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Abstract

The study on feature generation has grown over the last years.It is entirely dependent on domain
knowledge and done manually, so it is time consuming and not scalable. In turn, meta-learning
helps to learn through different domains and can bring benefits to this area.

We present two meta-learning approaches to support feature selection. The first predicts
whether a given automated feature engineering approach will improve the results. The second
predicts if a single feature will improve the results.

We test these approaches on 100 data sets from different domains. Our experiments showed
that it is possible to use meta-learning in the feature selection process, and can inform us whether
or not we should generate features with a the given method.

On the other hand, the results of the second approach, which predicts the usefulness of each
individual feature are not positive. The results show that meta-learning can be used to aid the
generation and selection of features. However, our approach can still be improved, being more
precise in the predictions at the meta-level and better results at the base level.

Our code is available at https://github.com/guifeliper/automated-feature-engineering

Keywords: data mining, machine learning, metalearning, KDD, feature engineering, automated
feature engineering
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Resumo

O estudo sobre geração de features tem aumentado conforme os anos. Totalmente dependente
de conhecimento de domínio e feito de forma manual, por isso consome muito tempo e não é
escalável. Por sua vez, meta-learning auxilia o aprendizado através diferentes domínios.

Nos apresentamos duas abordagens de meta-learning para auxílio na seleção de features. A
primeira prevê se uma determinada abordagem de geração automática de features melhorará os
resultados. O segundo prevê se um único recurso melhorará os resultados.

Nós testamos essas abordagens em 100 conjuntos de dados de diferentes domínios. Nossos
experimentos mostraram que é possível usar o meta-learning no processo de seleção de recursos,
e pode nos informar se devemos ou não gerar recursos com um determinado método.

Por outro lado, os resultados da segunda abordagem, o qual prevê a utilidade de cada car-
acterística individual, não são positivos. Os resultados mostram que o meta-learning pode ser
usada para auxiliar na geração e seleção de recursos. No entanto, nossa abordagem ainda pode ser
melhorada, sendo mais precisa nas previsões no meta-level e melhores resultados no base level.

Nosso código esta disponível em https://github.com/guifeliper/automated-feature-engineering.

Keywords: data mining, machine learning, metalearning, KDD, feature engineering, automated
feature engineering
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Chapter 1

Introduction

One of the factors for a successful application of a machine learning approach is a well prepared

data set. The data needs to be cleaned and prepared for the algorithm to induce a good model.

Preparing a data set correctly usually takes a significant amount of time, and it requires solid

knowledge about the domain. One particularly important task is feature engineering, which con-

sists of creating new variables that make it easier for the algorithm to obtain a good model. There

are two approaches for feature engineering: manual and automated. In the manual approach, one

feature is built at a time. This is time-consuming, challenging and error-prone process and depends

on domain knowledge. The automated approach can extracts many features from a data set in a

systematic way which can be done without human intervention. Additionally, it can be applied to

any problem and the building process is quicker and not dependent on domain knowledge.

Several automation strategies have been developed recently, to decrease the effort devoted to

featuring engineering. However, these methods commented on in this thesis and our method do

not guarantee that the set of features generated will lead to better models [6, 11, 8].

“Automating feature engineering optimizes the process of building and deploying ac-

curate machine learning models by handling necessary but tedious tasks so data sci-

entists can focus more on other important steps.” [6]

1.1 Motivation

On feature engineering, it is possible to automate part of the process which does not depend on

domain knowledge.

A subarea of machine learning that deals with the problem of extracting knowledge about

learning problems which is independent of the domain are meta-learning. Meta-learning consists

of learning about the behaviour of machine learning (ML) algorithms by collecting (meta)data

about instances of those processes and applying ML algorithms to that metadata [15]. However,

meta-learning approaches have never been applied to the problem of feature engineering.

1



2 Introduction

1.2 Objectives

Given a method to automatically generate features, our goal is to use a meta-learning approach to

decide whether it will lead to better models compared to the original data set.

Our preliminary research question is the following:

• Does the systematic combination of features using simple operations lead to better predictive

models than the original data set?

After, we specifically address the following questions:

• Can a meta-learning approach predict when a method for the systematic generation of fea-

tures leads to better predictive models?

• Can a meta-learning approach predict when a method for automatic generation of features

leads to better predictive models?

• Can a meta-learning approach predict when an individual feature leads to a better predictive

model?

The contributions of this work are:

• Application of a meta-learning approach to the problem of deciding whether a method for

automatic feature generation should be applied and which features should be used for im-

provement of the model;

• Development of a set of meta-features that are specific for the problem addressed here;

• Empirical evaluation of the approach proposed using a simple method for automatic feature

generation.

In section 2, we discuss the background and related work; In section 3, we explain the system-

atic feature generation and the exploratory data analysis. For the sections 4 and 5 we discuss the

approaches proposed and the experimental setup used and results. Finally, in section 6, we present

the conclusion and future work.



Chapter 2

Background and Related Work

Over the last years, the demands for data mining have been increasing and also the growing interest

in automated machine learning, see the figure 2.1 1. Data mining uses a considerable number of

data analysis techniques for the process of identifying specific patterns in a massive amount of

data.

In this chapter, we discuss an analysis of the data mining process and mining techniques 2.1,

the actual state of automated machine learning 2.4, meta-learning and automated feature engi-

neering 2.3.

2.1 Data Mining

Data mining can use machine learning techniques, but it is possible to use data management tech-

niques (e.g. relational database management system) . Nevertheless, we are going to talk only

about machine learning techniques.

There are two primary type of tasks for data mining, predictive and descriptive. predictive
has the intent to predict based on the historical data, and the most common tasks are, classification

and regression. Regression is used to predict a numeric value. For example, a new car model is

added to the database, and the system needs to suggest the price for a car with five doors, electric

direction, from a specific brand, with 100.000 Kms. Regression should be used for that case.

Classification is used to determine a class for a data point. For example, a specific entry for the

flowers database does not have a classification, and the system needs to identify what flower it is

to complete the data. Classification should be used for that case.

Descriptive data mining is used to organise the data and understand better the information

that the database has; it is also divided into two techniques, association and clustering. Clustering

identifies groups of similar data points. Data points in a cluster are more similar among themselves

than to data points in other clusters. Association analyses the association between items. For

1Available at https://trends.google.pt/trends/explore?q=AutoML

3
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4 Background and Related Work

Figure 2.1: Google Trends about AutoML
.

example, in a commercial database association can identify products that are generally purchased

together, a famous story analysed a market database and discovered that usually clients who buy

diapers also buy beer.

The process of data mining is interactive and challenging. The most common process model

involves six phases, where each one has specifics deliveries for the next phase. The process model

is also known as Cross Industry Standard Process for Data Mining (CRISP-DM), see life cycle on

figure 2.2.

Business understanding - The goal of this phase is understanding the business perspective and

then translating it to a data mining problem.

Data understanding - The focus of this phase is to collect and have initial contact with the data.

Analyse data quality and identify possible problems.

Data preparation - The goal of this phase is to clean the data, generate more features, select the

features created to feed the algorithms for the next phase. This phase is the centre of our

work.

Modelling - The algorithms are selected, and their parameters tuned for an optimal result.

Evaluation - Before the final deployment, this step will assess whether the business goals have

been met.

Deployment - The goal of this phase is to plan deployment, produce a final report and review the

project to evaluate what went right and what went wrong.

All of this information and more detailed process of CRISP-DM can be found in the book CRISP-

DM 1.0 [14].
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Figure 2.2: Phases of CRISP-DM model [14]

2.2 Automated Machine learning

Machine learning is time-consuming and needs many resources to get the task done. Therefore,

companies like IBM have been investing in Automated Machine Learning research [11]. Auto-

mated machine learning (AutoML) goal is to change this scenario, developing accessible machine

learning.

Currently, AutoML focuses on data preparation and modelling. In data preparation, it is often

used to automate the process of data preprocessing, feature generation, and selection. For model

training, it is used to automate model selection and hyper-parameter optimisation.

2.2.1 Data preprocessing

The data collected is not always suitable to run a machine learning process. Therefore, it is nec-

essary to transform the data. Preprocessing involves many different tasks such as scaling, missing

value imputation, outlier detection, binning and categorical data transformation [2].

Scaling - Scaling techniques ensure that the numerical features are weighted proportionately

by the algorithms. The terms used for that technique are standardisation and normalisation.

Missing values - Missing values often occurs in data sets. This can happen because of a device

bug, typing errors or even the user choosing not to provide some information.

1. Use a constant: It is possible to fill all the missing values with a constant. The constant can

be a disproportionate number or a not available (NA) to separate those for the rest of the

data set.

2. Use a mean/median value to fill: Numerical values can be replaced with mean or median

and categorical values can be replaced by the mode.
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Figure 2.3: Feature selection process [18]

3. Remove/Delete Data: This technique is recommended when only a few data are missing,

the elimination can be applied for a specific row or column. However, when too much data

are missing, it may reduce the amount of available data too much, affecting the quality of

the models generated.

4. Use data mining to predict the missing value: It is possible to use machine learning algo-

rithms to predict the most probable value for missing data. However, when used for too

much missing data it can cause overfitting on the final model because the data used to fill

the empty data was the same to train and test.

5. Add flag: Indicate the missing data with a flag. Insert a flag (e.g.: ’missing value’ string

or outlier number) in the missing data can identify where the data was missed, aiding to

identify the lack of information and assess the data.

Outlier detection - Outliers are those values "that are so different from the others that distort

the data distribution. Those values can lead to low performance models. Outliers have two types,

univariate and multivariate. A univariate outlier, as the name implies, is an outlier based on a

single variable. A multivariate outlier is a mixture of values on two or more variables.

Binning - Binning goal is to discretizes continuous values, it is a process to group a continuous

number in smaller interval, for example, dividing the age of a survey into small intervals. This is

useful for algorithms which have difficulties in analysing numerical variables, such as naive Bayes.

Two common binning methods are:

• Equiwidth binning: The bins are divided into n intervals of equal size.

• Equifrequency binning: The bins are divided into n groups, each containing the same num-

ber of values.

All of this information and more detail can be found [2].

2.2.2 Feature selection

Feature selection is used to remove unnecessary and redundant attributes from the data because

some attributes decrease performance instead of increasing it. Furthermore, the complexity of the
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Table 2.1: Example of feature generation extracting information from a date attribute

User ID Penultimate login Last Login Diff Login Last Login is Weekend?
865 12/12/16 03/01/17 22 FALSE
1954 18/03/16 23/07/16 127 TRUE
1307 25/11/17 11/03/18 106 TRUE
1966 29/03/16 26/04/16 28 FALSE

51 07/01/16 23/02/16 47 FALSE

model can increase with more attributes, not helping the data scientist to understand or explain the

model. So, feature selection can help to have a better performance with fewer features and less

complexity in the model [4] (Figure 2.3).

Three types of methods can be used: Filter methods, wrapper methods and embedded methods.

Filter Methods These methods analyse each feature independently and assign a score to each.

These scores are used to rank the features and the best ones are selected. The scores can be

based on the information gain measure.

Wrapper Methods These methods evaluate combinations of features. Different combinations

are created and compared by learning and evaluating a model. The performance of the

model is used to guide the search for the best set of features. Wrapper methods include

recursive feature elimination, deleting and adding features, or using a random algorithm to

help the search.

Embedded Methods These are often regularisation mechanisms embedded in the algorithms. It

consists of adding a penalty for complex models, helping to reduce overfitting and variance.

However, it adds bias to the model. An example of this method is Ridge Regression.

2.2.3 Feature generation

The feature generation, also known as feature construction, adds more features into the raw data

and it can result in more information that leads to models with better accuracy. However, adding

features increases the dimensionality of the data set and increases the chance of overfitting, known

as the curse of dimensionality. To minimise the effect of feature creation, one approach is feature

selection, which was described earlier.

To illustrate the feature engineering dilemma, consider Table 2.1. Here we have five columns

showing the behaviour of access of some users, and the first three columns are the raw data, the

last two columns are the new features generated in the process of feature engineering. We can

see that the users who access the platform on weekends also stay longer without using it. When

studying only the original data, we do not see this patterns. New features can help to show those

patterns and help to build better models.

Numerical - Many mathematical operations can be applied to transform single and groups of

variables. For example, log, ratio, addition, variance of two numbers or any mathematical
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operation. Pairwise feature creation is the name given for the process of numerical comput-

ing attributes.

Temporal - The temporal features can have two most common transformations, extraction of

partial information (e.g. day, month and weekday) and combination of values (e.g. Dif-

ference between two dates). Temporal features are complex data types, because of that the

combination of different elements aids to extraction. In the table 2.1, it is possible to see

an example of temporal transformation, the column "Last login is weekend" is a transfor-

mation from the column "Last login", other feature would be the difference of the columns

"Penultimate login" and "Last login".

Categorical - This transformation has fewer possibilities than others. Usually, categorical values

are represented by a string, frequency of value or intervals is commonly used in categorical

data transformation. For example, the age interval, from a user data set containing the user’s

birthday, it is possible to create some intervals from the user’s birthday, e.g. 18-25, 26-32,

33-45.

2.2.4 Machine learning algorithms

There are many algorithms for the most common prediction tasks, such as classification and re-

gression. Many of those algorithms apply to both tasks, with minor changes. For example, the

Support-vector machine and K-Nearest Neighbors algorithms can be applied to classification or

regression problems. However, the description of these algorithms is beyond the goals of this

thesis [2].

However, selecting an algorithm should not be a personal choice. Different algorithms lead

to different models, which may have very different performance. Thus, this choice may result in

unsatisfactory results. Additionally, algorithm selection should also consider computational com-

plexity, differences in training and scoring time, linearity versus non-linearity, algorithm-specific

feature transformations. AutoML approaches aim to take these issues into account, saving the data

scientist time and avoiding poor choices.

2.3 Meta-Learning

Meta-learning extends the concept of data mining, adding methods to extract knowledge about the

behaviour of data mining algorithms. Meta-learning has been used for the automation of machine

learning. It is based on new concepts, meta-features and meta-knowledge. It aims to learn not only

how to solve a given problem, but learn the structure of the corresponding task [16]. For example,

in a process of classifying if a patient has a determined disease or not, instead of only learning

how to classify that disease, meta-learning will learn about the process of learning a model for

that disease so it can later adapt it for other diseases. This technique is well known for learning to

learn.
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Figure 2.4: Meta-Learning [17]

We can see a clear difference between base-learning and meta-learning [13]. In the case of

meta-learning, the goal is to accumulate experience from many different applications from the

same nature. Base-level learning on other hand is only interested in learn how to execute the

specific task.

For meta-learning approaches, there is a need to use meta-features. Meta-features are the char-

acteristics of the data sets. Many of those characteristics are statistical and information-theoretic

parameters. They include the number of classes, number of features, correlation between features,

number of examples and others [16, 17]. There are also others data set characterisations such as

model-based and landmarking [15].

To illustrate the meta-learning process see the figure 2.4. Following the workflow, from the

new data set we generate meta-features. In parallel, we apply the standard workflow for base-

learning, including data preparation, model selection and evaluation. All the information generated

is stored in the meta-database so that we can use in the following learning process [17]. The

meta-model is learned by applying a learning algorithm on the meta-data. Given a new data set,

the meta-model is applied to support the selection of the best algorithm for that problem.

By obtaining the predictions from the Meta-level, we can use this result to apply it to a data

set. The prediction obtained by the meta-model can be evaluated at the meta-level and base-

level. At the meta-level, the evaluation compares the prediction with the label in the meta-data.

For instance, if a classification approach is used to select the best algorithm for a data set, the

meta-level accuracy is the proportion of times the meta-model predicts the best algorithm. At the

base-level, the evaluation compares the effect of following the recommendation provided by the

meta-model. Given the same scenario as above, the base-level evaluation estimates the loss in

base-level performance of executing the algorithm predicted by the meta-model when compared

to executing the best algorithm. If the meta-model recommends the best algorithm correctly, then

there is no effect. However, if the algorithm predicted is not the best, there will be a loss in the

performance obtained which may or may not be large. To illustrate this, see figure 2.5.
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Figure 2.5: Meta-Level and Base-Level diagram

2.3.1 Evaluation

Given that the accuracy values are stochastic, it is necessary to assess whether differences between

different methods are statistically significant. For that purpose, we can use multiple tests. A

recently proposed test is the Bayesian Correlated t-test [1]. The authors discourage the use of

null hypothesis significance tests (NHST) in to compare performance between ML algorithms.

Because it does not estimate probabilities of hypotheses, ignores magnitude and uncertainty and

others, they suggest Bayesian analysis instead of NHST.

Additionally, Bayesian analysis can show the probability of two algorithms being practically

equivalent. According to the authors, it is reasonable to affirm that a difference of less than 1%

between two classifiers can be considered as practically equivalent. Therefore the interval of [-

0.01, 0.01] is defined as a rope or region of practical equivalence [1].

2.4 Automated feature engineering

.
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Figure 2.6: Expand-reduce and Wrapper method workflow

In this section, we discuss the related work on the topic of automated feature engineering,

which was introduced in Section 2.2.3. There are not many relevant papers. We discuss them

according to different characteristics: Approaches, Feature transformations, Evaluation, Tasks,

Data, Algorithms, Results analysis, Programming languages.

2.4.1 Approaches

Automated Feature Engineering has two approaches to feature extraction, called expand-reduce

and wrapper-method. The expand-reduce is the most common method used for feature engineer-

ing as we can see the Deep Feature Synthesis [6], ExploreKit [8], AutoLearn [9], One button ma-

chine [11] using this approach. The expand-reduce approach tend to create a very large number

of features in minimal time. Resulting in the curse of dimensionality which may lead to over-

fitting, as explained earlier 2.2.3. Thus, these approaches require some kind of feature selection

(Section 2.2.2). Depending on the technique used, this may incur into significant computational

costs.

The Cognito [10] and the Automatic Feature Generation for Machine Learning Based Opti-

mising Compilation [12] uses another approach called wrapper-method. This approach is based

on creating a feature at a time. After creating a feature, a process is applied to evaluate and decide

if the new feature adds any useful information to the data set. The approach will run until a time

defined runs out. The advantage is the curse of dimensionality does not happen in this approach,

so it is no need for feature selection after the process. However, the process can be slower than

expand-reduce. Both methods are illustrated in Figure 2.6.
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Table 2.2: Example of binary feature generation

ID Quantity ProductPrice Total Price
1 3 123 369
2 9 10 90
3 33 15 495
4 12 324 3888
... ... ... ...

The meta-learning is not well defined in any paper, only in Deep Feature Synthesis [6] and

ExploreKit [8] speaks about meta-data or meta-features.

2.4.2 Feature transformations

Transformations are divided into three main operators: unary, binary and higher order. The

following paragraphs will introduce the main types of each one of them.

Unary operators discretise and normalise one feature. Discretizers are good for some clas-

sification algorithms which were not developed for numerical data, such as naive bayes. Table

2.1 illustrates well what is a discretise example. The last column "Last Login is Weekend?" is

a popular discretisation of dates, categorising a date feature in only two options, true or false.

The discretization operation has been used in many automated feature engineering approaches

[6, 11, 10, 8, 9].

Normalisation is a well-known operator. The normalisation tries to approximate the distribu-

tion of the variable to a normal, with mean 0 and standard deviation 1. In addition, we are also

considering a unary transformation those functions that need a unique input as logarithm; square;

square root; exponential; rounding; absolute value as Cognito [10] mention on its paper.

Binary operators can be applied to pairs of features. These include basic arithmetic operations

such as +,- ,× , ÷, comparison operations such as ==, !=, >,<, >=,<=, and logical operations such

as AND, OR.

A binary operator is illustrated in Table 2.2. The simple arithmetic operation multiplication

is applied to two features, Quantity × ProductPrice. We note that all papers analysed use binary

operators [6, 11, 10, 8, 9, 12].

Higher order operators can use multiple features for the extraction of new features. Oper-

ators that are commonly used include [6, 11, 10, 8, 12]: SUM; MIN; MAX; COUNT; Distinct

count; GroupByThenMax; GroupByThenMin; GroupByThenAvg; GroupByThenStdev; Group-

ByThenCount; TimeWindowEntityAgragateByEntity; TimeWindowPeriodAgragateByEntity; Ag-

gregatebySpatial; AggragatebySpatialTime.

For example, given a data set with numeric values for each quarter, we could use a transfor-

mation for sum all the quarters, e.g. SUM(Q1, Q2, Q3, Q4). Furthermore, we can notice that SQL

functions might easily manage most of those functions.
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2.4.3 Evaluation

Evaluation is important to understand the behaviour of algorithms. For the analysed projects, the

measure used was classification accuracy [6, 12, 11, 8, 10, 9]. The accuracy is simple to calculate;

it is the ratio of the correct predictions to the total number of input samples. A important issue

needs to be considered when using accuracy on classification problems. This evaluation method

can be misleading if the data set is not well balanced. In some cases the data set can have 90% of

class A and 10% of class B, being harder to classify B than A, and the problem is that an accuracy

which would be very good in balanced data sets (e.g. 80%) is very bad in this example. To address

this issue, in Explore Kit [8] the percentage of error reduction is also analysed.

2.4.4 Data

Different data sets from different sources have been used in the related work. Those sources are:

UCI Repository - David Aha started the UCI repository in 1987. It is commonly used for students,

educators and researchers. Cognito [10] and AutoLearn [9] use UCI data sets.

Kaggle - This is a data science community, owned by Google that is known for the competition

to solve challenges. Deep Feature Synthesis [6] and One button machine [11] used the

KDD cup 2014 challenge to evaluate their approach.

OpenML - A platform for open science in ML, it contains a large number of data sets. Data sets

from that platform was used by ExploreKit [8].

Others - Some papers used specific data sets, including company and compiler data sets. The

One button machine [11] used Outbrain and Bimbo group company’s data set. Automatic

Feature Generation for Machine Learning-Based Optimising Compilation [12] used data

concerning GNU Compiler Collection.

All the related work uses supervised learning [6, 11, 10, 8, 9, 12].

2.4.5 Algorithm

There are several algorithms today for being used, however, we notice a preference between Ran-

dom forest and Decision tree on all projects studied [6] [11] [10] [8] [9] [12]. Decision trees are

relevant when it is necessary to explain a particular decision. The decision tree is classic for visual

explanation and easy to understand; it solves classification and regression problems. For example,

in the figure 2.7, we demonstrate the result of the algorithm decision tree run in a data set, which

contains only the size of an array as a feature and the model classifies the item between two algo-

rithms heap sort and merge sort. For Decision tree the node means a feature, the branches show a

decision and the leaves are the results [2].

Random forests are also a popular method used to solve classification and regressions prob-

lems. The model of Random Forest creates an entire forest of random and uncorrelated decision
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Figure 2.7: Example of Decision tree aids the decision between two algorithms

trees to present a better predictive result. The Decision tree in most of the cases have a high

variance, and it happens when we extract different training and test sets from the same data set,

resulting in different results.

Sadly, the Decision tree can cause poor performance for a new data set. However, Random

forest is eager to solve the weakness of Decision tree reducing the variance and bias errors, by

choosing a subsample of the feature space for each split. [3]

2.4.6 Results analysis

In this section, we summarise the results of the related papers. They are discussed separately

because they are not all relatable.

ExploreKIT [8] - The authors built four approaches and the best approach was the ML_full,

obtaining an average error reduction of 17.4%–29.3%.

Deep Feature Synthesis [6] - The Data Science Machine, also known as Deep Feature Synthesis,

was one of the first projects with successful results on automated feature generation. The

algorithm has been tested in Kaggle competitions and it achieved 90% of the best score

achieved by any competitor in two out of three competitions. The best performance was on

KDD15 challenge beating 86% of other competitors.

OneButton Machine [11] - The One Button Machine uses two approaches. It was tested in differ-

ent databases, one of them was the KDD 2014 cup for the comparison with the Deep feature
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synthesis project. The One button machine compare their results with the results of data

scientists in the KDD 14 Challenge, and their results are in the top 17% while the DFS was

in the top 30%. The results show that these approaches are competitive with a large number

of experienced data scientists.

AutoLearn [9] - The Autolearn algorithm aims to use fewer features for better accuracy. It

achieved 13.28% and 5.87% improvement in terms of accuracy, against the original fea-

tures. It also obtained competitive results when compared with ExploreKit and others. The

algorithm was tested on 25 data sets.

Cognito [10]- It obtained improvements between 7% - 40% compared with the original features

on different data sets.

Automatic feature generation for machine learning based optimising compilation [12] - The goal

of this project is to use AutoML for detecting the best loop unrolling in GCC 4.3.1. The

novel algorithm applied in this project was able to achieve 75% of the maximum velocity

of the compiler on average. The benchmarks show that the algorithm improved 35% of the

speed.

In this thesis will be used one of the Bayesian tests presented in the article, called Bayesian

correlated t-test that will be used to compare performance between the results obtained by 10-fold

cross-validation and the baseline of each fold.

2.4.7 Programming languages

The programming languages used in the related work were Python, Java and C/C++. There is no

motivation for the selection of the programming language. Thus, the discussion aboutthe better

language for Automated Machine Learning is open.

The choice of programming language is not relevant for this thesis. However, the choices in the

related work are well divided. Two papers use Python, Deep Feature Synthesis [6] and AutoLearn

[9], two papers use Java, Cognito [10] and ExploreKit [8], and the only one that uses C/C++ is

Automatic Feature Generation for Machine Learning Based Optimizing Compilation [12]. There

is another one which that did not identify which programming language was used [11].

The Vision Mobile company released a report in April 20172, showing the popularity of each

language for machine learning. However, it can change depending on the background of the in-

dividual in charge of the development process. For example, Python was the prefered language

for machine learning on 38% of answers and used mostly by data scientists and junior profession-

als. Front-end developers use javascript with 16%, Electronics engineers prefer C/C++ (8%), data

analysts and statistician prioritise R (14%). In conclusion, there is no correct language.

2Available at https://visionmobile.com/reports/state-developer-nation-q1-2017

https://visionmobile.com/reports/state-developer-nation-q1-2017
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Chapter 3

Systematic feature generation

In this chapter, we present our approach for systematic feature engineering. This method will be

used as feature generation method for the meta-learning approaches used in the following chapters.

We also present an exploratory data analysis of the empirical results obtained with this method.

The approach was implemented in Python1, using some libraries to assist the development, such

as Itertools 2, Scikit Learn 3 and Pandas 4. The ML algorithm used was Random Forest with 100

estimators and all default Scikit-learn parameters . The evaluation metric used was accuracy and

it was estimated with stratified cross-validation.

3.1 Experimental Setup

We analysed 100 supervised classification data sets collected from the OpenML platform [5]. We

selected data sets with 30 or fewer classes (Figures 3.1 and 3.2 ). Since we have decided to focus

on operations on numerical variables, we decided to remove all variables which are not numerical

3.2. For example, considering we have a data set with 20 attributes on the total, but only 5 of them

are numerical attributes, our original data set will contain only the 5 numerical attributes. The

data sets were collected from the OpenML platform [5]. The full list of data sets can be found in

appendix A.

3.2 Approach

Our approach can be applied to variables of any nature. However, for simplicity, in this project,

we will focus on numerical variables, without loss of generality.

1https://www.python.org/
2https://docs.python.org/3/library/itertools.html
3https://scikit-learn.org/stable/ - version 0.19.2
4https://pandas.pydata.org/
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Figure 3.1: Analysis of data sets without eliminating highly correlated features.

Formally, given a data set D := (X ,Y ), with a target variable Y , and a set of variables X :=

(x1,x2, . . . ,xm)⊆Rm, where m is the number of variables. Additionally, given a binary function τo :

R×R→ R our approach generates a set of new features Ex containing all possible combinations

of the original variables, without loss of generality, using that function:

Ex =
{

f(o,i, j)| f(o,i, j) = τo(xi,x j),∀i6= j∈{1,...,m},o
}

(3.1)

After the generation of new features, the approach combine the new features to the original

features, X+ = (X ,Ex), then for each original data set we have D+ = (X+,Y ). This approach is

expected to generate a very large number of variables, many of which may be redundant. For

instance, if the function used to combine variables is commutative (e.g. product), then Eo,i, j
x =

ro(xi,x j) = ro(x j,xi) = Eo,i, j
x , which means that these two new features are redundant. Thus, we

apply a filter feature selection method to eliminate redundant features in Ex [7]:

Xx, f ilt = f ilter(X+) (3.2)

3.3 Exploratory data analysis

Figure 3.1 shows the distribution of the number of features in the data sets, before and after the

addition of new features. The first plot shows the distribution of classes, the majority of the data

sets has between 2 and 5 classes, but there is an outlier, counting 26 classes. In the same figure,

it is possible to observe the difference between the features on the original and the extended data

sets.

The extraction of features does not take too much time. The algorithm to create new features

and evaluate the original and the new data set for the 100 data sets, took 4 hours. The process

generated 132.206 features, which would be impossible for a human to perform in such a short
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Figure 3.2: Analysis of the data sets with highly correlated features removed.

time. However, a large number of new features is expected. For each binary function, in a data set

with m variables, a combination of m, two-by-two, will be generated. For example, the original

hill-valley data set has 100 numeric features. The extension data set we generated has 19,900

features in total.

Figure 3.2 shows the distribution of the number of features in the data sets, before and after

the extension after applying a filter-based feature selection method, as described in Section 2.2.2.

In this case, the original hill-valley data set has 100 numeric features, and after the extension

and filtering process, it results in 9902 features on the total. The elimination of highly correlated

features can reduce the computational cost of our model.

3.3.1 Base-level performance

We analysed the base-level performance on the two versions of the extended data sets, with and

without feature selection. The data was classified with two options 1 and 0, which 1 is when

the systematic feature generation approaches have a better performance than the original data set

and 0 when the original data set has a better performance than the extended data set. For all 100

data sets analysed we have a balanced results on both versions. For the filtered strategy, we see

52 improvements from the original data set (class 1) and 48, which the original is better than

the extended features (class 0). For the non-filtered strategy, we see 51 improvements from the

original data set (class 1) and 49, which the original is better than the extended features (class 0).

We see a slight difference between them. More details are available in Appendix A.

However, we can see a more significant distinction in the difference between the accuracy

of the original data set and extended data set. In the filtered data set, we have a maximum im-

provement on the accuracy of 48.5 percentage points and a maximum reduction of 9 points. For

the non-filtered strategy, we had a maximum improvement on the accuracy of 40.5 points and a

maximum reduction of 15.5 points.
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Figure 3.3: Exploratory analysis of the delta between the original accuracy vs extended accuracy.

Analysing the average for both strategies considering the 100 data sets, the systematic feature

generation results in an overall improvement of 0.97 points for the filtered strategy and 0.68 points

of improvement for the non-filtered strategy. The third quartile shows that we obtain gains of 0.83

and 0.57 percentage points in the on the filtered and non-filtered strategies, respectively.

In spite of this, there are many data sets in which the extension does not lead to improvements,

which means that, given a data set, it is necessary to decide whether it is worthwhile to generate

new features or not. We address this problem with meta-learning approaches in the following

chapters. The filtered extended data set leads us to conclude that filtering high correlated features

lead to a better model. Also, we can conclude that the systematic combination of features using

simple operations can lead us to better predictive models.



Chapter 4

Meta-learning to select complete sets of
features

In this chapter, we present our meta-learning approach to select complete sets of features. In the

previous chapter (Chapter 3), we observed that many data sets after the extension did not lead to a

better model, leading us to a new problem: Can a meta-learning approach predict when a method

for automatic generation of features leads to better predictive models?

4.1 Problem definition

The problem is to anticipate whether the generation of automatic features will generate any gain

in the performance of the model or not. Besides aiming to improve accuracy, we can reduce the

computational resources required for learning the models.

4.2 Approach

We are going to address the problem using a meta-learning approach, but the typical meta-learning

approaches, meta-features characterise a single data set. In our case, we have two data sets: the

original and the extended data sets. Most importantly, we expect that it is the combined ratio in the

meta-features between the original and extended meta-data that determines whether the algorithm

will be able to obtain a better model on the extended one or not.

Given the sets of data sets {D1,D2, . . . ,Dm}, the sets of combination between original data and

new features
{

X+
1 ,X+

2 , . . . ,X+
m
}

, the sets of extended data sets
{

D+
1 ,D

+
2 , . . . ,D

+
m
}

and for each p

a function m fi that computes a given meta-feature (e.g., average correlation), we apply it to the

original data set, XX
i, j =m f j(Di)∀i, j, to the extended one, XX+

i, j =m f j(D+
i )∀i, j and then we combine

using the function, X (X ,X+)
i, j = T (XX

i, j,X
X+

i, j ). The function used to combine the characteristics of

21
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the original and derived data sets should quantify the differences between them, so a ratio or a

subtraction are suitable functions, and in this thesis, we choose the ratio.

For all data sets, all relevant information was recorded, making it possible to compare the

original and the extended data sets, both in terms of their characteristics as well as in terms of

the performance of the algorithm. The meta-level class attribute holds the final results: 1 if it is

worthwhile to do the automatic generation of features or 0 if the algorithm should be applied to

the original data set. We want to apply the meta-learning approach to predict when a method for

the systematic generation of features leads to better predictive models.

4.3 Experimental setup

For the generation of meta-features, we used the Meta-Feature Extractor (MFE) [15] R package.

It provides five distinct groups of meta-features: general, statistical, information-theoretic, model-

based, landmarking. However, we do not use all the groups or variables for this experiment, and

we have some restrictions in the selected groups.

The domain of information-theoretic group is only for categorical data [15], and in our exper-

iment, we used only numerical data. This lead us to eliminate the whole group. The Landmarking

group measures the performance of a decision tree for each data set, in our case it leads to a sig-

nificant computational cost, and, thus, we decided to eliminate these meta-features as well for this

project. Nevertheless, we believe they may be useful and should be considered in future extensions

of this work.

Additionally, as we have a reasonable variety of data sets, some meta-features generated in-

valid results. On that case, meta-features with more than 10% of not available or not appli-

cable were also eliminated, namely: general.numtocat, statistical.sdratio, statistical.gmean.sd,

statistical.gmean.mean, statistical.wlambda, statistical.can cor.sd, statistical.skewness.sd, statisti-

cal.nrcorattr, statistical.kurtosis.sd, statistical.cor.sd, statistical.cor.mean, statistical.skewness.mean,

statistical.kurtosis.mean, statistical.hmean.sd. Most of these are based on standard deviation or

mean and were caused by divisions by zero, as expected [15].

Also, in order to remove noise, we applied a drop of highly correlated features, performed with

a threshold of 95% for meta-features of the original data set. For each data preparation operations,

we performed two hypothesis, the first was performed for the base data set without filtering at the

base level, and the second hypothesis we added the filter mentioned above, at the base level data

set.

4.4 Results

Our meta-learning approach can predict from the metadata of the original data set and extended

features, whether using the new features produces a better model, as we can see from the model
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Table 4.1: Performance achieved by applying the meta-learning approach.

No filter Filtered
Average (%) sd (+/-) Average (%) sd (+/-)

Base 60.94 (0.21) 61.93 (0.30)
Base - add ratio 62.14 (0.19) 56.38 (0.31)
Base - drop NA 60.83 (0.23) 62.91 (0.33)
Base - drop correlations 58.85 (0.21) 60.04 (0.34)
Base - add ratio
& drop NA

60.92 (0.19) 62.18 (0.33)

Base - add ratio
& drop correlations

55.05 (0.24) 61.09 (0.37)

Base - add ratio
& drop NA
& drop correlations

57.14 (0.25) 61.20 (0.37)

performance in table 4.1. Recalling that our baseline is 52%, and we are using 10-fold cross-

validation, our approach obtained an accuracy of 62.91% ( +/- 0.33) when the data set to drop the

highly correlated features.

For the table 4.1 we can consider the base data as the original XX
i, j and the extended XX+

i, j

metadata on the same data set. From this base meta-data, we performed different data preparation

operations, remove all not available generated by the MFE package and remove highly correlated

features, and most importantly we added the combination ratio as the equation X (X ,X+)
i, j . We applied

these preparation operations to the two variants of the meta-datasets filter and without the filter.

However, this process still needs the generation of features to compute the meta-features.

This leads to additional computational cost. Even if this is significantly smaller than the cost

of learning the models, we need to investigate if successful recommendations can be obtained

without the generation of the new features. In other words, if the meta-learning process uses only

the metadata of the original data set to predict whether or not to add new features.

To predict when or not to add the new features, we apply several approaches to the original

data set, to be able to remove any noise that impacts the performance of the model. Therefore,

considering the original data set, we extracted all meta-data as we saw on the previous section

XX
i, j =m f j(Di)∀i, j, including only the general, statistical and model-based groups of meta-features.

Results in table 4.2 show that it is possible, by using only the meta-data of the original data set

to predict when the method for automatic generation of features leads to better predictive models

Table 4.2: Performance achieved using only the metadata of the original data set.

No filter Filtered
Average (%) sd (+/-) Average (%) sd (+/-)

Base 63.14 (0.26) 59.04 (0.27)
Base - drop NA 58.94 (0.23) 61.11 (0.33)
Base - drop correlations 66.96 (0.25) 62.95 (0.24)
Base - drop NA and correlations 65.05 (0.25) 61.31 (0.31)
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Table 4.3: Loss impact for the proposed approaches.

Average accuracy loss
Non-filtered approach

Average accuracy loss
Filtered approach

Our approach 1.11 0.91
Baseline 0.54 0.55
Upper bound 1.76 2.07

without applying it. We come to this conclusion by comparing the results of the meta-learning

approach with the majority class. There are 51 cases for the unfiltered data set and 52 cases for

the filtered data set in which the addition of features improve the model. Thus, considering that

we have 100 data sets, the majority class baseline is 51% and 52% for the unfiltered and filtered,

respectively. Our best result improved by 15 percentage points on the majority class, achieving

66.96%". Based on this successful result we conclude that the meta-learning approach can predict

whether to use automatic feature generation, even without computing the new features.

Using the correlated Bayesian t-test it shows us the probability for each side of the rope,

considering applying the rope min and max as +/- 0.05 [1]. The results show the comparison

between our approach versus the baseline, revealing that our approach statistically can be better

than our baseline in 88.09% of the cases, the baseline will be better in 11.70% of the cases, and

a draw happens on 0.19%. This confirms that the meta-learning approach proposed can predict

whether the features generated systematically will lead to more accurate models.

Figure 4.1: Accuracy loss between base-learning and meta-learning.

4.4.1 Base level

It is also essential to analyse the negative impact of our approach at the base level. In other words,

if we miss a prediction, how many percentage points we lose in the accuracy of the base-level

models. For this, we can analyse Table 4.3, which presents the average loss of our approach.
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In the table 4.3, it is possible to see our approach, the baseline and the upper bound. The

baseline is calculated from the most frequent class, that is, the average loss if we choose the most

frequent class. This baseline method has a loss close to 0.54 percentage points. Our approach has

an approximate average loss of 1.0 percentage point and the upper bound rate of 1.91 percentage

points.

Although both approaches generate positive results, the meta-learning approach has higher

loss than the baseline. This observation is not aligned with the meta-level evaluation. However,

according to the boxplot in figure 4.1, it is possible to assume that this result is due to a single

outlier. The Hill-valley data set had a base level gain of 48.28 percentage points, after our ap-

proach. When predicting if the new features could generate a better performance to the model, the

meta-learning approach made an incorrect prediction. The generated model could not predict that

generating new features for the Hill-valley data set would generate a better model than with the

original data set.

Disregarding this significant loss generated by the Hill-valley data set, we can verify that our

average loss is 0.42 percentage points. We believe that our approach needs a more meaningful

variety of data sets to compose its metadata, mitigating some outliers as the Hill-valley.
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Chapter 5

Meta-learning to select individual
features

In the previous chapter (Chapter 4), we showed that it is possible to adapt a meta-learning approach

to predict when a method for automatic generation of features leads to better predictive models.

Here, we address a more complex problem: Can a meta-learning approach predict when a feature

leads to better predictive models?"

5.1 Problem definition

The generation of features using the expand-reduce method generates a large number of features.

Unfortunately, not all features increase the performance of the model. It is necessary to perform

feature selection to avoid noise in the data set or even a loss of performance in the generated model.

Feature selection is applied after feature generation. We saw that it is possible to predict when a

method for automatic generation of features leads to better predictive models. To further help in

this process, we will use the meta-learning approach to predict whether an individual feature will

bring some performance improvement to the model.

Use meta-learning for an individual feature is a very complex problem, so we are going to

address a simpler one: given a filtered data set, can the meta-learning approach predict whether an

individual feature leads to a better predictive model.

5.2 Approach

Our approach goal is to predict when an individual feature leads to a better predictive model.

However, this is a complex problem, because meta-learning is typically applied in a data set and

not in an individual feature. In this case, we simplified the problem using some meta-features that

can be applied for an individual feature.

27
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Given the sets of data sets {D1,D2, . . . ,Dm}, the sets of combination between original data and

new features filtered
{

Xx, f ilt
1 ,Xx, f ilt

2 , . . . ,Xx, f ilt
m

}
, then for each extended set of features we have

D f ilt = (Xx, f ilt ,Y ). Thus we have the sets of filtered extended data sets
{

D f ilt
1 ,D f ilt

2 , . . . ,D f ilt
m

}
and

for each x derived feature, a function m fi that computes a given meta-feature Xx
i, j = m f j(xi)∀i, j,x.

We extract the meta-features for each feature x when the feature is not in the data set D f ilt , so

we have XXext−x

i, j = m f j(D
f ilt−x
i )∀i, j,x. After all we combine the using the function, X (x,Xx, f ilt)

i, j =

T (Xx
i, j,X

Xx, f ilt

i, j ). The function used to combine the characteristics of the meta-data Xx
i, j and XXext−x

i, j

should quantify the differences between them, so a ratio or a subtraction are suitable functions. In

this thesis, we combined by ratio the characteristics of the x and ext− x to get our final meta-data.

The traditional meta-learning approaches, meta-features characterise a single data set. In our

case, we have a single feature and we want to decide whether a single feature is useful or not. In

this project we followed a simple approach, where we selected traditional meta-features that can

be used for that purpose, meta-features which fits in the following characteristics: Argument:=

*P or 1P + T, Task:= Classification, Domain:= Numeric. However, in the future, this may lead

to different approaches. For understanding the patterns of each feature, we extracted the meta-

features of x and also extracted the meta-features of the data set when it does not have the specific

features ext− x.

5.3 Experimental setup

Our experiment was conducted in R an Python, and our approach has several challenges and

restriction, for simplicity, we are not proposing new metadata variables, we are only using the

metadata provided by the MFE library [15] and regarding the case of an individual feature, we

only have a few variables that can be applied for an individual feature because meta-learning is

prepared to work with a set of variables and not an individual feature. Considering that P is

the predictive attribute and T is the target, we could extract the following meta-features for x:

attrToInst,catToNum, instToAttr,nrAttr,nrBin,nrCat,nrInst,nrNum,numToCat. All of them is

well described in the paper [15].

For the ext− x set, we extract all the features contained in the groups general, statistical and

model-based, as we have done before on the previous extractions for the full data set. After

collecting our meta-data, we need to test how it performs. Since many different features can

extend a data set, this means that multiple meta-level examples will be generated from a single data

set. To have a reliable estimate of the performance of the approach, we split the meta-examples

between training and test sets, using cross-validation with 10 folds divided by groups of data

sets. In other words, one specific data set cannot have some part of the data on the train split and

another part on the test split. We believe if this is allowed, the performance of the model would be

optimistic, and the samples for train and test would not be independent. Given that the approach

is computationally heavy, we were only able to collect results for 93 out of the 100 data sets.
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Table 5.1: Comparison between two hypothesis for the same approach

Accuracy AUC - ROC
Average (%) sd (+/-) Average (%) sd (+/-)

First set of meta-features 61.56 (0.35) 50.99 (0.37)
Second set of meta-features 65.52 (0.20) 59.80 (0.42)

5.4 Results

Concerning the class distribution for this meta-dataset, we have a reasonably balanced data. In

total we have 23,930 features, which generate one meta-example each. Out of these, 14,640

features should be discarded and 9,290 should be kept. Thus, the baseline error is 39%.

This first set of meta-features uses the ratio combination of m f ex and m f eext−x and it obtained

61.56% of accuracy with a standard deviation of +/- 0.35, and an AUC - ROC of 50.99% (+/- 0.37).

See the table 5.1. Therefore, we applied a second set of meta-features for the same approach,

instead of using only the combination of m f ex and m f eext−x we also aggregate in the same data

set the metadata of m f ex and m f eext−x, resulting in a data set with more information about the

feature. Considering this metadata set, we tested the second set of meta-features and reach in an

accuracy of 65.52% and standard deviation of +/- 0.20, while our AUC - ROC has 59.80% (+/-

0.42).

To statistically prove results we used the correlated Bayesian t-test [1], considering using

the rope min and max as +/- 0.05 including that for the left the baseline is the best approach.The

results show the comparison between our approach versus the baseline, revealing that our approach

statistically can be better than our baseline in 93.93% of the cases, the baseline will be better in

5.94% of the cases, and a draw happens on 0.12%.

Considering the restriction that we have, we can consider it as a satisfactory result that needs

to be improved in further research. We are aware that for large data sets, our approach takes too

much time, and maybe another approach can deliver a better result on time. We assume that the

simplification we have made transforms the practical utility of this approach, ineffective. However,

it allows us to answer our question about whether it is possible to use the meta-learning approach

to decide to use a feature or discard it.

5.4.1 Base level

Although the results at the meta-level are promising, it is necessary to see how the base-level mod-

els learned on the selected features perform. Our approach does not make predictions concerning

Table 5.2: Comparison between accuracy of the approaches

Average loss/gain (%) Max (%) Min (%)
Selected vs All -0.72 10.4 -24
Selected vs Original -0.03 36.7 -7.3
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sets of features but a single feature and we have collected the performance of each feature for

each data set, so we decided to use only the features that supposedly lead to an improvement in

performance. This approach needs further research to address this issue.

Unfortunately, using only the features that our approach suggests, the average accuracy dropped

by 0.72 percentage points compared to applying all generated features. Furthermore, the same

method still dropping on an average of 0.043 percentage points compared to the original data set.

See figure 5.1 that illustrates the accuracy difference of the two approaches.

According to table 5.2, the selected features had a maximum loss of 24 percentage points and

a maximum gain of 10.4 percentage points compared to the data set with all the features created.

However, comparing the selected results with the original data set results, we have a maximum

loss of 7.3 percentage points, while we have a maximum gain of 36.7 percentage points.

Again, our biggest improvement was in the Hill-valley data set reaching an accuracy of 93.48%,

losing -3.79 percentage points when compared to all generated features, which has an accuracy of

97.27%, and if compared to the original data set it is a gain of 36.7 percentage points. See detailed

results in Appendix A.

These results indicate that even with the worse result compared to using all the features, and

we can sometimes improve the results of the original data set and the extended data set. We do

have a higher average loss with this approach, but it shows us that the approach can be improved

and maybe we can overcome some results. The overall results indicate that even we collected

promising results on the meta-level, it leads us to a worse result on the base-level. This is prelimi-

nary work and several challenges were addressed with simple solutions that could cause some loss

of performance, as the selection of the final set of features and data characterisation. However, it

shows us that the approach can be improved and it needs further investigations.
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Figure 5.1: Comparison of the accuracy from selected features, complete set of features and
original features
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Chapter 6

Conclusions and Future Work

Preparing a data set correctly usually takes a significant amount of time and it requires substantial

knowledge about the domain. An essential task on this process is feature engineering, which

consists of generating new features from the existing ones. This is one of the most complex and

time-consuming tasks today.

There is an increase of research on feature engineering over the last years, with a growing

interest in automated machine learning. Our results show that automated approaches can extract

many features from the raw data set independently of the problem and domain knowledge, often

leading to more accurate models.

Previous research has focused on applying different operations on the raw data set. In this

thesis, we propose a meta-learning approach to automate the process of feature engineering. Thus

given a data set we systematically generate a set of new features, and as it can generate a vast

number of features we use a filter to drop the highly correlated features using the filter correlation

method.

Our approach uses meta-features that describe the extension and the original data sets, and a

combination of both to quantify the differences between them. In this project, we used ratios for

that purpose. This approach was used to answer: "Can a meta-learning approach predict when a

method for the systematic generation of features leads to better predictive models?". The empirical

study carried out focuses only on numerical variables. However, the approach can be applied to

variables of any nature.

We developed another meta-learning approach to the problem of predicting whether a new fea-

ture will lead to more accurate models. This problem has the additional challenge of characterising

a single variable, while typical meta-features characterise data sets. We extracted the information

for each new feature and the extension data set without the specific feature, also combining them

to collect the difference between the data sets. This approach was used to answer our question

"Can a meta-learning approach predict when an individual feature leads to a better predictive

model?"

33
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6.1 Results

This thesis proposed to identify the effects of automated feature generation using meta-learning

as the approach. Based on empirical results, and we can assume that a systematic combination of

features using simple operations can lead to better predictive models. Applying a simple filter of

highly correlated features it is possible to improve the model performance.

Additionally, the empirical results show that the meta-learning approach can predict when a

method for the systematic generation of features leads to better predictive models. The results

also indicate that the meta-learning approach can predict when a method for automatic generation

of features leads to better predictive models without applying it, using only the original data set

without the metadata of the new features.

On the other hand, we did not get satisfactory results on the problem of predicting whether a

feature will lead to better models. Even though the results at the meta-level were promising, the

selected features did not lead to better base-level models.

However, this is a too complex problem and we decided to simplify, causing some limitations

to the problem. Limitations such as the characterisation of the data and the computational cost to

generate a meta-data of each feature. In addition, the results indicate that there is more research

to be done for the selection of features using the meta-learning approach, applying different tech-

niques for the same approach.

6.2 Future Work

For future work, we see the attempt to eliminate some limitations in the current work.

For the selection of individual features, we would like to address a more realistic approach:

instead of removing only a single feature, remove a random fraction of features from the data set,

repeating the process many times. Thus, avoiding the restriction, we had to generate metadata for

a single feature, as investigate if it is possible to build new meta-features for an individual feature

or a new approach for the selection of features.

New approaches should also seek to mitigate time consumption in metadata generation, mak-

ing this approach more practical. Moreover, it would be good to implement other feature gen-

eration transformations such as unary and higher-order transformations. Additionally, we could

combine the feature generation tools with the meta-learning approach cited here.

During the process of analysis of this work, it was possible to see the impact that a single data

set generates on the final result, so an obvious step would be to add new data sets, mainly data sets

with a larger volume.

Here, we only used the Random Forest algorithm. However, there are many algorithms that

we can use for this problem and should be considered to make a comparison in future work.



Appendix A

Base level accuracy

The tables A.1, A.2, A.3 are related with the original and extended features without the filter of

highly correlated features. The tables A.4, A.5, A.6 is about the original and extended features

with the filter of highly correlated features. The tables A.7, A.8, A.6 is about the accuracy of

each data set using only the individual features that supposedly would lead a better performance

to the model.
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Table A.1: Accuracy of each data set tested without filter on base-level.

Data sets Extended Original Extended vs Original Class
abalone 63.97 63.44 0.53 1
aids 63.33 60 3.33 1
airlines 59.94 60 -0.06 0
analcatdata_creditscore 98.89 98.89 0 0
authorship 98.1 99.17 -1.07 0
autoMpg 87.92 88.67 -0.75 0
autoUniv-au7-700 48.61 48.99 -0.38 0
backache 86.28 86.75 -0.47 0
blood-transfusion-service-center 68.06 66.6 1.46 1
bondrate 67.81 63.57 4.24 1
breast-w 96.01 96.29 -0.28 0
churn 96.28 95.74 0.54 1
cmc 52.34 51.79 0.55 1
credit-g 69.9 70.8 -0.9 0
cyyoung 82.97 82.75 0.22 1
diabetes 76.43 75.78 0.65 1
diabetes130US 35.59 41.25 -5.66 0
ecoli 86.7 87.57 -0.87 0
eeg-eye-state 58.64 59.21 -0.57 0
electricity 69.31 69.41 -0.1 0
glass 74.61 82.13 -7.52 0
haberman 67.38 64.78 2.6 1
heart-statlog 83.33 84.07 -0.74 0
hepatitis 75.03 75.03 0 0
houses 94.67 94.28 0.39 1
kddcup09_upselling 92.44 92.47 -0.03 0
letter 97.28 96.57 0.71 1
mammography 98.83 98.75 0.08 1
morphological 99.85 99.85 0 0
page-blocks 96.89 96.75 0.14 1
phoneme 91.17 91.36 -0.19 0
prnn_crabs 99.5 80 19.5 1
profb 63.4 59.67 3.73 1
rmftsa_sleepdata 36.76 36.25 0.51 1
satellite 99.33 99.29 0.04 1
satimage 91.66 91.85 -0.19 0
sonar 69.95 73.72 -3.77 0
tae 81.14 80.43 0.71 1
teachingassistant 63.99 65.2 -1.21 0
titanic 64.4 64.17 0.23 1
vehicle 78.25 75.99 2.26 1
vinnie 80.47 80.47 0 0
volcanoes 96.37 96.44 -0.07 0
wall-robot-navigation 99.58 99.76 -0.18 0
wholesale-customers 92.26 91.82 0.44 1
wine 96.14 96.73 -0.59 0
yeast 58.85 59.05 -0.2 0
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Table A.2: Accuracy of each data set tested without filter on base-level [continuity].

Data sets Extended Original Extended vs Original Class
allbp 97.77 97.67 0.1 1
thyroid-ann 99.79 99.58 0.21 1
autos 69.15 67.83 1.32 1
optdigits 97.68 97.69 -0.01 0
engine 81.44 86.2 -4.76 0
calendardow 58.88 58.11 0.77 1
led-display-domain 71.51 71.77 -0.26 0
smartphone-based
_recognition_of_
human_activities

96.67 97.22 -0.55 0

steel-plates-fault 97.16 91.52 5.64 1
volcanoes-d4 94.04 94.2 -0.16 0
BNG_breast-w 98.61 98.61 0 0
BNG_cmc 52.87 52.02 0.85 1
qsar-biodeg 85.4 84.64 0.76 1
kc2 80.19 80.79 -0.6 0
ozone-level-8hr 93.45 92.66 0.79 1
hill-valley 97.27 56.78 40.49 1
wdbc 96.85 96.15 0.7 1
climate-model
-simulation-crashes

91.12 91.31 -0.19 0

spambase 93.59 94.09 -0.5 0
ilpd 68.24 68.26 -0.02 0
kc1 83.46 83.13 0.33 1
pc1 93.51 93.7 -0.19 0
pc3 90.08 89.95 0.13 1
pc4 91.29 91.02 0.27 1
banknote
-authentication

99.85 99.34 0.51 1

mozilla4 84.89 84.55 0.34 1
pendigits 99.37 99.07 0.3 1
balance-scale 84.5 68.42 16.08 1
cardiotocography 100 100 0 0
first-order
-theorem-proving

57.71 57.66 0.05 1

wilt 98.39 98.16 0.23 1
thyroid-allhyper 70.29 70.68 -0.39 0
thyroid-allbp 70.29 70.68 -0.39 0
thyroid-allhypo 70.29 70.68 -0.39 0
thyroid-allrep 70.29 70.68 -0.39 0
thyroid-dis 70.29 70.68 -0.39 0
satellite_image 89.9 89.68 0.22 1
seismic-bumps 91.26 92.19 -0.93 0
segment 98.1 97.88 0.22 1
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Table A.3: Accuracy of each data set tested without filter on base-level [continuity].

Data sets Extended Original Extended vs Original Class
breast-tissue 51.01 66.48 -15.47 0
credit-approval 75.12 73.94 1.18 1
banana 89 89.68 -0.68 0
pc1_req 67.46 66.49 0.97 1
parkinsons 84.06 83.59 0.47 1
iris 96 96.67 -0.67 0
jungle_chess_2pcs_raw_endgame
_complete

71.61 68.22 3.39 1

oil_spill 95.19 95.83 -0.64 0
thoracic-surgery 83.62 84.04 -0.42 0
jm1 79.18 79.05 0.13 1
JapaneseVowels 93.23 92.52 0.71 1
eucalyptus 22.13 20.79 1.34 1
allrep 98.54 97.8 0.74 1
user-knowledge 90.73 90.2 0.53 1
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Table A.4: Accuracy of each data set tested with filter on base-level.

Data sets Extended Filtered Original Filtered Extended vs Original Class
abalone 64.35 54.66 9.69 1
aids 60.83 60 0.83 1
airlines 59.81 60 -0.19 0
analcatdata_creditscore 98.89 98.89 0 0
authorship 98.81 99.17 -0.36 0
autoMpg 89.71 86.64 3.07 1
autoUniv-au7-700 46.29 49.28 -2.99 0
backache 85.63 86.75 -1.12 0
blood-transfusion
-service-center

67.13 67.53 -0.4 0

bondrate 64.38 63.57 0.81 1
breast-w 95.87 96.29 -0.42 0
churn 95.84 94.96 0.88 1
cmc 52.54 51.79 0.75 1
credit-g 69.9 70.8 -0.9 0
cyyoung 83.72 84.97 -1.25 0
diabetes 76.3 75.78 0.52 1
diabetes130US 44.88 41.25 3.63 1
ecoli 86.93 87.89 -0.96 0
eeg-eye-state 57.03 54.57 2.46 1
electricity 68.92 69.41 -0.49 0
glass 74.47 82.13 -7.66 0
haberman 69.36 64.78 4.58 1
heart-statlog 82.22 84.07 -1.85 0
hepatitis 75.03 75.03 0 0
houses 94.63 94.26 0.37 1
kddcup09_upselling 92.46 92.47 -0.01 0
letter 97.24 96.57 0.67 1
mammography 98.84 98.75 0.09 1
morphological 99.85 99.75 0.1 1
page-blocks 97.09 96.77 0.32 1
phoneme 91.52 91.36 0.16 1
prnn_crabs 99.5 75.5 24 1
profb 62.8 59.67 3.13 1
rmftsa_sleepdata 36.25 36.25 0 0
satellite 99.45 99.29 0.16 1
satimage 90.96 90.08 0.88 1
sonar 70.11 73.72 -3.61 0
tae 79.1 80.43 -1.33 0
teachingassistant 60.66 65.2 -4.54 0
titanic 64.55 64.17 0.38 1
vehicle 78.61 75.53 3.08 1
vinnie 80.98 80.47 0.51 1
volcanoes 96.34 96.44 -0.1 0
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Table A.5: Accuracy of each data set tested with filter on base-level [continuity].

Data sets Extended Filtered Original Filtered Extended vs Original Class
wall-robot-navigation 99.65 99.82 -0.17 0
wholesale-customers 91.35 91.82 -0.47 0
wine 96.7 96.73 -0.03 0
yeast 58.65 59.19 -0.54 0
allbp 97.61 97.43 0.18 1
thyroid-ann 99.66 99.58 0.08 1
autos 66.37 70.27 -3.9 0
optdigits 97.77 97.69 0.08 1
engine 84.36 86.01 -1.65 0
calendardow 57.36 59.38 -2.02 0
led-display-domain 71.7 71.77 -0.07 0
smartphone-based
_recognition_of_
human_activities

97.22 97.22 0 0

steel-plates-fault 97.16 93.62 3.54 1
volcanoes-d4 94.06 94.2 -0.14 0
BNG_breast-w 98.62 98.61 0.01 1
BNG_cmc 52.08 52.02 0.06 1
qsar-biodeg 85.49 84.64 0.85 1
kc2 79.98 79.41 0.57 1
ozone-level-8hr 93.84 93.84 0 0
hill-valley 97.61 49.33 48.28 1
wdbc 97.37 95.45 1.92 1
climate-model-
simulation-crashes

91.31 91.5 -0.19 0

spambase 93.26 94.04 -0.78 0
ilpd 66.73 67.92 -1.19 0
kc1 84.12 83.12 1 1
pc1 93.61 93.34 0.27 1
pc3 90.08 90.15 -0.07 0
pc4 91.43 90.6 0.83 1
banknote-authentication 99.93 99.34 0.59 1
mozilla4 85.39 84.55 0.84 1
pendigits 99.34 99.07 0.27 1
balance-scale 84.65 68.42 16.23 1
cardiotocography 100 100 0 0
first-order-theorem-proving 57.68 57.55 0.13 1
wilt 98.26 94.32 3.94 1
thyroid-allhyper 70.5 71.04 -0.54 0
thyroid-allbp 70.5 71.04 -0.54 0
thyroid-allhypo 70.5 71.04 -0.54 0
thyroid-allrep 70.5 71.04 -0.54 0
thyroid-dis 70.5 71.04 -0.54 0
satellite_image 89.14 87.91 1.23 1
seismic-bumps 91.14 91.68 -0.54 0
segment 98.18 98.01 0.17 1
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Table A.6: Accuracy of each data set tested with filter on base-level [continuity].

Data sets Extended Filtered Original Filtered Extended vs Original Class
breast-tissue 57.4 66.48 -9.08 0
credit-approval 75.26 74.09 1.17 1
banana 89 89.6 -0.6 0
pc1_req 67.48 66.49 0.99 1
parkinsons 84.56 86.09 -1.53 0
iris 96.67 94 2.67 1
jungle_chess_2pcs
_raw_endgame_complete

71.41 68.22 3.19 1

oil_spill 96.05 95.94 0.11 1
thoracic-surgery 83.4 84.04 -0.64 0
jm1 79.27 79.35 -0.08 0
JapaneseVowels 93.35 92.52 0.83 1
eucalyptus 20.39 20.79 -0.4 0
allrep 98.3 97.93 0.37 1
user-knowledge 90.94 89.95 0.99 1
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Table A.7: Accuracy of each data set tested with the selected features on base level.

Original Extended Selected
Selected

vs
Extended

Selected
vs

Original
abalone 63.44 63.97 62.87 -1.1 -0.57
aids 60 63.33 58.33 -5 -1.67
airlines 60 59.94 59.78 -0.16 -0.22
analcatdata_creditscore 98.89 98.89 98.89 0 0
authorship 99.17 98.1 99.17 1.07 0
autoMpg 88.67 87.92 87.17 -0.75 -1.5
autoUniv-au7-700 48.99 48.61 46.87 -1.74 -2.12
backache 86.75 86.28 87.86 1.58 1.11
blood-transfusion-service-center 66.6 68.06 65.26 -2.8 -1.34
bondrate 63.57 67.81 63.81 -4 0.24
breast-w 96.29 96.01 95.58 -0.43 -0.71
churn 95.74 96.28 94.52 -1.76 -1.22
cmc 51.79 52.34 52.33 -0.01 0.54
credit-g 70.8 69.9 71.7 1.8 0.9
cyyoung 82.75 82.97 82.61 -0.36 -0.14
diabetes 75.78 76.43 76.82 0.39 1.04
diabetes130US 41.25 35.59 37.11 1.52 -4.14
ecoli 87.57 86.7 85.58 -1.12 -1.99
eeg-eye-state 59.21 58.64 56.01 -2.63 -3.2
electricity 69.41 69.31 68.73 -0.58 -0.68
glass 82.13 74.61 78.44 3.83 -3.69
haberman 64.78 67.38 61.23 -6.15 -3.55
heart-statlog 84.07 83.33 84.07 0.74 0
hepatitis 75.03 75.03 75.03 0 0
houses 94.28 94.67 94.68 0.01 0.4
KDDCup09_upselling 92.47 92.44 92.47 0.03 0
letter 96.57 97.28 97.23 -0.05 0.66
mammography 98.75 98.83 98.75 -0.08 0
morphological 99.85 99.85 99.75 -0.1 -0.1
page-blocks 96.75 96.89 96.89 0 0.14
phoneme 91.36 91.17 91.14 -0.03 -0.22
prnn_crabs 80 99.5 75.5 -24 -4.5
profb 59.67 63.4 60.42 -2.98 0.75
rmftsa_sleepdata 36.25 36.76 36.25 -0.51 0
satellite 99.29 99.33 99.47 0.14 0.18
satimage 91.85 91.66 90.76 -0.9 -1.09
sonar 73.72 69.95 71.83 1.88 -1.89
tae 80.43 81.14 80.43 -0.71 0
teachingAssistant 65.2 63.99 57.9 -6.09 -7.3
titanic 64.17 64.4 64.17 -0.23 0
vehicle 75.99 78.25 76.11 -2.14 0.12
vinnie 80.47 80.47 80.47 0 0
volcanoes 96.44 96.37 96.32 -0.05 -0.12
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Table A.8: Accuracy of each data set tested with the selected features on base level [continuity].

Original Extended Selected
Selected

vs
Extended

Selected
vs

Original
wall-robot-navigation 99.76 99.58 99.63 0.05 -0.13
wholesale-customers 91.82 92.26 91.58 -0.68 -0.24
wine 96.73 96.14 95.03 -1.11 -1.7
yeast 59.05 58.85 57.39 -1.46 -1.66
allbp 97.67 97.77 97.48 -0.29 -0.19
thyroid-ann 99.58 99.79 99.2 -0.59 -0.38
autos 67.83 69.15 65.01 -4.14 -2.82
optdigits 97.69 97.68 97.81 0.13 0.12
engine 86.2 81.44 86.2 4.76 0
calendardow 58.11 58.88 58.14 -0.74 0.03
led-display-domain 71.77 71.51 71.97 0.46 0.2
smartphone-based
_recognition_of_
human_activities

97.22 96.67 97.22 0.55 0

steel-plates-fault 91.52 97.16 93.62 -3.54 2.1
volcanoes-d4 94.2 94.04 94.02 -0.02 -0.18
BNG_breast-w 98.61 98.61 98.6 -0.01 -0.01
BNG_cmc 52.02 52.87 52.02 -0.85 0
qsar-biodeg 84.64 85.4 85.49 0.09 0.85
kc2 80.79 80.19 79.6 -0.59 -1.19
ozone-level-8hr 92.66 93.45 93.84 0.39 1.18
hill-valley 56.78 97.27 93.48 -3.79 36.7
wdbc 96.15 96.85 96.49 -0.36 0.34
climate-model-simulation-crashes 91.31 91.12 91.49 0.37 0.18
spambase 94.09 93.59 93.56 -0.03 -0.53
ilpd 68.26 68.24 68.24 0 -0.02
kc1 83.13 83.46 83.55 0.09 0.42
pc1 93.7 93.51 93.52 0.01 -0.18
pc3 89.95 90.08 90.34 0.26 0.39
pc4 91.02 91.29 91.63 0.34 0.61
banknote-authentication 99.34 99.85 99.85 0 0.51
mozilla4 84.55 84.89 85.11 0.22 0.56
pendigits 99.07 99.37 99.04 -0.33 -0.03
balance-scale 68.42 84.5 79.36 -5.14 10.94
cardiotocography 100 100 100 0 0
first-order-theorem-proving 57.66 57.71 57.94 0.23 0.28
wilt 98.16 98.39 98.04 -0.35 -0.12
thyroid-allhyper 70.68 70.29 70.71 0.42 0.03
thyroid-allbp 70.68 70.29 70.71 0.42 0.03
thyroid-allhypo 70.68 70.29 70.71 0.42 0.03
thyroid-allrep 70.68 70.29 70.71 0.42 0.03
thyroid-dis 70.68 70.29 70.71 0.42 0.03
satellite_image 89.68 89.9 88.67 -1.23 -1.01
seismic-bumps 92.19 91.26 91.41 0.15 -0.78
segment 97.88 98.1 98.14 0.04 0.26
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Table A.9: Accuracy of each data set tested with the selected features on base level [continuity].

Original Extended Selected
Selected

vs
Extended

Selected
vs

Original
breast-tissue 66.48 51.01 61.41 10.4 -5.07
credit-approval 73.94 75.12 73.81 -1.31 -0.13
banana 89.68 89 89 0 -0.68
pc1_req 66.49 67.46 67.46 0 0.97
parkinsons 83.59 84.06 86.54 2.48 2.95
iris 96.67 96 94.67 -1.33 -2
jungle_chess_2pcs_raw_endgame_complete 68.22 71.61 62.57 -9.04 -5.65
oil_spill 95.83 95.19 95.4 0.21 -0.43
thoracic-surgery 84.04 83.62 84.68 1.06 0.64
jm1 79.05 79.18 79.27 0.09 0.22
JapaneseVowels 92.52 93.23 93.35 0.12 0.83
eucalyptus 20.79 22.13 19.56 -2.57 -1.23
allrep 97.8 98.54 98.12 -0.42 0.32
user-knowledge 90.2 90.73 86.97 -3.76 -3.23
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