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POSITIVE SOLUTIONS FOR MULTI POINT IMPULSIVE BOUNDARY VALUE
PROBLEMS ON TIME SCALES

İSMAİL YASLAN
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Abstract. In this paper, we consider nonlinear second-order multi-point impulsive boundary value problems on time scales.
We establish the criteria for the existence of at least one, two and three positive solutions by using the Leray-Schauder fixed
point theorem, the Avery-Henderson fixed point theorem and the five functional fixed point theorem, respectively. An example
that supports the theoretical results is also provided.
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1. INTRODUCTION

The theory of time scales was introduced by Hilger [1] in his Phd thesis in 1988. A result for a
dynamic equation contains simultaneously a corresponding result for a differential equation, one for a
difference equation, as well as results for other dynamic equations in arbitrary time scales. We refer the
reader to the excellent introductory book by Bohner and Peterson [2] and their edited text [3].

Impulsive problems describe processes which experience a sudden change in their states at certain
moments. We refer to the books [4, 5, 6] for the introduction of the theory of impulsive differential
equations. The study of impulsive dynamic equations on time scales has also attracted much attention
because it provides an unifying structure for differential equations in the continuous cases and finite
difference equations in the discrete cases; see, [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18] and references
therein.

In 2007, Yaslan [19] discussed the existence of at least one, two and three positive solutions of the
nonlinear boundary value problem on time scales:{

u∆∇(t)+h(t) f (t,u(t)) = 0, t ∈ [t1, t3]⊂ T,
u∆(t1) = 0, αu(t3)+βu∆(t3) = u∆(t2).
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In 2014, Karaca, Ozen and Tokmak [20] studied the existence of two or many positive solutions of the
nonlinear p-Laplacian impulsive boundary value problem on time scales

−[φp(u∆(t))]∇ = f (t,u(t)), t ∈ [0,1]⊂ T, t 6= tk, k = 1,2, ...,m
u(t+k )−u(t−k ) = Ik(u(tk))

αu(0)−βu∆(0) =
1∫
0

u(s)∆s, u∆(1) = 0.

In 2015, Fen and Karaca [21] considered the nonlinear p-Laplacian impulsive boundary value problem
on time scales 

−[φp(u∆(t))]∇ = f (t,u(t)), t ∈ [0,1]⊂ T, t 6= tk, k = 1,2, ...,n
u(t+k )−u(t−k ) = Ik(u(tk))

u∆(0) = 0, αu(1)+βu∆(1) =
m−2
∑

i=1
aiu(ξi)

and established criteria for the existence of at least one positive solution to the problem.
In this paper, we consider the following boundary value problem (BVP)

y∆∇(t)+h(t) f (t,y(t)) = 0, t ∈ [a,b]⊂ T∗,
y(t+k )− y(t−k ) = Ik(y(tk)), t 6= tk, k = 1,2, ...,m,

y∆(a) = 0, αy(b)+βy∆(b) =
n−2
∑

i=1
y∆(µi), n≥ 3

(1.1)

where T∗ = Tk ∩Tk, 0 ≤ a < t1 < .. . < tm ≤ ρ(b), µi ∈ (a,b)∩T∗ (i = 1,2, . . . ,n− 2) with a < µ1 <

.. . < µn−2 < b and
(H1) h ∈Cld ([a,b], [0,∞)) and does not vanish identically on any closed subinterval of [a,b];
(H2) f ∈C ([a,b]× [0,∞), [0,∞));
(H3) Ik ∈C (R,R−), tk ∈ [a,b] and y(t+k ) = lim

h→0
y(tk +h), y(t−k ) = lim

h→0
y(tk−h) represent the right and left

limits of y(t) at t = tk, k = 1, ...,m.

In this paper, conditions for the existence of at least one positive solutions to BVP (1.1) are first
discussed by using the Leray-Schauder fixed-point theorem. Then, we use the Avery-Henderson fixed
point theorem to show that the existence of at least two positive solutions for BVP (1.1). Finally, exis-
tence result of at least three positive solutions of BVP (1.1) is established as a result of five functionals
fixed-point theorem.

2. PRELIMINARIES

We now state and prove several lemmas which are needed later.

Lemma 2.1. Assume (H3) holds and α 6= 0. If ω ∈ Cld [a,b] and ω(t) ≥ 0 for t ∈ [a,b], then y(t) is a
solution of the following BVP

y∆∇(t)+ω(t) = 0, t ∈ [a,b]⊂ T∗,
y(t+k )− y(t−k ) = Ik(y(tk)), t 6= tk, k = 1,2, ...,m,

y∆(a) = 0, αy(b)+βy∆(b) =
n−2
∑

i=1
y∆(µi), n≥ 3

(2.1)
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if and only if y(t) is a solution of the following integral equation

y(t) =
b∫

a

(
β

α
+ r−a)ω(r)∇r− 1

α

n−2

∑
i=1

µi∫
a

ω(r)∇r− ∑
t<tk<b

Ik(y(tk))−
t∫

a

(r−a)ω(r)∇r. (2.2)

Proof. Suppose that y is a solution of BVP (2.1). Then, y∆∇(t) =−ω(t) for t ∈ [a,b]. A nabla integration
from a to t of both sides of the above equality yields

y∆(t)− y∆(a) =−
t∫

a

ω(r)∇r, i.e., y∆(t) =−
t∫

a

ω(r)∇r.

Integrating above equality from a to t, we get

y(t)− y(a) =−
t∫

a

s∫
a

ω(r)∇r∆s+ ∑
a<tk<t

Ik(y(tk)).

It follows that

y(t) = y(a)−
t∫

a

r∫
a

ω(r)∆s∇r+ ∑
a<tk<t

Ik(y(tk))

= y(a)−
t∫

a

(r−a)ω(r)∇r+ ∑
a<tk<t

Ik(y(tk)).

From the second boundary condition, we obtain

y(a) =
b∫

a

(
β

α
+ r−a)ω(r)∇r− 1

α

n−2

∑
i=1

µi∫
a

ω(r)∇r− ∑
a<tk<b

Ik(y(tk)).

Thus,

y(t) =
b∫

a

(
β

α
+ r−a)ω(r)∇r− 1

α

n−2

∑
i=1

µi∫
a

ω(r)∇r− ∑
t<tk<b

Ik(y(tk))−
t∫

a

(r−a)ω(r)∇r.

Conversely, it is easy to show that y(t) in (2.2) satisfies (2.1). This completes the proof. �

Lemma 2.2. If α > 0, β ≥ n− 2, ω ∈Cld [a,b] and ω(t) ≥ 0 for t ∈ [a,b], then the unique solution of
BVP (2.1) satisfies y(t)≥ 0 for t ∈ [a,b].
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Proof. Since y∆(t) =−
t∫

a
ω(r)∇r ≤ 0, y is non-increasing on [a,b]. Therefore, if y(b)≥ 0, then y(t)≥ 0

for t ∈ [a,b].

y(b) =
β

α

b∫
a

ω(r)∇r− 1
α

µ1∫
a

ω(r)∇r− 1
α

µ2∫
a

ω(r)∇r−·· ·− 1
α

µn−2∫
a

ω(r)∇r

≥ β

α

µn−2∫
a

ω(r)∇r− n−2
α

µn−2∫
a

ω(r)∇r

=
β −n+2

α

µn−2∫
a

ω(r)∇r

≥ 0.

This completes the proof.
�

Let

E = {y : [a,b]→ R is continuous at t 6= tk left continuous at the points tk,

for which y(t−k ) and y(t+k ) exist with y(t−k ) = y(tk), k = 1, ...,m.},

which is a Banach space with the norm ‖y‖= sup
t∈[a,b]

|y(t)|. Define the cone P⊂ E by

P = {y ∈ E : y is concave, non-decreasing and nonnegative on [a,b], y∆(a) = 0}. (2.3)

Lemma 2.3. Assume α > 0, β ≥ n−2. If y ∈ P, then y(t) in (2.2) satisfies

y(t)≥ b− t
b
‖y‖, t ∈ [a,b]⊂ T∗. (2.4)

Proof. Since y(t) is nonincreasing on [a,b], we have ‖y‖ = y(a). Assume g(t) = y(t)− b−t
b ‖y‖ for

t ∈ [a,b]⊂ T∗. From the fact that g∆∇(t) = y∆∇(t)≤ 0, we know that the graph of g is concave on [a,b].
We get

g(a) =
a
b

y(a)≥ 0

and
g(b) = y(b)≥ 0.

Therefore, we have g(t) ≥ 0 for t ∈ [a,b] from the concavity of g. Thus, we obtain y(t) ≥ b−t
b ‖y‖ for

t ∈ [a,b]⊂ T∗.
�

By Lemma 2.1, the solutions of BVP (1.1) are the fixed points of the operator A defined by

Ay(t) =

b∫
a

(
β

α
+ s−a)h(s) f (s,y(s))∇s− 1

α

n−2

∑
i=1

µi∫
a

h(s) f (s,y(s))∇s− ∑
t<tk<b

Ik(y(tk))

−
t∫

a

(s−a)h(s) f (s,y(s))∇s.
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Now, we state the fixed point theorems to prove the main results of this paper.

Theorem 2.4 ([22]). (Leray-Schauder Fixed Point Theorem) Let E be a Banach space, and let A : E→ E
be a completely continuous operator. If the set {x ∈ E : x = λAx,0 < λ < 1} is bounded, then A has at
least one fixed point in the closed T ⊂ E, where

T = {x ∈ E : ‖x‖ ≤ R}, R = sup{‖x‖ : x = λAx,0 < λ < 1}.

Theorem 2.5 ([23]). (Avery-Henderson Fixed Point Theorem) Let P be a cone in a real Banach space
E. Set

P(φ ,r) = {u ∈ P : φ(u)< r}.
Let η and φ be increasing, nonnegative continuous functionals on P. Let θ be a nonnegative continuous
functional on P with θ(0) = 0 such that, for some positive constants r and M,

φ(u)≤ θ(u)≤ η(u) and ‖u‖ ≤Mφ(u)

for all u ∈ P(φ ,r). Suppose that there exist positive numbers p < q < r such that

θ(λu)≤ λθ(u), for all 0≤ λ ≤ 1 and u ∈ ∂P(θ ,q).

If A : P(φ ,r)→ P is a completely continuous operator satisfying
(i) φ(Au)> r for all u ∈ ∂P(φ ,r),
(ii) θ(Au)< q for all u ∈ ∂P(θ ,q),
(iii) P(η , p) 6= /0 and η(Au)> p for all u ∈ ∂P(η , p),

then A has at least two fixed points u1 and u2 such that

p < η(u1) with θ(u1)< q and q < θ(u2) with φ(u2)< r.

Now, we will present the five functionals fixed point theorem. Let ϕ,η ,θ be nonnegative continuous
convex functionals on the cone P, and γ,ψ nonnegative continuous concave functionals on the cone P.
For nonnegative numbers h, p,q,r and d, define the following convex sets:

P(ϕ,r) = {x ∈ P : ϕ(x)< r},

P(ϕ,γ, p,r) = {x ∈ P : p≤ γ(x),ϕ(x)≤ r},

Q(ϕ,η ,d,r) = {x ∈ P : η(x)≤ d,ϕ(x)≤ r},

P(ϕ,θ ,γ, p,q,r) = {x ∈ P : p≤ γ(x),θ(x)≤ q,ϕ(x)≤ r},

Q(ϕ,η ,ψ,h,d,r) = {x ∈ P : h≤ ψ(x),η(x)≤ d,ϕ(x)≤ r}.

(2.5)

Theorem 2.6 ([24]). (Five Functionals Fixed Point Theorem) Let P be a cone in a real Banach space E.
Suppose that there exist nonnegative numbers r and M, nonnegative continuous concave functionals γ

and ψ on P, and nonnegative continuous convex functionals ϕ,η and θ on P such that

γ(x)≤ η(x),‖x‖ ≤Mϕ(x),∀x ∈ P(ϕ,r).

Suppose that A : P(ϕ,r) → P(ϕ,r) is a completely continuous and there exist nonnegative numbers
h, p,k,q, with 0 < p < q such that

(i) {x ∈ P(ϕ,θ ,γ,q,k,r) : γ(x)> q} 6= /0 and γ(Ax)> q for x ∈ P(ϕ,θ ,γ,q,k,r),
(ii) {x ∈ Q(ϕ,η ,ψ,h, p,r) : η(x)< p} 6= /0 and η(Ax)< p for x ∈ Q(ϕ,η ,ψ,h, p,r),

(iii) γ(Ax)> q, for x ∈ P(ϕ,γ,q,r), with θ(Ax)> k,
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(iv) η(Ax)< p, for x ∈ Q(ϕ,η , p,r), with ψ(Ax)< h.

Then A has at least three fixed points x1,x2,x3 ∈ P(ϕ,r) such that

η(x1)< p, γ(x2)> q, η(x3)> p with γ(x3)< q.

3. MAIN RESULTS

We will apply the Leray-Schauder Fixed Point Theorem to the existence of at least one positive solu-
tion for BVP (1.1).

Theorem 3.1. Assume (H1)-(H3) hold and α > 0, β ≥ n− 2. If there exist numbers ck such that
|Ik(y(tk))| ≤ ck, for k = 1, ...,m, then BVP (1.1) has at least one positive solution.

Proof. For all y ∈ P, we know from (H1), (H2), the definition of A and the proof of Lemma 2.2 that
(Ay)(t)≥ 0, (Ay)∆(t)≥ 0, (Ay)∆∇(t)≤ 0 and (Ay)∆(a) = 0. So A is an operator from P to P. It is easy to
show that A : P→ P is completely continuous by using the Arzela-Ascoli theorem. We denote N(A) :=
{y ∈ P : y = λAy,0 < λ < 1}. Now we show that the set N(A) is bounded. If T = {y ∈ P : ‖y‖ ≤ R} and
R = sup{‖y‖ : y = λAy,0 < λ < 1}, then

|y(t)|= λ |Ay(t)| ≤ λ sup
t∈[a,b],y∈T

f (t,y(t)){(β +n−2
α

+b−a)
b∫

a

h(s)∇s}+λ

m

∑
k=1

ck

for all y ∈ N(A). Then, we obtain N(A) is bounded from (H1) and (H2). By Theorem 2.4, BVP (1.1) has
at least one positive solution. �

Define the constants

K :=
α

β −n+2
(

µn−2∫
a

h(s)∇s)−1, (3.1)

L := (

b∫
a

(
β

α
+ s−a)h(s)∇s)−1 (3.2)

and

M := (

µn−2∫
a

(
β −n+2

α
+ s−a)h(s)∇s)−1. (3.3)

Now, we use the Avery-Henderson fixed point theorem to prove the next theorem.

Theorem 3.2. Assume (H1)-(H3) hold and α > 0, β > n−2. Suppose there exist numbers 0 < p < q < r
such that ∑

µn−2<tk<b
Ik(y(tk))≥−q

2 and the function f satisfies the following conditions:

(i) f (s,y)> rK for (s,y) ∈ [a,µn−2]× [r, br
b−µn−2

],

(ii) f (s,y)< qL
2 for (s,y) ∈ [a,b]× [0, bq

b−µn−2
],

(iii) f (s,y)> pM for (s,y) ∈ [a,µn−2]× [b−µn−2
b p, p],

where K, L and M are defined in (3.1), (3.2) and (3.3), respectively. Then BVP (1.1) has at least two
positive solutions y1 and y2 such that

y1(a)> p with y1(µn−2)< q and q < y2(µn−2)< r.
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Proof. Define the cone P as in (2.3). We know that A : P→ P is completely continuous by using Arzela-
Ascoli theorem. Let the nonnegative increasing continuous functionals φ ,θ and η be defined on the cone
P by φ(y) := y(µn−2), θ(y) := y(µn−2) and η(y) := y(a). For each y ∈ P, we have φ(y) = θ(y)≤ η(y).
Using (2.4), we have

‖y‖ ≤ b
b−µn−2

φ(y).

Moreover, θ(0) = 0. For all y∈ P, λ ∈ [0,1], we have θ(λy) = λθ(y). We now verify that the remaining
conditions of Theorem 2.5 hold.

If y ∈ ∂P(φ ,r), we see from (2.4) that

r = y(µn−2)≤ y(s)≤ ‖y‖ ≤ br
b−µn−2

for s ∈ [a,µn−2]. Then, by using hypothesis (i), we find

φ(Ay) =

b∫
a

(
β

α
+ s−a)h(s) f (s,y(s))∇s− 1

α

n−2

∑
i=1

µi∫
a

h(s) f (s,y(s))∇s

− ∑
µn−2<tk<b

Ik(y(tk))−
µn−2∫
a

(s−a)h(s) f (s,y(s))∇s

≥ β

α

µn−2∫
a

h(s) f (s,y(s))∇s− n−2
α

µn−2∫
a

h(s) f (s,y(s))∇s

>
β −n+2

α

µn−2∫
a

h(s)rK∇s

= r.

Thus condition (i) of Theorem 2.5 is satisfied.
If y ∈ ∂P(θ ,q), we have from (2.4) that

0≤ y(s)≤ ‖y‖ ≤ bq
b−µn−2

for s ∈ [a,b]. Then, from hypothesis (ii), we get

θ(Ay) =

b∫
a

(
β

α
+ s−a)h(s) f (s,y(s))∇s− 1

α

n−2

∑
i=1

µi∫
a

h(s) f (s,y(s))∇s

− ∑
µn−2<tk<b

Ik(y(tk))−
µn−2∫
a

(s−a)h(s) f (s,y(s))∇s

<

b∫
a

(
β

α
+ s−a)h(s)

qL
2

∇s− ∑
µn−2<tk<b

Ik(y(tk))

≤ q.

Hence, condition (ii) of Theorem 2.5 holds.
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Since 0 ∈ P and p > 0, we have P(η , p) 6= /0. If y ∈ ∂P(η , p), we obtain from (2.4) that

b−µn−2

b
p≤ y(µn−2)≤ y(s)≤ y(a) = p

for s ∈ [a,µn−2] Thus, by hypothesis (iii), we obtain

η(Ay) =

b∫
a

(
β

α
+ s−a)h(s) f (s,y(s))∇s− 1

α

n−2

∑
i=1

µi∫
a

h(s) f (s,y(s))∇s− ∑
a<tk<b

Ik(y(tk))

≥
µn−2∫
a

(
β −n+2

α
+ s−a)h(s) f (s,y(s))∇s

> p.

Since all the conditions of Theorem 2.5 are fulfilled, we conclude that BVP (1.1) has at least two positive
solutions y1 and y2 such that y1(a) > p with y1(µn−2) < q and q < y2(µn−2) < r. This completes the
proof. �

Now, we apply the five functionals fixed point theorem to the existence of at least three positive
solutions for BVP (1.1).

Theorem 3.3. Assume (H1)-(H3) hold and α > 0, β ≥ n−2. Suppose that there exist constants 0 < p <

q < qb
b−µn−2

< r such that ∑
a<tk<b

Ik(y(tk))≥− p
2 and the function f satisfies the following conditions:

(i) f (s,y)≤ rL
2 for (s,y) ∈ [a,b]× [0,r],

(ii) f (s,y)> qN for (s,y) ∈ [µn−2,b]× [q, qb
b−µn−2

],

(iii) f (s,y)< pL
2 for (s,y) ∈ [a,b]× [0, p],

where N = α

β
(

b∫
µn−2

h(s)∇s)−1 and L is defined in (3.2). Then BVP (1.1) has at least three positive solutions

y1,y2 and y3 satisfying

y1(a)< p < y3(a), y3(b)< q < y2(b).

Proof. Define the cone P as in (2.3) and define these maps γ(y) = ψ(y) = y(b), θ(y) = y(µn−2), ϕ(y) =
η(y) = y(a). Then γ and ψ are nonnegative continuous concave functionals on P, and ϕ,η and θ are non-
negative continuous convex functionals on P. Let P(ϕ,r), P(ϕ,γ, p,r), Q(ϕ,η ,d,r), P(ϕ,θ ,γ, p,q,r)
and Q(ϕ,η ,ψ,h,d,r) be defined by (2.5). It is clear that γ(y)≤ η(y) and ‖y‖= ϕ(y) for all y ∈ P(ϕ,r).

If y ∈ P(ϕ,r), then y(s) ∈ [0,r] for all s ∈ [a,b]. By hypothesis (i), we find

ϕ(Ay) =

b∫
a

(
β

α
+ s−a)h(s) f (s,y(s))∇s− 1

α

n−2

∑
i=1

µi∫
a

h(s) f (s,y(s))∇s− ∑
a<tk<b

Ik(y(tk))

≤
b∫

a

(
β

α
+ s−a)h(s)

rL
2

∇s− ∑
a<tk<b

Ik(y(tk))

< r.

Then, A : P(ϕ,r)→ P(ϕ,r).
Now we verify that the remaining conditions of Theorem 2.6.
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Let y1 = q+ ε1 such that 0 < ε1 < ( b
b−µn−2

−1)q. Since

γ(y1) = q+ ε1 > q,

θ(y1) = q+ ε1 <
qb

b−µn−2

and

ϕ(y1) = q+ ε1 <
qb

b−µn−2
< r,

we obtain

{y ∈ P(ϕ,θ ,γ,q,
qb

b−µn−2
,r) : γ(y)> q} 6= /0.

If y ∈ P(ϕ,θ ,γ,q, qb
b−µn−2

,r), then we have q≤ y(s)≤ qb
b−µn−2

for all s ∈ [µn−2,b]. By the hypothesis (ii),
we obtain

γ(Ay) =
β

α

b∫
a

h(s) f (s,y(s))∇s− 1
α

n−2

∑
i=1

µi∫
a

h(s) f (s,y(s))∇s

≥ β −n+2
α

µn−2∫
a

h(s) f (s,y(s))∇s+
β

α

b∫
µn−2

h(s) f (s,y(s))∇s

>
β

α

b∫
µn−2

h(s)qN∇s

= q.

Thus, condition (i) of Theorem 2.6 is fulfilled.
Let y2 = p− ε2 such that 0 < ε2 < (1− b

b−µn−2
)p. Since

η(y2) = p− ε2 < p,

ψ(y2) = p− ε2 >
bp

b−µn−2

and

ϕ(y2) = p− ε2 < r,

we find

{y ∈ Q(ϕ,η ,ψ,
bp

b−µn−2
, p,r) : η(y)< p} 6= /0.

If y ∈ Q(ϕ,η ,ψ, bp
b−µn−2

, p,r), then we obtain 0≤ y(s)≤ p for s ∈ [a,b]. Hence,

η(Ay) =

b∫
a

(
β

α
+ s−a)h(s) f (s,y(s))∇s− 1

α

n−2

∑
i=1

µi∫
a

h(s) f (s,y(s))∇s− ∑
a<tk<b

Ik(y(tk))

<

b∫
a

(
β

α
+ s−a)h(s)

pL
2

∇s− ∑
a<tk<b

Ik(y(tk))

≤ p

by the hypothesis (iii). It follows that condition (ii) of Theorem 2.6 holds. The conditions (iii) and (iv)
of Theorem 2.6 is clear. This completes the proof. �
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Example 3.4. Let T= R. Consider the following boundary value problem:
y∆∇(t)+ y2t

y2+1 = 0, t 6= 9
2 , t ∈ [1,5]⊂ T

y(9
2
+
)− y(9

2
−
) =−0.001

y∆(1) = 0, y(5)+5y∆(5) = y∆(3)+ y∆(4).

If we take p = 0.71,q = 0.8 and r = 22, then all the conditions in Theorem 3.2 are satisfied. Thus,
the BVP has at least two positive solutions y1 and y2 satisfying y1(1) > 0.71 with y1(4) < 0.8 and
0.8 < y2(4)< 22.

If we take p = 0.0055,q = 20 and r = 180, then all the conditions in Theorem 3.3 are satisfied. Thus,
the BVP has at least three positive solutions y1, y2 and y3 such that

y1(1)< 0.0055 < y3(1), y3(5)< 20 < y2(5).
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