone), 

alginate, poly(dimethylsiloxane) micropillars 
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OVERVIEW OF DEMYELINATING DISEASES 

 

Myelin is an insulating layer, or sheath that forms around nerves, including those in the central 

and peripheral nervous system, being constituted by protein and fatty substances. Myelin is 

essential for the correct function of the nervous system, so that myelin loss is one of the major 

mechanisms responsible for several neurodegenerative diseases. The concept of 

demyelination refers to pathologies in which myelin loss occurs before axonal degeneration 

and atrophy [1].  

There are several central nervous system (CNS) demyelinating diseases and their origin is 

very diversified: genetic defects, inflammatory processes and acquired metabolic 

derangements are examples of demyelinating diseases’ causes [1]. 

Multiple sclerosis (MS), which is an inflammatory mediated demyelinating disease, is 

considered nowadays one of the most common causes of incapacity in young adults, 

especially in Europe and North America. It is estimated that this disease affects around 2.5 

million people worldwide (89.3 per 100,000 people – MS Society client data [2]). Moreover, 

statistics point out that women are more affected than men (three in four patients are women) 

and that the peak of appearance of the disease is at 30 years old. MS has a profound impact 

on patients’ social life. As the disease progresses, physical disabilities such as fatigue, 

depression and cognitive impairments are observed among MS patients. Recent data predicts 

an increase of the prevalence of the disease in the next years. In addition to its huge social 

significance, MS’s associated economic impact is also high. Yearly costs are estimated to be 

49,000 US dollars per patient (2010), which arise essentially from indirect costs rather from 

direct costs (prescription medications) once people with MS are not able to perform 

professional activities [2]. 

To achieve a possible treatment to demyelinating diseases some strategies have been tried. 

For instance, for MS, plasma exchange to act on severe relapses has been proposed as a 

short term therapy [3]. Interestingly, having a specific nutritional plan composed of anti-

inflammatory nutrients (omega-6 and omega-3), dietary polyphenols [4] and vitamins like 

vitamin D [5] can minimize the progress and comorbidities of this disease. Besides, over the 

last decades, the scientific and pharmacological community have been trying to induce 

immunosuppression either through cytotoxic drugs to induce immune cells’ apoptosis or bone 

marrow transplantation to substitute immune cells and extinguish the autoimmune ones [6] but 

the results obtained with these therapies are far from being optimal. Like for MS, other 

approaches have been searched for other CNS demyelinating diseases, such as acute 

disseminated encephalomyelitis, Krabbe’s disease, Alexander disease or Contusion type-

spinal injury. However, currently, there is not an established and valuable treatment to these 

diseases. 



4 

In fact, one of the reasons behind the inexistence of efficient therapies against demyelinating 

diseases arises from the lack of knowledge of the biological and biochemical mechanisms 

underlying these diseases. In order to understand these diseases it is very important to 

understand first the basic biology of the nervous system, the mechanism behind the 

pathological condition and how the degeneration and possible regeneration occurs. 
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DEGENERATION AND REGENERATION IN THE CENTRAL NERVOUS SYSTEM 

 

Components of the nervous system 

The nervous system comprises the CNS, which is constituted by the brain and the spinal cord, 

and the peripheral nervous system (PNS), including the peripheral nerves (bundles of axons) 

responsible for connecting the CNS to the rest of the body. Neurons are the cells that define 

the nervous system. Their major function is to send electrochemical synaptic signals through 

axons that may inhibit, stimulate or modulate the receiving cells. The neuronal network within 

the body determines individual’s behaviours [7]. 

Nonetheless, neurons would not be able to perform their main functions if supporting cells did 

not exist. The maintenance of the nervous system is conducted by a specialized type of cells 

known as glial cells. The term “glia” arises from the Greek and means “glue”, thus glial cells 

are seen as the glue that holds the nervous system together. In the PNS, these supporting 

cells are the Schwann cells and satellite cells and in the CNS are the astrocytes, 

oligodendrocytes, microglia and ependymal cells [8].  

Astrocytes constitute approximately 90% of the cells of the brain and are responsible for 

numerous processes that are known to be pivotal to CNS homeostasis. Generally, astrocytes 

are responsible to maintain the appropriate chemical environment for the signalling between 

neurons by the regulating the ion and pH of the microenvironment and also by clearing 

neuronal debris. Besides, astrocytes allow the survival of neurons and of the other glial cells 

by releasing neuronal surviving factors [9]. Moreover, astrocytes are determinant in modulating 

the integrity of the blood brain barrier (BBB), which is a selective physical barrier that separates 

the CNS parenchyma from the circulating blood. This is especially important during 

inflammation as astrocytes alter the permeability of the BBB therefore allowing the influx of 

immune cells and other components to the CNS [9].  

On the other hand, microglia are of hematopoietic origin and their activities are very often 

connected to macrophage functions. These cells are capable of removing cellular debris from 

sites of normal cell turnover or injury, fact that explains why microglia are seen as the CNS 

resident macrophages [8].  

Ependymal cells line the cerebral spinal fluid-filled ventricles in the brain and the central canal 

of the spinal cord [10].  

Lastly, oligodendrocytes are the myelin producing cells of the CNS. These cells establish a 

tight crosstalk with axons which is fundamental for correct metabolic function and transport, 

ion channel organization and cytoskeletal arrangement [11]. 
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Myelin is an electric insulator and protective sheath that surrounds some, but not all axons in 

a spiral way. In the PNS, the myelin sheath is produced by the Schwann cells [12] that in 

opposite to oligodendrocytes, can just myelinate one single axon (Figure 1.1) [13].  

 
Figure 1.1 Structure of myelinated axons. In the CNS, oligodendrocytes produce myelin that tightly enwrap neurons, 

and one oligodendrocyte can myelinate several neurons. Myelin segments are separated from each other through 
nodes of Ranvier that optimize the saltatory electric conduction characteristic of these neurons. In the PNS, 
Schwann cells myelinate neurons. However, one Schwann cell only enwraps one neuron. Adapted from Chang et 
al (2015) [14]. 

 

The presence of myelin in axons enables the efficient propagation of the electrical signal 

through saltatory conduction in gaps, called Ranvier nodes [13]. In the CNS, Ranvier nodes 

directly contact with perinodal astrocytes and their extremes are flanked by paranodes followed 

by adjacent juxtaparanodes. Myelin segments are delimitated by internodes and together 

these structures contribute to the complexity and highly organization seen in a myelinated axon 

(Figure 1.1) [15]. The effective saltatory conduction is also established because of the 

increased resistance and diminished capacitance of the axons [13].  

In the mammalian CNS, the myelin membrane is a lipid bilayer in which proteins are embedded 

or attached to the surface by weak bounds in an asymmetrically way. The high percentage of 

lipids (70-85%) relatively to the low percentage of proteins (15-30%) is one of the unique 

characteristics that differs the myelin membrane from other biological membranes. Although 

there is no lipid that characterizes the myelin membrane, the most common is 

galactocerebroside (galactosyl ceramide), which is, in fact, used to estimate the proportion of 

the existent myelin in the brain. Besides, cholesterol and phospholipids are other major lipids 

constituting the CNS myelin sheath [16]. In spite of being in lower percentage in the brain, 

myelin’s proteins are crucial to maintain axonal functionality. The most abundant are the myelin 

basic protein (MBP) and proteolipid protein (PLP), which account for 60-80% of the total protein 

in most species and play fundamental roles in axonal myelination [17, 18]. Moreover, myelin 

associated glycoprotein (MAG) is crucial for the induction of myelin production [19] and the 

enzyme CNPase (2,3-cyclic nucleotide 3-phosphodiesterase) produced in mature 
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oligodendrocytes is also crucial for the homeostasis of axons once its deletion provokes 

swollen and further degeneration of myelinated neurons [11, 20].  

 

Apart from cells, the nervous system is also constituted by extracellular matrix (ECM) 

components. Although in the brain the ECM comprises only 20% of its total volume [21], the 

ECM is crucial to assure the proper brain tissue architecture. It is mainly composed by 

proteoglycans of the lectican/hyalectan family and their binding molecules, glicosaminoglycans 

like heparin sulphate or hyaluronic acid, and other proteins as tenascins [22]. Lecticans are 

components responsible for the primary organization of the brain and they are included in the 

chondroitin sulphate proteoglycans (CSPGs) family [23]. Tenascins are glycoproteins capable 

of connecting proteoglycans and act as binding sites for cells. Hyaluronan is a 

glycosaminoglycan that plays an important role in brain due to its negatively charged nature 

enabling the attaching of positive ions (for instance, sodium) and charged proteins. This effect 

strongly increases brains’ hydration [21]. Collagen, namely collagen type I and collagen IV are 

also present as well as laminin which together with collagen IV are responsible for basal lamina 

composition [24]. 

 

 

Specific mechanisms involved in degeneration and regeneration in the nervous system 

When an insult that causes the death of oligodendrocytes or Schwann cells occurs, myelin 

normal function is extensively disturbed. Demyelination and further axonal degeneration and 

dysfunction drastically affect the homeostasis of CNS. Conversely, in the PNS the effects are 

not so adverse since Schwann cells just myelinate one single axon. Hence, the loss of 

Schwann cells has a lesser impact on the extent of the axonal degeneration process. 

Furthermore, in the PNS, the response to an insult is more effective than in the CNS. Resident 

macrophages are rapidly recruited to the local of the lesion by factors secreted by Schwann 

cells and injured neurons. Myelin and axonal debris is efficiently cleaned and macrophages in 

turn also secrete factors that are beneficial for Schwann cell migration and axonal regeneration 

(see reference [25] for a review).  

In contrast, in the CNS the effects of demyelination can have very adverse outcomes. Once 

demyelination occurs, the lesion site is characterized by the presence of myelin debris [26] 

whose clearance is achieved by microglia [11] that if efficient, contributes to the permissive 

environment for remyelination. To achieve regeneration, the mature oligodendrocytes in the 

proximity of the lesion that have survived are not able to enwrap neurons and overcome the 

damages due to their post-mitotic status, however they can extend some processes [27]. On 

the other hand, endogenous non-committed stem cell populations, oligodendrocyte precursor 

cells (OPCs) and neural progenitor cells (NPCs), respond to products released by activated 

glia and actively express genes related to their mature state (OPCs express Olig2 and Nkx2.2, 

for example [28]). In general, in the early stages of demyelinated diseases remyelination is 
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well succeeded once some oligodendrocytes mature from OPCs and spontaneously 

remyelinate axons [29]. This event leads to a partial recovery of the disability characteristic 

that identifies, for example, MS as a relapsing and remitting disease. The interval between 

relapses vary among patients and can be many years [1]. Nonetheless, at some point and as 

the disease progresses the extent of this differentiating phenomena is not sufficient, thus 

remyelination is not efficiently achieved. Several studies have been conducted to understand 

why the process of remyelination is not well succeeded. Some hypothesis are that the new 

oligodendrocytes also suffer injury with the same extent of the previous ones [11]; the source 

of OPC is not producing enough cells to provide an effective remyelination [30]; or the inhibitory 

environment of the lesion inhibits the differentiation [26]. The last hypothesis, formulated by 

Robin Franklin has been widely supported among the scientific community [26, 31]. 

As soon as demyelination happens resident astrocytes are the first cells to be recruited to 

lesion sites [32]. Astrocytes become reactive, upregulating the expression of intermediate glial 

fibrillary acidic protein (GFAP) and vimentin, among other genes, in a process referred as 

astrogliosis [33]. In this process reactive astrocytes induce modifications in the ECM by 

secreting some ECM molecules like laminin, fibronectin and tenascin-C. It has been reported 

through animal model-based studies that ECM composition changes during demyelination 

[24]. For example, in MS collagen type IV, laminin and heparin sulphate proteoglycans are 

overexpressed and this influences the stiffness of the ECM. Also, fibronectin is abnormally 

expressed, fact that is related with the degree of inflammation once macrophages respond to 

this protein migrating to the site of injury [34, 35]. Tenascins are other crucial ECM molecules 

for myelination. They have a key role in the maintenance of the structural stability as well as in 

oligodendrocytes’ functionality (by influencing their survival, proliferation, differentiation and 

migration). Together, the abnormal deposition of these molecules creates an inhibitory 

environment to regeneration, which is synonym of progressive neuronal degeneration. The 

expression ratio between inhibitory molecules and supportive molecules dictates the progress 

of demyelination or remyelination [24]. Besides, it is worth noting that the inefficient clearance 

of myelin debris by microglia also induces some modifications in the ECM composition [36] 

that also contribute to the progression of demyelinating diseases. 

In the majority of the cases, all these factors (ECM modifications, astrogliosis, accumulation of 

myelin debris and degenerated neurons) contribute to the possible formation of a glial scar 

[11]. Glial scar is a neuroprotective mechanism that CNS uses to avoid the invasion of 

inflammatory cells or pathogens into surrounding normal tissue as a consequence of BBB 

disruption. Consequently, glial scar acts on the closure of BBB, thus avoiding a devastating 

inflammatory response [37]. Besides, glial scar is of great importance to the revascularization 

of the site of injury [24]. Nonetheless, in spite of being initially a protective mechanism, as the 

disease progresses the glial scar is seen as a barrier to the regeneration and this changed 

environment can prevail for long term or even forever [38]. The scar is mainly composed of 

hypertrophic reactive astrocytes, meningeal fibroblasts and collagenous ECM. Some myelin 
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debris’ characteristic proteins (for example, MAG and oligodendrocyte-myelin glycoprotein) 

[39] and increased levels of CSPGs and semaphorins can also be found in the glial scar [24].  

All the above-mentioned features happening within the lesion site (myelin debris, the presence 

of astrocytes, the glial scar and the inhibitory proteins) contribute to the failure of regeneration. 

Ultimately, the balance between demyelination and remyelination, as well as axonal 

degeneration/regeneration regulates the outcome of the neurodegenerative diseases. 
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MODELS TO STUDY THE BIOLOGICAL FUNDAMENTALS OF DEMYELINATING 

DISEASES 

 

The difficulty in reaching efficient therapies against demyelinating diseases in a significant part 

arises from the lack of knowledge on the biology and the pathogenesis of these diseases [40]. 

Despite all of the advances in the field, yet there is no model capable of truly recapitulating 

demyelination processes.  

 

Animal models of demyelination 

Traditionally animals such as mice or rat are considered the gold standard models to mimic 

diseases. In fact, the majority of the actual therapies for MS have arisen from tests in these 

animals For this demyelinating disease, three categories of animal models are now well 

established and include the toxin-induced models (for example, the cuprizone model, in which 

oligodendrocytes rapidly die after the administration of cuprizone, and after removing it, 

myelination occurs again), the viral-induced models (for example, the Theiler’s murine 

encephalomyelitis virus (TMEV) infection results in the generation of myelin-specific T cells 

which leads to a progressive disease course) and the autoimmune models (model of 

experimental autoimmune encephalomyelitis, EAE, in which mice are immunized with myelin 

antigens or pre-activated myelin specific T cells, both infiltrating the CNS causing pathologies 

in mice similar to MS in humans [41]) [42].  

However, with these models it is hard to isolate distinct features of diseases and correctly 

interpret and extrapolate them to human conditions. In fact, there have been a crescent number 

of clinical trial failures over the years. High associated costs with animal research and all the 

ethical issues it can raise are other factors that highlight the necessity for changing the way 

science in the demyelination field has been conducted [43]. For that reason, researchers have 

been focusing their studies on more human-relevant models, and there has been a specifically 

growing tendency to establish in vitro models.  

 

In vitro models of demyelination 

In vitro models of disease are simplified systems in which distinct features of a certain disease 

are mimicked. Despite not being possible to fully translate disease complexity within such 

platforms, these models are simple and a suitable source of knowledge on specific biochemical 

and morphological mechanisms observed in vivo, hence, allowing the study of individual 

variables, which may not be achievable in an animal model.  

In in vitro cellular models the biologic pathological environment is mimicked as far as possible 

with the aim of studying a signalling pathway [44], specific biomarkers [45], among others.  
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Cellular platforms of demyelinating diseases are either 2D or 3D. These cell culture systems 

are very diverse, including monocultures, co-cultures, neuronal organoids, organotypic 

cultures or tissue explants. Monocultures are the simplest and easiest way to culture cells and 

are of extreme importance to study cell specific behaviours’ and mechanisms’. Numerous 

studies using only oligodendrocytes revealed important mechanisms these cells are 

responsible for [46]. However, this type of culture is not able to reproduce interactions between 

different cell types. Cellular crosstalk is known to play an important role in tissue homeostasis 

and to influence several processes including (de)myelination. Consequently, more complex 

models, that include additional cells types, provide more physiologically relevant models to 

study cellular mechanisms [47]. Besides, neuronal cellular platforms can be originated from 

different sources namely, primary cultures, cell lines or neuronal derived pluripotent stem cells 

(human or non-human). Nonetheless, independently of their source, the used neural cells in 

culture should accomplish a series of parameters, such as, show the appropriate cell 

morphology and behaviour, express the genes that are expressed in vivo and translate 

functional proteins [21].  

 

Two-dimensional (2D) cell-based platforms 

Over the years, in vitro cell models were usually achieved using flat glass coverslips or tissue 

culture polystyrene (TCPS) flasks. CNS neural cells can be easily and reliably cultured on 

these 2D surfaces, normally requiring the use of coating with molecules capable of promoting 

cell adhesion (namely, poly-L-lysine – PLL – or laminin) [21, 48]. 2D models are easy to 

manipulate and very reproducible, making them adequate to maintain cells in culture and 

achieve results on neurobiological processes. Nevertheless, it is now well known that TCPS 

or glass substrates offer cells a very different mechanical environment in comparison to the 

one experienced in physiological conditions in vivo. Besides, the surface topographies of these 

substrate do not resemble the in vivo as well and mammalian cells were shown to respond 

differently to different nanotopography substrates, either in terms of morphology features or 

even differentiation abilities [49]. For that reason, it has been developed some more 

physiological relevant in vitro assays using 2D materials that can better achieve in vivo 

mechanical properties. 

In terms of 2D cultures, in the last two decades, the use of microfluidic platforms allowed the 

introduction of new features that allowed the achievement of more physiological systems to 

study neurobiology. Microfluidics is a technology in which fluids are controlled and manipulated 

at the sub-millimetre scale in engineered devices [50]. This technique has been proving the 

ability to precise control cells’ microenvironment and to mimic molecular gradients that are 

found in the majority of tissues. Firstly, microfluidics chambers were used to force the physical 

isolation of axons from each other and from their cell bodies, however now some devices for 

neurons co-cultures have been produced in 2D microenvironments [51-53]. Microfluidics 

introduced an easy and feasible way of studying neurobiology once cell microenvironment is 
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well controlled and molecular and cellular interactions can be both achieved with this 

methodology. Examples of microfluidics platforms are represented in Figure 1.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Example of microfluidic devices used in studies of neurobiology. A) Device where both OPCs and axons 

were grown. It is shown the six compartments that are capable of conducting multiple treatments at the same time. 

Adapted from Park, J., et al (2012) [53] B) Microfluidic system to mimic BBB. Cells are co-cultured in the middle of 

the device in a porous membrane and the fluid flows in parallel. Adapted from Booth, R., et al (2012) [54]. 

 

 

Three-dimensional (3D) cell-based platforms 

Although 2D models present evident benefits for neurodegenerative disease studies due to 

the precise control of individual components of a system, the complexity of neural tissue arising 

from the three-dimensionality is not correctly reproduced when using this type of platforms. To 

approach this complexity, an ideal culture requires a 3D matrix to better mimic the natural cell-

cell and cell-ECM interactions, as well as biochemical gradients [55]. By comparing 2D and 3D 

cell culture architectures several authors observed significant differences in cell behaviour, 

suggesting that cells behave more closely to those in vivo in the latter conditions. For that 

reason, many consider data obtained from 3D cultures more biologically relevant  [56]. 

In these substrata, neuronal cells may grow in more adequate densities than the ones reached 

in the 2D models. In most of the cases, this is crucial to replicate neuronal architectures [21]. 

3D microenvironments can be designed to protect cells from external perturbations like media 

changes, thus cells present higher stability and survival rates. Besides, these substrata can 

also be thought in terms of optimal permeability for nutrients and waste, therefore resembling 

closer the neuronal tissue permeability [57].  

Nowadays, there are several ways of obtaining 3D reliable architectures. Explants, neural 

organoids or tissue engineering (TE) based platforms are some examples. Neural tissue 

A B 
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derived explants are brain/spinal cord derived tissue slices in which cells and the architecture 

of the tissue is fully preserved [58]. They have the advantage of being cultured for a long 

periods of time. However, in this type of model it is impossible to modify cellular composition, 

thus, it is crucial to choose a region with distinctive characteristics of myelination and 

remyelination. In neuronal organoids cells are grown as spherical cell clusters at a microscale 

level. There are many ways of producing these clusters, namely using the hanging drop 

technique or microwells [59]. TE approaches to mimic diseases are becoming widely popular 

among the scientific community. The conventional TE paradigm relies on using scaffolds 

combined with cells to create an engineered tissue graft that may be used to repair or 

regenerate a lesion site. More recently, these TE grafts are being explored as in vitro disease 

models. In this case, the engineered construct is used to study biological issues of diseases, 

find new therapeutic targets, test new drug candidates, as well as study cell-drugs interaction, 

neuronal networks formation and combined effects [60]. One can develop these platforms 

using bottom-up or top-down approaches. In a bottom-up process the matrix is the first 

component being designed. After, cells and growth factors or other biochemical components 

are added in a space-time controlled manner. On the other hand, in top-down approaches cells 

are embedded in a substratum and form their adequate ECM by spontaneously degradation 

and reconstruction of the substratum [21]. With a 3D TE platform, taking conclusions about 

cells’ behaviour is easier as this complexity simulates more the in vivo situation [60]. Besides, 

TE platforms allow the study of several cues that can be presented in different ways, namely 

synergistically or competitively which enables the study of their importance [60]. TE platforms 

can be created in many ways. For instance, polymeric substrates are commonly used as 

neuronal platforms. An ideal polymer for neuronal cell culture must meet features as a low 

elastic modulus to resemble brain’s elastic modulus, porous structure to enable the diffusion 

of gases and nutrients and an appropriate electrical conductance to facilitate electric signalling 

between neurons. Besides, they should allow cell growth and facilitate characterization of cell 

behaviour [21]. Hydrogels are a class of polymer networks that met many of the above-

mentioned characteristics. They can be tuned to replicate the CNS ECM in terms of 

physicochemical properties [61]. Besides, they present adequate mechanical properties (low 

elastic modulus and similar and adjustable stiffness to neuronal tissue) and can be designed 

to promote the extension of axons [62]. In addition to hydrogels made of natural polymers or 

photopolymerized hydrogels, synthetic polymer scaffolds, self-assembling peptide scaffolds, 

micro- or nano- patterned substrates and also microgravity bioreactors are other possibilities 

for a neuronal reliable matrix [63].  

In the past years, 3D bioprinting revealed to be a revolutionary technique providing valuable 

tools in constructing platforms to better understand tissue complex architectures. Bioprinting 

can be defined as a process of patterning cells, molecules and “non-living” materials aided by 

a computer program with the aim of creating structures to be used in the field of TE and 
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regenerative medicine [64]. Some, but not many studies have been published about bioprinting 

in neuronal TE [65]. 

To sum up, TE platforms are valuable tools to address in vitro features of in vivo mechanisms. 

Therefore they are beneficial concerning other types of possible models for the study of 

demyelinating diseases. 

 

Figure 1.3 shows an example of a 3D in vitro model of myelination composed by a tubular 

scaffold with pores allowing the oligodendrocytes to grow. 

 

 

 

 

 

 

 

 

Figure 1.3 Scheme of tubular scaffold used to simulate CNS myelination. A) Image of Scan Electron Microscopy 
of the tubular construct. B) Representation of the interior of the scaffold and the various positions in which the 
scaffold was manipulated to conclude about cell distribution and survival. C) Myelination within the pores of the 

tubular scaffold. Adapted from Donoghue, P.S. (2014) [66]. 
 

 

High throughput models 

High throughput screening (HTS) techniques rely on automated testing a large quantity of 

compounds against supposed targets of diseases with easy to access readouts. HTS has been 

widely used among researchers and also in pharmaceutical industry. Currently, HTS platforms 

enable the screenning of thousands of compounds. These methodologies have several 

advantages including the simplicity, speed, the high efficiency, the significant low costs and 

the vast number of results that it is possible to achieve. Fluorescence, chromatography, gene 

or protein microarrays, nuclear-magnetic resonance or surface plasmon resonance are 

examples of readout techniques [67].  

HTS can be categorized in cellular and biochemical assays. While in a biochemical assay, 

interactions between proteins, proteases and enzymes are studied, in a cellular assay more 

complex systems and entire pathways are analysed. For that reason, cell based HST are 

advantageous for the screening of specific compounds for intercellular activities [68]. When 

thinking about nervous system it is important to highlight that HTS are hard to establish in 

these systems due to neurons intrinsic characteristics. These cells are post-mitotic, limited in 

supply and their extraction is difficult and costly. Despite this, there is a growing need to 

develop strategies that enable the screening of great amount of neurons in a costly safe way 

[69]. Not many reports using HTS for neuronal functions studies have been published and 

C A B 
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concerning demyelinating diseases there are still few reliable reports. For further reading on 

high throughput platforms for studies of neurodegeneration and discovering of targets for 

demyelination see Appendix A that includes the review recently published by us on Drug 

Discovery Today (10th May 2016). 

 

Taking all this into account, there is a growing need to develop platforms where the processes 

of demyelination and/or remyelination are replicated. These in vitro models where glial cells 

are put together to recreate a simple, yet valuable model, are becoming popular among 

researchers and may be one important way of concluding about the mysterious complexity of 

the nervous system in the context of a disease.  
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During development astrocytes and oligodendrocytes communicate so that myelination can 

occur in an accurate and timely manner [1, 2]. Under the context of demyelinating conditions, 

astrocytes are also severely affected, playing a pivotal role in the modulation of the CNS 

extracellular environment. Nonetheless, so far, little is known about the effects of reactive 

astrocytes on the process of remyelination. In particular in terms of astrocyte activation impact 

on OPC recruitment to the lesion site and differentiation to a mature state. 

Our group has previously studied the effects of astrogliosis on OPC differentiation ability and 

concluded that the activation of astrocytes impairs the differentiation of the OPCs and the 

recovery of astrocyte phenotype to non-reactive was seen to recover OPC differentiation ability 

in astrocyte-OPC co-cultures [3]. These conclusions were taken by using an in vitro rapid 

myelinating artificial axon system composed of electrospinning polymeric (poly(trimethylene 

carbonate-co-ε-caprolactone) copolymer, P(TMC-CL)) nanofibers [4] combined with a tissue 

engineered glial scar model of astrocytes embedded in alginate matrices [5]. However, detailed 

quantification of OPC protein/gene expression after exposition to reactive astrocytes was not 

performed. Beyond, although this platform provides valuable tools to study dynamics occurring 

during demyelination, it does not allow the monitorization of myelin wrapping around the fibers. 

Consequently, the major two aims of the proposed thesis were: 

 

1. the exploration of the established in vitro rapid myelinating artificial axon system to 

deepen the study of the crosstalk between OPCs and astrocytes, particularly exploring 

the influence of the latter on OPCs differentiation and myelination ability; 

2. the development of a new 3D platform based on poly(dimethylsiloxane) (PDMS) pillars 

to allow the study of myelination and wrapping of oligodendrocytes around pillars. 

 

The work developed and the data obtained during the thesis is described in Chapter 3 and 

Chapter 4, respectively.  
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INTRODUCTION 

 

The process of CNS myelination is complex and the mechanisms responsible for chronic 

remyelination failure have not yet been fully explained. Nevertheless, over the past years, it 

has been observed the presence of both OPCs and post-mitotic oligodendrocytes in lesion 

sites in sufficient number [1]. The apparent contradiction between the existence of OPCs and 

oligodendrocytes in the lesion sites and the failure of remyelination has been widely discussed 

among scientific community [2]. It is believed that on the one hand the resident surviving 

oligodendrocytes cannot rearrange their compact myelin sheath and form new myelin due to 

the lack of expression of the early progenitor markers. On the other hand, recruited OPCs do 

not remyelinate normally; although myelin composition is similar to developmental myelin, its 

size is thinner and shorter in comparison to the axonal diameter [2]. These facts clearly suggest 

the existence of a regulatory mechanism inhibiting OPC differentiation under pathological 

scenarios.  

The existence of some inhibitors within the demyelinated lesion has been proposed and so far, 

several signalling pathways have been identified as mediators of OPC differentiation. Within 

those signalling pathways, the ones that actively induce modifications in the cytoskeleton are 

of special interest. Namely, the Rho/ROCK signalling pathway has been widely emphasized 

as a major mediator of OPC differentiation and maturation [3-5]. 

The Rho family of GTPases is a subfamily of the small GTPases Ras superfamily constituted 

by eight members, being RhoA the best studied and characterized. It is generally associated 

with cytoskeleton organization and regulation, integrin mediated signalling and migration 

controlling. Generally, the signalling through RhoA is initiated by a series of plasma membrane 

receptors like integrins that progressively activate the downstream receptors. After RhoA 

activation, it interacts with the downstream target protein ROCK (Rho-associated protein 

kinase), which in turns produces the cellular effects [6]. The possible involvement of 

Rho/ROCK signalling pathway in the OPC differentiation phenotype definition points out the 

important role of ECM molecules in the process of OPC remyelination after an insult.  

 

As described in Chapter 1, the lesion microenvironment is characterized by the presence, 

among others, of astrocytes that switch their quiescent phenotype to an activated state thus 

creating a modified environment in which signalling molecules (as growth factors, cytokines, 

and ECM constituents) are altered [7-9]. The consequent formation of the glial scar is a barrier 

to neuronal regeneration and all these factors may also alter the course of OPC differentiation 

and remyelination of damaged areas [10-12]. 
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Astrocytes and oligodendrocytes are known to intrinsically communicate during development 

and in the homeostasis CNS. However, if in pathological scenarios this crosstalk is affected is 

a theme still under debate and some contradictory studies have been published [13, 14]. In 

this project, it is hypothesized that the astrocyte activation is involved in the impairment of the 

normal course of OPC differentiation. Nevertheless, very little is known about the mechanisms 

that underlie astrocyte activation in the aftermath of a lesion. It has been previously shown by 

our group that the acquisition of the reactive state by astrocytes is influenced by matrix 

mechanical properties, being probably mediated via a mechanosensing pathway. The 

Rho/ROCK signalling was demonstrated as a possible mediator of this process, having RhoA 

a pivotal role in this process. Besides, the pharmacological inhibition of this pathway with 

ibuprofen showed to reduce the RhoA levels and therefore allowed the recovering of astrocytes 

to a quiescent phenotype [9].  

 

In this work, a co-culture platform composed by a tissue engineered glial scar model and a 

rapid myelination axon system was used to dissect the interaction between astrocytes and 

oligodendrocytes in the context of an insult. 

 

Tissue engineered glial scar model 

In our group, Rocha et al [9] developed a 3D glial scar platform composed of astrocytes seeded 

within alginate gels and induced a lesion environment using meningeal fibroblasts conditioned 

medium to mimic the possible stimuli resultant from fibroblast infiltration that occurs in the 

follow up of an injury.  

Alginate is a natural anionic polymer obtained from marine brown algae. Due to its favourable 

characteristics such as biodegradability, biocompatibility, low toxicity, low costs and mild 

gelation, it has been widely explored for biomedical applications [15]. Structurally, alginate is 

a block linear co-polymer of D-mannuronic acid (M units) and L-guluronic acid (G units) (Figure 

3.1A) with ratios of the residues varying depending on the source of alginate. The regions 

within the alginate molecule vary between sequential M units, G units or alternated M and G 

units. Alginate hydrogels may be produced recurring to several cross-linking methods. The 

most common is the ionic crosslinking, in which crosslinking agents, as divalent cations (e.g. 

Ca2+) are combined with the alginate solution to form the hydrogel (Figure 3.1B). The structure 

of the gel is achieved when the alginate chains form junctions with adjacent chains (egg-box 

model of crosslinking). Some examples of the most used crosslinking agents are calcium 

chloride (CaCl2), calcium sulphate (CaSO4) and calcium carbonate (CaCO3). Whereas CaCl2 

has disadvantages regarding the insufficient control of the gelation rate that occurs rapidly, 

CaSO4 and CaCO3 have a low solubility, which slows the gelation process. However, for Ca2+ 

to be generated, a dissociation agent needs to be added to the solution. For CaCO3, glucono-

-lactone (GDL) is the commonly used agent. This molecule is responsible for lowering the pH 
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A B 

of the reaction medium thus allowing the dissociation of the Ca2+ from the CaCO3, which at 

neutral pH is not soluble in water [15]. 

 

 

 

 

 

 

Figure 3.1 Alginate chemical structure (A) and scheme of ionic crosslinking using Ca2+ as the crosslinking agent 
(B). Alginate is a linear co-polymer composed by blocks of D-mannuronate (M) and L-guluronate (G) residues, 
either consecutive or alternated in the chain. The content of M and G varies depending on alginate source. The 
crosslinking with divalent cations enables the formation of a hydrogel being that linking only made by the G-blocks 
of the alginate. 

 

Besides ionic crosslinking, other methods of crosslinking have been explored, namely covalent 

crosslinking and thermal gelation. Covalent crosslinking emerged as a reliable technique to 

overcome some of the ionic crosslinking problems such as the easy plastic deformation of the 

hydrogels after the application of stress forces. However some of the reagents of the covalent 

crosslinking are toxic and should be removed from the gels if one has a biological application 

in mind. On the other hand, hydrogels formed by thermal gelation respond to temperature 

changes, which is beneficial in the field of drug delivery systems. It is also possible to modify 

alginate with cell adhesion ligands that promote the crosslinking via receptor-ligand 

interactions without the need of adding other crosslinking agents. Among the vast range of 

applications of alginate hydrogels, a very important one relies on their use as synthetic ECMs. 

In this project, alginate based matrices were used as the 3D microenvironment surrounding 

astrocytes. Alginate’s unique features made it the ideal choice for mimicking brain’s 

extracellular space. Alginate matrices are highly reproducible and easy to obtain. In addition, 

alginate functions as a relative inert background once protein adsorption is not promoted, 

therefore cell interaction with the hydrogel is minimal [16]. This facilitates the control of the 

system complexity. Alginate structure also allows the recovery of the cells after culture through 

the use of quelators, thus further biochemical or cellular analysis can be performed. Besides, 

alginate’s mechanical properties are tunable to be identical to brain’s mechanical properties 

[17] and its 3D structure allows the formation of a more physiologically relevant model. In fact, 

astrocytes in the brain form a 3D network thus a 3D model is expected to better recapitulate 

cellular interactions occurring in vivo. 

 

Mimicking axons using electrospun fibers 

Electrospinning is a simple fiber producing method that relies on the use of electrical forces to 

produce polymer fibers with variable diameters in the nano to micron scale, and different 
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organization/orientation. This ninetieth century-technique is nowadays being widely used 

among the scientific community for diverse applications due to the standardized and consistent 

fiber production in the submicron range with small and tunable porosity and high surface-to-

volume ratio [18]. 

Electrospinning can be performed using a horizontal or a vertical setup (Figure 3.2). However, 

both have the same associated principals: the system consists of a high voltage power supply, 

a spinneret and a collecting plate that can either be static or rotating. The polymer solutions 

previously dissolved in appropriate solvents or melts are introduced in the spinneret to which 

an electric field is applied. An electric charge on the liquid surface is produced and the charged 

solution is then accelerated in the direction of the collector. A jet of the solution is ejected from 

the Taylor cone in a way that allows the solvent to evaporate and the deposition of the polymer 

on the collector to occur. 

 

   
Figure 3.2 Electrospinning setup. A) Vertical setup. B) Horizontal setup. Adapted from Bhardwaj, N. et al (2010) 

[18]. 

 

Electrospun nanofibers have been used for several applications. The possibility of adjusting 

the parameters allows the production of a broad spectrum of fibers. In the context of nerve 

repair, aligned fibers have been widely explored and can in fact serve as a reliable nerve 

conduit. Electrospinning fibers can also be seen as a drug delivery systems allowing the 

release of promising agents for neuronal regeneration [19].  

Another promising approach is the use of electrospinning fibers to mimic axons, which may be 

achievable due to the possibility of producing fibers with diameters similar to axons’ diameters 

(ranging from 0,1m to 10m [20]).  

The first publication on the use of fibers to act as surrogate axons was developed by Howe 

[21]. Later, Lee and co-workers, have used electrospinning polystyrene nanofibers to conclude 

about the influence of diameter in myelination processes [22]. Up until now, these are the only 

studies on this field.  

 

In the context of this project the use of engineered polymeric nanofibers enabled the study of 

the crosstalk between astrocytes and oligodendrocytes uncoupling the influence of axonal 

cellular and/or biochemical signals. The chosen strategy is undoubtedly interesting when one 

A B 
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intends to study a particular effect of one neuronal cell and at the same time approaching the 

in vivo conditions. In the study of myelination and remyelination, fibres enable the examination 

of OPC gene expression as well as biochemical signalling pathways involved in the formation 

and wrapping of the myelin without the influence of neurons. Also, biophysical and molecular 

cues that enable OPC differentiation and migration can be easily seen.  

 

Several polymers are reported to be suitable for electrospinning. Electrospinning fibers from 

natural (e.g., collagen, gelatin, etc), synthetic (poly(lactic acid), polyurethane, etc) or even a 

mixture of both type of polymers with proteins, nucleic acids, polysaccharides or drugs are 

being described over the past years. While natural polymers have advantages regarding 

biocompatibility and immunogenicity, synthetic polymers degrade slower and their fabrication 

processes are simpler. Besides, it is easier to adjust synthetic polymers’ mechanical properties 

such as viscoelasticity and strength [18]. 

One synthetic polymer that is successfully ascribed for electrospinning fiber production is 

poly(trimethylene carbonate-co--caprolactone) (P(TMC-CL)) [19]. 

P(TMC-CL) is a biodegradable elastomer and a co-polymer composed of poly(trimethylene 

carbonate) (P(TMC)) and poly--caprolactone (PCL) (Figure 3.3).  

 

 

Figure 3.3 TMC-CL co-polymer. x identifies trimethylene carbonate (TMC) and y is -caprolactone (CL).  

 

P(TMC) is hydrophobic, amorphous and rubbery, having glass temperature transitions around 

15-20ºC. Beyond, what makes P(TMC) interesting for tissue engineering applications is its 

enhanced lifetime due to slow degradation rates and generation of non-acidic products after in 

vitro hydrolysis. However, in vivo enzymatic degradation happens at high rates when high 

molecular weight polymer chains are used, disadvantage that pushed researchers to find 

solutions to meet many biomedical needs. One of them was the incorporation of other 

monomers in the P(TMC) chain. Besides having the aim of slowing the rate of biodegradation, 

this strategy also allows the tuning of TMC mechanical properties. The incorporation of PCL, 

which is a semi-crystalline, thought and characterized by a low glass transition temperature, 

aided the control of degradation rates of TMC [23, 24]. P(TMC-CL) has been previously 

proposed for the preparation of nerve conduits to promote nerve regeneration [24, 25]. 

Specifically, it was reported that Schwann cells, the myelinating forming cells of the PNS, can 

easily attach and proliferate on P(TMC-CL) surfaces [26].  
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In this study, a previously established 3D in vitro myelination platform composed of 

electrospinning polymeric (poly(trimethylene carbonate-co-ε-caprolactone) copolymer, 

P(TMC-CL)) nanofibers combined with a tissue engineered glial scar model of astrocytes 

embedded in alginate matrices [27] will be explored and the study on the effects of activated 

astrocytes in oligodendrocytes differentiation will be deepened.   
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MATERIALS AND METHODS 

 

Poly(trimethylene carbonate-co-ε-caprolactone) (P(TMC-CL)) synthesis and purification 

Poly(trimethylene carbonate-co--caprolactone) with a molar ratio of 10:90 mol% was 

synthetized as previously reported [24]. -caprolactone (CL) and trimethylene carbonate (TMC) 

were polymerized through ring-opening polymerization in the melt, using stannous octoate 

(SnOct2) as the catalyst (Figure 3.4).  

 

 

Figure 3.4 Chemical reaction between TMC and CL. 

 

TMC (from Boehringer Ingelheim, Germany) was dried overnight under vacuum at room 

temperature (RT) prior use. CL (Merk) was purified by drying overnight under calcium hydride 

(CaH2) and, subsequently, distilled under a reduced argon atmosphere (Figure 3.5).  

 

 

Figure 3.5 Photograph of CL distillation set-up. Legend: 1. condensation column, 2. balloon filled with argon, 3. 

Argon supply, 4. cold trap, 5. distilled -caprolactone. 
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At the end of the distillation, the CL was kept under argon until further use. 

The polymerization reaction was carried on in a previously washed, silanized (Serva) and dried 

overnight (105ºC) glass ampoule. Firstly, the ampoule and an adaptor were mounted and three 

argon purges were done to keep the system under a reduced argon atmosphere. The ampoule 

and the adaptor were then weighted and TMC was added to the ampoule. After 3 argon purges, 

the system (ampoule, adaptor and TMC) was weighted and TMC weight was calculated. 

Hereafter, the needed volume of CL to be added to TMC in order to achieve a 10:90 mol% 

ratio of TMC:CL was estimated. CL was added to the system previously purged with argon, 

the final weight of the system was measured and the weight of CL estimated. 

Afterwards, the catalyst, SnOct2 was added to the reaction in a proportion of 2x10-4 mol per 

mol of monomer. SnOct2 is the most common initiator system for polymerizations of lactones 

and TMC and was chosen due to its high efficiency and capability of completely convert 

monomers even at high ratios between the monomers and the catalyst [25]. The synthesis was 

carried out for a period of three days in the ampoule vacuum-sealed at a temperature settled 

to 130ºC in an oil bath. Afterwards, the reaction was stopped, by immersing the ampoule in 

cold water. Next, the glass ampoule was broken with a hammer and transferred to liquid 

nitrogen that makes easier the removal of the broken pieces of glass. 

Subsequently, the polymer was purified, firstly by dissolving overnight (room temperature, RT) 

at 3% (w/v) in chloroform (Merk) and then by precipitating it in a ten-fold volume of technical 

grade ethanol (99%). The precipitated polymer was dried at RT in a vacuum hoven under a 

stream of air during three days. The purified polymer (yield of recovery 85%) was stored at RT 

until further use. 

 

P(TMC-CL) polymer characterization 

Chemical composition  

The purified P(TMC-CL) was analysed in terms of chemical composition by 1H nuclear 

magnetic resonance (NMR). For that purpose, the polymer was dissolved in chloroform at a 

final concentration of 1mg/mL and sent to Centro de Materiais da Universidade do Porto 

(CEMUP) for the NMR experiments. NMR spectra were recorded with a Bruker Avance III 400 

MHz spectrometer in CDCl3. Chemical shifts are reported in ppm ( units). Mathematical 

spectrum analysis was conducted by Dr. Victoria Leiro (INEB/i3S).  

Molecular weight 

The number average molecular weight (Mn) and polydispersity index were calculated by gel 

permeation chromatography (GPC) using tetrahydrofuran as the mobile phase and 

conventional calibration to determine samples Mn. Procedures were performed at 
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Departamento de Química da Universidade de Coimbra by Joana Mendes (Professor Jorge 

Coelho’s group).  

 

P(TMC-CL) electrospinning fibers preparation and characterization 

In order to obtain nanofibers with a desired diameter and morphology, a wide range of 

electrospinning variables was tested: polymer concentration; polymer solvent ratio 

(dichloromethane (Merk) and dimethylformamide (Sigma) – DCM:DMF); needle diameter; 

distance between the collector and the syringe; flow rate and the applied electrical field. 

Variables tested are presented in Appendix B. To sum up, concentrations were varied 

between 9% and 12.5% (w/v), flow rate 0.8 mL/h and 1.2 mL/h, applied electrical field between 

10 kV and 17 kV and distance between collector and needle from 10 cm to 20 cm. Based on 

the morphology of the fibers (Appendix B) the best conditions were chosen for subsequent 

experiments: 10% of P(TMC-CL) dissolved in DCM and DMF at a ratio of 6:1 was dispensed 

at 0.9 mL/h using a 0.8 mm outer diameter spinneret and syringe (Soft-Jet, 4.26mm diameter) 

connected to a pump (Ugo Basile), distanced 16 cm from the collector (flat copper plate 

15x15cm), and applying an electrical field of 16kV. Fibers were collected to 13 mm pre-washed 

and dried coverslips (neuVitro) distributed along an aluminium foil during approximately 1h-

1.5h. Coverslips were then vacuum dried (Raypa or Binder vacuum ovens) overnight and 

stored at RT until further use. 

Fiber morphology was assessed by scanning electron microscopy (SEM). SEM was performed 

using a high resolution SEM with X-Ray Microanalysis: JEOL JSM 6301F/Oxford INCA Energy 

350. Prior analysis samples were coated with an Au/Pd thin film for 70s and with a 15mA 

current, by sputtering, using the SPI Module Sputter Coater equipment. Fiber diameter 

measurements (fiber mean diameter and fiber distribution) were estimated from SEM images 

and were calculated based on 100 different measurements from three different regions of the 

glass coverslip using image analysis software (ImageJ, version 1.50b; Rasband, W.S., 

ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/, 

1997-2016). 

 

Primary cell cultures 

All experiments involving animals and their care were performed in agreement with institutional 

ethical guidelines (IBMC/INEB/i3S), the EU directive (2010/63/EU) and Portuguese law (DL 

113/2013). Consequently, in order to be able to work in the animal facility, a Laboratory Animal 

course following FELASA B recommendations was performed and successfully concluded 

(see Final Report of the Tutorial Training in Appendix C). 
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All described procedures had the approval of the Portuguese official authority on animal 

welfare and experimentation (Direção Geral de Alimentação e Veterinária). Animals had free 

access to food and water and were kept under a 12h light/12h dark cycle. 

Cortex and meningeal tissue isolation 

To obtain oligodendrocytes, astrocytes and meningeal fibroblasts, Wistar Han rat pups in post-

natal day 2 (P2) were sacrificed by decapitation and brain was removed to further dissociate 

the cortex and the meningeal tissue. Approximately 8-16 pups were sacrificed every two 

weeks. Removal of brain was performed using straight micro-scissors and fine forceps 

previously cleaned and sterilized. The procedure was conducted under a magnifying glass in 

a Petri dish containing Hank's Balanced Salt Solution (HBSS, Gibbco) without calcium and 

magnesium supplemented with 2% (v/v) penicillin/streptomycin (P/S) (Gibco). Firstly, the skin 

of the head was cut until the nose with a sharper scissor with the other hand holding the head 

(from the ear) with a big forceps. The skin was opened to the corners in order to let the skull 

bones be visible. Then, with a straight microscissor, the skull bone was cut until the nose and 

to the sides. The bones were removed with a thinner forceps and a special care was taken to 

not damage the cortex. With the same forceps, the cortex was carefully removed (from the 

olfactive bulbs) and cut by the cerebellum. Subsequently, using thinner forceps, the two 

hemispheres were separated and the meningeal tissue was detached from the cortex. Cortex 

and meningeal tissue were maintained in ice-cold HBSS without calcium or magnesium with 

P/S to prevent cell dissociation and death. 

 

Mixed glial cell (MGC) cultures 

After cortex and meningeal tissue removal, the cortices were firstly mechanically digested with 

a 10 mL serological pipette and passed through a 25G needle to dissociate clusters. Cortices 

were then enzymatically digested with HBSS without calcium or magnesium supplemented 

with 0,0025% (w/v) trypsin (Sigma) and 0.001mg/mL DNase I (Applichem LifeSciences) for 15 

min at 37ºC. The action of the trypsin was inhibited by the addition of Dulbecco’s modified 

Eagle medium (DMEM) Glutamax High glucose (Gibco) supplemented with 10% (v/v) heat 

inactived Foetal Bovine Serum (FBS, Sigma F7524) and 1% (v/v) P/S and the homogeneized 

was then centrifuged at 500g during 10 min. The supernatant was poured off, the pellet re-

suspended in serum containing DMEM and filtered through a 40 m nylon cell strainer (BD 

Falcon) to remove large cell clusters. Finally cells were distributed for T75 cell culture flasks, 

previously coated with 100 mg/mL poly-L-lysine (PLL, mol wt 30 000-70 000, Sigma) (30 min, 

37ºC) at a density of cell suspension obtained from two brains per flask. Cells were cultured 

with serum containing DMEM at 37ºC, 5% CO2 during 4 days to allow cell adhesion to the flask 

and then medium was changed every 2-3 days (changing ¼ of the medium at day 4; ½ at day 

6 and all medium from day 8 on). Cells were maintained during 15 days until confluent (see 

Figure 3.6), when the components of the MGC cultures where mechanically separated (see 

following section).  
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Figure 3.6 Mixed Glial Cell culture progression over days. Cell culture confluence increased visibly as a function of 

time in culture. At day 14 a confluent bed layer of astrocytes (grey phase) with OPCs on the top (dark phase) is 

easily distinguished. Scale bar represents 30m. 

 

Oligodendrocyte progenitor cell (OPC) cultures 

OPCs were mechanically isolated from MGC as previously described [28, 29]. At day 14 after 

plating, MGC were confluent with phase-dark OPCs appearing on top of phase-grey bed layers 

of astrocytes (Figure 3.6). On that day, a pre-shake was performed: the T75 lids were tightly 

sealed and transferred to an horizontal orbital shaker (Infors) during 2h at 210 RPM (37ºC) to 

remove the majority of loosely adherent microglia cells. After that, medium was replaced and 

cells were left at 37ºC for 2h to allow the normal metabolism stabilization. An overnight shake 

(18h-20h) at 230 RPM (37ºC) was then performed to further detach loosely attached microglia 

and OPCs. After shaking overnight, OPCs were further purified by differential selective 

adhesion. The cell suspension was transferred to non-treated polystyrene Petri dishes (10 cm 

of diameter) to allow microglia to adhere during 2h at 37ºC and unattached OPCs were 

collected, passed through a 40m cell strainer to remove cell clusters and centrifuged at 450g 

during 10 min (RT). The cell pellet was then re-suspended, cells counted and seeded on the 

top of 13 mm glass coverslips previously coated with PLL (as above described) or P(TMC-CL) 

fibers, previously sterilized (10 min in 70% Ethanol, technical grade, twice). Cells were 

maintained during 24h-48h in proliferation medium (OPC SATO Medium) (Table 3.1). After 

that period, cells were cultured in differentiation medium (OL SATO Medium) (Table 3.1). 

The purity of OPC culture was estimated by immunocytochemistry. 

 

 

 

 

 

 

 

 

 

 

 

Day 7 Day 11 Day 14 Day 4 
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Table 3.1 Medium composition for proliferation (OPC SATO) and differentiation (OL SATO) of OPCs. A stock of 

SATO 10x was prepared, aliquoted and frozen at -20ºC until further use. OPC SATO and OL SATO were freshly 
prepared by supplementing the starting SATO medium.  

 Final Concentration 

Components SATO Medium (10x) 

DMEM Glutamax High Glucose (Gibco, 31966-047) - 

Transferrin (Sigma, T2036) 1 mg/mL 

Putrescine (Sigma, P5780) 160g/mL 

Bovine Serum Albumine (BSA) (BioWest, P6154) 1 mg/mL 

Progesterone (Sigma, P8783), dissolved in 99% Ethanol 600 ng/mL 

Sodium selenite (Sigma, S5261), dissolved in 0.1N NaOH 400 ng/mL 

Thyroxine (Sigma, T1775), dissolved in 0.1N NaOH 400 ng/mL 

Triiodo-L-Thyronine (Sigma, T6397), dissolved in 0.1N NaOH 300 ng/mL 

OPC SATO (Proliferation medium) 

SATO 10X 1x 

Insulin (Sigma, 19278) 5g/mL 

Fibroblast Growth Factor (FGF) (Peprotech (100-18B)) 0.01g/mL 

Platelet-derived growth factor-AA (PDGF-AA) (Peprotech (100-13A)) 0.01g/mL 

P/S (Gibco) 1% (v/v) 

OL SATO (Differentiation medium) 

SATO 10X 1x 

Insulin (Sigma, 19278) 5g/mL  

Foetal Bovine Serum (FBS) (Sigma Aldrich, F7524), heat inactivated  0.5% (v/v) 

P/S (Gibco) 1% (v/v) 

 

 

Astrocyte culture 

The shaken T75 were then cultured at 37ºC 5% CO2 for additional two weeks and every week 

flasks were shaken to obtain OPCs. After the third shake, the remaining cells are mainly 

astrocytes. In order to obtain pure astrocytes, cells were trypsinized and seeded on new T75 

flasks at least three times. Astrocytes were maintained in DMEM Glutamax High glucose 

supplemented with 10% (v/v) heat inactivated FBS (Sigma) and 1% (v/v) P/S (Gibco). Cell 

culture purity was then analysed and estimated by immunocytochemistry. 

Figure 3.7 summarizes the process of cortex isolation, MGC culture and OPCs and astrocytes’ 

obtainment. 
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Meningeal Fibroblasts culture 

After removal of pups’ brain meninges, the tissue was mechanically and enzymatically 

digested with HBSS without calcium or magnesium supplemented with 10% (v/v) trypsin for 

30 min at 37ºC. Dissociated meninges were seeded in T75 flasks previously coated with PLL 

(above described) and were maintained at 37ºC, 5% CO2 in DMEM Glutamax High Glucose 

supplemented with 10% (v/v) heat inactivated FBS (Sigma) and 1% (v/v) P/S (Gibco). After 

reaching confluence, cells were trypsinized and frozen down (10% Dimethyl sulfoxide – DMSO 

in FBS) until passage three. 

Fibroblast conditioned medium (CM) was obtained by culturing 1-1.5 x 106 meningeal 

fibroblasts from frozen vials in PLL coated (as described previously) T75 cultured during three 

days. Medium was collected, centrifuged at 500g during 10 min and stored at 4ºC until use 

(CM is stable at 4ºC for up to 15 days). 

 

Preparation of 3D alginate discs with astrocytes 

Alginate hydrogel discs were produced as described before [30]. Firstly, ultrapure sodium 

alginates VLVG and LVG (low and high molecular weight) (FMC) with a high glucuronic acid 

content (68%) were mixed at a proportion of 1:1 and dissolved at a final concentration of 2% 

(w/v) in a 0.9% NaCl solution. This mixture was then slowly shaken overnight at 4ºC. The 

alginate solutions were sterilized by filtering with a 0.22m filter (Millex) and stored until further 

use. 

In situ hydrogel alginate discs were prepared by mixing CaCO3 (FLUKA) (Ca2+/COO- molar 

ratio = 0.288), -gluconolactone (GDL, Sigma) (Ca2+/GDL molar ratio = 0.125), 2% (w/v) 

alginate and primary rat astrocytes in order to obtain final concentration of 1% alginate 

Mixed Glial Cell 
Culture (15 

days) 

Pre-shake (210 
RPM, 37ºC 2h) 

Wistar Han 
rat pup (P2) 

cortex 

Shake overnight 
(230 RPM, 

37ºC) 

Cell suspension 
adhering to non-

treated Petri dishes 
(2h, 37ºC) 

Plate OPCs 

 
Trypsinize flasks to 
obtain astrocytes 

Figure 3.7 Scheme of the process of OPC and astrocyte isolation. Firstly, cortex were extracted from P2 rats and 

plated in T75 flasks (mixed glial cell cultures). After reaching confluency, the components of the MGC cultures were 
mechanically separated and astrocytes and OPCs obtained. 
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matrices. Primarily, 4x106 viable cells/mL (determined by the Trypan Blue exclusion assay) 

were added and homogeneized to 2% (w/v) alginate. For the preparation of the CaCO3 solution 

it was firstly autoclaved, then weighted and dissolved in NaCl 0.9% at a final concentration of 

61.2mg/mL. GDL was prepared at a final concentration of 96.8mg/mL in NaCl 0.9% and 

subsequently sterilized by filtration (0.22 m filter). CaCO3 and GDL were rapidly added to the 

solution of alginate and cells, the suspension homogenised and pipetted to pHEMA-treated 

culture plates (BD Falcon) (20L) with a gel pipette. Crosslinking occurred at 37ºC, 5% CO2 

during 1h. After that time, DMEM Glutamax High glucose supplemented with FBS and P/S 

(hereafter designed as DMEM) or CM was added to alginate discs and maintained in culture 

at 37ºC, 5% CO2.  

 

OPCs and astrocytes co-culture system 

Co-cultures experiments were performed as schematized in Figure 3.8. Firstly, astrocytes 

were cultured in alginate discs as previously described and cultured either in the presence of 

DMEM or CM media (day 0). After three days, OPCs were seeded on the top of P(TMC-CL) 

fibers and allowed to proliferate during 24h (in OPC SATO medium). Afterwards, OPC SATO 

medium was changed for OL SATO medium and alginate discs were added to a transwell with 

a 0.4 m pore (BD Falcon) coupled to the well where OPCs were seeded. Cells were kept at 

37ºC, 5% CO2 for additional five days and OL SATO medium was changed regularly (every 2-

3 days). On the day 9 of experiment, RNA from OPCs (300 000 cells) was extracted to further 

gene expression analysis by quantitative real-time polymerase chain reaction (qRT-PCR) (see 

section 9).  

 

 

 

 

 

 

 

 

 

 

 

In alternative, after the addition of the alginate discs to the OPCs with fibers, cells were fixed 

after one, three or seven days and analysed by means of immunocytochemistry for the 

expression of MBP and NG2 (methodology previously described in section 5). 

Figure 3.8 Scheme of the experiment procedure to evaluate gene profile expression of OPCs after co-culturing 
with activated/non-activated astrocytes.  

Astrocytes seeded 
in alginate hydrogels 
with fibroblast CM or 

DMEM 

OPCs seeded on 
the top of P(TMC-

CL) fibers 

Alginate discs added to 
a transwell on the top 

of OPCs 

Day 9 

qRT-PCR 

Day 11 

Immuno 
cytochemistry 

Immuno 
cytochemistry 

Day 4 Day 5 Day 3 Day 0 Day 7 
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To analyse the effects of the reversion of the activated phenotype of the astrocytes, 

pharmaceutical grade ibuprofen (purity >99%) (Bluepharma) was added to cultures (0.04M) 

on the day 9 of the experiment and after 48h, RNA from OPCs was collected for further genetic 

expression profile analysis.  

 

Live-dead assay 

Cells were washed with phosphate buffered saline (PBS) and incubated with a calcein-AM 

solution (Promega) at a final concentration of 1:250 (in PBS) during 20 min at 37ºC, 5% CO2, 

protected from light. After that period, cells were washed three times with PBS to remove the 

excess of calcein-AM followed by incubation with propidium iodide (PI) (Sigma) during 5 min. 

The excess of PI was removed by rinsing cells twice with culture medium and immediately 

observed under a confocal microscope (SP5, Leica, Germany). Cells positive for PI or for 

calcein-AM were counted from ten different images from two independent samples using 

image analysis software (ImageJ, version 1.50b; Rasband, W.S., ImageJ, U. S. National 

Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/, 1997-2016). 

 

Quantitative real-time Polymerase Chain Reaction (qRT-PCR) 

In order to perform quantitative real-time Polymerase Chain Reaction (qRT-PCR), RNA from 

300 000 oligodendrocytes cultured on polymeric fibers (50 000 cells per 13mm glass coverslip 

covered with fibers) was extracted using the Quick-RNA MiniPrep kit (Zymo Research) 

according to the manufacturer’s recommendations. Briefly, cells were lysed using RNA lysis 

buffer for 7/10 min (time of lysis was optimized before – see in the Appendix D for the 

optimization process), and the lysate was then centrifuged. Afterwards, RNA was precipitated 

using ethanol (96%, analytical grade) (Merck) and a DNase I treatment was conducted for 

15min. RNA recovering was achieved using RNA Prep Buffer. Finally, RNA was eluted in 

DNase/RNase-Free water (Zymo Research) and concentrations measured in NanoDrop 

spectrophotometer (Thermo Scientific) at an absorbance of 280nm. Ratios of 260/280 and 

260/230 between 1.8 and 2.2 were accepted as non-contaminated samples and proceed to 

cDNA synthesis. In cases of doubts, a RNA degradation assay by Experion (Biorad) was 

performed (see Appendix D). Samples were stored at -80ºC in low-binding Eppendorf tubes® 

until further use. After RNA extraction, cDNA was synthetized using NZY First Strand cDNA 

Synthesis Kit (NZYTech) and following producer’s directives. Briefly, on ice, NZYRT 2x Master 

Mix was mixed with NZYRT Enzyme Mix and with RNA (between 70 and 200ng). The mixture 

was incubated at 25ºC for 10 min followed by an increase in the temperature to 50ºC, which 

was maintained during 30 min. Subsequently, the reaction was inactivated by heating at 85ºC 

for 5 min and then chilled on ice for approximately 5 min. NZY RNase H (E. coli) was pipetted 

to the mixture and the reaction continued for 20 min at 37ºC. At the end, samples were kept at 
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-20ºC until further usage. It is worth noting that, the temperature cycles were performed in a 

Thermocycler (Biometra). 

After synthetizing cDNA, qPCR was performed using Ywhaz as endogenous control to serve 

as a normalizer to the expression levels of Mbp. Ywhaz and Mbp primer sequences were gently 

provided by Dr. Pedro Moreno (INEB/i3S) and Dr. Joana Paes (IBMC/i3S), respectively, and 

purchased from ThermoScientific. Primer sequences used for qRT-PCR and were the follow: 

 

Mbp sense 5’ TGT CAC AAT GTT CTT GAA GAA 3’ 

Mbp anti-sense 5’ GCT CCC TGC CCC AGA AGT 3’ 

Ywhaz sense 5’ ACG ACG TAC TGT CTC TTT TGG 3’ 

Ywhaz anti-sense 5’ GTA TGC TTG CTG TGA CTG GT 3’ 

 

Analyses were performed on IQ5 (Biorad) using SYBR Green (SYBR Green Master Mix, 

Applied Biosystems) according to manufacturer’s instructions. Briefly, a master mix containing 

10L iTaq, 0.1M of each primer (0.25L each) and 8.5L nuclease free-water was prepared, 

in which 1L of cDNA was added. Reactions were performed in triplicates and qPCR cycle 

was the follow: 

 

Table 3.2 qRT-PCR for Mbp and Ywhaz. Annealing temperature used was 55ºC. 

Step 
Temperature 

(ºC) 
Time 

Number 
of cycles 

Activation 95 3min 1x 

Amplification 
cycle 

95 10s 
40x 

55 30s 

Storage 4 - - 

 

To address the specificity of the reactions, melting curves were analysed and found that there 

was no unspecific reaction product of the qPCR. It is worth noting that, before qPCR analysis 

for all the samples, both primer sets were tested and their efficiencies calculated. For that 

purpose, a series of dilutions were done (1/10 and 1/100) and amplification cycles analysed 

(Appendix E). Other housekeeping genes (Hprt and Tbp) were also tested regarding their 

amplification cycles and efficiency (Appendix E). After a deep analysis, Ywhaz was chosen 

as the reference gene as it was the one that presented the most adequate CT values and a 

good efficiency and amplification curve. 

qPCR data was analysed using the delta CT method (ΔCT) by calculating the difference 

between reference and target CT values for each sample. This methodology assumes that the 

target and reference genes are amplified with efficiency near 100%, which was verified 

(Appendix E). 
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Immunocytochemistry 

For experiments involving immunocytochemistry analysis, before fixation, cells were washed 

twice with pre-warmed phosphate buffer saline (PBS) (Gibco) solution for 10 min. Afterwards, 

cells were fixed with 4% (wv/v) paraformaldehyde (PFA) (Merck Milipore) during 10/15min at 

RT, washed twice with PBS and permeabilized and blocked in PBS containing 5% (v/v) normal 

goat serum (NGS) (Biosource) and 0.3% Triton X-100 (Sigma) for 1h at 4ºC. Primary 

antibodies were then diluted in PBS with 1% (v/v) NGS and 0.15% (v/v) Triton X-100 and 

incubated at 4ºC overnight. Following the primary antibody incubation, cells were washed three 

times with PBS to remove the excess of the primary antibodies and the secondary antibodies 

were diluted in PBS containing 1% (v/v) NGS and 0.15% (v/v) Triton X-100 and added to the 

cells. Secondary antibodies’ incubation was conducted at 4ºC for 45min to 1h. Afterwards, 

cells were washed three times with PBS and incubated with Hoescht (ThermoFisher) diluted 

in PBS (1:1000) containing 1% (v/v) NGS and 0.15% (v/v) Triton X-100 for 15min at RT. 

Subsequently, cells were mounted using FluoroMount (Sigma) and observed under an inverted 

fluorescence microscope (AxioVert) or confocal microscope (SP5, Leica, Germany). The 

following primary antibodies were used: rat anti-MBP (1:100, Abd Serotec), rabbit anti-NG2 

(1:250, Merck), rabbit anti-IBA1 (1:500, Wako), mouse anti-III tubulin (1:500, Promega) and 

rabbit anti-GFAP (1:500, Dako). Secondary antibodies used were 488 donkey anti-rat (1:1000, 

Invitrogen), 647 donkey anti-rabbit (1:1000, Invitrogen) and 488 donkey anti-mouse (1:1000, 

Invitrogen). For the evaluation of culture purities, the combination of the used primary 

antibodies is summarized in Table 3.3. 

 

Table 3.3 Combination of primary and secondary antibodies to evaluate OPCs’ and astrocytes’ cultures purities. 

 PRIMARY ANTIBODIES SECONDARY ANTIBODIES 

OPCS’ 

CULTURES 

Rat anti-MBP Rabbit anti-NG2  
488 donkey 

anti-rat 

647 donkey 

anti-rabbit 

Rat anti-MBP 
Rabbit anti-

IBA1 

488 donkey 

anti-rat 

647 donkey 

anti-rabbit 

Mouse anti-III 

tubulin 

Rabbit anti-

IBA1 

488 donkey 

anti-mouse 

647 donkey 

anti-rabbit 

Rat anti-MBP 
Rabbit anti-

GFAP 

488 donkey 

anti-rat 

647 donkey 

anti-rabbit 

ASTROCYTES’ 

CULTURES 

Mouse anti-III 

tubulin 
Rabbit anti-NG2 

488 donkey 

anti-mouse 

647 donkey 

anti-rabbit 

Mouse anti-III 

tubulin 

Rabbit anti-

IBA1 

488 donkey 

anti-mouse 

647 donkey 

anti-rabbit 

Rat anti-MBP 
Rabbit anti-

GFAP 

488 donkey 

anti-rat 

647 donkey 

anti-rabbit 
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In experiments where cell fluorescence intensity measurements were conducted, ten different 

images of two independent glass coverslips were taken and analysed using an image analysis 

software (ImageJ, version 1.50b; Rasband, W.S., ImageJ, U. S. National Institutes of Health, 

Bethesda, Maryland, USA, http://imagej.nih.gov/ij/, 1997-2016). To estimate fluorescence 

intensity, the cell of interest was selected by drawing a line around the cell and the values for 

area, mean and integrated density were shown in “Measure” tool. A non-fluorescent region 

closed to the cell was also selected and appointed as background. The mean fluorescence of 

the background was also calculated and the corrected total cell fluorescence (CTFC) was 

estimated by subtracting the integrated density of the cell for the product between the area of 

selected cell and the mean fluorescence of background readings (CTFC = Integrated density 

– (area of selected cell x mean fluorescence of background readings). 

 

Statistical analysis 

Statistical analysis was performed using GraphPad Prism version 7.00 for Windows, 

GraphPad Software, La Jolla California USA (www.graphpad.com). Statistical differences 

between groups were calculated based on t-student test (two group comparison) or two-way 

ANOVA when two factors affected the measurements, followed by Tukey’s multiple 

comparisons test for multiple comparisons. Gaussian distributions were tested using 

D’Agostino and Pearson normality tests. When Gaussian distribution could not be tested due 

to the lack of measurements or failed in the above-mentioned tests, non-parametric tests were 

performed. Mann-Whitney tests were used in the case of unpaired t-tests. A p-value below 

0.05 was considered statistically significant and data are shown as mean ± standard deviation 

(SD). 
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RESULTS AND DISCUSSION 

 

P(TMC-CL) polymer was successfully synthetized  

The reaction between CL and TMC occurred through ring-opening polymerization in the melt 

at a monomer molar ratio of 10:90 (TMC:CL). In order to determine the resulting chemical 

composition of the prepared polymer a 1H NMR analysis was performed. The resulting 

spectrum is depicted in Figure 3.9.  

The copolymer composition was determined by 1H-NMR analysis of the purified polymer and 

peaks for polymeric TMC were found in δ=1.93-2.07ppm (multiplet), δ=4.09-4.25ppm 

(multiplet) and for polymeric CL δ=1.34-1.41ppm (multiplet), δ=1.60-1.68 (multiplet), δ=2.30 

(triplet) and δ=4.05 (triplet). The monomeric spectra for separated TMC and CL was not 

performed, although, according to the literature [24] the peaks showed the expected drift in the 

spectrum, therefore it was possible to conclude that all monomers reacted between each other. 

The areas under the curves were measured and assuming the value of the area for CL as the 

reference (100.000), the area of TMC was estimated as 11.71. The polymer was found to 

content 89% of CL and 11% of TMC, values that were in accordance with polymer ratio 

charged (90% CL and 10%TMC). This result indicates that the synthesis reaction was 

successfully conducted. 

 

 

Figure 3.9 NMR Spectrum of purified P(TMC-CL) (400MHz, CDCl3). The letters (a-h) correspond to peaks of TMC 

(a-c) and CL (d-h). The peaks used to estimate the proportion between CL and TMC were the ones corresponding 
to h and b letters. 
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The obtained polymer was subsequently characterized in terms of molecular weight 

distribution. This characterization is important to infer many physical properties of the 

polymers, namely, thermal and mechanical properties. In Table 3.4 the values of the number 

and weight average molecular weight – Mn and Mw, respectively – and polydispersity index 

(PDI) are presented. The number average molecular weight (Mn) is the statistical average 

molecular weight of all the polymer chains in the sample. The weight average molecular weight 

(Mw) takes into account the molecular weight of individual polymer chains in determining the 

molecular weight average. By analysing the retention volumes of the samples in specific 

chromatography columns and comparing with known standards, GPC allows the determination 

of the average molecular weight of polymers [31]. The polydispersity index (PDI) is used as a 

measure of the broadness of a molecular weight distribution of a polymer being defined by the 

Mw/Mn ratio. 

P(TMC-CL) was found to have a relatively high molecular weight (Mn=6.8 x 104 Da) and a low 

polydispersity index (PDI) below 2 (Figure 3.10, Table 3.4). Guaranteeing that P(TMC-CL) 

has a high molecular weight is very important to assure the necessary mechanical properties 

to allow the preparation of fibres with an elastomeric behaviour [24].  

 

 

Figure 3.10 GPC graph for determining P(TMC-CL) 
molecular weight. 

 

Table 3.4 GPC results. 

Polymer molecular weight 

characteristics 

Mn 6.8 x 104 

Mw 10.8 x 104 

PDI (Mw/Mn) 1.58 

Legend: PDI Polydispersivity index; Mn number 
average molecular weight; Mw weight average 
molecular weight.

 

 

P(TMC-CL) nanofibers present similar diameters to CNS axons 

In the present study, electrospun fibers were chosen to serve as artificial neurons, hence 

allowing the specific monitorization of the interaction between oligodendrocytes and 

astrocytes. 

In order to obtain P(TMC-CL) nanofibers with the required characteristics a process of 

electrospinning optimization was conducted (Appendix B). Optimized fibers were obtained 

using the following conditions: 10% P(TMC-CL) dissolved in DCM:DMF (6:1 ratio) and 

dispensing it at a flow rate of 0.9mL/h, with an applied voltage of 16kV along a distance of 
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16cm between the spinneret and the flat collector. P(TMC-CL) nanofibers were observed using 

high resolution microscopy (SEM) (Figure 3.11 A,B) and the distribution of the diameters 

estimated. The nanofibers were found to have a mean diameter of 0,543 m ± 0,346 m with 

fibers ranging from 0,1m to 1,9m (Figure 3.11 C).  

 

           
Figure 3.11 P(TMC-CL) electrospinning nanofibers morphology and diameter distribution measurements. A. and 
B. represent SEM images of optimized electrospinning conditions for P(TMC-CL). Scale bar is depicted in both 
images. C. shows fiber diameter distribution from 100 measurements from three different regions of the glass 

coverslip. 

 

It has been reported that the majority of CNS myelinated axons have diameters ranging from 

0,3m to 2m with an average diameter near 1m [32]. Therefore, P(TMC-CL) fiber diameters 

close resemble CNS myelinated axons diameters’. Besides, fibers have elongated 

morphologies and are depicted in a random matrice, facts that make them suitable to mimic 

axons.  

 

 

Pure primary rat OPCs and astrocytes cultures were effectively obtained 

To investigate if OPCs and astrocytes cultures were free of any other cell type contaminant an 

immunocytochemistry test against neural cells’ characteristic markers was performed. OPC 

cultures were evaluated for the presence of neurons (through expression of the characteristic 

marker III tubulin [33]), microglia (analysing cell expression of IBA1, a specific calcium binding 

protein [34]), and astrocytes (for the expression of GFAP, a hallmark of the astrocytes) (Figure 

3.13). On the other hand, astrocyte cultures were evaluated for the expression of NG2 and 

MBP (OPC and OL markers, respectively), IBA1 (microglia) and III tubulin (neurons) (Figure 

3.12). Both OPCs and astrocytes were seeded on PLL coated 13 mm glass coverslips 

(50 000 cells and 30 000 cells per coverslip, respectively) and fixed at day 3 and 5 of culture, 

respectively. The number of cells that were not astrocytes or oligodendrocytes/OPCs in 

astrocytes and oligodendrocytes cultures, respectively, was quantified and is shown in Table 

3.5. Cell culture purity was found to be 92% in both cases, which indicates that both cell types 

were successfully isolated from rat pups’ cortex. These results are in accordance with values 

usually obtained in this kind of primary cell isolation [9, 27].  

A B C 
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Figure 3.12 Representative images of astrocytes stained with neuronal and glial characteristic markers. Staining 

was made for the presence of oligodendrocytes (MBP) (A), neurons (III tubulin) (B and C), OPCs (NG2) (B) and 

microglia (IBA1) (C). Scale bar indicates 50m. 

 

 

 

 

     

Figure 3.13 Representative images of oligodendrocytes stained with neuronal and glial characteristic markers. 

Staining was made for the presence of microglia (IBA1) (A and B), neurons (III tubulin) (B) and astrocytes (GFAP) 

(C). Scale bar indicates 50m. 

 

 

Table 3.5 Quantification of the number of positive cells for non-astrocytic or non oligodendroglial cells in astrocytes 
and oligodendrocytes cultures, respectively (n=1). 

 

 

 

 

 

 

 

 

 

Positive cells (%) Astrocyte cultures OPC cultures 

IBA1 6.6 1.8 

III TUBULLIN 0.3 2.1 

MBP 0 - 

NG2 0.7 - 

GFAP - 3.4 
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OPCs are capable to adhere, proliferate and differentiate when cultured on P(TMC-CL) 

nanofibers 

P(TMC-CL) fibers were used to culture OPCs and to serve as surrogate axons. In the presence 

of appropriate culture medium containing determinant factors for their development, OPCs 

were found to extensively adhere to fibers. Figure 3.14 shows a representative bright field 

confocal image of OPCs cultured with fibers. Engineered nanofibers where therefore proved 

to be a non-toxic and supportive environment that stimulates oligodendrocytes’ adhesion. 

 

 

Figure 3.14 OPC adherence to P(TMC-CL) fibers. The arrow shows the presence of a cell clearly embedded in 

the fibers mesh. Scale bar indicates 25m. 

 

In order to evaluate OPCs’ proliferation and differentiation capacities when cultured on the 

P(TMC-CL) fibers, OPCs were cultured in the presence of OL medium after the culture in 

proliferation medium for two days. After 1, 3 and 7 days in culture the expression of progenitor 

or myelin markers (NG2 and MBP, respectively) was evaluated. P(TMC-CL) fibers were found 

to stimulate proliferation and differentiation of OPCs in a reproducible manner. On the first day, 

after stimulating cells to differentiate, the majority was extending NG2 processes, indicating a 

non-differentiated state of the cells (Figure 3.15, I). On day 3 it was possible to observe cells 

with some processes elongated along the fibers (Figure 3.15, II). Interestingly, in the last case, 

at day 7, cells expressing huge and outstanding processes were covering almost all the fiber 

area (Figure 3.15, III). Quantification analysis showed that at day 1, more than 80% of the 

cells were expressing the progenitor marker NG2 and at day 7, the number of cells expressing 

NG2 was below 10% of the total cells (Figure 3.16).  
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Figure 3.15 Representative images showing OPC differentiation ability in P(TMC-CL) fibers. Images I, II and III 

represent detailed views of the left images. In image I the arrow points out fibers (gray) and in image II a myelin 

process around a fiber is shown. Scale bar indicates 50m (images on the left) and 25m (images on the right). 
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Figure 3.16 Quantification of the number of cells expressing MBP and NG2 over day 1, 3 and 7 of culture 

(differentiating conditions). Results show mean ± standard deviation (n=2 independent experiments), asterisks 
represents statistical significance (** p < 0.01, **** p < 0.0001). Statistical analysis was performed using two-way 
ANOVA and Tukey’s multiple comparisons test. 

 

In addition, to quantify the mRNA levels of the myelin marker, qPCR for MBP was performed. 

Gene expression profile of OPCs cultured on fibers corroborates the previous observation 

shown by immunocytochemistry: MBP expression increased over the period of culture (Figure 

3.17). Although just one experiment was performed the visible tendency of OPCs to augment 

the expression of the Mbp gene is in accordance with the expectations. Moreover, it was also 

noticed that the MBP expression was more prominent in P(TMC-CL) than in glass coverslip 

controls, highlighting the added value of a 3D microenvironment when trying to mimic in vivo 

conditions. The presented results are in accordance with the ones previously reported by the 

group (data not published) [27]. 

 

 
Figure 3.17 mRNA levels of OPCs cultured either in P(TMC-CL) fibers or in PLL-coated glass coverslips at days 1, 
2, 3, 5 and 7. Mbp expression was normalized to the housekeeping gene Ywhaz (n=1). 
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Using engineered fibers to act as surrogate axons was previously explored by other groups. 

Howe et al, in 2006, showed that Matrigel® coated glass microfibers and vicryl microfibers can 

act as axons, wrapping myelin in the presence of a cell line of pre-myelinating oligodendrocytes 

[21]. Besides, Lee and co-workers have used aligned polystyrene electrospinning fibers with 

a diverse range of diameters to study myelination in closer detail [22]. Therefore, these studies 

sustain the reliability of this platform as a simple methodology to eliminate axon-OPC crosstalk.  

However, in the last study, OPC differentiation was achieved after long periods of culture (15 

days [22]). Here, cells were shown to be differentiated in a rapid period of time, highlighting 

the advantages of using P(TMC-CL) fibers regarding polystyrene fibers. These polymers have 

distinct mechanical properties, which can influence the behaviour of OPCs and their 

myelination capacities [35]. Therefore, the proposed platform is relevant to obtain significant 

myelination in a short period of time. 

Moreover, it was also observed that OPC differentiation occurs without any additional stimulus 

besides the seeding on P(TMC-CL) fibers. The fact that these polymeric fibers did not need 

the commonly used adhesion coating molecules (e.g. poly-lysine) to promote OPC adhesion 

is an advantage over other similar studies that use fibers to mimic axons and contradicts the 

postulate that fiber coating is fundamental for OPC differentiation in vitro [22]. Therefore, it can 

be hypothesized that, although interactions between axons and OPCs are crucial to trigger the 

correct process of myelination, OPC differentiation may not be totally dependent on these 

signals. 

Furthermore, this in vitro 3D axonal myelination platform reveals to be advantageous regarding 

the traditionally used strategies to study myelination. Over time, researchers have gained 

insight on myelination processes using neurons-OPCs co-cultures. However, these are time 

consuming and have high associated costs. Besides, so far there is no in vitro model of 

myelination derived uniquely from CNS cells. Conventional models rely on the use of co-

cultures of OPCs and dorsal-root ganglia (DRG) neurons [36]. However, these are not purely 

CNS neurons thus a reliable CNS in vitro myelination model remains to be established [37]. 

 

 

Astrocytes remain viable in alginate hydrogels and fibroblast conditioned medium is 

capable of activating astrocytes cultures 

Astrocytes were cultured in 1% (w/v) alginate matrices either in the presence of meningeal 

fibroblast CM or astrocytic normal culture medium (termed DMEM) and their viability was 

analysed at day 1, 3 and 7 of culture by a live-dead assay (Figure 3.18A). Quantification of 

the live and the dead cells showed no statistical significant differences between both media 

and throughout the culture period, although at day 7 a slight decrease in the number of live 

cells was observed in both conditions (Figure 3.18B). 
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Figure 3.18 Evaluation of the viability of astrocytes within alginate discs at day 1, 3 and 7. A. Representative images 

of the live-dead assay. Astrocytes cultured either with DMEM (top) or CM (bottom) were stained with Calcein-AM 

(green, showing the live cells) and propidium iodide (red, representing the death cells). Scale bar represents 100m. 
B. Quantification of the live cells by image analysis (ImageJ). Results show mean ± standard deviation (n=2). No 

statistical significance among conditions or days was found. 

 

It is worth noting that, contrarily to what has been commonly described in the production of 

alginate matrices for cell culture, in this study no cell adhesion motif was used. Since cells do 

not have cell receptors that recognize alginate, some cell adhesion molecules have been used 

to modify alginate matrices. The most studied case is the sequence arginine–glycine–

aspartate (RGD), which was proved to promote cell adaptability to the hydrogels [15]. 

However, in this case, cells show adequate survival levels and adaptability to the discs which 

allowed the progression of the present work.  
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Furthermore, in order to assess the effect of fibroblasts CM on astrocyte phenotype, GFAP 

fluorescence levels were analysed at day 3 of culture in astrocytes cultured on PLL coated 

glass coverslips in the presence of DMEM or CM (Figure 3.19). This time point was chosen 

based on our previous observations [9]. It was clearly visible that, in comparison with 

astrocytes cultured in the presence of DMEM, GFAP fluorescence levels were significantly 

increased in astrocytes cultured in the presence of CM. Although a quantification of the number 

of cells expressing GFAP was not performed, based on observations, the number of astrocytes 

expressing this marker was also superior in CM. 

 

 

         

     
Figure 3.19 Astrocyte activation by fibroblast conditioned medium at day 3. A and B. Representative photos of 

astrocytes cultured in a glass coverslip in the presence of control medium (A) and fibroblast CM (B). Scale bar 

10m. C. Fluorescence intensity quantification by for the expression of GFAP from 10 measurements representing 

10 different regions of the coverslip. Results show mean ± standard deviation (n=2) and asterisks represent 
statistical significances (** p < 0.01). Statistical analysis was performed using a t-test assuming that there is no 
Gaussian distribution (non-parametric test) and using Mann-Whitney test (comparing ranks). CTCF represents 
corrected total cell fluorescence (CTCF = Integrated density – (area of selected cell x mean fluorescence of 
background readings)). 

  

It is well established that after an insult in the CNS astrocytes change their morphological 

characteristics to respond to the injury in a process termed astrogliosis. In this process, the 

expression of proteins, such as GFAP, vimentin and CSPGs is increased. Moreover, 
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astrocytes start to produce high amounts of ECM characteristic molecules (like collagen IV) 

and these events culminate in the formation of a glial scar [38]. The glial scar, although mainly 

composed by astrocytes, also has a fibrotic component derived from meningeal fibroblasts that 

leave the damaged meninges and infiltrate the local of the lesion. Fibroblasts rapidly proliferate 

and start secreting ECM components (collagen IV, fibronectin, etc.) therefore contributing to 

this repair tissue. Together with astrocytes, fibroblasts close the damaged tissue and prevent 

further invasion of inflammatory cells [39]. The use of meningeal fibroblast CM as a stimulus 

to trigger astrogliosis was previously reported by the group [9], and the evaluation of the 

astrocytes’ behaviour in the presence of meningeal fibroblast medium was performed with 

accurate and careful detail, concluding that the gene expression levels of GFAP were 

significantly increased, as well as the production of CSPG and collagen. Besides, it was also 

seen that CM activated astrocytes significantly inhibit neuronal outgrowth [9]. For that reason, 

in the context of this project the 3D engineered astrogliosis model of astrocytes was assumed 

to be successfully reproduced. 

Other approaches to induce the activation of astrocytes have been tried and are described in 

the literature. For example, Kimura-Kuroda and co-workers established a model in which 

astrocytes were co-cultured with meningeal fibroblasts and TGF-1 (a factor involved in the 

formation of the glial scar) was added to the culture [40]. Jang et al [41] have used astrocyte-

conditioned media derived from astrocytes cultured in the presence of toll-like receptor ligands 

(lipopolysaccharide, LPS) or cytokines (IL-4 or IL-10). Moreover, East and colleagues 

proposed a model of reactive astrogliosis using a 3D collagen gel system in which astrocytes 

were seeded in addition to TGF-1 to trigger the reactive phenotype showed by astrocytes in 

astrogliosis [42]. 

However the simplicity of the system here described and the fact that the astrocyte survival 

does not depend on the use of an ECM component makes it advantageous regarding the other 

established models, and allows the study of a broader range of variables. 

 

 

OPC differentiation is impaired by activated astrocytes 

The 3D glial scar model was then used in combination with the axonal myelination system 

aiming to study the effects of astrocyte activation in the normal course of OPC differentiation. 

With that in mind, expression of MBP and NG2 was observed at days 1, 3 and 7 after co-

culturing (Figure 3.20). When OPCs were cultured with activated astrocytes, a significant 

decrease in the number of cells producing the myelin sheath was visually perceived. Despite 

not having performed a quantification for the number of cells expressing MBP and NG2 over 

days, these effects are more preeminent at day 3 after adding the transwell with the alginate 

discs to the OPCs cultured on fibers. It is worth to highlight that these observations are in 

accordance with data previously described by the group (not published) [27].  
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Figure 3.20 OPC differentiation impairment by reactive astrocytes. Representative photos of MBP and NG2 

immunostaining after co-culturing with non-activated (left) or activated (right) astrocytes. There is a visible reduction 

in the number of cells expressing MBP when astrocytes were activated with fibroblast CM. Scale bar 50m. 

 

Furthermore, the expression levels of Mbp in both conditions was analysed recurring to qRT-

PCR (Figure 3.21).  

Firstly, the MBP expression of OPCs cultured in fibers in the presence or absence of non-

activated astrocytes was evaluated. Surprisingly, no statistical differences were seen between 

the conditions (Figure 3.21A). In the literature, it is well-established that astrocytes support 

oligodendrocytes’ functions by producing, among others, PDGF and FGF which are potent 

mitogens that promote OPC survival and self-renewal, inhibiting the premature differentiation 
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of OPCs [43-45]. Co-culturing astrocytes with OPCs would resemble better the in vivo 

conditions. Although an increase in the expression of MBP was observed for co-cultures, the 

fact that no statistical significance was seen may be due to protocol limitations in the extraction 

of the OPCs RNA. Besides, the number of experiments performed was not sufficient to take 

accurate conclusions (two independent experiments). Moreover, a deep study about the 

factors that non-activated astrocytes were producing when co-cultured with OPCs was not 

performed. It is also worth noting that although not determinant, the physical contact between 

astrocytes and oligodendrocytes (namely through the interaction of laminin in astrocytes and 

61 integrin in oligodendrocytes) positively influences the maturation of oligodendrocytes [43, 

46]. In this co-culture method, the physical contact is not established; therefore this may 

influence the processes of OPC myelination. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.21 Mbp gene expression levels of OPCs after co-culturing with astrocytes. A. Comparison between the 

expression levels of OPCs cultured on P(TMC-CL) fibers with OPCs cultured in the presence of non-activated 
astrocytes. Results show mean ± standard deviation. B. Evaluation of the effects of the flux of the medium provided 
by the transwell on OPC Mbp gene expression. Statistical analysis was performed using unpaired t-test (non-
parametric) followed by Mann-Whitney test (n=2). No statistical differences between conditions were found.  C. 

Comparison between co-cultures in P(TMC-CL) fibers and glass coverslips (n=3). Statistical analysis was 
performed using two-way ANOVA followed by Tukey’s test (n=2). Results show mean ± standard deviation, 
asterisks represent statistical significance (* p < 0.05, ** p < 0.01).  
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Secondly, the influence of the activated state of astrocytes in the course of OPC Mbp 

expression was assessed. A significant decrease in the expression levels of the Mbp gene in 

OPCs when cultured with activated astrocytes was noted. It is worthwhile mentioning that also 

in OPCs seeded on PLL coated glass coverslips or on P(TMC-CL) fibers the reduction of the 

levels of MBP was observed (Figure 3.21C).  

Besides, in order to understand if this effect was due to the CM flow across the transwell, and 

not due to the activated state of astrocytes, the expression levels of Mbp in OPCs cultured with 

a transwell without astrocytes and filled with DMEM or CM were also measured (Figure 

3.21B). When comparing Mbp gene expression of OPCs cultured with DMEM (without 

astrocytes) and CM (without astrocytes), no significant differences were observed. However, 

the differences of the expression of Mbp in OPCs cultured with activated astrocytes or cultured 

without astrocytes but in the presence of CM could not be assessed due to the insufficient 

number of experiments that were performed. Nevertheless, it is not expectable that the CM 

exerts an effect per se once so far, no study in the literature reports the influence of meningeal 

fibroblasts or their paracrine signals in OPC differentiation. 

 

The role of astrocytes in processes of myelination and demyelination has been a theme of 

intense debates and contradictions among biologists [14, 38, 47].  

On one hand, reactive astrocytes are viewed as protective tools for injured CNS, preventing 

inflammatory cells’ infiltration through the formation of a glial scar, which is mostly composed 

by interwoven and tightly connected astrocytes. In the first stages of injuries, astrocytes are 

believed to be paramount in closing the lesion site, promoting the tissue homeostasis and 

modulating inflammatory responses [48]. When thinking about remyelination processes, some 

studies reported that oligodendrocytes show a tendency to remyelinate zones where 

astrocytes are present, therefore making astrocytes a key component in the process [49].  

Nonetheless, other studies report that glial scar rigidity is an obstacle to the entry of OPCs and 

axons to the lesion sites, thereby inhibiting normal remyelination [47]. Following that point of 

view, astrocytes could inhibit remyelination either by forming a glial scar or by preventing OPC 

migration and maturation to the lesion sites. In fact, the astrocytic marker of astrogliosis, GFAP 

was extensively found in old demyelinated plaques of MS patients [50]. Besides, in the EAE 

mouse model of demyelination, just a few numbers of OPCs was found to penetrate the glial 

scar and many were found around the demyelinating lesion local [51, 52]. Corroborating this, 

other study reported that an extensive number of cells expressing NG2 in the glial scar was 

found [53]. NG2 is a distinctive marker of oligodendrocyte progenitors and these cells in the 

glial scar may be cells that are unable to differentiate in oligodendrocytes. In fact, evidences 

that the processes of differentiation and maturation of OPCs may also be modulated by 

astrocytes have been shown. Firstly, astrocytes secrete factors that promote OPCs’ self-

renewal and not the switch to a differentiation phenotype. Moreover, activated astrocytes 

express high amounts of matrix metalloproteinases (MMPs). Namely, it was observed that 
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MMP2 is the most activated enzyme in conditions of astrogliosis and that this enzyme 

degrades MBP [54].  Also, it was seen that the suppression of MMPs in the EAE mouse model 

attenuates the effects of demyelination [55]. The activity of MMPs is counteracted by specific 

inhibitors (tissue inhibitors of metalloproteinases, TIMPs), however, in opposite to the 

augmented expression of MMPs seen in demyelinating plaques, TIMPs expression maintains 

unaltered [56]. Moreover, after activation, astrocytes secrete various cytokines, including 

Interleukin 1, 3, 6 (IL-1, IL-6, IL-3) and tumour necrosis factor alpha (TNF-) [57]. Su and co-

workers provided the first evidence that after spinal cord injury, OPC apoptosis and inhibition 

of differentiation capacity is induced by TNF-secreted by reactive astrocytes [58]. Another 

study that reports the possible negative effects of reactive astrocytes in remyelination 

processes was conducted by Blakemore et al [59] that transplanted OPCs to either to areas of 

demyelination where astrocytes were presented or absence and conclude that the presence 

of astrocytes was a hallmark in the extent of oligodendrocyte remyelination. Moreover, Wang 

and co-workers also provided evidences that reactive astrocytes derived from an injured spinal 

cord inhibit OPC differentiation. In their study, the expression of bone morphogenic proteins 

was augmented in the damaged spinal cord and the inhibition of the expression of these 

proteins revealed a reversion of the OPC phenotype [60]. 

In this study, activated astrocytes were seen to negatively impact the course of OPC 

differentiation revealed by the decreased expression of MBP when OPCs were cultured with 

activated astrocytes. Contrarily, Nash et al [61] demonstrated that the induction of a quiescent 

state in astrocytes is not beneficial for OPC remyelination and that the induction of a switch to 

a reactive astrocytes may lead to an enhanced myelination by OPCs. All together, these 

studies point out to the fact that despite there are still contradictory evidences, the astrocyte-

OPC crosstalk in the modulation of OPC differentiation after an injury is of extreme importance. 

 

 

Ibuprofen effects on OPC differentiation 

Understanding the mechanisms that are behind the possible negative effects of activated 

astrocytes on OPCs may be key to find possible solutions and new targets to induce 

remyelination in injured areas. 

Previously, the Rho/ROCK signalling pathway was identified as the possible biochemical 

pathway that triggers the reactivity of astrocytes within alginate based matrices and RhoA was 

seen to mediate this process. When RhoA activity was inhibited with ibuprofen astrocytes 

reverted their phenotypes to non-activated decreasing the expression of GFAP and vimentin 

[9]. Ibuprofen is a non-steroidal anti-inflammatory drug that is also known to block RhoA 

intracellular signal and, in this manner promote axonal regrowth after an injury [62]. For that 

reason, ibuprofen was used to determine if the effects of activated astrocytes in OPCs 

differentiation could be reverted by reverting the astrocyte phenotype to a non-activated status. 
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The Mpb gene expression of OPCs cultured in the presence of activated astrocytes was 

determined by qPCR 48h after adding ibuprofen to the astrocyte culture media (Figure 3.22). 

 

  
Figure 3.22 Mbp gene expression levels of OPCs after addition of ibuprofen to the alginate discs (n=1 

independent experiment).  

 

Contrary to expectations, after the treatment with ibuprofen, the Mbp expression in activated 

astrocytes remained similar to non-treated astrocytes. Nevertheless when an 

immunocytochemistry in the same conditions was performed, an increase in the number of 

MBP positive cells when OPCs were cultured with activated astrocytes was observed (Figure 

3.23). 

Although this experiment was just performed once, it is in accordance with the previous 

developed work where MBP protein expression was evaluated [27].  

These contradictory results may be explained by timeline in which genetic and proteic 

expression happen. Once genes are expressed earlier than proteins the time in which the 

ibuprofen effects was analysed by genetic expression may be not adequate. Besides, the 

mRNA production is known to happen in a lower rate than proteins and mRNA is less stable 

than proteins (half-life of 2.6-7h to mRNAs and 46h to proteins) [63]. Therefore the range of 

gene expression in which ibuprofen effects are analysed should be further studied. 

Nevertheless, no definitive conclusion from this study can be taken once both experiments 

(immunocytochemistry and qRT-PCR) were just performed once.  
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Figure 3.23 OPCs after addition of ibuprofen to the alginate discs (n=1 independent experiment). Representative 

photos of NG2 and MBP positive OPCs/oligodendrocytes cultured with treated (left) or non-treated (right) astrocytes 

(non-activated, bottom or activated, top). Scale bar 25m. 
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CONCLUSIONS 

 

To sum up, these evidences show a key role of astrocytes in the course of remyelination or 

demyelination processes and also, when considering therapeutical strategies to demyelinating 

diseases, astrocytes should definitely not be neglected as they may be a potential therapeutic 

target to these diseases. 

Besides, the present study shows that the previously established in vitro myelinating platform 

composed of P(TMC-CL) electrospinning fibers is, in fact, capable of mimicking axons by 

significantly promoting the normal course of OPC differentiation, highlighting the importance 

of a 3D microenvironment for the normal cells’ behaviour. Moreover, this platform is also 

interesting to specifically study the interactions between oligodendrocytes and astrocytes 

dissociated from the effects of axonal signalling. Finally, this platform also shows a huge 

potential to screen drugs or potential therapeutical molecules for demyelinating diseases. 
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INTRODUCTION 

 

The formation of myelin mainly occurs after birth [1]. Multipotent neuronal stem cells (NSCs) 

differentiate in oligodendrocyte precursor cells (OPCs) after induction by sonic hedgehog 

(SHH) and fibroblast growth factor (FGF) in oligodendrogliogenic niches [2]. Due to these local 

signals, OPCs are originated in diverse CNS zones and then diffuse through CNS before 

further differentiating into oligodendrocytes. Although the generated number of OPCs is vast 

and the needless cells are removed by apoptosis, this process does not influence the normal 

myelination of CNS [3]. CNS biogenesis of myelin sheaths is achieved by a highly regulated 

process in which oligodendroglial structures are enwrapped around axons in a tightly way. 

After that, oligodendrocytes send signals to myelinated axons to establish their dependency to 

myelin [4]. In vivo differentiation of OPCs into oligodendrocytes requires insulin growth factor-

1 (IGF-1), ciliary neurotrophic factor (CNTF) and thyroid hormone T3 [2, 5, 6].  

OPCs are found also found in the adult brain. However, some differences between the OPCs 

in the developmental and the adult brain are evident. In the adult brain OPCs have lower 

motility, capacity of proliferation and survival rate [7-9]. In the adult CNS, OPCs are not 

restricted to a specific zone, instead they are believed to be distributed all over the CNS [2].  

The process of differentiation involves a series of consecutive morphological changes. Firstly, 

bipolar OPCs with high capacities of migration and proliferation, expressing A2B5 antigen, 

platelet-derived growth factor receptor- (PDGFR) and chondroitin sulphate proteoglycan 

neuron-glial antigen 2 (CSPG NG2) differentiate into immature oligodendrocytes with multiple 

processes and characterized by the expression of O4 antigen. Then the migration and 

proliferation capacities of oligodendrocytes ceases and a more mature state characterized by 

the existence of a myelin membrane sheath and the expression galactocerebroside and 

2’,3’cyclicl nucleotide 3’-phosphodiesterase (CNPase) is observed. Finally, oligodendrocytes 

produce a more complex morphology and terminally differentiate into myelinating 

oligodendrocytes capable of wrap neurons in vivo. MBP, MAG, MOG and PLP are myelin 

proteins highly expressed at this final stage (Figure 4.1) [10]. 
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Figure 4.1 Oligodendrocyte development. Adapted from Nishiyama et al (2009) [11]. 

 

Myelin ensheathment around axons is one of the most complex plasma membrane 

transformations occurring in vertebrate nervous system. However, despite the clear advances 

in understanding the processes of OPC differentiation, a lack of knowledge is evident when 

thinking about the process of forming a compacted spiral structure around axons (myelin 

wrapping) [12]. This is explained by the difficulty in visualizing membrane formation and the 

dynamics of the process at the nanometer scale [13]. 

Some models trying to explain myelin sheath formation during development are continuously 

been proposed. In the “carpet crawler” model myelin is firstly extended along the whole axon 

before starts ensheathing it. This initial wrap then moves under the growing sheet to form the 

subsequent wrap – like a carpet rolling [14, 15]. However, some contradictory reports state 

that the number of wraps is not constant along the forming sheath (the number of wraps in the 

middle is higher than in the lateral zones), devaluating this first proposed model [16]. Pedraza 

et al suggested the “serpent model” that relies on a unidirectional spiralling of the myelin along 

the axon. When the sufficient thickness of myelin membrane is achieved, the wraps spread 

sideways into overlapping sheets [17]. However this model does not explain the paranodal 

loops that show the maximum thickness of the myelin in the centre of the internode and the 

outer myelin segment to be the closest to the node of Ranvier. A more recent model proposes 

that oligodendrocytes extend a triangular shaped process, attaching to the axon. 

Oligodendrocytes continue to pour out the process and myelin spreads sideward coordinated 

by axonal signals. This model is designated “liquid croissant” myelin forming model (Figure 

4.2) [18].  

Nevertheless, all these models lack significant concept proofs due to the gap in space 

resolution achieved by actual microscopy techniques, the inherent difficulties in culturing 

oligodendrocytes and neurons and the non-existence so far of an adequate myelin membrane 

labelling to facilitate oligodendrocyte processes visualization [19]. 
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Figure 4.2 Schematic representation of the “liquid croissant” model. Adapted from Sobottka et al (2011) [18]. 

 

Taken together, the next big objective to the improvement of knowledge about these processes 

would be the creation of a suitable, biocompatible with CNS oligodendrocytes and optical 

transparent in vitro platform to follow the CNS myelination process  

 

 

Polydimethylsiloxane (PDMS) as a tool to dissect myelin wrapping mechanisms 

Polydimethylsiloxane (PDMS) is a silicone rubber composed of carbon, hydrogen and oxygen 

(Figure 4.3). Its structure is defined by a backbone of Si-O composed of repeated units of -

Si(CH3)2O- which determines its molecular weight and, consequently its properties. In 

comparison with other polymers, PDMS has a low glass transition temperature (approximately 

-125ºC) and a unique flexibility. Besides, it is optical transparent, presents a low biological 

activity (low bioaccumulation and high biocompatibility) and can be used within a vast range 

of temperatures [20, 21]. Other features that makes PDMS an interesting polymer are its inert 

chemical characteristics and high permeability to gases. 

 

 

Figure 4.3 Chemical structure of PDMS.  

 

The fabrication of PDMS devices is relatively easy and straightforward and it allows the design 

of surfaces with micron scale features that can be prepared in a very reproducible way. 

Beyond, PDMS preparation associated costs are low. Together, these characteristics make 

PDMS very attractive for many applications, and nowadays it is currently being used to produce 



 

70 

microelectromechanical systems (MEMs) or micro- and nano-fluidics devices, among others 

[22]. 

 

In this work, a PDMS micropillar array is proposed as a novel in vitro platform to mimic axons 

and to follow myelin formation and wrapping processes. 
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MATERIALS AND METHODS 

 

Polydimethylsiloxane (PDMS) silicon mould fabrication and micropillar production 

Polydimethylsiloxane silicon mould was designed by the group and its manufacture was 

conducted in TU Delf (Netherlands). The design of the micropillar array was based on axonal 

diameters dimensions. The mould consisted of a regular square with 6x6mm divided in four 

smaller quadrants with diameters of 2m, 3m, 4m and 5m, all of them with 10m height 

and distancing 30m from each other (Figure 4.4).  

 

 

 

 

 

 

Figure 4.4 Scheme of PDMS micropillars production. PDMS moulds were sent from TU Delf (Delf University of 

Technology, Netherlands) and subsequent production of the micropillars was conducted in the context of this 
project. Adapted from [23]. 

 

In order to fabricate the PDMS micropillar array, PDMS base (Dow Corning) composed of 

dimethylsiloxane oligomers with vinyl-terminated end groups, platinum catalyst and silica filler 

and a curing agent (Dow Corning) constituted by a crosslinking agent 

(dimethylmethylhydrogen siloxane) and an inhibitor (tetramethyltetravinyl cyclotretrasiloxane) 

were vigorously mixed at a ratio of 10:1 (w/w%) between the base and the curing agent and, 

subsequently, degassed in a desiccator connected to a vacuum pump to remove air bubbles. 

The crosslinking reaction between the base and the curing agent occurred at temperatures 

ranging between 37ºC and 60ºC during 4h-12h. When the PDMS was solidified the micropillars 

were peeled off in the presence of isopropanol (Merk) and left in a Petri dish containing 

isopropanol until further use. 

 

PDMS micropillar characterization 

The morphology of the pillars was assessed by Scanning Electron Microscopy (SEM). 

Samples were prepared by removing isopropanol and subsequently substitute for water and 

leave in a vacuum pump desiccator for 30 min. The SEM exam was performed using a High 

resolution Scanning Electron Microscope with X-Ray Microanalysis: JEOL JSM 6301F/ Oxford 

Si wafer 
containing 
micropillar 

array 
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INCA Energy 350. Samples were coated with an Au/Pd thin film for 70s and with a 15mA 

current, by sputtering, using the SPI Module Sputter Coater equipment. 

 

Primary cells 

All experiments involving animals and their care were performed in agreement with institutional 

ethical guidelines (IBMC/INEB/i3S), the EU directive (2010/63/EU) and Portuguese law (DL 

113/2013).  

All described procedures had the approval of the Portuguese official authority on animal 

welfare and experimentation (Direção Geral de Alimentação e Veterinária). Animals had free 

access to food and water and were kept under a 12h light/12h dark cycle. 

 

Cortex isolation 

To obtain oligodendrocytes Wistar Han rat pups in post-natal day 2 (P2) were sacrificed by 

decapitation and brain was removed to further dissociate the cortex and the meningeal tissue. 

Approximately 8-16 pups were sacrificed every two weeks. Removal of brain was performed 

using straight micro-scissors and fine forceps previously cleaned and sterilized. The procedure 

was conducted under a magnifying glass in a Petri dish containing Hank's Balanced Salt 

Solution (HBSS, Gibbco) without calcium and magnesium supplemented with 2% (v/v) 

penicillin/streptomycin (P/S) (Gibco). Firstly, the skin of the head was cut until the nose with a 

sharper scissor with the other hand holding the head (from the ear) with a big forceps. The 

skin was opened to the corners in order to let the skull bones be visible. Then, with a straight 

microscissor, the skull bone was cut until the nose and to the sides. The bones were removed 

with a thinner forceps and a special care was taken to not damage the cortex. With the same 

forceps, the cortex was carefully removed (from the olfactive bulbs) and cut by the cerebellum. 

Subsequently, using thinner forceps, the two hemispheres were separated and the meningeal 

tissue was detached from the cortex. Cortex were maintained in ice-cold HBSS without calcium 

or magnesium with P/S to prevent cell dissociation and death. 

 

Mixed glial cell (MGC) cultures 

After cortex removal, the cortices were firstly mechanically digested with a 10 mL serological 

pipette and passed through a 25G needle to dissociate clusters. Cortices were then 

enzymatically digested with HBSS without calcium or magnesium supplemented with 0,0025% 

(w/v) trypsin (Sigma) and 0.001mg/mL DNase I (Applichem LifeSciences) for 15 min at 37ºC. 

The action of the trypsin was inhibited by the addition of Dulbecco’s modified Eagle medium 

(DMEM) Glutamax High glucose (Gibco) supplemented with 10% (v/v) heat inactived Foetal 

Bovine Serum (FBS, Sigma F7524) and 1% (v/v) P/S and the homogeneized was then 

centrifuged at 500g during 10 min. The supernatant was poured off, the pellet re-suspended 

in serum containing DMEM and filtered through a 40 m nylon cell strainer (BD Falcon) to 
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remove large cell clusters. Finally cells were distributed for T75 cell culture flasks, previously 

coated with 100 mg/mL poly-L-lysine (PLL, mol wt 30 000-70 000, Sigma) (30 min, 37ºC) at a 

density of cell suspension obtained from two brains per flask. Cells were cultured with serum 

containing DMEM at 37ºC, 5% CO2 during 4 days to allow cell adhesion to the flask and then 

medium was changed every 2-3 days (changing ¼ of the medium at day 4; ½ at day 6 and all 

medium from day 8 on). Cells were maintained during 15 days until confluent, when the 

components of the MGC cultures where mechanically separated (see following section).  

 

Oligodendrocyte progenitor cell (OPC) cultures 

OPCs were mechanically isolated from MGC as previously described [24, 25]. At day 14 after 

plating, MGC were confluent with phase-dark OPCs appearing on top of phase-grey bed layers 

of astrocytes. On that day, a pre-shake was performed: the T75 lids were tightly sealed and 

transferred to an horizontal orbital shaker (Infors) during 2h at 210 RPM (37ºC) to remove the 

majority of loosely adherent microglia cells. After that, medium was replaced and cells were 

left at 37ºC for 2h to allow the normal metabolism stabilization. An overnight shake (18h-20h) 

at 230 RPM (37ºC) was then performed to further detach loosely attached microglia and OPCs. 

After shaking overnight, OPCs were further purified by differential selective adhesion. The cell 

suspension was transferred to non-treated polystyrene Petri dishes (10 cm of diameter) to 

allow microglia to adhere during 2h at 37ºC and unattached OPCs were collected, passed 

through a 40m cell strainer to remove cell clusters and centrifuged at 450g during 10 min 

(RT). The cell pellet was then re-suspended, cells counted and seeded on PLL-coated 

(previously described) micropillar array. Cells were maintained during 24h-48h in proliferation 

medium (OPC SATO Medium): DMEM Glutamax High Glucose supplemented with 100g/mL 

of transferrin (Sigma, T2036), 16g/mL of putrescine (Sigma, P5780), 100g/mL of Bovine 

Serum Albumin (BSA) (BioWest, P6154), 60ng/mL progesterone (Sigma, P8783, dissolved in 

pure ethanol), 40ng/mL of sodium selenite (Sigma, S5261, dissolved in 0.1M NaOH), 40ng/mL 

of thyroxine (Sigma, T1775, dissolved in 0.1M NaOH), 30ng/mL of triiodo-L-thyronine (Sigma, 

T6397, diluted in 0.1M NaOH), 0.01g/mL of Platelet-derived growth factor-AA (PDGF-AA) 

(Peprotech, 100-13A), 0.01g/mL of Fibroblast Growth Factor (FGF) (Peprotech, 100-18B), 

5g/mL of insulin (Sigma, 19278) and 1% (v/v) of P/S. After 24h-48h cells were cultured without 

FGF and PDGF-AA and 0.5% (v/v) of heat inactivated FBS (Sigma Aldrich, F7524) was added 

(OL SATO Medium). 

The purity of OPC culture was estimated by immunocytochemistry. 

 

Immunocytochemistry  

For experiments involving immunocytochemistry analysis, before fixation, cells were washed 

twice with pre-warmed Phosphate Buffer Saline (PBS) (Gibco) solution for 10 min. Afterwards, 

cells were fixed with 4% (v/v) paraformaldehyde (PFA) (Merck Milipore) during 10/15min at 
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RT, washed twice with PBS and permeabilized and blocked in PBS containing 5% (v/v) normal 

goat serum (NGS) (Biosource) and 0.3% Triton X-100 (Sigma) for 1h at 4ºC. Primary 

antibodies were then diluted in PBS with 1% (v/v) NGS and 0.15% (v/v) Triton X-100 and 

incubated at 4ºC overnight. Following the primary antibody incubation, cells were washed three 

times with PBS to remove the excess of the primary antibodies and the secondary antibodies 

were diluted in PBS containing 1% (v/v) NGS and 0.15% (v/v) Triton X-100 and added to the 

cells. Secondary antibodies’ incubation was conducted at 4ºC for 45min to 1h. Afterwards, 

cells were washed three times with PBS and incubated with Hoescht (ThermoFisher) diluted 

in PBS (1:1000) containing 1% (v/v) NGS and 0.15% (v/v) Triton X-100 for 15min at RT. 

Subsequently, cells were mounted using FluoroMount (Sigma) and observed under an inverted 

fluorescence microscope (AxioVert) or confocal microscope (SP5, Leica, Germany). The 

following primary antibodies were used: rat anti-MBP (1:100, Abd Serotec), rabbit anti-NG2 

(1:250, Merk), rabbit anti-IBA1 (1:500, Wako), mouse anti-III tubulin (1:500, Promega) and 

rabbit anti-GFAP (1:500, Dako). Secondary antibodies used were 488 donkey anti-rat (1:1000, 

Invitrogen), 647 donkey anti-rabbit (1:1000, Invitrogen) and 488 donkey anti-mouse (1:1000, 

Invitrogen). For the evaluation of culture purities, the combination of the used primary 

antibodies is summarized in Table 3. 

 

Live imaging 

OPCs were seeded on micropillars at a density of 4.5x105 viable cells/micropillar array (viable 

cells were determined by Trypan blue exclusion assay) pre-coated with PLL (37ºC, overnight). 

Cells were kept in OPC SATO medium overnight and after changed to imaging medium which 

was composed by SATO 10x diluted in Fluorobrite DMEM Medium (ThermoFisher Scientific) 

supplemented with 0.5% heat inactivated FBS (Sigma), 5g/mL of insulin (Sigma), 1:100 

GlutaMAX (Thermofisher Scientific) and 1:100 sodium pyruvate (Thermofisher Scientific). 

Micropillars were glued to -Dish Glass bottom (ibidi) and immediately imaged in a motorized 

inverted epi-fluorescence microscope (Zeiss AxioVert 200M, Carl Zeiss, Germany) during 48h. 

Images were acquired every 30 min and in multiple micropillar array positions. 

Alternatively, a cell staining dye for plasmatic membrane was used to stain oligodendrocytes 

processes and facilitate image acquisition and visualization. CellMask Green plasma 

membrane stain (Life Technologies) was diluted in pre-warmed imaging medium (1L to 1mL 

of medium) and added to cells during 10 min at 37ºC, 5% CO2. Subsequently, cells were 

washed carefully three times with pre-warmed PBS and imaging medium was added 

immediately after. Images were taken in a confocal microscope (Confocal Leica SP5, Leica 

Systems, Germany). 
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Statistical analysis 

Statistical analysis were performed using GraphPad Prism version 7.00 for Windows, 

GraphPad Software, La Jolla California USA, www.graphpad.com. Statistical differences 

between groups were calculated based on t-student test (two group comparison) ore two-way 

ANOVA when two factors affected the measurements, followed by Tukey’s multiple 

comparisons test for multiple comparisons. Gaussian distributions were tested using 

D’Agostino and Pearson normality tests. When Gaussian distribution could not be tested due 

to the lack of measurements or failed in the above mentioned tests, non-parametric tests were 

performed. Mann-Whitney tests were used in the case of unpaired t-tests. A p-value below 

0.05 was considered statistically significant and data are shown as mean ± standard deviation 

(SD). 
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RESULTS AND DISCUSSION 

 

PDMS micropillar array can be sucessfully fabricated 

PDMS micropillars were produced at a ratio of 10:1 between the base monomer and the curing 

agent. Nonetheless, a vast propensity for bending or collapsing during the steps of unmoulding 

and subsequent addition of cells was noticed. To overcome the instability of the pillars in 

keeping their straight structure, some approaches were tried and are summarized in Table 4.1. 

 

Table 4.1 Optimization process of the peeling off of the micropillars from the mold and storage until cell culture 

application.  identifies that all pillars were bended, ± that only the 5m pillars were standing and  represents that 

all pillars were straight after the mentioned preparation steps. (IPA: isopropanol) 

# 
Step 1: peeling 

off 
Step 2 Step 3 Step 4 

1 In dry state  

Sonication/Vacuum 

application in a 

dessicator 

 - - - - 

2 PBS or H2O  

Sonication/Vacuum 

application in a 

dessicator 

 - - - - 

3 IPA  
Drying in the flow 

chamber 
 - - - - 

4 IPA  
CO2 critical point 

drying 
 

Addition of complete 

cell culture medium 
 - - 

5 IPA  Gradients of IPA/PBS ± Coating with PLL ± Addition of OPCs ± 

6 IPA  
CO2 critical point 

drying 
 

UV surface treatment 

(=365nm, 1h30, 

6mm distance) 

 
Addition of PLL 

coating 
 

7 IPA  
CO2 critical point 

drying 
 

Plasma O2 surface 

treatment (3min, 

0.6mbar)  

 

Addition of PLL 

coating followed by 

complete cell culture 

medium 

 

 

 

Firstly, unmoulding the pillars was performed directly in the air, without the addition of any 

liquid (Table 4.1, entry #1). However, after observations under an optical microscope, all 

micropillars were collapsed or bended. This might have happened due to adhesive or capillary 

forces that may lead to the grounding or lateral collapse of the pillars [26].  

Thereby, avoiding the collapsing during the peeling off of the mould and subsequent steps or 

trying to promote the unbending of the micropillars were the two different strategies 

subsequently followed to overcome this issue. For the latter case, it was realized that, after 
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peeling off the PDMS micropillars in the presence of water or PBS (Table 4.1, entry #2), the 

pillars from all quadrants immediately bended and even when sonication or vacuum was 

applied, the micropillars remained bended. For that reason, subsequent work was directed to 

try to avoid collapsing in the process of unmoulding. While removing the micropillars with PBS 

or water proved to be inefficient in promoting pillars to stand straight, the addition of 

isopropanol (IPA) during the unmoulding step was well succeeded. In fact, one important 

difference between the IPA and water or PBS, is their intrinsic viscosity values. IPA presents 

an estimated intrinsic viscosity of 2.1mPa.s at 25ºC [27] while water is reported to have 

viscosities around 0.89mPa.s at the same temperature [28]. The difference between the 

intrinsic viscosities of both liquids might be the reason why the peeling off with IPA was well 

succeeded contrarily to what happen with water and PBS. However, in order to use the pillars 

with cells, the IPA would have to be removed. The first attempt was to simply allow it to dry in 

the flow chamber (Table 4.1, entry #3). Nevertheless, the evaporation of the IPA caused the 

pillars to collapse again. Following the strategy of trying to dry IPA and having them stand, a 

CO2 critical point dryer technique was employed. This technique relies on elevating wet 

samples to a critical point where the physical characteristics of the liquid and gaseous phases 

are not discernible. Hence, it is possible to change from liquid to gaseous phase without 

damaging the structures due to the inexistence of liquid capillary forces [26] provoked by 

surface tension [29]. Drying micropillars with the CO2 critical point dryer resulted on straight 

standing pillars. However, immersing them in cell culture medium led to the collapse of pillars 

(Table 4.1, entry #4). Consequently, this strategy was discarded and liquid changes between 

IPA and other biological compatible liquids were tried (Table 4.1, entry #5). Changing 

progressively and carefully from IPA to PBS revealed to be successful in keeping the larger 

diameter pillars (5m quadrant) straight and in a lesser extent the 4m pillars quadrant. 

Nonetheless, the remaining quadrants did not resist and capillary forces induced the collapsing 

of all 2 and 3m pillars. This may be partially explained by the aspect ratio values (ratio 

between pillar height and diameter [26]) that increases from 5m to 2 m pillars. Thereby, 2m 

pillars show the highest propensity to collapse due to the increased surface to volume ratio 

that promotes a higher susceptibility to surface forces [26]. 

The question that was then raised was whether the hydrophobicity characteristic of the PDMS 

would have influence on the collapsing or bending of the micropillars. As it is reported, the 

immersion capillary forces depend on energy surface [30] therefore, promoting the 

hydrophilicity nature of the surface of the pillars seemed to be important to maintain their 

structure when put in contact with aqueous solutions. Since PDMS is highly hydrophobic, 

reverting this characteristic was subsequently attempted. Over the years, several PDMS 

surface modifications have been proposed [31]. The surface modification strategies like the 

UV or the plasma treatments are some of the easiest and fastest.  Accordingly, the UV 

treatment was firstly tried by exposing PDMS micropillars to an ultraviolet (UV) lamp (VL-6LC, 
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6W) (Table 4.1, entry #6). The lamp was distanced from the pillars approximately 6mm and 

the samples were exposed to a 365nm wavelength radiation for 1h30. The wavelength was 

chosen based on the fact that exposing PDMS surfaces to long wavelengths causes the chain 

scission of the PDMS and the generation of free radicals in its structure, as stated elsewhere 

[32]. After the exposition, the micropillar array maintained the straight structure though the 

immediate coating with a PLL solution still caused the pillars to bend. Although an in depth 

study on the extent of the alteration of PDMS hydrophobicity was not conducted, some groups 

published that the hydrophilic nature of UV treated PDMS is not stable for long. UV exposure 

creates radicals in the surface that may react and rearrange themselves forming terminal 

groups that are mainly hydrophobic [33, 34]. A possible solution would be the exposition of the 

PDMS surface to UV/ozone treatment, which would allow the reaction of the radicals with 

oxygen, creating a more stable hydrophilic surface [33]. Nonetheless, this study was not 

performed.  

Besides UV treatment, plasma treatment has also been described as a successful method to 

modify PDMS surfaces. In this methodology, some gases such as oxygen, nitrogen or 

hydrogen react with the surface of the sample after any energy is applied, creating functional 

groups. In the case of O2 plasma treatment, an oxidization of the surface, substituting the 

methyl groups for the reactive oxygen happens [31]. Therefore, an O2 plasma surface 

treatment was conducted in a plasma generator (Electronic Diener) (Figure 4.5) after drying 

samples in a CO2 critical point dryer (Table 4.1, entry #7). The treatment took three minutes 

under an O2 pressure of 0.6mbar and immediately after, micropillars were immersed in a PLL 

solution and observed under an optical microscope. All four quadrants were able to maintain 

their structure. Despite not having verified the extension of the modification, the fact that the 

structure was not disturbed after the addition of a liquid, indicated that the modification was 

well succeeded. When changing from PLL solution to complete cell culture medium the results 

obtained were similar. A preliminary test about the stability of the oxygen plasma-treated 

substrates indicated that PDMS micropillars can stand straight after long periods of storage at 

no humidity conditions (desiccator). 

 

 
Figure 4.5 Plasma Generator Equipment (Departamento de Química da Universidade de Coimbra). 
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Once the appropriated structure of all micropillar quadrants could not be achieved in time for 

further cellular assays, studies on OPCs’ behaviour in the developed platform were performed 

considering only the largest pillars (5m diameter) as they were the ones that showed to resist 

to bending or collapsing after changing from the liquid of the peeling off (IPA) to PBS. 

Therefore, the data and conclusions presented in the following sections concern these 

surfaces.  

 

SEM morphological characterization of the micropillars was conducted and Figure 4.6 

presents some representative photos of each quadrant. The micropillars showed the expected 

morphological features (height 10m, distance between pillars 30 m and diameters varying 

between 2 and 5 m). 

 

      

      

Figure 4.6 Scanning electron microscopy images of the PDMS pillars. From A to D: 2m, 3m, 4m, 5m diameter 

pillars. Scale bar is indicated in the images. 

 

This in vitro multidiameter micropillar platform is intended to serve as a myelinating platform 

serving the pillars as surrogate axons. In vivo there is a tendency of oligodendrocytes to 

myelinate axons with larger diameter rather than those with diameters bellow 0,3 m. Besides, 

augmenting the diameter of an unmyelinated axon was shown to be a trigger for myelination 

[35, 36]. Therefore, these previous findings show that axon diameter is crucial for the regulation 

of the myelination process and that the range of diameters chosen for micropillars (between 2 

and 5m) fit relevant CNS axons’ characteristics. 
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Pure primary rat OPCs can be efficiently obtained 

To investigate if OPCs cultures were free of any other cell type contaminant an 

immunocytochemistry test against neural cells’ characteristic markers was performed. OPC 

cultures were evaluated for the presence of neurons (through expression of the characteristic 

marker III tubulin [37]), microglia (analysing cell expression of IBA1, a specific calcium binding 

protein [38]), and astrocytes (for the expression of GFAP, a hallmark of the astrocytes) (Figure 

4.7). OPCs were seeded on PLL coated 13 mm glass coverslips (50 000 cells per coverslip, 

respectively) and fixed at day 5 of culture. The number of cells that were not 

oligodendrocytes/OPCs was quantified and is shown in Table 4.2. Cell culture purity was found 

to be 92%, which indicates that oligodendrocytes were successfully isolated from rat pups’ 

cortex. These results are in accordance with values usually obtained in this kind of primary cell 

isolation [39, 40].  

 

     

Figure 4.7 Representative images of oligodendrocytes stained with neuronal and glial characteristic markers. 

Staining was made for the presence of microglia (IBA1) (A and B), neurons (III tubulin) (B) and astrocytes (GFAP) 

(C). Scale bar indicates 50m. 

 

 

Table 4.2 Quantification of the number of positive cells for non-oligodendroglial cells in oligodendrocytes cultures. 

(n=1) 
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OPCs are capable of adhere and survive in PLL-coated PDMS micropillars 

In order to evaluate if oligodendrocytes were able to adhere on PDMS micropillars and the 

optimal density, different cell densities were seeded either on non-coated or on PLL-coated 

substrates (Table 4.3). 

  

Table 4.3 Conditions tested for the seeding of OPCs on PDMS micropillars. A density between 1.5x105 and 7.5x105 

was tested and for each density, the coating conditions were also verified (coated or non-coated with PLL). 

Number of cells Coating with PLL No coating 

1.5x105 cells  Poor adhesion and density  Non-adhesion of OPCs 

2.5x105 cells 
Relatively good adhesion and 

density  
Non-adhesion of OPCs  

4.5x105 cells Optimal adhesion and density Non-adhesion of OPCs 

6.0x105 cells Good adhesion and density Non-adhesion of OPCs 

7.5x105 cells 
Good adhesion but excessive 

density 
Non-adhesion of OPCs 

 

 

After observing under an optical microscope the oligodendrocytes’ behaviour and morphology 

in such conditions, a qualitative analysis was performed and some conclusions were able to 

be taken: oligodendrocytes preferentially adhered to PLL coated PDMS micropillars and higher 

densities promoted the aggregation of the cells while in lower densities cells tend to die. For 

that reason, the defined number of cells to be seeded was 4.5x105 cells/micropillar array. 

 

 

PDMS pillars are a suitable platform for the proliferation and differentiation of OPCs 

Whether if PDMS micropillars would be a suitable platform for the proliferation and 

differentiation of OPCs in oligodendrocytes was the question that was subsequently raised. 

OPCs were seeded on PDMS micropillars and maintained in OL SATO for at least five days 

after being two days in OPC SATO and observed under an optical microscope (Figure 4.8). 

Cells were seen to proliferate extensively and differentiate in process-bearing cells. 
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Figure 4.8 Optical microscope image of oligodendrocytes adhered to PLL-coated PDMS micropillars (at a density 
of 4.5x105 cells/micropillar array in the day 5 of culture). The arrow is indicating a micropillar. Due to their 

morphological characteristics, the process-bearing cells depicted in the figure are considered oligodendrocytes. 

Scale bar indicates 20m. 

 

For a deep analysis about the differentiation capacity of OPCs in PDMS micropillars, an 

immunocytochemistry assay was performed at days 1, 3 and 7 of culture. During this period 

cells were cultured in OL SATO medium to allow differentiation. It was clearly visible that cells 

differentiate over time and that the number of cells bearing the typical oligodendrocyte 

processes progressively increased (Figure 4.9). When comparing the number of cells 

expressing the characteristic progenitor marker (NG2) over the days, a significant decrease 

from day 1 to 7 was verified (Figure 4.10, A). Regarding the myelin marker, the number of 

MBP positive cells significantly increased over days of culture, as expected (Figure 4.10, A). 

Nevertheless, when asking whether the PDMS substrate would be a more permissive 

environment for cell differentiation rather the traditional used glass coverslips, no significant 

differences between both substrates was found (Figure 4.10, B). This conclusion was not 

expectable as PDMS micropillars mimic better the natural microenvironment OPCs normally 

face due to the pillars’ cylindrical structure that resemble axons. Nevertheless, Teixeira et al 

[41] stated that after culturing and differentiating NSC into oligodendrocytes on PDMS 

substrates or on TCPS, the number of MBP positive cells was higher on TCPS rather than on 

PDMS. This may be explained by hydrophilicity effects since both TCPS and glass coverslips 

substrates are hydrophilic and PDMS is highly hydrophobic. 

 

Interestingly, although the number of cells expressing MBP in PDMS micropillars at day 7 was 

significantly higher than in the other days of culture, the morphology of the oligodendrocytes 

was not the expected one. Accordingly to the literature, a complete oligodendrocyte 
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differentiation in vitro (glass) is normally achieved at day 7 of culture. On this day, 

oligodendrocytes are not extending many processes, but forming a myelin sheath [42].  

It is known that the ECM plays a crucial role during oligodendrogenesis either by providing 

biochemical signals that induce the differentiation of OPCs (through their intrinsic proteins) or 

by its physical cues acting as a mechanical support for OPCs development. Accordingly, the 

ECM stiffness has been reported as determinant in modulating the survival of OPCs as well 

as their proliferation and differentiation capacities, making them mechanosensitive cells [43, 

44].  

Although a study on the influence of the mechanical properties of PDMS in the course of OPC 

differentiation was not conducted, it can be hypothesized that PDMS mechanical properties 

may influence the differentiation process of the OPCs. 

Figure 4.9 OPC differentiation ability in PDMS micropillars. Images I, II and III represent detailed views of the left 

images. Image IIb) is the same as IIa) but without showing the bright field channel (pillars). Arrows are pointing to 
processes wrapped around the pillars. Scale bar is indicated in the figures.  
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Figure 4.10 Quantification of the number of cells expressing NG2 and MBP over days of culture. A. Comparison 

between cells expressing MBP and NG2 in PDMS micropillars. A significant difference is noted in the expression 
of both markers over days. B. Comparison between the number of cells expressing the OPC or oligodendrocyte 

markers in PLL-coated glass coverslips and PLL-coated PDMS micropillars. No significant differences were found 
between glass and micropillars. Results show mean ± standard deviation (n=2 independent experiments), asterisks 
represents statistical significance (** p < 0.01, **** p < 0.0001). Statistical analysis was performed using two-way 
ANOVA and Tukey’s multiple comparison test (B). 

 

Besides, through the immunocytochemistry assay it was also clearly visible that either at day 

3 (Figure 4.9, IIb denoted by the arrows) or at day 7 (Figure 4.9, III) many cells enwrapped 

pillars. Although the number of MBP positive cells was significantly higher at day 7, the 

morphology of the cells between those days was not considerably modified. This may have 

happened due to the insufficient factors provided by the PDMS platform to complete the 

myelination process of the oligodendrocytes. 

Figure 4.11 shows a detailed overview of a confocal z-stack figure of one oligodendrocyte 

wrapping the pillars at day 7. The 3D reconstruction of the same image enabled a detailed 

visualization of the myelin wrapping around pillars (Figure 4.12). 

 

 

 
 

Figure 4.11 Different planes of an oligodendrocyte around micropillars at day 7 of culture. The green represents 

MBP staining. The images show from top to the bottom of the substrate (1-8). Scale bar is indicated in images. 
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Figure 4.12 3D view of a myelinated micropillar (day 7). 3D reconstruction was performed in ImageJ using 

VolumeViewer plugin after subtracting the background in the bright field channel and add all z-stack images. Green 
indicates the stain for MBP. 

 

 

Although the wrapping was proved to happen around the pillars, it was not possible to 

distinguish the formation of progressive myelin processes neither the formation of a compact 

myelin sheath. Besides, as an immunocytochemistry assay relies on analysing cells at a fixed 

time point and oligodendrocyte’ extension of their processes is a highly motile process [36] 

some of observations could merely be OPCs surveying to pillars rather than wrapping them. 

Nevertheless, as cytoskeleton components are highly involved in the process of compact 

myelination (in immature oligodendrocyte, F actin is highly concentrated whereas in mature 

oligodendrocyte, the levels of acetylated -actin are increased [45]), a study of their expression 

over days should also be done to facilitate the study of oligodendrocyte myelination in PDMS 

micropillars. 

 

 

Physical cues are necessary but may be not sufficient to promote the oligodendrocyte 

compact wrapping process 

Since the immunocytochemistry data was not conclusive regarding the process of 

oligodendrocyte wrapping around pillars, a live imaging assay of OPCs cultured in the PDMS 

micropillar array was then performed. Firstly, OPCs were followed between day 4 and 5 after 

inducing differentiation. However, as cells at these days presented multiple processes and the 

visualization was very difficult, following cells in an earlier stage of differentiation was found to 

produce more clear data. Images were taken every half hour from day 0 until day 2 after 

changing to differentiation medium (Figure 4.13).  
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Figure 4.13 Live imaging photos of oligodendrocytes in PDMS micropillars. Cells at day 0 after changing to 

differentiation medium were followed during 48h. The arrows are pointing a cell extending a process and 

enwrapping a pillar. Scale bar indicates 10m. 

 

Firstly, it was possible to observe that after changing to differentiation medium, cells were 

already fixed in a certain place in the substrate and their migration capacity was reduced. 

During the time of acquisition of the images, OPCs remained stable in that point. Afterwards, 

OPCs start to extend and retract their processes in a continuous and slow process that could 

take many hours until stay fixed in a certain micropillar. As the time progresses, it was observed 

a tendency for the distance between the cell body of the OPC and the spreading processes to 

decrease (Figure 4.13 between 26h and 29h) and, surprisingly, the cell body gets 

progressively closer to the pillar until enwrapping it. The possible wrapping by the cell body is 

interesting once, so far researchers have assumed that once oligodendrocytes myelinate more 

than one axon at the same time, the cell body does not enwrap none of the axons [19]. 

Nevertheless, the timeframe of the acquisition of the images did not allow to distinguish if the 

0h 3.5h 17h 

22h 26h 29h 

32,5h 36,5h 45,5h 
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wrapping around the pillars was permanent or merely transient. For that reason, an increased 

time of acquisition would be of added value. 

Furthermore, it was also realized that, one OPC myelinated more than one pillar, which was in 

accordance with expectations, as in the CNS one oligodendrocyte is responsible for the 

myelination of multiple neurons [19]. However there is a visible tendency of the same pillar to 

be myelinated by more than one oligodendrocyte. This fact, although being just an assumption 

due to the low resolution of the technique, is not unreasonable since the same axon along its 

extension is myelinated by more than one oligodendrocyte. 

 

Interestingly, it was also clearly visible that, in the presence of oligodendrocytes micropillars 

did not collapse or bend, indicating that cellular forces are not enough to disturb the structure 

of the pillars. Therefore, PDMS rigidity may be adequate regarding this point, though more 

studies about pillars’ deformation and the optimal conditions for pillars’ fabrication can be 

explored in the future. 

 

Although this technique enabled to visualize OPC myelination around pillars and to consolidate 

that these cells are capable of enwrapping pillars, not many conclusions could be taken 

whether the wrapping is organized or not and which are the underlying mechanisms 

responsible for the myelination process due to the low resolution of the microscopy technique 

implemented. Therefore, a more accurate and higher resolution technique should be 

considered in further studies. Moreover, a marker to the myelin membrane would be valuable 

to better distinguish the myelin bearing processes. For that reason, in the scope of this project, 

the live imaging was also attempted in a confocal microscope and using a cell stain for live 

imaging (CellMask Green). Despite not being specific for myelin membrane, this marker stains 

the cytoplasmatic membrane of cells and proved to be efficient in staining the myelin processes 

(Figure 4.14). However, the live imaging photos could not be taken due to unfavourable 

conditions associated with the confocal microscope (temperature variations caused defocus in 

the image). 
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Figure 4.14 Oligodendrocytes seeded in PDMS micropillars and stained with CellMask Green (ThermoFisher). 

Oligodendrocytes’ myelin processes are visible. Scale bar is depicted in the image. 

 

Not many papers in the literature report the use of oligodendrocytes cultured in vitro for cell 

live imaging. The majority of reports involves in vivo or ex vivo live imaging. Important 

advances in the imaging technology field have been contributing to the progress of this field of 

knowledge, namely through the development of the two-photon imaging, single molecule 

imaging or exploration of photoswitchable fluorescent proteins [46-48]. For example, Hughes 

et al [49] generated a transgenic mice expressing the green fluorescent protein (GFP) in NG2 

cells and used a two-photon imaging microscope to follow these cells. Moreover, Hill and 

Grutzendler reported that the fluorescent dye sulforhodamine 101 can be used to trace 

myelinating oligodendrocytes within the CNS [50]. Besides, studies using ex vivo cerebral 

models have become popular in this field. Harrer and co-workers explored an organotypic 

cerebellar slice culture where OPCs were expressing GFP. This model was used to study 

mechanisms of demyelination by adding demyelinating monoclonal antibodies to the slices. 

Recurring to confocal live imaging, the authors showed that these antibodies were able to 

promote the myelin degeneration and oligodendrocyte cell death [51]. Nonetheless, the field 

of the in vitro live imaging of oligodendrocytes is still in its infancy [46]. Recently, Ioannidou et 

al [52] used mixed CNS myelinating cultures from -actin GFP mice spinal cord with an MBP 

mutation to which neurospheres expressing dsRed were added to allow the visualization either 

of oligodendrocytes’ cytoplasm or the membranous processes distinguishable of these cells 

and followed myelination under an inverted fluorescent microscope. In this paper, the same 

events of oligodendrocytes’ processes extension and retraction were also seen, strengthening 

the reliability of the presented PDMS micropillar array platform to study myelination.  

 

Cell Mask 

Pillars 
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Furthermore, this in vitro platform is advantageous regarding the existing neuron-

oligodendrocyte co-culture models once its inherent simplicity allows to mimic axon-

oligodendrocyte interactions. However, in this study, biochemical signals involved in the 

oligodendrocyte-neuron crosstalk were not considered although known to be key players in 

the myelination process. Namely, it has been proved that the myelin formation and OPC 

survival is influenced by the interaction of integrin molecules with axonal or substrate ECM 

proteins (for example, laminin-2) [53]. Signals sent by the axons are fundamental in modulating 

the proliferation and differentiation of oligodendrocytes as well as in defining the myelin 

thickness that surrounds a specific axon. On the other hand, oligodendrocytes also provide 

signals to axons that affect their intrinsic survival. Together this intimate crosstalk is 

responsible for correct signal propagation along the axons as well as for the adequate 

formation of molecular, structural and functional domains of the myelin sheath [54]. 

For that reason, a study involving the addition of axonal factors or ECM protein coatings to the 

micropillars would improve the knowledge about myelination and resemble better the in vivo 

CNS myelinating system. For example, using medium containing factors essential for neuronal 

growth (like nerve growth factor) would be valuable.  

Although this platform lacks some important in vivo CNS features (for example, in the CNS the 

axons are not several micrometres apart, but this platform was constructed based on a 

micropillar distance of 30m) using micropillars to act as surrogate axons is far from being an 

explored field. Only one research team has enrolled in this kind of strategy. Mei and co-workers 

have developed conical micropillars as a tool for high throughput screening of MS possible 

targets [55]. This platform was then implemented by Redmond et al [56] to conclude about 

possible molecules involved in the oligodendroglial wrapping. 
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CONCLUSIONS 

 

This study shows that PDMS micropillars are a reliable and suitable in vitro platform for the 

study of CNS myelination processes. Their physical properties that resemble axons allow to 

understand the physical cues underlying the processes of OPC proliferation, differentiation and 

wrapping. With well-defined micropillars’ diameters, the micropillar array enables the more 

controlled manipulation of the variables involved in the system of myelination. 

Besides, as far as it is reported, the project presented here was the first attempt to follow 

oligodendrocyte differentiation and wrapping in real time using PDMS micropillars as surrogate 

axons 
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The central nervous system is complex and the interactions between all components (neurons 

and glia) are of extreme importance for its normal functionality. However, when an insult 

disrupts this homeostasis scenario this communication is massively disturbed. Specifically, the 

loss of myelin (which is a protective membrane that unsheathes axons and facilitates the 

electrical signal propagation between neurons) is the reason of many neurodegenerative 

diseases.  

 

Currently, there is no effective treatment for demyelinating diseases because the biological 

features of these diseases are not totally understood. Scientists are eagerly seeking for better 

models to mimic in the laboratory, as far as possible, the biological features of these diseases. 

However, so far no model can truly replicate the in vivo CNS interactions either in pathological 

contexts or in homeostasis scenarios. For that reason, there is an unmet need to develop new 

models that can contribute to the understanding of the biological mechanisms of injured CNS 

and to the search for new therapeutical targets for these diseases.  

 

Consequently, the work here presented aimed to explore two in vitro novel engineered models 

that can contribute to our current knowledge of the processes that mediate myelination. 

 

Firstly, a previously described 3D axonal myelination in vitro platform coupled with a tissue 

engineered model of astrogliosis was further explored to study the crosstalk between 

astrocytes and oligodendrocytes, specifically their interaction in the context of astrogliosis. It 

was shown that the activation of astrocytes (a hallmark of astrogliosis) significantly impaired 

the course of oligodendrocytes’ differentiation, corroborating the preliminary studies already 

advanced by the group. Besides, our date further confirmed the reliability of the use of 

electrospinning nanofibers to act as surrogate axons, allowing the uncoupling the study of the 

crosstalk between astrocytes and oligodendrocytes from axonal processes’ interaction. 

However, future studies to explore the impact of the activated astrocytes on oligodendrocyte 

differentiation should be done, namely through the quantitative evaluation of the expression of 

more myelin related markers (like proteolipid protein, PLP or myelin oligodendrocyte 

glicoprotein, MOG) and progenitor markers (as NG2). Besides, a deeper study to unveil the 

mechanisms of MBP expression decrease in OPCs when in the presence of activated 

astrocytes would be of added value. Understanding if the decrease of MBP is the result of a 

reduction of the number of live OPCs or the incapacity of live OPCs to differentiate is crucial. 

For that purpose, the assessment of apoptotic markers should be conducted to understand the 

related causes of this phenomenon. 

Moreover, the effects of other characteristic astrocyte phenotypes on OPC development were 

not studied. Namely, inducing astrocytes to a quiescent state (for example, by adding factors 

responsible for the maintenance of their quiescence like tenascin-C [1]) would be important to 

understand the impact of the homeostasis characteristic astrocytes on OPC myelination. In 
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addition, improving the glial scar model by adding cell adhesion motifs to the alginate to allow 

astrocytes to acquire a morphology closer to the one observed in vivo would be also valuable. 

Once the morphology of activated astrocytes did not resemble the well-described elongated 

and hypertrophic astrocytes within the glial scar, the extent of the astrocytes activation could 

not be fully confirmed. Furthermore, to assess the similarity of the 3D axonal myelination 

platform with the in vivo situation, in the future, the results obtained with the engineered 

nanofibers should be confirmed with results obtained when the OPCs are cultured in the 

presence of neurons (like DRG neurons) since the majority of myelination platforms 

established in the literature are the co-cultures between DRG neurons and OPCs. 

A study about the influence of fiber diameter on the course of OPC differentiation after inducing 

an astrogliosis scenario would be interesting. Specifically, producing aligned nanofibers with 

well-controlled diameters by electrospinning techniques is a possible future achievement. 

Although few studies have described the influence of fiber diameter for myelination [2, 3] none 

have reported this influence in the context of remyelination processes.  

Finally, the ultimate aim of this platform would be to apply it to the screenning of biological 

relevant therapeutical targets or molecules and the study of their impact on the communication 

of these two types of cells. Although ibuprofen was the preliminary tested drug, a deeper study 

on its effects on astrocyte-oligodendrocyte crosstalk is needed. 

 

 

Additionally, in this work, for the first time an in vitro micropillar array platform was explored 

with the aim of studying the process of OPC myelination. We have observed that the PDMS 

micropillars promote the OPC differentiation and wrapping in a reproducible manner. However, 

data presented here is just preliminary and further studies still need to be performed. Firstly, 

the mechanical properties of the PDMS platform should be characterized and varied. The 

effect of mechanical properties on OPC differentiation and myelination should be described 

once OPCs are reported to be mechanosensitive [4, 5]. Achieving an elastic modulus near the 

brain’s ECM should be the objective in order to mimic as far as possible the in vivo CNS tissue. 

In addition, the biochemical cues of the axons-oligodendrocytes crosstalk were not considered 

in this study. For that reason, improving the complexity of the system by adding neuronal 

factors or ECM proteins to serve as coatings for the micropillars could significantly change the 

differentiation observed without any external factor. 

Besides, the oligodendrocytes’ wrapping should be studied with a better resolution microscopy 

technique, either with fixed cells (for example, SEM) or in real time. Regarding the live imaging 

in the micropillars, a better myelin processes’ marker should be explored to facilitate the 

accurate understanding of the process of OPC myelination.  

Furthermore, the study of OPC differentiation in the platform with pillars with different diameters 

is now possible to be done once the issues regarding pillar stability were overcome. The effects 

of micropillars diameter can also be determined. 
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Finally, using a conductor polymer to which electrodes can be attached to transmit electrical 

signals instead of PDMS polymer would also be extremely attractive to closely mimic the CNS 

in vivo signal transmission between neurons and their effects on myelination. 

 

 

Importantly, both studies highlight the relevance of the microenvironment in which neural cells 

are grown. Although the traditional in vitro 2D platforms allow the well-controlled analysis of 

individual variables, the intrinsic complexity arising from the three-dimensionality of the CNS 

is not achieved. Both in vitro platforms developed in the scope of this project show that cells in 

3D microenvironments behave more closely to those in vivo. 

 

Overall, this project adds important steps towards the development of relevant biological in 

vitro CNS models, expanding the knowledge about biological fundamentals of the CNS cells’ 

interactions either in pathological contexts or in homeostasis scenarios, improving the clinical 

relevance of these platforms. 
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Several cell-based platforms are being explored as central nervous system tissue mimics, in
health and in disease, for the high-throughput screening of new therapeutic targets and

drugs to address the challenging management of neurodegenerative disorders.

High-throughput platforms for the
screening of new therapeutic targets
for neurodegenerative diseases
Daniela N. Rocha1,2,3, Eva D. Carvalho1,2,3,4 and
Ana Paula Pêgo1,2,3,4

1 INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
2 i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
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4 Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal

Despite the recent progress in the understanding of neurodegenerative

disorders, a lack of solid fundamental knowledge on the etiology of many

of the major neurodegenerative diseases has made it difficult to obtain

effective therapies to treat these conditions. Scientists have been looking

to carry out more-human-relevant studies, with strong statistical power, to

overcome the limitations of preclinical animal models that have

contributed to the failure of numerous therapeutics in clinical trials. Here,

we identify currently existing platforms to mimic central nervous system

tissues, healthy and diseased, mainly focusing on cell-based platforms and

discussing their strengths and limitations in the context of the high-

throughput screening of new therapeutic targets and drugs.

Introduction
Neurodegenerative diseases (see Glossary) are incurable and highly debilitating conditions that

can lead to impaired cognitive and sensorial functions and/or problems in movement (ataxia).

These include Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD) and

multiple sclerosis (MS), among others. Some central nervous system (CNS) neurodegenerative

diseases are known to have a genetic/familiar component, whereas others are highly multifacto-

rial [1].

Neurodegenerative diseases were initially investigated using anatomical studies followed by

biochemical analysis. Currently, a common practice is the study of familial genes that could be

involved in these diseases or identification of major pathways involved in the mechanisms of the

disease, recurring to mutation integration (knock-in and knockout) in animal models. This

enabled the massive progress seen recently in the knowledge of these diseases. Nevertheless, these

conditions remain untreatable, and several important mechanisms of neurodegeneration are still

to be fully understood. In 2010, the annual costs of mental and neurological pathologies in

Europe were s798 billion. Owing to the nature of these diseases, 40% of these costs were related to
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loss of productivity of the affected people [2]. Costs are probably

higher today because these pathologies usually have a long-term

impact and the population is aging. Taking all this into consid-

eration, it is clear that there is the need to increase our under-

standing of CNS neurodegenerative disorders to address them

effectively.

Over time, scientists have been looking forward to making

more-human-relevant studies mainly because of the difficulty in

translating the obtained results in preclinical animal models to

humans, the costs associated with animal models, as well as all the

ethical issues raised with the use of the latter. As such, there is a

growing need for biologically and clinically relevant in vitro mod-

els to be used to increase the knowledge of CNS function, define

disease biomarkers, study and test new therapeutic targets and

drug candidates before the start of clinical trials, as well as enable

the discovery of new interesting applications for known therapeu-

tic molecules.

In vitro screening systems need to recreate an environment that

is as representative as possible to the one found in vivo in the target

tissue or system unit of interest. Although simple in vitro systems

are appealing, there is a need to find equilibrium between model

simplicity and physiological relevancy for data understanding and

interpretation to be possible and relevant. Ideally a platform must

allow the full control of system complexity and existing variables.

Additionally, it should enable the researcher to start with a simple

platform that, in time, with the increasing understanding of the

system, can become more and more complex, giving rise not only

to a higher understanding of the system but also to more-relevant

results and knowledge. Moreover, with the increasing need to test

as many variables as possible at once, high-throughput screening

(HTS) assays have been evolving. Here, we identify the existing

platforms to mimic the healthy and diseased CNS, mainly focusing

on cell-based platforms, discussing their strengths and limitations

in the context of the HTS of new therapeutic targets and drugs for

the treatment of neurodegenerative diseases.

Considerations for HTS platforms
Typically, in the context of biomedicine, HTS is applied in the

design of chemical structures to be used in drug discovery and

further testing in a therapeutic setting or to test compounds and/

or conditions to address biological questions in fundamental

research [3]. The need for HTS platforms is increasing among

industry and academic researchers, because they can solve the

problem of lengthy, resource-intensive procedures that can, some-

times, make the screening of the required large number of condi-

tions impossible. One of the main causes of failure during clinical

trials is the lack of efficacy of the existing in vitro systems to test

drug toxicity, which ends up being revealed only at late stages of

the research [4].

HTS assays are usually divided into two categories: biochemical

assays, studies of protein–protein interactions, proteases, enzy-

matic activity, among others; and cell-based assays. Biochemical

assays usually assume a starting knowledge of a molecular target;

by contrast cell-based assays often aim to identify modulators of a

pathway of interest.

There are several published studies that focus on the consider-

able potential of HTS-based biochemical assays. Pedro et al. [5]

developed a method in which the activity of the leucine-rich

repeat kinase 2 (LRRK2) was measured, because increased LRRK2

activity was proved to be related to PD. The group used the

AlphaScreen1 assay which relies on the emission of fluorescence

if there is a biomolecular interaction between the donor and the

acceptor (the kinase and a moesin which is its putative physiolog-

ical substrate). This HTS platform has been proposed to test the

capacity of small molecules in inhibiting the activity of LRRK2.

Crowe et al. [6] carried out another interesting study, screening

almost 30,000 compounds to assess their influence on tau protein

assembly. Formation of toxic tau oligomers in the brain is one of

the main observed pathologic events of AD. With this in mind,

using an HTS assay based on complementary thioflavin T fluores-

cence and fluorescence polarisation methods, the authors were

able to observe the effects of inhibitors of tau oligomerisation and

found that aminothienopyridazines (ATPZs) caused inhibition of
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GLOSSARY

Biolistic transfection A physical method of transfection in
which the target tissue is bombarded with DNA-coated gold
particles.
Bioprinting The process of generating spatially controlled
cell patterns or constructs using 3D printing technologies –
typically it involves dispensing cells in an injectable
biomaterial, like hydrogels.
Electrospinning A fibre production method that uses
electric force to draw charged threads of polymer solutions or
melts up to fibre diameters in the nano- to micro-metre
range. It is used in the biomaterials field because of close
resemblance between electrospun polymer fibres and the
extracellular matrix fibrillar components.
High-throughput screening A process in which large
numbers of conditions (chemicals, biological agents, etc.) are
tested with high efficiency, to identify biologically active
molecules and/or cellular targets as candidates for further
validation in additional experiments.
Mechanotransduction The process by which a cell translates
mechanical stimulus into biochemical signals – the
transduced signals can vary in properties, being electrical (i.e.
the ones involved in the depolarisation of cellular
membranes), chemical (i.e. those producing a second
messenger) or transcriptional (i.e. in the activation of gene
expression), among others.
Microelectrode arrays or multielectrode arrays (MEAs)
Devices that contain multiple microelectrodes through which
neural signals are obtained and/or delivered, essentially
serving as neural interfaces that connect neurons to
electronic circuitry – MEAs can be used in vivo or in vitro,
neuronal cultures on MEAs can survive for over a year in vitro.
Microfluidics The behaviour, precise control and
manipulation of fluids that are typically geometrically
constrained to a submillimeter scale.
Multicellular spheroids Microscale, spherical cell clusters–
spheroids can be monoculture or multiculture.
Neurodegenerative diseases A disease group characterised
by progressive nervous system dysfunction, being associated
with atrophy of affected structures of the nervous system.
Tissue engineering Generally involves the use of materials
(scaffolds), cells and bioactive molecules to prepare de novo
tissues in vitro or in vivo with the goal of trying to understand
tissue function or as part of tissue regenerative or repair
strategies.
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fibril assembly as well as fibrillisation of tau. Because the normal

ability of tau to stabilise microtubules was not affected, ATPZs

were shown to be promising drugs to treat AD. In addition, Wang

et al. [7] developed a study focused on the process of hydrolysis of

acetylcholine by acetylcholinesterase, which is a central mecha-

nism in the control of neural response. In AD the levels of

acetylcholine are low, making it an interesting therapeutic target.

The authors measured acetylcholinesterase activity and screened

acetylcholinesterase inhibitors thus proving the feasibility of the

assay that has the potential to be, in the future, used as an HTS

platform for screening inhibitors of acetylcholinesterase. Further

evidence supporting the relevance of biochemical-based assays in

the context of neurodegenerative diseases was conducted by Shu

and co-workers [8] who devised an HTS assay based on a novel

reporter substrate of autophagin-1 composed of a natural sub-

strate (LC3B) fused to an assayable enzyme (PLA2) that becomes

active upon cleavage by this cysteine protease. This platform can

serve for identification and characterisation of autophagin-1

inhibitors – inferring the role of autophagy, because its regulation

could be the cause of many diseases, including neurodegenerative

ones. More recently, Kashem et al. [9] studied the inhibition of

sphingosine-1-phosphate (S1P), a sphingolipid whose degrada-

tion by S1P phosphatases and sphingosine-1-phosphate lyase

(SPL) is involved in AD and MS pathologies. Briefly, the group

created a scintillation proximity assay able to screen possible

inhibitors in 384-well microplates in a rapid way. By testing

a library of 106 compounds the team identified several classes

of SPL inhibitors amenable to be used as a new class of immuno-

suppressive drugs.

With cell-based assays, entire pathways can be subjected to

questions creating multiple potential points of interest, in contrast

to the study of single predetermined steps as in the biochemical

assays. Furthermore, cell-based assays can provide information

that a biochemical assay cannot, such as the nature of the phar-

macological activity of the screened compound at a specific recep-

tor or intracellular target. Furthermore, there are also some targets

that cannot be properly reconstituted in a biochemical assay

[10–14], such as complex interactions between receptors or cellular

factors that are not easily reproducible outside the cell. Conse-

quently, cell-based platforms are particularly promising because

they can be powerful tools in the study of cell growth and differ-

entiation, to investigate the influence of small molecules and cell

growth conditions on cell function and physiology, and also to

understand signalling pathways in mammalian cells. These have

also proven to be very useful in some CNS studies [15–25]. In this

context, Thid and co-workers [15] designed a new neural cell

culture substrate based on the phospholipid bilayer as a biomi-

metic platform for cell behaviour studies, which was shown to

support cellular adhesion and growth. Kang et al. [19] have estab-

lished a microelectrode array to measure neuronal network activi-

ty in a platform that could constitute an interesting drug screening

platform. In fact, HTS has also been used to ease and standardise

manual methods for the measurement of neurites [24]. There are

many important factors that need to be considered when planning

a cell-based platform. These include choosing the biological sys-

tem (primary cells, cell line or explants), choosing the assay

approach (functional, phenotypic or reporter gene) [26] and an-

other crucial factor is the assay readout.

Primary cells of human origin are possibly the most physiologi-

cally relevant model system and, although primary cells can

sometimes be difficult to obtain, several primary cell types from

humans and other species are already commercially available [27].

Nevertheless, transformed cell lines of human origin are currently

the most commonly used systems. Many of these lines preserve a

highly differentiated phenotype being good platforms to screen

complex physiological responses. Additionally, cell lines can be

engineered to express a specific target [27], which can increase

their interest as models for certain studies. Diverse transformed

and primary mammalian cells have been exploited to study dis-

eases, including diabetes, cancer and neurodegenerative diseases

[3,28,29]. More recently, the development of induced pluripotent

stem cell (iPSC) technology provided a new powerful tool for drug

screening, allowing the use of cells with the same genetic back-

ground of the patients without certain cell type constraints asso-

ciated with the use of the patient primary cells, as in the case of

CNS cells [30].

Issues such as cell viability, doubling time (when applicable)

and recovery from freeze–thaw cycles must all be considered [31].

Additionally, cell seeding density and passage number can signifi-

cantly affect the output and, consequently, the size of the cell bank

needed [27]. Differences in cell growth across the plate that can

occur with long incubation periods also need to be taken into

account, being easily prevented by careful regulation of the hu-

midity and temperature of the incubator and by an even distribu-

tion of the plates in the incubator.

When using a cell-based assay focused on a signalling pathway

there is flexibility on the choice of the readout. Particularly, if an

antibody is available, possible readouts can be any step in which a

protein is modified (e.g. phosphorylated), translocated or its abun-

dance changed [32]. When talking about HTS applications, the

most applied detection method seems to be fluorescence-based

assays. This is mainly because of high sensitivity, diverse selection

of fluorophores and a variety of readouts based on different

environment-sensitive fluorescence properties [33] that, altogeth-

er, allow miniaturisation, flexibility in assay design, ease of ma-

nipulation and even the possibility to monitor multiple events

simultaneously [33]. Fluorescence readouts are also appealing

because fluorescence microscopy techniques have significantly

evolved in the past decades with increasing sensitivity, image

definition and automatisation features.

Cell-based 2D platforms
Glass coverslips and tissue-culture polystyrene (TCPS) are the most

frequently used substrates to culture cells. These can be adequate

and convenient substrates for 2D cell cultures and have been

widely used for toxicity assays, for example. Malik and co-workers

[34] recently reported a 2D model to assess neurotoxicity profiles

of several drugs. The authors have used pluripotent stem cells to

develop a highly reproducible HTS system and identified cardiac

glycosides as potential drugs to target glioblastomas, as a result of

their toxicity for human neural stem cells. Although several cell

culture models have been successfully established using glass or

TCPS substrates, it is well known that these offer cells a very

different mechanical environment compared with the one expe-

rienced in physiological conditions in vivo [35–38]. With this in

mind, the biomaterial engineering field has been contributing to
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the development of physiologically relevant in vitro assays by the

use of 2D materials that can better mimic in vivo mechanical

properties. These substrates include polymeric substrates [39] or

hydrogels [40–44]. In fact we have recently shown that substrate

mechanical properties can influence neuronal morphology and

intracellular signalling pathways [39]. In this section, relevant 2D

platforms within the context of CNS disorders are discussed.

Disease models
Neurons can exist in the body over a lifetime and neurodegenera-

tive diseases are progressive conditions that affect neurons in time.

Consequently, to mimic the physiological conditions in vitro,

long-term culture systems are necessary. Lesuisse and Martin

developed a long-term system using cortical neurons to study

mechanisms of neuronal maturation, aging and death and con-

cluded the appearance of an age-related biochemical phenotype in

the culture [45]. Interestingly, long-term neuronal cultures were

later used to study AD progression by Bertrand et al. [46], in this

case using cultures of hippocampal neurons. More recently, Todd

and co-workers established a method for long-term high-density

culturing of hippocampal neurons [47]. The authors claim that

their organoid system can serve as a model for AD and in other

neurodegeneration studies, because these cultures can provide

distinct advantages when testing the effects of long-term thera-

peutic strategies.

Envisaging AD therapies, Seyb et al. [16] developed a cell-based

HTS to screen molecules for their ability to inhibit calpain, because

this has been correlated with beta-amyloid (Ab) cytotoxicity. Here

the authors explored differentiated Sh-SY5Y cells (a commercially

available cell line established by subsequent cloning of the neuro-

blastoma cell line SK-N-SH, which was established from a metastatic

bone tumour). Although this appears to be an interesting screening

platform, no direct inhibitors of calpain were found in this study.

Recently, several studies with stem cells have been directed

towards the identification of novel therapeutic approaches to

understand and ultimately cure neurodegenerative diseases

[48–50]. Using cell models of mouse and rat neural stem cells

treated with hydrogen peroxide to induce oxidative stress, Wang

et al. achieved interesting insights regarding the action mecha-

nism of TecfideraTM (dimethyl fumarate) [51]. This drug, which

has been approved in Europe and is already available on the

market, shows an ability to reduce relapse rates in MS patients.

The team saw an increase in the survival of stem cells through

regulation of Nrf2 and the extracellular-signal-regulated kinase

(ERK)1/2/mitogen-activated protein kinase (MAPK) signalling

pathway. Zhang et al. [52] used a HD-specific iPSC line to develop

an in vitro HD cell model. Being a cell model based on human cells

makes it potentially more clinically relevant and, consequently,

useful for the screening of therapeutic drugs.

Salvador and co-workers developed an in vitro model of trau-

matic brain injury (TBI) [53] based on cultures of murine brain

microvascular endothelial cells from the cerebral cortex con-

ducted on collagen-coated flexible-bottomed culture plates, in

the presence or absence of astrocytic factors. By using these sub-

strates which can be easily subjected to stretch, simulating the

primary mechanical disruption typically occurring in TBI, togeth-

er with oxygen and glucose deprivation, the authors achieved a

closer to reality replication of the events occurring in TBI.

Co-cultures have also been widely studied and used as cell

models to understand neurodegeneration. Several co-culture mod-

els have been proposed to address myelination in the CNS context

[54–56]. For instance, Howe and co-workers published the effects

of the Fc portion of human IgM (Fcm) in CNS cells. To achieve this,

the group used a mixed culture of oligodendrocytes, microglia and

astrocytes and found that, under treatment of Fcm, the microglia

changed to a phenotypic activated state and started to release

cytokines such as interleukin (IL)-1b. The authors hypothesised

that molecules produced in response to IL-1b kill the leukocytes

that trigger inflammation in diseases such as MS. Thus, Fcm could

be an interesting target to explore against demyelination in MS

[57].

Microfluidic platforms
Molecular gradients are important regulatory components of tis-

sue processes. Numerous molecular gradients can be found in the

majority of tissues, and to mimic such milieu authors have ele-

gantly used microfluidics technology in 2D environments

[20,21,58–60]. Although microfluidics chambers were initially

used in the context of neurosciences to force the physical isolation

of axons from each other and from their respective cell bodies,

these systems are now useful for several applications on CNS (co-

)culture studies [61–63] because they introduced an easy and

feasible way of studying neurobiology, as a result of the precise

control of the microenvironment of the cells; for a review, see [64].

Molecular and cellular interactions are both easily achieved with

this methodology.

Microfluidic-based neuronal circuits

There are several good examples of in vitro neuronal cell cultures

grown and manipulated in microfluidic devices and their value as

a tool to study fundamental physiological changes that occur in

the CNS. In 2009, Park et al. produced a multicompartment co-

culture microfluidic platform to study mammalian CNS axon–glia

interactions for the screening of growth factors and potential

myelin repair drug candidates [20]. In the same year, the same

researchers [21] showed that a multicompartment microfluidic

neuron culture platform could be used for biochemical analysis

of the proteic axonal fraction allowing the simultaneous use of

multiple experimental conditions in parallel on a single platform

(Fig. 1a). Park et al. also [63] developed a multicompartment

microfluidic platform where oligodendrocyte progenitor cells

(OPCs) were directly seeded on top of isolated axons. OPCs were

shown to differentiate successfully into myelin-producing oligo-

dendrocytes. This platform was used to study the localised effects

of chondroitin sulfate proteolgycans (CSPG), coming to the con-

clusion that CSPG at concentrations lower than 250 ng/ml did not

cause the retraction of pre-established axons.

Hosie et al. explored microfluidic platforms to study glutamate

excitotoxicity, which is a pathogenic condition in several neuro-

degenerative diseases. The authors isolated distal axons from cell

bodies in a microfluidic device and concluded that the most

susceptible part of the neuron to excitotoxicity is the distal axon

[65]. More recently, Roberston et al. [66] developed a high-

throughput platform to monitor neuronal synaptic communica-

tion for drug screening purposes. The authors have combined a

microfluidic system with a calcium-imaging array to study pri-

mary hippocampal cultured networks. This system can overcome
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some limitations of microelectrode arrays such as the lack of

interface between some electrodes and cells as a result of random

distribution of cells, assuring the quality of the signal and data

collected.

Kang and co-workers [19] used an agarose hydrogel to build a

multi-well neuronal microcircuit microelectrode array platform,

which enables the reduction of data collection times. This tool

could prove to be powerful for neurobiological assays assuring the

statistical power needed for data analysis in a short period of time

and it would be interesting to combine it with a microfluidic

system.

Microfluidic-based disease models

Microfluidic platforms have also been widely explored as disease

models. Cho et al. [67] developed a microfluidic chemotaxis

platform to mimic the AD brain, namely creating gradients of

soluble Ab to study microglial behaviour and unravel the reason

behind microglial accumulation near Ab plaques. This microflui-

dic platform, which contains a central Ab reservoir and Ab gra-

dients in the cellular compartments, could be used for other

migration studies in the framework of other neurodegenerative

diseases such as the study of OPC migration in demyelinating

diseases such as MS. Lee and Park [68] also developed an AD model.

The formation of Ab aggregates is known to be influenced by

several external factors of the surrounding microenvironment.

High concentrations of metal ions such as Fe2+ are present within

and peripheral to the senile plaques, and in AD patient neutro-

phils. The authors address the issue of Ab deposition by immobi-

lising monomers on a polydimethylsiloxane microgrooved

surface, and then comparing the clearance effects of several che-

lators on Fe3+-induced formation of Ab aggregates.
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FIGURE 1

Schematic representations of 2D cell-based platforms. (a) Multicompartment neuron–glia co-culture system, which enables multiple localised axon treatments in
parallel. Reproduced, with permission, from [21]. (b) Microfluidic platform that allows the co-culture of astrocytes and cortical neurons to address non-cell autonomous

effects in amyotrophic lateral sclerosis (ALS) disease, induced through the metabolic communication between neurons and astrocytes over a distance of 0.94 mm.

Reproduced, with permission, from [69]. (c) Microfluidic blood–brain barrier (BBB) model that comprises a microcirculation two-compartment chamber – top view of
the basolateral chamber which is supported in the centre by a support structure to prevent the collapse of the top of the microfabricated chamber. Scanning electron

microscopy (SEM) images of the 3 mm gaps and apical and basolateral fluidic chamber. Reproduced, with permission, from [66].
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Kunze et al. [69] developed a microfluidic cell culture platform

to improve the understanding of astrocyte–neuron interactions in

amyotrophic lateral sclerosis (ALS) pathology by co-culturing

neurons with super oxide dismutase (SOD)-mutant astrocytes:

astrocytes genetically modified to overexpress a mutated form

of SOD1, a mutation known to occur in ALS. This microfluidic

device prevents the direct contact between cultured cells enabling

the study of metabolic communication between the cultured cell

types (Fig. 1b).

Microfluidic-based BBB models

The blood–brain barrier (BBB) is known to be a highly selective

barrier between the brain vasculature and brain tissue, composed

of endothelial cells (ECs) of the cerebral microvasculature, which

are interconnected by tight junctions. Although the BBB is abso-

lutely essential for the normal function of the brain, preventing

the entry of pathogens and unwanted substances, it also consti-

tutes the main impediment for drug entry into the brain when

drugs are intravenously administered. Therefore, a large number of

systems have been proposed and used to investigate the cellular

and molecular mechanisms underlying BBB establishment, to test

new drugs, evaluate conditions and mechanisms that cause the

barrier disruption, among others [70]. In vitro models of the BBB

have been traditionally achieved using cell culture trans-wells but

microfluidic systems have enabled the establishment of dynamic

and more physiologically relevant in vitro BBB models. The use of

microfluidic platforms has enabled the application of shear stress

to the cultured ECs via fluid flow, which was shown to increase the

barrier properties of the BBB in in vitro models [71–73] – better

mimicking the physiological conditions.

Prabhakarpandian et al. [74] have recently developed an inno-

vative microfluidic BBB model that comprises a microcirculation

two-compartment chamber (Fig. 1c). In this study, ECs were

cultured in the presence of astrocyte-conditioned medium. The

authors focused on the permeability of the BBB in vitro model and

have not really addressed trans-endothelial electrical resistance

(TEER) measurements. BBB integrity alteration can be routinely

assessed in vitro by determining cell monolayer permeability to

different solutes and measuring the TEER.

The presence of astrocytes in vitro was shown to increase TEER

values significantly in BBB models [75–77]. Xue and co-workers

[78] have gone further in the pursuit of a clinically relevant culture

model and established a platform comprising a tri-culture of

astrocytes, neurons and ECs achieving TEER values significantly

higher than those obtained in other models. Another study using a

tri-culture of astrocytes, pericytes and endothelial cells also

showed increased TEER values [75]. Although these studies suggest

that the presence of more cell types that are present in the in vivo

scenario is extremely important to obtain increased TEER they also

suggest that the presence of the different cell types might not be as

relevant for permeability issues [75,79]. As such, it is important to

consider both factors when considering a model to test new drugs

for CNS applications.

Cell-based 3D platforms
Whereas 2D approaches allow a well-controlled analysis of the

impact of individual components on cells, our tissues have addi-

tional layers of complexity that arise from the three-dimensional-

ity that strongly conditions cell function. To achieve a more

native-like environment many researchers have started to work

in 3D environments. By comparing cell culture systems with 2D

and 3D architectures several authors observed significant differ-

ences in cell behaviour that suggest that neural cells cultured in 3D

behave more closely to those in vivo. Therefore, the more physio-

logically relevant microenvironment of a 3D culture could en-

hance the quality and biological relevance of the obtained data. In

the following subsections 3D models of increasing complexity will

be approached; namely spheroid cultures, tissue slices and bioma-

terial-based platforms.

Spheroid culture models
In vitro multicellular spheroids have begun to bridge the complex-

ity gap between monolayer cell culture and in vivo tissue structure

and have become valuable in vitro models for developmental and

drug resistance studies. These can also be very useful when study-

ing a neurodevelopmental disease. To promote cell assembly while

preventing spheroid aggregation, culture systems developed for

cell spheroid formation such as hanging drops and microwells

could be used to obtain uniform neurospheres [80]. There is

currently a commercially available 3D spheroid culture platform

named Perfecta3D1 hanging drop plates (3D Biomatrix), which is

a high-throughput 3D cell culture device that aims to simplify

spheroid formation, culture and subsequent testing of the

achieved 3D constructs. However, static suspension cultures also

present limitations, such as the ones observed in the case of

cultures with large-diameter aggregates, in which limited supply

of oxygen, nutrients and/or growth factors to the centre of the

aggregates could lead to the development of necrotic cores, and

alter culture dynamics. In this case, dynamic culture systems are

more appropriate [81].

Lancaster et al. settled a human pluripotent stem cell derived

cerebral 3D organoid culture system in which various cerebral

zones were represented. The authors maintained neuroectoderm

from embryoid bodies in 3D Matrigel1 droplets. The structure was

then moved to a bioreactor, rapidly evolved, recreating different

brain tissue areas [82]. Moreover, Tieng et al. generated neuro-

spheres that differentiated in dopaminergic neurons and studied

the influence of gamma secretase inhibitors (compound E and

DAPT) on neuronal differentiation and maturation and concluded

that these molecules could control maturation and induction of

neural precursors. This model is of distinct interest for PD and

demyelinating diseases [83].

Seidel and co-workers [84] developed a 3D model of tauopathy

that recapitulates pathological processes known to occur in AD.

This culture model is based on a spheroid culture of a human cell

line and promises to provide an efficient system for the screening

of new therapeutic drugs. This work further shows the relevance of

3D models and it is of added value when compared with 2D

systems because the authors found increased neuronal differenti-

ation and interesting levels of degeneration being achieved in vitro.

Also aiming to recreate the AD environment in vitro, Park et al. [85]

developed a 3D neurospheroid culture-based microfluidic system

as an in vitro brain model (Fig. 2a). The cultured cells were then

treated with Ab to simulate the AD environment. The combina-

tion of spheroid cultures with microfluidic technology enabled the

recreation of the 3D architecture and the interstitial fluid flow

simultaneously, which could be of added value because the
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authors have shown that Ab toxicity in dynamic culture condi-

tions is significantly higher than the one seen in static conditions.

This in vitro brain model constitutes an interesting model for the in

vitro study of neurodegenerative disorders in the brain.

Tissue-explant-based models
The use of tissue explants is also a strategy followed by several

authors to achieve 3D cultures where tissue architecture, cellular

and molecular content must be preserved. Because these closely

recreate the in vivo environment, keeping cell-matrix composition

and relative content similar to the ones in native tissue can be of

added value when the aim is to create a model of a pathology that

involves several cell types or even brain regions, and/or where

tissue architecture and composition are key factors.

Reinhart et al. [86] have used rat brain tissue explants to

which Huntingtin clones where delivered through biolistic trans-

fection. Using a library of 74 compounds known to be involved in

processes of cell death and inflammation, the authors concluded

that IkB kinase complex compounds (WAY-717 and WAY-781),

CXCR3 chemokine receptors (compounds 6c and T487), a c-Jun N-

terminal kinase inhibitor (SP600125) and an adenosine 2A recep-

tor agonist (CGS21680) and antagonist (KW-6002) showed neu-

roprotective features in the disease explant model. This platform

was developed to study HD but it can be useful to establish other

disease models for other pathologies that have a known genetic

profile. Zhang et al. [87] have also used ex vivo tissue explant

cultures of brain and spinal cord tissues to establish an MS in vitro

model (Fig. 2b). The proposed system has been shown to constitute

a good platform for the study of myelination and remyelination

mechanisms. In this report, the authors used image stacks

obtained from confocal microscopy and, through image software,

quantified the myelin. An automated myelin quantification meth-

od is of added value for the screening of remyelination-promoting

drugs. To test potential neuroprotective agents, Ravikumar et al.
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FIGURE 2

Schematic representations of 3D cell-based platforms. (a) 3D brain-on-a-chip with an interstitial level of flow. Reproduced, with permission, from [85]. (b) The
impact of a 3D microenvironment. Differences in phosphorylated P21-activated kinases (pPAK) expression and responses to beta amyloid (Ab) oligomers in 2D

cultures and 3D self-assembling peptide (SAP) matrix cultures. Reprinted, with permission, from [112]. (c) Alginate-based in vitro tissue engineered glial scar. (d)
Artificial axon system for myelination studies. Adapted, with permission, from [108].
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[88] established a protocol where spinal cord slice cultures were

treated with lipopolysaccharide (an antigen used to induce neu-

rodegeneration) and co-cultured in trans-wells in the presence of

microglia cells seeded on poly(L-lysine)-coated glass coverslips.

Polystyrene beads were used to activate the phagocytic capacity

of the microglia. As bead concentration increased the axonal

disruption also increased. Resveratrol was then tested as a neuro-

protective agent and this treatment led to reduced levels of neu-

rodegeneration when compared with controls.

More recently, Hutter-Schmid et al. [89] developed a model to

study the relationship between damaged brain vessels and neuro-

degeneration. In the neurovascular unit vascular cells closely

interact with astrocytes. Hence, understanding angiogenesis

mechanisms in the brain, as well as simulating its reaction to

growth factors and drugs, is of extreme importance. In this model,

tissue slices were cultured in membrane inserts and shown to

maintain the normal structural vessel network of the brain. This

is relevant once alterations in the vascular system can contribute

to the development of degenerative diseases such as AD [90]. As

such, this model can be further used to screen new drugs to

improve vascular function or also to study responses of the vascu-

lar cells to some common neurodegenerative drugs.

TBI incidence is rapidly increasing because of recent military

conflicts. Miller and co-workers [91] developed a model of blast-

induced TBI, in which mouse brain slices and a shockwave tube

were used to mimic shockwave overpressure. Cell death and effects

of the injury in neuron cells were assessed. The authors concluded

that neuronal death was prominent. Besides, astrocytes and micro-

glia were activated in the model, thus showing the feasibility of the

model to mimic blast TBI. To screen neuroprotective compounds

to be used in ischemic stroke, Beraki and co-workers [92] created a

two-step robust screen methodology. Firstly, the authors used

primary cortical neurons and subjected them to oxygen glucose

privation for 2 hours. The compounds were then added to the

culture and cell death, viability and toxicity were measured.

Remaining compounds were then tested in a mouse brain orga-

notypic slice culture and, among them, Carbenoxolone1 proved

to be the most efficient. This added a great therapeutic value for

the treatment of this disease.

Biomaterial-based models
In the past decades, the fields of biomaterials and tissue engineer-

ing have been paramount to the developments observed in HTS

platforms, helping the recreation of physiologically relevant in

vitro systems. Nevertheless, adapting 3D assay systems to high-

throughput testing brings additional challenges because miniatur-

isation might not be as straightforward as one would desire,

however such platforms are emerging [93,94].

Lai and Kisaalita [95] have developed a 3D culture system for

human neural stem cells. The authors have transformed the

regular polystyrene 2D culture wells into 3D culture wells by

building a porous polystyrene scaffold into standard 96-well

plates. Although this solution has the added value of being

cheaper than any of the previously mentioned commercial solu-

tions, polystyrene might not present the ideal mechanical prop-

erties for many CNS cell-culture-based studies. Hydrogels

have been more frequently explored, mainly because of their

biological properties, because these more closely resemble the

natural extracellular matrix and, consequently, positively impact

cell behaviour. Neurons in a 2D microenvironment have been

shown to have high Ca2+ dynamics in comparison with neurons

cultured in 3D hydrogels [17,96–98] showing that the 3D envi-

ronment is more relevant for electrophysiology studies. Irons et al.

[17] have shown that neurons and astrocytes cultured in a 3D

environment acquire a complex 3D morphology and are able to

maintain cellular viability for several weeks. Additionally, network

properties (pore size, mechanical properties, etc.) and degradation

rate are tunable through changes in the cross-linking degree and

gel chemistry [99]. Currently, different hydrogels have been ex-

plored for neural cell culture, either from natural mammalian

extracellular-matrix-derived sources such as Matrigel1 and colla-

gen or synthetic or chemically defined hydrogels. Among the

latter, several systems are already commercially available that have

also been tested for culture of neural cells (most commonly for

glioblastoma cell culture). These include: the HyStemTM (Ad-

vanced Biomatrix), a chemically defined hydrogel rich in hyaluro-

nic acid; AlgiMatrix1, an alginate-based 3D culture system

(ThermoScientific); the synthetic peptide nanofibre scaffold

HydroMatrixTM Peptide Hydrogel (Sigma-Aldrich); and the QGel

assay system (QGel). The gel-forming method will vary for each

case, but nowadays photopolymerisation and chemical polymeri-

sation also represent good approaches because mild reaction con-

ditions can currently be applied, which can be performed at

physiological pH and temperature, allowing even cell encapsula-

tion at little or no cost to cell viability.

Choi and co-workers [100] have used a Matrigel1-based plat-

form to culture human neural cells to recapitulate AD tauopathy

and Ab pathologies. The results of this study support the idea that

3D models better recreate clinically relevant environments and the

hypothesis that Ab deposition leads to tauopathy.

We have developed a 3D in vitro tissue engineered glial scar [101]

by culturing primary astrocytes within alginate hydrogels, in the

presence of meningeal-fibroblast-conditioned medium. Hydrogel

mechanical properties were shown to influence cell behaviour

significantly with intermediate stiffness gels promoting astroglio-

sis. This platform enabled the identification of RhoA as a pivotal

mediator of astrocyte reactivity and, as such, identified it as a

potential therapeutic target (Fig. 2c). Ibuprofen and chondroiti-

nase ABC were shown to reduce RhoA levels and recover the

astrocytic phenotype. These 3D cultures were shown to recapitu-

late many biological features of glial scars and could be useful in

the future for the screening of therapeutic drugs to target astro-

gliosis.

Bioprinting is another appealing advancement because it can

answer some problems of cell distribution throughout the 3D

environment, particularly significant in the case of multiple-

cell-type cultures, because cells and biomaterials can be deposited

layer-by-layer in a controlled fashion [102,103]. Lee [103] used

such a strategy to pattern embryonic neurons and astrocytes in a

collagen 3D environment.

Polymeric materials have also been used as artificial axons for in

vitro testing of rapid myelinating systems. These have been used as

neuron-free models to study oligodendrocytes and the myelina-

tion process (Fig. 2d). Studies with artificial axons go back to 1990

when Bullock and Rome [104] used glass microfibres to study the

behaviour of OPC differentiation and myelination. Although this
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was shown to be a suitable system to study oligodendrocytes, the

authors did not find oligodendrocytes consistently wrapped

around the glass fibres. More recently, Li et al. [105] produced

electrospun poly(e-caprolactone) and gelatin co-polymer fibres as

artificial axons, which were shown to support growth and differ-

entiation of OPCs. In this work, the authors claim that cells wrap

the fibres but their data are not sufficient to fully assess the

existence of myelin sheath all around the polymeric fibres. Lee

et al. [106] also used electrospinning techniques to produce poly-

styrene and poly(L-lactic acid) nanofibers coated with poly(L-ly-

sine). The authors produced fibres with different diameters and

showed that OPCs react to this physical stimulus, because they

were shown only to myelinate fibres with a diameter higher than

0.4 mm. This result is not extraordinarily surprising because in vivo

CNS axons are known to present diameters that range from 0.3 to

2 mm [107] but it stresses the importance of the physical stimulus

for myelination processes. This work was further able to show the

existence of concentric wrapping of the polymeric fibres. All

together, these studies have shown that axonal signals are not

needed for OPC differentiation and myelination to occur. Because

these systems allow the myelination process to occur in the

absence of neurons, they may be particularly interesting to dis-

criminate the cross-talk between myelinating oligodendrocytes

and other CNS cells besides neurons.
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TABLE 1

Illustrative examples of 2D and 3D platforms proposed in the context of CNS in vitro cellular models

Study focus Dimensionality Type of platform Added value Limitations Refs

Neurotoxicity 2D Human and rat

monocultures

Scale up potential

Human neural cells

Possibility to achieve multiple

neural cell types differentiated
from the NSCs

Difficulty of access to large

quantities of human neural

cell types

[34]

Myelination 2D Microfluidic co-culture Possibility of testing six

different culture conditions

in parallel
Ability to manipulate local

physical and chemical

environment

Inability to achieve robust

myelination

[21]

Neuronal connectivity 2D Microfluidic co-culture Combination of calcium
imaging with microfluidics

technology

Inability to distinguish
synapse formation origin

Reduced volumes of aqueous

solutions could lead to

evaporation and extensive
changes in imaging

[66]

BBB 2D Microfluidic co-culture Ability to reproduce a triple

co-culture system using

primary cells.
BBB function and

resemblance to in vivo events

Time-consuming readout [78]

Dopaminergic nervous tissue 3D Spheroid culture Spontaneous electrical activity

Controlled induction and
maturation of neural precursors

No spatially organised

structures

[83]

Alzheimer’s disease 3D Microfluidic and

spheroid culture

Combination of 3D and

microfluidics technology

Time-consuming readout [85]

Multiple sclerosis 3D Slice culture Readout method – myelination,

demyelination and
re-myelination were

reproduced and

automatically quantified

in a rapid and precise way

No recreation of the

inflammatory component
of the disease

[52]

Neurotoxicity 3D Slice culture Semi-automated readout

method

Tissue architecture is

conserved

LPS-induced degeneration [88]

Stroke 3D Slice culture Readout method
Easiness to study a target

pathway

Platform potential needs
to be further confirmed

with other drugs

[92]

Astrogliosis 3D Biomaterials System simplicity

Resemblance of in vivo features
Ability to tune mechanical

properties

Time-consuming readout

method

[101]

Abbreviations: BBB, blood–brain barrier; CNS, central nervous system; LPS, lipopolysaccharide; NSCs, neural stem cells.
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Concluding remarks and future perspectives for HTS
platforms
Here we reviewed the current state-of-the-art of existing platforms

for the study of CNS function in homeostasis and disease. Some

already comply with the requirements to serve as an HTS platform;

others can easily be extrapolated to such systems. In Table 1, a

summary of the added value and limitations of illustrative exam-

ples is presented, in the framework of the development of such

screening platforms.

When discussing HTS in the context of the CNS one must not

forget the particularities of this intricate system. Neurons and glia

establish complex and orchestrated cellular networks that are

difficult to reproduce in simple culture systems. The CNS is one

of the most densely cellularised tissues of our body, and the

extracellular matrix, which occupies 20% of the CNS space, is

an extremely important constituent and adds an extra layer of

complexity to the system. Mechanotransduction is also becoming

a relevant player in CNS disease. Consequently, the further explo-

ration of extracellular-matrix-derived and biomaterial-based ma-

trices to support 3D neural cultures is expected to improve the

advanced models greatly. Nevertheless, future progress will not

solely rely on biomaterial science but also on the adaptation of

many of the commonly used readout techniques to the 3D cultur-

ing setting; namely the challenge of recovering or accessing cells

from the matrices for further analysis and the necessity of using

microscopic techniques that allow evaluation of multiple focal

planes. Miniaturisation and automated handling of 3D cultures

can also be defiant. The combination of microfluidics technology

with 3D architectures is rapidly evolving [108–111] and, once 3D

culture hurdles are overcome, work in this field will progress and

afterwards microfluidics and co-culture systems can be combined.

In fact, a major obstacle for the advancement of the strategies

discussed here has been the lack of solid fundamental knowledge

on the etiology of many of the major neurodegenerative diseases.

Many neurodegenerative disorders are multifactorial, with several

players involved in the process. iPSC technology will open new

avenues to the development of patient-specific models and perso-

nalised medicine. More recently, researchers have also developed

platforms to mimic multi-organ interaction that are not present in

the conventional tissue culture plate, by using microfluidics with a

co-culture system with the aim of studying pharmacokinetics of

drugs [59] or cell-based drug metabolism [60]. Although not yet

applied to the CNS, ‘quasi-all-body’ model systems can bring new

key information to the field.

Finally, new algorithms for image analysis and large dataset

processing will also need to emerge to handle the terabytes of

information generated, sometimes even in one experiment. There-

fore, a truly multidisciplinary approach will be vital for the evo-

lution of the field. Ultimately, this will translate into new drug

targets, biomarkers, biomolecule-based therapies and novel and

more-efficient disease treatment or management approaches.
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Table 1 Electrospinning parameters tested for P(TMC-CL) nanofiber production. 

 
 
 
 

Polymer 
concentration (%) 

Solvent ratio 
(DCM:DMF) 

Distance (cm) Voltage (kV) Syringe needle (G) Flow rate (mL/h) 

1 10 3:1 

14 14 18 
1 

14 14 21 

14 14 

21 

0.9 

14 14 0.8 

14 13 0.9 

15.5 14 0.9 

14 14 0.8 

14 16 0.9 

14 13 1 

15 14 1 

2 10 1:0 

14 14 

21 

1 

12 14 1 

14 15 1 

16 14 1 

16 14 1.2 

10 14 1 

10 10 1 

3 10 6:1 

14 14 

21 

1 16 14 

16 15 

16 15 0.9 

16 15 0.8 

16 16 0.9 

4 10 1:1 

14 10 

21 1 

14 12 

14 13 

14 16 

10 14 

  



5 12.5 4:1 
14 14 

21 
1 
 20 14 

6 12.5 4:1 

14 14 

21 1 

14 15 

20 14 

10 14 

14 14 

7 9 3:1 

14 14 

21 1 

14 15 

20 14 

20 15 

20 16 

20 17 

10 14 

10 12 

8 9 4:1 

14 14 

21 1 15 14 

13 14 

9 11 3:1 

14 14 

21 1 
20 14 

20 15 

20 13 

10 11 6:1 

14 14 

21 

1 

16 14 1 

15 14 1 

13 14 0.9 

 

 

 

 

 

 



 

Table 2 SEM images of P(TMC-CL) nanofibers. The conditions that are not here presented were excluded by optical microscopy analysis. 

   

    

 

 

10% 3:1 13kV 14cm 0.9mL/h 21G 10% 3:1 14kV 14cm 0.9mL/h 21G 10% 3:1 15kV 15.5cm 0.9mL/h 21G 

10% 1:0 14kV 14cm 1mL/h 21G 10% 6:1 14kV 14cm 1mL/h 21G 10% 3:1 14kV 14cm 1mL/h 21G 



 

   

 

   

 

10% 6:1 15kV 16cm 0.8mL/h 21G 

10% 6:1 16kV 16cm 0.9mL/h 21G 

10% 6:1  15kV 16cm 1mL/h 21G 11% 3:1  14kV 14cm 1mL/h 21G 

10% 6:1 15kV 16cm 0.9mL/h 21G 11% 3:1 14kV 20cm 1mL/h 21G 



 

   

11% 6:1 14kV 14cm 1mL/h 21G 12.5% 4:1 14kV 14cm 1mL/h 21G 11% 6:1 14kV 14cm 1mL/h 21G 
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APPENDIX D: RNA EXTRACTION FROM 

OPCS SEEDED ON P(TMC-CL) FIBERS 

OPTIMIZATION PROCESS 
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Table 1 RNA concentration and absorbance at 260nm, 280nm and 230nm values. 

#1 

Lysis buffer time PBS washing Nanodrop results 

Add and remove 
immediately 

No 
 

Conc. 

ng/L 
A260 A280 260/280 260/230 

Glass 28,5 0,571 0,287 1,99 2,18 

Fibers 12,6 0,251 0,145 1,74 1,09 

        
#2 

Lysis buffer time PBS washing Nanodrop results 

5 min No 
  

Conc. 

ng/L 
A260 A280 260/280 260/230 

Glass 21,2 0,529 0,237 2,23 2,20 

Fibers 13,2 0,33 0,153 2,16 1,97 

        
#3 

Lysis buffer time PBS washing Nanodrop results 

10 min No 
  

Conc. 

ng/L 
A260 A280 260/280 260/230 

Glass 17,9 0,447 0,219 2,04 2,18 

Fibers 12 0,300 0,182 1,67 2,21 

  
      

#4 

Lysis buffer time PBS washing Nanodrop results 

15 min No 
  

Conc. 

ng/L 
A260 A280 260/280 260/230 

Glass 57,2 1,436 0,682 2,10 2,06 

Fibers 26,2 0,654 0,353 1,85 1,74 

        
#5 

Lysis buffer time PBS washing Nanodrop results 

10 min Yes 
  

Conc. 

ng/L 
A260 A280 260/280 260/230 

Glass 33,8 0,860 0,390 2,17 1,95 

Fibers 36,0 0,899 0,550 1,63 0,90 

 

 

 

 

 

 

 

 



Table 2 Example of a RNA integrity measurement (Experion analysis). The RQI Classification is obtained 

by comparing the electrophorogram of the samples with RNA degraded standardized samples. RQI values 
vary between 1 (for highly degraded samples) and 10 (intact samples). Samples with RQI lower than 5 were 
not used in this study. 

 

 

 

 

Figure 1 Example of electrophorogram for RNA samples from OPCs seeded on P(TMC-CL) fibers. 



 

 
 
 

 

 

 

 

 

 
 
 

APPENDIX E: EFFICIENCY PROFILE OF PRIMERS 

FOR QRT-PCR  
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Tested primers 

Table 1 Tested primers for qRT-PCR. 

HPRT Rat 
Sense 5’ ATG GAC TGA TTA TGG ACA GGA CTG 3’ 

Anti-sense 5’ GCA GGT CAG CAA AGA ACT TAT AGC 3’ 

YHAWZ Rat 
Sense 5’ ACG ACG TAC TGT CTC TTT TGG 3’ 

Anti-sense 5’ GTA TGC TTG CTG TGA CTG GT 3’ 

TBP Rat 
Sense 5’ TGG GAT TGT ACC ACA GCT CCA 3’ 

Anti-sense 5’ CTC ATG ACT GCA GCA AAC C 3’ 

MBP Rat 
Sense 5’ TGT CAC AAT GTT CTT GAA GAA 3’ 

Anti-sense 5’ GCT CCC TGC CCC AGA AGT 3’ 

 

 

Efficiency profiles for the primers 

 

 

 

 

 

 

A - HPRT 

B - YWHAZ 



 

 

 

 

Figure 1 Amplification curves and standard curves for HPRT, YHWAZ, TBP and MBP. 

 

Table 2 PCR efficiency values. An efficiency around 100% is the desired for appropriate primers. Besides, R2 should 

be around 0,99 and the slope -3, 

 Fluor 
PCR 

Efficiency (%) 
R Squared Slope y-Intercept 

HPRT SYBR 84,4 0,982 -3,762 41,737 

YWHAZ SYBR 100,8 0,932 -3,302 31,430 

TBP SYBR 82,2 0,979 -3,840 40,900 

MBP SYBR 109,6 0,997 -3,112 39,353 

 

   

 

 

 

 

 

C - TBP 

D - MBP 



Housekeeping genes analysis 

     

 

 
Figure 2 CT values for tested housekeeping genes. YWHAZ was chosen due to the low CT value in comparison 

with the other housekeeping genes. Besides, the higher values of CT from HPRT and TBP is an indicative of low 
expression of the housekeeping which is not adequate. 
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