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1. ABSTRACT 

Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Moreover, 

ischemic heart diseases account for most CVDs-related deaths and, alone, are the leading 

cause of death worldwide. These conditions often lead to acute myocardial infarction (MI) that 

involves ischemia-induced cardiomyocyte (CM) death and the formation of a non-functional 

scar tissue at the infarcted site, greatly impairing cardiac function, often leading to heart failure. 

Moreover, this collagen-rich scar tissue lacks electrical conductivity which often promotes the 

occurrence of arrhythmias in a scenario of MI due to the disruption of electrical conduction. 

Hence, in heart failure ventricular tachyarrhythmia (increased heart rate) and fibrillations 

(disorganized action potential (AP) propagation in the myocardium) are common events. 

Attempting to surpass the shortcomings of current gold-standard therapies, novel therapies, 

involving gene and/or cell therapy or tissue engineering have been emerging. Most of these 

therapies focus on improving cardiac function, reducing cardiac remodeling and/or are 

dedicated to restore cardiac electrical integrity. However, in vivo studies assessing therapeutic 

alternatives that promote concurrent contractile and electrical functional repair are scarce. 

Piezoelectric materials exhibit an electric polarization (and a resultant electrical 

activity) upon mechanical stress (direct effect) or vice-versa (converse effect). Since the heart 

exhibits robust cyclic movements, the implantation of these materials on an injured 

myocardium holds great potential as could be possible to obtain a sustainable electrical 

activity, induced by native mechanical stimuli, with a consequent improvement of 

electromechanical integration and cardiac function. In vitro experiments have shown that thin 

films of polycaprolactone (PCL) covered in polyvinylidene fluoride–trifluoroethylene (PVDF-

TrFE) piezoelectric fibers, maintained contractility and viability of cardiomyocytes in vitro, 

inducing their alignment, improved intercellular coupling, increased ionic channel expression 

and calcium handling. In line with these experiments the herein work aims to test the 
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therapeutic potential of these materials for the treatment of MI. For that purpose, these films 

(herein referred as “Piezo patches”) were implanted in the hearts of mice subjected to MI. One 

month after implantation, functional and histological characterization were performed. The 

materials induced an exacerbated inflammatory reaction associated with multinuclear 

inflammatory cells, resembling a foreign body reaction. Furthermore, although no significant 

differences were observed concerning echocardiographic analysis and cardiac remodeling, a 

consistent tendency for improvement was observed in the Piezo patch-treated animals. Of 

note, electrocardiograms showed that the materials piezoelectric fibers resulted in enhanced 

myocardial conduction with evidences of having a reduced susceptibility to suffer ventricular 

arrhythmia events, when compared with films containing non-conductive, polycaprolactone 

(PCL) fibers. Thus, the herein work support the use piezoelectric materials as tissue 

engineering conductive scaffolds and/or to be used in combination with other therapies 

towards improvement of electrical integrity following MI.  
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2. SUMÁRIO 

As doenças cardiovasculares são a principal causa de morte no mundo. Entre estas, 

o enfarte agudo do miocárdio caracteriza-se pela morte de tecido viável e subsequente 

remodelagem cardíaca, onde há deposição de tecido cicatricial que prejudica a função do 

miocárdio e pode originar falência cardíaca. Esta cicatriz, rica em colagénio, tem fracas 

propriedades condutoras, promovendo frequentemente a ocorrência de arritmias devido à 

disrupção elétrica no miocárdio. Assim, em contexto de falência cardíaca é comum ocorrerem 

taquiarritmias ventriculares (ritmo cardíaco aumentado) e fibrilações. Numa tentativa de 

ultrapassar as limitações das terapias convencionais, têm surgido novas abordagens 

terapêuticas que procuraram melhorar a função e reduzir a remodelagem cardíaca ou 

restaurar a integridade elétrica do coração. No entanto, presentemente existem muito poucos 

estudos que avaliem in vivo novas terapias para melhorar simultaneamente a função contráctil 

e eléctrica. 

Os materiais piezoelétricos exibem uma polarização elétrica (e, consequentemente, 

atividade elétrica) aquando da deformação mecânica (efeito direto) ou vice-versa (efeito 

inverso). Uma vez que o coração apresenta movimentos cíclicos robustos, a implantação 

destes materiais num miocárdio com lesão constitui uma alternativa com elevado potencial 

uma vez que possibilitaria obter atividade elétrica sustentável, induzida pelo estímulo 

mecânico nativo, com uma subsequente melhoria na integração eletromecânica e função 

cardíaca. 

Experiências in vitro mostraram que filmes finos de policaprolactona contendo fibras 

de fluoreto de polivinilideno – trifluoroetileno (polímero com propriedades piezoelétricas) 

depositadas no topo, mantiveram eficazmente a contractilidade e viabilidade de 

cardiomiócitos, promovendo o seu alinhamento, melhorando o acoplamento intercelular, 

aumentando a expressão de determinados canais iónicos e regularizando os níveis de cálcio. 
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No seguimento das experiências descritas, o trabalho efetuado no contexto da 

presente tese consistiu em avaliar o potencial terapêutico destes materiais no tratamento do 

enfarte do miocárdio. Para esse efeito, os materiais foram implantados em coração de 

murganhos que foram submetidos a indução cirúrgica de enfarte do miocárdio. Um mês após 

implantação, os animais foram caracterizados ao nível histológico e funcional. Os materiais 

piezoelétricos induziram uma reação inflamatória com abundantes células inflamatórias 

multinucleares, à semelhança do que ocorre nas reações de corpo estranho. Adicionalmente, 

apesar de não se terem observado diferenças estatisticamente significativas na função 

contrátil e na remodelagem cardíaca, os diferentes parâmetros indicam uma melhoria ligeira 

do grupo implantado com fibras piezoeléctrica. Por electrocardiograma mostrou-se que as 

fibras piezoelétricas depositadas no miocárdio promoveram uma melhoria significativa da 

condução do miocárdio em comparação com filmes contendo fibras (não-condutoras) de 

policaprolactona. 

Em suma, o presente trabalho revela que os materiais piezoelétricos utilizados 

poderão ter potencial como uma alternativa na engenharia de tecido cardíaco e/ou serem 

usados em combinação com outras terapias para melhorar especificamente a condução 

eléctrica do miocárdio. 
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3. INTRODUCTION 

3.1. Epidemiology of Cardiovascular Diseases 

Cardiovascular diseases (CVDs) consist in a group of conditions that involve the heart 

and/or blood vessels (e.g ischemic heart diseases, cerebrovascular diseases). These diseases 

are the leading cause of mortality worldwide with a current estimation of 17,3 million deaths 

per year (with an expected increase up to 23,6 million deaths by the year 2030), representing 

31% of all global deaths [1, 2] (Figure 1). Although genetic factors can influence the 

occurrence of CVDs, by far, the most relevant risk factors include age, gender, family history, 

physical inactivity, smoking habits, alcohol consumption, obesity, diabetes, hypocholesteremia 

and hypertension [2-4]. Moreover, ischemic heart diseases, i.e. conditions that involve reduced 

blood supply to the myocardium (cardiac muscle), account for 46% and 38% of CVD-related 

deaths for males and females, respectively, and represent, alone, the leading cause of death 

worldwide [2, 5] (Figure 2). Importantly, CVDs are frequently associated to electrical disruption 

and the onset of arrhythmias [6], which can be fatal. In line with this, ventricular arrhythmias 

account for approximately 50% of deaths associated with chronic heart failure [7]. 

 

 

 

 

 

 

Figure 1 – Proportion of causes 

of death worldwide. (NCDs: 

non-communicable diseases; 

e.g. cancer). Source: ref [2]. 
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Figure 2 - Proportion of causes of CVD-related deaths worldwide, in males (left) and females (right). 

Source: ref. [2] 

3.2. Myocardial Infarction: Etiology and Pathophysiology 

As mentioned, ischemic heart diseases are the main cause of CVD-related deaths 

worldwide [2, 5]. One of the most common ischemic heart diseases is the acute myocardial 

infarction (MI). MI can be defined as myocardial cell death due to sustained ischemia at the 

myocardium level [8] and is frequently caused by the rupture of atherosclerotic plaques at the 

coronary arteries (which irrigate and supply oxygen to the myocardial tissue) ultimately leading 

to the rapid formation of a blood clot that results in their occlusion [8, 9]. However, MI can also 

be caused by secondary ischemic imbalances (e.g. coronary artery spasms) and stent-related 

thrombosis [8]. Moreover, MI frequently develops into heart failure [10, 11], which can be 

defined as a pathophysiological state in which the cardiac output is insufficient to assure 

enough blood organ perfusion to meet metabolic demands [12]. 

Owing to the often massive loss of viable myocardium by ischemia-induced 

cardiomyocyte (CM) necrosis, MI frequently results in a pathological remodeling i.e. alterations 

on the size, shape, structure and function of the left ventricle (LV) [13-15]. Initially, CM undergo 
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necrosis since these cells exhibit an high metabolic activity and, therefore, are sensitive to 

ischemia [16]. Then, an acute inflammatory reaction is initiated involving the recruitment of 

neutrophils (that, in mice, starts occurring at around 1-2 days after MI) and macrophages (at 

~4 days, in mice [14]) that phagocyte necrotic CM debris at the infarcted site. The recruitment 

of inflammatory cells is stimulated by the release of, for instance, transforming growth factor 

beta (TGF-β) by necrotic CMs [14, 15]. Of note, neutrophils produce matrix metalloproteinases 

that cleave collagen and other extracellular matrix (ECM) constituents [14, 15, 17]. 

Consequently, these enzymes degrade the collagen-based intercellular struts that, in a healthy 

myocardium, preserve adjacent CMs together and assure proper fiber alignment and 

maintenance of normal CM morphology [17]. Then, due to cell loss and ECM degradation, the 

pressure that the blood on the LV cavity exerts on the infarcted LV wall, causes the CMs to 

slip (CM slippage), resulting in LV wall thinning and LV cavity dilation. At this point, the infarcted 

wall has very low mechanical resistance and the risk of rupture and/or aneurysm formation is 

elevated [14, 15]. Since adult mammalian CMs lack functionally relevant proliferative capacity 

[18], in order to improve mechanical integrity of the LV wall in these phase and equalize the 

forces exerted on LV wall (reducing wall stress), the mammalian heart resorts to a repair 

process, involving collagen deposition. In line with this, TGF-β stimulates fibroblast 

recruitment, massive proliferation and their differentiation to myofibroblasts [14, 15]. These 

cells then produce collagen type I and III resulting in the deposition of a collagen-rich scar 

tissue (fibrosis) at the infarcted zone and, frequently, interstitial fibrosis among viable CMs of 

the periphery [14, 15]. Fibrosis starts approximately at 7-14 days post MI and becomes 

completed at around 21 days, in a murine MI model [14]. Scar tissue, although conferring 

mechanical support to the infarcted wall at some extent, is non-contractile, thick, stiff and 

greatly impairs cardiac contractile function [16]. Moreover, collagen scarring is an electrically 

isolating tissue, which has a detrimental effect on cardiac conduction. Of note, increased wall 

stress and mechanical load as well as fibrosis triggers compensatory processes such as CM 

hypertrophy, where CMs increase their volume and further develop their contractile apparatus.  
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Due to functional impairment provoked by the exacerbated loss of CMs and 

subsequent formation of non-functional fibrotic tissue in a MI scenario and the fact that heart 

transplantation (the only effective long-term therapy for heart failure) has several shortcomings 

(e.g. organ donor shortage, immune rejection [14]) innovative therapeutic strategies have been 

emerging. Most of them focus on the improvement of heart function and cardiac remodeling 

(reviewed on [19, 20]). However, considering that arrhythmias are a main cause of sudden 

death in heart failure scenarios, a comprehensive understanding of the cardiac electrical 

system should not be disregarded and novel therapies to restore cardiac electrical integrity are 

necessary. 

 

Figure 3 – Schematic representation of the several processes occurring during MI-related cardiac 

remodeling. AII – angiotensin II; ACE - angiotensin-converting enzyme; ECM – extracellular matrix; ET-

1 – endothelin; CO – Cardiac Output; MMP – matrix metalloproteinase;; NE – norepinephrine; RAAS - 

renin-angiotensin-aldosterone system; TIMPs – tissue inhibitors of metalloproteinases. Source: ref. [15]. 
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3.3. Cardiac Electrical System: the basics 

A close interaction between specialized excitatory and conductive components and 

the working CMs (contractile component) is essential for the successive and rhythmic 

contractions and relaxations of the myocardium, which promote unidirectional blood flow at an 

adequate pressure [21, 22]. 

The main elements of the excitatory and conductive components are the sinoatrial 

node (SAN), the internodal pathways, the atrioventricular node (AVN), the bundle of His and 

the Purkinje fibers [22, 23] (Figure 4). This system is mainly composed of specialized CMs 

whose cytoarchitecture and electrophysiological properties vary according to their specific 

function and differ from working atrial and ventricular CMs [23-25].  

Specialized CMs of the SAN, regulated by sympathetic and parasympathetic stimuli, 

spontaneously generate AP that directly propagates to: 1) the atrial myocardium leading to its 

contraction; 2) the internodal pathways; and, ultimately, to 3) the AVN. At the latter, the impulse 

propagation suffers an essential delay in order that blood from the atria fills the ventricles 

before ventricular contraction. Finally, the AP is propagated rapidly through the bundle of His 

and Purkinje fibers towards the ventricular working myocardium, which then contracts in 

syncytial manner [22, 26] (Figure 4). 

At the cellular level, cardiac AP represents the variations of the CM membrane 

potential that follow an initial depolarization from a resting potential (-85 mV in working CMs) 

to a threshold potential (-40 mV), in a sequence of events mediated by ion channels. 

Essentially, in working CMs this AP can be divided in five phases (Figure 4): a) phase 0: upon 

stimulation from neighboring cells and depolarization to -40 mV, membrane voltage-gated fast 

Na+ channels (NaV1.5 channels) open which causes a rapid intake of Na+ ions (INa currents) 

triggering a further depolarization to a peak of, approximately, +20 mV [21, 26-29]; b) phase 1: 

NaV1.5 channels close and K+ channels (e.g. KV4.2, KV4.3) open leading to a transient outward 

K+ current (Ito) and, consequently, to a transient repolarization [21, 26, 28-30]; c) phase 2: 

opening of slow L-type calcium inward channels (CaV1.2) concomitant with the current 
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mediated by rapidly (IKr currents) and slowly (IKs currents) activating delayed outward rectifying 

K+ channels (e.g. voltage-activated potassium channels (KV11.1) and voltage-gated potassium 

channels (KV7.1), respectively), maintain the AP in a relatively constant depolarized state 

(plateau) [21, 26, 28, 29, 31]; d) phase 3: CaV1.2 channels close and IKr and IKs cause a rapid 

repolarization to the resting potential [21, 26, 28, 29]; e) phase 4: the membrane potential is 

maintained at a resting level by K+ inward rectifier channels (e.g. KIR2.1) (IK1 currents) [21, 26, 

28, 29]. Although working CMs need to be depolarized by neighboring cells, specialized CMs 

of the SANs and AVNs and Purkinje fibers, the so-called pacemaker cells, are able to 

spontaneously generate AP. This property is closely related to an unstable, and less negative 

resting potential (around -55 mV) comparing to working CMs. Such less negative resting 

potential is mainly due to an increased leakage of Na+ resulting in an inward current of these 

ions (the pacemaker current, If) and that is mediated by the hyperpolarization-activated, cyclic-

nucleotide-gated channels [32]. This If current, and the fact that most fast Na+ channels are 

closed at potentials at -55 mV or higher, result on a slow diastolic depolarization of pacemaker 

cells (phase 4). When membrane potential reaches a threshold level, T-type (e.g. CaV3.1) and 

slow L-type Ca2+ channels open, depolarizing the cell up to +20mV (phase 0) (Figure 4) [22, 

26, 29, 33].  

The cardiac AP triggers the contraction of working CMs, allowing contraction of the 

atria and ventricles, through a process denominated excitation-contraction coupling. 

Depolarization of sarcolemma induces opening of L-type Ca2+ channels and, the subsequent 

increase in intracellular Ca2+ concentration, activates the ryanodine receptors (which are 

intracellular Ca2+ channels) in the sarcoplasmic reticulum’s membrane, leading to release of 

this ion from the sarcoplasmic reticulum to the sarcoplasm, further increasing Ca2+ intracellular 

concentration [21, 34]. These ions bind to subunit C of troponin which causes a conformational 

change freeing the actin’s myosin-binding sites from tropomyosin, leading to sarcomere 

contraction [21, 35]. 
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Figure 4 - Representation of the anatomy of the cardiac conduction system and the path of the action 

potential propagation throughout the structures (arrows) including the time delay observed at the AV 

junction (purple arrow). The shape of the action on SAN (Upper left) and working myocytes (Lower right) 

are represented along with the respective resting potentials and the different phases of the signal 

(numbers).  

Finally, Ca2+ baseline intracellular levels are restored mainly being pumped back to the 

sarcoplasmic reticulum through the sarcoplasmic reticulum Ca2+ ATPase 2a (SERCA2a) or 

released from the cell via Na+/Ca2+-exchangers [21, 36]. There are evidences that, acting in 

late phase of the diastolic depolarization in pacemaker cells, this Ca2+ cycling also promotes 

spontaneous beating (the “calcium clock”), acting in combination with the membrane potential 

instability and If current [37, 38]. 

Impulse propagation between CMs is dependent on intercellular electrical coupling 

i.e. the ability of one cell to transport ions directly from its sarcoplasm to a neighboring one. 

This coupling is predominantly achieved through gap junctions which consist in two exactly 

aligned hemichannels, one from each coupling cell, composed of six subunits of connexin (Cx) 

proteins [39]. Cx45, Cx40 and Cx43 are the predominant isoforms expressed in CMs [40, 41]. 

Cx43 is the predominant isoform of adult working CMs [42-44] whereas Cx40 is expressed in 

His-Purkinje fibers and atrial working CMs (but not in ventricular working CMs) [43-46], and 

Cx45 expression is predominantly found at the AVN [44, 47, 48]. These three Cx isoforms 
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display different levels of conductance: Cx40 has the highest conductance and Cx45 the 

lowest [49-53]. Interestingly, these characteristics correlate with the velocity of impulse 

propagation characteristic of the different structures i.e. his-Purkinje fibers are fast-conducting 

structures, while the AVN is associated with a time delay in AP propagation, however this effect 

is also potentiated by smaller and less abundant gap junctions [47, 54]. Despite the widely and 

classical perception that impulse propagation between CMs is primarily through gap junctions 

(electrotonic model), there are evidences that intercalated discs may actively influence cell-

cell impulse transmission, involving differential NaV1.5 channel expression and extracellular 

space charge variations (ephaptic model) [reviewed on 55, 56]). 

3.4. Disruption of Electrical Conduction after MI and Heart Failure 

Cardiac electrical disruption often results in arrhythmias, which can comprise, for 

instance: altered heart rates (bradyarrhythmias and tachyarrhythmias corresponding to low 

and high heart rates, respectively); premature beats; atrial flutter; and fibrillations which 

comprises an unorganized AP propagation through the myocardial mass resulting in 

uncoordinated contractions and relaxations between different regions of the myocardium, 

which can be supraventricular (e.g. atrial fibrillation) or ventricular [57, 58]. 

Bradyarrhythmias are mainly caused by either SAN dysfunction (sick sinus syndrome) 

or disruption of the AVN conduction (AVN block or heart block). Considering that MI results in 

the deposition of a fibrotic tissue that it is not electrically conductive on myocardium rather than 

necessarly causing impaired of AP signal generation and/or AP propagation at a more central 

level of the specialized conductive system, this section focuses on tachyarrhythmias and 

fibrillations rather than bradyarrhythmias. 

Tachyarrhythmias and fibrillations are frequently associated with CVDs, especially in 

heart failure scenario. The arrhythmogenic properties underlying heart failure are due to 

different factors, namely: ion channel remodeling; reduced excitability; impaired Ca2+ cycling; 

decreased intercellular electrical coupling; and formation of electrically isolating fibrotic tissue 
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[6, 59]. Concerning ion channel remodeling, evidences show that, upon heart failure, there is 

a reduction on the expression of ion channels related to repolarization currents (e.g. Ito, IKs) 

with concomitant increase in a delayed inward Na+ current. These events result in prolonged 

AP duration, which promotes the occurrence of Ca2+-mediated after-depolarizations. Reduced 

excitability, for instance during acute MI, usually occurs due to different factors such as 

increased K+ extracellular concentration. The main effect of the latter is depolarization of 

cardiomyocytic resting potential, which induces a partial inactivation of the voltage-gated Na+, 

reducing INa current and, consequently, excitability and conduction velocities. Reduced 

conduction velocities promote the onset of reentrant arrhythmias, as discussed below in this 

section. Calcium cycling is also commonly affected during heart failure, for instance, increased 

diastolic intracellular Ca2+ concentration, mainly due to higher leakage from the sarcoplasmic 

reticulum (related to impaired ryanodine receptor function) and/or a decrease reuptake of this 

ions from the sarcoplasmic reticulum (due to SERCA2a defective activity), are observed. This 

increase on the diastolic concentration also triggers after-depolarizations [59-62]. Concerning 

intercellular electrical coupling, Cx43 expression is reduced up to 50% in heart failure [63, 64]. 

Apart from causing conduction deceleration and discontinuity, defective intercellular coupling 

between the CMs also results in an increased subthreshold depolarization, which slowly 

inactivates the voltage-gated Na+ channels, further reducing the INa current, and excitability [6, 

59]. Furthermore, deposition of collagenous scar tissue, which is an electrical insulator, is 

common to a wide number of cardiovascular disorders and is particular evident after MI. 

Collagen deposition results on electrically isolated fibers of viable myocardium, discontinuing 

the conduction path and, globally, reducing the AP propagation velocity and, consequently, 

promoting the onset of reentrant arrhythmias [6, 59].  

The most common phenomenon underlying the maintenance of ventricular and 

supraventricular (e.g. atrial fibrillation) tachyarrhythmia and fibrillations is the “reentry” 

mechanism. This can occur in a region of the myocardium in which AP encounters a path 

divided in two, a fast pathway (normal) and a slow pathway (for instance, a myocardial network 
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containing scar tissue), and which converge again in a downstream position of the path. This 

situation can lead to the creation of successive AP propagation cycles , in which AP propagates 

in circles, around the referred fast and slow pathways, and also backwards, increasing the 

frequency of excitation and, consequently, the heart rate. One pre-requisite for an anatomical 

reentry cycle to be sustained is the wavelength of the signal (defined as the product between 

the conduction velocity and the duration of refractory state) to be shorter than the physical, 

anatomical path in which the cycle occurs [6, 57, 59, 65]. 

The most common therapies that are available nowadays for tachyarrhythmias are: i) 

anti-arrhythmic drugs, which still have low efficacy and can, in specific circumstances, even 

aggravate the disorder [66, 67]; ii) implantable cardioverter defibrillators, which only act upon 

the onset of arrhythmias and have the issues shared with implantable devices [68]; and iii) 

surgeries such as AVN ablation on atrial fibrillation patients, which consists in permanently 

disrupting AVN (protecting the ventricles from the arrhythmic signal originated in the atria) and 

thus requiring the permanent use of an implantable pacemaker [69]. 

3.5. Novel Strategies To Restore Myocardial Electrical Conduction following MI 

Functionally proficient cardiac electrical coupling highly depends on molecular players 

(e.g. ion channels, gap junctions) thus, gene-related therapies along with targeted delivery, 

hold high potential for restoring cardiac electrophysiology. In addition, the potential of cell 

therapies to modulate cardiac electrical integrity has also been under recent scrutiny (Figure 

5).  

Gene therapy approaches for treating or reducing the symptoms of ventricular or 

supraventricular tachyarrhythmias or fibrillations essentially involve: 1) direct repair of 

intercellular conduction – mainly by overexpressing connexins [6, 70-72]; 2) modulation of AP 

characteristics – such as increasing the AP upstroke velocity or altering AP duration or 

refractory period [73-75]; and 3) restoration of calcium cycling – predominantly by upregulating 

SERCA2a [76-78]. 
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In most studies, animal models of MI and atrial fibrillation were used. In general, these 

strategies resulted in a reduced rate of occurrence of ventricular arrhythmias; reduced 

ventricular arrhythmia inducibility, assessed by programmed electrical stimulation of the 

myocardium and electrocardiograms (ECGs); and increased conduction velocities, observed 

through ex vivo optical mapping and in vivo invasive electrograms. Of note, the approach 

concerning the restoration of Ca2+ cycling through SERCA2a overexpression is not only being 

applied in several animal models, but also in humans, particularly in the Calcium-Up-

Regulation by Percutaneous Administration of Gene Therapy In Cardiac Disease (CUPID) 

phase 1/2 clinical trial [79-81]. In this trial, recombinant adeno-associated viral vectors 

encoding for the human SERCA2a gene (AAV1/SERCA2a) were injected in patients with 

advanced heart failure which, during a 12-month follow-up, exhibited reduced symptoms and 

improved functional status, biomarker profile and LV function [80]. Additionally, patients 

presented less cardiovascular events and/or deaths following 3 years, when compared to 

placebo groups [81]. Curiously, although overexpression of SERCA2a in ischemia-reperfusion 

MI rat and porcine models decreased the number of life-threatening arrhythmias, that effect 

was not observed or even reversed in permanently occluded rat and porcine models of MI, 

probably to the fact that the Ca2+ cell overload and instability are more significant during 

reperfusion, rather than in a lasting ischemic state [82, 83]. This result underlines that the 

efficiency of a developed therapy may be highly dependent on the targeted condition and 

shows the importance of using different ischemic models for the treatment of a disease, as is 

the case of acute MI. Hence, the etiology of arrhythmias in that particular condition should be 

carefully considered for when developing novel therapeutic solutions. For instance, since AP 

propagation is dependent on the fast inward Na+ currents, one would hypothesize that in heart 

failure scenarios, in which detrimental ionic channel remodeling occur, NaV1.5 channel 

overexpression would have potential in restoring conduction and preventing the occurrence of 

reentrant arrhythmias. However, MI causes a general membrane depolarization, leading to 

NaV1.5 channel inactivation which could hinder the usefulness of its overexpression. In that 

regard, a skeletal Na+ channel isoform (NaV1.4), which inactivates at a less negative voltage, 
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has been tested. This isoform results in a less extensive AP upstroke in vitro in CMs subjected 

to a depolarizing medium and has anti-arrhythmic effects in vivo [73-75]. Connexin-related 

strategies are an interesting example how one should not overlook the potential detrimental 

consequences of anti-arrhythmic strategies on the overall homeostasis of the myocardium, in 

the context of certain disease scenarios. Studies involving connexins overexpression had 

promising results [70, 71], however, it has also been shown that overexpressing Cx32 in a 

canine MI model causes an increase on the infarct size [72] by supporting the spread of 

inflammatory mediators throughout the myocardium [84]. Thus, although connexins could 

restore electrical integrity aspects of the myocardium, it could also negatively interfere with the 

myocardial repair and even have proarrhythmic effects due to increased scarring, reinforcing 

the notion that strategies should be thought in an integrative manner. 

3.5.1. Role of cell therapies on cardiac electrical integrity 

Considering the limitations of gold-standard therapies for CVDs and the often 

deleterious LV tissue remodeling characteristic of myocardial repair, novel strategies focusing 

on improving the latter process have been emerging. Cell therapies are one of the most 

extensively explored approaches, which involve different cell types (e.g. mesenchymal stromal 

cells (MSCs), skeletal myoblasts, embryonic stem cells (ESC)-derived CMs (ESC-CMs), 

cardiac progenitor cells) [reviewed on 20, 85]. In these studies, especially in animal models, 

the main assessed outcomes are LV tissue remodeling, neovascularization, and cardiac 

function. In addition, few studies also evaluate whether the aforementioned therapies have an 

effect on cardiac electrical integrity. In that sense, part of the studies in which this effect is 

assessed or that raise pertinent questions, are herein discussed. 

Studies involving MSCs or bone marrow-derived cells have shown promising results, 

in both animal models and clinical trials, such as improved LV function, neovascularization, 

and reduced infarct size [86-91]. Nevertheless, these cells raised controversy concerning their 

influence on cardiac electrical integrity and arrhythmogenicity [92-102]. The authors that show 

evidence that MSCs or bone marrow-derived cells have a pro-arrhythmic potential in vivo [92, 
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93, 103] hypothesize that such effect could be a consequence of the electrical unexcitability of 

these cells, paracrine factors, or the accumulation of inflammatory mediators. Although MSCs 

are electrically unexcitable cells, in vitro studies showed that these cells are capable of 

repairing conduction block, in neonatal CMs cultures, through connexin-mediated coupling 

[104, 105]. Nevertheless, others showed that this heterocellular electrical coupling might cause 

reduced AP propagation velocities and gradients of duration of repolarization which could 

promote the occurrence of reentry circuits and, consequently, arrhythmias [99, 100]. This 

mechanism is similar to the effect of cardiac fibroblasts on cardiac conduction in a context of 

fibrosis, as these cells undergo direct electrical coupling with CMs via gap junctions [106], 

bridging distant unconnected CMs [107]. It is not yet understood whether this “intercellular 

bridges” are arrhythmogenic substrates or if the electrical bridging has also some beneficial 

effects by reducing conduction block through scar tissue. Furthermore, MSC-released 

paracrine factors can also promote disruption of the myocardial electrical integrity not only by 

altering AP characteristics, ion channel expression and increase re-entry inducibility of CMs 

(assessed by in vitro transwell experiments) [100]; but also by promoting cardiac nerve 

sprouting and sympathetic hyperinnervation [93, 103]. Oppositely, others studies point that 

MSCs can reduce the electrical disruption in a MI scenario or even exert an anti-arrhythmic 

effect [97, 98, 101]. Overall, MSCs were shown to decrease ventricular arrhythmia inducibility, 

reduce the disruption of gap junction organization in CMs of the infarct border zone and 

ameliorate the electrical activity. Although mechanistic insights are lacking, the authors 

speculated that gap junction-mediated coupling between MSCs and CMs support AP 

propagation into the infarcted region, reducing the length of the anatomical conduction path 

and reducing the incidence of reentry arrhythmias. Additionally, it was suggested that the lack 

of electrical excitability in combination with the intercellular coupling could not have a 

significant pro-arrhythmic effect because the number of surviving MSCs in the myocardium 

decreases in few days, being the proportion MSCs:CMs much lower than in in vitro 

experiments where arrhythmogenicity was shown. Furthermore, the beneficial effect of MSCs 

on cardiac conduction can also be associated with the decrease in infarct size and increase in 
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the number of surviving CMs in the periphery of the ischemic region. MSCs were shown to 

upregulate Cx43 in HL-1 (CMs cell line) in vitro [96] and improve AVN conduction on AVN-

blocked rats [108] through paracrine mechanisms. Thus, although MSCs are electrically 

unexcitable and incapable of electromechanical coupling with the host myocardium, evidences 

point to beneficial effects in cardiac function in the absence of evident side effects. In fact, 

clinical studies show no conspicuous anti-arrhythmic effect by these cells [94, 95, 109].  

Skeletal myoblasts were one the first the cell types to be applied in animal and clinical 

studies concerning cell therapy on CVDs. This interest mainly stemmed from their capacity to 

proliferate, increased resistance to ischemia; and electrical excitability and the possibility of 

being isolated in an autologous fashion [110, 111]. However, being skeletal muscle cells, these 

cells lack expression of connexins upon the formation of myotubes, exhibiting minimal 

intercellular coupling. This characteristic precludes efficient integration of skeletal myoblasts 

with the myocardium and thus leading to an increased frequency of arrhythmic events, despite 

reported positive effects regarding other aspects [101, 112-114]. Thus, without intercellular 

coupling, these cells form clusters electrically isolated from the myocardium, blocking AP 

propagation in that region, rendering the electrical activity of these cells almost irrelevant. To 

surpass this limitation, some authors overexpressed Cx43 on cultured skeletal myoblasts, 

improving intercellular electrical coupling with CMs [115-117], which stimulated a series of in 

vivo testing [118-122]. Myocardial delivery of these cells in a cryoinjury MI murine model 

improved electrical coupling between skeletal myoblasts and host CMs, being the incidence of 

sustained arrhythmias and the ventricular arrhythmia inducibility decreased when compared 

to regular skeletal myoblast injection [119]. Conversely, although an amelioration of electrical 

coupling and improved electrical activity was observed, other studies involving rat [122] and 

rabbit [120] MI models reported that this coupling was insufficient to prevent arrhythmic events 

and that LV functional improvement was modest. This may relate to distinct AP characteristics 

of skeletal myoblasts which, in a cardiac environment, may also undergo downregulation of 

voltage-gated sodium, potassium and calcium channels [123], affecting their excitability and 
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function. Furthermore, as the clinical relevance of skeletal myoblast relies on Cx43 

overexpression, alternative non-viral methods of gene expression should be further explored 

[121]. One concludes that for cells that survive and proliferate after transplantation, intercellular 

coupling and electrical and mechanical properties that closely mimic native CMs are 

mandatory to promote proper electromechanical function. 

Pluripotent stem cells, which include ESCs and induced pluripotent stem cells 

(iPSCs), are a promising alternative due to their in vitro high proliferative capacity, while in an 

undifferentiated state, and their capacity to differentiate selectively into a great variety of cell 

types. These features allow generation of a great number of CMs which are immature in 

phenotypic and functional features. ESC-derived CMs (ESC-CMs) display immature contractile 

machinery and are capable of spontaneous AP generation. This inherent automaticity 

increases the possibility of induced arrhythmias when ESC-CMs are delivered to the 

myocardium. Despite that transplantation of pluripotent stem cells-derived CMs promote 

successful engraftment and functional improvement [124-128], few studies have thoroughly 

evaluated their electrically integration and/or pro-arrhythmic properties [124, 125, 128]. Shiba 

et al showed, in a guinea pig MI model, that hESC-derived CMs formed cell grafts with calcium 

transients and completely coordinated with ambulatory ECG signals, with evidences of an anti-

arrhythmic effect [124, 128]. The same group applied a similar strategy in a non-human primate 

model of MI showing functional improvement, remuscularization and hESC-CM calcium 

transients completely coordinated with ambulatory ECG signals. Despite these encouraging 

results, all transplanted animals suffered premature ventricular contractions and ventricular 

tachycardias [125]. These opposing results could be explained by the disparity in the heart rate 

of guinea pigs and macaques. High heart rates, typical of small animal models, could mask 

the ESC-derived CM automaticity by surpassing their AP generation frequency. In contrast, in 

both large animal models and humans, the automaticity of these cells can be revealed due to 

slower basal heart rates [125]. Thus, although these cells show a phenotype which closely 

mimics CMs, their immature state can hinder its clinical applicability. Additionally, note that 
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pluripotent stem cells have other hurdles to surpass such as immunogenicity (especially 

regarding ESCs), tumorigenesis by teratoma formation or use of viral vectors (mainly in 

iPSCs), low cell survival and ethical concerns. 

Figure 5 - Scheme representing the discussed gene and cell delivery strategies for altering cardiac 

conduction, along with the delivery sites. A diseased heart with reduced electrical integrity is 

represented. Icons positioned on the gray region are indicative of studies involving MI animal models. 

The cell sources and gene therapies strategies are represented on the side columns 

In conclusion, an ideal cell capable of adequate cardiac electrical integrity, while 

improving cardiac function and tissue remodeling, is yet to be described. Regardless, one must 

reflect on novel therapies on different perspectives: 1) does a certain cell allow sufficient 

improvement in cardiac function and tissue remodeling that compensates for their pro-

arrhythmic potential upon transplantation?; 2) should we focus on cellular genetic manipulation 

to approximate their function and phenotype to native CMs?; 3) can different aspects be 

improved using, for instance, tissue engineering which involves combinatorial and integrative 

approaches?  

3.5.2. Potential of Electrical Cues to Improve Cardiac Tissue Engineering Strategies 

Cardiac tissue engineering strategically combines cells, scaffolds and signaling 

factors to restore cardiac function and/or improve cardiac repair, which can be achieved 

through different approaches, such as: 1) improving therapies based on cell injection by 

providing a vehicles to cells and 2) allowing the formation of cardiac tissue constructs in vitro 
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for subsequent implantation (reviewed elsewhere [19, 20, 129]). Although cardiac tissue 

engineering resulted in promising results, particular in cell survival and engraftment in vivo, 

some limitations still remain. For instance, cardiac tissue constructs, despite exhibiting 

synchronous contractions, spontaneous beating can be observed (mainly with pluripotent stem 

cells) which, as was already discussed can have pro-arrhythmic effects. In order to solve this 

issue, culture conditions have been successively improved by providing biochemical, 

mechanical and electrical cues that closely mimic the native myocardial microenvironment. 

The role of external electrical stimulation has been tested in vitro on cultured cardiac 

cells [130-133]. For instance, Radisic et al. conducted a pioneer work showing that, upon 8 

days of in vitro electrical stimulation, cultured neonatal CMs exhibited increased alignment, 

intercellular coupling, ultrastructural organization and amplitude of synchronous contractions, 

concomitant with improved contractile and electrophysiological proficiency [130]. 

Scaffolds or constructs containing conductive components have been explored to 

originate constructs that mimic the myocardial environment and support functional cardiac cells 

and even their electromechanical integration following transplantation and/or that promote 

electrical integrity of the heart by acting directly on native CMs. The most explored materials 

are: i) gold-based materials, such as gold nanowires (AuNWs) and gold nanoparticles which 

exhibit great biocompatibility, low toxicity and, importantly, high electrical conductivity [134]; ii) 

carbon-based materials, mainly carbon nanotubes (CNTs) due to their high surface area, high 

chemical stability, high mechanical strength and conductivity; iii) intrinsically electroconductive 

polymers; and, more recently, iv) silicon-based approaches. Table 1 summarizes 

representative studies, some of which will be discussed. 

3.5.2.1. Gold-based materials 

In a pioneer study, Dvir et al. integrated AuNWs in the pore walls of macroporous 

alginate scaffolds. Neonatal CMs were cultured on AuNWs scaffolds during 3 days without 

electrical stimulation followed by 5 days of electrical stimulation. While alginate-only scaffolds 

resulted in the formation of small cell aggregates within the pores, Au-NW scaffolds showed 
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thick and aligned cardiac cell constructs. Furthermore, CMs in these scaffolds exhibited Ca2+ 

transients, synchronous contraction and higher amounts of α-sarcomeric actinin and Cx43 

[135]. 

Aiming to mimic the native cardiac ECM fibrous organization, gold nanoparticles 

deposited on fibrous decellularized pig omental matrices promoted Cx43 rearrangement 

between adjacent neonatal CMs organized in elongated, aligned and striated cell constructs 

with stronger contraction forces [136].  

To assure proper alignment and electrical coupling a cardiac patch should also be 

mechanically compatible with the myocardial tissue. Myocardial stiffness in humans is 

approximately 10 kPa and 500 kPa at the beginning and end of diastole, respectively [137]. Of 

note, the majority of studies with gold-based materials summarized in Table 1 report a 

scaffold’s stiffness out of this range (Table 1). Recently, this issue has been addressed through 

incorporation of AuNWs into biodegradable polyurethane porous scaffolds with an elasticity of 

200 to 240 kPa [138]. Electrical stimulation improved H9C2 rat CMs spreading and alignment 

on the conductive scaffolds however, Cx43 expression was unaffected [139]. 

3.5.2.2. Carbon-based materials 

Initial studies showed that neonatal CMs cultured on the top of CNTs on glass 

substrates presented higher metabolic activity, proliferation rates and displayed larger domains 

of syncytial beating. Importantly, whole cell patch clamp recording showed that CMs cultured 

on CNTs for 3 days exhibited more negative membrane resting potential than controls, 

evidencing increased CM maturation [140]. The improved maturation of CMs on CNTs was 

further related with more abundant Cx43 gap junctions and alterations on gene expression 

[141]. 

These 2D approaches advanced to the use of carbon-based 3D ECM-like scaffolds 

such as scaffold comprising poly(glycerol sebacate):gelatin aligned electrospun nanofiber 

embedded with CNTs. Neonatal CMs cultured on CNT-containing scaffolds days had higher 

viability, metabolic activity, increased Cx43 levels, became more aligned and displayed higher 
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beating rates and lower excitation threshold than CNT-free counterparts [142]. An independent 

study showed that CMs cultured on CNT scaffolds augmented conduction velocity, reduced 

AP duration and displayed preferential localization of Cx43 at cell–cell junctions. Of note, 

potential cytotoxic effects of CNTs were demonstrated at high concentrations (175 ppm) [143]. 

In 2014, CNT-based composite cardiac patch were for the first time tested in vivo. CNT-gelatin 

scaffolds seeded with neonatal CMs were implanted on the lesion site of rats 14 days after MI. 

Following 4 weeks of implantation, the boundary between the scaffold and scar tissue was 

unclear and CNT-seeded CMs presented upregulated levels of Cx43, NaV1.5 and N-cadherin 

(typical of intercalated discs). Interestingly, a portion of CNT-seeded CMs migrated to the scar 

tissue, along with CNTs. The scaffold also contained host-derived cells such as CMs, smooth 

muscle cells, and CD68+ macrophages, showing evidences that the scaffold integrated with 

the host cardiac tissue. Heart function assessment showed that ejection fraction and fractional 

shortening were significantly improved [144]. Despite the aforementioned beneficial effect of 

CMs in CNTs, electromechanical coupling with native counterparts and electrophysiological 

influence is yet to be demonstrated. 

Although the majority of the described studies show improved intercellular electrical 

coupling induced by carbon-based materials, the molecular mechanisms that trigger these 

effects are still not well understood. A recent report further demonstrated that CNT-collagen 

seeded CMs induced intercalated disc gap junctions assembly via β1-integrin/FAK/ERK/MEF-

2c and GATA4 signaling pathway [145]. Of note, it remained unclear if CNT-collagen observed 

effects could be attributed to mechanical and/or to electrical cues. 

3.5.2.3. Conductive polymers-based materials 

The two main studied polymers are polyaniline (PANI) and polypyrrole (PPy). Some 

authors explored the capability of PANI-based materials to promote functional proficiency and 

electrical coupling of CMs [146, 147]. Baheiraei et al. explored the properties of porous 

scaffolds composed of polycaprolactone (PCL) and a biodegradable polyurethane polymer 

containing aniline pentamers. This strategy aimed to harness the electroconductive properties 
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of the aniline pentamers while trying to surpass the low biodegradability and poor mechanical 

properties of PANI. Conductive scaffolds promoted neonatal CMs adhesion, growth and higher 

expression of genes involved in contraction and cytoskeleton alignment when compared with 

the control groups. Nevertheless, Cx43 expression levels were not significantly altered [147]. 

Regarding PPy-based materials, CMs were cultured on electrospun nanofibers 

consisting in blend of doped PPy, polycaprolactone and gelatin onto glass coverslips. Overall, 

increasing the concentration of PPy (0-30%) increased tensile modulus: 15% PPy presented 

better conductivity, mechanical properties and biodegradability with seeded CMs displaying 

enhanced performance considering cell attachment, proliferation, interaction, and expression 

of cardiac-specific proteins [148]. More recently, Spearman et al. produced films comprising 

interpenetrating networks of PPy and polycaprolactone. HL-1 atrial myocytes seeded on these 

films remained viable, became more elongated, presented higher levels of Cx43 and increased 

calcium transient propagation velocity and spontaneous electrical activity frequency values 

[149]. 
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Table 1 – Experimental results demonstrating the potential of conductive materials on cardiac tissue engineering. 

Material Refs. Scaffold 
Elastic Modulus (kPa)/ 
Conductivity (S/m) 

Cell Source Main Results 

Gold [135] AuNW-incorporated alginate 
scaffolds 

~3.5/n.a. Neonatal CMs Thick and aligned cell constructs; ↑ α-SA and Cx43; synchronous 
contractions 

 [154] AuNP-deposited PCL fibers ~60x103/n.a. Neonatal CMs Elongated, aligned and striated cell constructs; ↑ contraction rate and 
force 

 [139] AuNP-incorporated 
biodegradable PU scaffolds 

~200-240/n.a. H9C2 rat CMs Improved cell spreading and alignment; ↑ Nkx2.5, ANF, NPPB 
expression 

 [155] AuNP-deposited PCL/gelatin 
scaffolds 

n.a./n.a. Neonatal CMs CMs with elongated shape, conspicuous striation and higher aspect 
ratio; ↑ contraction amplitudes and rates 

 [136] AuNP-deposited decellularized 
pig omental matrices 

~12.5x103/n.a. Neonatal CMs Elongated, aligned and striated cell constructs; Cx43 staining localized 
between adjacent CMs; ↑ contraction amplitude, calcium transient 
propagation velocity; ↓ excitation threshold 

 [156] AuNP-deposited thiol-
HEMA/HEMA scaffolds 

~600-1600/~11-15 Neonatal CMs CMs presented as clusters or single cells; 2-fold ↑ Cx43 protein levels 

 [157] AuNW-incorporated GelMA 
hydrogels 

~1.3/ n.a. Neonatal CMs ↑ cell retention and viability; highly organized sarcomeric structures; ↑ 
beating frequency; more synchronous, stable, and robust beating 
behavior; synchronized calcium transients; ↓ excitation threshold 

Carbon [142] MWCNT-embedded PG 
nanofibers 

~373.5/n.a. Neonatal CMs ↑ CM alignment, metabolic activity and viability; ↑ Cx43 staining 

 [140, 141] MWCNT solution coating a 
glass substrate 

n.a./n.a. Neonatal CMs ↑ metabolic activity; more negative membrane resting potential; ↑ 
αMHC, SERCA2a, Cx43; ↓ ANF 

 [158] Chitosan:CNTs composite 
scaffolds 

~28.1/~0.25 (hydrated) Neonatal CMs ↑ CM alignment and metabolic activity; ↑ TnI, SERCA2a, GATA4, 
αMHC, Cx43, βMHC and ANF expression 

 [143] SWCNT-incorporated gelatin-
chitosan hydrogels 

~19.3 (175 ppm)/n.a. Neonatal CMs Concentration-dependent cytotoxicity; more developed sarcomeres; ↑ 
α-SA protein levels; intercellular Cx43 stainings; ↑ beating rates and 
conduction velocity; ↓ AP duration 

 [159] CNT-embedded GelMA 
hydrogels 

~20-54/n.a. Neonatal CMs Aligned, interconnected CMs; developed sarcomeres;  attenuation of 
heptanol-induced intercellular coupling inhibition 
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 [160, 161] PLGA:CNFs composite 
substrates 

n.a./~5x10-4 – 7x10-3 Human CMs, rat 
ECs & NIH/3T3 
rat fibroblasts 

↑ CM density; ↓ ECs and fibroblast growth 

 [145] SWCNT/collagen solution 
coating a glass substrate 

n.a./ ~1.90x10-8 – 
1.77x10-3 

Neonatal CMs Marked striation and organized sarcomeres; functional beating 
syncytium; ↑TnI, Cx43, N-cadherin, plakophilin2 and plakoglobin 
expression; well-developed intercalated disc junctions; ↑ β1-integrin, 
FAK, p-ERK, MEF-2c and GATA4 

 [144] SWCNT-incorporated gelatin 
hydrogels 

n.a. (shear modulus:~ 
20-400 Pa)/ ~5x10-5 

Neonatal CMs In vitro:  aligned cell constructs; organized sarcomeres; ↑ α-SA and 
Cx43 levels; spontaneous electrical activity; 

In vivo (MI rats): ↑ Cx43, NaV1.5 and N-cadherin protein levels; unclear 
scaffold/scar boundary; presence of host-derived smooth-muscle cells 
and CD68+ macrophages; ↑ ejection fraction and  fractional shortening 

Conductive 
polymers 

[147] PCL/PU blend scaffolds 
containing aniline pentamers 

~1.3x103/~10-4-104 Neonatal CMs ↑ TnT, Cx43, actinin-α-4 

 [146] Nanofibrous 2D meshes of HCl-
doped PANI/PLGA blend 

~91.7x103/~0.31 Neonatal CMs Isolated cell clusters; spontaneous beating activity; ↑ TnI, Cx43 
expression;  intercellular Cx43 localization 

 [148] PPy/PCL/gelatin blend 
nanofibers on glass substrate 

~16.8x103/~1.3x10-3 Rabbit CMs ↑ α-SA, TnT and Cx43; increasing PPy proportion disrupted 
mechanical properties and slowed CM growth 

 [151] Injectable PPy-grafted chitosan 
hydrogel 

~2/~0.02 Neonatal CMs In vitro: ↑ Ca2+ transients velocity; 

In vivo (MI rats): QRS interval duration similar to healthy; ↑ transverse 
and border zone/scar region conduction velocities; ↑ ejection fraction, 
dP/dt max and min, preload recruitable stroke work; 

 [149] Films of interpenetrating PPy 
and PCL networks 

~9.3x105/~0.10 HL-1 murine 
atrial myocytes 

↑ proportion of cells with peripheral Cx43 expression;↑ Ca2+ transients 
velocity and spontaneous electrical activity frequency 

Silicon [152, 153] SiNW-incorporated cardiac cell 
spheroids 

n.a./150-500 Neonatal CMs or 
hiPSC-derived 
CMs 

Improved intercellular coupling (e.g. ↑ Cx43 and N-cadherin); improved 
contractile machinery development; ↑ β-MHC/α-MHC ratio; ↓ 
spontaneous beating frequency 

n.a. – non-available; αMHC, alpha myosin heavy chain; α-SA, alpha-sarcomeric actinin; βMHC, beta myosin heavy chain; ANF, atrial natriuretic factor; AuNP, gold nanoparticle; 

AuNW, gold nanowire; CM, cardiomyocyte; CNT, carbon nanotube; CNF, carbon nanofibers; Cx43, connexin-43; EC, endothelial cell; ERK, extracellular-signal-regulated kinase; 

ESC, embryonic stem cell; FAK, focal adhesion kinase; GelMA, gelatin methacrylate; HEMA, hydroxyethylmethacrylate; hiPSCs, human induced pluripotent stem cells; MEF-2c, 

myocyte-specific enhancer factor 2C; MHC, myosin heavy chain; MI, myocardial infarction; MWCNT, multi-walled carbon nanotube; NPPB, natriuretic peptide precursor B; PANI, 

polyaniline; PCL, polycaprolactone; PECAM1, platelet endothelial cell adhesion molecule 1; PLGA, polylactic-co-glycolic acid; PPy, polypyrrole; PU, polyurethane;  SERCA2a, 

sarcoplasmic reticulum Ca2+ ATPase 2a; SiNW, silicon nanowire; SWCNT, single-walled carbon nanotube; TnI, troponin I; TnT, troponin T 
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Similarly to the other conductive materials, in vivo studies involving electroconductive 

polymers are scarce, being the few existent dedicated to cell-free injectable PPy-based 

hydrogels rather than tissue engineered cardiac patches [150, 151]. Notwithstanding, a recent 

study addressed the effect of an injectable hydrogel composed of PPy-grafted chitosan, on 

cardiac function and AP propagation in a rat MI model. The hydrogel was administered to the 

infarcted LV 1 week after MI. Eight weeks after injection the treated group showed improved 

LV function and QRS interval duration of PPy/chitosan-injected heart was similar to that of 

healthy animals [151]. 

3.5.2.4. Silicon-based approaches 

Recently, when incorporated in spheroids comprising of neonatal rat CMs or human 

iPScs-derived CMs, silicon nanowires were shown to enhance contractility and 

synchronization and increase expression of α-sarcomeric actinin and Cx43 [152, 153]. 

Furthermore, silicon nanowires and electrical stimulation had a synergistic effect on hiPSC-

derived CMs spheroids which presented more developed sarcomeric apparatus, improved 

intercellular coupling, higher degree of maturation and reduced spontaneous beating 

frequency [152]. 

Overall, conductive scaffolds showed promising results as potentiate the formation of 

aligned, striated and synchronously contracting CMs, exhibiting increased calcium transients 

and AP propagation velocities and higher contractility forces (Table 1). Additionally, 

upregulation of CM maturation-associated genes and/or functional proficiency was also 

observed (Table 1). Constructs were often beating spontaneously, underlining that electrical 

cues were not sufficient to obtain full maturation. Notwithstanding, it is conceivable that full 

maturation could only be obtained upon implantation. In line with this, some authors appear to 

consider an increase in beating frequency as a positive outcome however it could be 

associated with increased automaticity and, thus, a pro-arrhythmic tendency upon 

implantation. It should also be noted the lack of in vivo studies involving conductive materials. 

In order to ascertain whether these materials have clinical applicability in a near-future, in vivo 
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studies with thorough electrophysiological assessments in larger animal models (e.g. pig) are 

warranted. Apart from their potential for altering in vivo electrical integrity, other essential 

issues such as biocompatibility, concentration-dependent toxicity (especially for CNTs) and 

poor mechanical properties (mainly for electroconductive polymers) should also be evaluated.  

3.6. Final Remarks 

The reported progresses show the relevance of considering cardiac electrical integrity 

as a central aim of innovative therapies. Promising results stemmed from both gene and cell 

therapies that aimed to restore a defective electrical conduction system. In a CVDs involving 

extensive loss of CMs, as is the case of MI, an efficient therapy must rely not only in CMs 

replacement but also in restoring myocardial electrical integrity and/or arrhythmogenicity. 

Hence, conductive biomaterials coupled or not with external electrical stimulation may 

enhanced the outcome of conventional tissue engineering strategies by promoting cell-

biomaterial-myocardium electromechanical integration. Future studies exploring combinatory 

therapies to promote electrical integrity and CMs replacement in clinically relevant in vivo 

models and further dissection of the underlying mechanisms, are warranted (Figure 6). 

 

Figure 6 - Summary of 

discussed approaches with 

great potential to restore 

electrical integrity, and that 

are amenable to be 

combined as a 

electromechanical integrated 

biomaterial-based patch. 
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4. PRELIMINARY RESULTS 

Apart from the mentioned studies addressing potential of electrical cues in the form 

of conductive materials, the role of external electrical stimulation alone has also been tested 

in vitro on cultured cardiac cells, with promising results [130-133]. For instance, Radisic et al. 

conducted a pioneer work in which it has been shown that, upon 8 days of in vitro electrical 

stimulation, cultured neonatal CMs exhibited increased alignment, intercellular coupling, 

ultrastructural organization and amplitude of synchronous contractions, concomitant with an 

improvement of contractile and electrophysiological proficiency [130]. In that sense, in the 

context of a cardiac tissue engineering applications, it would be of interest to further evaluate 

the effect of adequate in vivo electrical stimulation. Currently, that would imply the use of 

external electrical stimulation, which is impractical. Piezoelectric materials could comprise a 

future solution for this issue, as discussed below.  

A given material is considered piezoelectric when it exhibits an electric polarization 

(and a resultant electrical activity) upon mechanical stress (direct effect) or vice-versa 

(converse effect). Furthermore, in order to exhibit piezoelectricity, the molecular structure of a 

given material must present a certain anisotropy [162].  

Although most common applications for piezoelectric materials are related to 

electronics and sensors, biomedical applications have been encouraged for these materials 

due to their inherent potential to provide electrical stimuli in the absence of an external 

electrical source by, for instance, harnessing body movements, added to the fact that some 

biological tissues naturally exhibit piezoelectric properties (e.g. bone, tendons) [163-165]. 

Particularly for tissue engineering approaches, most studies have been focusing on bone and 

neural tissue engineering, which are out of the scope of the herein work and are reviewed 

elsewhere [166, 167]. Nevertheless, it is worth mentioning that the most commonly used 

piezoelectric materials on these studies are the lead zirconate titanate (a piezoceramic) and 

polyvinylidene fluoride (PVDF) and its co-polymers (a piezoelectric polymer) [166]. 
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Since the heart exhibits robust cyclic movements, the implantation of these materials 

on an injured myocardium holds great potential as could be possible to obtain a sustainable 

electrical activity, induced by native mechanical stimuli, with a consequent improvement of 

electromechanical integration and cardiac function. Nevertheless, studies applying 

piezoelectric materials on cardiac tissue engineering are scarce [168]. In fact, to our 

knowledge, up to this point, only one in vitro study has been published in that line. CMs derived 

from mouse embryonic stem cells were cultured on a scaffold composed of aligned 

poly(vinylidene fluoride–trifluoroethylene) (PVDF-TrFE) co-polymer piezoelectric fibers [168]. 

The formed cell constructs became striated and were aligned with the fibers, while presenting 

spontaneous synchronous contractions throughout the scaffold. Furthermore, cardiac troponin 

and alpha myosin heavy chain protein levels were increased when compared with 2D culture 

dish controls. However, the former had Cx43 significantly decreased protein levels, suggesting 

a reduction in intercellular coupling. Regarding electrophysiological parameters, although the 

cells cultured on the piezoelectric scaffolds exhibited increased calcium transient amplitude, 

calcium fractional release and responsiveness to adrenergic stimulation, they also presented 

a longer calcium transient duration, which can be associated with an impaired ability of calcium 

reuptake [168]. 

Moreover, under the scope of a research line in the laboratory of Dr. Lino Ferreira 

(Biocant/CNC), neonatal rat CMs were cultured on materials comprising PCL thin-films, over 

which PVDF-TrFE piezoelectric fibers were electrospun. Briefly, results showed that these 

piezoelectric materials sustained CM viability, promoted their alignment and contractility in vitro 

for at least 12 days (Figure 7), induced an upregulation of relevant ionic channel subunits, such 

as alpha 1C (Cav1.2), and 1D (Cav1.3) subunits of L-type Ca2+ channels, Nav1.5, Kv7.1 and 

Kv11.1 (hERG) (Figure 8), and increased expression of functional Cx43 while improving 

calcium handling (Figure 9) (unpublished data). 
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Figure 7 - Piezoeletric fibers-containing materials allow CM viability, alignment and increase beating 

frequency. (A) – viability as assessed by MTT assay; (B) – Cardiomyocyte alignment index; (C) – CM 

beating frequency when cultured on films PS – Polysterene; MNF – magnetic nanofilm.. 

Figure 8 - Cellular expression of ion channels as assessed by quantitative RT PCR. . Cells cultured 

on PS or MNF+PIEZO at day 1 and day 12 were used for these analyses. Target genes include: voltage 

gated Ca2+ channel subunits Cav1.1 (CACNA1S), Cav1.2 (CACNA1C), Cav1.3 (CACNA1D), voltage 

gated Na+ channel subunits Nav1.1 (SCN1A), Nav1.5 (SCN5A), Nax (SCN7A), voltage gated K+ 

channel subunits Kv7.1 (KCNQ1), Kv11.1 (KCNH2). Target genes were normalized against TBP gene 

expression. Results are Average ± SEM, n=4. *Denotes statistical significance: *P<0.05, **P<0.01, 

***P<0.001. PS – Polysterene; MNF – magnetic nanofilm. 

A B C 
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Figure 9 - Piezoelectric fiber-based materials increase the proportion of function Cx43 and improves 

calcium handling. (A) Ratio of phosphorylated versus total Cx43, at day 1 and 12 of culture (n = 3, 3 

replicas at minimum). (B) Normalized fluorescence signal in cardiac cells cultured in PS and 

MNF+PIEZO, in the absence and presence of epinephrine. Fluorescence intensity values in each 

experiment were normalized by the minimum background intensity registered during that recording. 

The promising results obtained in the aforementioned work motivated the assessment 

of the therapeutic effect of piezoelectric-containing thin film materials on an animal model of 

heart failure. In line with this, the work of the herein Master thesis emerged from this motivation 

and, thus PCL films deposited with piezoelectric PVDF-trFE fibers were applied in a murine 

model of MI. 

  

A B 
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5. AIMS 

Although a tissue engineering approach with piezoelectric materials is yet to be tested 

in vivo, these materials have been already tested in vivo in the heart in the context of other 

applications [169-171]. Recently, Dagdeviren et al. produced thin-film flexible lead zirconate 

titanate-based mechanical energy harvester circuit incorporated in a polyimide layer and 

connected to both a rectifier and a 3.2 V rechargeable battery. Upon suturing of these films, in 

vivo, on the epicardium of healthy swine, ovine and bovine hearts, the authors observed that, 

although the efficiency of the mechanical to electrical energy conversion was around 2%, the 

energy induced by the heart movements on the piezoelectric film was sufficient to recharge 

the battery, upon both open and closed chest assessments. Furthermore, it was also verified 

that by stacking multiple layers of these films would allow this system to support the power 

consumption of an electronic pacemaker device [170]. Thus, this proof-of-concept study shows 

that it is possible to obtain significant amounts of energy by harnessing heart movements 

through piezoelectric materials, which further underlines the need to explore these systems on 

cardiac tissue engineering approaches. These results, in combination with the ones obtained 

in the preliminary work outlined above strongly encouraged the testing of the therapeutic 

potential of the piezoelectric materials on an in vivo MI model. 

Thus, the main aim of work of the herein Master thesis was to evaluate the 

therapeutic potential of piezoelectric fibers-coated thin films for the treatment of MI. For 

that purpose, PCL thin films containing deposited PVDF-TrFE piezoelectric fibers were 

implanted (as patches) in the epicardium of in adult murine model of MI, in order to assess if 

said materials induced some kind of response (beneficial or detrimental). Depending on the 

observed response, one can reflect on the potential of using these materials as, for instance, 

tissue engineering scaffolds or in combination with other therapies. PCL-thin films containing 

deposited PCL fibers were used as control. 
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Hence, the detailed specific aims of the herein MSc thesis were: 

- To optimize the method of surgical patch fixation to the heart of on adult C57BL/6 mice 

immediately after MI; 

- To characterize the functional impact of the Piezo patch on cardiac function 30 days 

following MI by echocardiography and electrocardiography 

- Determine the impact of Piezo patch on the extent of cardiac remodeling and infarct 

size 30 days after MI 

- Evaluate the local response to the patch by histological analysis and detection of 

relevant proteins (CD45, alpha-smooth muscle actin (α-SMA) and Cx43) by 

immunofluorescence. 
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6. MATERIALS AND METHODS 

6.1. Animals, Ethics And Regulation 

Adult female C57BL/6 mice aged 8 to 10 weeks (Charles River) were used in this 

work. All the animal experimental procedures were approved by the i3S (Instituto de 

Investigação e Inovação em Saúde) Animal Ethics Committee, and by the Direção-Geral de 

Alimentação e Veterinária (DGAV). These procedures are in conformity with the European 

Directive 2010/63/EU [172]. Humane endpoints were considered according to OECD 

Guidance Document on the Recognition, Assessment, and Use of Clinical Signs as Humane 

End points for Experimental Animals Used in Safety Evaluation (2000) [173]. 

6.2. Patches 

Although the production of the used patches was not performed in the herein work, 

the patch production methodology and their characterization are briefly described, for 

contextualization purposes. 

Two types of patches were used: 1) the control patches, 400 nm-thick 20 mg/mL 

polycaprolactone (PCL) films coated with aligned PCL fibers, and that will be referred as “PCL 

patches” from this point on; and 2) the test patches, 400 nm-thick 20 mg/mL PCL films coated 

with aligned fibers composed of a piezoelectric copolymer, the poly(vinylidene fluoride–

trifluoroethylene) (PVDF-TrFE), that will be herein referred as “Piezo patches”. 

PCL films were obtained by spin-coating in combination with a sacrificial layer 

approach. The sacrificial layer was obtained by spin-coating a water-soluble polymer, the 

polyvinyl alcohol (PVA) (1% w/v, in water; 1 ml; Mw = 25.000, 88% hydrolysed; Polysciences, 

Inc, over a silicon wafer (400 μm thick, 2 x 2.5 cm; Primewafers) at 4000 rpm for 20 seconds 

(Spincoat G3P- 8, Pi-Kem). Furthermore, a PCL solution (20 mg/mL in chloroform; Mw=80000, 

Aldrich) was spin-coated, with the same parameters, over the sacrificial layer. This sacrificial 

layer strategy allows the PCL films to detach from the silicon wafers only upon contact with an 
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aqueous solution. PCL films on their own exhibit an elastic modulus of 0.06 ± 0.04 MPa 

(assessed by traction test). 

The deposition of aligned piezoelectric and PCL fibers was performed by 

electrospinning. The silicon substrates deposited with PVA and PCL were fixed in a rotating 

collector for the deposition of aligned fibers. Relatively to the piezoelectric fibers, a solution of 

PVDF (70:30 w; Solvay) dissolved in methylethylketone (Labor Spirit) was electrospun 

(voltage: 10-12 kV; polymer solution concentration: 20% w/v; tip to collector distance: 12 cm; 

injection rate: 2 mL/h; relative humidity: 40-50% at room temperature (RT); collector’s rotation 

speed: 2000 rpm; collection time: 4 min.). Fibers with a diameter of 1.24 ± 0.13 µm were 

obtained. Piezo patches exhibit an elastic modulus of 5.08 ± 0.82 MPa. Concerning PCL fibers, 

a PCL solution (25% w/v, Aldrich) dissolved in Formic Acid/Acetic Acid (60/40) was electrospun 

using the same parameters as for the piezoelectric fibers except for the tip to collector distance 

(approximately 13 cm) and voltage: 23 kV. 

6.3. Surgical Induction Of Myocardial Infarction And Patch Fixation Procedure 

MI was experimentally induced by means of permanent ligation of the Left Anterior 

Descending (LAD) coronary artery, as previously described [174], with slight alterations. 

Firstly, buprenorphine (0.08 mg/kg; Bupaq; Richter Pharma) was administered 

intraperitoneally (ip) for analgesia purposes. Mice were then anesthetized by ip injection of a 

solution of ketamine (75 mg/kg, Clorketam; Vétoquinol) and medetomidine (1 mg/kg, 

Sededorm; ProdivetZN) and subsequently hydrated, via subcutaneous injection, with 1 mL of 

a Ringer’s lactate solution (B. Braun). Animals were mechanically ventilated with a small-

animal respirator (Minivent 845; Harvard Apparatus) coupled to an endotracheal tube. With the 

support of a stereomicroscope (Olympus SZX 10; Olympus), mice were submitted to a left 

thoracotomy on the third intercostal space, exposing the heart. The pericardial sac was gently 

disrupted and the first portion of the LAD artery (a pulsating bright red vessel positioned close 

to the left atrium) was ligated by passing a non-absorbable 7/0 suture (Silkam; B. Braun) under 

the artery and then knotting, permanently occluding the vessel. 
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Patches were immersed beforehand in a 1% Penicillin/Streptomycin (P/S) solution 

(100 U/ml Penicillin and 100 μg/ml Streptomycin, Labclinics) to facilitate their detachment from 

the silicon substrates, while avoiding bacterial contamination. Prior to surgery, the patches 

were detached from the substrates, using forceps and fine scissors, and placed over a PBS 

solution in a Petri dish. Immediately following LAD artery ligation, the infarcted area of the LV 

was further exposed. Subsequently, the floating patches were placed on the extremity of a 

biopsy punch (Ø – 4.0 mm) (BPP-40F; kai medical), positioning the fiber-containing side of the 

patch outwards. In parallel, a two-component fibrin glue (F007; zedira GmbH), extracted from 

porcine plasma, was prepared in an hydrophobic surface (Parafilm M®) by mixing 20 μL of 

component 1 (fibrinogen concentrate, 49-55 mg/mL) with 1 μL of component 2 (thrombin, 18-

20 NIH units/mL) in order to initiate polymerization and hydrogel/glue formation. Subsequently, 

patches were quickly immersed in the fibrin glue and, using the biopsy punch as a support, the 

patches were fixed by establishing contact with the epicardium of the exposed infarcted 

myocardium, aiming to orient the Piezo patch fibers in an oblique manner. To promote patch 

adhesion, the fibrin glue was allowed to polymerize for 20 seconds while the patches were 

pressed against the epicardium. During that period, gauze was applied in the edges of the 

intercostal incision to reduce fibrin glue spillage into the thoracic cavity. Thereafter, the biopsy 

punch was detached from the patch, and the unattached borders of the patch were removed 

with fine scissors. 

Intercostal and skin incisions were closed by an absorbable 6.0 suture (Safil, B. 

Braun) and surgical staples, respectively. Anesthesia was reversed by ip injection of 

atipamezole (5 mg/kg, Revertor; Virbac). Analgesia and fluid therapy were performed by ip 

administration of buprenorphine (0.08 mg/kg; Bupaq; Richter Pharma) and subcutaneous 

injection of 1 mL of a Ringer’s lactate solution (B. Braun), respectively. This procedure was 

repeated every 12 hours up to 72 hours after surgery or until full recovery. 
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6.4. Functional Characterization 

6.4.1. Echocardiography 

At 30 days post-MI, animals were subjected to transthoracic echocardiography by 

using the VEVO® 2100 system (Visual Sonics) coupled to a 40-MHz probe. Anesthesia was 

induced by placing the animals in an induction chamber filled with 5% isoflurane (IsoVet®, 

Braun) until loss of body posture and paw withdrawal reflex were confirmed. Thereafter, mice 

were transferred to a warm platform (at 37ºC) and placed in the left lateral decubitus position. 

Anesthesia state was maintained using a face mask (1.5% isoflurane) and, in order to measure 

heart rate (HR) and respiratory rate, their paws were placed over sensors that were in contact 

with an electroconductive gel, while body temperature was monitored by means of a rectal 

probe. Two-dimensional (2D) images were acquired of both short-axis (SAX) and parasternal 

long-axis (PSLAX) views. In SAX view, these were required to properly position the Motion-

mode (M-mode) cursor so that the dimensions of the LV cavity and LV walls (at systole and 

diastole) could be measured. PSLAX view images allowed to determine cardiac output (CO), 

i.e. the volume of blood pumped every minute, by measuring the diameter of the ascending 

aorta (by positioning the M-mode cursor at the level of the aortic walls) and the blood flow 

through this vessel by resorting to the Pulsed Wave Doppler (PW Doppler) mode. 

Several parameters were determined from the performed measurements. The LV 

internal diameter during diastole (LVIDd) and systole (LVIDs), obtained in SAX view in M-mode, 

were used to calculate the fractional shortening (FS) (i.e. the fraction of any diastolic dimension 

that is lost in systole): 

𝐹𝑆(%) =
𝐿𝑉𝐼𝐷𝑑 − 𝐿𝑉𝐼𝐷𝑠

𝐿𝑉𝐼𝐷𝑑

× 100    (𝐸𝑞. 1) 

and the LV volume during diastole (LVVOLd) or systole (LVVOLs) using the Tiecholz 

formula: 

𝐿𝑉𝑉𝑂𝐿𝑑/𝑠 =
7

2.4 + 𝐿𝑉𝐼𝐷𝑑/𝑠

  (𝐸𝑞. 2) 
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that, in turn, were required to calculate the ejection fraction (EF) (i.e. the fraction of 

the blood pumped from the heart at each heartbeat): 

𝐸𝐹 (%) =
𝐿𝑉𝑉𝑂𝐿𝑑 − 𝐿𝑉𝑉𝑂𝐿𝑠

𝐿𝑉𝑉𝑂𝐿𝑑

× 100.  (𝐸𝑞. 3) 

Furthermore, LVIDd, LV posterior wall thickness (LVPW), and LV anterior wall 

thickness (LVAW) (measured in SAX view) were used to estimate LV mass: 

𝐿𝑉 𝑚𝑎𝑠𝑠 = 0.8 × [1.053 × ([𝐼𝑉𝑆 (𝑜𝑟 𝐿𝑉𝐴𝑊) + 𝐿𝑉𝐼𝐷𝑑 + 𝐿𝑉𝑃𝑊]3 − 𝐿𝑉𝐼𝐷𝑑
3)].   (𝐸𝑞. 4) 

The ascending aorta diameter, or LV outflow tract diameter (LVOT), and the velocity-

time integral of the aortic flow (VTI) (measured in PW Doppler mode), allowed the calculation 

of the stroke volume (SV) (i.e. the volume of blood pumped at each heartbeat): 

𝑆𝑉 = 0.785 × 𝑉𝑇𝐼 × 𝐿𝑉𝑂𝑇2  (𝐸𝑞. 5) 

that, in turn, in combination with the HR, was required to determine the CO: 

𝐶𝑂 = 𝑆𝑉 × 𝐻𝑅.   (𝐸𝑞. 6) 

Epicardial areas in systole and diastole (EPIareas and EPIaread, respectively), and 

endocardial areas in systole and diastole (ENDOareas and ENDOaread) were measured in the 

SAX view images, being the latter two used to calculate the endocardial fractional area change 

(EndoFAC): 

𝐸𝑛𝑑𝑜𝐹𝐴𝐶(%) =
𝐸𝑁𝐷𝑂𝑎𝑟𝑒𝑎𝑑 − 𝐸𝑁𝐷𝑂𝑎𝑟𝑒𝑎𝑠

𝐸𝑁𝐷𝑂𝑎𝑟𝑒𝑎𝑑

× 100.  (𝐸𝑞. 7) 

6.4.2. Electrocardiography 

Electrophysiological parameters were assessed at 30 days post-MI by means of 

surface ECGs. Firstly, mice were anesthetized as described for echocardiography. Then, 

animals were placed in supine position in a stable platform. ECG signals were obtained using 

a data acquisition hardware (PowerLab 8/35; ADInstruments) coupled to a signal amplifier 

(Animal Bio Amp; ADInstruments) and ECG electrodes, with the support of the LabChart 8 
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software (ADInstruments). The equivalent of a lead II configuration was used to obtain the 

ECG signals. 

Using an ECG analysis module, several parameters were measured: RR Interval, HR, 

PR Interval, P Duration, QRS Interval, QT Interval, JT Interval, T-peak to T-end interval, the 

amplitudes of P, Q, R, S and T waves and the ST segment height. Furthermore, QT corrected 

for the HR (QTc) was calculated through the Bazett’s formula: 

𝑄𝑇𝑐 =
𝑄𝑇

√𝑅𝑅 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙
 .  (𝐸𝑞. 8) 

6.5. Histological Procedures And Immunohistochemistry 

At 0, 2, 3, 7 and 30 days after surgery, animals were deeply anesthetized by ip 

injection of solution of ketamine (75 mg/kg, Clorketam; Vétoquinol) and medetomidine (1 

mg/kg, Sededorm; ProdivetZN). After 4M potassium chloride (Sigma-Aldrich) injection, 

diastole-arrested hearts were harvested and washed in PBS. Macroscopic photographs of the 

hearts were obtained using a stereomicroscope (Olympus SZX 10; Olympus) coupled to a 

camera (Olympus DP21; Olympus). 

Hearts were fixed in 10% (v/v) neutral buffered formalin (Prolabo; VWR International) 

for approximately 16 hours at RT. Prior to paraffin embedding, hearts were submitted to an 

automated histological processing in a paraffin tissue processor (Microm STP 120-2; Thermo 

Scientific) in which the samples are immersed in the following solutions, for a total of 12 hours: 

phosphate buffered saline (PBS), crescent series of alcohols (from 70% to absolute) (Aga), 

Clear Rite 3® (Thermo Scientific) and paraffin (Histoplast Paraffin; Thermo Scientific) at 56ºC. 

Following histological processing, hearts were embedded in paraffin blocks in a modular 

paraffin embedding system (Microm EC-1/2; Thermo Scientific). 

Paraffin-embedded hearts were sectioned transversally (microtome RM2255; Leica) 

from the apex to the base accordingly to [175]. In order to achieve a representative sampling 

of the LV, 3 μm-thick sections were obtained from equidistant regions (300 μm) of the LV (in a 
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total of, approximately, 15 sections per heart). In order to assess the presence of the patches 

at early timepoints (0 to 7 days after surgery) and to perform morphometric analysis/infarct 

size quantification, the paraffin sections were stained with Hematoxylin-Eosin (HE) or modified 

Masson’s Trichrome (MT), respectively. Sections were dewaxed using xylene and hydrated by 

a descending series of ethanol prior to both HE and MT stains. For the HE stain, paraffin 

sections were immersed for 5 minutes in Gill’s Hematoxylin (GHS232, Sigma-Aldrich) and 

washed for 2 minutes with tap water. Sections were then dehydrated by an ascending series 

of ethanol and incubated for 2 minutes in alcoholic eosin (Leica & Thermo). MT stain was 

performed according to the Trichrome (Masson) Stain kit (Sigma-Aldrich), except for the 

following alterations: nuclei were prestained with Celestine Blue solution prior to Gill’s 

Hematoxylin stain, followed by a 1-hour incubation in aqueous Bouin’s solution (HT10132-1L, 

Sigma-Aldrich) in order to promote an uniform staining. Following either HE or MT stains, the 

sections were diafanized in xylene and mounted in Entellan® mounting medium (107960, 

Merck Millipore). Whole-section low-magnification images were acquired with a 

stereomicroscope (Olympus SZX 10; Olympus) coupled to a camera (Olympus DP21, 

Olympus), while high-magnification images were acquired using an optical microscope 

(Olympus CX31, Olympus) coupled to a camera (Olympus DP21, Olympus) or by means of a 

digital slide scanner (NanoZoomer 2.0-HT, Hamamatsu). 

For immunostainings, sections were subjected to dewaxing and hydration. Antigen 

retrieval of masked epitopes, which is frequently required in formaldehyde-fixed tissues in 

order to allow an efficient antibody-antigen binding, was executed for some of the assessed 

antigens (Table 2). Then, since assessed antigens were located in the cytoplasm, heart tissue 

sections were permeabilized with 0.2% Triton X-100 (Sigma-Aldrich). Since we used primary 

antibodies that were produced in mouse, the Vector M.O.M.™ kit (BMK-2202, Vector 

Laboratories) was applied to block endogenous mouse immunoglobulins of the tissue, which 

could bind to the secondary antibodies and, ultimately, lead to unspecific stainings [176]. 

Sections were incubated with primary antibodies (Table 2) overnight at 4ºC, in a humidified 
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chamber. Thereafter, incubation with secondary antibodies (Table 3) was performed for 1 hour 

at room temperature (RT). Lastly, sections were mounted with Fluoroshield™ with DAPI 

(F6182, Sigma-Aldrich). Images were acquired with an inverted fluorescence microscope 

(Leica DMI 6000B FRET, Leica Microsystems) coupled to a camera (Leica DFC360 FX, Leica 

Microsystems). 

Table 2 - List of primary antibodies used along with their respective working dilution and antigen 

retrieval. 

Primary Antibody (Isotype) Reference Dilution Antigen Retrieval 

α-sarcomeric actin 

(Mouse IgM) 

A2172, Sigma 1:500 None 

α-smooth muscle actin 

(Mouse IgG) 

A5228, Sigma 1:750 10 mM Sodium Citrate Buffer pH=6.0 

(35 min. 98ºC water bath + 20 min. RT) 

CD45 

(Goat IgG) 

AF114, R&D 1:50 10 mM Sodium Citrate Buffer pH=6.0 

(35 min. 98ºC water bath + 20 min. RT) 

Connexin 43 

(Goat IgG) 

AB0015-200, SICGEN 1:100 None 

 

Table 3 - List of secondary antibodies used along with their respective working dilution 

Secondary Antibody Reference Dilution 

Alexa Fluor® 488 Donkey anti Goat IgG A-11055, Thermo Fischer Scientific 1:1000 

Alexa Fluor® 488 Donkey anti Mouse IgG A-21202, Invitrogen 1:1000 

Alexa Fluor® 568 Donkey anti Goat IgG A-11057, Invitrogen 1:1000 

Goat anti Mouse IgM-Texas Red sc-2983 1:1000 

6.6. Piezoelectric Fibers Orientation Scoring  

Since piezoelectric materials originate electric currents in an anisotropic fashion we 

assessed their orientation. One representative Masson’s Trichrome stained section of each 30 

days post-MI (dpmi) heart of the Piezo group was selected for scoring and several high 

magnification images (fields with approximately 94 556 μm2 each) were acquired along the 

region of the implantation site. Four fields from separate regions were selected. A total of 

randomly selected 100 fibers (25 per field) were scored for each heart and, in order to reduce 

subjectivity, the scoring was performed by two operators, each one scoring 2 fields per heart. 

A score was assigned for each analyzed fiber, ranging from score I (transverse orientation) to 
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IV (longitudinal orientation). Scoring was mainly based on length measurement: score I - 

directly assigned to fibers that had a clear transverse orientation or that exhibited a length 

inferior or equal to 0,9 μm; score II -  0,9 μm < fiber length ≤ 12 μm; score III - 12 μm < fiber 

length ≤ 24 μm; score IV – fiber length > 24 μm. 

6.7. Measurement Of Myocardial Infarct Size And Morphometric Analysis 

To determine infarct size, deposited collagen, which becomes stained blue when 

subjected to MT staining, was used to define the LV scarred region. The stereomicroscope-

acquired low magnification images of the MT-stained histological sections were analyzed using 

the semiautomated software MIQuant, a tool previously developed by our team [177]. This 

software determines the percentage of ischemic LV wall by two distinct methods: area 

measurement [174] and midline length [178]. Additionally, scar volume was calculated as 

previously described [179]. First, scar volume between serial histological sections was 

obtained by using the formula of the volume of a truncated pyramid and then total scar volume 

was calculated by the sum of the latter: 

𝑇𝑜𝑡𝑎𝑙 𝑆𝑐𝑎𝑟 𝑉𝑜𝑙𝑢𝑚𝑒 = ∑  
1

3
𝑑(𝐴𝑖 + 𝐴𝑖+1 + √𝐴𝑖 × 𝐴𝑖+1)

𝑁−1

𝑖=1

    (𝐸𝑞. 9) 

Ai and Ai+1 are the infarcted areas obtained by MIQuant of section number i and the 

subsequent one in the series, respectively; d is the distance between sections (which in this 

case is 0.300 mm); and N is the number of sections analyzed. Simillarly, the data obtained 

from MIQuant concerning the midline length was used to estimate the total scar surface area 

at the midline position, resorting to the formula of the truncated pyramid lateral surface area: 

𝑇𝑜𝑡𝑎𝑙 𝑆𝑐𝑎𝑟 𝑀𝑖𝑑𝑙𝑖𝑛𝑒 𝐴𝑟𝑒𝑎 = ∑
𝑀𝑖 + 𝑀𝑖+1

2
√(𝑅𝑖 − 𝑅𝑖+1)2 + 𝑑2

𝑁−1

𝑖=1

  (𝐸𝑞. 10) 

Mi and Mi+1 are the midline lengths of the infarcted region obtained by MIQuant of the 

section number i and the subsequent one in the series, respectively; Ri and Ri+1 are the LV 

radius at the midline position, assuming the midline path as a circumference; d is the distance 
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between sections which, in this case, is 0.300 mm; and N is the number of sections analyzed. 

The same calculations (volume and midline area) were performed for the total LV in order to 

calculate percentage of ischemic wall through these parameters. Morphometric analysis was 

executed by using the Image J software (NIH). LV wall thickness was determined on regions 

that exhibited collagen deposition in 50% or more of the wall and calculated as the average of 

the distance across the wall of five equidistant points of the ischemic wall. LV dilation was 

assessed by the lumen-area percentage, i.e. the ratio between the lumen area delimited by 

the endocardium and the total LV area. Area of myocardium within the infarcted regions was 

quantified. The area of the cell infiltrate surrounding the patches was calculated as the average 

of infiltration areas in subsequent serial sections. The volume of the inflammatory mass was 

calculated by applying Eq. 9. 

6.8. Statistical Analysis 

Values presented in text and figures are mean ± standard error of the mean (SEM). 

Data statistical analysis was performed with the IBM SPSS Statistics 21 software. Shapiro-

Wilk’s test was used to evaluate if the data displayed a normal distribution. If so, the 

homoscedasticity of the data was tested by Levene’s test. These results defined the statistical 

test(s) used further. Normal distributed and homocedastic data were tested with parametric 

tests (independent samples t-test). Non-normal distributed and/or heterocedastic data were 

tested with non-parametric tests (Mann-Whitney U Test). The statistical significance level 

chosen for all statistical tests was p<0.05. 
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Figure 10 - Schematic representation of the main experiment methodology 
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7. RESULTS  

7.1. Optimization And Implementation of Surgical Fixation of The Patch 

Aiming to evaluate the therapeutic potential of the Piezo patches, a patch fixation 

procedure was implemented at our laboratory. For ethical and practical reasons, prior to its 

evaluation 30 dpmi in a substantial number of animals, the procedure was optimized 

beforehand at earlier timepoints. Hence, the following criteria had to be fulfilled and tested: 1) 

the patch had to remain adhered to the epicardium for several days; and 2) the patch had to 

be placed in a manner that allowed it to be deformed in a cyclic fashion and in synchrony with 

the myocardial activity; 3) the duration of the patch fixation should not extend significantly the 

surgical procedure. 

Since patch fixation to the heart by sutures is commonly used in rat models [180-182], 

in the first application attempts, the Piezo patches were sutured to the epicardium (Figure 11A, 

B). Sutures were performed on two opposite sites, being attempted two different patch 

configurations: 1) a spread patch (Figure 11A); or 2) a stretched bundle patch (Figure 11B). In 

both situations the patch was not sufficiently stretched so, although the patch was fixed to the 

epicardium at the sutured sites, the remaining portion was wrinkled and was not in direct 

contact to the myocardium. Following this outcome, we hypothesized whether fully spread 

patches directly glued to the epicardium would allow a closer contact with the myocardium. To 

test this hypothesis, the effect of fibrin glue was assessed. Fibrin glue has been widely used 

as a tissue sealant in animal in vivo studies and clinical applications (reviewed on [183]), 

including in a study where a patch was successfully applied to a murine heart following MI 

[184]. Furthermore, in order to allow the patches to be stretched upon application, a biopsy 

pen was used (Figure 11C). The biopsy pen also allowed the piezo patches to be oriented 

since fiber orientation was visible under a stereomicroscope (Figure 11D), and provided a 

physical support upon patch placement (Figure 11E). This patch placement method allowed 

the patch to be stretched and closely adhered to the epicardium, being deformed 
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synchronously with the heart cycle (Figure 11F). Of note, gauze was applied in the incision 

border below the patch (Figure 11E) to avoid spillage of fibrin glue into the thoracic cavity, 

since we observed that the organs of the thoracic cavity could become severely adhered to 

each other if caution was not taken (not shown). 

To assess whether the patches remained adhered to the epicardium after surgery, 

hearts were harvested in the first 24 hours following surgery (0 dpmi) for histological analysis. 

Macroscopic images of the harvested hearts show clearly that the patch remained adhered to 

the hearts at the infarcted region (below the ligation site) in both Piezo (Figure 11G, I) and PCL 

groups (Figure 11J, L). Furthermore, histology showed that the PVDF-TrFE fibers of the Piezo 

patches are visible, exhibiting a translucent appearance (Figure 11H, arrow heads), and in 

close contact to the myocardium. Conversely, PCL fibers were not detectable by histology 

(Figure 11K). Nevertheless, in both groups an acellular layer juxtaposed to the myocardium 

was observed under the microscope (Figure 11H, K, #), possibly fibrin glue. Having confirmed 

the presence of the piezoelectric fibers at the first 24 hours after surgery, we analyzed the 

hearts of the Piezo group at later timepoints: 2, 3 and 7 dpmi. Histological analysis revealed 

that the piezoelectric fibers were present at the considered timepoints in the proximity of 

cardiomyocytes (Figure 11M, N, O, arrow heads). Of note, at 7 dpmi piezoelectric fibers were 

surrounded by cells which morphologically resembled inflammatory cells Figure 11-O, *). 

Following establishment of the surgical patch fixation, a proof-of-principle experiment 

was designed and initiated (Figure 10) to evaluate the histo-physiological impact of a 30-day 

Piezo patch delivery to an infarcted mouse heart. Overall the duration of the surgical procedure 

was ~20 minutes and patch fixation efficiency, i.e. the percentage of patches successfully 

applied relatively to the total of patch placement attempts, was ~78% for PCL patches and 

~80% for the Piezo counterparts. Furthermore, the survival rate at 30 dpmi was 33.37% (Figure 

12) and 76.64% of the deaths occurred in the first 24 hours (Figure 12). 
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Figure 11 - Implementation and Optimization of the patch surgical fixation. (A and B) - Suture-based 

patch placement, including spread patch (A) and bundle (B) configurations; inset: 2x magnification of 

the implantation site. (C and D) - Biopsy punch showing clear fiber orientation of a Piezo patch (D). (E 

and F) -  Patch fixation procedure with a biopsy punch and fibrin glue, while using gauze to reduce fibrin 

glue spillage into the thoracic cavity (E), resulted in an adhered and properly stretched patch (F). (G, I, 

J and L) – Macroscopic images of hearts subjected to MI and Piezo (G and I) or PCL patch delivery (J 

and L) revealed that patches (outlined in dashed line) remain adhered at least during the first 24 hours 

post-MI (0 dpmi) (n=4 for each group). Scale bars: 2 mm. (H and K) – Representative images of HE-

stained sections of hearts 24 hours after Piezo (H) or PCL (K) patch fixation. Fibrin glue is visible in both 

groups (#) but polymeric fibers are only visible in the Piezo group (arrow heads). Scale bars: 20 μm. (M 

to O) Representative images of HE-stained sections of hearts 2 (M, n=2), 3 (N, n=1) and 7 days (O, 

n=1) after Piezo patch implantation. Fibers were visible at all timepoints (arrowheads) and a cell infiltrate 

around Piezo fibers was detected at 7 days (*). Scale bars: 20 μm. 

 

 

 

 

Figure 12 – Animal survival. Kaplan-Meier 

Survival Curve for the 30 days elapsed after 

patch placement procedure in both Piezo and 

PCL groups.  
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7.2. Functional Characterization 

In order to assess functional proficiency, animals were subjected to transthoracic 

echocardiography at 30 dpmi and several parameters were determined (Table 4). Although 

not statistically different, most analyzed echocardiographic parameters showed a tendency for 

improved LV systolic function in the Piezo patch group (Figure 13A-E and Table 4). The 

average of left ventricular internal diameter during diastole (LVIDd) was increased over 10% 

in the PCL group relatively to the Piezo group (Figure 13A, B and Table 4) suggesting an 

aggravated LV cavity dilation in the former. Moreover, there were evidences of improved LV 

systolic function in the Piezo group since displayed increased fractional shortening (FS) and 

ejection fraction (EF) when compared to the PCL counterparts (Figure13C, D and Table 4). 

Interestingly, cardiac output (CO) was increased in the PCL group (Figure 13E, F and Table 

4), owing both to an augmented heart rate and stroke volume (Table 4).  

 

Table 4 – Echocardiographic parameters obtained in both Piezo and PCL groups. 

Echocardiographic 

Parameters 

Piezo Group(mean ± SEM) 

n=5 

PCL Group (mean ± SEM) 

n=6 

SAX LVIDd (mm) 4,392 ± 0,243 5,007 ± 0,258 

SAX LVIDs (mm) 3,684 ± 0,296 4,408 ± 0,330 

SAX FS (%) 16,41 ± 2,82 12,26 ± 3,20 

SAX EF (%) 33,97 ± 5,28 25,55 ± 6,39 

HR (bpm) 370 ± 15 411,3 ± 18,75 

VTI (mm) 19,55 ± 1,93 17,79 ± 2,26 

LVOT (mm) 1,314 ± 0,045 1,448 ± 0,0168 

SV (μL) 26,91 ± 4,00 29,40 ± 4,00 

CO (mL/min.) 9,828 ± 1,356 12,00 ± 1,634 

ENDOarea;d (mm2) 13,89 ± 1,80 19,28 ± 2,24 

ENDOarea;s (mm2) 11,23 ± 1,78 13,71 ± 2,11 

EndoFAC (%) 13,10 ± 1,77 18,58 ± 2,22 

SAX LV mass (mg) 122,5 ± 15,93 173,2 ± 9,80 

SAX LVAWd (mm) 0,7800 ± 0,1083 0,9767± 0,0733 

SAX LVPWd (mm) 0,9500 ± 0,1281 0,9617 ± 0,1319 

 



47 
 

Figure 13 – Functional characterization by transthoracic echocardiography. (A) Representative M-mode 

images of SAX view of both Piezo (left) and PCL (right) groups, at 30 dpmi. (B to E) LV internal diameter 

during diastole (LVIDd) (B), ejection fraction (EF) (C) and fractional shortening (FS) (D) revealed 

functional improvements in the Piezo group although without statistical significance. Cardiac output (CO) 

was increased in the PCL group (E). Values are mean±SEM. n(Piezo)=5, n(PCL)=6. 

The effect of the Piezo patches on cardiac electrical conduction was assessed by 

surface ECGs. ECG morphology of the PCL group was clearly more disrupted than in the Piezo 

group (Figure 14A). Table 5 summarizes the obtained electrophysiological parameters. 

Notably, the QRS complex of the Piezo group was narrower than in the PCL group (Figure 

14B and Table 5), suggesting an improvement in ventricular electrical activation on the former. 

Strikingly, the PCL group exhibited markedly prolonged JT and Tpeak to Tend intervals 

relatively to Piezo counterpart, with the latter parameter being statistically different between 

groups (p<0,05). Both of these parameters highly indicate that the Piezo group has a more 

efficient ventricular repolarization. As expected, the values of said parameters culminated in a 

decreased QTc interval in the Piezo group when compared to the PCL counterpart (Figure 14E 

and Table 5). Piezo group also showed an almost neutral Q amplitude, which contrasted to the 
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abnormally increased negative value observed in the PCL group, and a significantly increased 

R amplitude (Figure 14A, F and G and Table 5), Collectively, these results strongly suggest 

that the Piezo group has a decreased risk of ventricular arrhythmias, associated with improved 

ventricular electrical integrity. 

 

Table 5 - ECG parameters obtained in both Piezo and PCL groups 

ECG 

Parameters  

Piezo Group (mean ± SEM) 

n=5 

PCL Group (mean ± SEM) 

n=6 

RR Interval (ms) 129,1 ± 7,7 118,7 ± 2,5 

HR (bpm) 472,3 ± 25,0 508,4 ± 10,5 

QRS Interval (ms) 9,637 ± 0,869 13,75 ± 2,15 

JT Interval 7,783 ± 2,881 31,20 ± 10,80 

Tpeak to Tend Interval (ms)1 4,343 ± 1,409 16,000 ± 4,579 

QT Interval (ms)1 17,73 ± 3,91 45,31 ± 12,33 

QTc Interval (ms)1 50,05 ± 10,55 131,20 ± 34,23 

ST height -0,06316 ± 0,02085 0,02130 ± 0,09218 

P duration 25,90 ± 12,22 23,90 ± 5,13 

P amplitude 0,05285 ± 0,04558 0,08919 ± 0,02811 

Q amplitude2 0,02613 ± 0,03697 -0,5002 ± 0,1495 

R amplitude1 0,8580 ± 0,08783  0,5172 ± 0,1136 

S amplitude -0,3963 ± 0,09222 -0,3210 ± 0,1289 

T amplitude 0,1334 ± 0,06453 0,04487 ± 0,02423 

1 – p<0.05;2 – p<0.01 

7.3. Cardiac Tissue Response and Remodeling 

Having the animals been functionally characterized 30 dpmi, heart were harvested and 

processed for histological analysis. Firstly, the presence of the patch and the tissue response 

originated from their implantation was assessed. In both experimental groups, an extensive 

cellular infiltrate was observed in the implantation site (Figure 15A-C, F-H, *), similar to what 

was observed 7 dpmi in the Piezo group (Figure 11O, *). Interestingly, blood vessels (Figure 

15K) and, apparently, multinuclear cells were detected within the cell mass (Figure 15K, arrow 

head).The area occupied by this cellular infiltrates was increased in the Piezo group (area: 

0,8275 ± 0,205 mm2, volume: 1,817 ± 0,553 mm3; n=5), relatively to the PCL group (area: 

0,5243 ± 0,107 mm2, volume: 0,7613 ± 0,154 mm3; n=6) (Figure 15D,E). Furthermore, note 

that the cells from the patch region were not in direct contact with the myocardium, being the 



49 
 

interface composed of collagen fibers (Figure 15C and H, #). Polymer-based fibers, only visible 

in Piezo group, were intermingled with the cellular infiltrate at a density of 2922 ± 136 

fibers/mm2 and were not in direct contact with cardiomyocytes (Figure 15C, inset, arrow 

heads). Most piezoelectric fibers showed a nearly-transverse orientation (Figure 15I) and, as 

observed at early timepoints, fibers were translucent (Figure 15J-L). 

 

Figure 14 – Functional characterization by electrocardiography. (A) Representative ECG signal samples 

of Piezo (top) and PCL (bottom) groups. J point and P, Q, R and S waves are indicated in the first cycle. 

A clear disruption in the QRS complex is observed in t in the PCL group. (B to G) QRS interval and JT 

interval show clear tendencies to be increased in the PCL group, while QTc interval, Tpeak to Tend 

interval, R and Q amplitudes revealed statistically significant improvements in cardiac conduction on the 

Piezo group. Values are presented as mean ± SEM. n(Piezo)=5, n(PCL)=6. *p<0,05; **p<0,01. 

To assess whether the Piezo patches had an effect on cardiac remodeling, i.e. in LV 

wall thinning and non-contractile collagen-rich scar tissue formation, morphometric analysis of 

representative LV histological sections was performed in both groups (Figure 16). Infarct size, 

as assessed by infarct area (29,95 ± 4,04 % in the Piezo group vs 32,69 ± 4,06 % in the PCL 

group; n=5 and n=6, respectively), volume (21,70 ± 1,79 % in the Piezo group vs 22,26 ± 2,10 
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% in the PCL group; n=5 and n=6, respectively), midline length (36,32 ± 4,11 % in the Piezo 

group vs 40,46 ± 4,83 % in the PCL group; n=5 and n=6, respectively) and midline area (36,95 

± 4,50 % in the Piezo group vs 44,02 ± 7,07 % in the PCL group; n=5 and n=6, respectively), 

was similar in both groups (Figure 16B). Furthermore, although no statistical differences were 

found on the LV free wall thinning (596,5 ± 54,42 μm in the Piezo group vs 541,9 ± 46,04 μm 

in the PCL group; n=5 and n=6, respectively) (Figure 16C) and LV chamber dilation (24,95 ± 

2,93 % in the Piezo group vs 27,27 ± 3,57 % in the PCL group; n=5 and n=6, respectively) 

across groups (Figure 16D), PCL group displayed a small tendency for aggravated remodeling. 

Interestingly, the PCL exhibited extended regions of myocardial tissue within the infarcted zone 

(7,784 ± 1,915 % in the Piezo group vs 9,266 ± 0,8146 % in the PCL group; n=5 and n=6, 

respectively) (Figure 16E), however the degree of viability and contractility of this tissue was 

not determined .
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Figure 15 – Tissue response to patch implantation. (A to H) - High-resolution whole-section images of representative Masson’s Trichrome stained sections 

of hearts at 30 dpmi of both Piezo (A and B) and PCL (F and G) revealed the presence of an cell extensive cell infiltrate at the implantation site, mainly 

composed of cells with a macrophage-like morphology (C and H, *), that is separated from the myocardium by collagen fibers (blue colored) (C and H, 

#). Polymeric fibers are only visible in the Piezo group (C, arrow heads). The extent of the cellular infiltrate appears to be increased in both area (D) and 

volume (E) on the Piezo group. Scale bars: A and F – 2 mm, B and G - 500 μm, C and H – 50 μm. (I) Histogram representing the scoring of the orientation 

of piezoelectric fibers relative to the sectioning cut showing a clear tendency for transversal orientation. (J to L) – Piezoelectric fibers show a translucent 

appearance and are often surrounded by macrophage-like multinucleated cells (arrow head) and in the vicinity of perfused vessels (K). Scale bars: J – 

50 μm, K and L - 20 μm. Values are presented as mean ± SEM. n(Piezo)=5, n(PCL)=6 
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Figure 16 - – Effect of the Piezo patch on cardiac remodeling. (A) Representative Masson’s Trichrome-stained histological sections of the LV from 

the apex (top left) to the base (bottom right) of Piezo (top) and PCL (bottom) groups at 30 dpmi. Scar tissue is clearly visible in blue, contrasting with 

the red-stained myocardium. Scale bar: 2 mm. (B to E) Infarct size (calculated by infarct area, infarct volume, midline length and midline area) (B), 

LV free wall thickness (C) and LV cavity dilation (D) showed slight tendencies in favor of the Piezo group, although the PCL group present increased 

proportion of CMs within the scar tissue (E). Values are presented as mean ± SEM. n(Piezo)=5, n(PCL)=6. 
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7.4. Protein Expression at The Patch-Myocardium Interface 

In order to further characterize the tissue response to the patch, immunofluorescence was 

performed. Considering that the histological characterization revealed the presence of an extensive 

cell infiltrate on the implantation site and surrounding piezoelectric fibers (in the Piezo group), we 

explored if this was part of an inflammatory reaction to the patch by assessing the presence of 

hematopoietic cells (that, except for mature erythrocytes, express CD45, a membrane glycoprotein). 

Additionally, the expression of α-smooth muscle actin (αSMA), expressed in smooth muscle cells and 

in myofibroblasts, was assessed at the patch-myocardium interface. In both groups, the cell infiltrate 

at the implantation site was rich in CD45-expressing cells (Figure 17), when compared to adjacent 

scar and myocardial tissues (Figure 17B and D). Moreover, cells surrounding the piezoelectric fibers 

Figure 17A-C) were also CD45+. Of note, these CD45+ cells were big and multinucleated (Figure 17C, 

arrow heads), contrasting to small-sized CD45+ cells found in the myocardial border zone and scar 

region (Figure 17B). These aspects, in combination with histological observations (Figure 15), are 

indicative of macrophages and foreign body giant cells, which result from macrophage fusion in the 

context of foreign body reaction to a biomaterial. Additionally, these big and often multinucleated 

CD45+ cells were less abundant in the PCL group in which mainly small, round CD45+ were observed 

Figure 17D). Furthermore, αSMA-expressing cells sparsely distributed (apart from the blood vessel 

counterparts which were also present in this tissue) were detected in the vicinity of piezoelectric fibers 

(Figure 17C, arrows), suggesting the presence of myofibroblasts. 

Considering the marked improvement on cardiac conduction of the Piezo group, Cx43 

expression pattern was evaluated in both experimental groups, in combination with the alpha-

sarcomeric actin (α-SA) (a marker of sarcomeres which was used to detect CMs) to assess the 

localization of gap junctions in CMs (Figure 18). No relevant differences were detected in the 

expression levels or localization of Cx43 expression across groups (Figure 18) as, in both conditions, 

Cx43 expression pattern appeared equally disrupted in CMs of the peri-infarct zone (Figure 18B and 

E) when compared to CMs of the remote myocardium (Figure 18C and F) 
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Figure 17 – Inflammatory response on the patch-myocardial interface. Representative images of the Piezo (A 

to C) and PCL (D) at the patch-myocardium interface following immunofluorescence for αSMA (green) and 

CD45 (red). Piezoelectric fibers are highly autofluorescent and appear in bright orange-red (A, B and C). CD45-

expressing cells are abundant in the cell infiltrate surrounding the fibers, which contrasts with the adjacent 

myocardium in which the CD45+ cells are sparsely found. Large, multinucleated CD45+ cells were common 

within the cell mass (C, arrowheads). Sparsely distributed αSMA+ cells were present mainly in the cell mass of 

the Piezo group (C, arrows). CD45+ cells of the PCL group were smaller and rarely multinucleated (D). Dashed 

lines: interface between the patch region and the scar or myocardial tissue. Nuclei stained in blue (DAPI) Scale 

bars: A, B and D – 100 μm; C – 50 μm. αSMA - alpha-smooth muscle actin. 
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Figure 18– Effect of the Piezo patch on intercellular coupling. Representative images of Piezo (A to C) and PCL (D and F) groups, 

following immunofluorescence for Cx43 (green) and α-SA (red). Although, intercellular coupling appeared slightly disrupted in peri-

infarct and near the patch (B and E) when compared to remote myocardial regions (C and F), no apparent differences were detected 

between experimental groups. Nuclei stained in blue (DAPI). Scale bars: A and D – 200 μm; B, C, E and F – 20 μm. α-SA - alpha-

sarcomeric actin, Cx43 – connexin 43. 
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8. DISCUSSION 

CVDs are the leading cause of death in the industrialized world, being estimated that they 

are cause of approximately 17,4 million deaths per year, with an expected increase up to 23,6 million 

by the year 2030 [1]. These conditions are frequently associated with cardiac electrical disruption and 

the onset of arrhythmias [6] that, in turn, can be fatal. Considering the several drawbacks of the current 

gold-standard therapies for cardiac failure (e.g. heart transplant) and aiming to restoring cardiac 

electrical integrity (e.g. electronic pacemakers, implantable cardioverter devices) it is of paramount 

relevance to develop novel therapies that allow full restoration of cardiac function, by acting on cardiac 

tissue remodeling, contractility and electrical conduction capabilities. Although novel approaches 

involving cell therapy, injectable hydrogels or biomaterial-based cardiac patches (with or without cells) 

have been emerging, these are mainly focused on reducing the detrimental effects of fibrosis upon 

CVDs (reviewed on [19, 20]) rather than focusing on restoring cardiac electrical integrity. 

In the herein study, we aimed to test the in vivo effect, in a murine model of MI, of a patch 

comprising a film composed of PCL, a biocompatible and biodegradable polymer extensively used in 

biomedical applications [185-189] (including cardiovascular ones [190, 191]), with electrospuned 

PVDF-TrFE fibers with piezoelectric properties. Since piezoelectric materials accumulate electric 

charges upon mechanical deformation [192] we hypothesized that successive deformation cycles 

induced by the cardiac cycle would induce charge accumulation on the piezoelectric fibers, provoking 

the formation of electrical currents in synchrony with the heart rate and, ultimately, restore cardiac 

electrical conduction on a disease scenario. In vivo testing of these patches was prompted by 

preliminary in vitro work that showed that these Piezo patches sustain neonatal rat CM contractility 

for at least 12 days and induced an increased expression of functional Cx43 and relevant ionic 

channels on these cells (unpublished data, please see Preliminary Results) Additionally, these 

materials resulted in improved calcium cycling and induction of a more mature, aligned morphology 

(unpublished data). Herein, the in vivo effect was compared with a control group involving the use of 

PCL films with deposited PCL fibers. 
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In order to evaluate the in vivo effect of the Piezo patches we first implemented the patch 

surgical fixation in our laboratory (Figure 11). Although suturing methods have been commonly 

applied to fix patches to the epicardium of rat [180-182, 193], this approach was not efficient in our 

setting. On one hand, the delicate and flexible structure of the patch impaired handling and smooth 

perforation of the suture needle, extending significantly the surgery duration (not shown). And, on 

other hand, although the patches remained fixed to the heart during surgery with both spread and 

bundle configuration, the films were not in close contact with the epicardium and were not stretched, 

which is an essential prerequisite to allow the patch to properly suffer heart cycle-induced 

deformations and, ultimately, allow electrical current induction. Nevertheless, this issue was solved 

by resorting to a biopsy pen and porcine fibrin glue, being fibrin glue commonly used in several 

biomedical applications [183]. However, it should be referred that fibrin glue should be used with 

caution, as it could lead to severe adhesion between the organs [194]. Using this method, Piezo and 

PCL patches remained attached the heart at early time points despite the elevated heart rate of mice 

(~400 BPM), suggesting the feasibility of this patch placement method. Following establishment of 

the patch fixation method, a proof-of-principle experiment was initiated in which the patch effect were 

observed at 30 days post MI. The experimental survival rate was reduced (~33, 37%) when compared 

to mice uniquely subjected to MI [174, 195]. However this survival is in accordance with other models 

established at our laboratory, namely, cell intramyocardial injection after MI. Moreover, considering 

that more than 70% of the deaths occurred during the first 24 hours, this high mortality appears to be 

caused by the procedure itself rather than by patch-related effects. Indeed, the patch fixation is an 

invasive procedure that increases the duration of an open-chest surgery, which is a key parameter 

influencing animal survival [196]. 

Histological analysis at 30 days post-MI showed that piezoelectric fibers were abundant in 

the fixation site, with a similar aspect to early timepoint, thus showing that the patch persisted 

throughout the experiment and without any detectable fiber degradation. Conversely, the PCL fibers 

were not even observed at the first 24 hours, despite clear macroscopic evidences that the patch was 

yet in place. Whether this fact is due to much reduced fiber dimensions or due to degradation caused 
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by fixation and/or histological processing, it is unknown. Nevertheless, the fact that in both 

experimental groups, an extensive cell infiltrate of mainly CD45+ cells was visible at the implantation 

site (Figure 15 and Figure 17), supports the hypothesis that both patches remained adhered to the 

epicardium originating an exacerbated extra-cardiac inflammatory response. The cell infiltrate 

appeared surrounded by a fibrous capsule, being collagen fibers present at the interface between the 

infiltrate and the myocardium. In the Piezo group, this response likely evolved to a foreign body 

reaction as fibers were surrounded by CD45+ multinucleated cells (resembling foreign body giant 

cells, which originate from macrophage fusion), capillaries (typical of the granulation tissue), collagen 

fibers and the presence of sparsely distributed α-SMA+ cells which could possibly be myofibroblasts, 

which are commonly present on wound healing scenarios [197]. This type of tissue response was 

also obtained by others, where, for instance, a PCL fiber-based scaffold was sutured in the epicardium 

of a MI rat model [193]. The presence of giant multinucleated cells was less apparent in the PCL 

group, possibly due to the absence of fibers with substantial dimension. These results question the 

biocompatibility of the Piezo patches, as an exacerbated inflammatory reaction followed by a foreign 

body reaction could have detrimental effects on the cardiac function and attenuate the putative effects 

of the piezoelectric fibers, due to their foreign body reaction-induced isolation. Thus, one should 

evaluate the pros and cons of having non-degradable (at least for 30 days) piezoelectric fibers, which, 

on one hand, induce a foreign body reaction response but, on the other hand, only exhibit piezoelectric 

properties in an intact state. Notwithstanding, novel strategies to avoid biomaterial-related foreign 

body reaction are emerging [198, 199] and that could render the Piezo patches more biocompatible. 

Additionally, should be mentioned that this massive inflammatory response may not be uniquely 

originated from the patches themselves but, probably, by the invasive patch placement procedure 

and due to the application of fibrin glue. The latter comprises a component of the provisional matrix 

which it is formed early in the response to biomaterials and that modulates the subsequent 

inflammatory cell accumulation and, consequently, the extent of the inflammatory response [197]. 

In order to assess the in vivo effect of the Piezo patches, mice were functionally characterized 

by echocardiography (Figure 13) and ECG (Figure 14) at 30 dpmi. ECG assessment showed 
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statistically relevant differences, in favor of the Piezo group, on several parameters associated with 

ventricular conduction and the depolarization/repolarization processes (QTc interval, Tpeak to Tend 

interval, R amplitude and Q amplitudes), with the QRS interval and JT interval revealing clear 

tendencies. Decreased QTc, Tpeak to Tend and JT intervals indicate that the depolarization and/or 

repolarization is occurring more rapidly and efficiently [200-202]. Increased R amplitude suggests that 

the Piezo group exhibits a more uniform and concordant depolarization process since the ECG signal 

results from the sum of the several electrical signals originating from different points of the 

myocardium. These results not only point for a restoration of cardiac electrical integrity but also 

suggest that the Piezo group is less amenable to suffer ventricular arrhythmias [200-204]. However, 

this electrical conduction restoration did not reflect on significant improvements on systolic function, 

as assessed by transthoracic echocardiography. Nevertheless, the Piezo group presented tendencies 

to have improved fractional shortening and ejection fraction, while exhibiting a less dilated LV 

chamber. Curiously, the PCL group presented an increased (not statistical significant) cardiac output. 

The latter result might not necessarily imply improved cardiac function, since for equal ejection 

fractions, greatly dilated LV would present an increased cardiac output. The reasons behind the 

observed discrepancy between the echocardiography and the ECG results are unknown. However, it 

can be hypothesized that the piezoelectric fibers could have caused a more direct and rapid 

improvement on ventricular electrical conduction, while their impact on LV contractility and systolic 

function could be more progressive, causing relevant differences to be revealed only at later 

timepoints. This could be due to an effect similar to that of the primary electrical remodeling that can 

be defined as changes in the electrophysiological parameters of the heart that occur as a 

consequence of alterations in the natural order of electrical activation of the heart [205]. These 

alterations can induce, for instance, alterations in mechanical strain of the myocardium and, 

ultimately, alter its contraction patterns [205-208]. Furthermore, histological characterization showed 

no significant differences concerning infarct size and morphometric parameters (e.g LV free wall 

thickness), although LV dilation showed a tendency that corroborates with the echocardiographic 

findings (Figure 16).  
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Despite the fact that the piezoelectric fibers became physically isolated from the myocardium 

due to the foreign body reaction, a significant improvement of the cardiac electrical conduction was 

observed. It can be hypothesized that the charge accumulation that occurs on the piezoelectric fibers 

upon mechanical deformation could generate an electrical field with a sufficient range to electrically 

stimulate viable CMs in the periphery. In an attempt to maximize this putative effect of the fibers on 

the peripheral myocardial tissue, the Piezo patches were oriented in an oblique fashion upon its 

surgical placement so that most of the piezoelectric fibers would become parallel to the myocardial 

fibers [170, 209]. And, in fact, fiber orientation scoring revealed a clear tendency for the piezoelectric 

fibers to be oriented accordingly (Figure 15). However, even assuming that the fibers generated 

electrical fields with an almost optimal orientation, the exact mechanism through which these electrical 

stimuli induce improvements on ventricular conduction is unknown. We hypothesized that the Piezo 

patches could increase the amount of CMs near the implantation site that would, consequently, 

facilitate electrical conduction. However, histology revealed that the PCL group exhibited a higher 

proportion of CM islets within the infarcted zone Figure 16), disproving the hypothesis. In an attempt 

to unveil the mechanism, intercellular coupling was evaluated by analyzing the expression pattern of 

Cx43 (Figure 18), since it was observed an increase of functional Cx43 in the preliminary in vitro work 

involving these patches (unpublished data). However, no notable differences were detected between 

experimental groups. As it was observed in the preliminary in vitro work, the improvement of cardiac 

conduction could alternatively be explained by improved Ca2+ handling and/or increased expression 

of genes encoding for ionic channels subunits, such as alpha 1C (Cav1.2), and 1D (Cav1.3) subunits 

of L-type Ca2+ channels, Nav1.5, Kv7.1 and voltage-activated potassium channels (Kv11.1) (hERG), 

however the expression of said genes were not assessed in the herein work. It is known that cells 

react to changes on the biophysical properties of the surrounding microenvironment, which include 

electrical cues. Alterations on the surrounding electrical properties can instigate the occurrence of 

phenomena that can be transduced to biochemical signals, such as, for example: changes in 

membrane electrical charge, bound or release of ions from proteins, ion channel clustering in certain 

sites of the cell membrane and the activation of complex voltage-sensitive enzymes such as the 
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voltage-sensitive phosphatases (VSPs), which contain a voltage-sensitive domain that alters its 

conformation depending on the surrounding electrical field and that, by being attached to cytoplasmic 

phosphatase, it acts by dephosphorylating phosphoinositide phosphates (PIPs) that, in turn, can 

intervene in signaling pathways and alter cell phenotype and function [210-215]. 

To the best of our knowledge, previous studies that applied piezoelectric materials on the 

cardiovascular system have been only focusing on evaluating the beneficial effect of these materials 

on in vitro studies [216], being in vivo studies directed to energy harvesting by harnessing the 

movements originated from the cardiac cycle [217], which underline the novelty of the herein work. 

Despite no significant improvement on systolic function was observed, the results showed a 

marked ameliorating on electrical conduction. Although more thorough assessments should be 

performed on the present animal model, the results encourages one to scale-up this putative therapy 

for larger animal models and, eventually, for clinical application. However, note that larger animals 

and humans exhibit slower heart rates which, without an adequate scale-up, could hinder the electrical 

activity of the piezoelectric fibers. Since most novel therapies have been focusing on improving 

systolic function, LV remodeling and neovascularization (with promising results) (reviewed on [19, 

20]), rather than acting on cardiac conduction, therapeutic potential of the Piezo patches could be 

more efficiently harnessed if applied as a complementary therapy to the former, rather than being 

applied in an isolated manner. Additionally, in order to be successfully applied in a clinical 

environment, a more sterile and off-the-shelf formulation in association with less invasive patch 

placement procedure is advised. Moreover, considering the in vitro effect on CM maturation and 

intercellular coupling, the Piezo patches could be seeded with clinically relevant cells (e.g. iPSC or 

ESC-derived immature CMs) in a cardiac tissue engineering approach, promoting both ventricular 

conduction and, possibly, improved cell engraftment onto the native myocardium. 
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9. CONCLUSIONS 

The main goal of the herein work was to assess the therapeutic potential of biomaterial-based 

patches composed of PCL films and piezoelectric fibers on a murine model of MI. The successfully 

implanted patches triggered an exacerbated inflammatory response with characteristics which were 

typical of a foreign body reaction with piezoelectric fibers remaining detectable at 30 days after 

MI/patch implantation. Although ameliorations on systolic function and cardiac remodeling were not 

statistically significant (when compared to PCL-only controls), animals implanted with the Piezo 

patches exhibited improved cardiac conduction with evidences of having a reduced susceptibility to 

suffer ventricular arrhythmia events. These results support the therapeutic potential of Piezo patches, 

in particular, to restore electrical integrity restoration in heart failure scenarios. Moreover, herein in 

vivo results together with the previous biocompatibility studies (please see Preliminary Results) further 

anticipate the use of Piezo patches as conductive scaffolds for cardiac tissue engineering 

applications. 
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10. FUTURE PERSPECTIVES 

Despite the obtained evidences that Piezo patches demonstrate potential to improve 

outcome of MI, some methodological approaches may be improved and other parameters evaluated. 

To minimize the in vivo inflammatory response to the patch and avoid the observed foreign 

body response to Piezo patches, novel approaches such as biocompatible material coatings can be 

applied [198]. Moreover, alternatively to the use of the porcine fibrin glue, which is commercially 

available for research purposes, it should be considered the use of thrombin and fibrinogen isolated 

from murine plasma (as it is performed in humans for clinical applications). In line with this, as the 

putative foreign body cells were identified uniquely by their morphology and CD45 expression, the 

expression of, for instance, macrophage-related markers (e.g. CD68 [218]) are worth exploring. 

Moreover, it would be of interest to assess the composition of the macrophage compartment relatively 

to the M1 vs M2 phenotypes, since the latter exhibit anti-inflammatory properties [197, 218]. 

Regarding functional characterization, both echocardiographic and electrophysiological 

assessments should be performed on later timepoints in order to access the long-term effect of the 

Piezo patches. Relatively to the methodology, the analysis of electrophysiological parameters could 

be further insightful. For instance, surface ECGs should be measured at several timepoints or an 

ambulatory ECG monitoring system, allowing the analysis of isolated arrhythmic events which cannot 

be detected in a short time window [219]. Moreover, it would be useful to perform intracardiac 

electrograms for a more local electrophysiological assessment [75, 220] and/or Langerdoff perfusion 

system-associated ex vivo optical mapping [70, 151, 221] to understand whether Piezo patches affect 

conduction velocity and AP propagation of the myocardial tissue located near the infarcted zone. In 

addition, arrhythmia inducibility could be tested by means of, for instance, programmed electrical 

stimulation [74, 77]. 

In order to assess the mechanism through which the Piezo patches exert their beneficial 

effect, the transcriptional profile and protein expression of the CMs adjacent to the Piezo patches 

should be further explored by means of quantitative PCR and Western blot, respectively. This would 
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allow the assessment of not only the expression of the connexins and ionic channels (such as the 

ones that became overexpressed in the preliminary in vitro work) but also to assess if certain signaling 

pathways are altered in these CMs. For instance it would be interesting to explore alterations on the 

β1-integrin/ FAK/ERK/MEF-2c and GATA4 signaling pathway which influences Cx43 expression and 

that became altered in an in vitro study in that a conductive CNT-based material was used [145]. It 

would also be of interest to study the signaling pathways that could be influenced by VSP-mediated 

activity [210-215]. 

  



67 
 

11. REFERENCES 

[1] Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart Disease and 
Stroke Statistics-2016 Update: A Report From the American Heart Association. Circulation. 
2016;133:e38-60. 

[2] Mendis S PP, Norrving B. Global Atlas on Cardiovascular Disease Prevention and Control.  World 
Health Organization. Geneva 2011. 

[3] Wong ND. Epidemiological studies of CHD and the evolution of preventive cardiology. Nat Rev 
Cardiol. 2014;11:276-89. 

[4] WHO - Cardiovascular Diseases (CVDs) Fact Sheet,  2015.  Available from: 
http://www.who.int/mediacentre/factsheets/fs317/en/. 

.[5] WHO - The top 10 causes of death Fact Sheet,  2014.  Available from: 
http://www.who.int/mediacentre/factsheets/fs310/en/ 

[6] Kleber AG, Rudy Y. Basic mechanisms of cardiac impulse propagation and associated 
arrhythmias. Physiological reviews. 2004;84:431-88. 

[7] Lip GY, Heinzel FR, Gaita F, Juanatey JR, Le Heuzey JY, Potpara T, et al. European Heart Rhythm 
Association/Heart Failure Association joint consensus document on arrhythmias in heart failure, 
endorsed by the Heart Rhythm Society and the Asia Pacific Heart Rhythm Society. European journal 
of heart failure. 2015;17:848-74. 

[8] Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD. Third universal definition 
of myocardial infarction. Nat Rev Cardiol. 2012;9:620-33. 

[9] Lusis AJ. Atherosclerosis. Nature. 2000;407:233-41. 

[10] Jhund PS, McMurray JJV. Heart Failure After Acute Myocardial Infarction. Circulation. 
2008;118:2019. 

[11] Minicucci MF, Azevedo PS, Polegato BF, Paiva SA, Zornoff LA. Heart failure after myocardial 
infarction: clinical implications and treatment. Clinical cardiology. 2011;34:410-4. 

[12] Vasan RS, Levy D. Defining Diastolic Heart Failure. Circulation. 2000;101:2118. 

[13] Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling--concepts and clinical implications: a 
consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum 
on Cardiac Remodeling. Journal of the American College of Cardiology. 2000;35:569-82. 

[14] Yang F, Liu YH, Yang XP, Xu J, Kapke A, Carretero OA. Myocardial infarction and cardiac 
remodelling in mice. Experimental physiology. 2002;87:547-55. 

[15] Sutton MGSJ, Sharpe N. Left Ventricular Remodeling After Myocardial Infarction. Circulation. 
2000;101:2981. 

[16] Vunjak-Novakovic G, Tandon N, Godier A, Maidhof R, Marsano A, Martens TP, et al. Challenges 
in cardiac tissue engineering. Tissue engineering Part B, Reviews. 2010;16:169-87. 

[17] Cleutjens JP, Kandala JC, Guarda E, Guntaka RV, Weber KT. Regulation of collagen degradation 
in the rat myocardium after infarction. J Mol Cell Cardiol. 1995;27:1281-92. 

[18] Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, et al. Evidence 
for cardiomyocyte renewal in humans. Science (New York, NY). 2009;324:98-102. 

http://www.who.int/mediacentre/factsheets/fs317/en/
http://www.who.int/mediacentre/factsheets/fs310/en/


68 
  

[19] Hirt MN, Hansen A, Eschenhagen T. Cardiac tissue engineering: state of the art. Circulation 
research. 2014;114:354-67. 

[20] Alrefai MT, Murali D, Paul A, Ridwan KM, Connell JM, Shum-Tim D. Cardiac tissue engineering 
and regeneration using cell-based therapy. Stem Cells and Cloning : Advances and Applications. 
2015;8:81-101. 

[21] Hall JE. Cardiac Muscle; The Heart as a Pump and Function of the Heart Valves.  Guyton and 
Hall Textbook of Medical Physiology - 13th edition. Philadelphia, PA, USA: Elsevier Health Sciences; 
2016. p. 109-22. 

[22] Hall JE. Rhythmical Excitation of the Heart.  Guyton and Hall Textbook of Medical Physiology - 
13th edition. Philadelphia, PA, USA: Elsevier Health Sciences; 2016. p. 123-9. 

[23] Shimada T, Kawazato H, Yasuda A, Ono N, Sueda K. Cytoarchitecture and intercalated disks of 
the working myocardium and the conduction system in the mammalian heart. Anat Rec A Discov Mol 
Cell Evol Biol. 2004;280:940-51. 

[24] Miyamoto T, Zhang L, Sekiguchi A, Hadama T, Shimada T. Structural differences in the 
cytoarchitecture and intercalated discs between the working myocardium and conduction system in 
the human heart. Heart Vessels. 2002;16:232-40. 

[25] Mezzano V, Pellman J, Sheikh F. Cell junctions in the specialized conduction system of the heart. 
Cell Commun Adhes. 2014;21:149-59. 

[26] Blank AC, van Veen TA, Jonsson MK, Zelen JS, Strengers JL, de Boer TP, et al. Rewiring the 
heart: stem cell therapy to restore normal cardiac excitability and conduction. Curr Stem Cell Res 
Ther. 2009;4:23-33. 

[27] Veerman CC, Wilde AA, Lodder EM. The cardiac sodium channel gene SCN5A and its gene 
product NaV1.5: Role in physiology and pathophysiology. Gene. 2015;573:177-87. 

[28] Thiriet M. Cardiomyocytes.  Tissue Functioning and Remodeling in the Circulatory and Ventilatory 
Systems. NY, USA: Springer-Verlag; 2013. p. 189-269. 

[29] Amin AS, Tan HL, Wilde AA. Cardiac ion channels in health and disease. Heart rhythm : the 
official journal of the Heart Rhythm Society. 2010;7:117-26. 

[30] Nerbonne JM. Molecular basis of functional voltage-gated K+ channel diversity in the mammalian 
myocardium. J Physiol. 2000;525 Pt 2:285-98. 

[31] Weiss S, Oz S, Benmocha A, Dascal N. Regulation of Cardiac L-Type Ca2+ Channel CaV1.2 Via 
the β-Adrenergic-cAMP-Protein Kinase A Pathway: Old Dogmas, Advances, and New Uncertainties. 
Circulation research. 2013;113:617-31. 

[32] Robinson RB, Siegelbaum SA. Hyperpolarization-activated cation currents: from molecules to 
physiological function. Annu Rev Physiol. 2003;65:453-80. 

[33] Baruscotti M, Robinson RB. Electrophysiology and pacemaker function of the developing 
sinoatrial node. American journal of physiology Heart and circulatory physiology. 2007;293:H2613-
23. 

[34] Diaz ME, Graham HK, O'Neill S C, Trafford AW, Eisner DA. The control of sarcoplasmic reticulum 
Ca content in cardiac muscle. Cell Calcium. 2005;38:391-6. 

[35] Lehman W, Galinska-Rakoczy A, Hatch V, Tobacman LS, Craig R. Structural basis for the 
activation of muscle contraction by troponin and tropomyosin. J Mol Biol. 2009;388:673-81. 

[36] Wehrens XHT, Marks AR. Novel therapeutic approaches for heart failure by normalizing calcium 
cycling. Nat Rev Drug Discov. 2004;3:565-74. 



69 
 

[37] Lakatta EG, Maltsev VA, Vinogradova TM. A coupled SYSTEM of intracellular Ca2+ clocks and 
surface membrane voltage clocks controls the timekeeping mechanism of the heart's pacemaker. 
Circulation research. 2010;106:659-73. 

[38] Lakatta EG, DiFrancesco D. What keeps us ticking: a funny current, a calcium clock, or both? J 
Mol Cell Cardiol. 2009;47:157-70. 

[39] Oshima A. Structure and closure of connexin gap junction channels. FEBS Letters. 
2014;588:1230-7. 

[40] Kanter HL, Saffitz JE, Beyer EC. Cardiac myocytes express multiple gap junction proteins. 
Circulation research. 1992;70:438-44. 

[41] Jansen JA, van Veen TAB, de Bakker JMT, van Rijen HVM. Cardiac connexins and impulse 
propagation. Journal of Molecular and Cellular Cardiology. 2010;48:76-82. 

[42] van Kempen MJ, Fromaget C, Gros D, Moorman AF, Lamers WH. Spatial distribution of 
connexin43, the major cardiac gap junction protein, in the developing and adult rat heart. Circulation 
research. 1991;68:1638-51. 

[43] Davis LM, Kanter HL, Beyer EC, Saffitz JE. Distinct gap junction protein phenotypes in cardiac 
tissues with disparate conduction properties. Journal of the American College of Cardiology. 
1994;24:1124-32. 

[44] Severs NJ, Bruce AF, Dupont E, Rothery S. Remodelling of gap junctions and connexin 
expression in diseased myocardium. Cardiovascular Research. 2008;80:9-19. 

[45] Gourdie RG, Severs NJ, Green CR, Rothery S, Germroth P, Thompson RP. The spatial 
distribution and relative abundance of gap-junctional connexin40 and connexin43 correlate to 
functional properties of components of the cardiac atrioventricular conduction system. J Cell Sci. 
1993;105 ( Pt 4):985-91. 

[46] Kanter HL, Laing JG, Beau SL, Beyer EC, Saffitz JE. Distinct patterns of connexin expression in 
canine Purkinje fibers and ventricular muscle. Circulation research. 1993;72:1124-31. 

[47] Temple IP, Inada S, Dobrzynski H, Boyett MR. Connexins and the atrioventricular node. Heart 
rhythm : the official journal of the Heart Rhythm Society. 2013;10:297-304. 

[48] Coppen SR, Severs NJ, Gourdie RG. Connexin45 (alpha 6) expression delineates an extended 
conduction system in the embryonic and mature rodent heart. Dev Genet. 1999;24:82-90. 

[49] Veenstra RD, Wang HZ, Westphale EM, Beyer EC. Multiple connexins confer distinct regulatory 
and conductance properties of gap junctions in developing heart. Circulation research. 1992;71:1277-
83. 

[50] Boyett MR, Inada S, Yoo S, Li J, Liu J, Tellez J, et al. Connexins in the sinoatrial and 
atrioventricular nodes. Adv Cardiol. 2006;42:175-97. 

[51] Veenstra RD. Size and selectivity of gap junction channels formed from different connexins. J 
Bioenerg Biomembr. 1996;28:327-37. 

[52] Beblo DA, Wang HZ, Beyer EC, Westphale EM, Veenstra RD. Unique conductance, gating, and 
selective permeability properties of gap junction channels formed by connexin40. Circulation 
research. 1995;77:813-22. 

[53] Greener ID, Monfredi O, Inada S, Chandler NJ, Tellez JO, Atkinson A, et al. Molecular 
architecture of the human specialised atrioventricular conduction axis. J Mol Cell Cardiol. 
2011;50:642-51. 



70 
  

[54] Davis LM, Rodefeld ME, Green K, Beyer EC, Saffitz JE. Gap junction protein phenotypes of the 
human heart and conduction system. Journal of cardiovascular electrophysiology. 1995;6:813-22. 

[55] Veeraraghavan R, Poelzing S, Gourdie RG. Intercellular electrical communication in the heart: a 
new, active role for the intercalated disk. Cell Commun Adhes. 2014;21:161-7. 

[56] Veeraraghavan R, Gourdie RG, Poelzing S. Mechanisms of cardiac conduction: a history of 
revisions. American journal of physiology Heart and circulatory physiology. 2014;306:H619-27. 

[57] Motloch LJ, Akar FG. Gene therapy to restore electrophysiological function in heart failure. Expert 
opinion on biological therapy. 2015;15:803-17. 

[58] Hall JE. Cardiac Arrhythmias and Their Electrocardiographic Interpretation.  Guyton and Hall 
Textbook of Medical Physiology - 13th edition. Philadelphia, PA, USA: Elsevier Health Sciences; 
2016. p. 155-66. 

[59] Coronel R, Wilders R, Verkerk AO, Wiegerinck RF, Benoist D, Bernus O. Electrophysiological 
changes in heart failure and their implications for arrhythmogenesis. Biochimica et biophysica acta. 
2013;1832:2432-41. 

[60] Tomaselli GF, Marban E. Electrophysiological remodeling in hypertrophy and heart failure. 
Cardiovasc Res. 1999;42:270-83. 

[61] Schmidt U, Hajjar RJ, Helm PA, Kim CS, Doye AA, Gwathmey JK. Contribution of Abnormal 
Sarcoplasmic Reticulum ATPase Activity to Systolic and Diastolic Dysfunction in Human Heart 
Failure. Journal of Molecular and Cellular Cardiology. 1998;30:1929-37. 

[62] Hasenfuss G, Reinecke H, Studer R, Meyer M, Pieske B, Holtz J, et al. Relation between 
myocardial function and expression of sarcoplasmic reticulum Ca(2+)-ATPase in failing and nonfailing 
human myocardium. Circulation research. 1994;75:434-42. 

[63] Thomas SP, Kucera JP, Bircher-Lehmann L, Rudy Y, Saffitz JE, Kléber AG. Impulse Propagation 
in Synthetic Strands of Neonatal Cardiac Myocytes With Genetically Reduced Levels of Connexin43. 
Circulation research. 2003;92:1209-16. 

[64] Ai X, Pogwizd SM. Connexin 43 downregulation and dephosphorylation in nonischemic heart 
failure is associated with enhanced colocalized protein phosphatase type 2A. Circulation research. 
2005;96:54-63. 

[65] Gaztañaga L, Marchlinski FE, Betensky BP. Mechanisms of Cardiac Arrhythmias. Revista 
Española de Cardiología (English Version). 2012;65:174-85. 

[66] Echt DS, Liebson PR, Mitchell LB, Peters RW, Obias-Manno D, Barker AH, et al. Mortality and 
morbidity in patients receiving encainide, flecainide, or placebo. The Cardiac Arrhythmia Suppression 
Trial. The New England journal of medicine. 1991;324:781-8. 

[67] Waldo AL, Camm AJ, deRuyter H, Friedman PL, MacNeil DJ, Pauls JF, et al. Effect of d-sotalol 
on mortality in patients with left ventricular dysfunction after recent and remote myocardial infarction. 
The SWORD Investigators. Survival With Oral d-Sotalol. Lancet (London, England). 1996;348:7-12. 

[68] Bostwick JM, Sola CL. An updated review of implantable cardioverter/defibrillators, induced 
anxiety, and quality of life. The Psychiatric clinics of North America. 2007;30:677-88. 

[69] Betts TR. Atrioventricular junction ablation and pacemaker implant for atrial fibrillation: still a valid 
treatment in appropriately selected patients. Europace : European pacing, arrhythmias, and cardiac 
electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular 
electrophysiology of the European Society of Cardiology. 2008;10:425-32. 

[70] Greener ID, Sasano T, Wan X, Igarashi T, Strom M, Rosenbaum DS, et al. Connexin43 gene 
transfer reduces ventricular tachycardia susceptibility after myocardial infarction. Journal of the 
American College of Cardiology. 2012;60:1103-10. 



71 
 

[71] Igarashi T, Finet JE, Takeuchi A, Fujino Y, Strom M, Greener ID, et al. Connexin gene transfer 
preserves conduction velocity and prevents atrial fibrillation. Circulation. 2012;125:216-25. 

[72] Boink GJ, Lau DH, Shlapakova IN, Sosunov EA, Anyukhovsky EP, Driessen HE, et al. SkM1 and 
Cx32 improve conduction in canine myocardial infarcts yet only SkM1 is antiarrhythmic. Cardiovasc 
Res. 2012;94:450-9. 

[73] Protas L, Dun W, Jia Z, Lu J, Bucchi A, Kumari S, et al. Expression of skeletal but not cardiac 
Na(+) channel isoform preserves normal conduction in a depolarized cardiac syncytium. 
Cardiovascular Research. 2009;81:528-35. 

[74] Lau DH, Clausen C, Sosunov EA, Shlapakova IN, Anyukhovsky EP, Danilo P, Jr., et al. Epicardial 
border zone overexpression of skeletal muscle sodium channel SkM1 normalizes activation, 
preserves conduction, and suppresses ventricular arrhythmia: an in silico, in vivo, in vitro study. 
Circulation. 2009;119:19-27. 

[75] Coronel R, Lau DH, Sosunov EA, Janse MJ, Danilo P, Jr., Anyukhovsky EP, et al. Cardiac 
expression of skeletal muscle sodium channels increases longitudinal conduction velocity in the 
canine 1-week myocardial infarction. Heart rhythm : the official journal of the Heart Rhythm Society. 
2010;7:1104-10. 

[76] Miyamoto MI, del Monte F, Schmidt U, DiSalvo TS, Kang ZB, Matsui T, et al. Adenoviral gene 
transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart 
failure. Proceedings of the National Academy of Sciences of the United States of America. 
2000;97:793-8. 

[77] Lyon AR, Bannister ML, Collins T, Pearce E, Sepehripour AH, Dubb SS, et al. SERCA2a gene 
transfer decreases sarcoplasmic reticulum calcium leak and reduces ventricular arrhythmias in a 
model of chronic heart failure. Circulation Arrhythmia and electrophysiology. 2011;4:362-72. 

[78] Cutler MJ, Wan X, Plummer BN, Liu H, Deschenes I, Laurita KR, et al. Targeted sarcoplasmic 
reticulum Ca2+ ATPase 2a gene delivery to restore electrical stability in the failing heart. Circulation. 
2012;126:2095-104. 

[79] Jaski BE, Jessup ML, Mancini DM, Cappola TP, Pauly DF, Greenberg B, et al. Calcium 
Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID Trial), a 
First-in-Human Phase 1/2 Clinical Trial. Journal of cardiac failure. 2009;15:171-81. 

[80] Jessup M, Greenberg B, Mancini D, Cappola T, Pauly DF, Jaski B, et al. Calcium Upregulation 
by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID): a phase 2 trial of 
intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart 
failure. Circulation. 2011;124:304-13. 

[81] Zsebo K, Yaroshinsky A, Rudy JJ, Wagner K, Greenberg B, Jessup M, et al. Long-term effects 
of AAV1/SERCA2a gene transfer in patients with severe heart failure: analysis of recurrent 
cardiovascular events and mortality. Circulation research. 2014;114:101-8. 

[82] Prunier F, Kawase Y, Gianni D, Scapin C, Danik SB, Ellinor PT, et al. Prevention of ventricular 
arrhythmias with sarcoplasmic reticulum Ca2+ ATPase pump overexpression in a porcine model of 
ischemia reperfusion. Circulation. 2008;118:614-24. 

[83] del Monte F, Lebeche D, Guerrero JL, Tsuji T, Doye AA, Gwathmey JK, et al. Abrogation of 
ventricular arrhythmias in a model of ischemia and reperfusion by targeting myocardial calcium 
cycling. Proceedings of the National Academy of Sciences of the United States of America. 
2004;101:5622-7. 

[84] Kanno S, Kovacs A, Yamada KA, Saffitz JE. Connexin43 as a determinant of myocardial infarct 
size following coronary occlusion in mice. Journal of the American College of Cardiology. 
2003;41:681-6. 



72 
  

[85] Sanganalmath SK, Bolli R. Cell therapy for heart failure: a comprehensive overview of 
experimental and clinical studies, current challenges, and future directions. Circulation research. 
2013;113:810-34. 

[86] Santos Nascimento D, Mosqueira D, Sousa LM, Teixeira M, Filipe M, Resende TP, et al. Human 
umbilical cord tissue-derived mesenchymal stromal cells attenuate remodeling after myocardial 
infarction by proangiogenic, antiapoptotic, and endogenous cell-activation mechanisms. Stem cell 
research & therapy. 2014;5:5. 

[87] Tang J, Xie Q, Pan G, Wang J, Wang M. Mesenchymal stem cells participate in angiogenesis 
and improve heart function in rat model of myocardial ischemia with reperfusion. European journal of 
cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery. 
2006;30:353-61. 

[88] Mathiasen AB, Qayyum AA, Jorgensen E, Helqvist S, Fischer-Nielsen A, Kofoed KF, et al. Bone 
marrow-derived mesenchymal stromal cell treatment in patients with severe ischaemic heart failure: 
a randomized placebo-controlled trial (MSC-HF trial). European heart journal. 2015;36:1744-53. 

[89] Garikipati VN, Jadhav S, Pal L, Prakash P, Dikshit M, Nityanand S. Mesenchymal stem cells from 
fetal heart attenuate myocardial injury after infarction: an in vivo serial pinhole gated SPECT-CT study 
in rats. PloS one. 2014;9:e100982. 

[90] He J, Teng X, Yu Y, Huang H, Ye W, Ding Y, et al. Injection of Sca-1+/CD45+/CD31+ mouse 
bone mesenchymal stromal-like cells improves cardiac function in a mouse myocardial infarct model. 
Differentiation; research in biological diversity. 2013;86:57-64. 

[91] Jeevanantham V, Afzal MR, Zuba-Surma EK, Dawn B. Clinical trials of cardiac repair with adult 
bone marrow- derived cells. Methods in molecular biology (Clifton, NJ). 2013;1036:179-205. 

[92] Price MJ, Chou CC, Frantzen M, Miyamoto T, Kar S, Lee S, et al. Intravenous mesenchymal 
stem cell therapy early after reperfused acute myocardial infarction improves left ventricular function 
and alters electrophysiologic properties. International journal of cardiology. 2006;111:231-9. 

[93] Kim SK, Pak HN, Park JH, Fang YF, Kim GI, Park YD, et al. Cardiac cell therapy with 
mesenchymal stem cell induces cardiac nerve sprouting, angiogenesis, and reduced connexin43-
positive gap junctions, but concomitant electrical pacing increases connexin43-positive gap junctions 
in canine heart. Cardiology in the young. 2010;20:308-17. 

[94] Chen SL, Fang WW, Qian J, Ye F, Liu YH, Shan SJ, et al. Improvement of cardiac function after 
transplantation of autologous bone marrow mesenchymal stem cells in patients with acute myocardial 
infarction. Chinese medical journal. 2004;117:1443-8. 

[95] Katritsis DG, Sotiropoulou P, Giazitzoglou E, Karvouni E, Papamichail M. Electrophysiological 
effects of intracoronary transplantation of autologous mesenchymal and endothelial progenitor cells. 
Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working 
groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society 
of Cardiology. 2007;9:167-71. 

[96] Mureli S, Gans CP, Bare DJ, Geenen DL, Kumar NM, Banach K. Mesenchymal stem cells 
improve cardiac conduction by upregulation of connexin 43 through paracrine signaling. American 
journal of physiology Heart and circulatory physiology. 2013;304:H600-9. 

[97] Wang D, Zhang F, Shen W, Chen M, Yang B, Zhang Y, et al. Mesenchymal stem cell injection 
ameliorates the inducibility of ventricular arrhythmias after myocardial infarction in rats. International 
journal of cardiology. 2011;152:314-20. 

[98] Wei F, Wang TZ, Zhang J, Yuan ZY, Tian HY, Ni YJ, et al. Mesenchymal stem cells neither fully 
acquire the electrophysiological properties of mature cardiomyocytes nor promote ventricular 
arrhythmias in infarcted rats. Basic research in cardiology. 2012;107:274. 



73 
 

[99] Chang MG, Tung L, Sekar RB, Chang CY, Cysyk J, Dong P, et al. Proarrhythmic potential of 
mesenchymal stem cell transplantation revealed in an in vitro coculture model. Circulation. 
2006;113:1832-41. 

[100] Askar SF, Ramkisoensing AA, Atsma DE, Schalij MJ, de Vries AA, Pijnappels DA. Engraftment 
patterns of human adult mesenchymal stem cells expose electrotonic and paracrine proarrhythmic 
mechanisms in myocardial cell cultures. Circulation Arrhythmia and electrophysiology. 2013;6:380-
91. 

[101] Mills WR, Mal N, Kiedrowski MJ, Unger R, Forudi F, Popovic ZB, et al. Stem cell therapy 
enhances electrical viability in myocardial infarction. J Mol Cell Cardiol. 2007;42:304-14. 

[102] Fukushima S, Varela-Carver A, Coppen SR, Yamahara K, Felkin LE, Lee J, et al. Direct 
intramyocardial but not intracoronary injection of bone marrow cells induces ventricular arrhythmias 
in a rat chronic ischemic heart failure model. Circulation. 2007;115:2254-61. 

[103] Pak HN, Qayyum M, Kim DT, Hamabe A, Miyauchi Y, Lill MC, et al. Mesenchymal stem cell 
injection induces cardiac nerve sprouting and increased tenascin expression in a Swine model of 
myocardial infarction. Journal of cardiovascular electrophysiology. 2003;14:841-8. 

[104] Pijnappels DA, Schalij MJ, van Tuyn J, Ypey DL, de Vries AA, van der Wall EE, et al. Progressive 
increase in conduction velocity across human mesenchymal stem cells is mediated by enhanced 
electrical coupling. Cardiovasc Res. 2006;72:282-91. 

[105] Beeres SLMA, Atsma DE, van der Laarse A, Pijnappels DA, van Tuyn J, Fibbe WE, et al. Human 
Adult Bone Marrow Mesenchymal Stem Cells Repair Experimental Conduction Block in Rat 
Cardiomyocyte Cultures. Journal of the American College of Cardiology. 2005;46:1943-52. 

[106] Vasquez C, Benamer N, Morley GE. The cardiac fibroblast: functional and electrophysiological 
considerations in healthy and diseased hearts. Journal of cardiovascular pharmacology. 2011;57:380-
8. 

[107] Goshima K, Tonomura Y. Synchronized beating of embryonic mouse myocardial cells mediated 
by FL cells in monolayer culture. Experimental Cell Research. 1969;56:387-92. 

[108] Yokokawa M, Ohnishi S, Ishibashi-Ueda H, Obata H, Otani K, Miyahara Y, et al. Transplantation 
of mesenchymal stem cells improves atrioventricular conduction in a rat model of complete 
atrioventricular block. Cell transplantation. 2008;17:1145-55. 

[109] Hare JM, Traverse JH, Henry TD, Dib N, Strumpf RK, Schulman SP, et al. A randomized, 
double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal 
stem cells (prochymal) after acute myocardial infarction. Journal of the American College of 
Cardiology. 2009;54:2277-86. 

[110] Menasche P. Skeletal myoblasts as a therapeutic agent. Progress in cardiovascular diseases. 
2007;50:7-17. 

[111] Durrani S, Konoplyannikov M, Ashraf M, Haider KH. Skeletal myoblasts for cardiac repair. 
Regenerative medicine. 2010;5:919-32. 

[112] Menasche P, Alfieri O, Janssens S, McKenna W, Reichenspurner H, Trinquart L, et al. The 
Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-
controlled study of myoblast transplantation. Circulation. 2008;117:1189-200. 

[113] Leobon B, Garcin I, Menasche P, Vilquin JT, Audinat E, Charpak S. Myoblasts transplanted into 
rat infarcted myocardium are functionally isolated from their host. Proceedings of the National 
Academy of Sciences of the United States of America. 2003;100:7808-11. 



74 
  

[114] Fernandes S, Amirault JC, Lande G, Nguyen JM, Forest V, Bignolais O, et al. Autologous 
myoblast transplantation after myocardial infarction increases the inducibility of ventricular 
arrhythmias. Cardiovasc Res. 2006;69:348-58. 

[115] Suzuki K, Brand NJ, Allen S, Khan MA, Farrell AO, Murtuza B, et al. Overexpression of connexin 
43 in skeletal myoblasts: Relevance to cell transplantation to the heart. The Journal of thoracic and 
cardiovascular surgery. 2001;122:759-66. 

[116] Abraham MR, Henrikson CA, Tung L, Chang MG, Aon M, Xue T, et al. Antiarrhythmic 
engineering of skeletal myoblasts for cardiac transplantation. Circulation research. 2005;97:159-67. 

[117] Tolmachov O, Ma YL, Themis M, Patel P, Spohr H, Macleod KT, et al. Overexpression of 
connexin 43 using a retroviral vector improves electrical coupling of skeletal myoblasts with cardiac 
myocytes in vitro. BMC cardiovascular disorders. 2006;6:25. 

[118] Choi YH, Stamm C, Hammer PE, Kwaku KF, Marler JJ, Friehs I, et al. Cardiac conduction 
through engineered tissue. The American journal of pathology. 2006;169:72-85. 

[119] Roell W, Lewalter T, Sasse P, Tallini YN, Choi BR, Breitbach M, et al. Engraftment of connexin 
43-expressing cells prevents post-infarct arrhythmia. Nature. 2007;450:819-24. 

[120] Antanaviciute I, Ereminiene E, Vysockas V, Rackauskas M, Skipskis V, Rysevaite K, et al. 
Exogenous connexin43-expressing autologous skeletal myoblasts ameliorate mechanical function 
and electrical activity of the rabbit heart after experimental infarction. International journal of 
experimental pathology. 2015;96:42-53. 

[121] Kolanowski TJ, Rozwadowska N, Malcher A, Szymczyk E, Kasprzak JD, Mietkiewski T, et al. In 
vitro and in vivo characteristics of connexin 43-modified human skeletal myoblasts as candidates for 
prospective stem cell therapy for the failing heart. International journal of cardiology. 2014;173:55-64. 

[122] Fernandes S, van Rijen HV, Forest V, Evain S, Leblond AL, Merot J, et al. Cardiac cell therapy: 
overexpression of connexin43 in skeletal myoblasts and prevention of ventricular arrhythmias. Journal 
of cellular and molecular medicine. 2009;13:3703-12. 

[123] Ott HC, Berjukow S, Marksteiner R, Margreiter E, Bock G, Laufer G, et al. On the fate of skeletal 
myoblasts in a cardiac environment: down-regulation of voltage-gated ion channels. J Physiol. 
2004;558:793-805. 

[124] Shiba Y, Fernandes S, Zhu WZ, Filice D, Muskheli V, Kim J, et al. Human ES-cell-derived 
cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature. 2012;489:322-
5. 

[125] Chong JJ, Yang X, Don CW, Minami E, Liu YW, Weyers JJ, et al. Human embryonic-stem-cell-
derived cardiomyocytes regenerate non-human primate hearts. Nature. 2014;510:273-7. 

[126] Ye J, Gaur M, Zhang Y, Sievers RE, Woods BJ, Aurigui J, et al. Treatment with hESC-Derived 
Myocardial Precursors Improves Cardiac Function after a Myocardial Infarction. PloS one. 
2015;10:e0131123. 

[127] Mauritz C, Martens A, Rojas SV, Schnick T, Rathert C, Schecker N, et al. Induced pluripotent 
stem cell (iPSC)-derived Flk-1 progenitor cells engraft, differentiate, and improve heart function in a 
mouse model of acute myocardial infarction. European heart journal. 2011;32:2634-41. 

[128] Shiba Y, Filice D, Fernandes S, Minami E, Dupras SK, Biber BV, et al. Electrical Integration of 
Human Embryonic Stem Cell-Derived Cardiomyocytes in a Guinea Pig Chronic Infarct Model. Journal 
of cardiovascular pharmacology and therapeutics. 2014;19:368-81. 

[129] Reis LA, Chiu LL, Feric N, Fu L, Radisic M. Biomaterials in myocardial tissue engineering. 
Journal of tissue engineering and regenerative medicine. 2016;10:11-28. 



75 
 

[130] Radisic M, Park H, Shing H, Consi T, Schoen FJ, Langer R, et al. Functional assembly of 
engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. 
Proceedings of the National Academy of Sciences of the United States of America. 2004;101:18129-
34. 

[131] Au HT, Cheng I, Chowdhury MF, Radisic M. Interactive effects of surface topography and 
pulsatile electrical field stimulation on orientation and elongation of fibroblasts and cardiomyocytes. 
Biomaterials. 2007;28:4277-93. 

[132] Miklas JW, Nunes SS, Sofla A, Reis LA, Pahnke A, Xiao Y, et al. Bioreactor for modulation of 
cardiac microtissue phenotype by combined static stretch and electrical stimulation. Biofabrication. 
2014;6:024113. 

[133] Nunes SS, Miklas JW, Liu J, Aschar-Sobbi R, Xiao Y, Zhang B, et al. Biowire: a platform for 
maturation of human pluripotent stem cell-derived cardiomyocytes. Nature methods. 2013;10:781-7. 

[134] Shah M, Badwaik VD, Dakshinamurthy R. Biological applications of gold nanoparticles. J 
Nanosci Nanotechnol. 2014;14:344-62. 

[135] Dvir T, Timko BP, Brigham MD, Naik SR, Karajanagi SS, Levy O, et al. Nanowired three-
dimensional cardiac patches. Nature nanotechnology. 2011;6:720-5. 

[136] Shevach M, Fleischer S, Shapira A, Dvir T. Gold nanoparticle-decellularized matrix hybrids for 
cardiac tissue engineering. Nano letters. 2014;14:5792-6. 

[137] Chen Q-Z, Bismarck A, Hansen U, Junaid S, Tran MQ, Harding SE, et al. Characterisation of a 
soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial 
tissue. Biomaterials. 2008;29:47-57. 

[138] Ganji Y, Kasra M, Salahshour Kordestani S, Bagheri Hariri M. Synthesis and characterization 
of gold nanotube/nanowire-polyurethane composite based on castor oil and polyethylene glycol. 
Materials science & engineering C, Materials for biological applications. 2014;42:341-9. 

[139] Ganji Y, Li Q, Quabius ES, Böttner M, Selhuber-Unkel C, Kasra M. Cardiomyocyte behavior on 
biodegradable polyurethane/gold nanocomposite scaffolds under electrical stimulation. Materials 
Science and Engineering: C. 2016;59:10-8. 

[140] Martinelli V, Cellot G, Toma FM, Long CS, Caldwell JH, Zentilin L, et al. Carbon Nanotubes 
Promote Growth and Spontaneous Electrical Activity in Cultured Cardiac Myocytes. Nano letters. 
2012;12:1831-8. 

[141] Martinelli V, Cellot G, Toma FM, Long CS, Caldwell JH, Zentilin L, et al. Carbon Nanotubes 
Instruct Physiological Growth and Functionally Mature Syncytia: Nongenetic Engineering of Cardiac 
Myocytes. ACS Nano. 2013;7:5746-56. 

[142] Kharaziha M, Shin SR, Nikkhah M, Topkaya SN, Masoumi N, Annabi N, et al. Tough and flexible 
CNT-polymeric hybrid scaffolds for engineering cardiac constructs. Biomaterials. 2014;35:7346-54. 

[143] Pok S, Vitale F, Eichmann SL, Benavides OM, Pasquali M, Jacot JG. Biocompatible Carbon 
Nanotube–Chitosan Scaffold Matching the Electrical Conductivity of the Heart. ACS Nano. 
2014;8:9822-32. 

[144] Zhou J, Chen J, Sun H, Qiu X, Mou Y, Liu Z, et al. Engineering the heart: evaluation of 
conductive nanomaterials for improving implant integration and cardiac function. Scientific reports. 
2014;4:3733. 

[145] Sun H, Lu S, Jiang XX, Li X, Li H, Lin Q, et al. Carbon nanotubes enhance intercalated disc 
assembly in cardiac myocytes via the beta1-integrin-mediated signaling pathway. Biomaterials. 
2015;55:84-95. 



76 
  

[146] Hsiao CW, Bai MY, Chang Y, Chung MF, Lee TY, Wu CT, et al. Electrical coupling of isolated 
cardiomyocyte clusters grown on aligned conductive nanofibrous meshes for their synchronized 
beating. Biomaterials. 2013;34:1063-72. 

[147] Baheiraei N, Yeganeh H, Ai J, Gharibi R, Ebrahimi-Barough S, Azami M, et al. Preparation of a 
porous conductive scaffold from aniline pentamer-modified polyurethane/PCL blend for cardiac tissue 
engineering. Journal of biomedical materials research Part A. 2015;103:3179-87. 

[148] Kai D, Prabhakaran MP, Jin G, Ramakrishna S. Polypyrrole-contained electrospun conductive 
nanofibrous membranes for cardiac tissue engineering. Journal of biomedical materials research Part 
A. 2011;99:376-85. 

[149] Spearman BS, Hodge AJ, Porter JL, Hardy JG, Davis ZD, Xu T, et al. Conductive 
interpenetrating networks of polypyrrole and polycaprolactone encourage electrophysiological 
development of cardiac cells. Acta biomaterialia. 2015;28:109-20. 

[150] Mihardja SS, Sievers RE, Lee RJ. The effect of polypyrrole on arteriogenesis in an acute rat 
infarct model. Biomaterials. 2008;29:4205-10. 

[151] Mihic A, Cui Z, Wu J, Vlacic G, Miyagi Y, Li SH, et al. A Conductive Polymer Hydrogel Supports 
Cell Electrical Signaling and Improves Cardiac Function After Implantation into Myocardial Infarct. 
Circulation. 2015;132:772-84. 

[152] Richards DJ, Tan Y, Coyle R, Li Y, Xu R, Yeung N, et al. Nanowires and Electrical Stimulation 
Synergistically Improve Functions of hiPSC Cardiac Spheroids. Nano letters. 2016;16:4670-8. 

[153] Tan Y, Richards D, Xu R, Stewart-Clark S, Mani SK, Borg TK, et al. Silicon nanowire-induced 
maturation of cardiomyocytes derived from human induced pluripotent stem cells. Nano letters. 
2015;15:2765-72. 

[154] Fleischer S, Shevach M, Feiner R, Dvir T. Coiled fiber scaffolds embedded with gold 
nanoparticles improve the performance of engineered cardiac tissues. Nanoscale. 2014;6:9410-4. 

[155] Shevach M, Maoz BM, Feiner R, Shapira A, Dvir T. Nanoengineering gold particle composite 
fibers for cardiac tissue engineering. Journal of Materials Chemistry B. 2013;1:5210-7. 

[156] You JO, Rafat M, Ye GJ, Auguste DT. Nanoengineering the heart: conductive scaffolds enhance 
connexin 43 expression. Nano letters. 2011;11:3643-8. 

[157] Navaei A, Saini H, Christenson W, Sullivan RT, Ros R, Nikkhah M. Gold nanorod-incorporated 
gelatin-based conductive hydrogels for engineering cardiac tissue constructs. Acta biomaterialia. 
2016;41:133-46. 

[158] Martins AM, Eng G, Caridade SG, Mano JF, Reis RL, Vunjak-Novakovic G. Electrically 
Conductive Chitosan/Carbon Scaffolds for Cardiac Tissue Engineering. Biomacromolecules. 
2014;15:635-43. 

[159] Shin SR, Jung SM, Zalabany M, Kim K, Zorlutuna P, Kim Sb, et al. Carbon-Nanotube-Embedded 
Hydrogel Sheets for Engineering Cardiac Constructs and Bioactuators. ACS Nano. 2013;7:2369-80. 

[160] Stout DA, Basu B, Webster TJ. Poly(lactic-co-glycolic acid): carbon nanofiber composites for 
myocardial tissue engineering applications. Acta biomaterialia. 2011;7:3101-12. 

[161] Stout DA, Raimondo E, Marostica G, Webster TJ. Growth characteristics of different heart cells 
on novel nanopatch substrate during electrical stimulation. Bio-medical materials and engineering. 
2014;24:2101-7. 

[162] Cady WG. Piezoelectricity: an introduction to the theory and applications of electromechancial 
phenomena in crystals: McGraw-Hill Book Company, inc.; 1946. 



77 
 

[163] Shamos MH, Lavine LS. Piezoelectricity as a Fundamental Property of Biological Tissues. 
Nature. 1967;213:267-9. 

[164] Minary-Jolandan M, Yu MF. Nanoscale characterization of isolated individual type I collagen 
fibrils: polarization and piezoelectricity. Nanotechnology. 2009;20:085706. 

[165] Williams WS, Breger L. Piezoelectricity in tendon and bone. Journal of Biomechanics. 
1975;8:407-13. 

[166] Rajabi AH, Jaffe M, Arinzeh TL. Piezoelectric materials for tissue regeneration: A review. Acta 
biomaterialia. 2015;24:12-23. 

[167] Ribeiro C, Sencadas V, Correia DM, Lanceros-Mendez S. Piezoelectric polymers as 
biomaterials for tissue engineering applications. Colloids and surfaces B, Biointerfaces. 2015;136:46-
55. 

[168] Hitscherich P, Wu S, Gordan R, Xie LH, Arinzeh T, Lee EJ. The effect of piezoelectric PVDF-
TrFE scaffolds on stem cell derived cardiovascular cells. Biotechnology and bioengineering. 2015. 

[169] Ruhparwar A, Piontek P, Ungerer M, Ghodsizad A, Partovi S, Foroughi J, et al. Electrically 
contractile polymers augment right ventricular output in the heart. Artificial organs. 2014;38:1034-9. 

[170] Dagdeviren C, Yang BD, Su Y, Tran PL, Joe P, Anderson E, et al. Conformal piezoelectric 
energy harvesting and storage from motions of the heart, lung, and diaphragm. Proceedings of the 
National Academy of Sciences. 2014;111:1927-32. 

[171] Lu B, Chen Y, Ou D, Chen H, Diao L, Zhang W, et al. Ultra-flexible Piezoelectric Devices 
Integrated with Heart to Harvest the Biomechanical Energy. Scientific reports. 2015;5:16065. 

[172] Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on 
the protection of animals used for scientific purposes.(http://eur-lex.europa.eu/legal-
content/EN/TXT/PDF/?uri=CELEX:32010L0063). 

[173] Guidance document on the recognition, assessment and use of clinical signs as human 
endpoints for experimental animals used in safety evaluation. (http://www.oecd-
ilibrary.org/environment/guidance-document-on-the-recognition-assessment-and-use-of-clinical-
signs-as-human-endpoints-for-experimental-animals-used-in-safety-evaluation_9789264078376-
en). 

[174] Michael LH, Entman ML, Hartley CJ, Youker KA, Zhu J, Hall SR, et al. Myocardial ischemia and 
reperfusion: a murine model. The American journal of physiology. 1995;269:H2147-54. 

[175] Valente M, Araujo A, Esteves T, Laundos TL, Freire AG, Quelhas P, et al. Optimized Heart 
Sampling and Systematic Evaluation of Cardiac Therapies in Mouse Models of Ischemic Injury: 
Assessment of Cardiac Remodeling and Semi-Automated Quantification of Myocardial Infarct Size. 
Current protocols in mouse biology. 2015;5:359-91. 

[176] Lu QL, Partridge TA. A new blocking method for application of murine monoclonal antibody to 
mouse tissue sections. The journal of histochemistry and cytochemistry : official journal of the 
Histochemistry Society. 1998;46:977-84. 

[177] Nascimento DS, Valente M, Esteves T, de Pina Mde F, Guedes JG, Freire A, et al. MIQuant--
semi-automation of infarct size assessment in models of cardiac ischemic injury. PloS one. 
2011;6:e25045. 

[178] Takagawa J, Zhang Y, Wong ML, Sievers RE, Kapasi NK, Wang Y, et al. Myocardial infarct size 
measurement in the mouse chronic infarction model: comparison of area- and length-based 
approaches. Journal of applied physiology (Bethesda, Md : 1985). 2007;102:2104-11. 

http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32010L0063)
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32010L0063)
http://www.oecd-ilibrary.org/environment/guidance-document-on-the-recognition-assessment-and-use-of-clinical-signs-as-human-endpoints-for-experimental-animals-used-in-safety-evaluation_9789264078376-en)
http://www.oecd-ilibrary.org/environment/guidance-document-on-the-recognition-assessment-and-use-of-clinical-signs-as-human-endpoints-for-experimental-animals-used-in-safety-evaluation_9789264078376-en)
http://www.oecd-ilibrary.org/environment/guidance-document-on-the-recognition-assessment-and-use-of-clinical-signs-as-human-endpoints-for-experimental-animals-used-in-safety-evaluation_9789264078376-en)
http://www.oecd-ilibrary.org/environment/guidance-document-on-the-recognition-assessment-and-use-of-clinical-signs-as-human-endpoints-for-experimental-animals-used-in-safety-evaluation_9789264078376-en)


78 
  

[179] D'Uva G, Aharonov A, Lauriola M, Kain D, Yahalom-Ronen Y, Carvalho S, et al. ERBB2 triggers 
mammalian heart regeneration by promoting cardiomyocyte dedifferentiation and proliferation. Nature 
cell biology. 2015;17:627-38. 

[180] Fujimoto KL, Tobita K, Merryman WD, Guan J, Momoi N, Stolz DB, et al. An elastic, 
biodegradable cardiac patch induces contractile smooth muscle and improves cardiac remodeling 
and function in subacute myocardial infarction. Journal of the American College of Cardiology. 
2007;49:2292-300. 

[181] Wendel JS, Ye L, Tao R, Zhang J, Zhang J, Kamp TJ, et al. Functional Effects of a Tissue-
Engineered Cardiac Patch From Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes in a 
Rat Infarct Model. Stem cells translational medicine. 2015;4:1324-32. 

[182] Amir G, Miller L, Shachar M, Feinberg MS, Holbova R, Cohen S, et al. Evaluation of a peritoneal-
generated cardiac patch in a rat model of heterotopic heart transplantation. Cell transplantation. 
2009;18:275-82. 

[183] Spotnitz WD. Fibrin Sealant: The Only Approved Hemostat, Sealant, and Adhesive-a Laboratory 
and Clinical Perspective. ISRN surgery. 2014;2014:203943. 

[184] Melhem M, Jensen T, Reinkensmeyer L, Knapp L, Flewellyn J, Schook L. A Hydrogel Construct 
and Fibrin-based Glue Approach to Deliver Therapeutics in a Murine Myocardial Infarction Model. 
Journal of visualized experiments : JoVE. 2015:e52562. 

[185] Entekhabi E, Haghbin Nazarpak M, Moztarzadeh F, Sadeghi A. Design and manufacture of 
neural tissue engineering scaffolds using hyaluronic acid and polycaprolactone nanofibers with 
controlled porosity. Materials science & engineering C, Materials for biological applications. 
2016;69:380-7. 

[186] Gunatillake P, Mayadunne R, Adhikari R. Recent developments in biodegradable synthetic 
polymers. Biotechnology annual review. 2006;12:301-47. 

[187] Yun YP, Lee JY, Jeong WJ, Park K, Kim HJ, Song JJ. Improving Osteogenesis Activity on BMP-
2-Immobilized PCL Fibers Modified by the gamma-Ray Irradiation Technique. 2015;2015:302820. 

[188] Goncalves EM, Oliveira FJ, Silva RF, Neto MA, Fernandes MH, Amaral M, et al. Three-
dimensional printed PCL-hydroxyapatite scaffolds filled with CNTs for bone cell growth stimulation. 
Journal of biomedical materials research Part B, Applied biomaterials. 2016;104:1210-9. 

[189] Woodruff MA, Hutmacher DW. The return of a forgotten polymer—Polycaprolactone in the 21st 
century. Progress in Polymer Science. 2010;35:1217-56. 

[190] Tallawi M, Rosellini E, Barbani N, Cascone MG, Rai R, Saint-Pierre G, et al. Strategies for the 
chemical and biological functionalization of scaffolds for cardiac tissue engineering: a review. Journal 
of the Royal Society, Interface / the Royal Society. 2015;12:20150254. 

[191] Shin M, Ishii O, Sueda T, Vacanti JP. Contractile cardiac grafts using a novel nanofibrous mesh. 
Biomaterials. 2004;25:3717-23. 

[192] Kochervinskii VV. Piezoelectricity in crystallizing ferroelectric polymers: Poly(vinylidene fluoride) 
and its copolymers (A review). Crystallography Reports. 2003;48:649-75. 

[193] Castellano D, Blanes M, Marco B, Cerrada I, Ruiz-Saurí A, Pelacho B, et al. A Comparison of 
Electrospun Polymers Reveals Poly(3-Hydroxybutyrate) Fiber as a Superior Scaffold for Cardiac 
Repair. Stem Cells and Development. 2014;23:1479-90. 

[194] Krieger KH, Isom OW. Blood Conservation in Cardiac Surgery: Springer New York; 2012. 

[195] Gao E, Lei YH, Shang X, Huang ZM, Zuo L, Boucher M, et al. A novel and efficient model of 
coronary artery ligation and myocardial infarction in the mouse. Circulation research. 2010;107:1445-
53. 



79 
 

[196] Gao E, Lei YH, Shang X, Huang ZM, Zuo L, Boucher M, ;A Novel and Efficient Model of 
Coronary Artery Ligation and Myocardial Infarction in the Mouse. Circulation research. 
2010;107:1445. 

[197] Anderson JM, Rodriguez A, Chang DT. FOREIGN BODY REACTION TO BIOMATERIALS. 
Seminars in immunology. 2008;20:86-100. 

[198] Morais JM, Papadimitrakopoulos F, Burgess DJ. Biomaterials/tissue interactions: possible 
solutions to overcome foreign body response. The AAPS journal. 2010;12:188-96. 

[199] Wang Y, Papadimitrakopoulos F, Burgess DJ. Polymeric "smart" coatings to prevent foreign 
body response to implantable biosensors. Journal of controlled release : official journal of the 
Controlled Release Society. 2013;169:341-7. 

[200] Crow RS, Hannan PJ, Folsom AR. Prognostic Significance of Corrected QT and Corrected JT 
Interval for Incident Coronary Heart Disease in a General Population Sample Stratified by Presence 
or Absence of Wide QRS Complex. Circulation. 2003;108:1985. 

[201] Niemeijer MN, van den Berg ME, Deckers JW, Franco OH, Hofman A, Kors JA, et al. 
Consistency of heart rate-QTc prolongation consistency and sudden cardiac death: The Rotterdam 
Study. Heart rhythm : the official journal of the Heart Rhythm Society. 2015;12:2078-85. 

[202] Morin DP, Saad MN, Shams OF, Owen JS, Xue JQ, Abi-Samra FM, et al. Relationships between 
the T-peak to T-end interval, ventricular tachyarrhythmia, and death in left ventricular systolic 
dysfunction. Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the 
working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the 
European Society of Cardiology. 2012;14:1172. 

[203] Panikkath R, Reinier K, Uy-Evanado A, Teodorescu C, Hattenhauer J, Mariani R, et al. 
Prolonged Tpeak-to-tend interval on the resting ECG is associated with increased risk of sudden 
cardiac death. Circulation Arrhythmia and electrophysiology. 2011;4:441-7. 

[204] Teodorescu C, Reinier K, Uy-Evanado A, Navarro J, Mariani R, Gunson K, et al. Prolonged 
QRS duration on the resting ECG is associated with sudden death risk in coronary disease, 
independent of prolonged ventricular repolarization. Heart rhythm : the official journal of the Heart 
Rhythm Society. 2011;8:1562-7. 

[205] Cutler MJ, Jeyaraj D, Rosenbaum DS. Cardiac electrical remodeling in health and disease. 
Trends in pharmacological sciences. 2011;32:174-80. 

[206] Jeyaraj D, Wilson LD, Zhong J, Flask C, Saffitz JE, Deschenes I, et al. Mechanoelectrical 
feedback as novel mechanism of cardiac electrical remodeling. Circulation. 2007;115:3145-55. 

[207] Tops LF, Schalij MJ, Bax JJ. The effects of right ventricular apical pacing on ventricular function 
and dyssynchrony implications for therapy. Journal of the American College of Cardiology. 
2009;54:764-76. 

[208] Prinzen FW, Hunter WC, Wyman BT, McVeigh ER. Mapping of regional myocardial strain and 
work during ventricular pacing: experimental study using magnetic resonance imaging tagging. 
Journal of the American College of Cardiology. 1999;33:1735-42. 

[209] Buckberg G, Hoffman JI, Mahajan A, Saleh S, Coghlan C. Cardiac mechanics revisited: the 
relationship of cardiac architecture to ventricular function. Circulation. 2008;118:2571-87. 

[210] Hobiger K, Friedrich T. Voltage sensitive phosphatases: emerging kinship to protein tyrosine 
phosphatases from structure-function research. Frontiers in Pharmacology. 2015;6:20. 

[211] Thavandiran N, Nunes SS, Xiao Y, Radisic M. Topological and electrical control of cardiac 
differentiation and assembly. Stem cell research & therapy. 2013;4:14. 



80 
  

[212] Funk RH, Monsees T, Ozkucur N. Electromagnetic effects - From cell biology to medicine. 
Progress in histochemistry and cytochemistry. 2009;43:177-264. 

[213] Horn R. Electrifying phosphatases. Science's STKE : signal transduction knowledge 
environment. 2005;2005:pe50. 

[214] Murata Y, Iwasaki H, Sasaki M, Inaba K, Okamura Y. Phosphoinositide phosphatase activity 
coupled to an intrinsic voltage sensor. Nature. 2005;435:1239-43. 

[215] Halaszovich CR, Leitner MG, Mavrantoni A, Le A, Frezza L, Feuer A, et al. A human 
phospholipid phosphatase activated by a transmembrane control module. Journal of Lipid Research. 
2012;53:2266-74. 

[216] Hitscherich P, Wu S, Gordan R, Xie LH, Arinzeh T, Lee EJ. The effect of PVDF-TrFE scaffolds 
on stem cell derived cardiovascular cells. Biotechnology and bioengineering. 2016;113:1577-85. 

[217] Dagdeviren C, Yang BD, Su Y, Tran PL, Joe P, Anderson E, et al. Conformal piezoelectric 
energy harvesting and storage from motions of the heart, lung, and diaphragm. Proceedings of the 
National Academy of Sciences of the United States of America. 2014;111:1927-32. 

[218] Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev 
Immunol. 2011;11:723-37. 

[219] McCauley MD, Wehrens XH. Ambulatory ECG recording in mice. Journal of visualized 
experiments : JoVE. 2010. 

[220] Berul CI, McConnell BK, Wakimoto H, Moskowitz IPG, Maguire CT, Semsarian C, et al. 
Ventricular Arrhythmia Vulnerability in Cardiomyopathic Mice With Homozygous Mutant Myosin-
Binding Protein C Gene. Circulation. 2001;104:2734. 

[221] Xue T, Cho HC, Akar FG, Tsang SY, Jones SP, Marban E, et al. Functional integration of 
electrically active cardiac derivatives from genetically engineered human embryonic stem cells with 
quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based 
pacemakers. Circulation. 2005;111:11-20. 

  


	Acknowledgements
	List of Abbreviations
	List of Figures
	List of tables
	1. Abstract
	2. Sumário
	3. Introduction
	3.1. Epidemiology of Cardiovascular Diseases
	3.2. Myocardial Infarction: Etiology and Pathophysiology
	3.3. Cardiac Electrical System: the basics
	3.4. Disruption of Electrical Conduction after MI and Heart Failure
	3.5. Novel Strategies To Restore Myocardial Electrical Conduction following MI
	3.5.1. Role of cell therapies on cardiac electrical integrity
	3.5.2. Potential of Electrical Cues to Improve Cardiac Tissue Engineering Strategies
	3.5.2.1. Gold-based materials
	3.5.2.2. Carbon-based materials
	3.5.2.3. Conductive polymers-based materials
	3.5.2.4. Silicon-based approaches


	3.6. Final Remarks

	4. Preliminary Results
	5. Aims
	6. Materials And Methods
	6.1. Animals, Ethics And Regulation
	6.2. Patches
	6.3. Surgical Induction Of Myocardial Infarction And Patch Fixation Procedure
	6.4. Functional Characterization
	6.4.1. Echocardiography
	6.4.2. Electrocardiography

	6.5. Histological Procedures And Immunohistochemistry
	6.6. Piezoelectric Fibers Orientation Scoring
	6.7. Measurement Of Myocardial Infarct Size And Morphometric Analysis
	6.8. Statistical Analysis

	7. Results
	7.1. Optimization And Implementation of Surgical Fixation of The Patch
	7.2. Functional Characterization
	7.3. Cardiac Tissue Response and Remodeling
	7.4. Protein Expression at The Patch-Myocardium Interface

	8. Discussion
	9. Conclusions
	10. Future Perspectives
	11. References


