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SOME REMARKS ON ORBITAL DIGRAPHS FOR THE FINITE

PRIMITIVE GROUPS

MURAT BEŞENK

Abstract. In this paper we concern with the relationship between the finite
groups PSL(2, q), q ≥ 5 a prime, and orbital digraphs. And also we explain

that for a generator elliptic element in permutation group, there is a hyperbolic

circuit in suborbital graph.

1. Introduction

Let F be a field. We denote by GL(2, F ) the general linear group of invertible 2×
2 matrices with coefficients in F , that is, those matrices with nonzero determinant.
And we denote by SL(2, F ) the special linear group of matrices with determinant
1, which forms the kernel of the determinant map, det : GL(2, F ) −→ F \{0}. Thus
we can say by PGL(2, F ) the quotient group

PGL(2, F ) = GL(2, F )/{λI : λ ∈ F \ {0}},

and by PSL(2, F ) the quotient group

PSL(2, F ) = SL(2, F )/{εI : ε = ±1}.

Let P 1(F ) = F ∪ {∞} be the projective line over F . We can embed PGL(2, F )
and PSL(2, F ) into the symmetric group SymP 1(F ) of permutations of P 1(F ). To

every T =

(
a b

c d

)
∈ GL(2, F ), we associate the fractional linear transformation,

ψT : P 1(F ) −→ P 1(F ), defined by ψT (z) =
az + b

cz + d
. Here we set if c 6= 0 then

ψT (∞) = a
c , if c = 0 then ψT (∞) =∞. And ψT (−dc ) =∞. Hence, we get a group

homomorphism

ψ : GL(2, F ) −→ SymP 1(F ),

where ψ(T ) = ψT and PGL(2, F ) identifies with ψ(GL(2, F )). It is clear that if F
is a finite field, |F | = q, then GL(2, F ) has only finitely many elements. That is,
when F = Fq, the finite field of order q, we write PGL(2, q) and PSL(2, q). These
groups are very important in many mathematical problems. Especially, they are
used a lot in graph and combinatoric theory.
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2. Preliminaries

Lemma 2.1. (i) |GL(2, q)| = q(q − 1)(q2 − 1)

(ii) |SL(2, q)| = |PGL(2, q)| = q(q2 − 1)

(iii) |PSL(2, q)| =


q(q2 − 1) if q is even,

q(q2 − 1)

2
if q is odd.

Proof. (i) A 2×2 matrix in GL(2, F ) is obtained by first choosing the first column
a nonzero vector in F 2

q , there are q2 − 1 possible choices for that; then by choosing

the second column, a vector in F 2
q linearly independent from the first one: there

are q2 − q possible choice for that. (ii) and (iii) follow from elementary group
theory. �

Lemma 2.2. SL(2, q) is a normal subgroup of GL(2, q), and the index |GL(2, q) :
SL(2, q)| = q − 1.

Proof. The determinant function maps GL(2, q) into F \{0}, and elementary prop-
erties of the determinant imply that it is, in fact, a homomorphism onto the mul-
tiplicative group F \ {0}. The kernel of this homomorphism is SL(2, q). Hence
SL(2, q) is a normal subgroup and its index in GL(2, q) is |F \ {0}| = q − 1. �

Lemma 2.3. For any field F , the group SL(2, F ) is generated by the union of the

two subgroups
{(1 κ1

0 1

)
: κ1 ∈ F

}
and

{( 1 0

κ2 1

)
: κ2 ∈ F

}
. Therefore, every

matrix in SL(2, F ) is a finite product of matrices which are either upper triangular
or lower triangular and which have 1’s along the diagonal.

Proof. Let

(
a b

c d

)
∈ SL(2, F ). We distinguish two cases:

(I) if c 6= 0 then an immediate computation gives(
1 a−1

c

0 1

)(
1 0

c 1

)(
1 d−1

c

0 1

)
=

(
a a(d−1)

c + a−1
c

c d

)
=

(
a b

c d

)
.

(II) if c = 0 then d 6= 0 and the matrix

(
a+ b b

d d

)
∈ SL(2, F ) can be treated

as in the first case. But then(
a+ b b

d d

)(
1 0

−1 1

)
=

(
a b

0 d

)
.

�

Lemma 2.4. Let q be a prime. Every nonscalar matrix in SL(2, q) has an abelian
centralizer.

Proof. Let T =

(
a b

c d

)
be a nonscalar matrix in SL(2, q). We consider the fac-

tional linear transformation ψT on P 1(Fq2), the projective line over the field with
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q2 elements. Since T is nonscalar, we have ψT 6= I. The fixed point equation
az+b
cz+d = z has one or two solutions in P 1(Fq2). We separate cases:

(I) ψT has a unique fixed point. Conjugating within PGL(2, q2), we may assume
that this fixed point is ∞; then ψT is a translation, ψT (z) = z + b for z ∈ Fq2 , so

T = ±

(
1 b

0 1

)
. The centralizer of T in SL(2, q2) is the subgroup

{
±

(
1 λ

0 1

)
:

λ ∈ Fq2
}

, which is abelian.

(II) ψT has two fixed points; conjugating within PGL(2, q2), we may assume
that these are 0 and ∞. Then ψT (z) = α2z for some α ∈ Fq2 \ {0}, α 6= ±1. This

means T = ±

(
α 0

0 α−1

)
. The centralizer of T inside SL(2, q2) is then the diagonal

subgroup, which is abelian. �

The modular group PSL(2,Z) is the group of all linear fractional transformations
z −→ az+b

cz+d , where a, b, c, d are integers and ad − bc = 1. It is well known that

PSL(2,Z) is generated by the two elements x : z −→ − 1
z and y : z −→ z−1

z ,

which satisfy the relations x2 = y3 = 1. The group PGL(2,Z) is the group of all
transformations z −→ az+b

cz+d , where a, b, c, d are integers and ad − bc = ±1. If t is

the transformations z −→ 1
z , which belongs to PGL(2,Z) but not to PSL(2,Z),

then x, y, t satisfy

x2 = y3 = t2 = (xt)2 = (yt)2 = 1.

The group PSL(2,Z) acts faithfully on the upper half plane H := {z ∈ C : Imz > 0}
by Möbius transformations, and moreover when equipped with the hyperbolic met-
ric this action is by orientation preserving isometries. As well as, the space H can
be intrinsically characterized as the unique two dimensional simply connected Rie-
mann manifold with constant curvature.The hyperbolic metric and the Euclidean
metric on H are equivalent, inducing the same topology. However, lengths and
geodesics are different.

In this study we will get F = Z. The group PGL(2, q) has a natural per-
mutation representation on the projective line Zq ∪ {∞}, and therefore any ho-
momorphism α : PGL(2,Z) −→ PGL(2, q) gives rise to an action of PGL(2,Z)
on Zq ∪ {∞}. Therefore the natural ring-epimorphism Z → Zq, m → [m], in-
duces a group homomorphism SL(2,Z) → SL(2,Zq) and also this in turn induces
a group-homomorphism φq : PSL(2,Z) −→ PSL(2,Zq). If q is a prime then
PSL(2,Zq) ∼= SL(2,Zq)/{±I}. Moreover these groups are all isomorphic because
they each contain the same matrices. For example, if q = 2 then,{(

1 0

0 1

)
∼

(
0 1

1 0

)
,

(
1 0

1 1

)
∼

(
1 1

0 1

)
,

(
0 1

1 1

)
∼

(
1 1

1 0

)}
matrices are congruence according to mod(2).

Permutation Groups. Since 1950 interactions between group theory and theory
of graphs have greatly stimulated the development of each other, especially the
theory of orbital graphs has almost develop in parallel with the theory of permu-
tation groups. The study of orbital graphs has long been one of the main themes
in algebraic graph theory.
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Let Ω be a nonempty set. A bijection of Ω onto itself is called a permutation
of Ω. Under composition of mappings, the set of all permutations of Ω forms a
group, which is called the symmetric group on Ω, and is denoted as Sym(Ω). Any
subgroup of Sym(Ω) is said to be a permutation group on Ω. If Ω is a finite set, say
|Ω| = n then we say that denote Sym(Ω) by Sn. The set of even permutations of
Sn forms an index two subgroup of Sn, which is called the alternating group, and

is denoted by An. That is |Sn : An| = 2 and |An| =
n!

2
. Some of the isomorphism

relations between families of small classical groups are as follows: PSL(2, 2) ∼= S3,
PSL(2, 3) ∼= A4, SL(2, 3) ∼= 2A4, PSL(2, 4) ∼= A5, PGL(2, 3) ∼= S4, PGL(2, 5) ∼=
S5 and so on.

Definition 2.1. Let G be a group acting on a set Ω. For a point α ∈ Ω, the set
Gα := {gα | g ∈ G} is called the orbit of α under G.

A group G acting on a set Ω is said to be transitive on Ω if it has only one orbit,
that is Gα = Ω for all α ∈ Ω, otherwise it is called intransitive.

Now we give the theorem without proof.

Theorem 2.5. Every group of order n is isomorphic to a subgroup of Sn.

Definition 2.2. The set of elements in G that fix the point α constitute a subgroup
of G, called the stabilizer of α in G, and is denoted by Gα. Thus

Gα := {g ∈ G | gα = α}.

If G is a subgroup of Sym(Ω), then we will say that the pair (G,Ω) is a permu-
tation group of degree |Ω|, and that G acts on Ω.

Remark. We recall that |Gα| = |G : Gα|, α ∈ Ω.

In order to find the number of orbits of G on Ω, we may use the set G(g) of fixed
of g. If η is the number of orbits of (G,Ω), then η|G| =

∑
g∈G |G(g)|.

3. Main Calculation

Let q ≥ 5 be a prime. The group PSL(2, q)0 :=

{(
a b

c d

)
∈ PSL(2, q) :

c ≡ 0mod(q)

}
is special congruence subgroup of PSL(2, q). We proceed to a

description of the special subgroup of PSL(2, q) process and the draw of the orbital
graphs in blocks.

Lemma 3.1. Let q ≥ 5 be a prime. The degree of any nontrivial representation of
PSL(2, q) is at least q−1

2 .

Proof. Recall that we denote by θ : SL(2, q) −→ PSL(2, q) the canonical map and

we let W = θ

{(
a b

0 a−1

)
: a ∈ Fq \ {0}, b ∈ Fq

}
the stabilizer in PSL(2, q) of

∞ ∈ P 1(Fq). On the other hand |W | = q(q−1)
2 . Let ξ be a nontrivial representation

of PSL(2, q) on Cn. Consider the restriction ξ|W . We may decompose it as a direct
sum of irreducible representations of W . since q ≥ 5, the group PSL(2, q) is simple.
So ξ|W is a faithful representation of W , meaning that ξ|W (g) 6= I if g 6= I. This
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implies that at least one of the irreducible representations must appear in ξ|W , so
that n ≥ q−1

2 . �

Imprimitive Action. Let Q ∪ {∞} element of the extended rational number set
and the orbit is ∆ := {ab |a, b ∈ Zq}. It is clear that ∆ ⊂ Q ∪ {∞}. Then any

element of ∆ can be given by as a reduced fraction
x

y
with x, y ∈ Zq and (x, y) = 1.

Besides, ∞ is represented as 1
0 = −1

0 . The action of

(
α β

γ δ

)
∈ PSL(2, q) on

x

y
is

(
α β

γ δ

)
:
x

y
→ αx+ βy

γx+ δy
.

We now explain imprimitivity of the action on PSL(2, q) on ∆. (PSL(2, q),∆)
is transitive permutation group, comprising of a group PSL(2, q) acting on a set ∆
transitively. υ1, υ2 ∈ ∆ satisfy υ1 ≈ υ2 then γ(υ1) ≈ γ(υ2) for all γ ∈ PSL(2, q).
In this case equivalence relation ≈ on ∆ is invariant and equivalence classes form
blocks. We say (PSL(2, q),∆) imprimitive, if ∆ accepts some invariant equivalence
relation different from the identity relation and the universal relation. Otherwise
(PSL(2, q),∆) is primitive. These two relations are supposed to be trivial relations.
Also ≈ relation of equivalence classes are called orbits of action.

Since the following lemma is well known from [10], we only give the statement;

Lemma 3.2. Let (G,Ω) be a transitive permutation group.(G,Ω) is primitive if
and only if Gσ is a maximal subgroup of G for each σ ∈ Ω. That is Gσ ≤ H ≤ G
implies H = Gσ or H = G.

Theorem 3.3. If (G,Ω) is primitive and Gσ is simple, then either
(i) G is simple, or
(ii) G has a normal subgroup N which acts regularly on Ω.

Proof. Suppose that (i) is false, so that G has a proper normal subgroup N , N 6= I.
Given σ in Ω, consider N ∩Gσ. It is normal in Gσ, and since Gσ is simple, it must
be either Gσ itself or I. Now N ∩Gσ = Gσ means that Gσ ≤ N , and we must have
Gσ < N since N is transitive and Gσ is not. Thus, by the above lemma, N = G,
which contradictions the assumption that N is proper. It follows that N ∩Gσ = I,
so N acts regularly. �

Consequently we understand that if Gσ < H < G then Ω is imprimitive. So
we use the transitivity, for all element of Ω has the form g(σ) for some g ∈ G.
Therefore one of the non trivial G invariant equivalence relation on Ω is given as
follows:

g1(σ) ≈ g2(σ) if and only if g−1
1 g2 ∈ H.

The number of the blocks is the index Ψ = |G : H|.
We can apply these ideas to the case where G is the PSL(2, q) and Ω is ∆. We

have the following lemmas:

Lemma 3.4. PSL(2, q) acts transitively on ∆.
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Proof. We will show that the orbit containing ∞ is ∆. If
a

b
∈ ∆ then as (a, b) = 1

there exist u, v ∈ Zq with ux − vy = 1. We can state the element

(
a u

b v

)
of

PSL(2, q) sends ∞ to
a

b
. �

Lemma 3.5. The stabilizer of ∞ in ∆ is the set of

{(
1 λ

0 1

)
: λ ∈ Zq

}
denoted

by PSL(2, q)∞.

Proof. Because of the action is transitive, stabilizer of any two points conjugate.
Therefore we can only look at the stabilizer of ∞ in PSL(2, q).

Let A :=

(
a b

c d

)
∈ PSL(2, q).Thus, A(∞) =

(
a b

c d

)(
1

0

)
=

(
1

0

)
, then a = 1,

c = 0, d = 1 and b = λ.Therefore

(
a b

c d

)
=

(
1 λ

0 1

)
is obtained.That is,

PSL(2, q)∞ =

{(
1 λ

0 1

)
: λ ∈ Zq

}
. Moreover it is easily seen that this inequality

PSL(2, q)∞ < PSL(2, q)0 < PSL(2, q) is satisfied. �

Let ≈ denote the PSL(2, q) invariant equivalence relation on ∆ by PSL(2, q)0,

let v =
r

s
and w =

x

y
be elements of ∆.Then there are the elements g1 :=

(
r ∗
s ∗

)

and g2 :=

(
x ∗
y ∗

)
in PSL(2, q) such that v = g1(∞) and w = g2(∞). So we have

v ≈ w = g1(∞) ≈ g2(∞)⇔ g−1
1 g2 ∈ PSL(2, q)0

and so from the above we can easily calculate that g−1
1 g2 =

(
∗ ∗

ry − sx ∗

)
∈

PSL(2, q)0. Hence ry − sx ≡ 0mod(q) is obtained.

It is known that the number of the blocks Ψ = |Γ : Γ0(n)| = n
∏
p|n

(1 +
1

p
) where

p is a prime and n > 1. In particular, if n = p is a prime, then there are p + 1
blocks, these being [0], [1], [2], ..., [p − 1], [∞]. Because of the number of blocks is
|PSL(2, q) : PSL(2, q)0| = q + 1. These blocks are

[∞] := [ 1
0 ] = {xy ∈ ∆ : (x, y) = 1 and y ≡ 0mod(q)},

[j] := [ j1 ] = {xy ∈ ∆ : (x, y) = 1 and x− jy ≡ 0mod(q)} where j 6=∞.

Orbital Digraphs.

Definition 3.1. Let V be a nonempty set, the elements of which are called vertices.
A digraph (or directed graph) Σ is a pair (V,E) where E is a subset of V ×V . The
elements of E are called edges. The digraph Σ is said to be finite if the vertex set
V is finite. If (α, β) ∈ E, this is indicated as α → β. If (α, β) ∈ E or (β, α) ∈ E
then α and β are connected to a edge.
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Definition 3.2. Let Σ be a graph and A ⊂ V . (A,E ∩ A× A) subgraph is named
of Σ, vertex set of which is A.

Definition 3.3. Let a sequence v1, v2, . . . , vk of different vertices. Then the form
v1 −→ v2 −→ . . . −→ vk −→ v1, where k ∈ N and k ≥ 3, is called a directed circuit
in Σ.

If k = 2, then we will say the configuration v1 −→ v2 −→ v1 a self paired edge.
If k = 3 or k = 4, then the circuit, directed or not, is called a triangle or

quadrilateral. In a graph is a finite or infinite sequence of edges which connect a
sequence of vertices which are all distinct from one another are called a path.

Let (G,V ) be transitive permutation group. Then G acts on V × V by

Θ : G× (V × V )
(g,(α,β))

−→
→

V × V
(g(α),g(β))

where g ∈ G and α, β ∈ V . The orbits of this action are called suborbitals of
G. The orbit containing (α, β) is denoted by O(α, β). From O(α, β) we can form
a suborbital graph Σ. Its vertices are the elements of V , and if (γ, δ) ∈ O(α, β)
there is a directed edge from γ to δ. Moreover O(α, α) is diagonal of V × V . The
corresponding suborbital graph called the trivial suborbital graph, it consists of a
loop based at each vertex.

Since PSL(2, q) acts transitively on ∆, it permutes the blocks transitively. Also
there is a disjoint union of isomorphic copies of suborbital graphs. We recall that
edges of these graphs can be drawn as hyperbolic geodesic in the upper half-plane.

Let Fu,q denote the subgraphs in Σ whose vertices form the block [∞]. Similarly
we may write subgraphs and are for other blocks.

Theorem 3.6. There is an edge
r

s
−→ x

y
in Fu,q if and only if either

(i) x ≡ urmod(q), y ≡ usmod(q) and ry − sx = q, or
(ii) x ≡ −urmod(q), y ≡ −usmod(q) and ry − sx = −q.

Proof. Assume that
r

s
−→ x

y
be an edge in Fu,q. Then there is some element T =(

a b

c d

)
∈ PSL(2, q) such that T ( 1

0 ) =
a

c
=

(−1)mr

(−1)ms
gives that r = (−1)ma, s =

(−1)mc for m = 0, 1. Again T (uq ) =
au+ qb

cu+ qd
=

(−1)nx

(−1)ny
for n = 0, 1. Hence x ≡

(−1)m+nurmod(q) and y ≡ (−1)m+nusmod(q). So we have the matrix equation(
a b

c d

)(
1 u

0 q

)
=

(
(−1)mr (−1)nx

(−1)ms (−1)ny

)
for m,n = 0, 1. If we get determinant it

is easily seen that ry − sx = ±q.
Conversely we do calculations only for (i). Therefore x ≡ urmod(q), y ≡

usmod(q) and ry−sx = q. Then there exist integers b and d such that x = ur+qb,

y = us + qd. So

(
a ur + qb

c us+ qd

)
=

(
r x

s y

)
. As ad − bc = 1 from determinants

we have ry − sx = q. Consequently we obtain

(
a ur + qb

c us+ qd

)
∈ PSL(2, q) and

r

s
−→ x

y
in Fu,q. �
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Theorem 3.7. The subgraph Fu,q contains a hyperbolic triangle if and only if
u2 ± u+ 1 ≡ 0mod(q).

Proof. As PSL(2, q) permutes the vertices transitively of Fu,q, then we may suppose

that hyperbolic triangle has the form
1

0
−→ k0

q
−→ x0

qy0
−→ 1

0
. In addition to

assume that
k0

q
<

x0

qy0
. Using Theorem 3.6. from the first edge, we get k0 ≡

umod(q). The second edge gives x0 ≡ −uk0mod(q) and ky0 − x0 = −1. From the
last edge we have 1 ≡ −ux0mod(q) and y0 = 1. Hence 1 ≡ −u(k0 + 1)mod(q) is
obtained. This gives that u2 + u+ 1 ≡ 0mod(q).

If
k0

q
>

x0

qy0
holds then we conclude that this equation u2 − u+ 1 ≡ 0mod(q) is

achieved.
On the other hand suppose that u2±u+ 1 ≡ 0mod(q). Obviously we obtain the

hyperbolic triangle
1

0
−→ u

q
−→ u± 1

q
−→ 1

0
form Theorem 3.6. �

Corollary 3.8. Actually Fu,q contains hyperbolic triangle if and only if the group

PSL(2, q)0 contains elliptic element ψ1 =

(
−u u2+u+1

q

−q u+ 1

)
of order 3 in PSL(2, q)0.

It is clear that ψ1( 1
0 ) = u

q , ψ1(uq ) = u+1
q and ψ1(u+1

q ) = 1
0 . That is, by the mapping

the ψ1 transform vertices to each other.

Now we will give examples for q = 5 in [∞] and [0] blocks.

Example 3.1. For some u ∈ Z5 hyperbolic triangles in subgraph Fu,5 figures are
as follows:
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1

0
→ 1

5
→ 2

5
→ 1

0
,

1

0
→ 2

5
→ 3

5
→ 1

0
,

1

0
→ 3

5
→ 4

5
→ 1

0
,

1

0
→ 2

5
→ 1

5
→ 1

0
,

1

0
→ 3

5
→ 2

5
→ 1

0
,

1

0
→ 4

5
→ 3

5
→ 1

0

Remark. Since u ∈ Z5 and (u, p) = 1 there is finite number of hyperbolic triangles
in suborbital graph.

Corollary 3.9. Again we can say that the subgraph Zu,q whose vertices form in the
block [0], contains hyperbolic triangle if and only if the group PSL(2, q)0 contains

elliptic element ψ2 =

(
u+ 1 −q
u2+u+1

q −u

)
of order 3 in PSL(2, q)0. It is clear that

ψ2( 0
1 ) = q

u , ψ2( qu ) = q
u+1 and ψ2( q

u+1 ) = 0
1 . That is, by the mapping the ψ2

transform vertices to each other.

Example 3.2. Similarly hyperbolic triangles in subgraph Zu,5 figures are as follows:

0

1
→ 5

1
→ 5

2
→ 0

1
,

0

1
→ 5

2
→ 5

3
→ 0

1
,

0

1
→ 5

3
→ 5

4
→ 0

1
,

0

1
→ 5

2
→ 5

1
→ 0

1
,

0

1
→ 5

3
→ 5

2
→ 0

1
,

0

1
→ 5

4
→ 5

3
→ 0

1

Remark. We know that there are self paired edges in suborbital graphs. If using
the group PSL(2, 2), then self paired edges reveal in subgraps. For PSL(2, 2) there
are 3 blocks. Below, we will give a lemma for infinite block.

Lemma 3.10. The subgraph Fu,2 is self paired if and only if u2 + 1 ≡ 0mod(2).
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Proof. Assume that O( 1
0 ,

u
2 ) = O(u2 ,

1
0 ). Then there exists T =

(
a b

c d

)
such that

T (∞) = u
2 and T (u2 ) = ∞. Hence T must be

(
u −u

2+1
2

2 −u

)
and detT = 1. So we

have u2 + 1 ≡ 0mod(2). Conversely case is obvious. �

Example 3.3. We can easily see that there are self paired edges in Fu,2 and Zu,2,
and also there exists a loop in Lu,2 whose vertices form in the block [1]. Figures are
as follows:
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