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Abstract

The Internet of Things (IoT) is a network of uniquely identifiable devices (the things), that are
continuously connected to the Internet; it is generally composed of heterogeneous programmable
devices, that are capable of sensing and acting on their surroundings. IoT systems can be applied in
both small-scale scenarios, e.g. smart homes, large-scale scenarios, e.g. large industrial complexes
(the Industrial Internet of Things or IIoT), or even cities.

The heterogeneity of IoT systems — and also their increasing complexity and distributed na-
ture — makes them more prone to errors; these can be caused by device failures or by mistakes in
their configuration. When a factory relies on an IIoT system, having a failure may be catastrophic
and cause huge losses in terms of productivity and revenue. This is why it is important to use
testing tools and frameworks in order to increase the certainty levels regarding the correctness of
the system.

Currently, there are multiple tools that provide testing capabilities to the IoT, ranging from unit
and integration to acceptance and system testing, using different testing methods (black-, grey- and
white-box testing) and focusing on different parts of an IoT system (edge, fog, and cloud testing).
There are, however, a few gaps in the area of IoT simulation that would allow for the coexistence
of simulated and physical devices. Particularly, there’s a clear absence in the literature of solutions
able to (1) test an IoT system without needing the whole physical environment, which would drive
setup costs down by not having to buy devices beforehand; (2) mock a specific condition, allowing
for reproducibility of rare environment states (e.g. waiting until there’s an earthquake); and (3)
test a system closer to reality (i.e. with physical devices that suffer from network conditions,
e.g. packet losses), providing higher confidence on the correctness of the system than a simulated
environment would.

Furthermore, multiple visual programming languages (VPLs) exist with the aim of simplifying
and accelerating the development process. The IoT is one heavily targeted field by these tools as
its usual message-based architecture fits very well in the model of VPLs. One of such tools is
Node-RED, a graph-based platform for visual programming of systems comprised of hardware
devices, APIs and web services, with IoT being one of its possible applications.

In order to achieve the benefits of the simulation of the IoT with the advantages of a visual
programming language, this thesis will provide: (1) a simple language-agnostic tool that allows
the simulation of an IoT system with both physical and virtual devices; (2) a Node-RED extension
to integrate the simulator into the platform, allowing the end user to leverage the extensive com-
munity functionality that Node-RED already possesses; and (3) an extension for Node-RED to
provide automated testing of IoT systems using graphical elements, supporting real-time feedback
to the user and incorporating remote control and periodic running of tests.
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Resumo

A Internet das Coisas (IoT) é uma rede de dispositivos unicamente identificáveis (as coisas), que
estão continuamente ligados à Internet; geralmente é composta por dispositivos heterogéneos pro-
gramáveis, capazes de detetar e executar ações nos seus arredores. Os sistemas de IoT podem ser
aplicados tanto em cenários de pequena escala, p.e. casas inteligentes, assim como em cenários
de grande escala, p.e. grandes complexos industriais (a Internet das Coisas Industrial ou IIoT), ou
mesmo cidades.

A heterogeneidade dos sistemas de IoT - e também sua crescente complexidade e natureza
distribuída - torna-os mais propensos a erros; estes podem ser causados por falhas no dispositivo
ou por erros na sua configuração. Quando uma fábrica depende de um sistema IIoT, ter uma falha
pode ser catastrófica e causar grandes perdas em termos de produtividade e receita. É por isso que
é importante usar ferramentas de teste e frameworks para aumentar os níveis de certeza quanto ao
correto funcionamento do sistema.

Atualmente, existem várias ferramentas que fornecem a possibilidade de testar a IoT, variando
desde testes de unidade e integração a aceitação e testes de sistema, usando diferentes métodos de
teste (black-, grey- and white-box testing) e concentrando-se em diferentes partes de um sistema
IoT (edge, fog e cloud testing). Existem, no entanto, algumas lacunas na área da simulação de
IoT que permitam a coexistência de dispositivos simulados e físicos. Particularmente, há uma
clara ausência na literatura de soluções capazes de (1) testar um sistema IoT sem precisar de todo
o ambiente físico, o que reduziria os custos de instalação por não ter que comprar dispositivos
antecipadamente; (2) falsificar uma condição específica, permitindo a reprodutibilidade de estados
raros do ambiente (por exemplo, esperar até que haja um terremoto); e (3) testar um sistema
mais próximo da realidade (isto é, com dispositivos físicos que sofrem dos problemas da rede,
por exemplo, perdas de pacotes), proporcionando maior confiança no correto funcionamento do
sistema do que um ambiente simulado.

Além disso, múltiplas linguagens de programação visual (VPLs) existem com o objetivo de
simplificar e acelerar o processo de desenvolvimento. A IoT é um campo altamente visado por
essas ferramentas, uma vez que sua arquitetura usualmente baseada em mensagens se encaixa
muito bem no modelo de VPLs. Uma dessas ferramentas é o Node-RED, uma plataforma baseada
em gráficos para programação visual de sistemas compostos de dispositivos de hardware, APIs e
serviços da Web, sendo a IoT uma das suas possíveis aplicações.

A fim de obter os benefícios da simulação da IoT com as vantagens de uma linguagem de pro-
gramação visual, esta tese fornecerá: (1) uma ferramenta simples e agnóstica a nível da linguagem
de programação que permite a simulação de um sistema de IoT com dispositivos físicos e virtuais;
(2) uma extensão Node-RED para integrar o simulador na plataforma, permitindo que o utilizador
final aproveite a ampla funcionalidade providenciada pela comunidade que o Node-RED possui; e
(3) uma extensão para o Node-RED para fornecer testes automatizados de sistemas de IoT usando
elementos gráficos, suportando feedback em tempo real para o utilizador e incorporando controlo
remoto e execução periódica de testes.
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“Human felicity is produc’d not so much by great pieces of good fortune
that seldom happen, as by little advantages that occur every day”

Benjamin Franklin
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Chapter 1

Introduction

This chapter introduces the dissertation by revealing its context, reach and structure. Section 1.1

serves the purpose of detailing the context of this publication. Section 1.2 (p. 2) explains why

it is important to focus on these areas of work. Subsequently, the problem intended to solve is

defined in Section 1.3 (p. 3), while the goals of this dissertation are described in Section 1.4 (p. 3).

Finally, an explanation of the structure of the publication is provided through the means of Sec-

tion 1.5 (p. 4).

1.1 Context

The Internet of Things is a paradigm where computational devices ("things") are connected to

the Internet and are uniquely identifiable and globally accessible [MBR15]. This system of smart

devices is built on different hardware, with distinct software and dynamic networks. This hetero-

geneity allows a great level of combinations for all kinds of purposes. This explains why, currently,

the IoT has an extensive set of domains that it can be applied to, ranging from smart homes and

smart cities to the Industry 4.0, from intelligent fleet management to agriculture, from smart grids

to IoT-assisted hospitals [CXL+14].

This extreme level of applicability may explain why the IoT has been growing massively. In

2016 there were between 6.4 billion and 17.6 billion devices (excluding smartphones, tablets and

computers) connected to the Internet and it is expected that, by 2020, the number of IoT devices

will be in the range of 20-30 billion [Nor16].

IoT systems are comprised of a huge plethora of different devices, ranging from low-end low-

power cheap microcontrollers to high-tech extremely performant computers. This heterogeneity

intrinsic to IoT systems in conjunction with the quantity of devices raises several issues, akin to

those distributed systems face, but enhanced given the particularities of the hardware beneath.

Li et al. [LXZ15] identifies some of these problems, namely the huge array of communication

protocols to choose from, security and privacy concerns and the lack of standards.
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Visual Programming Languages (VPLs) is the adaptation of regular textual programming lan-

guages into the visual realm by providing graphical abstractions [JKBL14]. VPLs are usually

based on boxes and arrows to indicate the flow of the program and their uses range from education

and multimedia to video games and automation. The most popular is Scratch, the educational lan-

guage created by the Massachusetts Institute of Technology that is based on pieces that are joined

together and follow a specific flow [MRR+10].

1.2 Motivation

Almost every device we have is run by software, be it mobile phones, computers, cars, ATMs,

etc. [Cha05] The amount of software that is present in the life of an individual is astonishing, and

so are the implications caused by its failure. Most IT experts agree that software failures happen

much more often than they should [Cha05]. Charette [Cha05] presents a list of software errors

that resulted in losses of billions of dollars prior to 2005.

The Internet of Things augments the problems of software failure since it extends the range of

concepts that one must have in mind, e.g., different devices, communication protocols. Further-

more, the large scale of the IoT also acts as a multiplier to the number of issues that can arise, due

to the big increase in software complexity. Such scale makes IoT simulation a field to be explored

due to its potential benefits regarding cost savings and time-to-prototype reduction. Moreover,

testing can also become an interesting path to traverse, as it offers more confidence on the cor-

rect behavior of a system, reducing the probability of catastrophic failures, such as NASA’s $125

million lost satellite due to different teams using English units of measurements and the metric

system without conversion [Llo].

In fact, according to [TLL+14], most software bugs are caused by faulty implementations of

features that do not meet the pre-defined requirements. Automated testing can prove itself useful

in such circumstances as unexpected scenarios can be reproduced and validated against.

Figure 1.1: Distribution of bug impacts from a subset of bugs filed to Mozilla, the Linux kernel
and Apache. Hang refers to the program hanging; Crash to the program crashing; Corrupt to data
corruption; Perf to performance problems and Func to unexpected behavior. [TLL+14]
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In addition, given the physical reality of the IoT, it is possible that a system’s state may not

repeat in a reasonable time frame (e.g., waiting for an earthquake to happen). In such cases, having

a simulation platform to test edge cases before they happen may prove very useful in anticipating

possible issues that would have manifested themselves in a real-world scenario.

1.3 Problem Definition

The growth of the Internet of Things coupled with the fact that multiple systems have different

architectures, distinct devices and form unique networks increases the complexity of the system

as a whole. In a smart home scenario, the number of devices is relatively small and the inter-

action between them may not be too hard to imagine in one’s head; however, a smart city, with

device count by the thousands, developers may have a more difficult time testing and validating the

correct functioning of the system. There are numerous tools that provide simulation and testing

capabilities, although most focus on specific domains, ranging from performance measurement

or power monitoring to accurate network modeling. Some frameworks support the integration of

hardware into the simulation itself, which is a great feature for developers, as it helps bridge the

gap between simulated and real environments. However, none of those tools are free nor open-

source. Furthermore, the lack of testing tools that can be automated also constitutes a deficiency

in this space.

Chapter 4 (p. 33) explains in bigger detail the problem identified while also including a

desiderata, defining the scope of the issue, laying out use cases and identifying the research ques-

tions.

1.4 Goals

The first goal of this dissertation is to lower the barrier of building and integrating IoT systems,

while also providing the benefits of simulation, such as lower costs and faster feedback loop. The

second objective focuses on creating a way that leverages visual programming languages to not

only build IoT systems but also to develop a robust test suite to validate the system against.

With such an objective in mind, a solution that supports hardware to be integrated in the simu-

lation will be devised. It should also allow physical nodes to be simulated for an arbitrary amount

of time, without restarting the simulation. Moreover, the solution should be loosely coupled from

the devices, meaning that the software running on a device (either virtual or not) can be written

in any language that supports the messaging protocol in use. Also, an automated testing approach

for the IoT will be devised and developed that will be integrated into a visual programming envi-

ronment, with support for continuous regression testing.

With the development of this solution, it is expected that the cognitive load suffered to develop

an IoT system will decrease and that integration between physical and virtual environment will

become simpler, without losing the benefits of IoT simulation, in particular lower development

costs and faster feedback loop. The advantages provided by automated testing shall also reduce

3
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behavioral errors that emerge during the development process and help monitor the system while

running.

1.5 Document Structure

This dissertation is structured and divided into chapters agglomerating different parts of its cre-

ation process. Chapter 2 (p. 5) introduces the background for the current document, along with

important concepts for the full understanding of this dissertation. Chapter 3 (p. 11) details the state

of the current ecosystem of simulation for the Internet of Things through a systematic literature

review and outlines the best solutions found according to the defined criteria. The chapter is com-

plemented by the current state of the state of existing visual programming languages. Chapter 4

(p. 33) explains the problem this project is solving and the approach taken to resolve it. It also

contains a list of use cases to fulfill. Chapter 5 (p. 39) details the implementation efforts done,

describing the choices and solutions chosen for each problem stated before. Chapter 6 (p. 53) vali-

dates the solution implemented and assesses to which extent the research questions were answered

and the use cases fulfilled. Chapter 7 (p. 59) concludes the dissertation by presenting a summary

of the advancements made and detailing its successes and future work.

4



Chapter 2

Fundamental Concepts

This chapter describes in large detail the crucial foundations regarding simulation tools for the

Internet of Things. Section 2.1 establishes a background of the Internet of Things and several

important concepts in that field. Subsequently, Section 2.2 (p. 7) details the area of testing, includ-

ing dividing it into sub-types and characterizing them. Section 2.3 (p. 7) explains some notions

regarding simulation of the Internet of Things. Section 2.4 (p. 8) mentions visual programming

languages and explaining their use, benefits and disadvantages. Ultimately, Section 2.5 (p. 10)

summarizes the findings of the previous sections.

2.1 Internet of Things

The Internet of Things is a paradigm where computational devices ("things") are connected to

the Internet and are uniquely identifiable and globally accessible [MBR15]. This new paradigm

can be extensively applied to an immense amount of different domains, such as agriculture, social

networks, smart cities, healthcare, etc. A more in-depth scheme is available in Figure 2.1 (p. 6).

From a technical standpoint, IoT systems are usually divided into three separate layers that

increase abstraction over the previous ones [SKH18]:

1. Perception layer is the lower-level layer that collects data from the environment. This is

where the temperature sensors, scales and RFID readers are contained;

2. Network layer allows for a higher level abstraction for the higher layers which do not

have to understand the underlying network specifics, such as communication protocols and

heterogeneous devices;

3. Application layer is the highest layer that connects the different functions the system pro-

vides and interfaces with the end user.

5
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Figure 2.1: The various domains the Internet of Things can be applied to. [Ray18]

6
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Although there are three layers, not every device needs to belong to one. It is possible that a

constrained device be a part of the three above-mentioned layers, but a higher-end computer, such

as a server, only belongs to the network and application layer.

2.2 Testing

Testing, specifically software testing, is the process of ensuring that said software does not behave

in manners not expected by its developer. The importance of testing comes from the possible

catastrophic accidents that can happen, such as a plane crash due to integer overflows or the loss of

a $125 million satellite due to unit conversion errors [Llo]. Testing can help prevent these disasters

by reducing the number of error scenarios that were not accounted for. In order to achieve this,

there are various types of test that can be executed:

• The purpose of unit tests is to verify small units of code and their correct functionality.

They are usually fast, which is why, according to the test pyramid [Coh09], they should the

most numerous in a software test suite;

• Integration tests test the interaction between different and separate components. They

usually take longer than unit tests. On the other hand, they provide more confidence to the

tester that a specific set of components are working. These should appear in less quantity

than unit tests due to their slowness;

• End-to-end tests, sometimes also called system tests, provide the most confidence to the

tester as they test the whole system. These are more often than not slow and costly, therefore,

their usage should be limited to critical paths of execution in a program.

While most of these tests can be executed manually, automated testing is becoming more

and more widespread between the software development community, mainly due to its efficiency.

Using automated tests, the developer does not need to keep testing the system after every change,

and can instead rely on an external program to repeat the steps the developer would have taken.

Besides, by having automated tests, more use cases can be tested after each change, possibly

discovering faults the developer could not have thought about.

2.3 Simulation of the Internet of Things

The Internet of Things is generally comprised of heterogeneous embedded devices running on

different hardware, distinct operating systems and with various peripherals. This diversity in con-

ditions, along with the scale of IoT systems create some challenges that are left unanswered,

especially regarding standardization and security. As a result of the growth of IoT, simulation is

a promising field and currently being explored by many researchers. Its potential benefits, such

as cost savings and time-to-prototype are, obviously, seen as desirable. By simulating the Internet

of Things it is possible to test systems without actually buying the hardware, and there is also
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a smaller feedback loop when compared to using real hardware, providing the aforementioned

advantages.

2.3.1 Common Architectures

There are several architectures in common among IoT simulators. In this field, two seem to be

more prominent than others:

Multi Agent System (MAS) is an environment where single, autonomous entities, called agents,

act and interact with each other. Benefits of this architecture include autonomy for each

agent and decentralization of a system. This model fits well with the IoT principle, where

each device is uniquely identifiable;

Discrete Event Architecture is driven by events and the state of the system is only known by

deriving it from a series of events. It is often used in conjunction with state machines,

where a new state is the result of a function taking the current state and an event. This maps

well to the IoT concepts as an Internet of Things system can be seen as a stream of data

(events) being collected sequentially.

2.3.2 Important Concepts

There are some important concepts to grasp before fully understanding IoT simulation. Terms and

expressions such as "hardware-in-the-loop simulation" and "multi-level simulation" are explained

in the following section:

Hardware-in-the-loop simulation is a type of simulation is used to test physical devices. It tricks

the hardware into thinking that it is actually part of a system, either by connecting the

hardware to the simulator and sending electrical signals [nih] or by simulating how the

physical system would communicate with the device under test [Bac05];

Multi-level simulation is a paradigm where different devices can be simulated at different levels

of detail [CBBZ18]. One device could have its application layer simulated, but another

could have not only its application layer simulated but also its network and/or physical

layer. This idea is useful in large-scale simulations where it is not feasible to simulate every

aspect of every node with the highest level of detail, so instead one could opt to simulate a

smaller part of the system with finer detail. A multi-level simulation tool provides the user

with the option to adjust the trade-off between simulation speed and simulation correctness.

2.4 Visual Programming

Visual Programming consists of using graphical elements such as blocks, arrows or symbols to

create programs, replacing the default textual programming languages, which use text as their

means to build a program [CRV15]. The goal of a visual programming language is to ease the
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cognitive effort of programming, both for new and experienced users. Since this objective cannot

be achieved by merely substituting text statement with pictorial components on a one-to-one ba-

sis, VPL designers were incentivized to create better visual abstractions. According to Burnet et

al. [BBB+95], the employment of these modern visual techniques may foster one or more of the

following characteristics:

Simplicity Simplicity refers to reducing the number of concepts the programmer must understand

and remember in order to develop a correct program, e.g., pointers, variable declaration, etc.;

Concreteness Concreteness is the user’s possibility to explore, visualize and modify data values;

Explicitness Explicitness is achieved when the relationship between components is explicitly

defined;

Responsiveness Responsiveness, in the context of VPLs, represents the instant feedback given to

the developer, where the edition of a program automatically recomputes the affected values

and displays them, without having an explicit compilation step.

Due to the similarity between textual and visual programming languages, classification pa-

rameters can be applied to both, such as whether a language is imperative, declarative, functional,

etc. Nonetheless, there are also some properties specific to VPLs, namely whether a language is

spreadsheet-based or centered around data-flow. Burnett et al. [BB94] construct a classification

system for visual programming languages that characterize them according to paradigms, visual

representations, language features, etc. However, a higher-level classification of VPLs is presented

by Downes et al. [DB97]:

Purely Visual Languages are characterized by not having an underlying text syntax and are com-

piled based only on their visual appearance;

Hybrid Systems function by mixing textual and visual representations and can be converted from

one type to the other. Some existing tools [nod, min] leverage already existing programming

languages compilers (or runtimes) and translate the pictorial diagrams into code;

Programming-by-Example Systems focus on extracting the goal of the program by generalizing

examples. Adobe’s Photoshop Action system [psa] is a illustration of a programming-by-

example system;

Constraint-Oriented Systems is based on constraints defined by the programmer. It is com-

monly utilized in simulation design where objects are modeled in a way similar to reality by

creating constraints the simulate physical laws [DB97];

Form-based languages are defined as cells that are connected to others and influence the state of

each other over time. Spreadsheet applications, such as Microsoft Excel, are a prominent

example of form-based languages.

It is important to note that these characteristics are not mutually exclusive, which implies that

languages may be classified as a combination of the above features.
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2.5 Summary

This chapter introduces very important concepts for the full understanding of this document. The

Internet of Things is explained, its domains are exposed and a general architecture is presented.

Software testing is then introduced along with its sub-types and characteristics. Subsequently,

the simulation of the IoT is described, along with commonly occurring patterns and terms such

as hardware-in-the-loop and multi-level simulation are thoroughly detailed. Finally, some back-

ground on visual programming languages is given to the reader.
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Chapter 3

State of the Art

This chapter describes in large detail the state of the art of simulation tools for the Internet of

Things. Section 3.1 presents a systematic review of the IoT simulation literature, which focuses

on answering the research questions defined in Section 3.1.1.1. Subsequently, Section 3.2 (p. 26)

explores the related work that is being developed in the field of IoT simulation. Section 3.3 (p. 28)

analyzes the state of the art of Visual Programming Languages and its marriage with the field of

IoT. Ultimately, Section 3.4 (p. 31) summarizes the findings of the previous sections and offers an

overview of the current state of the field.

3.1 Systematic Literature Review

A systematic literature review was conducted with the intent of reliably gathering information on

the state of the art of the IoT simulation field. This kind of review differs from a regular literature

review due to the fact that there is a pre-established procedure to follow, which should help reduce

the reviewer bias [KC07]. This idea comes from the fields of medicine and sociology, where

evidence-based reviews are already established and is being modified and adapted to Software

Engineering [KPB+10].

3.1.1 Methodology

In this systematic review, we follow a specific and objective methodology to reduce bias [KC07].

The first step taken was to define the survey research questions to answer and the data sources to

utilize. Afterward, the search query was constructed, and the inclusion and exclusion criteria laid

out.

3.1.1.1 Survey Research Questions

In this work, we intend to address the following questions:
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SRQ1. What relevant IoT simulation platforms exist? IoT simulation can provide several

benefits by not requiring devices to be physically present in an environment to test a system.

Bearing this in mind, having a collection of simulation tools to choose from can help reduce

costs, development time and the number of bugs in an IoT system;

SRQ2. Of these, which ones support testing and validation with hardware-in-the-loop? The

lack of physical devices can be advantageous for prototyping phases, however it removes

some of the confidence of testing using real devices, as simulations usually do not mirror the

physical reality with 100% accuracy. Thus, having the possibility to include real hardware

in the validation procedure can prove beneficial in reducing unexpected behavior and other

kinds of issues;

SRQ3. What is the scope of the tools found in SRQ1? An IoT system is usually created with

a specific use case in mind (e.g., smart cities, smart homes, IIoT), hence it is important to

identify the scope of each tool so that it is easier to understand which tools should be used

under different circumstances;

SRQ4. Of those found in SRQ1, which ones support the automation of tests? Automated

tests are a practice widely used in the software world that removes the burden of manually

testing the system from the developer. This shift of testing from humans to machines pro-

vides a higher confidence degree of correctness, as tests can be executed more regularly and

more extensively, while also freeing time from the programmers to work on higher-priority

matters.

In this context, relevant means publications not excluded by the methodology explained in the

next sections. By scope, we mean the specific use case, if any, that each tool focuses on. For

abbreviation purposes, simulation refers to any kind of simulation, emulation, or another type of

approach that allows the test and validation of hardware/software IoT systems.

3.1.1.2 Publication Databases

For this research, publications were retrieved from the following databases, which are regarded as

good sources for software engineering [PVK15]:

• IEEEXplore Digital Library

• Scopus

• Compendex

3.1.1.3 Search Process

A search query was created to narrow down the results. It was designed to include the field of re-

search, Internet-of-Things, combined with the more specific part the paper will review: simulation.

The search expression used was:
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(internet-of-things OR IoT OR "Internet-of-Things") AND (simulator

OR (simulation AND (tool OR library OR framework)))

The search was made in December 2018 and revealed the results available in Table 3.1. The

downloaded results were the ones deemed "most relevant" by each of the publication databases.

Table 3.1: Search results per database

Databases Filters Total Results Downloaded Results

Compendex Subject/Title/Abstract, English only 3962 500

Scopus Title, Abstract, Keywords 1510 400

IEEEXplore All 1422 500

3.1.1.4 Inclusion Criteria

Publications are put through the inclusion criteria to define whether or not they should be included

in the results. If a publication does not meet all of them, it should not be included. The inclusion

criteria are the following:

1. Original research study (including patents and grey literature for completeness);

2. Review papers;

3. Publications of code testing simulation platforms for the Internet-of-Things;

4. The study content must be in English.

It should be noted that, although review papers are included, they are processed differently.

After reviewing the simulation tools retrieved from this systematic review process, the surveys will

be studied to include other simulators that were not covered by the methodology. This expanded

search allows a critical analysis of the selection process.

3.1.1.5 Exclusion Criteria

Papers are filtered by understanding whether or not they violate any of the exclusion criteria. If

they do fail to comply with one criterion, they will be excluded. The exclusion criteria are defined

as follows:

1. Secondary research and other non-relevant publications;

2. Publications presenting just ideas, magazine publications, interviews, and discussion papers;

3. Duplicate publications;

4. Publications on the topic of Internet-of-Things testing whose only focus is security, privacy,

power efficiency or performance.
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3.1.1.6 Selection Process

The publication selection process follows three steps to obtain the final result:

1. Check if the publication’s title meets the inclusion and exclusion criteria;

2. Verify if the publication’s abstract meets the inclusion and exclusion criteria;

3. Read the whole content of the paper and analyze whether or not it meets the inclusion and

exclusion criteria.

The results of each phase can be seen in Table 3.2.

Table 3.2: Publications per step

Step No. of Publications Excluded

Search 1400 N/A

No Duplicates 1206 194

Inclusion/Exclusion Criteria (Title) 62 1144

Inclusion/Exclusion Criteria (Abstract) 32 30

Specificity 20 12

3.1.2 Results

Of the 20 selected publications, [JJW17] and [CBBZ18] were surveys on simulators. Jung et

al. [JJW17] surveys various IoT simulation frameworks in search of dynamic (i.e., possibility

to integrate new entities during the simulation) and decentralized tools that allow for heteroge-

neous simulation (i.e., simulation using different simulators) of devices. After finding none, a

conceptual agent-based solution is proposed with hardware-in-the-loop capabilities. Chernyshev

et al. [CBBZ18] perform an in-depth review of simulators and testbeds for the Internet-of-Things

with each tool being assessed following several criteria such as the evaluated scale of the simu-

lated system, last update to the tool, built-in IoT standards, etc. Since simulators are generally

specialized in one aspect of IoT simulation, the authors conclude that a combination of the distinct

IoT simulation tools may provide simulation with higher fidelity [CBBZ18]. However, this review

takes on the challenge of identifying the different types of tests and programming languages that

each simulator supports, while also analyzing if they can run automated testing and to integrate

hardware-in-the-loop.

The remaining 18 publications were simulation frameworks, 4 of which refer to the same tool,

producing 15 unique results. These are:

1. The cyber-physical system (CPS) simulator proposed by Li et al. [LWZ+13] uses the con-

cepts of physical, computation, and interaction entities to achieve simulation of a CPS. A
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Figure 3.1: CPS simulator architecture by Li et al. [LWZ+13]

physical entity represents the physical aspect of a device, with spatial and temporal aware-

ness, and is usually based on laws of physics. It is modeled using Simulink [sim]. Com-

putation entities are modeled as finite state machines using UML in IBM Rational Rhap-

sody [ibm]. There is also an interaction entity that works as the interface of the two other

entities, effectively allowing them to communicate with each other. Every component is

simulated separately, allowing for model heterogeneity, but there is no mention of sup-

port for the integration of real and simulated devices. IBM Rational Rhapsody supports

OXF [rha], allowing C++ code not generated by Rhapsody to be used in the simulation.

Because of this, C++ can be considered as a supported language;

2. COSSIM [BTN+18] is an IoT emulator capable of handling networks, processors and pe-

ripherals, while also providing power consumption information and allowing security audits

by integrating gem5 [BBB+11], OMNeT++ [OMN] and McPAT [mcp] tools under a single

interface. The integration allows the "simulation of an actual system of systems, including

its complete software stack, network dynamics and energy aspects" [BTN+18]. As such, it

is regarded as an emulator. The framework takes care of the synchronization between the

different simulators under the hood. In [BTN+18], the tool’s performance, and correctness

are assessed using two different case studies;

3. CupCarbon [BCC+18] is a tool to "design and simulate Wireless Sensor Networks ded-

icated to Smart-city and IoT applications" [BCC+18]. It is comprised of a radio channel,

which integrates two radio propagation models, an interference module, randomly generat-

ing communication interference in networks and a 2D/3D environment, useful for designing
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smart territories, e.g., smart cities. The framework supports the visualization of the simula-

tion results while modeling radio propagation and interference;

4. CupCarbon-Lab [BML+18] is an extension of the CupCarbon simulator and uses less

powerful devices, such as the Raspberry Pi or Android smartphones, to act as a network of

physical nodes, providing hardware-in-the-loop simulation. It uses the host computer as a

server where the system can be monitored and visualized. This host functions as the remote

control of the simulation environment and is also responsible for injecting code into the

physical devices.

5. The solution proposed by D’Angelo, Ferretti et al. [FDGM17, DFG17a, DFG17b, DFG18]

makes use of different established simulators to simulate a whole system with varying levels

of detail. It uses an agent-based simulator (Smart Shire Simulator [DFG17b]) for the high-

level, low-detail simulation and a transportation system simulator based on ADVISOR [adv]

and a network simulator (OMNeT++ [OMN]) when higher levels of granularity are needed.

Despite using three distinct simulation tools, the framework has only two levels of sim-

ulation, as the transportation system and network simulators simulate mutually exclusive

devices, i.e., a device is either simulated by one or the other;

6. DPWSim [HLC+15] is a simulator using the standard Devices Profile for Web Services

(DPWS) [dpw09]. DPWSim is bundled with (1) DPWS Explorer, a tool for analyzing and

exploring DPWS service and (2) DPWSim Web, a web interface for controlling DPWSim

devices on different devices, e.g., mobile phone. DPWSim follows a discrete event archi-

tecture where devices have events that they fire or operations that can be executed. The only

way to customize device functionality is either through its GUI or a .dpws file;

7. The agent-based domain-agnostic solution presented by Jung et al. [JSW18] applies a dif-

ferent architecture allowing runtime changes and integration of distinct simulation tools

simultaneously. The simulator requires a communication and synchronization interface be-

tween the varying simulation frameworks so that they can communicate and behave as ex-

pected. In [JSW18] a communication interface was built for Simulink [sim] and OpenMod-

elica [ope] to permit agents simulated in both tools to communicate with each other. Due to

this integration, the tool allows for hardware-in-the-loop testing, given that the underlying

simulators in use have support for it. The publication has no mention about whether or not

the tool can be automated;

8. VisibleSim [DPB13] is a discrete event simulator aimed with a 3D environment that can

display objects (exported at .obj files) or simple blocks. It can simulate forces applied by

objects on others using a physics engine. According to [DPB13], one of its main advantages

is the ability to simulate 2 million nodes at a rate of 650,000 events per second on a Xeon-

based processor (base-frequency of 2.56GHz) with 12GB of RAM;
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Figure 3.2: KhronoSim high-level architecture. [CMB+18]

9. IoTTest, proposed by Bures [Bur17], is an approach to device simulation that focuses on

integration and end-to-end (e2e) testing by borrowing technical concepts from JUnit [JUn].

It is capable of emulating some IoT devices while integrating real physical hardware into

the system, effectively providing hard-in-the-loop simulation;

10. KhronoSim [CMB+18] is a distributed data-oriented simulator for testing the IoT. It pro-

vides "progressive development" [CMB+18] by allowing the user to convert simulated

nodes into physical devices progressively. It’s divided into three main components: (1)

Launcher, acting as a lock on the system under test; (2) Runners, that are responsible for

executing a test suite and must wait on Launcher’s permission to run; and (3) Executive,

which, in the end, executes the commands (such as sending messages and reading electri-

cal signal) requested by a Runner. KhronoSim [CMB+18] can be used in conjunction with

Simulink [sim], effectively giving it spatial and temporal context awareness;

11. MAMMotH [LODYJ13] is a massive-scale Internet-of-Things emulator, with the aim of

emulating 20 million devices. It uses a distributed architecture based on virtual machines

(VMs), which can emulate 10,000 nodes per VM and uses ns-2 [ns2] models for emulating

network protocols;

12. The simulator proposed by Fortino et al. [FGRS17] makes use of a multi-agent system

to model nodes in a network. Using the INET Framework [ine] for OMNeT++ [OMN],

the simulator can model WSNs, while the integration of ACOSO [FGR12] provides the

platform to develop and run the multi-agent system;
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13. The tool presented by Zouai et al. [ZKHS17] is an agent-based simulation tool for smart

houses, capable of controlling smart devices from an external network by using an IoT

Gateway that connects the house to the Internet;

14. The SWE Simulator proposed by Gimenez et al. [GMPE13] uses a Sensor Web En-

abled [swe] (SWE) architecture component, Sensor Observation Service (SOS), that serves

as a sensor information database, providing standard data insertion and retrieval methods,

via HTTP, for all sensors. The tool also features a Control Center, where actions are handled

as responses to events and where a web platform, used for monitoring the system, is served

from;

15. WoTSIM [MCFL14] is a Web of Things (WOT) simulator allowing static, moving, and

offline devices. Things are described as XML configuration documents at the start of the

simulation, and more XML documents are created during runtime and stored in "Real-Time

IR Test Collection" [MCFL14]. Running a simulation with 6000 sensors for 19 hours re-

sulted in a 41.1 MB collection size [MCFL14].

We divided the testing platforms into the following categories, according to their characteris-

tics:

Type The type of tool: simulator or emulator. Possible values: Simulator or Emulator;

Scope Some tools are built for a specific use case (e.g., smart cities, smart grids, etc.). Therefore,

knowledge of the scope of each platform is useful to assess whether or not they may solve a

problem one may have. Example values: smart city, smart grid, network, device;

Architecture Simulators for the Internet-of-Things tend to gravitate towards Multi-Agent Sys-

tems or Discrete Event architectures, with each one having its benefits and disadvantages;

License The license of a software product may impede its utilization or be a strong point in

favor of its adoption. For example, an open source simulator allows for high degrees of

customizability by giving users the power to change and alter the software. Possible values:

the name of the license or N/A if the software license is not known;

Scalability Defines how the platform scales. Due to the different performance metrics used by

the authors, this characteristic is only an approximation. Possible values are very low, low,

medium, high or very high; or N/A if there is no information regarding the scalability of the

tool;

Tier IoT systems usually follow the three-tier architecture, as explained in Section 2 (p. 5). Ag-

gregating the simulation of all tiers under a single simulator is generally out of scope for

most tools, so the project usually selects one tier to focus on, which is what this parameter

describes. Its values can be the permutations of Cloud, Fog and Edge;
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Context Awareness The context of a simulator represents whether or not the simulated devices

know about their time and/or spatial position. Possible non-mutually exclusive values: Spa-

tial, Temporal;

Hardware-in-the-loop A simulator is said to be a hardware-in-the-loop simulator if it can support

physical devices [Bac05]. Such a tool has the advantage of testing a system closer to the

real environment, which provides more confidence in its correctness. Possible values: yes,

if the software supports physical and virtual devices simultaneously; no otherwise;

Can be Automated? Automated testing reduces the time spent by developers testing software

and, therefore, platforms with this capability are advantageous for their users. Possible

values: yes, no or N/A if there is no information available;

Programming Language Programming language(s) that are required for the usage of the simu-

lator.

Table 3.3: Simulators and their properties. A hyphen (-) signals that the information is not avail-
able. A small circle (•) means "yes"; the lack of any element means "no".

Solution Type Scope Architecture License Scalability Tier Context
Awareness

Hardware-
in-the-loop

Can be Au-
tomated?

Programming
Languages

Li et al. [LWZ+13] Simulator Device Event-based - - Edge
Spatial,

Temporal
- - C++a

COSSIM [BTN+18] Emulator - Event-based
BSD

2-Clause
- Edge - - - Any

CupCarbon [BCC+18] Emulator
Smart
City

Event-based No - Fog Spatial - -
SenScript [sen]

or Python

CupCarbon-Lab [BML+18] Emulator
Smart
City

Event-based - - Fog
Spatial,

Temporal
• -

SenScript [sen]
or Python

D’Angelo, Ferretti et
al. [FDGM17]

Emulator
Smart
City

Agent-based - High Fog
Spatial,

Temporal
- - -

DPWSim [HLC+15] Simulator - Event-based No Low Edge Spatial - - Noneb

Jung et al. [JSW18] Simulator Device Agent-based - - Edge
Spatial,

Temporal
• - Anyc

VisibleSim [DPB13] Simulator
Virtual
World

Event-based
Apache

2.0
Very High Edge

Spatial,
Temporal

- - C++

IoTTest [Bur17] Emulator - - - - Edge - • • -

KhronoSim [CMB+18] Simulator - - - - Edge
Spatial,

Temporal
• • Any

MAMMotH [LODYJ13] Emulator - - - Very High
Edge,
Fog

- - - -

Fortino et al. [FGRS17] Emulator - Agent-based - High Fog - • - -

Zouai et al. [ZKHS17] Simulator
Smart
House

Agent-based - - Fog
Spatial,

Temporal
- - -

SWE Simulator [GMPE13] Emulator - Event-based - -
Edge,
Fog

Spatial,
Temporal

• - Anyd

WoTSIM [MCFL14] Simulator - Event-based -e High Edge
Spatial,

Temporal
- - -

aAlthough C++ does not have first class support, the paper states that "C++ code generated in different environments
can communicate through interface under Rhapsody/OXF support, thus implement integrated co-simulation of physical
and computation processes." [LWZ+13]

bSensors are programmed using the DPWSim GUI [HLC+15].
cSupports the programming languages used by the underlying simulation systems.
dSince data is inserted and retrieved using HTTP virtually any language can be used
eReference [MCFL14] states the simulator would be open-sourced, but its code could not be found at the time of

this writing.
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3.1.3 Expanded Search

The systematic review protocol results are detailed in Section 3.1.2 (p. 14). However, when com-

paring these tools to non-systematic surveys [JJW17, CBBZ18], these display some additional

information that was not found by the search terms established. Multiple reasons may apply for

this divergence in results, such as:

1. the tools not having an associated academic publication (e.g. AWS IoT Device Simula-

tor [aws], IoTIFY [iot], obtained from Google by searching IoT Simulator), causing them

not to be returned by the publication databases outlined in Section 3.1.1 (p. 11);

2. the publications may not use the keywords IoT or Simulator — including variants —, but

rather employ Wireless Sensor Networks or Emulation, e.g., CupCarbon [MLBK14], result-

ing in them not being included in the search results.

3.1.3.1 Expanded Results

To complete this survey, the unique results from the found reviews [JJW17, CBBZ18] were se-

lected. From this selection, the tools were assessed against the selection process defined in Sec-

tion 3.1.1.6 (p. 14) and reviewed according to the parameters established in Section 3.1.2 (p. 14).

Using the aforementioned methodology, the following tools remain:

1. The Java-based urban IoT simulator presented by Brambilla et al. [BPC+14] unites the

COOJA [ÖDE+06] and ns-3 [ns3] network simulators using DEUS [AAZ09], a discrete

event simulator, to aggregate information, such as transmission delays, energy consump-

tion and schedule communication events [BPC+14]. The OSMobility [osm] simulator is

included to allow the simulation of vehicles and pedestrian within the urban environment;

2. Karnouskos et al. [KT08] proposes a DPWS-based [dpw09] multi-agent enterprise-grade

simulator with the goal of providing transparent simulation, mobility support, and dynamic

environments capabilities, while also supporting micro and macro simulation and self-X

(e.g., self-configuration, self-healing, etc.) behavior [KT08]. The tool uses agents that

represent individual simulated devices as well as physical devices, while also providing a

communication bus so that the transmission of information can be made regardless of the

type of device, i.e., if the device is simulated or not [KT08];

3. SenseSim [DNP15] is a simulator for the Internet-of-Things based on agents and discrete

events that, using its layered architecture, intends to be capable of running the same appli-

cation regardless of whether the devices executing it are simulated or not. To achieve such a

goal, each simulated sensor is composed of four different components handling distinct parts

of the logic: from changing the sensor’s internal state or providing an API to manipulate to

the sensor to a middleware that runs an application on the sensor [DNP15];
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Figure 3.3: COOJA can run at multiple simulation levels. [ÖDE+06]

4. iFogSim [GDGB16] is an extension of CloudSim [CRB+11], and so inherits its functional-

ities. However, unlike CloudSim, which is only focused on the cloud, iFogSim adds a novel

edge-ward placement [GDGB16] strategy. This strategy favors the use of edge and fog de-

vices over the cloud. Its GUI allows the creation of a network with edge, fog and cloud

devices and its connections. A special class represents not only a communication packet

but also defines the processing requirements and the length of the data it encapsulates. This

characteristic is what allows the edge-ward placement strategy to decide whether or not to

route the tuple to a device closer to the edge;

5. COOJA [ÖDE+06] is a sensor network simulator for the Contiki [DGV04] operating sys-

tem. It emulates devices running the code without needing modifications so that transferring

to a physical device can be made painlessly. COOJA also emulates radio models, allowing

different types of radio wave propagation. COOJA makes use of specific features of the

Contiki kernel (e.g., its event-driven nature) to emulate devices, which makes it incompati-

ble with other operating systems;

6. OMNeT++ [OMN] is a discrete event simulator for communication networks and dis-

tributed systems containing not only a GUI but also a domain-specific C++-like program-

ming language named NED for defining the network topology. The behavior of models

is written in C++ in a separate file from the topology. While the simulator is not tailor-

made for the Internet-of-Things, the fact that it can model the topology of a network and is

event-based makes it suitable for this use case;

Figure 3.4: OMNeT++ Internal Architecture. [VH08]
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7. ns-3 [HLR+08] is a network simulator with the aim of succeeding the widely used ns-

2 [ns2], but with added realism and ability to plug real devices into the simulation. ns-3 also

provides C++ and Python API to plug into, while also supporting a distributed simulation

setting for large scale simulations [RH10]. Although being lower-level when compared to

other simulators, when performance and network emulation is needed, ns-3 seems to be a

promising solution;

8. QualNet [qua] is a commercial network emulator with spatial awareness that allows the

building of large wired and wireless networks and visualization by plugging into other tools.

It is also possible to connect QualNet to real networks so that real hardware can be tested.

3.1.4 Analysis & Discussion

It is essential to take note that more tools were not included because they did not meet the criteria

defined in Section 3.1.1 (p. 11). Specifically, tools that focus solely on simulating the cloud part

of an IoT system were left out, while platforms that simulate the fog and the edge were included.

3.1.4.1 Result Analysis

Having summarized the results from not only the systematic review but also from the surveys

found, there are a total of 23 simulators for the Internet-of-Things available. It is possible to verify

that they vary significantly in terms of characteristics, from emulator to event-based, from highly

scalable to supporting hardware-in-the-loop. The tools found were collected and analyzed. The

results from such analysis are laid out below:

Type Regarding whether the tools are simulated or emulate systems, ten simulators were found

contrasting with the 13 emulators discovered;

Scope From the 23 platforms identified, the most common is scope is smart cities, followed

closely by network simulators. The others either have little representation or have no par-

ticular scope and are deemed as generic purpose;

Architecture When it comes to architecture, event-based tools are the most common ones, while

the agent-based simulators, as well as the ones without mention of their architecture, appear

only six times. There is also a case where the framework follows both an event- and an

agent-based architecture;

License Most of the tools found do not mention a license, the few that do are split between an

open source one (e.g., GNU GPLv2, BSD 2-Clause, etc.) and no license. There is a clear

gap in the open source simulation tools with permissive licenses;

Scalability The majority of solutions identified, do not have their scalability metric evaluated

from performance benchmarks. The few that include such measurement are usually the
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ones high or very high and present it as an advantage of the tool. This may explain why

there are many platforms with high scalability, while there are only a few that do not scale

very well;

Tier It is possible to verify that most focus on the Edge tier of an IoT system. A substantial

number of tools simulate only the fog tier, and there are a few that can support both tiers.

Only one solution can simulate the cloud: the reason for that is that publications with tools

that only have the ability to simulate the cloud tier have been excluded, as explained in

Section 3.1.4 (p. 22);

Context Awareness Regarding context awareness, i.e., whether device are aware of time and

their position, most tools support spatial awareness, with some also providing temporal

awareness. However, there are also a few platforms that do not explicitly mention to which

extent they provide simulated devices with context awareness;

Hardware-in-the-loop Out of the 23 solutions analyzed, 11 provide some way of connecting the

simulation to real hardware, while 12 do not mention whether or not it is supported;

Can be Automated? The automation of simulation tools can prove useful for integrating au-

tonomous processes such as continuous integration/delivery pipelines or batch operations.

However, only IoTTest [Bur17], KhronoSim [CMB+18] and OMNeT++ [VH08] are capa-

ble of such automated procedure;

Programming Language Tools regularly introduce restrictions such as the programming lan-

guage to code the devices with so that higher performance gains can be achieved. While

performance is regarded as good, the restriction can also be too limiting and prohibit users

from choosing a certain platform. From the programming languages that the discovered

simulators support, C++ repeatedly emerges, as well as Java. There are also some frame-

works that are programming language agnostic and some others that require programs to be

written in a language created just for the simulator.

3.1.4.2 Evolution of Publications

To understand how the field of simulation for the Internet-of-Things, it is important to perceive

how it is developing. One metric to be used is the number of publications of the field over the

years. Starting in 2006, the year the first IoT simulation tool present in the survey was published,

and until 2019, publications were aggregated and their frequency measured.

3.1.4.3 Survey Research Questions

The research questions posed in Section 3.1.1 (p. 11) serve as guidance for the development of this

publication, and its answers are crucial to assess the state of the art of the field of IoT simulators.

Such answers are provided below.
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Figure 3.5: Publications per year of IoT simulators.

SRQ1 What relevant IoT simulation platforms exist? As seen in Section 3.1.2 (p. 14) and

Section 3.1.3 (p. 20), there are multiple IoT simulation platforms with different architec-

tures, standards, and goals. There are two most common approaches for simulation of IoT

systems that keep appearing in diverse solutions, namely: discrete event simulations (DES)

and agent-based simulations (MAS). It can also be verified that most solutions are not open

source or available for free download. When it comes to programming languages, there are

different options, although most publications do not mention their requirements;

SRQ2 Of these, which ones support testing and validation with hardware-in-the-loop? Ta-

ble 3.3 (p. 19) gives an overview of simulators and their properties. One can see that from

the 15 solutions presented; only 6 provide hardware-in-the-loop simulation. The coexis-

tence of virtual and physical devices offers better confidence about the system under test, as

it is closer to the real environment the system will run in. Taking a look at Table 3.4 (p. 23),

it is possible to verify that most tools support hardware-in-the-loop, totaling 11 out of 23;

SRQ3 What is the scope of the tools found in SRQ1? Different tools focus on distinct use

cases and objectives, ultimately leading to the developers limiting the scope of said tools

in different ways. Some tools prefer to focus on emulating networks, including their quirks

and peculiarities, while others pick the simulation of smart cities as their goal. This vari-

ety in scope influences the user selecting a simulation platform, justifying the importance

of having this distinction among the available simulators. From the 23 tools found from
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the systematic and expanded searches, four focus on smart cities, three on network simula-

tion, two on modeling devices, one on smart worlds and another one in smart houses. The

remaining have a generic purpose, and so their scope has not been restricted;

SRQ4 Of those found in SRQ1, which ones support the automation of tests? Automated

tests are becoming more prominent in the software industry, but the IoT field still seems

like it is lagging on this matter. Out of 15 solutions found in the systematic search, only

IoTTest [Bur17] and KhronoSim [CMB+18] support automated testing. Moreover, the ex-

panded search only found OMNeT++ [VH08] to support such feature, out of 8 total tools.

3.1.5 Conclusions

In this work, we survey 1400 papers from IEEEXplore, Scopus and Compendex that result in 15

simulators for the Internet-of-Things. Furthermore, an expanded search is conducted using the

reviews found among the publications retrieved from the databases, totaling 23 IoT simulators.

The results show that automated simulation of the Internet-of-Things with hardware-in-the-loop

support is still limited, with only IoTTest [Bur17], KhronoSim [CMB+18] and OMNeT++ [VH08]

possessing these capabilities. Although these are good news for the field of simulation of the IoT,

of these simulators, the first two are neither open source nor free to use, while the third is a network

simulator and has no particular focus on the Internet-of-Things. As such, there is a clear lack of

an open source hardware-in-the-loop IoT simulator capable of being automated, with OMNeT++

being the only possible solution, even though it is not ideal.

Summarizing, we noticed there is no broad range of solutions for testing IoT systems beyond

the simulation-based and some testbed-based approaches. However, when analyzing the landscape

of testing solutions for software-only systems, we verify that there is a lack of similar tools for IoT

based systems. Especially when taking into account that IoT systems have unique characteristics

and limit the use of software-only testing tools out of the box [Bei18]. Future work can focus

on developing an IoT simulator that (1) is open source, (2) can be automated and (3) supports

hardware-in-the-loop.

3.2 Related Work

Section 3.1 (p. 11) provides an in-depth overview of the current state of the art regarding the

simulation of the Internet of Things. It is visible that there are multiple tools with an approach to

simulate physical and virtual devices, each with its own advantages and disadvantages. Through

the lens of the review, the two following tools seem the most complete of the survey.

IoTTest [Bur17] is based on JUnit [JUn] and supports unit, integration and system tests. The

framework is divided into three major components:

• Test Orchestration Component which extends the JUnit framework and controls the execu-

tion of the tests, for example, being able to cancel them if an exception is thrown;
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• Devices Simulation Platform is the control center for all the simulated devices and contains

the main data bus, through which all the information flows;

• Devices Library is a Java library that encapsulates emulators of various physical devices that

act as providers to the main data bus.

The presence of a shared data bus abstracts the nature of the devices and allows for the introduction

of physical nodes without others perceiving it.

KhronoSim [CMB+18] is a distributed IoT simulator, able to run on multiple computers and

to emulate the physical environment. It is built on a data-oriented architecture (DOA), which

consists of a main data bus and multiple systems connected to it. This provides loose coupling

between the systems as they don’t need to be aware of the existence of the other devices. Fig-

ure 3.6 (p. 28) explains visually the overview of a DOA. KhronoSim is divided into four main

parts:

• DDS Data Communication that encapsulates the communication buses between the three

following components;

• Launcher which is a daemon that controls access to the System Under Test by creating a

mean of communication between the SUT and the Runner. In case there is more than one

Runner trying to access the same resource, the Launcher will place it in a FIFO queue until

the resource is free;

• Runner is the actual runner of the tests. Once it is allowed by the Launcher to execute the

tests, it will ask the Executive to execute actions on the SUT on his behalf. Actions include

sending messages and reading or writing electrical signals;

• Executive is the executor of the commands requested by Runners that controls the devices,

either simulated or not. The Executive can be replicated on multiple computers to allow the

concurrent execution of tests by increasing the number of simulated devices.
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Figure 3.6: Data oriented architecture.[CMB+18]

3.3 Visual Programming Languages

A Visual Programming Language aims to ease the burden of developing programs by utilizing

pictorial components like blocks and arrows over the traditional approach of using text [CRV15].

However, designing good visual programming languages is not trivial and the field of VPL design

faces multiple obstacles that include the (1) representation of language tokens, (2) effective use

of screen real estate and (3) documentation [BBB+95]. The representation of language tokens (or

static representation) is how the language is structured. These are usually easy to create when

a VPL’s programs are built imperatively or in a declarative manner; however, when a VPL re-

lies on a program-by-demonstration method (e.g., Adobe Photoshop Actions), creating the static

representation becomes much more difficult. Having such representation permits a better review

and analysis process for development. The use of screen real state in an effective fashion is also

a problem that needs to be solved. VPLs tend to grow horizontally, while textual programming

languages grow mostly vertically. In theory, this can be seen as a benefit, since most screens are

wider than they are high; in practice, however, this ultimately depends on how compacts VPLs can

be. Textual languages are very space efficient and can usually fit multiple instructions in one line

and tens of lines vertically. As such, VPLs must solve the problem of developing a space-efficient

syntax before becoming more relevant in software engineering. Another point that VPLs must

address is documentation, as there is a clear need for it. Although, there is no standard solution as

of yet. While textual languages use textual comments to document code, visual languages have a

broader range of possibilities to explore. One solution used is to employ textual documentation in

the program, while some other tools [LCI+88] allow comments only on mouse hover, in order to

save screen space.
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3.3.1 VPLs for the Internet of Things

Visual Programming Languages are usually represented as nodes with connections between them-

selves and with multiple inputs or outputs. This modeling paradigm is closely related to an IoT

system, where devices are spread across an area and send messages between each other. Due to

this parallelism between both architectures, VPLs can be viewed as an accurate and practical tool

to model IoT systems. After a quick search various VPLs with focus on IoT were discovered:

NETLabTK [net] NTK is a visual IoT system designer supporting Arduino and Raspberry Pi.

A web interface is provided to create, edit and delete devices, which are represented as

nodes which are, in turn, connected to other nodes in order to communicate. NTK’s GitHub

repository has not been updated since September 2017;

Ardublock [ard] Ardublock is a VPL for Arduino-based platforms that builds on the Arduino

IDE. However, development seems to have halted at the time of writing, as the last commit

dates to November 2017;

Node-RED [nod] Initially developed by IBM and now a project of the JS Foundation, Node-RED

is the most popular VPL platform and marketed as "flow-based programming for the Internet

of Things" [nod]. Node-RED architecture is focused on nodes and message passing, which

constitute different flows. Its ability to combine software with hardware and its extensibility

create a huge array of possibilities for building IoT systems. It also provides community-

made nodes through its library that fosters code reuse and reduces development time;

Figure 3.7: Node-RED UI.
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S4A [s4a] S4A is a modification of the Scratch [scr] visual programming language to work with

the Arduino platform. According to the website, it should work on all Arduino boards but

was only tested on Arduino Diecimila, Duemilanove and Uno;

Noodl [noo] Noodl is a web platform for building an IoT using visual constructs. It is extendable

by connecting to hardware using the MQTT protocol. Its last release is dated March 2018;

Figure 3.8: Noodl web interface. [noo]

AT&T Flow [atn] AT&T Flow is a tool built by AT&T to develop IoT systems in a flow-based

structure. Nodes represent data fetching or data mutation operations such as HTTP requests,

TCP connections and functions;

Reactive Blocks [rea] Reactive Blocks is an Eclipse-based visual programming tool suitable for

any Java IoT stack. It provides an extensive array of blocks with different abilities, e.g.,

sending SMS or emails, making HTTP requests or obtaining GPS location;

GraspIO [gra] GraspIO is a visual mobile IDE for small scale IoT systems. It only works for the

Raspberry Pi and can be connected to IFTTT [ift] to automate processes outside the scope

of GraspIO;

Wyliodrin STUDIO [wyl] Wyliodrin STUDIO is an IDE for programming IoT systems that in-

tegrates a visual programming language, shell access and textual programming languages

(e.g., JavaScript, Python and bash). It works by installing in the device the Wyliodrin server,

which provides remote control capabilities;

Zenodys [zen] Zenodys is an IoT focused platform that permits the construction of IoT system

using a visual language. It can connect to multiple data storages such as Microsft Excel,

SQLServer and MySQL and provides step-by-step debugging capabilities.
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Figure 3.9: Zenodys web interface. [zen]

From the above tools, some seem to stand out. Commercial solutions such as AT&T Flow [atn]

and Zenodys [zen] seem the most complete and generic visual programming tools for the Internet

of Things. They even provide additional features such as git-based versioning (AT&T Flow) or

step-by-step debugging (Zenodys). However, Node-RED, due to the fact that it is open source,

provides more possibilities when it comes to extensibility. The other tools appear to be too re-

strictive since they are only compatible with specific platforms (e.g., Arduino, Raspberry Pi), thus

constraining the user’s ability to extend and customize their behavior. Furthermore, from all the

tools found, none refer to testing automation for IoT systems, which is a common practice in

software-only systems.

3.4 Summary

Section 3.1 presents a systematic literature review of the field of IoT simulation and automated

testing, summarizing the properties and capabilities of the discovered tools. Section 3.2 (p. 26)

follows from the previous one by identifying the most complete solutions and providing a brief

analysis of each one. Ultimately, Section 3.3 (p. 28) introduces visual programming languages

and dives deeper onto VPLs for the Internet of Things and identifies a research gap in automated

testing for the IoT using VPLs. Effectively, the researched tools seem lacking as they do not

support visual testing, relying instead on either textual tests or no tests at all; are not capable

to running tests automatically, requiring a human to run the tests manually; and do not allow

continuous regression testing.
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Chapter 4

Problem Statement

This chapter provides a precise definition of the problem, as seen in Section 4.1. Afterward,

Section 4.2 (p. 34) presents a list of desired features for the solution to be developed. Subsequently,

Section 4.3 (p. 34) defines the scope of the project. The use cases for the solution are detailed

in Section 4.4 (p. 35). Section 4.5 (p. 36) specifies the research questions to be answered by

this work. A validation methodology for the found answers is delineated in Section 4.6 (p. 37).

Finally, Section 4.7 (p. 37) summarizes the chapter by presenting a succinct overview of the topics

mentioned throughout.

4.1 Current Issues

As previously verified in Chapter 3 (p. 11), there are multiple solutions that provide the ability

to create IoT systems using graphical interfaces. However, none of these are capable of running

automated tests. As such, the problem is defined as the union of the following issues:

1. Visual testing: the lack of a visual testing tool creates a paradigm difference between the

programming part of the development cycle, which is done in a visual interface, and the

testing part, which is either not done or developed using textual programming;

2. Automated testing capabilities: the lack of a tool that supports automated testing capa-

bilities results in the failure to provide the benefits the are experienced in other software

engineering fields where automated testing is available, such as faster feedback cycles and

reduced manual testing time;

3. Recurring regression testing: the absence of a tool to allow the continuous verification of

the system in order to detect inconsistencies, such as a failing physical device, is worrisome

as that would lead to a more reliable system.

This defines the problems this project aims at solving by fulfilling the criteria described in

Section 4.2 (p. 34).
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4.2 Desiderata

A desiderata, Latin for "things desired", serves as an aggregation of needs or wants. In this case, it

combines a number of requirements that a solution needs to have in order to solve all the problems

identified in Section 4.1 (p. 33), which are the following:

D1: Define tests visually so that they are consistent with the actual program under test, providing

the user with the benefits from visual programming languages;

D2: Testing the whole system so that the integration of different components can be validated

and errors can be identified, eventually leading to greater confidence on the correctness of

the system;

D3: Testing isolated parts of a system so that smaller units of logic can be verified before run-

ning more extensive tests. By having cheaper and shorter tests run first, test pipeline costs

and duration are reduced, as extensive tests are not executed if a cheaper and shorter one has

failed;

D4: Run tests on demand so that the behavior of the system can be tested either periodically

or remotely, permitting the constant monitoring of the constituents of the system, which

is more important in IoT systems, since they can suffer from both software and hardware

problems;

D5: Inject faults to verify that the system works as expected under real hardware or software

failure, hopefully reducing the number of problems in production, thus providing end users

with a better user experience;

D6: Generate report in order to obtain a high-level view of the problems affecting a system with

the intent of allowing a faster troubleshooting process.

4.3 Scope

In order to be able to develop the project in a realistic time frame, its scope must be correctly

defined and some features may be left as secondary goals. One of these is security, which is of

utmost importance, but will be relegated to a secondary objective of this project, thus allowing the

dissertation to focus more on its primary ambitions.

Moreover, one of the goals of this project is to build a simple to use yet powerful platform.

However, that always depends on the final user, since they may have varying degrees of familiar-

ity and easiness with the concepts and knowledge required to handle the framework. With this in

mind, the aim of the tool is to be used by (1) system integrators, such as users that are accustomed

to deal with the IoT environment and provide consultancy on the matter; (2) devices developers

which can use the tool to more easily and visually carry out tests on the components being devel-

oped; and (3) tech-savvy consumers that buy devices and desire to build and test the system by

themselves.
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4.4 Use Cases

This section provides all the use cases that are to be fulfilled by the solution. In Chapter 3 (p. 11) it

is visible that an appropriate tool for visual testing in visual programming languages has not been

found. Below, the most important use cases are detailed in order to achieve a usable and useful

version of the tool, while satisfying the requirements established in Section 4.2 (p. 34):

UC1: Fake Values from Devices Given a scenario where a room has a thermostat, window and

heater, when the window is not open and the thermostat is reading a temperature below

18oC, the heater should be turned on. It should be possible to fake the thermostat’s readings.

Achieving this will help test for various type of errors, e.g. when the temperature is 19oC

and the window is closed, the heater should remain turned off; when the temperature is 17oC

and the window is closed, the heater should turn on, etc.;

UC2: Obtain State of Devices Given a scenario where a room has a thermostat, window and

heater, when the window is not open and the thermostat is reading a temperature below

18oC, the heater should be turned on. It should be possible to obtain the state of the heater

so that tests can verify whether or not the heater has been turned on;

UC3: Verify the Behavior of a Single Component Given a scenario where a room has a ther-

mostat and a window, when the thermostat is reading a temperature below 18oC, the window

should be closed. It should be possible to write a test to detect a possible logic or physical

errors by injecting fake values into a component and watching its response, e.g. fake the

thermostat’s readings to read the temperature as 17oC, then verify if the window is closed.

This construct can automate the finding of logic errors such as ‘temperature < 18‘ being

confused with ‘temperature > 18‘;

UC4: Validate the Interaction between Components Given a scenario where a room has a ther-

mostat, window and heater, when the window is not open and the thermostat is reading a

temperature below 18oC, the heater should be turned on. It should be possible to write a test

to detect integration problems by injecting fake values into some components and spying the

response from others, e.g. fake both the thermostat to read the temperature as 17oC and the

window to be closed, then watch the heater to verify if it has turned on. This construct can

automate the finding of integration problems such as information not being sent, physical

problems with components, unexpected communication protocols, etc.;

UC5: Generate Test Report On a complex system, refactors are scary as they can touch many

parts of the codebase and possibly create problems. As such, when a refactor is done, it is

useful to run all tests and aggregate their results by generating a summary with all failing

tests including the location, so that bugs that were introduced during said refactor can be

found and eliminated;

UC6: Behavior Exploration When prototyping, it may be useful to mock and spy on certain

devices to explore their behavior and get a better understanding of its functionality. Given a
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scenario where some window blinds are open, it may be desirable to close them by faking a

‘close‘ command, so that its speed and behavior can be assessed.

4.5 Research Questions

Given the current state of the Internet of Things, more specifically, the testing of IoT systems and

the scope defined in Section 4.3 (p. 34), the main research question of this work is:

RQ: How to support automated testing in a VPL using visual elements?

However, this question is too broad and generic to lead to a single answer. Hence, a subdivision

was made, resulting in the following research questions:

RQ1: How to test in production? Concurrent use of resources is known to cause problems (e.g.,

race conditions, data inconsistency), as such it is important to understand how to test systems

without altering production data;

RQ2: How to show test results using visual metaphors? Test results express the correctness of

the system at a given point in time and its representation in a visual programming language

is imperative for the end user to quickly grasp such information;

RQ3: How to represent multiple test cases using graphical elements? A test suite is usually

comprised of multiple test cases and representing them in a compact space and in a user-

friendly way may increase developer productivity while reducing strain on the user;

RQ4: How to represent asynchronous test cases in a VPL? The IoT is built on asynchronous

events and messages, creating a scenario where most communication is done in a non-

synchronous way. In such a scenario representing asynchronous tests becomes a require-

ment;

RQ5: How to automate tests that depend on physical devices? Testing edge scenarios is im-

portant to explore behaviors that push systems to an extreme. However, in some of these

cases, it is not feasible to wait for certain conditions (e.g., wait for a fire alarm to fire).

As such, it is essential that a way to automate tests that rely on these edge conditions is

developed;

RQ6: How to leverage tests to allow continuous regression testing? An IoT system joins the

problems of software-only systems with all the hardware issues that can happen, leading to

a very large set of potential errors. In such a scenario, a way to test for regressions (e.g.,

check if a lamp stopped working) can be important for the long-term monitoring of a system.
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4.6 Validation

In order to validate whether or not the solution implemented fulfills the desiderata and use cases

defined, two test scenarios will be developed and each one will be verified against each desidera-

tum and research question. This validation will show to what extent the research questions were

satisfactorily answered.

4.7 Summary

Section 4.1 (p. 33) raises the issues of the current state of the testing of the Internet of Things.

Subsequently, Section 4.2 (p. 34) presents a desiderata for a visual programming tool supporting

automated testing, while Section 4.3 (p. 34) details the assumptions that have been made to restrict

the scope of the project so that it can be developed in a reasonable time frame. Afterward, several

use cases are also defined in Section 4.4 (p. 35). The research questions this dissertation aims to

answer are introduced in Section 4.5 (p. 36), which will be validated as explained in Section 4.6.
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Chapter 5

Solution

This chapter explains how the solutions to the problems presented in Chapter 4 (p. 33) are de-

signed, structured and achieved, while also detailing the reason why some design decisions were

taken.

First, the standalone IoT simulator is described, along with its architecture, benefits, disad-

vantages and trade-offs. Afterward, the implementation of an extension for Node-RED based on

the simulator is explained. Subsequently, the architecture and behavior of a testing framework for

Node-RED are described. Finally, a brief summary of the information revealed in the chapter is

presented.

5.1 Simulator for the Internet of Things

The first goal of this dissertation was to build a generic simulator for the Internet of Things that

allowed hardware in the loop and was programming language agnostic. The idea behind such

simulator is to allow the introduction of software-based logic instead of actual hardware devices

to mimic the functionality of a system. As a secondary goal, the tool should permit the program-

ming of devices using almost any language available. This section describes the reasons behind

its architectural decisions, characterizes its components and summarizes the knowledge obtained

from its implementation.

5.1.1 Architectural Overview

In order to solve the problems outlined in Chapter 4 (p. 33), an attempt was made to build an

architecture that would be as generic as possible, meaning that anyone should be able to apply it

to almost every IoT system.

The system is built on top of message queues using the MQTT [mqta] protocol and its con-

stituent devices are assumed to follow the Web Thing API1. However, the architecture is protocol

1https://iot.mozilla.org/wot/
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agnostic, so it could have been AMQP2 or any other, but MQTT was chosen due to being "ex-

tremely lightweight" [mqta], thus making it good to use in an IoT scenario.

5.1.1.1 One-Queue Architecture

Initially, a simple architecture using a Message Proxy, as seen in Figure 5.1, was developed. It

relies on a Message Queue, such as RabbitMQ3, to act as a message broker between devices.

Figure 5.1: One Queue Architecture.

This approach works very well in most cases and is the simplest to understand. However, in

specific scenarios, some problems may surface, namely:

1. Ensure Proxy Priority: when there is a message, the proxy should be able to read it before

the end devices are able to. This means there must be some kind of higher priority for the

proxy (or lower priority for the devices). MQTT does not have the concept of priority, so to

ensure the correct behavior of the system, we would need to depend on the different brokers

that implement some kind of priority system or that allow custom routing logic;

2. Message Looping: the particular solution has the problem of possibly creating infinite loops

of messages. Let’s say we have a rule:

Whenever a message from /things/thermometer is received with temperature > 25 , then set

the temperature to 30.

Using the proposed architecture, the system would enter an infinite loop of receiving and

sending a message with temperature = 30. This state is undesirable as it causes unnecessary

strain on the system and corrupts its logic from the point of view of the user.

In order to solve the first problem, the solution would need to restrict itself to working only

on brokers with a priority system. This is undesirable as restricting the message queues this tool

works with basically diminishes the possible impact it can have.

2https://www.amqp.org/
3https://www.rabbitmq.com
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Dealing with the second issue requires a more intricate solution, such as storing ID of sent
messages. By allowing the message proxy to store the ID of sent messages, it can assess whether

or not messages have already been sent. In the case that they had been sent, the proxy would

put them back in the queue. If they had not been sent, they would be processed according to the

predefined configuration. Since packet IDs only work on MQTT packets with QoS > 0 [mqtb], it

is unclear how QoS = 0 would be handled in this case.

This approach carries the advantage of requiring only one message queue. However, besides

the lack of knowledge of how to handle of QoS = 0 messages, it also brings the disadvantage of

needing to store the ID of messages sent, which raises even more questions, such as (1) how it

would impact memory consumption and (2) how much IDs to store before deleting.

Due to these restrictions and disadvantages, a new two-queue architecture was devised and

implemented, as seen in Section 5.1.1.2.

5.1.1.2 Two-Queue Architecture

A Two-Queue Architecture (cf. Figure 5.2) splits a message queue into two: one for reading;

another one for writing. The Write Message Queue is the message queue where the devices write
to, while the Read Message Queue is where devices read from. The process is reversed for the

Message Proxy.

Figure 5.2: Two Queue Architecture.

The workflow of this system is as follows:

1. Devices send messages to the Write Message Queue;

2. The Message Proxy reads from the Write Message Queue and applies its configuration, e.g.

replace the message, suppress it, etc.;
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3. The Message Proxy sends non-suppressed messages to the Read Message Queue after alter-

ing the message according to the configuration defined by the user;

4. Devices read from the Read Message Queue without knowing if the received messages were

modified or not.

This specific architecture solves the problems outlined in Section 5.1.1.1 (p. 40):

1. Proxy Priority is ensured by only allowing the connection of Message Proxy between the

message queues, which solves the problem effectively. A disadvantage that may surface

from this approach is that the proxy must be able to cope with the throughput of the whole
system, not only the messages it is interested in. This may create a bottleneck. Fortunately,

having multiple instances of the Message Proxy can help, as long as they all have the same

configuration at every point in time;

2. Message Looping is effectively resolved when moving messages from the write to the read

queue, which prevents the message from being processed again by the proxy, as it cannot

read from the output queue.

Although previously raised questions were answered assertively, some new problems may

surface, such as (1) the RETAIN4 property of the MQTT protocol, which is rendered useless, since

the Message Proxy cannot know whether the message sent to the Write Message Queue was sent

with RETAIN set to 1 or not; (2) how to synchronize the configuration across multiple proxies to

enable the system to scale with the number of messages.

5.1.2 Component Characterization

The possible architectures were specified in Section 5.1.1 (p. 39) and their pros and cons outlined.

For this specific implementation, the Two-Queue Architecture was chosen since the disadvantages

that it carries are regarded as less severe, when compared to the One-Queue Architecture’s.

5.1.2.1 Message Queues

The Message Queues act as a messenger between end devices and the Proxy, as seen in Fig-

ure 5.2 (p. 41). One of them receives messages from devices and only the Proxy should read from

it. This is called the Write Message Queue. The other one — the Read Message Queue — relays

messages published by the Proxy to the end devices.

Although the tool was tested using RabbitMQ with the MQTT Plugin, in theory, any mes-

sage queue supporting MQTT should work, since there is nothing being used that is exclusive to

RabbitMQ.

4http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#
_Toc398718038
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5.1.2.2 Proxy Configuration

The Proxy Configuration defines the runtime behavior of the Message Proxy (cf. Section 5.1.2.3,

p. 44). Its purpose is to define how to handle the messages the proxy receives. From delaying

or generating a message to suppressing or modifying it, the configuration effectively has the ca-

pability of defining or altering the behavior of the system while it is running. This proves useful

when experimenting with parts of a system where switching between simulated and real devices

is beneficial.

The configuration is split between two types of agents:

Replacers are in charge of replacing the input message with any number of output messages.

An output message can be a static value or a dynamic value calculated using an expression

and the input value. Every output message can also be delayed by an arbitrary amount of

milliseconds, making it useful for simulating timeouts or delays in the network. The input

message can also be suppressed, useful when the intention is to replace the message entirely,

or can be let through;

Generators have the responsibility of generating messages according to a cron expression. Gen-

erators can also have multiple outputs, which can be used to delay and calculate values

depending on the timestamp the generation function was triggered.

The configuration is internally defined as a JavaScript object and so every format that is able

to be converted into a JavaScript object is supported. For this work, we used the TOML 5 format.

Example Configurations

In order to provide concrete examples with the goal of helping understand how configurations are

defined, two examples are presented. The first one represents a replacer, while the second one

configures a generator. In this specific instance, they are separate to simplify the explanation, but

they can be composed together to form complex configurations.

The configuration below defines a replacer:

1 [[replacers]]

2 input = {

3 href = "/things/thermometer",

4 property = "temperature",

5 suppress = true

6 }

7

8 [[replacers.outputs]]

9 expr = "value > 1 ? 1 : value"

10 href = "/things/thermometer"

11 property = "temperature"

5https://github.com/toml-lang/toml
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12 delay = 2

Listing 5.1: Example configuration using a replacer.

The configuration above defines a replacer with one input and one output. The input is the

Web Thing defined at /things/thermometer and the property temperature will be used

as the base value. Furthermore, the message will be suppressed and, thus, not sent to the re-

ceiver. The output is the same Web Thing (/things/thermometer) and the same property

(temperature), but the message will be delayed by 2 seconds and the new value will be calcu-

lated based on the expression value > 1 ? 1 : value. In this case, value is the value

of the property of the input message, so the actual behavior of the expression is to clamp the input

value to a maximum value of 1.

The following configuration represents a generator:

1 [[generators]]

2 input = { cron = "10/5 * * * * *" }

3

4 [[generators.outputs]]

5 value = 45

6 href = "/things/humidity-sensor"

7 property = "humidity"

Listing 5.2: Example configuration using a generator.

This configuration defines a generator that runs according to the 10/5 * * * * * cron expres-

sion, which in this case means every 5 seconds starting at the 10th second of every minute. The

output is sent to /things/humidity-sensor with the property humidity set as 45.

5.1.2.3 Message Proxy

The Message Proxy is the most crucial component of the system as it implements the most im-

portant functionality. It is responsible for proxying messages from the Write Message Queue to

the Read Message Queue, applying the rules defined in the configuration. Said configuration is

injected at runtime and is defined in finer detail in Section 5.1.2.2 (p. 43). Whenever a new con-

figuration is injected, the list of message handlers is updated with the newly generated handler

functions.

A replacer handler function implements the design pattern Chain of Responsibility [Gam95],

in the sense that a message is passed from handler to handler, with each being responsible for

executing its task independently from the others.

The handler function is passed, as parameters: (1) an object, which we will call message con-

text, with information about the message received, including the MQTT topic, message payload,

and whether or not to suppress the input message; and (2) a publish function so that the handler

can publish messages to the Read Message Queue. For replacers, it follows the algorithm below:
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1. If the message topic does not match the replacer configuration’s input href, then skip the

handler by returning the message context;

2. Otherwise, run the replacer handler, comprised of the following steps:

(a) Obtain the new value, which is done either by setting a static value or computing the

expression given;

(b) Create the message with the new href and property fields (if not set, use the input’s);

(c) Publish the message with the specified delay.

When it comes to generators, the algorithm is as follows:

1. Use the static value or compute it from the tick;

2. Create the message with the href and property fields;

3. Publish the message with the specified delay.

5.2 Node-RED IoT Simulation

Node-RED is a web user interface for flow-based programming for IoT. It allows the creation

and manipulation of nodes (which can be IoT devices, transformation functions, etc.) as well

as wiring them together to develop complex systems. Groups of interconnected nodes constitute

flows, which represent higher units of abstraction when compared to nodes and can encapsulate

arbitrarily complex logic.

In order to provide a simple user interface for the IoT simulator described in Section 5.1 (p. 39)

and reduce the development time and effort, we chose Node-RED as the GUI to replace the TOML

configuration file, hoping to relieve the burden of defining the configuration by hand and giving

better feedback to the user by means of visual elements.

Figure 5.3: Node-RED IoT Simulation Extension.

Figure 5.3 captures a simple simulation scenario where the temperature of a thermometer is

sent every 5 seconds.
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5.2.1 Component Characterization

With the goal of integrating the IoT simulator with Node-RED, an extension was developed that

contains several custom nodes. Its goal is to entirely replace the TOML configuration file with

a graphical environment that achieves the same goals, but with less strain and with more visual

appeal to the end user. The newly created nodes are the following:

Proxy Config Config node that selects the message queues to read from/write to. Uses Node-

RED’s MQTT node to set both the Read Queue and Write Queue;

Proxy Node that depends on Proxy Config and is shared among all Generators and Replacers.

Represents one instance of a Message Proxy;

Generator Input Config node that configures the generation function to execute on a periodic

basis. It uses cron6 based scheduling, with accuracy to the second;

Generator Output Config node that configures the value generation and validates the settings for

a generator. Sets the Web Thing’s href and property as well as the message delay and

how to calculate its values — whether it’s static or calculated from an expression;

Generator Node that generates values on a periodic basis. Depends on Generator Input and

Generator Output to set the configuration;

Replacer Input Config node that configures how to replace input values. It receives the Web

Thing’s href and property to replace and a flag indicating whether or not the original

message should be suppressed;

Replacer Output Config node that configures the value generation and validates the configura-

tion for a replacer. Sets the Web Thing’s href and property as well as the message delay

and how to calculate its values — whether it’s static or calculated from an expression;

Replacer Node responsible for replacing incoming messages’ values with new ones or calculating

new values based on old ones. It is also capable of suppressing receiving messages and can

also output either static values or the result of an expression. Depends on Replacer Input

and Replacer Output to function.

Both Replacer and Generator generate either static or dynamic values. The first are set once

and do not ever change, e.g. 42, "on". The second, however, rely on a simple expression parser

— mathjs [mat] — that is capable of executing simple JavaScript mathematical expressions (e.g.,

value * 2, value > 10 ? 5 : 10) and can compute result based on the input value,

such as the value in the input message.

6https://linux.die.net/man/5/crontab
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5.3 Node-RED Testing Framework

Having implemented the simulator and added the Node-RED integration, new opportunities arose.

One of them is the possibility of testing Node-RED flows using Node-RED itself, something which

is not available at the time of this writing. Even though there is a proposal for Flow Testing7, it is

still awaiting approval and the workflow differs greatly from the one implemented in this project.

One of the major differences between the proposal and this implementation is the fact that the first

focuses on having tests in the same flow as the nodes under test, while the latter utilizes a separate

flow to harbor the tests. Figure 5.4 (p. 48) illustrates a test suite running.

With this extension, it is expected that tests in Node-RED flows will transform the platform for

the better by permitting more critical systems to developed and tested. Thus, unlocking the faster

development time and visual benefits that Node-RED already offers, while providing a well-tested

and reliable IoT system for the end user.

5.3.1 Solution Overview

The solution is based on the fact that Node-RED allows the access of nodes in different flows.

This is how nodes like Mock or Spy can access the properties of nodes under test. Node-RED also

has a capability named Context8 which allows to set variables in different contexts, such as global,

flow or node. By leveraging the flow context, the various testing nodes are able to communicate

with a central node to inform it of tests’ failures or successes. Taking advantage of these features

comes with some tradeoffs that are detailed in Section 5.3.3 (p. 50).

5.3.2 Custom Nodes

The framework is implemented by providing the user with custom nodes, giving the user all the

flexibility from the composability of Node-RED components. In order to allow the user to ben-

efit from said composability, nodes were created with the goal of being simple and modular, as

commanded by Unix philosophy. As such, the following nodes were developed:

Test Runner is responsible for acting as a switch and selecting which test can run at once. It is

activated by receiving a message with the payload "start_tests". Once this message

has been received, it sends a message to reset the tests’ state followed by another one to

effectively run the tests. By requiring a message to be received, the test runner can be

composed with other nodes, which allows tests to be run every 15 seconds - using an Inject

node - or be triggered remotely by an MQTT message;

Test Start works mostly as an informative node by informing the user whether the test has already

been started or is still pending authorization from the Test Runner. Its name should explain

what the test is validating so that tests are easily recognizable;

7https://github.com/node-red/designs/tree/c6c51a910020a55fdbf60d685f86a254cfc5f9f6/
designs/flow-testing

8https://nodered.org/docs/user-guide/context
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Spy is a node that focuses on spying what other nodes are receiving. It is very useful to use with

an Assert node to verify if the flow under test is behaving as expected. Under the hood,

the Spy node installs an input event listener in the target node and sends every message the

target node receives;

Mock fakes the sending of a message by a node. This is done by calling the send method of

the target node with the specified message. Its configuration is very similar to Node-RED’s

Inject node but does not allow for time-based repetition. The configuration interface can be

seen in Figure 5.5;

Figure 5.5: Mock node configuration interface.

Await is a node that waits for a message to arrive, forwarding it if it does arrive. Otherwise, the

test continues without the message. It is useful for asynchronous operations such as spying

and then mocking, but can be used for other use cases as well. The timeout can be specified

in milliseconds and is editable through Node-RED’s web interface;

Assert validates whether or not a received message is in accord with some expectation. If the

assertion is not successful, then not only will the whole test fail, but the Test Runner will

be informed and the failure added to the collection of test failures, which can afterward be

gathered using a Report Generator.

The Assert node reuses the Function node functionality of accepting and running JavaScript

code. The expect function from the JavaScript testing library Chai [cha] is injected into

the scope so it is possible to write asserts in a behavior driven style.

If the expect fails, then the whole test is deemed as a failure and the testDone function,

present in the flow’s context, is called with the assertion error, the ID of the assertion node

and the message and function body that caused the failure;
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Test End signals that a test case has ended successfully. When a run message arrives at a Test

End, the context flow testDone function is called to inform the Test Runner that the test

is finished and the next one can now begin;

Report Generator aggregates the failures of the current test run and passes it as a message to the

next node(s). It contains the function body and the message that triggered each failure. It is

up to the user to format the output as desired.

5.3.3 Limitations

As described in Section 5.3.1 (p. 47), some trade-offs were made to accommodate the testing

framework. These are defined below:

Test tab must be after flow tab Since the test tab depends on the flow under test and Node-RED

loads the nodes in the order of the appearance of their tabs, the flow under test tab must

precede the test tab, so that when the latter runs, the first is already loaded and operations

are executed correctly;

One Test Runner per flow Due to the fact that the Test Runner leverages the flow context to com-

municate with other testing nodes, only one instance can be present in a flow at once. Failing

to do so may create inconsistencies as multiple Test Runners may alter the data at the same

time;

One Report Generator per flow Since the Report Generator also uses the flow context to be in-

formed of failures, only one can be present in a flow. Failure to comply will cause the same

problems as having multiple Test Runners in a flow;

No separate environments The extension executes the tests by injecting and spying messages

from nodes in the flow under test. What this means in practical terms is that the tests are

running in the production system, i.e., it is running the actual flow. While this is acceptable

in some cases as it provides more confidence on the correctness of the system, in others it

may create unintended consequences, such as altering production data;

Tests cannot be run in parallel The underlying behavior of running tests is to inject the mes-

sages directly into the flow under tests, meaning that there is no separate instance or sandbox

for testing. The lack of a proper container to isolate the flow makes the tests not safe to be

run in parallel as multiple executions can interfere with one another;

One Test Start per Test Runner output The outputs of the Test Runner node represent one test,

so hooking up multiple tests to one output will make them run concurrently, which can cause

concurrency issues such as race conditions and data inconsistencies.
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5.4 Summary

The solutions presented throughout this chapter solve the problems identified and described in

Chapter 4 (p. 33). Section 5.1 (p. 39) explains the developed prototype of a simulator for the

Internet of Things providing hardware-in-the-loop support as well as being programming language

agnostic. Afterward, Section 5.2 (p. 45) illustrates the integration of the simulator into Node-RED

and characterizes its constituent parts. Section 5.3 (p. 47) reports the behavior of the testing

framework created for Node-RED.

Since no solution is perfect, it is possible to find future work to be done in order to further

improve the field of IoT simulation and testing. Section 5.3.3 (p. 50) thoroughly details the caveats

and limitations of the framework, thus defining possible paths of progress in this area.
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Chapter 6

Evaluation

This chapter focuses on the evaluation of the developed solutions. Section 6.1 establishes the sce-

narios used to verify the success of the implementation and to which extent it realizes the desired

features described in Section 4.2 (p. 34) and fulfills the use cases outlined in Section 4.4 (p. 35).

Subsequently, Section 6.2 (p. 55) evaluates how the solutions fared when put against the test sce-

nario. Section 6.3 (p. 56) answers the research questions defined in Section 4.5 (p. 36). Ultimately,

Section 6.4 (p. 57) closes the chapter by summarizing the conclusions obtained from previous sec-

tions.

6.1 Test Scenarios

Two tests scenarios were designed to assess how the tool fulfills the requirements and answers the

research questions. These scenarios are virtual and do not map to physical devices by leveraging

testing framework data injection capabilities.

6.1.1 Scenario A

Figure 6.1 illustrates how the Scenario A is represented is Node-RED. It mimics a simple system

where a window will open if the temperature in a room becomes to high.

Figure 6.1: Test Scenario A.

The test suite for this scenario is portrayed in Figure 6.2 (p. 54). It contains three test cases,

complemented by a node that generates a report of test failures.
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Figure 6.2: Test suite for Scenario A.

The test flow incorporates an Inject node that periodically starts the Test Runner, three test

cases and a Report Generator. The test cases assert that the window does not open when the

temperature is less than or equal to 25◦C and that it receives an open command whenever the

temperature exceeds 25◦C. Furthermore, a report is generated in case of any failure.

6.1.2 Scenario B

Scenario B (cf. Figure 6.3) represents an automatic room light adjustment system. The goal is to

keep the room light in a range of values, taking into account energy expenditure (e.g., prioritizing

opening blinds over turning on a lamp) and room temperature.

Figure 6.3: Test Scenario B.

The scenario is comprised of two sensors and three actuators:

Light Sensor Measures the room light;

Thermometer Obtains the room temperature;

Window Can be opened or closed remotely and influences the room temperature and brightness;

Lamp Can be turned on or off and affects the room temperature, bright and energy expenditure;
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Blinds Can be opened or closed, impacting the room light.

Figure 6.4 illustrates a subset of a test suite for this scenario.

Figure 6.4: Subset of the test suite for Scenario B.

It consists of five visible test cases, as denoted by the nodes depicted by a comment balloon.

These nodes represent the start of a test and only one will run at once. They are connected to a Spy

node, identified by the magnifying glass icon, that are used to obtain the messages sent by nodes

in the flow under test. Using the top test case as an example and starting at the Spy Window

node, a message setting the temperature to be 14◦C is sent by the Send Temperature = 14◦C

node. Afterward, a Await node waits one second for a message to be sent by the Spy. The result is

then forwarded to the node represented by the exclamation point, whose function is to verify that

certain conditions are met. If they are not, the test is considered a failure. If the assertions pass,

the flow continues executing until a message meets the Test End node, signaling the end of the

test and allowing the Test Runner to run the following test.

After all tests have been executed, the report-generator will send a payload with the test

failures to the next node(s) in the flow, which can be tailored to the specific use case, e.g., send an

e-mail to the person responsible for the system.

6.2 Assessment

The evaluation of the developed tools is executed through the fulfillment of all the requirements

established in Chapter 4 (p. 33). Utilizing the scenarios defined in Section 6.1 (p. 53), the following

desideratum were achieved:

D1: Define tests visually Both scenarios illustrate that the tests were defined in a visually appeal-

ing and effective way;

D2: Testing the whole system Scenario B demonstrates the validation of behavior of a complex

system;
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D3: Testing isolated parts of a system Scenario B exhibits the testing of a subset of the whole

system;

D4: Run tests on demand Both scenarios show the possibility of running tests on demand, e.g.,

by using the Inject node to start the Test Runner periodically;

D5: Inject faults Both scenarios prove that it is possible to insert faults into the system, e.g., by

injecting invalid messages;

D6: Generate report Both scenarios contain a node that generates a report based on the failed

tests.

Concluding, it is visible that the solution meets every point of the desiderata without sacrific-

ing the visual aspect of Node-RED.

6.3 Research Questions

This dissertation obtained the answers to the research questions established in Section 4.5 (p. 36)

through research and the implementation of the solutions described in Chapter 5 (p. 39).

RQ: How to support automated testing in a VPL using visual elements? In order to achieve

automated testing in a VPL by maintaining the visual components, the introduction of

more graphical elements with specific behavior, such as components for asserting condi-

tions, mocking elements or listening to messages, is necessary.

While the main research question provides an overview of the procedure to implement auto-

mated testing in a VPL, the following questions concretely lay out more specific scenarios.

RQ1: How to test in production? Having a separate environment for testing and production is a

common practice in the software world to avoid the mix between test data and real users’

information. However, for the Internet of Things, such separation is complex, as copies of

physical devices cannot be made. Thus, testing in production should restrict itself to some

guidelines to avoid affecting the real data;

RQ2: How to show test results using visual metaphors? Extrapolating from the solution found

in the specific implementation explained in Section 5.3 (p. 47), test results can be shown by

attaching stateful informational graphical elements to nodes. This way nodes themselves

are unaffected, but there still is visual feedback on the results of tests;

RQ3: How to represent multiple test cases using graphical elements? It is normal in the soft-

ware world to have test suites that encapsulate either test suites or test cases. In the VPL

field, such structure can be mirrored by having a graphical element (test suite) that branches

into multiple other elements that are laid out alongside each other;
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RQ4: How to represent asynchronous test cases in a VPL? IoT is mainly asynchronous by na-

ture, as most of its architectures are based in events and message passing. Hence, represent-

ing asynchronous tests in an effective manner is crucial to the good working of the frame-

work. From our experience, asynchronous test cases can be represented using some type

of await graphical element that waits for a value, message, etc. and concurrently sets up a

timeout. If the timeout is reached without receiving anything, then the test case has failed;

otherwise, the element should forward the received message;

RQ5: How to automate tests that depend on physical devices? The IoT merges software with

hardware, thus a need for testing physical devices arises. Automating the tests of such

devices can provide automatic fault detection, reducing the time to repair an issue. The au-

tomation of tests for physical devices can be achieved by spying the behavior of the device,

e.g., when a lamp is turned on, the brightness of a room should increase;

RQ6: How to leverage tests to allow continuous regression testing? An IoT system is consid-

erably more prone to errors when compared to a normal software system, especially due

to its high heterogeneity between devices and the fact that they may fail more frequently.

Continuous regression testing eases this complication by constantly running tests that mon-

itor if the system is behaving correctly. This can be executed by having a test suite that runs

periodically or on-demand, allowing greater confidence in the behavior of the whole system.

6.4 Conclusions

This chapter illustrates the results of the validation of this particular implementation. Section 6.1 (p. 53)

defines the test scenarios utilized to assess the tool’s conformance to the requirements. Moreover,

Section 6.2 (p. 55) analyzes how the solution fulfills requirements of the desiderata. Finally,

Section 6.3 (p. 56) contains the answers to the research questions established before.
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Chapter 7

Conclusions

This chapter is comprised of various sections. Section 7.1 details the difficulties faced during

the development of the solutions. Section 7.2 outlines the research contributions made to the

field of IoT simulation and testing. Afterward, an overview of the achieved results is described

in Section 7.3 (p. 60).Section 7.4 (p. 60) delineates directions to explore as they were not fully

covered in this work and are seen to have some potential to create value and fill gaps in the

research.

7.1 Difficulties

During the development of this project, numerous difficulties rose up and were tackled. While

some were successfully solved, others were not and are presented as future work in Section 7.4 (p. 60).

Regarding the IoT simulator, problems such as dealing with the RETAIN of the MQTT protocol

and scaling up the proxy to multiple instances were left as open questions. However, the problems

inherent to the one-queue architecture were dealt with by pivoting into a two-queue architecture.

The testing framework also posed interesting issues, namely the communication between nodes

and passing information about test results. These were eventually solved using regular Node-RED

messages with special properties and utilizing the flow context, respectively. Nonetheless, a few

limitations were identified that can be viewed as future improvements, as Section 5.3.3 illustrates.

7.2 Contributions

The implementation of a solution to solve the problems identified in Chapter 4 (p. 33) provides

convenient tools as well as useful knowledge on the advantages and disadvantages of the decision

taken during development. As such, the contributions of this work are as follows:
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Systematic Literature Review of Hardware-in-the-loop Simulators for the IoT A systematic

literature review was carried out to understand the state of the art with regards to IoT simu-

lators that allow the inclusion of hardware in the simulation process. The paper [BDRSF19]

was submitted to the 27th IEEE International Symposium on the Modeling, Analysis, and

Simulation of Computer and Telecommunication Systems;

Hardware-in-the-loop IoT Simulator The simulator, as described in Section 5.1 (p. 39), which

supports hardware-in-the-loop and is programming language agnostic;

Node-RED IoT Simulator Extension The Node-RED extension that allows the use of the IoT

Simulator in a visual programming environment;

Node-RED Testing Framework The framework for Node-RED that permits the testing of flows;

Continuous Regression Testing The Node-RED testing framework provides continuous regres-

sion testing, a technique which can be generalized into other environments;

Visual Test Results The testing framework is equipped with a real-time visual representation of

the test results that give the user instant feedback on how the system compares to the ex-

pected behavior.

7.3 Conclusions

Chapter 3 (p. 11) mentions the results of a systematic literature review about the state of the art

of simulators for the Internet of Things and identifies a gap in this specific field. The review of

visual programming languages for the Internet of Things also returned several results, but once

again discovered a promising research gap. Based on this void, Chapter 4 (p. 33) clearly defines

the what issues currently exist and, furthermore, lists the desired features in a solution to such

problems, while also identifying use cases for the tool. A set of research questions to be answered

by this thesis is also established.

Chapter 5 (p. 39) builds on the two previous chapters to create solutions that fulfill the im-

posed requirements, filling the gap for an IoT simulator with hardware-in-the-loop support and a

graphical testing framework for the IoT. Chapter 6 (p. 53) explicitly answers the research questions

defined before and evaluates the implementation.

Finally, Chapter 7 (p. 59) identifies the difficulties faced, the contributions made as well as the

future work that can be explored to further advance the field of IoT testing using VPLs.

7.4 Future Work

The solutions developed for this dissertation were satisfactory in the sense that they solved the

urging problems, as identified in Section 4.1 (p. 33). However, the implementations are still a

proof of concept and do not cover every possible use case, giving space for future improvements.
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The IoT simulator comes with some limitations, mostly due to the architecture of Node-RED, that

were overlooked and should be addressed. Namely, the evident disconnection between normal

nodes and the simulator nodes, which are mostly alone and do not have any inputs or outputs;

and the lack of clear visual elements that illustrate the effect that simulator nodes have on normal

nodes. The testing framework is a bit more polished but still has some rough edges. Specifically,

the restrictions of the number of tests the can be run in parallel, the lack of separate environments

for testing, etc.

It is clear these tools still have space for improvement and, in conjunction with the research

questions that were not answered conclusively, there is potential work to be done.
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Systematic Literature Review

This appendix contains the Systematic Literature Review submitted to the 27th IEEE International

Symposium on the Modeling, Analysis, and Simulation of Computer and Telecommunication
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André Restivo
LIACC and DEI

Faculty of Engineering
University of Porto

Porto, Portugal
arestivo@fe.up.pt

Hugo Sereno Ferreira
INESC TEC and DEI
Faculty of Engineering

University of Porto
Porto, Portugal

hugosf@fe.up.pt

Abstract—The Internet-of-Things is comprised of billions of
connected devices. IoT systems can have many components,
creating a huge array of possible errors. The process of detecting
those errors before they move into a production environment
for IoT system is usually done using testbeds, simulators or
emulators. This paper is a systematic review of simulators
for testing Internet-of-Things systems focusing on hardware-in-
the-loop simulation tools with support for automated testing.
The papers were retrieved from the IEEEXplore, Scopus and
Compendex publication databases. Of these, 15 met all the de-
fined criteria. The analysis was complemented by two additional
surveys. We concluded that, while these types of tools exist, a
free or open-source tool with hardware-in-the-loop capabilities
that can be automated was not found.

Index Terms—Internet-of-Things, simulation

I. INTRODUCTION

The Internet-of-Things, the result of the inter-connectivity
of physical and virtual entities which can sense and actuate in
the real-world, has been growing massively. In 2016 there were
between 6.4 billion and 17.6 billion devices (excluding mobile
phones, tablets, and computers) connected to the Internet and
it is predicted to reach numbers between 20 and 30 billion of
connected devices [1].

Such scale makes IoT simulations a field to be explored
due to its potential benefits regarding cost savings and time-
to-prototype. Numerous tools for the job exist, although each
focuses on very specific use cases, be it performance measure-
ment, power cost monitoring, network modeling, etc. Due to
the diversity of tools used to perform the same task, this paper
compares them following defined criteria and then presents the
results obtained.

The structure of this review is as follows: Section II provides
an overview of some concepts regarded as important for the
understanding of our work; Section III details the methodology
followed to achieve the results presented afterward; Section IV
explains and compares the results obtained from the conducted
search; Section VII concludes the review by presenting an
analysis of the retrieved results.

II. BACKGROUND

This section introduces several pieces of knowledge deemed
crucial to understand the rest of our work. Ranging from

an introduction to the Internet-of-Things to software testing,
while providing a succinct explanation of systems and IoT
simulation, we summarize the construction blocks for the rest
of the survey.

A. Internet-of-Things

The Internet-of-Things (IoT) is a paradigm where com-
putational devices, typically known as things, are connected
to the Internet and are uniquely identifiable and globally
accessible [2]. IoT opens doors for using information from
both the real and virtual realms to actuate in the real world.
Within the nature of IoT systems, there are several particu-
larities that, although not new or unique, come together at
an unprecedented scale in terms of interconnected devices,
people, systems, and information resources. These results in
an ever-increasing systems’ complexity that must be addressed
by the IoT systems developers due to characteristics such as
heterogeneity, logical and geographical distribution, interoper-
ability requirements, real-time needs and scalability [3].

Fig. 1. Typical tier architecture of Internet-of-Things systems.

From an high abstraction standpoint, IoT systems typically
follow a three-tier base architecture, depicted in 1. The bottom
tier is constituted by the things – objects with computing and
connectivity abilities – that run software that allows them to
sense and actuate with the containing environment. The higher-
tier is the cloud, constituted by the servers that store, process,
and offer services of lower tiers. An intermediate tier, the fog
tier, guarantees the connection between edge devices and the
cloud while making some optimization’s, e.g., in terms of the
number of connections and data pre-processing [4].
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The complexity of IoT systems affects both the design and
development of such systems, but it also implies a greater
complexity on their verification and validation. As an example,
each of the IoT tiers has different responsibilities, constraints,
and features, but all need to be considered when verifying
and validating IoT systems. Most of the time, traditional ap-
proaches for testing software-only systems are mostly limited
and insufficient, not covering, for example, the necessity of
testing software as well as the hardware counterpart. Recent
works point that both simulation and the use of testbeds
became a go-to solution to verify and validate hardware-
dependent and human-in-the-loop systems, such as IoT [5].

B. Systems Simulation

Systems are defined both by their structure (i.e., compo-
nents, relationships and attributes) and by their behaviour (i.e.,
functions, inputs and outputs and control operators). Systems
have a structures, a state – a collection of variables necessary
to describe a system at a particular time – and can have
both continuous – the state variables change continuously with
respect to time – and discrete – the state variables change
instantaneously at separated points in time – behaviors [6].
Both aspects of the systems can be modeled into, respectively,
structure models and behavior models [7]. These models can
embrace the notion of time, as per Huang et al.: the semantics
of models are directly related to the passage of time and
causality of outputs with respect to states and inputs [8].

The use of models as abstractions of the systems structure
and behaviour (that include both software as well as hardware
concerns) have been long used to carry out the so called
systems simulation. Simulation per se is the use of computers
to imitate, viz. simulate, the operations of various kinds of
system components or, even, sub-systems. Different kinds of
simulations can be distinguished by the models they employ,
that can be classified along three different dimensions [6]:

• Static vs. Dynamic Simulation Models: A static simula-
tion model represents the system at a particular time while
a dynamic simulation model represents a system while it
evolves over time.

• Deterministic vs. Stochastic Simulation Models: Stochas-
tic simulation models have probabilistic or random pro-
prieties, at least from their inputs, while deterministic
simulations have no randomness.

• Continuous vs. Discrete Simulation Models: Simulation
models that follow the above-mentioned definition of
discrete and continuous systems.

Simulations have long been used due to their advantages
such as (1) providing practical feedback when designing real-
world systems without the need of actually constructing them,
(2) allowing systems to be studied at different levels of abstrac-
tion, (3) aiding in finding unexpected behavior without real
consequences, (4) supporting the test of What-If situations [9].
All of these advantages attempt to improve the liveness of the
testing tools [10].

C. IoT Simulation

The Internet-of-Things is generally comprised of hetero-
geneous embedded devices running on different hardware,
distinct operating systems and with various peripherals. This
diversity in conditions, along with the scale of IoT systems
create some challenges that are left to be answered, especially
regarding standardization and security.

As a result of the growth of IoT, simulation is a promising
field and currently being explored by many researchers. Its
potential benefits, such as cost savings and time-to-prototype,
are seen as desirable.

By simulating the Internet-of-Things, it is possible to test
systems without actually purchasing the hardware, while also
opening doors for a faster feedback loop when compared to
using real hardware. However, the simulation of IoT networks,
allowing the validation of models, protocols and algorithms
before the actual deployment of the network infrastructure,
is an important but complex task since the number of the
simulated devices may vary from dozens (e.g., smart homes) to
thousands (e.g. smart cities), with varying degrees of density
and different communication paradigms. Moreover, factors
unrelated to the applications but specifically associated to the
networking (e.g., traffic congestion, wireless signal attenua-
tion and coverage, etc.) influence the interactions between
nodes [11].

1) Common Architectures: There are several architectures
in common among IoT simulators. In this field, two seem to
be more prominent than others:

• A Multi Agent System (MAS) is an environment where
single, autonomous entities, called agents, act and interact
with each other. Benefits of this architecture include
autonomy for each agent and decentralization of the
system. This model fits well with the IoT principle, where
each device is uniquely identifiable.

• A Discrete Event Architecture is driven by events, and
the state of the system is only known by deriving it
from a series of events. It is often used in conjunction
with state machines, where a new state is the result of a
function taking the current state and an event. This maps
well to the IoT concepts as an Internet-of-Things system
can be seen as a stream of data (events) being collected
sequentially.

2) Key Concepts: Terms and expressions such as hardware-
in-the-loop simulation and multi-level simulation are explained
in the following section:

• Hardware-in-the-loop simulation is a type of simulation
is used to test physical devices. It tricks the hardware into
thinking that it is part of a system, either by connecting
the hardware to the simulator and sending electrical
signals [12] or by simulating how the physical system
would communicate with the device under test [13].

• Multi-level simulation is a paradigm where different
devices can be simulated at different levels of detail.
One device could have its application layer simulated, but
another could have its application as well as its network
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and/or physical layers simulated. This idea is useful in
large-scale simulations where it is not feasible to simulate
every aspect of every node with the highest level of
detail. Instead one could opt to simulate a smaller part
of the system with finer detail. A multi-level simulation
tool provides the user with the option to scale between
simulation speed and simulation correctness [14].

IoT simulation builds upon the three different dimensions
pointed out in Section II-B and defines a fourth one. A sim-
ulation model in an IoT system can be comprised of physical
or simulated devices, but also by a mixture of them, i.e.,
hardware-in-the-loop simulation. Unlike the other dimensions,
which are binary (e.g., a simulation model is either static
or dynamic), the fourth dimension can range from an all-
hardware to a software-only simulation, and everything in
between, viz. mixed-simulation.

D. Testing

Testing, specifically software testing, is the process of ensur-
ing that said software does not behave in manners not expected
by its developer or owner. The importance of testing comes
from the possible catastrophic accidents that can happen, such
as a plane crash due to integer overflows or the loss of a $125
million satellite due to unit conversion errors [15]. Testing can
help prevent these disasters by reducing the number of error
scenarios that were not accounted for. In order to achieve this,
there are various types of test that can be performed:

• The purpose of Unit tests is to verify small units of
code and their correct functionality. They are usually fast,
which is why, according to the test pyramid [16], they
should be the most numerous in a software test suite.

• Integration tests focus on the interaction between com-
ponents. They usually take longer than unit tests. On the
other hand, they provide more confidence to the tester
that a specific set of components are working. These
should appear in less quantity than unit tests due to their
slowness.

• End-to-end tests provide the most confidence to the
tester as they test the whole system. These are more often
than not slow and costly. Therefore, their usage should
be limited to critical paths of execution in a program.

While most of these tests can be executed manually, au-
tomated testing is becoming more widespread between the
software development community, mainly due to its efficiency.
Using automated tests, regression testing becomes easier, since
the developer does not need to keep testing the system after
every change, instead relying on an external program to repeat
the steps the developer would have taken. Besides, by having
automated tests, more use cases can be tested after each
change, possibly discovering faults the developer could not
have thought about.

III. METHODOLOGY

In this systematic review we follow a specific and objective
methodology to reduce bias [17]. The first step taken was to
define the research questions to answer and the data sources

to utilize. Afterwards, the search query was constructed, and
the inclusion and exclusion criteria laid out.

A. Research Questions

In this work, we intend to address the following questions:
RQ1. What relevant IoT simulation platforms exist?
RQ2. Of these, which ones support testing and validation

with hardware-in-the-loop?
RQ3. What is the scope of the tools found in RQ1?
RQ4. Of those found in RQ1, which ones support the

automation of tests?
In this context, relevant means publications not excluded

by the methodology explained in the next sections. By scope,
we mean the specific use case, if any, that each tool focuses
on. For abbreviation purposes, simulation refers to any kind of
simulation, emulation, or another type of approach that allows
the test and validation of hardware/software IoT systems.

B. Publication Databases

For this research, publications were retrieved from the
following databases, which are regarded as good sources for
software engineering [18]:

• IEEEXplore Digital Library
• Scopus
• Compendex

C. Search Process

A search query was created to narrow down the results.
It was designed to include the field of research, Internet-of-
Things, combined with the more specific part the paper will
review: simulation. The search expression used was:
(internet-of-things OR IoT OR

"Internet-of-Things") AND (simulator
OR (simulation AND (tool OR library OR
framework)))

The search was made in December 2018 and revealed the
results available in I. The downloaded results were the ones
deemed ”most relevant” by each of the publication databases.

TABLE I
SEARCH RESULTS PER DATABASE

Databases Filters Total
Results

Downloaded
Results

Compendex Subject/Title/Abstract,
English only

3962 500

Scopus Title, Abstract,
Keywords

1510 400

IEEEXplore All 1422 500

D. Inclusion Criteria

Publications are put through the inclusion criteria to define
whether or not they should be included in the results. If
a publication does not meet all of them, it should not be
included. The inclusion criteria are the following:
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1) Original research study (including patents and grey
literature for completeness);

2) Review papers;
3) Publications of code testing simulation platforms for the

Internet-of-Things;
4) The study content must be in English.
It should be noted that, although review papers are included,

they are processed differently. After reviewing the simulation
tools retrieved from this systematic review process, the surveys
will be studied to include other simulators that were not
covered by the methodology. This expanded search allows a
critical analysis of the selection process.

E. Exclusion Criteria

Papers are filtered by understanding whether or not they
violate any of the exclusion criteria. If they do fail to comply
with one criterion, they will be excluded. The exclusion criteria
are defined as follows:

1) Secondary research and other non-relevant publications;
2) Publications presenting just ideas, magazine publica-

tions, interviews, and discussion papers;
3) Duplicate publications;
4) Publications on the topic of Internet-of-Things testing

whose only focus is security, privacy, power efficiency
or performance.

F. Selection Process

The publication selection process follows three steps to
obtain the final result:

1) Check if the publication’s title meets the inclusion and
exclusion criteria;

2) Verify if the publication’s abstract meets the inclusion
and exclusion criteria;

3) Read the whole content of the paper and analyze whether
or not it meets the inclusion and exclusion criteria.

The results of each phase can be seen in Table II.

TABLE II
PUBLICATIONS PER STEP

Step No. of Publications Excluded

Search 1400 N/A

No Duplicates 1206 194

Inclusion/Exclusion
Criteria (Title)

62 1144

Inclusion/Exclusion
Criteria (Abstract)

32 30

Specificity 20 12

IV. RESULTS

Of the 20 selected publications, [19] and [20] were surveys
on simulators. Jung et al. [19] surveys various IoT simulation
frameworks in search of dynamic (i.e., possibility to integrate
new entities during the simulation) and decentralized tools
that allow for heterogeneous simulation (i.e., simulation using

different simulators) of devices. After finding none, a concep-
tual agent-based solution is proposed with hardware-in-the-
loop capabilities. Chernyshev et al. [20] perform an in-depth
review of simulators and testbeds for the Internet-of-Things
with each tool being assessed following several criteria such
as the evaluated scale of the simulated system, last update
to the tool, built-in IoT standards, etc. Since simulators are
generally specialized in one aspect of IoT simulation, the
authors conclude that a combination of the distinct IoT simu-
lation tools may provide simulation with higher fidelity [20].
However, this review takes on the challenge of identifying
the different types of tests and programming languages that
each simulator supports, while also analyzing if they can run
automated testing and to integrate hardware-in-the-loop.

The remaining 18 publications were simulation frameworks,
4 of which refer to the same tool, producing 15 unique results.
These are:

1) The cyber-physical system (CPS) simulator proposed by
Li et al. [21] uses the concepts of physical, computation,
and interaction entities to achieve simulation of a CPS.
A physical entity represents the physical aspect of a
device, with spatial and temporal awareness, and is
usually based on laws of physics. It is modeled using
Simulink [22]. Computation entities are modeled as
finite state machines using UML in IBM Rational Rhap-
sody [23]. There is also an interaction entity that works
as the interface of the two other entities, effectively
allowing them to communicate with each other. Every
component is simulated separately, allowing for model
heterogeneity, but there is no mention of support for the
integration of real and simulated devices. IBM Rational
Rhapsody supports OXF [24], allowing C++ code not
generated by Rhapsody to be used in the simulation.
Because of this, C++ can be considered as a supported
language.

2) COSSIM [25] is an IoT emulator capable of handling
networks, processors and peripherals, while also provid-
ing power consumption information and allowing secu-
rity audits by integrating gem5 [26], OMNeT++ [27]
and McPAT [28] tools under a single interface. The
integration allows the ”simulation of an actual system
of systems, including its complete software stack, net-
work dynamics and energy aspects” [25]. As such, it is
regarded as an emulator. The framework takes care of the
synchronization between the different simulators under
the hood. In [25], the tool’s performance, and correctness
are assessed using two different case studies.

3) CupCarbon [29] is a tool to ”design and simulate
Wireless Sensor Networks dedicated to Smart-city and
IoT applications” [29]. It is comprised of a radio chan-
nel, which integrates two radio propagation models, an
interference module, randomly generating communica-
tion interference in networks and a 2D/3D environment,
useful for designing smart territories, e.g., smart cities.
The framework supports the visualization of the sim-
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Fig. 2. CPS simulator architecture by Li et al. [21]

ulation results while modeling radio propagation and
interference.

4) CupCarbon-Lab [30] is an extension of the CupCarbon
simulator and uses less powerful devices, such as the
Raspberry Pi or Android smartphones, to act as a
network of physical nodes, providing hardware-in-the-
loop simulation. It uses the host computer as a server
where the system can be monitored and visualized. This
host functions as the remote control of the simulation
environment and is also responsible for injecting code
into the physical devices.

5) A multi-level simulator proposed by D’Angelo, Fer-
retti et al. [14] [31] [32] [33] makes use of different
established simulators to simulate a whole system with
varying levels of detail. It uses an agent-based simulator
(Smart Shire Simulator [32]) for the high-level, low-
detail simulation and a transportation system simulator
based on ADVISOR [34] and a network simulator
(OMNeT++ [27]) when higher levels of granularity are
needed. Despite using three distinct simulation tools, the
framework has only two levels of simulation, as the
transportation system and network simulators simulate
mutually exclusive devices, i.e., a device is either sim-
ulated by one or the other.

6) DPWSim [35] is a simulator using the standard Devices
Profile for Web Services (DPWS) [36]. DPWSim is
bundled with (1) DPWS Explorer, a tool for analyzing
and exploring DPWS service and (2) DPWSim Web,
a web interface for controlling DPWSim devices on
different devices, e.g., mobile phone. DPWSim follows
a discrete event architecture where devices have events

that they fire or operations that can be executed. The
only way to customize device functionality is either
through its GUI or a .dpws file.

7) The agent-based domain-agnostic solution presented by
Jung et al. [37] applies a different architecture allowing
runtime changes and integration of distinct simulation
tools simultaneously. The simulator requires a communi-
cation and synchronization interface between the varying
simulation frameworks so that they can communicate
and behave as expected. In [37] a communication inter-
face was built for Simulink [22] and OpenModelica [38]
to permit agents simulated in both tools to communicate
with each other. Due to this integration, the tool allows
for hardware-in-the-loop testing, given that the underly-
ing simulators in use have support for it. The publication
has no mention about whether or not the tool can be
automated.

8) VisibleSim [39] is a discrete event simulator aimed with
a 3D environment that can display objects (exported at
.obj files) or simple blocks. It can simulate forces
applied by objects on others using a physics engine.
According to [39], one of its main advantages is the
ability to simulate 2 million nodes at a rate of 650,000
events per second on a Xeon-based processor (base-
frequency of 2.56GHz) with 12GB of RAM.

9) IoTTest, proposed by Bures [40], is an approach to
device simulation that focuses on integration and end-to-
end (e2e) testing by borrowing technical concepts from
JUnit [41]. It is capable of emulating some IoT devices
while integrating real physical hardware into the system,
effectively providing hard-in-the-loop simulation.

10) KhronoSim [42] is a distributed data-oriented simulator
for testing the IoT. It provides ”progressive develop-
ment” [42] by allowing the user to convert simulated
nodes into physical devices progressively. It’s divided
into three main components: (1) Launcher, acting as
a lock on the system under test; (2) Runners, that are
responsible for executing a test suite and must wait on
Launcher’s permission to run; and (3) Executive, which,
in the end, executes the commands (such as sending
messages and reading electrical signal) requested by a
Runner. KhronoSim [42] can be used in conjunction with
Simulink [22], effectively giving it spatial and temporal
context awareness.

11) MAMMotH [43] is a massive-scale Internet-of-Things
emulator, with the aim of emulating 20 million devices.
It uses a distributed architecture based on virtual ma-
chines (VMs), which can emulate 10,000 nodes per
VM and uses ns-2 [44] models for emulating network
protocols.

12) The simulator proposed by Fortino et al. [45] makes use
of a multi-agent system to model nodes in a network.
Using the INET Framework [46] for OMNeT++ [27],
the simulator can model Wireless Sensor Networks
(WSN), while the integration of ACOSO [47] provides
the platform to develop and run the multi-agent system.
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Fig. 3. KhronoSim high-level architecture [42]

13) The tool presented by Zouai et al. [48] is an agent-based
simulation tool for smart houses, capable of controlling
smart devices from an external network by using an IoT
Gateway that connects the house to the Internet.

14) The SWE Simulator proposed by Gimenez et al. [49]
uses a Sensor Web Enabled [50] (SWE) architecture
component, Sensor Observation Service (SOS), that
serves as a sensor information database, providing stan-
dard data insertion and retrieval methods, via HTTP,
for all sensors. The tool also features a Control Center,
where actions are handled as responses to events and
where a web platform, used for monitoring the system,
is served from.

15) WoTSIM [51] is a Web of Things (WOT) simulator
allowing static, moving, and offline devices. Things
are described as XML configuration documents at the
start of the simulation, and more XML documents are
created during runtime and stored in ”Real-Time IR
Test Collection” [51]. Running a simulation with 6000
sensors for 19 hours resulted in a 41.1 MB collection
size [51].

We divided the testing platforms into the following cate-
gories, according to their characteristics:
Type The type of tool: simulator or emulator. Possible values:

Simulator or Emulator
Scope Some tools are built for a specific use case (e.g., smart

cities, smart grids, etc.). Therefore, knowledge of the
scope of each platform is useful to assess whether or
not they may solve a problem one may have. Example
values: smart city, smart grid, network, device.

Architecture Simulators for the Internet-of-Things tend to
gravitate towards Multi-Agent Systems or Discrete Event
architectures, with each one having its benefits and dis-

advantages.
License The license of a software product may impede its

utilization or be a strong point in favor of its adoption.
For example, an open source simulator allows for high
degrees of customizability by giving users the power
to change and alter the software. Possible values: the
license’s name or N/A if the software license is not
known.

Scalability Defines the how the platform scales. Due to the
different performance metrics used the by authors, this
characteristic is only an approximation. Possible values
are very low, low, medium, high or very high; or N/A if
there is no information regarding the scalability of the
tool.

Tier IoT systems usually follow the three tier architecture, as
explained in Section II. Aggregating the simulation of all
tiers under a single simulator is generally out of scope for
most tools, so the project usually selects one tier to focus
on, which is what this parameter describes. Its values can
be the permutations of Cloud, Fog and Edge.

Context Awareness The context of a simulator represents
whether or not the simulated devices know about their
time and/or spatial position. Possible non-mutually ex-
clusive values: Spatial, Temporal.

Hardware-in-the-loop A simulator is said to be a hardware-
in-the-loop simulator if it can support physical de-
vices [13]. Such a tool has the advantage of testing a
system closer to the real environment, which provides
more confidence in its correctness. Possible values: yes,
if the software supports physical and virtual devices
simultaneously; no otherwise;

Can be Automated? Automated testing reduces the time
spent by developers testing software and, therefore, plat-
forms with this capability are advantageous for their
users. Possible values: yes, no or N/A if there is no
information available.

Programming Language Programming language(s) that are
required for the usage of the simulator.

V. EXPANDED SEARCH

The systematic review protocol results are detailed in
Section IV. However, when comparing these tools to non-
systematic surveys [19] [20], these display some additional
information that was not found by the search terms established.
Multiple reasons may apply for this divergence in results, such
as:

1) the tools not having an associated academic publication
(e.g. AWS IoT Device Simulator [53], IoTIFY [54],
obtained from Google by searching IoT Simulator),
causing them not to be returned by the publication
databases outlined in Section III.

2) the publications may not use the keywords IoT or
Simulator — including variants —, but rather employ
Wireless Sensor Networks or Emulation, e.g., CupCar-
bon [55], resulting in them not being included in the
search results.
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TABLE III
SIMULATORS AND THEIR PROPERTIES. N/A STANDS FOR Information Not Available.

Solution Type Scope Architecture License Scala-
bility Tier Context

Awareness
Hardware-

in-the-
loop

Can be
Auto-

mated?

Program-
ming

Languages

Li et al. [21] Simulator Device Event-based N/A N/A Edge Spatial,
Temporal N/A N/A C++a

COSSIM [25] Emulator N/A Event-based BSD
2-Clause N/A Edge N/A N/A N/A Any

CupCar-
bon [29] Emulator Smart

City Event-based No N/A Fog Spatial N/A N/A
Sen-

Script [52]
or Python

CupCarbon-
Lab [30] Emulator Smart

City Event-based N/A N/A Fog Spatial,
Temporal Yes N/A

Sen-
Script [52]
or Python

D’Angelo,
Ferretti et

al. [14]
Emulator Smart

City Agent-based N/A High Fog Spatial,
Temporal N/A N/A N/A

DP-
WSim [35] Simulator N/A Event-based No Low Edge Spatial N/A N/A Noneb

Jung et
al. [37] Simulator Device Agent-based N/A N/A Edge Spatial,

Temporal Yes N/A Anyc

Visi-
bleSim [39] Simulator Virtual

World Event-based Apache
2.0

Very
High Edge Spatial,

Temporal N/A N/A C++

IoTTest [40] Emulator N/A N/A N/A N/A Edge N/A Yes Yes N/A

KhronoSim [42] Simulator N/A N/A N/A N/A Edge Spatial,
Temporal Yes Yes Any

MAM-
MotH [43] Emulator N/A N/A N/A Very

High
Edge,
Fog N/A N/A N/A N/A

Fortino et
al. [45] Emulator N/A Agent-based N/A High Fog N/A Yes N/A N/A

Zouai et
al. [48] Simulator Smart

House Agent-based N/A N/A Fog Spatial,
Temporal N/A N/A N/A

SWE Simula-
tor [49] Emulator N/A Event-based N/A N/A Edge,

Fog
Spatial,

Temporal Yes N/A Anyd

WoTSIM [51] Simulator N/A Event-based N/Ae High Edge Spatial,
Temporal N/A N/A N/A

aAlthough C++ does not have first class support, the paper states that ”C++ code generated in different environments can communicate through interface
under Rhapsody/OXF support, thus implement integrated co-simulation of physical and computation processes.” [21]

bSensors are programmed using the DPWSim GUI [35].
cSupports the programming languages used by the underlying simulation systems.
dSince data is inserted and retrieved using HTTP virtually any language can be used
eReference [51] states the simulator would be open-sourced, but its code could not be found at the time of this writing.

A. Expanded Results

To complete this survey, the unique results from the found
reviews [19] [20] were selected. From this selection, the tools
were assessed against the selection process defined in Section
III-F and reviewed according to the parameters established
in Section IV. Using the aforementioned methodology, the
following tools remain:

1) The Java-based urban IoT simulator presented by Bram-
billa et al. [56] unites the COOJA [57] and ns-3 [58]
network simulators using DEUS [59], a discrete event
simulator, to aggregate information, such as transmission
delays, energy consumption and schedule communica-
tion events [56]. The OSMobility [60] simulator is in-
cluded to allow the simulation of vehicles and pedestrian

within the urban environment.
2) Karnouskos et al. [61] proposes a DPWS-based [36]

multi-agent enterprise-grade simulator with the goal of
providing transparent simulation, mobility support, and
dynamic environments capabilities, while also support-
ing micro and macro simulation and self-X (e.g., self-
configuration, self-healing, etc.) behavior [61]. The tool
uses agents that represent individual simulated devices
as well as physical devices, while also providing a com-
munication bus so that the transmission of information
can be made regardless of the type of device, i.e., if the
device is simulated or not [61].

3) SenseSim [62] is a simulator for the Internet-of-Things
based on agents and discrete events that, using its
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Fig. 4. COOJA can run at multiple simulation levels [57]

layered architecture, intends to be capable of running
the same application regardless of whether the devices
executing it are simulated or not. To achieve such a
goal, each simulated sensor is composed of four different
components handling distinct parts of the logic: from
changing the sensor’s internal state or providing an API
to manipulate to the sensor to a middleware that runs an
application on the sensor [62].

4) iFogSim [63] is an extension of CloudSim [64], and so
inherits its functionalities. However, unlike CloudSim,
which is only focused on the cloud, iFogSim adds a
novel edge-ward placement [63] strategy. This strategy
favors the use of edge and fog devices over the cloud.
Its GUI allows the creation of a network with edge, fog
and cloud devices and its connections. A special class
represents not only a communication packet but also
defines the processing requirements and the length of the
data it encapsulates. This characteristic is what allows
the edge-ward placement strategy to decide whether or
not to route the tuple to a device closer to the edge.

5) COOJA [57] is a sensor network simulator for the Con-
tiki [65] operating system. It emulates devices running
the code without needing modifications so that transfer-
ring to a physical device can be made painlessly. COOJA
also emulates radio models, allowing different types of
radio wave propagation. COOJA makes use of specific
features of the Contiki kernel (e.g., its event-driven
nature) to emulate devices, which makes it incompatible
with other operating systems.

6) OMNeT++ [27] is a discrete event simulator for com-
munication networks and distributed systems containing
not only a GUI but also a domain-specific C++-like
programming language named NED for defining the
network topology. The behavior of models is written
in C++ in a separate file from the topology. While the
simulator is not tailor-made for the Internet-of-Things,
the fact that it can model the topology of a network and
is event-based makes it suitable for this use case.

7) ns-3 [67] is a network simulator with the aim of succeed-
ing the widely used ns-2 [44], but with added realism
and ability to plug real devices into the simulation.
ns-3 also provides C++ and Python API to plug into,
while also supporting a distributed simulation setting for
large scale simulations [68]. Although being lower-level

Fig. 5. OMNeT++ Internal Architecture [66]

when compared to other simulators, when performance
and network emulation is needed, ns-3 seems to be a
promising solution.

8) QualNet [69] is a commercial network emulator with
spatial awareness that allows the building of large wired
and wireless networks and visualization by plugging into
other tools. It is also possible to connect QualNet to real
networks so that real hardware can be tested.

VI. ANALYSIS & DISCUSSION

It is essential to take note that more tools were not included
because they did not meet the criteria defined in Section III.
Specifically, tools that focus solely on simulating the cloud part
of an IoT system were left out, while platforms that simulate
the fog and the edge were included.

A. Result Analysis

Having summarized the results from not only the systematic
review but also from the surveys found, there are a total
of 23 simulators for the Internet-of-Things available. It is
possible to verify that they vary significantly in terms of
characteristics, from emulator to event-based, from highly
scalable to supporting hardware-in-the-loop. The tools found
were collected and analyzed. The results from such analysis
are laid out below:
Type Regarding whether the tools are simulated or emulate

systems, ten simulators were found contrasting with the
13 emulators discovered.

Scope From the 23 platforms identified, the most common
is scope is smart cities, followed closely by network
simulators. The others either have little representation
or have no particular scope and are deemed as generic
purpose.

Architecture When it comes to architecture, event-based
tools are the most common ones, while the agent-based
simulators, as well as the ones without mention of their
architecture, appear only six times. There is also a case
where the framework follows both an event- and an agent-
based architecture.

License Most of the tools found do not mention a license, the
few that do are split between an open source one (e.g.,
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TABLE IV
SIMULATORS AND THEIR PROPERTIES. N/A STANDS FOR Information Not Available.

Solution Type Scope Architecture License Scala-
bility Tier Context

Awareness
Hardware-

in-the-
loop

Can be
Auto-

mated?

Program-
ming

Languages

Brambilla et
al. [56] Emulator Smart

City Event-based N/A High Edge,
Fog

Spatial,
Temporal N/A N/A Java

Karnouskos
et al. [61] Simulator N/A Agent-based N/A High Edge,

Fog Spatial Yes N/A Any

Sens-
eSim [62] Simulator N/A Agent-based

& Event-based N/A N/A Edge Spatial,
Temporal Yes N/A N/A

iFogSim [63] Simulator N/A Event-based No N/A Cloud,
Fog N/A N/A N/A Java

COOJA [57] Emulator N/A N/A Contikia Medium Edge Spatial N/A N/A C

OM-
NeT++ [66] Emulator Network Event-based Aca-

demicb N/A Edge N/A Yes Yes C++/NED

NS-3 [67] Emulator Network N/A GNU
GPLv2

Very
High Edge N/A Yes N/A C++/Python

QualNet [69] Emulator Network N/A N/A High Edge Spatial,
Temporal Yes N/A N/A

ahttp://www.contiki-os.org/license.html
bAcademic Public License: https://omnetpp.org/intro/license

GNU GPLv2, BSD 2-Clause, etc.) and no license. There
is a clear gap in the open source simulation tools with
permissive licenses.

Scalability The majority of solutions identified, do not
have their scalability metric evaluated from performance
benchmarks. The few that include such measurement are
usually the ones high or very high and present it as an
advantage of the tool. This may explain why there are
many platforms with high scalability, while there are only
a few that do not scale very well.

Tier It is possible to verify that most focus on the Edge tier
of an IoT system. A substantial number of tools simulate
only the fog tier, and there are a few that can support both
tiers. Only one solution can simulate the cloud: the reason
for that is that publications with tools that only have the
ability to simulate the cloud tier have been excluded, as
explained in Section VI.

Context Awareness Regarding context awareness, i.e.,
whether device are aware of time and their position,
most tools support spatial awareness, with some also
providing temporal awareness. However, there are also
a few platforms that do not explicitly mention to which
extent they provide simulated devices with context
awareness.

Hardware-in-the-loop Out of the 23 solutions analyzed, 11
provide some way of connecting the simulation to real
hardware, while 12 do not mention whether or not it is
supported.

Can be Automated? The automation of simulations tools
can be useful for integrating autonomous processes such
as test pipelines or batch operations. However, only
IoTTest [40], KhronoSim [42] and OMNeT++ [66] are

capable of such automated procedure.
Programming Language Tools regularly introduce restric-

tions such as the programming language to code the
devices with so that higher performance gains can be
achieved. While performance is regarded as good, the
restriction can also be too limiting and prohibit users
from choosing a certain platform. From the programming
languages that the discovered simulators support, C++
repeatedly emerges, as well as Java. There are also some
frameworks that are programming language agnostic and
some others that require programs to be written in a
language created just for the simulator.

B. Evolution of Publications

To understand how the field of simulation for the Internet-
of-Things, it is important to perceive how it is developing. One
metric to be used is the number of publications of the field over
the years. Starting in 2006, the year the first IoT simulation
tool present in the survey was published, and until 2019,
publications were aggregated and their frequency measured.

C. Research Questions

The research questions posed in III serve as guidance for the
development of this publication, and its answers are crucial to
assess the state of the art of the field of IoT simulators. Such
answers are provided below.
RQ1 What relevant IoT simulation platforms exist? As

seen in Section IV and V, there are multiple IoT sim-
ulation platforms with different architectures, standards,
and goals. There are two most common approaches for
simulation of IoT systems that keep appearing in diverse
solutions, namely: discrete event simulations (DES) and
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Fig. 6. Publications per year of IoT simulators

agent-based simulations (MAS). It can also be verified
that most solutions are not open source or available
for free download. When it comes to programming
languages, there are different options, although most
publications do not mention their requirements.

RQ2 Of these, which ones support testing and validation
with hardware-in-the-loop? Table IV gives an overview
of simulators and their properties. One can see that from
the 15 solutions presented; only 6 provide hardware-
in-the-loop simulation. The coexistence of virtual and
physical devices offers better confidence about the system
under test, as it is closer to the real environment the
system will run in. Taking a look at Table V-A, it is
possible to verify that most tools support hardware-in-
the-loop, totaling 11 out of 23.

RQ3 What is the scope of the tools found in RQ1?
Different tools focus on distinct use cases and objectives,
ultimately leading to the developers limiting the scope
of said tools in different ways. Some tools prefer to
focus on emulating networks, including their quirks and
peculiarities, while others pick the simulation of smart
cities as their goal. This variety in scope influences
the user selecting a simulation platform, justifying the
importance of having this distinction among the available
simulators. From the 23 tools found from the systematic
and expanded searches, four focus on smart cities, three
on network simulation, two on modeling devices, one
on smart worlds and another one in smart houses. The
remaining have a generic purpose, and so their scope has
not been restricted.

RQ4 Of those found in RQ1, which ones support the
automation of tests? Automated tests are becoming more
prominent in the software industry, but the IoT field still
seems like it is lagging on this matter. Out of 15 solutions
found in the systematic search, only IoTTest [40] and
KhronoSim [42] support automated testing. Moreover, the
expanded search only found OMNeT++ [66] to support
such feature, out of 8 total tools.

VII. CONCLUSIONS

In this work, we survey 1400 papers from IEEEXplore,
Scopus and Compendex that result in 15 simulators for
the Internet-of-Things. Furthermore, an expanded search is
conducted using the reviews found among the publications
retrieved from the databases, totaling 23 IoT simulators.
The results show that automated simulation of the Internet-
of-Things with hardware-in-the-loop support is still limited,
with only IoTTest [40], KhronoSim [42] and OMNeT++ [66]
possessing these capabilities. Although these are good news
for the field of simulation of the IoT, of these simulators, the
first two are neither open source nor free to use, while the
third is a network simulator and has no particular focus on the
Internet-of-Things. As such, there is a clear lack of an open
source hardware-in-the-loop IoT simulator capable of being
automated, with OMNeT++ being the only possible solution,
even though it is not ideal.

Summarizing, we noticed there is no broad range of so-
lutions for testing IoT systems beyond the simulation-based
and some testbed-based approaches. However, when analyzing
the landscape of testing solutions for software-only systems,
we verify that there is a lack of similar tools for IoT based
systems. Especially when taking into account that IoT systems
have unique characteristics and limit the use of software-only
testing tools out of the box [70]. Future work can focus on
developing an IoT simulator that (1) is open source, (2) can
be automated and (3) supports hardware-in-the-loop.
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