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Abstract

Software development is inherently complex, both from a technical and a process standpoint.
Over the years, progress has been made to simplify and accelerate it, with the advent of higher
level programming languages and build systems on the technical side and software development
processes focused on agility on the process side.

Live Programming entails the notion of providing live feedback to developers, reducing the
feedback loop of the edit-compile-run software development cycle and fastening the software
development process. Existing code completion tools, commonly used by developers, provide them
with syntactic suggestions as live feedback, but still lack the ability to provide semantic ones.

Automated Program Repair is an area of research focused on automating the act of fixing bugs,
one of the complex tasks in software development. While current solutions display promising
results, they also present some limitations, namely in terms of maintainability of the code or in
producing overfitted patches.

Combining both these areas, we propose a live Automated Program Repair tool, here imple-
mented as an extension to Visual Studio Code, which leverages unit tests as specifications and
generates code variations to repair bugs in JavaScript code. With this, we provide real-time seman-
tic suggestions to developers while they write code, achieving a level 5 in the liveness hierarchy,
corresponding to tactically predictive feedback. Furthermore, by doing so, we believe that such
an approach would allow developers to discard those suggestions they deem as overfitted or as
reducing maintainability.

The patches (candidate repairs to the faulty program) are generated by using a mutation-based
Automated Program Repair technique, which enables us to generate candidate solutions in a timely
manner and find fixes within the time constraints required to offer liveness as an attribute.

An empirical study with 16 participants was conducted, with results showing that a live
Automated Program Repair tool improves the speed of developers in repairing faulty programs. In
addition, we establish that there is a difference in the final code of developers using the extension
when compared with those not using it.

The contributions of this work include the implemented Visual Studio Code extension as well
as the aforementioned empirical study.
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Resumo

O desenvolvimento de software é inerentemente complexo, tanto de uma perspetiva técnica como
de processo. Ao longo dos anos, tem sido feito progresso para o simplificar e acelerar, com o
surgimento de linguages de programação de mais alto nível e ferramentas de desenvolvimento do
lado técnico e processos de desenvolvimento de software focados na agilidade do lado de processo.

Live Programming consiste na noção de proporcionar feedback em tempo real aos progra-
madores, reduzindo o ciclo de desenvolvimento de software tradicionalmente composto pelas fases
de editar-compilar-correr e acelerando o processo de desenvolvimento de software. As ferramentas
de code completion atuais, usadas por engenheiros de software de forma regular, fornecem sug-
estões sintáticas como feedback em tempo real, mas não têm ainda a capacidade para fornecer
sugestões semânticas.

Automated Program Repair é uma área de pesquisa focada em automatizar o ato de corrigir
bugs, uma das tarefas complexas no desenvolvimento de software. Embora as soluções atuais
exibam resultados promissores, apresentam ainda algumas limitações, nomeadamente em termos
da redução da maintainability do código ou na produção de correções que sofrem de overfitting.

Combinando ambas áreas, propomos uma ferramenta live de Automated Program Repair, aqui
implementada como uma extensão para Visual Studio Code, que utiliza testes unitários para gerar
variações no código e reparar falhas em JavaScript. Assim, fornecemos sugestões semânticas em
tempo real aos programadores enquanto escrevem código, atingindo um nível 5 na hierarquia de
liveness, correspondendo a tactically predictive feedback. Além disso, ao fazê-lo, acreditamos que
esta abordagem pode permitir aos programadores descartar as sugestões que considerem overfitte
ou que reduzam a maintainability.

Os patches (candidatos a reparação do programa com falhas) são gerados usando uma técnica
de Automated Program Repair baseada em mutações, que permite a geração de possíveis soluções
de forma rápida o suficiente para permitir propô-las como feedback em tempo real.

Realizou-se um estudo empírico com 16 participantes e os resultados indicam que uma ferra-
menta live de Automated Program Repair melhora a velocidade dos programadores na reparação
de programas defeituosos. Além disso, é demonstrada a existência de uma diferença no código
final de programadores que usam a extensão em comparação com aqueles que não a usam.

As contribuições deste trabalho incluem a extensão implementada Visual Studio Code e o estudo
empírico supracitado.
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Chapter 1

Introduction

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Definition and Goals . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

This chapter describes the context, motivation and scope of this work. In Section 1.1, an overview

of the context surrounding this work is given. Section 1.2 defines the problem statement and goals,

discussing what it intends to achieve and how, while Section 1.3 elaborates on the motivation behind

it. In Section 1.4, the structure of the remainder of this report is laid out with a brief overview of

what each section consists of.

1.1 Context

Software is everywhere and increasingly complex. In order to accommodate that ever-growing

complexity, there have been advances in the software development process [FDN14], with the

advent of frameworks aiming to reduce the software development cycle and tooling focused on

automating steps of that process, such as build automation tools and intelligent code completion.

One field of research in particular, Automatic Programming has focused on automating the

actual practice of programming. This spans a variety of techniques, all of them concerning the

transition from an higher-level specification to a lower level one, that go beyond the, at the time,

state of the art of compilers [RW88, Bal85].

A major component of the software development process is guaranteeing software quality

with respect to failures and defects, and this task is in itself a difficult one [RT96], consuming

valuable development time. Automated Program Repair aims to automatically identify, locate and

fix bugs [LGDVFW12], tasks which constitute a significant part of software maintenance.
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In addition to those efforts, other research areas attempt to provide frameworks allowing devel-

opers to build software faster. Live Programming, in specific, entails the notion of providing live

feedback to developers. This characteristic, with the different possible levels of liveness, shortens

the feedback loop of the edit-compile-run software development cycle in varying degrees [Tan13].

1.2 Problem Definition and Goals

By automating bug fixing, the time needed to execute this task can be reduced, driving down the

cost of building and maintaining software. There are, however, a number of problems with current

Automated Program Repair approaches preventing them from being used widely. Among them, the

need for correctness and completeness of the specifications to provide the program repair techniques

and the low quality in terms of readability and maintainability of machine-generated repairs.

In parallel, code completion tools have become common throughout the industry and academia

alike, providing tactically predictive feedback to developers, which corresponds to a level 5 in

Tanimoto’s proposed liveness hierarchy [Tan13]. One major limitation of tools of this type is the

inability to offer true semantic suggestions [LBF+12].

Looking at the problems in both of these areas at the same time suggests they might complement

each other. In fact, the lack of semantic suggestions can be rectified by leveraging Automated

Program Repair approaches to generate them. In addition, doing so introduces a step in the

Automated Program Repair process in which a human developer has to look at a generated patch

and make a decision on whether to accept it or not. This way, patches with critical readability and

maintainability issues could be immediately discarded.

It is this combined solution, tackling the problems of two different areas, that we aim to present

in this report, alongside an empirical evaluation.

1.3 Motivation

Maintaining software is costly and often not the most attractive part of Software Engineering, but

it’s also of the utmost importance. Tasks like those, indispensable but presenting high costs, are

perfect candidates for automation. On this basis, the outlook of Automated Program Repair is

promising, with the potential to drastically reduce the cost of building software. Wide acceptance,

however, is largely dependent on the existence of tools well integrated with the environments

software developers are used to.

Doing so as a form of code completion makes use of an existing mechanism, and it’s simul-

taneously a good fit in terms of incorporation of Automated Program Repair in development

environments and as an avenue towards extending code completion tools to provide semantic

suggestions.

2
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1.4 Structure

There are 5 other chapters in addition to this introduction. In chapter 2, the state of the art regarding

Automated Program Repair and liveness of existing approaches is discussed. Chapter 3 defines the

problem statement, research questions and proposed hypothesis. Chapter 4 describes the proposed

solution and respective implementation in detail. Chapter 5 presents a thorough account of the

undertaken validation process. Chapter 6 concludes this document, summarising its conclusions

and main contributions as well as a brief section on future work.
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Chapter 2

State of the Art

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Automated Program Repair . . . . . . . . . . . . . . . . . . . . . . . . . . 7

This chapter describes the state of the art regarding the context of the work presented in this

dissertation. Section 2.1 briefly explains the background concepts needed for comprehension of the

later sections. In Section 2.2 a survey of current state of the art solutions in the Automated Program

Repair space is given, while in Section 2.2.3 the main challenges in the area are identified.

2.1 Background

Before delving into the state of the art, a number of concepts are required for full understanding of

this dissertation. Subsection 2.1.1 includes definitions of concepts related to Automated Program

Repair, including those pertaining to the wider areas of Software Reliability and Automatic

Programming. In Subsection 2.1.2, it is described both the liveness characteristic of software and

the research area studying it.

2.1.1 Automated Program Repair

Automated Program Repair as a research area is closely related to Automatic Programming and

the study of what constitutes software bugs and the process of correcting them. In the APR area

specifically, different authors use different words to describe the same concepts, with this subsection

serving the purpose of a summary of the terminology adopted in this dissertation.

• Automatic Programming is generally considered to be the transition from a higher level

specification to a lower level one, although, as Balzer said, at any point in time, the term

has usually been reserved for optimizations which are beyond the then current state of the

5
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compiler art [Bal85]. The ultimate goal in AP is to automatically build a program from

natural language commands, although some critics deem it impossible [RW88, Dij89].

• Genetic Programming refers to the usage of Genetic Algorithms to build programs. In GP,

a population of programs evolves by reproducing with an appropriate crossover operation

and the survival of the most adequate programs is guaranteed by natural using a fitness

function [Koz94].

• Genetic Improvement is the evolution of existing software using automated search tech-

niques. Evolutionary algorithms and GP are commonly used approaches in current GI

solutions [PHH+18].

• Fault is the cause of a software error, which corresponds to a deviation from the correct

state of a program that leads to the observation of a failure, a display of incorrect behav-

ior [ALRL04]. For the purposes of this document, the terms bug and fault will be used

interchangeably to refer to what are, according to the definitions of Avizienis et al., human-

made, nonmalicious software faults.

• Automated Program Repair, Automatic Software Repair, Automatic Bug Fixing, among

other variants, are all designations used to describe the same concept. This document uses the

term Automated Program Repair and follows the definition by Monperrus, which states

that "Automatic repair is the transformation of an unacceptable behavior of a program

execution into an acceptable one according to a specification" [Mon18].

2.1.2 Live Programming

• Liveness as a characteristic of a programming environment relates to its ability to provide

live feedback to the developer [Tan13]. Tanimoto defines six different levels of liveness,

according to the system’s behavior. In levels 1-4, the system runs the program and responds

to the programmer’s actions [Tan90]. In levels 5 and 6, the system also offers predictive

capabilities, in the form of action suggestions to the programmer [Tan13].

• Live Programming enables programmers to eliminate the delay that is intrinsic to the edit-

compile-run (or edit-compile-link-run, depending on the system in question) feedback loop.

In it, instead of the 3 phases, there is a single phase in which the programmer is editing the

source code and the system automatically runs the program, with live feedback, at varying

degrees, as depicted in Figure 2.1, being provided instantly [Tan13]. Aguiar et al. argue this

concept can be extended to the entire Software Development life cycle, as Live Software
Development [ARC+19].

6
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6. Strategically Predictive
(adds inference of gross functionality)
5. Tactically Predictive
(adds programming via selection from running predicted behaviors)
4. Informative, Significant, Responsive and Live
(e.g. stream-drive updates)
3. Informative, Significant and Responsive
(e.g. edit-triggered updates)
2. Informative and Significant
(e.g. executable flowchart)
1. Informative
(e.g. flowchart as ancillary description)

Figure 2.1: Liveness hierarchy as proposed by Steven Tanimoto [Tan13].

2.2 Automated Program Repair

This section describes and compares the state of the art techniques in Automated Program Repair

in regards to their chosen approach, effectiveness and, in case of those presenting tools, liveness. In

this literature review, only human-made, nonmalicious software faults, as defined by Avizienis et

al. [ALRL04], are considered as bugs to repair and only general approaches to behavioral repair

are evaluated, with solutions targeting a specific class of bugs not being included. For the purposes

of this document, a general approach — or generic approach — is not an approach that guarantees

a fix to every bug, but rather an approach targeting more than only one bug class.

In APR approaches, the goal is to attempt to derive a correct program from the faulty one,

fixing the error in question without introducing regressions. In order to do so, a specification of

what constitutes a correct program is required.

With this specification it is possible to know that a program is faulty, as it does not comply

with it, enabling fault detection. There are, however, two more steps required in order to repair

the program. The second step is fault localization, which aims to isolate the code statements

responsible for the bug. Finally, this phase enables the final one, the repair step.

This survey presents techniques resorting to two kinds of specifications: formal specifications,

such as those based on Design by Contract [Mey92] programming, and test suites, which can be

seen as informal specifications for the correct program.

2.2.1 Formal Specifications

A formal specification of a program enables the developer to have a clear representation of what

the correct program should be. Multiple authors have leveraged these specifications, in the form of

code contracts for instance, and used them as specifications in order to transform a faulty program

into a correct one.

7
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2.2.1.1 He and Gupta

Figure 2.2: Flowchart describing the approach presented by He and Gupta [HG04].

The work presented by He and Gupta [HG04] is one of the earliest in the APR field. The

solution described leverages postconditions to derive the hypothesized program state, corresponding

to the expected behavior of the program, which is then compared to the active program state,

representing the incorrect program. This corresponds to the first of four steps, with the latter three

being successive attempts to detect and fix the defect in question, each followed by validation

against a test suite, as illustrated by Figure 2.2. In each step, the program is modified by changing

either side of an assignment operator or boolean conditions.

This approach is implemented in both C and Python, with experiments ran in 5 different

programs and solutions presented to multiple bugs. One drawback of this approach, which the

authors acknowledge, is the inability to repair faults present in multiple statements, as it fixes only

single statement errors.

8
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2.2.1.2 AutoFix

AutoFix [PFN+14] is an APR technique for the Eiffel programming language relying on code

contracts, which corresponds to the latest version of an approach first presented in 2010 as AutoFix-
E [WPF+10]. This solution is reported to fix 42% of 204 faults taking, on average, less than 20

minutes. In addition, 59% of the generated patches are reported to be of high quality, equivalent to

human-written ones.

In order to augment the capabilities of the EiffelStudio IDE1, a plugin was developed that runs

in the background and provides suggestions of bug fixes to developers [PFNM15]. By doing so, it

achieves a liveness level 5 in the scale proposed by Tanimoto [Tan13], by offering live “tactically

predictive” feedback to the developer.

2.2.1.3 Gopinath et al.

Gopinath et al. [GMK11] develop a technique to repair Java programs making use of the Alloy

specification language and corresponding SAT-based tool-set. Their approach relies on the Forge

framework for bounded verification [DCJ06] to find the smallest input that violates the postcondition

and fault localization techniques to isolate the statement at fault. It then replaces that statement with

deterministic behavior with one with non-deterministic behavior, using the specification constraints

to force the statement to comply with the postconditions.

This approach is evaluated in two different scenarios - the insert method of a Binary Search

Tree and the addChild method of the ANTLR application -, achieving success in both of them, with

the bug taking the longest to fix in the BST test requiring 33 seconds and the one in ANTLR 71

seconds.

2.2.1.4 Könighofer and Bloem

Könighofer and Bloem [KB11] present an approach to repair programs in C, requiring both the

program and a specification in the form of assertions in the code or as a reference implementation.

Based on this, they use symbolic execution [Cla76] and then locate and repair the fault by using

template-based repair and SMT solving techniques.

In a later work [KB12], the same authors attempt to perform program analysis during the pro-

gram repair stage instead of transforming the entire program in a preprocessing step, hypothesizing

this would make the process faster. While this hypothesis did not hold true, this approach fixes

a larger amount of bugs when compared to the earlier one, when validating against tests instead

of an equivalence expression. The method described is also more flexible regarding the type of

specification to be used.

1https://www.eiffel.com/eiffelstudio/ (Retrieved: 07/02/2019)
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2.2.1.5 Rothenberg and Grumberg

The work presented by Rothenberg and Grumberg [RG16] describes a mutation-based APR

approach resorting to formal specifications. By using formal specifications and targeting a fully

complete program, this approach does not resort to the usage of fault localization techniques. It

uses a specification in the form of assertions and a set of possible mutations (predefined) to attempt

to repair the program. Every repair that is a superset of another successful repair is not considered,

guaranteeing the minimal repair. The authors catalogue the mutations into two sets: one containing

all possible mutations, named mutation level 2, and one subset of that, which enables shorter repair

times, named mutation level 1.

Table 2.1: Comparison between the works presented in [KB11], [KB12] and [RG16].

KB11 KB12 RG16, mut. lv. 1 RG16, mut. lv. 2

Fixed Time (s) Fixed Time (s) Fixed Time (s) Fixed Time (s)
16 (39%) 38 15 (36.6%) 38 11 (26.8%) 2.278 18 (43.9%) 48.151

The results were evaluated on the TCAS program of the Siemens test suite [HFGO94] and

compared against the results obtained by Könighofer and Bloem [KB11, KB12]. As can be seen

in Table 2.1, the approach presented here is able to, in the case of mutation level 1, significantly

reduce the time needed to repair the bugs in question, although at the cost of repairing a smaller

number of bugs or, in the case of mutation level 2, repair more bugs, at the cost of a longer repair

time.

2.2.2 Tests as Specifications

As test suites are commonplace in industrial and academic settings alike and used as the validation

for the program correctness, they are often used as specifications to guide the repair of faults in

programs. While presenting some difficulties when compared to approaches relying on formal

specifications, these methods have the advantage of using a specification that is widely used.

2.2.2.1 GenProg

GenProg [WNLGF09, FNWLG09, LGNFW12] is a method to automatically repair programs

using a test-suite as a specification and applying Genetic Programming to fix the bug. In order to

do so, this approach requires simply the C program code, a failing test case representing the fault to

be repaired and various passing test cases as specification for the correct behavior.

This approach starts by creating an initial population constituted by multiple versions of the

starting, faulty, program, with each individual being its AST representation. This first generation

is then mutated and evaluated using the fitness function. For each subsequent generation, the

crossover operation is applied, followed by the mutation and finally the fitness evaluation, the

indicator of the performance of each program. This is repeated until either a program passes all

10
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test cases or a predefined number of generations has passed without a fit repair candidate. After

obtaining the primary repair, the first individual that passes all test cases, GenProg uses program

analysis methods to minimize it and obtain the minimized repair [FNWLG09].

GenProg provides three possible operators to modify the individuals: addition, deletion and

replacement of AST nodes. This process is also built upon the assumption that the possible repair

for one bug can be found in the same codebase. This is used in order to reduce the possible search

space, by reusing AST nodes from elsewhere in the source code.

Multiple studies have evaluated the performance of GenProg, with varying results and debate

over them and what constitutes an actual fix. A systematic study by Le Goues et al. in 2012 claims

that GenProg is able to successfully repair 55 out of 105 bugs [LGDVFW12]. The definition of

successful repair, as expected by the usage of a test suite as the specification, is dependent on the

coverage and quality of test cases. A study by Smith et al. found out many of the patches generated

by GenProg suffer from overfitting to the specific test suite [SBLGB15]. A number of different

approaches, such as Opad [YZLT17], attempt to minimize the impact of overfitting in APR.

2.2.2.2 Debroy and Wong

The 2010 paper by Debroy and Wong [DW10] presents a mutation-based technique to repair

programs, using a test suite as specification. It is implemented in both C and Java languages. For

this approach, two classes of mutations are considered:

• Replacement of an arithmetic, relational, logical, increment/decrement, or assignment opera-

tor by another operator from the same class;

• Decision negation in an if or while statement.

This approach combines the Tarantula [JH05] fault localization technique to rank statements by

suspiciousness with the mutation operators that are applied to those statements in order until the

correct program is found. It is then evaluated on seven benchmark programs of the Siemens test

suite [HFGO94], as well as on the Ant Java build tool2. Out of the 135 total bugs (129 from the

Siemens test suite and 6 from Ant), this approach is able to successfully repair 25.

2.2.2.3 SemFix

SemFix [NQRC13] is another approach to APR using a test suite as specification, although it uses

a semantics-based approach, as opposed to the search-based ones used in GenProg [LGNFW12]

and the mutation-based technique presented by Debroy and Wong [DW10]. While the latter

approaches generate a number of possible solutions and employ search algorithms to find the

correct one, this approach extracts a specification from the faulty statement and synthesizes the

correct expression according to it.

In order to do so, SemFix follows these three steps:

2https://ant.apache.org/ (Retrieved: 07/02/2019)
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• Fault isolation using Tarantula [JH05], looking at one statement at a time;

• Statement-level specification inference inferring the correct specification for that state-

ment, using KLEE [CDE+08] to generate repair constraints;

• Program synthesis using the Z3 SMT solver [DMB08] to solve the generated constraints.

The only repairs considered by SemFix are the ones changing the right-hand side of an assign-

ment operator or branch predicates, as it is enough to fix common programming bugs [NQRC13].

SemFix is tested on both the Software-artifact Infrastructure Repository [HFGO94] and some

of GNU CoreUtils bugs, with the results being compared to GenProg. SemFix is able to outper-

form GenProg both in terms of repair time and by fixing more bugs in every program except SIR’s

Schedule2, which include multiple missing-code bugs that SemFix is unable to fix with single-

statement repairs. This is the main drawback of this approach, as with the growing complexity of

software systems, it’s not uncommon for errors to be caused by faults in multiple statements.

2.2.2.4 Angelix

Taking into account the one-statement-at-a-time limitation intrinsic to SemFix [NQRC13], the same

group proposed a different approach, named Angelix, which aims to scale the repair capabilities to

handle multiple faulty statements [MYR16].

This approach, in every aspect similar to the one it is based on, SemFix, optimized the symbolic

execution phase to support multiple statements, generating an Angelic Forest [MYR16], based on

the notion of Angelic Value [CTBB11] that is also used on their previous work.

By doing this, Angelix is capable of fixing a larger number of bugs than SemFix, while also

providing higher quality patches that introduce less regressions than GenProg and other search-

based approaches.

2.2.2.5 MUT-APR

In a paper comparing approaches reusing existing code and operator mutations, Assiri and Bieman

present MUT-APR, a prototype tool implementing the latter [AB14]. As GenProg, it uses genetic

programming to search for a solution, differing only in the mutation step, by replacing operators by

others within the same class instead of sourcing AST nodes from a different part of the source code.

The operator classes supported by this approach are:

• Relational Operators;

• Arithmetic Operators;

• Bitwise Operators;

• Shift Operators.

12
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This approach is then evaluated and compared to GenProg using a subset of the Siemens

suite [HFGO94], containing only programs with operator faults. Subsequentially, the number of

faulty versions was augmented by injecting additional operator mutations. Table 2.2 presents a

comparison between the number of repairs found by GenProg, 17 out of 54 (31.48%), and by

MUT-APR, 47 out of 54 (87.03%).

Table 2.2: Comparison between number of patches generated by GenProg and MUT-APR [AB14].

Program tcas replace schedule2 tot_info

Total # of faults 14 21 8 11
MUT-APR 14 18 6 9
GenProg.v2 10 2 5 0

In terms of repair correctness, the study shows that only 27.36% of repairs generated by MUT-
APR failed regression tests, while for GenProg that number is of 96.94%. Additionally, Assiri and

Bieman argue that repairs done by replacing operators are akin to those produced by developers,

and therefore should not reduce maintainability.

2.2.2.6 RSRepair

While various techniques have focused on using Genetic Programming algorithms to evolve

software, RSRepair, uses Random Search to guide the repair, presenting a modified version

of GenProg, but maintaining part of the implementation in steps such as fault localization and

mutation [QML+14].

In the experiments comparing RSRepair to GenProg, it was able to find repairs to programs

faster, while also requiring fewer executions of the test cases. This is evidence that Genetic

Programming approaches do not provide a benefit over Random Search to justify the overhead in

time required to find a solution.

2.2.2.7 SPR

SPR is an APR approach combining staged program repair, a technique to generate repair search

spaces efficiently and providing useful repair candidates, and condition synthesis generating

conditions helping guide the search in the aforementioned search space [LR15].

This approach generated more plausible patches when compared to GenProg in the same

benchmark as the 2012 study by Le Goues et al. [LGDVFW12]3. In addition, a significant amount

of correct patches were also found, while most patches found by GenProg, while plausible, do not

actually correspond to correct programs.

3Out of the 105 reported defects, only 69 are actual defects, with the remaining 36 being deliberate functionality
changes [LR15].
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2.2.2.8 Prophet

Proposed by Long and Rinard, Prophet is system leveraging past commits of patches written by

human developers to learn a probabilistic model to rank candidate solutions and guide the search

for the correct program [LR16].

Evaluated on the same benchmark as the 2012 study by Le Goues et al. [LGDVFW12], Prophet

is able to generate a plausible patch to 39 out of 69 defects, an improvement when compared to the

36 found by SPR [LR15] and the 16 found by GenProg [LGNFW12].

Although plausible patches pass all the test cases, these are not necessarily correct patches.

In Table 2.3, a detailed comparison of the results reported by Long and Rinard can be found. It

is clear that, besides generating more plausible patches than GenProg, this approach generates

significantly more correct patches, indicating a more realistic path towards APR.

On average, it takes Prophet 108.9 minutes to get the first plausible patch and 138.5 minutes to

get the first correct patch, in the situations in which the first validated patch is correct.

Table 2.3: Comparison between patches generated by GenProg, SPR and Prophet [LR16].

Plausible Patches Correct Patches

GenProg SPR Prophet GenProg SPR Prophet
16 38 39 2 16,11 18,15

2.2.3 Current Challenges

The current state of the art approaches to Automated Program Repair display promising results,

although presenting various limitations and challenges.

Although achieving some degree of success, techniques based on formal specifications are

limited by the lack of usage of formal methods and specifications in the industry. Despite a growing

number of software developers using formal methods, such as some AWS teams [NRZ+15], it’s still

not used widely enough to enable Automated Program Repair tools based on formal specifications

at scale.

Regarding the techniques based on test suites, the problem of overfitting discussed by Smith et

al. [SBLGB15] relates to how test suites as informal specifications for the behavior of the program

are usually incomplete. Techniques such as GenProg have the tendency to overfit, and in spite of

solutions such as Opad [YZLT17] attempting to eliminate overfitted patches, there’s still work to

do on either improving the APR algorithms or guaranteeing better test coverage and completeness

in terms of specification.

A different, yet also relevant, problem is the lack of readability and maintainability of automati-

cally generated patches [FLW12]. If a software developer is going to be maintaining the program,

those are important characteristics which are not enforced by APR approaches.

In regards to the liveness of current APR techniques, most solutions do not provide live

feedback to the developer. A thorough search of the literature revealed only two approaches, both
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providing integration of program repair techniques with IDEs. The first, not covered by this survey

of the state of the art due to not fitting its scope, is the one proposed by Logozzo and Ball [LB12],

which generates repairs for specific warnings produced by cccheck. The second, using Design by

Contract concepts for the specification of the program is AutoFix plugin for Eiffel [PFNM15], as

described in Section 2.2.1.2. Both these solutions achieve a liveness level 5 in the scale proposed

by Tanimoto [Tan13], offering “tactically predictive” live feedback.
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Problem Statement

3.1 Context and Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . 17
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This chapter describes the problem in detail. Section 3.1 provides the context and problem definition,

while Section 3.2 presents the Research Questions to answer. The validation methodology is laid

out in Section 3.3. Finally, Section 3.4 summarises this chapter’s contents.

3.1 Context and Problem Definition

3.1.1 Automated Program Repair

Automated Program Repair approaches, while displaying encouraging results, still suffer from

limitations and present numerous challenges that prevent them from being widely applied in daily

use and industrial settings. Among them, as identified in Section 2.2.3, are both the possibility of

overfitting to an incomplete specification and the lack of maintainability of automatically generated

patches.

As for the first, it pertains to how overfitting to the specific set of tests might break untested

behavior [SBLGB15]. As unit tests are rarely up-to-date with the source code [RFS+17], the

usage of test coverage metrics is not a certainty [GZ13], and comprehensiveness of test suites is

rare [LGFW13], it is important to consider that the test suite might not represent the complete

specification, thus highlighting the relevance of tackling the overfitting problem in Automated

Program Repair systems.

In regards to maintainability, a characteristic we often aim to preserve in codebases we intend

to work on in the future, it is not always guaranteed to be enforced by Automated Program Repair
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solutions and research points to a lack of maintainability of automatically generated patches when

compared to those written by humans [FLW12].

3.1.2 Editor Services

Most IDEs and Text Editors, provide, either natively or through plugins, multiple editor services

aiming to help developers while writing code [OVH+17]. These include, but are not limited to,

syntax highlighting and checking, code completion, automatic formatting, code navigation, or

automatic refactoring, as exemplified by the Python extension for Visual Studio Code1.

Code completion tools, in particular, display a level 5 in the liveness hierarchy, providing

"tactically predictive” feedback by offering program variants to the developer that might mimic

what would be the programmer’s next changes to the codebase [Tan13]. By doing so, it’s possible

to speed up development and increase productivity [BMM09]. These tools have, however, largely

been limited to syntactic suggestions, restricting the value presented to programmers [LBF+12].

As Automated Program Repair techniques obtain better results, true semantic suggestions can

be offered to developers. Despite the recent success of such techniques, their usage has been

predominantly restricted to academically oriented applications, with AutoFix [PFNM15] and a tool

based on warnings produced by cccheck [LB12] being the only tools integrated with IDEs and

providing automatically generated patches as live feedback. As discussed in Section 2.2.3, both

these tools rely on Design by Contract concepts, with the literature review not having revealed any

live implementation of an APR tool using test suites as specifications. Furthermore, only one of

them - AutoFix - offers a general approach to behavioral repair, as defined in Section 2.2.

3.1.3 Problem Definition

With the current limitations of code completion tools in offering exclusively syntactic suggestions

to developers and the small number of Automated Program Repair tools integrated with IDEs and

Text Editors, it is logical to ask what is the possible impact of a semantic code completion tool

suggesting patches generated by APR techniques.

In order to understand the usefulness of such a tool as a means to improve developer speed

and the significance of the overfitting and lack of maintainability issues in this context, the impact

should be measured in terms of the speed of the developers as well as the final result of code

solutions.

The two APR tools displaying liveness at level 5 (“tactically predictive”) that were identified

rely on Design by Contract concepts as specifications. As such approaches are not the norm in most

software engineering contexts, but rather an exception, it is of value to consider relying on more

common specifications. One possibility is to use unit tests as program specifications, for which the

literature review carried out during this dissertation revealed no existing tools with characteristics

corresponding to at least a level 5 in the liveness scale.

1https://marketplace.visualstudio.com/items?itemName=ms-python.python (Retrieved:
23/06/2019)
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3.2 Research Questions

In tackling the problem of understanding the impact of a live Automated Program Repair tool, we

aim to find if, by using such a tool, developers are faster in repairing faulty programs and if they

attempt to validate or modify the automatically generate patches, as doing so could mitigate the

aforementioned overfitting and lack of maintainability problems.

As such, we propose the following hypothesis:

Hypothesis: Using a live Automated Program Repair tool improves the speed and final result of

code solutions.

Furthermore, we set the following Research Questions, which we intend to answer in this

dissertation:

• RQ1: Are users faster in reaching the solution when using a live Automatic Program Repair

tool?

• RQ2: Are solutions generated by an Automatic Program Repair tool different from the ones

developed by human programmers?

• RQ3: Are users aware of the rationale of solutions generated by the Automatic Program

Repair tool before accepting them?

3.3 Validation

In order to validate the proposed hypothesis and answer the Research Questions, an empirical test

was undertaken, in which two groups of programmers performed a series of tasks split into two

different problem sets, each containing 4 different tasks. This test was split into two parts and was

conducted as follows:

• In the first part:

– group A attempted to repair problem set X with the live APR tool resulting from this

work;

– group B attempted to repair problem set X without the live APR tool resulting from

this work.

• In the second part:

– group B attempted to repair problem set Y with the live APR tool resulting from this

work;

– group A attempted to repair problem set Y without the live APR tool resulting from

this work.
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The time taken to solve each problem, as well as information on how test participants interact

with the live Automated Program Repair tool and the final code were all recorded, providing the

data points to answer the Research Questions of this dissertation.

A thorough account of the Validation process, including the methodology, goals, and a discus-

sion of the results obtained can be found in Chapter 5.

3.4 Conclusions

In order to allow IDEs to provide semantic code suggestions in addition to syntactic ones, we bridge

the Automated Program Repair and Liveness areas of research and understand how a live APR tool

impacts the speed and final result of code solutions to faulty programs.

As part of this work, we developed a live Automated Program Repair tool to be used in an

empirical test where we compare the performance of programmers while using it and without it,

allowing us to gather the data required to answer our Research Questions and test our hypothesis.
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This chapter presents a description of the implementation, containing both a general overview in

Section 4.1 and a more detailed account in Sections 4.2 and 4.3. To close the chapter, Section 4.4

outlines its contents.

4.1 Overview

In Chapter 3 we pointed out the lack of semantic suggestions in code completion tools, restricting

their potential in improving developer productivity. Owing to the recent advances in the Automated

Program Repair space, we put forward the possibility of taking advantage of those techniques to fill

that gap and offer true semantic suggestions. In addition, we propose that this solution is able to

mitigate two of the issues of current APR approaches by suggesting the patches to developers and

allowing them to take action accordingly, discarding or modifying the ones that they recognize as

overfitting the test suite or presenting severe maintainability issues.

Due to the prevalence of unit tests in the industry and software development world in general,

using them as specifications for the automated repair of programs enables us to understand the

potentiality of this solution in that context.

To summarise, the proposal is to leverage unit tests to provide semantic suggestions to
developers as an extension to an existing IDE or text editor. Consequently, it is a prerequisite for

the functions to repair have a matching test suite, which is adopted as the specification for the

correct program.
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Figure 4.1: Flowchart describing the proposed solution.

In figure 4.1, an overview of the proposed solution is depicted. At any time while coding, by

saving the file, the developer launches the automated program repair process, which generates

variants for the functions for each at least one of test case fails. Each of these variants is then tested

against the test suite and if one is found that passes all test cases, it is considered to satisfy the

requirements and suggested to the developer. This suggestion can then be accepted, if deemed

acceptable, with the source code being changed to the repaired version.

While this description is general and can easily be transferred to a multitude of programming

languages and development environments, the work presented in this report corresponds to a

specific implementation. According to the Stack Overflow Developer Survey 20191, JavaScript

is the most popular programming language, being used by 67.8% of the respondents, and Visual

Studio Code the most popular development environment, being used by 50.7% of the respondents.

Because of that, those were selected, respectively, as the language to be supported and perform

1https://insights.stackoverflow.com/survey/2019 (Retrieved: 25/06/2019)
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repairs on and the text editor to build the extension.

An in-depth description of the implementation of the technique used to generate each variant

is given in Section 4.2, while Section 4.3 is focused on the integration with the text editor and

interaction with the developer.

4.2 Automated Program Repair

In order to successfully provide valid suggestions of fixes to the faulty code, an Automated Program

Repair technique is required and a number of factors were taken into consideration in order to

implement it.

• Unit tests as specifications: In order to satisfy the requirement of producing repairs solely

based on unit tests and without relying on formal or any other kind of informal specifications,

a test suite must be used as a specification.

• Generic approach to behavioral repair: The APR system should not be restricted to a

specific class of bugs, as discussed in Section 4.2.

• Immediate solution: Offering liveness as an attribute requires providing immediate feedback

to the developer, ergo it is required that the solution is found rapidly.

• Complete solution: For a solution to be acceptable it must be complete, with partial solutions

(those passing at least one test but not all) and syntactically incorrect programs being rejected.

Based on these criteria and the literature review conducted in Chapter 2, a mutation-based
solution was adopted, such as the one used by Debroy and Wong [DW10]. Firstly, it allows for the

use of unit tests as specifications, as it requires nothing from the specification besides the expected

output. Secondly, by using a heuristic technique to generate each mutant, it is possible to explicitly

define which classes of bugs are fixed, avoiding being restricted to a specific one, as well as limiting

the search to a timely enough duration that fits into the live programming requisites. Using a

Genetic Programming algorithm similar to GenProg [WNLGF09, FNWLG09, LGNFW12], while

likely achieving a higher success rate in repairing bugs, would be too slow to be suitable for a live

tool. Finally, by demanding that a solution passes all test cases, the requirement of suggesting

exclusively complete solutions is met.

As for what constitutes an unit to be tested by each unit test, this approach assumes that one unit

corresponds to one function, hence mutations will only be generated for the function being tested

by the failing method. By doing this, the amount of statements to mutate is drastically reduced and

so is the search space.

4.2.1 Mutant Generation

Following the decision regarding the general approach, some specifics needed to be settled. For

a mutation-based one, it is required to decide which mutations to pursue, as well as the order in
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which they appear. This process took into consideration the prior work in this space as well as the

type of actions found in patches for the Defects4J dataset [JJE14], one of the leading databases of

existing faults.

Considering the paramount condition for a live system is its immediacy, three constraints were

set in order to reduce the time taken to generate each mutant:

1. No mutation should increase complexity: This discards any mutations adding loops or

conditional branches, as well as any other changes increasing cyclomatic complexity.

2. No additional statements: Since without any additional information there are potentially

infinite statements that can be added [DW10], mutations will not add new statements, such

as new method calls or variable instantiations. With the goal of maintaining consistency in

mind, the opposing mutation - removing statements -, is also disregarded. In short, this limits

the mutations to modifications to existing statements.

3. One mutation per mutant: While allowing more than one mutation per mutant is likely

to result in more solutions being found, the search space rapidly grows when combining

mutations, hence keeping the solution restricted to a single mutation per mutant significantly

lowers the time required to go through the search space.

The following analysis of the Defects4J dataset draws heavily from the the Defects4J Dissection

paper published by Sobreira et al. and the corresponding online appendix2, which classifies the

actions of each repair in the dataset by group and type [SDM+18].

Sobreira et al. identify nine repair action groups are identified, each containing at most three

types of operations: addition, removal and modification [SDM+18]. To begin with, four of the

groups were fully excluded from consideration for the developed tool, for the following reasons:

• Method Definition: Since each mutation is only applied inside the function definition, as

the unit under test is the function itself, no method definition mutations are considered.

• Exception: This group was excluded due to incompatibility with Constraint 2 (No additional

statements.), as all patches belonging to it either add or remove statements.

• Type: Since JavaScript is a dynamically typed language and not a statically typed one, this

group does not apply.

• Variable: The only modification actions are type and modifier changes, which have no

equivalent in JavaScript, and replacing variables by other variables or method calls, which

presents potentially infinite variations and is therefore discarded.

From the remaining five groups, only modification operations were considered. The groups and

respective mutations to implement are the following:

2http://program-repair.org/defects4j-dissection/ (Retrieved: 25/06/2019)
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• Assignment: Modifications on the RHS of an assignment statement.

• Conditional: Modifications on the RHS the conditional expression statement.

• Loop: Modifications on RHS of initialization variables and modifications on the RHS of

conditional test.

• Method Call: Method call moving and modifications on parameter value.

• Return: Modifications in return expression.

In order to achieve these modifications, five classes of mutations are applied: Switch Mutations,

Parentheses Mutations, Off-By-One Mutations, Operator Mutations and Statement Moving Muta-

tions. The five sections from 4.2.1.1 to 4.2.1.5 describe how each of these mutations is performed.

In respect to the five groups identified in the Defects4J dataset, the first four mutation classes apply

to all of the groups, providing modifications on expressions and call parameters, while the last one

applies only to the Method Call group, specifically in regards to method call moving.

For the purposes of simplicity and clarity, each algorithm is presented here as a pseudocode

adaptation of the developed TypeScript code. The proposed approach performs these mutations in

two steps. Initially, the algorithm traverses the AST, generating mutations when possible, using

the first four classes of mutations as identified above. For each mutation, the node types it applies

to will be identified in the respective section. Afterwards, the algorithm iterates through each line

of code and switches it with the following line, resulting in all the possible Statement Moving

Mutations.

The AST traversal and mutations resulting from its manipulation were implemented by using

the TypeScript Compiler API3. This API provides multiple tools to interact with TypeScript and, by

extension, since it is a superset of JavaScript, with JavaScript. The usage of this API and parts of

the developed tool is adapted to be used as part of the algorithm pseudocode as follows:

• Node: Represents a node in the AST, being the superclass from which the specific node type

classes inherit, such as Binary Expression.

• Binary Expression (Node Type): Represents a Binary Expression node, which has three

children: LHS, Operator and RHS. In the pseudocode algorithms, accessing those elements

is done by using the properties lhs, op and rhs, respectively.

• Replacement: Internal representation of a mutant. Stores both the old and the newly

generated node. Creating a new replacement in the pseudocode below is done by "new

Replacement(oldNode, newNode)" or "new Replacement(oldFunction, newFunction)".
3https://github.com/microsoft/TypeScript/wiki/Using-the-Compiler-API (Retrieved:

25/06/2019)
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4.2.1.1 Switch Mutations

The Switch Mutation consists in switching the left-hand side and right-hand side of a binary

expression, maintaining the operator, as presented in Algorithm 1. This mutation is applied to every

Binary Expression.

Algorithm 1 Generate Switch Mutants
1: procedure GENERATESWITCHVARIANTS(node, replacementList)
2: newNode← new BINARYEXP(node.rhs, node.op, node.lhs)
3: replacement← new REPLACEMENT(node, newNode)
4: replacementList.push(replacement)

4.2.1.2 Parentheses Mutations

The Parentheses Mutation consists in adding parentheses to both the left-hand side and right-hand

side of a binary expression, maintaining the operator, as presented in Algorithm 2. This mutation is

applied to every Binary Expression.

Algorithm 2 Generate Parentheses Mutants
1: procedure GENERATEPARENTHESESVARIANTS(node, replacementList)
2: newLhs← ADDPARENTHESES(node.lhs)
3: newRhs← ADDPARENTHESES(node.rhs)
4:

5: lhsVariantNode← new BINARYEXP(newLhs, node.op, node.rhs)
6: rhsVariantNode← new BINARYEXP(node.lhs, node.op, newRhs)
7:

8: lhsReplacement← new REPLACEMENT(node, lhsVariant)
9: rhsReplacement← new REPLACEMENT(node, rhsVariant)

10:

11: replacementList.push(lhsReplacement)
12: replacementList.push(rhsReplacement)

4.2.1.3 Off-By-One Mutations

The Off-By-One Mutation consists in generating two variants to each Binary Expression as displayed

in Algorithm 3. In both of them, the right-hand side of the expression is modified, firstly by adding

one and then by subtracting one, always maintaining both the operator and the left-hand-side.

4.2.1.4 Operator Mutations

The Operator Mutation, exhibited in Algorithm 4 as a simplified version, consists in generating

one mutant for each other operator of the same class as the original one. In the approach presented

in this dissertation, this mutation is applied to every Binary Expression node which includes either
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Algorithm 3 Generate Off-By-One Mutants

1: procedure GENERATEOFFBYONEVARIANTS(node, replacementList)
2: minusOneRhs← node.rhs − 1
3: minusOneNode← new BINARYEXP(node.lhs, node.op, minusOneRhs)
4: minusOneReplacement← new REPLACEMENT(node, minusOneNode)
5:

6: plusOneRhs← node.rhs + 1
7: plusOneNode← new BINARYEXP(node.lhs, node.op, plusOneRhs)
8: plusOneReplacement← new REPLACEMENT(node, plusOneNode)
9:

10: replacementList.push(minusOneReplacement)
11: replacementList.push(plusOneReplacement)

an arithmetic or a relational operator. For every mutant, the left-hand side and right-hand side of

the expression are kept unchanged.

Algorithm 4 Generate Operator Mutants

1: procedure GENERATEOPERATORVARIANTS(node, replacementList)
2: for newOp in OtherOperatorsList do
3: newNode← new BINARYEXP(node.lhs, newOp, node.rhs)
4: replacement← new REPLACEMENT(node, newNode)
5: replacementList.push(replacement)

4.2.1.5 Statement Moving Mutations

The Statement Moving Mutation, exhibited in Algorithm 5, is fundamentally different from the

previous four mutations. Instead of manipulating the AST, it works directly on the source code, by

switching each pair of adjacent lines among them.

Algorithm 5 Generate Statement Moving Mutants

1: procedure GENERATESTATEMENTMOVINGVARIANTS(code, replacementList)
2: linesList← code.getLines()
3: for i← 0 to linesList.length −1 do
4: newCode← SWITCHLINES(code, i, i+1)
5: replacement← new REPLACEMENT(code, newCode)
6: replacementList.push(replacement)

4.3 Visual Studio Code Extension

In order to provide the program repairs as suggestions, interaction with the developer through the

text editor is required. The tool resulting from this work requires three capabilities to offer live

feedback:
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• Accept User Input: As defined previously, the entire APR process takes place every time

the developer saves the file he’s currently working on.

• Display Suggestion: The identified bug fixes should be displayed to the developer both by

pointing out the location and display the proposed code changes.

• Apply Changes: The candidate solutions, if accepted by the developer, should replace the

previous code.

Through the Visual Studio Code Extension API4, hereinafter the Extension API, it is possible to

customize and extend most of the editor’s functionalities. In Sections 4.3.1 through 4.3.3, the usage

of this API in implementing the three required capabilites is explained.

4.3.1 Accept User Input

The Extension API provides programmers with access to multiple events within the Workspace5,

a representation of the folder that is currently open in the editor. The extension implemented for

this dissertation relies on two of them to prompt the APR process: one that triggers whenever a

text document is opened - workspace.onDidOpenTextDocument -, and another whenever one is

saved - workspace.onDidSaveTextDocument. This means that, besides satisfying the requirement of

running the APR system whenever the user saves a text document, it runs when first opening it as

well.

4.3.2 Display Suggestion

Displaying suggestions to the developers is in itself comprised of two problems: pointing out

the location of the fix to the developer when the editor is open and actually displaying the fix

as a semantic suggestion. Because of this, the implemented tool works more akin to automatic

refactoring tools than traditional code completion ones.

Figure 4.2: Underlined bug fix location.

4https://code.visualstudio.com/api (Retrieved: 25/06/2019)
5https://code.visualstudio.com/api/references/vscode-api#workspace (Retrieved:

25/06/2019)
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In order to point out the location of the fix, the implementation makes use of Diagnostics6. This

underlines the specified location with the color of the desired severity level. For the purpose of this

extension, as pictured in Figure 4.2, it was decided to attribute to bug fixes the severity of Error,

with the underline being drawn in red, as a fault in the program can be considered an error.

The second part of the problem, also resorts to the Diagnostic object, by setting the message

with the proposed code change. In Figure 4.3, an example of the dialog box displayed when

hovering over the fix location is given. The suggestion is given as a text message in the form

Replace: current code ==> suggested code.

Figure 4.3: Example of a patch suggestion in a dialog box.

In addition, if the developer has the Problems view open, the message appears there, drawing

attention to the bug and corresponding fix. By clicking the specific problem, the focus shifts to the

bug location, allowing the developer to then make the most appropriate decision.

Figure 4.4: Example of a patch suggestion in the problems tab.

By running the tool while the developer is coding and offering these suggestions immediately,

the extension described in this chapter achieves a level 5 in the liveness scale. In order to fully

automate the semantic suggestions approach described in Section 4.1, however, one last step is

required.

6https://code.visualstudio.com/api/references/vscode-api#Diagnostic (Retrieved:
25/06/2019)
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4.3.3 Apply Changes

The final capability the extension needs to support is that of applying the changes directly to the

source code, in case the user accepts them. To do so, the CodeActionProvider7 functionality of the

Extension API, an interface for code actions, was implemented in a class responsible for providing

these suggestions as automatic changes.

Figure 4.5: Example of the light bulb with code actions.

As can be seen in Figure 4.5, when a solution is found, a yellow light bulb appears to the left of

the code in the same line of the located fault. If the developer wants to, simply clicking on Accept

code suggestion will update the source code. However, if the current source code does not match

the source code the suggestion engine has as the "old code" (the left-hand side of the Replace:

current code ==> suggested code message), the extension will not apply the changes and will

instead display an error message.

4.4 Summary

This chapter described the proposed solution and its implementation in detail. In Section 4.1 a

general overview of the solution, agnostic from this specific implementation, was given. It was also

defined that the programming language to target would be JavaScript and the text editor to build

the extension for would be Visual Studio Code.

In Section 4.2, the approach to repair the program faults was presented, with a mutation-based

one being selected. After that, the specific mutation operations were described, as well as the

reasoning behind the decisions taken in defining them.

Finally, the integration with Visual Studio Code, by using the Visual Studio Code Extension

API was described both from the viewpoint of the user and by describing the API functionalities

used during development.

7https://code.visualstudio.com/api/references/vscode-api#CodeActionProvider (Re-
trieved: 25/06/2019)
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This chapter presents an account of the empirical evaluation of the developed tool. Firstly, the

methodology followed in this study is described in Section 5.1. Then, in Section 5.2, the results,

respective analysis and a brief discussion are presented, with the threats to validity being enumerated

and discussed in Section 5.3. Lastly, Section 5.4 summarises the contents of this chapter.

5.1 Methodology

Experimental validation plays a crucial role in science, enabling us to validate the proposed

hypothesis and it should be no different in the field of Software Engineering [FPG94], for which

empirical work should be considered first-class science [TLPH95]. Experimentation is particularly

relevant when evaluating the proposed solution requires the implementation of a prototype [DC02].

With this in mind, an empirical study was conducted with the goal of validating the hypothesis

proposed in section 3.2. This study consisted in evaluating the performance of developers when

using the implemented Visual Studio Code extension and comparing it to the performance when

not using it, by measuring the time taken to solve each problem, and assessing the form of the final

code developed.
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5.1.1 Plan

Empirical testing requires establishing the selection criteria for participants and the data to observe,

as well as careful planning of the process to follow. In this section, the parameters defining the

experiment are described.

Participants. The tests consisted in repairing faulty JavaScript, hence software development

experience and at least basic familiarity with JavaScript was required for all participants. 16

software developers participated in this study.

Duration. The estimated duration for the test was 30-40 minutes. However, and in order to strike

an equilibrium between a reasonable time to finish all of the tasks and a sensible time as to

not overburden the volunteers, we set a maximum time of one hour to solve the eight tasks.

As such, each task had a timeout for each task being set at 7 minutes and 30 seconds.

Environment. The experiment was conducted in a room at the Faculty of Engineering of the

University of Porto. Every participant used the same computer and development environment:

Manjaro with the GNOME desktop environment, Visual Studio Code and the tool resulting

from this work. During the test, the participants had full access to the Internet.

Procedure. In order to be able to compare the performance of developers using the developed

Visual Studio Code extension and without using it, the 16 participants were split into two

groups of eight participants each, group A and group B. As no guarantees of equality of

technical knowledge between the two groups exist a priori, the need for both to be exposed

to the extension resulted in the creation of two different but equivalent problem sets. The test

was therefore comprised of two different parts, in accordance with the following procedure:

In the first part:

• group A attempted to repair problem set X with the live APR tool resulting from

this work;

• group B attempted to repair problem set X without the live APR tool resulting from

this work.

In the second part:

• group B attempted to repair problem set Y with the live APR tool resulting from

this work;

• group A attempted to repair problem set Y without the live APR tool resulting from

this work.

Data. An empirical evaluation implies observing and collecting data in order to validate the

proposed hypothesis. During the experiment, two things were recorded for each task: (1)

the time it took to reach a solution, and (2) the final code solution. In addition, for tasks

performed while using the live APR tool, whether the participants used it or not was also

recorded.
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Survey. A survey was carried out with four different parts, each with a different goal:

1. a background section which aimed to assess the level of technical knowledge familiar-

ity with the used technologies;

2. after part 1 of the test, a set of statements pertaining to the problems solved in that part

(specific depending on whether the extension was used or not), meant to understand

what users thought of the problems and their performance;

3. after part 2 of the test, the other version, related to the extension’s usage or not, had a

similar goal;

4. a post-test survey, with statements related to the development environment, the overall

satisfaction, as well as possible future improvements.

Each part was comprised of a set of statements, with the answers being recorded in a Likert

scale [Lik32] with five possible responses: Strongly Disagree, Somewhat Disagree, Neither

Agree nor Disagree, Somewhat Agree or Strongly Agree.

5.1.2 Tasks

While a number of benchmarks used to evaluate Automated Program Repair techniques exist1, the

goal of this empirical study is not to evaluate the quality of the repairs produced by the implemented

prototype, but rather its usage developers. Because of this, a dataset was created specifically for

this study, taking into consideration its scope and objectives.

As defined in Section 4.2, for the purpose of this work, one unit is defined as one function and

for that reason, each problem will correspond to a function. Three different types of problems are

considered when using the live APR tool, depending on if and when the extension finds a solution,

which we defined as follows:

(i.) immediate: functions for which a bug is already present and a solution fixing it is immedi-

ately found by the extension.

(ii.) nonimmediate: functions for which a bug is already present but a solution fixing it is only

found by the extension after a piece of code, corresponding to a missing functionality, is

written.

(iii.) nonpresent: functions for which a bug is not present, but the participants must write a piece

of code, corresponding to a missing functionality, which might contain a bug the extension is

able to fix.

As for the problems of type (i.), they are used as sanity checks, showing the effectiveness of the

tool for the simplest of problems. The other two types allow for the study of the tool in solving

more complex problems, with type (ii.) problems being used to understand the effectiveness of the

1http://program-repair.org/benchmarks.html Retrieved: 26/06/2019
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tool in helping fix bugs not introduced by the developer and those of type (iii.) for bugs directly

caused by the developer.

Considering these types and the requirements set in Section 5.1.1, including the need for two

different problem sets, we defined that each problem set would be comprised of four questions:

two of type (i.), one of type (ii.) and one of type (iii.). The specific tasks for both problem sets are

described in this section.

Task 1

The first task was one of the immediate problems — type (i.) —, allowing us to validate the

extension in terms of its basic usability. For this task, an operator mutation is enough to fix

the bugs in question.

In Problem Set X, we chose to introduce a fault in an implementation of Bubble Sort, by

inverting a comparison operator.

In Problem Set Y, we opted to use a problem from the /r/dailyprogrammer subreddit2, for

which a function should find if every letter appearing in the input string does so the same

number of times. We adapted one of the JavaScript solutions proposed in the comments

section. As in Problem Set X, the bug is an inverted comparison operator.

Task 2

This second task — of type (i.) — serves the same purpose as the first one, also working

as a sanity check for the extension. Once again, the program repairs are simple, with an

off-by-one mutation being sufficient.

In Problem Set X, we adapted a popular question used in various programming challenges

that, given a matrix, requires the absolute difference between the two diagonals. The bug is

solved with an off-by-one mutation.

In Problem Set Y, we opted to use a problem from the /r/dailyprogrammer subreddit3,

for which a function calculating the score of a game based on an input string is required.

We adapted one of the JavaScript solutions proposed in the comments section. The bug is

an incorrect operator but can be solved with either an off-by-one mutation or an operator

mutation.

Task 3

The goal of the third task — of type (ii.) — was to assess the behavior of the extension

in circumstances in which the bug is present but is not found immediately. As such, both

versions of this task have a missing part of the code — a line — and a bug that is already

present but in a different line.

2https://www.reddit.com/r/dailyprogrammer/comments/afxxca/20190114_challenge_372_
easy_perfectly_balanced/ (Retrieved: 28/06/2019)

3https://www.reddit.com/r/dailyprogrammer/comments/8jcffg/20180514_challenge_361_
easy_tally_program/ (Retrieved: 28/06/2019)
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In Problem Set X, we opted to use a problem from the /r/dailyprogrammer subreddit4,

requring a function calculating the reverse factorial of the input number. The notion of

reverse factorial is based on that of factorial: If n! = m, then n is the reverse factorial of m.

We adapted one of the JavaScript solutions proposed in the comments section, removing

a line of code. The bug is an inverted operator but can be solved with either an off-by-one

mutation or an operator mutation.

In Problem Set Y, we opted to use a problem from the /r/dailyprogrammer subreddit5, for

which a function, given the amount to give and a list of coins, calculates the minimum

number of coins required to reach that amount. We adapted one of the JavaScript solutions

proposed in the comments section, removing a line of code. The bug is an incorrect operator

which, due to the characteristics of the specific implementation, can be solved with either an

off-by-one mutation or an operator mutation.

Task 4

The goal of the fourth and final task — of type (iii.) — was to evaluate the extension in cases

where the bug is introduced by the developer. Neither version of this task contains a bug,

but the functionality must be implemented, with both problems requiring solutions that we

believe are prone to off-by-one bugs.

In Problem Set X, participants were required to implement a function returning the substring

between two characters, given a string and two indexes (which should both be included in

the substring).

In Problem Set Y, a similar problem was posed. In this task, the participants were required

to implement a function returning the slice of an array between two elements, given an array

and two indexes (which should both be included in the slice).

5.2 Results

This section presents the results of the undertaken study, as well as a brief analysis for each of the

individual tasks and parts of the survey.

The statistical methods used to analyze study results have been discussed extensively over the

years, with criteria such as the nature of the dependent variable, sample size and distribution of the

population often being the source of disagreement and controversy. The data under analysis here

has been collected from different sources and is of varying types.

Consensus over analysis of Likert-Type items — individual questions — and scales — sums

or averages of multiple items — [CD94] is particularly rare [Bro11]. For the purposes of this

study, both items and scales will be analyzed, and a need to choose the methods to do so arose.

4https://www.reddit.com/r/dailyprogrammer/comments/55nior/20161003_challenge_286_
easy_reverse_factorial/ (Retrieved: 28/06/2019)

5https://www.reddit.com/r/dailyprogrammer/comments/7ttiq5/20180129_challenge_349_
easy_change_calculator/ (Retrieved: 28/06/2019)
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While comparing those methods is beyond the scope of this dissertation, it is of importance to

briefly contextualize this discussion, so as to justify their usage. Some authors, such as Clason

and Dormody [CD94], Jamieson [J+04] and Norman [Nor10], claim that Likert-Type items are

on the ordinal measurement scale while others argue that it can be analyzed in the interval scale,

such as Brown [Bro11] and Willits, Theodori and Luloff [WTL16]. In practice, as Brown [Bro11]

states, Likert-Type items have often been analyzed as interval in nature. Regarding Likert-Type

scales, while disagreement is also prevalent, multiple studies have shown they can be analyzed in

the interval scale [CP08].

In this study, analysis of Likert-Type scales was performed in the interval measurement scale

and of Likert-Type items in the ordinal scale [BB12].

For the analysis of the test results, three different measurements have to be considered: the time

to reach the solution, the solution itself, and whether the person used the extension’s suggestion.

For the the analysis of the time to reach the solutions, the Mann–Whitney U (MWU) test6 was used,

as, for small sample sizes, the relatively small variations in the results in comparison with the t-test

when the population follows a normal distribution are eclipsed by the large variations in distributions

with extreme skews, for which MWU is the most appropriate test [BS99]. Regarding the final

code of each answer, analysis at a descriptive level was done, with an emphasis on discussing

differences between solutions generated by the extension and those developed by participants not

using the extension. The usage of the extension’s suggestion is a binary variable and will be treated

accordingly.

For all tests of the null hypothesis used throughout this dissertation, the significance level to

compare the p-value was set at the commonly used value of 0.05.

5.2.1 Background

The Background section of the survey, consisting of multiple Likert-Type items, was designed

to be handled as a Likert-Type scale assessing the level of comfort of the participants with the

technologies used in the experiment and the type of problems to solve. This scale is comprised of

the eight questions of the Background section, identified here as B1 through B8:

B1: I have considerable experience with JavaScript.

B2: I have considerable experience with the Mocha testing framework.

B3: I have considerable experience with Visual Studio Code.

B4: I have considerable experience with Test Driven Development.

B5: I regularly use tools to help me code (linters, code completion, etc.).

B6: I am always capable of understanding code I haven’t seen before.

B7: I feel comfortable in identifying bugs in code I haven’t seen before.

B8: I feel comfortable in fixing bugs in code I haven’t seen before.
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Figure 5.1: Histogram of background scores of both participant groups.

The score of each participant was obtained by summing the answers to each individual item, on

a scale of -2 (Strongly Disagree) to 2 (Strongly Agree). Owing to this transformation, and since

there are 8 items in the Background Likert-type scale, the minimum possible score is set at -16 and

the maximum score at 16, with 0 corresponding to an average one.

As a first step in analyzing the scores, the histograms of both Group A and Group B were

plotted in Figure 5.1, displaying a tendency for scores of both group to skew towards the right,

albeit only slightly so. Consequently, the groups appear to be slightly above average in terms of

background knowledge regarding the technologies and types of problem present in this study. In

addition, despite one specific outlier in Group B, no significant difference between the groups

seems apparent from these histograms.

Table 5.1: Statistical measures and p-values for hypothesis tests on background scores.

Group Size Mean Std. Deviation Shapiro-Wilk (p) Levene (p) t-test (p)

A 8 2.50 3.63 0.69
0.39 0.59

B 8 3.75 5.34 0.80

As can be seen in Table 5.1, both groups present a slightly above average mean. However, in

order to better understand the nature of the groups and whether or not there are statistical differences

between their means, further analysis is required. In order to test the null hypothesis that both

groups have identical means, we opted to use the Student’s t-test. This test relies on the assumption

6also called Mann–Whitney–Wilcoxon (MWW), Wilcoxon rank-sum test or Wilcoxon–Mann–Whitney test
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of a normal distribution of the population and equal variances, although multiple studies have

shown it is fairly robust to violations of at least one assumption [KHL11] and is able to handle

small sample sizes [DW13].

In any case, before using the Student’s t-test, we tested for these assumptions and the p-values

resulting from each test can be seen in Table 5.1.

Firstly, we used Levene’s test for equality of variances, which tests the null hypothesis that

both groups are from populations with equal variances [Lev61]. As the obtained p-value is of 0.39,

which is above the previously defined significance level of 0.05, we can’t reject the null hypothesis.

In second place, we used the Shapiro-Wilk test to test each of the groups for the null hypothesis

that the sample comes from a population with a normal distribution [SW65]. Since the resulting

p-value is well above the significance level of 0.05, we can’t reject the null hypothesis.

As a consequence of these two tests, we assumed that both samples come from normally

distributed populations and their variances are equal and proceeded to use the Student’s t-test. This

test enables us to test for the following hypotheses:

H0 (Null Hypothesis): The means of the populations from which each group was sampled are the

same.

H1 (Alternate Hypothesis): The means of the populations from which each group was sampled are

different.

After calculating the Student’s t-test, we obtain a p-value of 0.59, well above the significance

level of 0.05. Therefore, we fail to reject the Null Hypothesis H0 and therefore must accept that

there is no statistical difference between the two groups.

Figure 5.2: Stacked Bar Chart with frequencies of each Background survey item.

"Besides the above analysis of the Likert-Type scales, some of the specific items reveal in-

teresting details. For each of those individual items, the frequency of each answer is depicted in

Figure 5.2. Of particular note are B1: I have considerable experience with JavaScript. and B3: I

have considerable experience with Visual Studio Code. as in both groups the answer distributions
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show a general familiarity with the programming language and the text editor used in this experi-

ment. Conversely, B2: I have considerable experience with the Mocha testing framework.7 is the

item which participants tended to disagree the most with, revealing a lack of experience with the

testing framework used in this study.

5.2.2 Problem Sets

During the study, each participant was required to solve eight different problems, as described in

Section 5.1.2, with Group A having used the extension in Problem Set X and Group B in Problem

Set Y. From their performance, three different things were recorded:

• the time taken to reach a solution;

• the final code of the solution;

• if applicable, whether the participant used the extension’s suggestion or not.

5.2.2.1 Time to Reach Solution

In Table 5.2, we can compare the mean time to reach the solution of the group using the tool against

that of the other group, for each of the individual problems. An initial analysis of the table points

to a tendency for the group using the tool to be, on average, faster in solving the problem. This

difference between the means of both groups is very significant for both tasks of type (i.), tasks

1 and 2, and less so for the tasks of types (ii.) and (iii.), respectively task 3 and 4. These initial

observations are according to the expectations, with the tasks of type (i.) being the ones in which

the extension provided a bug fix immediately to the participant, while the other two tasks require

writing additional code before the extension is able to give any suggestion.

In order to understand whether the difference between the two groups is statistically significant,

we opted to do a two-sided Mann–Whitney U test for each of the tasks, which tests the following

hypotheses:

H0 (Null Hypothesis): The distributions of the populations from which each group was sampled

are identical.

H1 (Alternate Hypothesis): The distributions of the populations from which each group was

sampled are not identical.

As can be seen in Table 5.2, the p-value is lower than the significance level of 0.05 for six out of

the eight problems in this experiment: both versions of tasks 1 and 2, and tasks 3 and 4 of Problem

Set X. Therefore, for these 6 tasks, easily identifiable in the table by the underlined p-value, we

can reject the Null Hypothesis H0 that the distributions of the populations are identical. For the

remaining two tasks, we can’t reject the Null Hypothesis H0 and therefore are unable to evidence

statistical differences between the two groups.

7https://mochajs.org/ (Retrieved: 29/06/2019)
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Table 5.2: Statistical measures and MWU p-value of time to reach solution for each problem.

Task Set Tool Mean Std. Deviation Mann-Whitney U p-value

1
X

Yes 00:44 01:09
0.00736

No 02:55 01:59

Y
Yes 00:22 00:19

0.00094
No 03:58 01:51

2
X

Yes 00:38 00:36
0.00325

No 03:19 02:13

Y
Yes 00:31 00:41

0.00195
No 03:22 01:16

3
X

Yes 03:12 00:43
0.01804

No 04:39 01:21

Y
Yes 04:42 01:18

0.20691
No 05:20 01:06

4
X

Yes 01:14 00:36
0.01166

No 02:34 01:04

Y
Yes 00:48 00:15

0.27015
No 01:01 00:24

5.2.2.2 Code

Due to the nature of the problems, as minimal changes to the code suffice to solve them, analysis of

the solution of each participant is unlikely to benefit from the usage of any code quality metrics

such as Cyclomatic Complexity or Lines of Code. Instead, multiple observations were recorded

while participants were solving the problems and we looked at the source code of each answer

based on these notes. After doing so, various similar situations were found, all of them slight

variations of the example described in this section.

In task 3 of Problem Set Y, there is a faulty if condition that should check whether the sum of

the amount of the coins already selected to give as change with the face value of a candidate coin is

less than or equal to the desired change value, but in the faulty state does not check for equality.

1 if (coin + map.coinTotal < change)

The fix suggested by the extension for this problem is the following:

1 if ((coin - 1) + map.coinTotal < change)

Assuming that coins are always integer values, this solution is technically correct, as n−1 < m

is equivalent to n <= m, as long as both n and m are integers. However, one can argue that the

latter is a clearly better solution in terms of conveying the meaning of the condition:
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1 if (coin + map.coinTotal <= change)

Out of the group that did not have the extension active to solve this problem, every single one

of the participants reached this solution, but from the group that did have the possibility to use the

extension, only one of the participants opted for this solution, with the remaining seven having

accepted the extension’s suggestion.

5.2.2.3 Survey

After solving the problems in each of the version, participants were required to fill a survey

concerning those problems, with different versions being shown to those who used the extension

and those who didn’t. The questions are identified by X1 through X8 for Problem Set X and Y1 to

Y8 for Problem Set Y, and are the same in both versions. These questions are identified here as P1

through P8:

P1: The bugs were easy to identify.

P2: The solutions were straightforward.

P3: I solved every problem correctly.

P4: I spent more time in identifying the bug than in solving it.

P5: The extension was faster in identifying fixes than me.

P6: The extension was able to correctly fix problems.

P7: I used the fixes suggested by the extension.

P8: I tried to understand the fixes suggested by the extension before accepting them.

Of these 8 questions, the first four were asked to both groups, while the others were posed only

to the group that used the extension for this problem set.

Problem Set X

Regarding Problem Set X, as exhibited by Figure 5.3, there are no major differences in the

distribution of answers to X1, X2 and X3, except for a slight skew to the right for Group B

on X2, suggesting a small inclination of those using the extension to agree that the solutions

were straightforward. In X4, the intergroup variation is notorious, with the group using the

extension disagreeing more often than the other group that they spent more time in identifying

the bug than in solving it.

In what concerns the questions shown exclusively to the group using the extension — X4

through X8 —, participants were significantly in agreement with the statements we can relate

to the usefulness of the extension: X5, X6 and X7. The answers to whether the participants

tried to understand the suggestions of the extension or not in statement X8, while still trending

towards agreement, were more dispersed.
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Figure 5.3: Stacked Bar Chart with frequencies of each Problem Set X survey item.

Problem Set Y

In Problem Set Y, groups displayed more differences in answers to the first four statements

(see Figure 5.4). Group B, the one not using the extension, was more disagreeing with Y1

and Y2, revealing that identifying the bugs and repairing them was more difficult without the

extension. As in Problem Set X, the variation in Y4 was significant, although neither group

was overly disagreeing with having spent more time in identifying the bug than in solving it.

In statements Y5, Y6 and Y7, responses were once again markedly in agreement, as was al-

ready the case in Problem Set X. Regarding Y8, stating that the participant tried to understand

the fixes suggested by the extension before accepting them, the answers were polarized and

no clear tendency towards agreement or disagreement can be identified.

General Remarks

Altogether, the responses to this part of the survey provide us with an insight into how the

participants felt with respect to the problems they were asked to solve. Overall, we can

identify a very slight tendency to consider the problems easier when using the extension, as

evidenced primarily by X2 (see Figure 5.3), Y1 and Y2 (see Figure 5.4). In addition, responses

to X4 and Y4 point to the participants being less agreeing with having spent more time in

identifying the bug than in solving it.

Regarding how participants perceived the usefulness of the extension, the consensus was

that it was not only able to correctly fix problems, but faster than the participants in doing

so. In addition, participants reported having accepted those suggestions often. Whether the

participants felt they had a critical attitude towards the extension’s suggested fixes or not was

a more divisive question, and no clear trend can be identified.
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Figure 5.4: Stacked Bar Chart with frequencies of each Problem Set Y survey item.

5.2.2.4 Usage of Extension

While each group had the extension active for one of the problem sets, each participant could accept,

ignore or discard the fix suggestions. In fact, for tasks 3 and 4, depending on the specific changes

the participants made to the code and the order in which they were made, there was no guarantee

that a suggestion would even be made. For each task, whether a suggestion was accepted or not

was recorded.

Table 5.3: Percentage of participants that accepted a fix suggestion per problem.

Task Version Usage (%)

1
X 87.5

Y 87.5

2
X 87.5

Y 100.0

3
X 100.0

Y 87.5

4
X 100.0

Y 75.0

The results presented in Table 5.3 require an understanding of the specific nuances of each

task and respective type of problem in order to be interpreted correctly. In tasks of type (i.) the fix

suggestion is presented immediately, and those who did not use the extension in tasks 1 and 2 either

decided against using the suggestion or did not see it. In tasks of types (ii.) and (iii.), however,

there might be no bug fix suggestion, as mentioned before. As a matter of fact, every participant
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that was shown a suggestion in tasks 3 and 4 accepted it. The participant who did not accept a fix

suggestion in task 3 of Problem Set X fixed the existing bug before filling in the missing code and

thus was never provided with one. Similarly, the two participants who did not accept a suggestion

in task 4 of Problem Set Y never introduced a bug in the first place (see problem type (iii.)), and

thus the extension did not suggest a repair either.

5.2.3 Post-Test Survey

A post-test survey was completed by each participant after solving the eight problems. This section

was split into three parts, each with a different objective. The first, consisting of statements PT1

through PT3, aimed to understand whether the participants felt their performance was impacted in

any way by the test environment. The second part, formed by the five statements from PT4 through

PT8, is used to assess user satisfaction while using the extension. Finally, the last three statements,

PT9 through PT11 make up a section on future improvements, as a way to estimate what users

would require from a tool of this kind. The post-test survey was as follows:

PT1: The second part was easier because I was already used to the code editor and the environment.

PT2: The development environment used (OS, IDE, extensions, etc.) is similar to the one I’m used

to.

PT3: I would have been faster if I was using my own development environment.

PT4: Overall, the extension was helpful in fixing these bugs.

PT5: Overall, the suggested fixes were acceptable solutions.

PT6: I found it easy to understand the proposed solutions.

PT7: The live (real-time) aspect of the extension allowed me to be faster in fixing the bugs in

question.

PT8: I would use an extension like this for my daily work.

PT9: An extension like this would be more helpful for more complicated bugs than for simple

bugs.

PT10: The extension needs to be faster in providing solutions.

PT11: Pointing out the bug location is as helpful as providing a solution.

The frequency of responses to the first three statements suggests that the test environment

did not affect the results of the experiment, as PT2 shows a notorious similarity between the

environment of the test and that each participant was used to (see Figure 5.5) and PT3 an overall

feeling that using their own development environment would not provide significant performance

advantages. PT1, while divisive, seems to indicate that the order in which the tasks were performed

did not introduce a bias in the second problem set due to familiarity with the environment from the

first one.
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Figure 5.5: Stacked Bar Chart with frequencies of each Post-Test survey item.

Regarding the overall satisfaction of each participant, answers were overwhelmingly in agree-

ment with the usefulness of the extension. Statements PT4 and PT5 show a general acceptance of

the suggested fixes, with them being deemed acceptable solutions and the extension helpful, while

PT6 relates to how difficult is the understanding of each suggestion, which the participants consider

easy to do. Perhaps most importantly for the problem here studied, PT7 suggests that the liveness

characteristic of this particular system was considered useful by the study participants. Lastly, every

response to PT8 was Strongly Agree, as the usefulness an extension of this kind was unanimous.

The final three questions, while not directly related to this particular extension, are still useful to

draw conclusions over what worked in this experiment and what deserves further study. Participants

largely considered that a live Automated Program Repair tool such as this extension would be

more useful for more complicated bugs, as evidenced by the responses to PT9. Conversely, the

consensus was that the current speed of the extension is not a limiting factor, as PT10 show major

disagreement with the statement that the extension needs to be faster in providing solutions. Finally,

in PT11 participants agree that pointing out the bug location is as helpful as providing a solution.

5.2.4 Discussion

This experiment was performed in order to validate the following hypothesis:

H1: Using a live Automated Program Repair tool improves the speed and final result of code

solutions.

With it, we expected to be able to answer the following Research Questions:

• RQ1: Are users faster in reaching the solution when using a live Automatic Program Repair

tool?

Regarding RQ1, we compared the times that users took to solve each problem — described

in detail in Section 5.2.2.1. In doing so, we can reject the null hypothesis that there are
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no statistical differences for all tasks of type (i.), and half of those of types (ii.) and (iii.).

Interpreting these results requires a deeper look at what each specific problem entailed and

the significance of these results. As Task 1 and 2 were simple sanity checks, we now focus

our discussion on Tasks 3 and 4. Concerning Task 3 (Problem Set Y), for which we were

unable to reject the null hypothesis, it seems that most participants were not familiar with the

reduce function, and this fact might have led considerably slower times to reach a solution;

this, however, does not appear to be a direct threat to our main hypotheses and thus should

provide us guidance for a better design of the validation package in the future. Similarly,

both X and Y variants of Task 4 are extremely similar, which might introduce a bias in the

participants that were already exposed to one of them.

Nonetheless, (1) we can still observe statistically relevant differences between the groups

in 75% of the tasks, and (2) the mean time to reach a solution is consistently lower for the

groups using the extension. Ergo, we argue that there exists substantial evidence to convince

that users are faster to reach a solution when using a live Automatic Program Repair tool.

• RQ2: Are solutions generated by an Automatic Program Repair tool different from the ones

developed by human programmers?

The answer to RQ2 lies in the situation described in Section 5.2.2.2, as solutions generated

by the Automated Program Repair tool are sometimes different from those developed by

human programmers. Although we are not able to understand if the generated code is better

or worse than human-written code, it’s possible to connect this to the problems discussed in

Section 2.2.3 of overfitting and lack of maintainability of automatically generated patches.

We do not make any formal test on whether the solutions generated by the tool developed as

part of this dissertation share these problems, but we have identified situations in which the

solution appears to be worse at least in terms of closeness to its meaning in natural language.

• RQ3: Are users aware of the rationale of solutions generated by the Automatic Program

Repair tool before accepting them?

The final Research Question, RQ3, is more complex. In fact, if we go by the results of

the survey (see X8 and Y8 in Section 5.2.2.3), we’ll see that there was no clear tendency

to agree nor disagree with having tried to understand the solutions before accepting them.

In Problem Set Y participants were equally split, while in Problem Set X there was a slight

skew towards agreeing, but in doing a critical analysis of these responses, one must remain

skeptical. Based on assorted notes taken during each test, we do not believe the majority of

participants even tried to understand the problem, much less the proposed repair, in situations

in which the suggestion was immediate. The extremely low mean times to reach a solution,

such as 0:22 in task 1 of Problem Set Y (see Table 5.2), seem to support that observation, as

we believe it’s possible to argue that 22 seconds (or less) is not enough time to read through

the problem, read the faulty code and understand the suggested repair. Considering the very

slight tendency displayed in X8 and Y8 and the aforementioned observations, we believe the
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experimental study was not conclusive as to whether participants tried to understand the

suggested repairs or not.

Overall, our research points towards a live Automated Program Repair tool improving the speed

of developers when presented with faulty programs, thus validating that part of Hypothesis H1, but

does not provide enough evidence to either support or reject the notion that it also improves the

final result of code solutions.

5.3 Threats to Validity

As with any empirical study, a number of threats to validity must be considered and the respective

possible impact studied [PPV00]. In this section, threats to Construct Validity, Internal Validity and

External Validity are described and a brief discussion on if and how each of them was addressed

ensues.

5.3.1 Construct Validity

The first type of validity we consider is Construct Validity, which pertains to how well the tasks,

environment, data collected and other variables in an empirical study map the constructs or

hypothesis they represent [SCC02].

Validity of Problem Sets.

Likely the most important threat to construct validity in this study is the degree of fidelity to

which the problem sets used in the experiment represent faulty programs that a developer is

likely to find in his daily work. An attempt to do so at a high degree consisted in defining

three different types of problems and in using existing code, rather than code written for the

sole purpose of being used in this experiment (see Section 5.1.2).

Hypothesis Guessing.

Being under a test setting, some participants might try to guess the hypothesis and try

to perform better based on that [WRH+12]. Quoting Marilyn Strathern’s formulation of

Goodhart’s law, "When a measure becomes a target, it ceases to be a good measure" [Str97],

and thus a variable that is supposed to model a specific construct or hypothesis might not do

so as accurately if it starts being a target in itself. While it’s not possible to be certain that a

person is trying to aim for a specific result, we opted to conceal the hypothesis and objectives

of the study and the measures we were taking until the end, in an effort to minimize the effect

of this threat.

5.3.2 Internal Validity

The extent to which a valid cause-effect relationship can be established between the independent vari-

ables and the effects observed in the dependent variables is defined as Internal Validity [WRH+12].
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Motivation of Participants.

In our study, we tried to analyze the form of the code and whether the participants attempted

to understand the suggestions provided by the extension, revealing that participants often

accepted suggestions provided by the extension without trying to understand them first,

leading to, at least, suboptimal solutions. It is not clear whether these finding would stand

if the faults they were repairing was in code they were going to maintain in the future or

code that was going to be used in a production environment. It’s perfectly reasonable to

hypothesize that being in a test environment leads to a more relaxed attitude as there are no

real stakes. Future experiments should take this threat into consideration, accounting for the

motivation of participants.

Development Environment.

Software Developers are often very careful in setting up their development environment, with

discussion on which Operating System, Text Editor or Unix shell is the best and therefore

it’s easy to see how a developer’s performance might vary with a change of environment.

We attempted to understand if this was an issue in our experiment by asking three different

questions related to it in the Post-Test survey (see Section 5.2.3). Responses show that not

only was the development environment similar to the one used by the vast majority of the

participants, but they also don’t believe using their own environment would have provided

any significant performance benefits.

Physical Environment.

Each participant completed the test in the Software Engineering laboratory at the Faculty of

Engineering of the University of Porto, but the room was not sealed for the purposes of this

experiment. Owing to that, noise or other distracting factors, which were not constant for

all participants, could have had an impact on the test results. In order to try and reduce this

impact, we attempted to perform the tests at times of low entropy, but future experiments

should try to control these variables in a more rigorous manner.

5.3.3 External Validity

The final type of validity discussed in this section is External Validity, which concerns the degree to

which the findings of a study can be generalized to different populations or settings [WRH+12].

Sample Size.

In the empirical experiment here described there were 16 participants, which were split into

two groups eight members each. This is a rather small sample size, something that must be

taken into account when interpreting the findings of this study.

Sample Characteristics.

Besides the size of the sample, its composition is also of importance to the validity of

the study. In particular, all but one of the participants are students in the final year of
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Informatics and Computing Engineering at the Faculty of Engineering of the University of

Porto. Consequently, our sample displays a level of homogeneity that does not correspond to

that of the population of Software Developers in general. However, findings from studies

such as the one from Salman, Misirli and Juristo show students do not perform better

nor worse than software engineering professionals when using new technologies during

experimentation [SMJ15], as is the case here. Regardless, future experiments should attempt

to introduce a higher degree of heterogeneity in terms of participant background.

5.4 Summary

In this chapter, we presented a thorough account of the experimental study. In Section 5.1 we

described the methodology to follow, including the overall plan and the specific tasks the study

would be made up of.

Then, in Section 5.2, we presented the results obtained in the experiment, accompanied by a

descriptive analysis and an explanation for the methods used, followed by a critical discussion of

these results and a interpretation of the findings in relation to the hypothesis posed and research

question under study.

In Section 5.3, we presented the threats to the validity of the study, while mentioning steps

taken to reduce their impact or suggestions for future studies.
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This chapter reflects on this document and the work here presented. Firstly, Section 6.1 we present

the conclusions of this dissertation. We then summarise, in Section 6.2, the main contributions

resulting from this work. Lastly, we discuss future work regarding live Automated Program Repair

tools in Section 6.3.

6.1 Conclusions

This work started with an exploration of the state of the art in Automated Program Repair and

current challenges. In addition, we discussed one of the limitations of current code completion

tools, which provide only syntactic suggestions. Combining these two areas, we proposed that a

live Automated Program Repair tool could offer semantic suggestions to developers while coding.

Our hypothesis was as follows:

H1: Using a live Automated Program Repair tool improves the speed and final result of code

solutions.

In order to validate the proposed hypothesis, we developed a prototype of one such tool, imple-

mented as an extension to Visual Studio Code, repairing JavaScript code and offering suggestions

to the developers in real-time, using a mutation-based approach to Automated Program Repair in

order to generate those patches. Then, we performed an empirical study, in which we evaluated

the performance of software developers in repairing bugs, both while using our tool and without it.
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These experiment was used to validate the aforementioned hypothesis and answer the following

Research Questions:

• RQ1: Are users faster in reaching the solution when using a live Automatic Program Repair

tool?

We argue that there is evidence to support the claim that users are faster to reach a solution
when using a live Automatic Program Repair tool, as statistically relevant differences between

the group using the extension and the other are found in 75% of the tasks and the mean time

to reach a solution is lower for all of the tasks when using the implemented prototype.

• RQ2: Are solutions generated by an Automatic Program Repair tool different from the ones

developed by human programmers?

While we make no claims as to whether the generated solutions are better or worse than

human-written ones, we did find evidence of them being sometimes different. In addition,

we argue, based on direct observation during the experimental study, that some solutions

generated by the extension are not as close to their meaning in natural language as the

human-written solution are.

• RQ3: Are users aware of the rationale of solutions generated by the Automatic Program

Repair tool before accepting them?

Our findings were not conclusive regarding this Research Question, as the responses to the

survey were mostly split and the very slight tendency they did show was directly contradicted

by our own observations.

Ultimately, we are able to validate at least part of Hypothesis H1, as we do find that the speed

of developers in fixing faulty code improves while using a live Automated Program Repair Tool,

but do not reach a conclusion regarding the improvement of the resulting code.

6.2 Main Contributions

The main contributions of this dissertation can be summarised as follows:

• A Visual Studio Code Extension implementing a live Automated Program Repair tool,
which leverages unit tests and mutation-based Automated Program Repair techniques to

generate patches to faulty code and suggests them to the developers in real-time, achieving a

level of 5 in the Liveness scale, providing tactically predictive feedback;

• An Empirical Study with 16 participants using the extension developed during this work

and assessing its usefulness. The results from this study are encouraging in terms of the

possibilities in the space of live Automated Program Repair.
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6.3 Future Work

Multiple improvements to the developed tool can be implemented, and different experiments can,

and should, be conducted. Here we briefly summarise our thoughts for the future of this area of

research:

• Implementing a tool with the same characteristics as the one resulting from this work, but

using a different approach to program repair. This could involve introducing fault localization

techniques, as well as delving into different and potentially more complex automated program

repair strategies. The challenge here is maximizing the potential of the tool in terms of how

many bugs it is capable to fix while minimizing the time in which it does so, in order to

maintain its liveness factor;

• Offering more than one suggestion to the developer, when possible, providing him with a

choice between different patches;

• Conducting other experiments, possibly based on the recommendations given in Section 5.3,

and doing so with multiple different tools, in order to further explore the possibilities of live

Automated Program Repair tools in general and not of a specific implementation.
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