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AN ABSTRACT OF THE THESIS OF 

Conrad Williams, for the Master of Science degree in ZOOLOGY, presented on July 3, 2019, at Southern 

Illinois University Carbondale. 

TITLE:  POPULATION GENETICS OF RICE RATS (ORYZOMYS PALUSTRIS) AT THE NORTHERN EDGE OF THE 

SPECIES RANGE 

MAJOR PROFESSOR: Dr. Kamal M. Ibrahim 

     The marsh rice rat (Oryzomys sp.) is a semiaquatic rodent native to wetlands in the southeastern 

United States. The northwestern-most part of the rice rat’s range extends to Illinois where rice rats are 

found in wetlands across the southern part of the state. Recent studies have shown that rice rats in the 

United States can be divided into two species: O. palustris and O. texensis, but the taxonomic status of 

rice rats in Southern Illinois is unclear. To resolve this, I sequenced cytochrome-b and the control region, 

two regions of mitochondrial DNA, for 16 rice rats and constructed a phylogeny using these new 

sequences and previously obtained O. palustris and O. texensis sequences. In contrast to previous 

morphological assessments, I found that rice rats in Southern Illinois should be classified as O. texensis. 

This would extend the range of O. texensis north and west from its current extent. Further investigation 

using nuclear loci will be needed to confirm this classification. 

     Recent studies in Illinois have shown that rice rats metapopulation dynamics are dependent on the 

hydrology of the wetland that they occupy, but little is known about how these differences affect the 

genetic connectivity of rice rats. Specifically, a study on a floodplain site with dynamic changes in water 

levels and a reclaimed mining with a more stable hydrology showed different patterns of colonization 

and extinction of patches within each site. To investigate how the genetic structure of rice rats at these 

sites is affected by this dynamic, I genotyped 148 rice rats at 7 polymorphic microsatellite loci. I did not 

detect significant genetic differentiation between rice rat populations at the floodplains site and mining 

site nor between patches within these sites. Assignment testing with STRUCTURE did result in most, but 

not all, individuals being assigned to groups corresponding to the population from which they were 
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sampled. Tests for population bottlenecks at both sites revealed that that one of the two study sites, 

MMRWFS, may have experienced a bottleneck event in the recent past. This would corroborate a 

previous finding based on demographic data. 
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CHAPTER 1:  

 

INTRODUCTION AND LITERATURE REVIEW 

INTRODUCTION 

     Biological taxa exhibit varying degrees of genetic divergence on a continuum from deep divisions 

between species to minor divisions between locally distributed populations of conspecifics. While much 

can be inferred about the evolutionary history of a given taxon by examining genetic differences at one 

end of this continuum or the other, a more complete understanding is gained by studying both. 

Phylogeography concerns the relationship between historical geographic phenomena and the spatial 

distribution of taxa (Avise 2001; Hickerson et al. 2010), thus examining relationships between more 

distantly related taxa. Phylogeography also encompasses the study of conspecific populations when 

there is historical-geographic component explaining the genetic structure of those populations. On finer 

spatio-temporal scales, the study of gene flow between conspecific populations on the modern 

landscape is typically considered the realm of population genetics. 

     Metapopulations are groups of populations of the same species that are distributed across a 

landscape and between which there is limited gene flow. Within each population or subpopulation, 

depending on what level of genetic divergence is being examined, individuals are assumed to be 

randomly mating. Metapopulations have long been considered in the context of population genetics 

(Wright 1931; Slatkin 1977), where the focus is on geneflow between  subpopulations, as well as in a 

demographic context with focus on the dynamics of subpopulation extinction and recolonization (Levins 

1969). Early models of metapopulations did not consider explicit geospatial locations of populations or 

the effects of the habitat matrix between populations. To account for these factors, researchers turned 

to landscape ecology and, by extension, landscape genetics. 

     Rice rats (Oryzomys) are sigmodontine rodents native to North and South America. They are part of 

tribe Oryzomyini, a taxon that arose and diversified in the Amazonian bioregion region of South America 
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(Maestri et al. 2018). North American rice rats are semiaquatic, wetland-living rodents that inhabits 

coastal marshes and inland wetlands in the southeastern United States (Wolfe 1982). Rice rats in 

Southern Illinois, the northwestern-most edge of their range in North America, form metapopulations in 

wetlands with stable hydrological regimes or bordering large river floodplains where periodic inundation 

occurs (Eubanks et al. 2011). In the present study, I examine the genetic structure of two rice rat 

metapopulations in Southern Illinois using 7 polymorphic microsatellite loci. Additionally, I examine the 

geographic origin of rice rats in Southern Illinois using mitochondrial DNA sequences. 

RICE RATS IN SOUTHERN ILLINOIS 

     Oryzomys palustris is a semiaquatic cricetid rodent that occurs primarily in wetlands along the 

Atlantic and gulf coasts, but is also found throughout the inland southeastern United States at lower 

densities in freshwater wetlands (Wolfe 1982). Recent studies of molecular divergence within O. 

palustris indicate two distinct clades: an eastern clade consisting of O. palustris, and a western clade 

consisting of O. palustris texensis (Hanson et al. 2010; Indorf 2010). Following the recommendation of 

Hanson et al. 2010, I henceforth refer to the western clade as O. texensis and the eastern clade as O. 

palustris, though reproductive isolation between the two clades has not been confirmed to date. 

     Within the eastern clade, there are 6 typically recognized subspecies of O. palustris (Wolfe 1982). O. 

p. natator and O. p. coloratus from central and southern peninsular Florida, respectively. O. p. sanibeli 

and O. p. planirostris occupy Sanibel Island and Pine Island off the Florida coast. O. p. argentatus, the 

silver rice rat, is a subspecies from the Lower Florida Keys. O. p. argentatus is sometimes referred to in 

the literature as a separate species: O. argentatus. O. p. texensis occupies a range from Louisiana west 

to eastern Texas and north to eastern Oklahoma. Finally, O. p. palustris occupies the bulk of the species 

range from the panhandle of Florida, north to New Jersey, east to Mississippi, and north to Kentucky. 

Morphologically, these subspecies are described as differing in size and pelage. Indorf and Gaines (2013) 
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found that the Pine Island rice rat likely wasn’t genetically distinct enough to be considered a 

subspecies, but the Sanibel Island Rice rat does appear genetically distinct. 

     The phylogeographic history and distribution of rice rats in the southeastern United States was 

examined by Indorf (2010) using mitochondrial cytochrome b and control region sequences. Indorf’s 

study indicates the divergence between O. palustris and O. texensis occurred during the early 

Pleistocene, 0.75 to 2.5 mya, likely as a result of separate glacial refugia (Indorf 2010). O. palustris 

appears to have expanded from an eastern glacial refugia to occupy a range including the United States 

east coast from Florida to New Jersey, and Alabama, Tennessee, and Kentucky. O. texensis expanded 

from a more western glacial refugia to occupy the Texas and Louisiana Gulf coasts as well as Mississippi, 

Arkansas, and eastern Oklahoma. However, this study did not include rats from Southern Illinois, leaving 

the geographic origin of these populations uncertain.  

     The first records of rice rats in Illinois come from Alexander County at the extreme southwestern 

edge of the state (Cory 1912; Necker and Hatfield 1951). The only extensive survey of the rice rat’s range 

in Illinois was conducted in 1987 and found that the species was limited to the southern counties: 

Alexander, Franklin, Hamilton, Jackson, Johnson, Pope , Massac, Saline, White, and Williamson (Hofman 

et al. 1990). Necker and Hatfield (1951) list the rice rats present in Illinois as Oryzomys palustris 

palustris. Current range maps also show rice rats in Southern Illinois as belonging to O. palustris palustris 

(Wolfe 1982; Humphrey and Setzer 1989; See Figure 1 of Hanson et al. 2010), However, the first two 

studies did not use molecular data to confirm the subspecies status of rice rats in Southern Illinois, and 

the last (Hanson et al. 2010) did not include samples from Southern Illinois. 

     In Southern Illinois, rice rats occupy patchy habitat in inland wetlands with stable hydrological 

regimes and wetlands bordering large river floodplains where periodic inundation occurs. Rice rats often 

found in emergent wetlands and in ditches. It is associated with presence of upland grass cover, 
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herbaceous cover within the habitat, and dense, emergent vegetation such as cattails (Typha sp.),  

sawgrass (Cladium jamaicense), and common reed (Phragmites australis) (Eubanks et al. 2011).  Two 

metapopulations in Southern Illinois have been extensively studied: one at a reclaimed mining site that 

has been converted to wetland habitat in Jackson County (Burning Star 5; BS5), and another in a 

floodplain of the Mississippi River in Alexander County (Middle Mississippi River Wetland Field Station; 

MMRWFS). The floodplain metapopulation appears to exhibit a habitat-tracking dynamic where patch 

occupancy is driven by changes in patch quality due to flooding.  In contrast, the reclaimed mining site 

metapopulation, which has  a stable hydrological regime, better approximates a classic ecological 

metapopulation (Van der Merwe et al. 2016)in which populations occasionally go locally extinct only 

later to be recolonized by individuals from nearby patches. 

  While O. palustris populations in other locations have shown little change in population size during long 

periods (≥5 months) of inundation (Abuzeineh et al. 2007),  populations in Southern Illinois floodplains  

appear to be reduced by long periods of deep inundation (>2 meters) and to recover after inundation 

(Van der Merwe et al. 2016).  O. palustris individuals in Southern Illinois are highly vagile compared to 

other rodents of similar size. A study of landscape permeability and movement showed an average daily 

movement distance of 32.9 m, with a maximum recorded movement of >300 m in a single night (Cooney 

2013). Movements of > 300 m  have also been recorded in other areas of the species range (Negus et al. 

1961), including the crossing of  >300 m of open water (Forys and Dueser 1993). How this combination 

of high vagility and patch colonization dynamic affect the genetic structure of populations remains an 

open question. Genetic interconnectedness can be achieved with much lower migration rates than 

demographic interconnectedness (Allendorf et al. 2012), and, therefore, it is important to examine the 

two processes independently. 
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PHYLOGEOGRAPHY 

     Phylogeography is a sub-discipline of biogeography that examines the “principles and processes 

governing the geographical distributions of genealogical lineages, especially those at the 

intraspecific level” (Avise 1998, pg 371). As traditionally practiced, phylogeography uses molecular 

markers to examine the causal relationship between historical geographic phenomena and the spatial 

distribution of taxa (Avise 2001; Hickerson et al. 2010).  Mitochondrial DNA (mtDNA) has unique 

properties that make it ideal for examining phylogeographic relationships both within and between 

species. Mitochondrial DNA is haploid, maternally inherited, rapidly evolving, and non-recombining 

(Avise et al. 1987). These traits make mtDNA ideal for examining closely related populations and species 

(Avise et al. 1987). 

     Currently, all literature seems to classify rice rats in Southern Illinois as belonging to Oryzomys 

palustris as opposed to the more western O. texensis (Wolfe 1982; Humphrey and Setzer 1989; Indorf 

2010). However, this relationship has never been examined using molecular data. A phylogenetic 

analysis based on mitochondrial DNA could help clarify which of these two clades rice rats in Southern 

Illinois belong to and add to our understanding of the phylogeography of North American Oryzomys. 

POPULATION GENETICS 

     Wright (1931) proposed measures of genetic differentiation, known as inbreeding coefficients, for 

various levels of hierarchical population substructure. Assuming genetic markers are selectively neutral, 

differentiation between demes  at each of these levels is due to a balance between genetic drift, which 

is inversely proportional to the effective population sizes of demes, and gene flow among demes. The 

three most commonly recognized levels of structure are individual organisms (I), subpopulations (S), and 

the total population (T), although inbreeding coefficients can be extended to any number of nested 

levels of population structure.  
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     Fst is a measure of genetic differentiation between demes or populations and is defined as Fst = 1- 

(HS/HT) where HS is the expected heterozygosity within a deme or subpopulation assuming Hardy-

Weinberg equilibrium, and HT is the expected heterozygosity computed from the pooled allele 

frequencies of the demes or populations. Deviation from Hardy-Weinberg proportions and, thus, higher 

Fst values can be caused by the Wahlund effect, an artifact of sampling that occurs when a sample of 

individuals is unknowingly drawn from two or more subdivided populations and treated as a single 

population. If a sample is drawn from a population where genetic substructure is present (e.g. treating 

two distinct populations as a single population), the sample population will appear to have excess 

homozygosity. Deviations from Hardy-Weinberg proportions can also be due to subdivided populations, 

nonrandom mating (Allendorf et al. 2012). Holsinger and Weir (2009) reviewed FST and its applications. 

     Two other commonly used F statistics are FIS and FIT. FIS is a measure of genetic differentiation due to 

nonrandom mating within a population (or a sub-population) and is defined as FIS = 1- (HO/HS).   HO is the 

mean observed heterozygosity within individuals and HS is the expected heterozygosity based on allele 

frequencies within each deme. FIT is defined as FIT = 1- (HO/HT) where HO is defined as above and HT is the 

expected heterozygosity based on allele frequencies in the total population (i.e. all demes pooled). 

MICROSATELLITES 

     Microsatellites are DNA sequences consisting of short, tandem repeats of bases. The repeated unit 

usually consists of 1-3 nucleotides, but longer repeat units can occur. Microsatellite alleles vary in 

sequence length due to replication slippage, thus adding or subtracting one or more repeat units 

whenever a mutation occurs; this allows microsatellite evolution to be modeled as a stepwise mutation 

process (Ellegren 2004). Microsatellites have found wide use as codominant markers in population 

genetics. While microsatellites are prone to some degree of homoplasy due to alleles that are identically 

sized but not identical by descent, it is not likely to be severe enough to interfere significantly with many 

types of population genetic analysis (Estoup et al. 2002).  
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     One of the advantages of polymorphic microsatellite loci is their utility in detecting recent population 

bottlenecks that would otherwise be missed by demographic studies of  population size (Allendorf et al. 

2012). Population bottlenecks cause a reduction in the number of alleles relative to the level of 

heterozygosity at polymorphic loci. This reduction is characterized by the relative absence of low 

frequency alleles compared to that expected had a bottleneck not occurred (Luikart et al. 1998). The 

ability to detect a bottleneck depends on the severity of the bottleneck, time since the reduction in 

population size, and mutation model of the locus being examined. More severe, recent bottlenecks are 

easier to detect and it typically requires more loci to detect a bottleneck using loci following the 

stepwise mutation model than with loci following the infinite allele model (Cornuet and Luikart 1996). 

     Rice rats in Southern Illinois, though highly vagile (Cooney 2013), might provide an 

opportunity to examine the population genetic structure of a small, semi-aquatic rodent at the 

periphery of its range. With this in mind, I have chosen to examine this at two sites in Southern 

Illinois: Burning Star 5 (BS5), a reclaimed mining site in Jackson County and the Middle 

Mississippi River Wetland Field Station (MMRWFS), located in a floodplain of the Mississippi 

River in Alexander County. The differing hydrological regime between the two sites (inundation 

occurs much more frequently at MMRWFS) further provides the opportunity to examine the 

effects of flooding on genetic connectivity.  
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CHAPTER 2:  

 

STUDY SITES AND SAMPLE ACQUISITION 

STUDY SITES 

     The rice rat samples used in the population genetics study were collected from two wetland 

complexes in Southern Illinois. The first site is a reclaimed mining site at the Illinois Department of 

Natural Resources CONSOL Energy - Burning Star 5 Wildlife area (hereafter referred to as Burning Star 5 

or BS5) in Jackson County (37° 52’ 32.95” N; 89° 12’ 30.47” W).  Most mining at Burning Star 5 occurred 

after 1978 when reclamation of at least part of the mined areas was required by federal law. Burning 

Star 5 is located in the Big Muddy River watershed, and covers approximately 3,200 ha, including 

roughly 1,200 ha of upland wetland habitats and 640 ha of unmined forested areas (Figure 1, Figure 2). 

     The second site is located at the Middle Mississippi River Wetland Field Station (hereafter MMRWFS) 

in Alexander County in Illinois. Managed by Southern Illinois University, MMRWFS covers approximately 

560 ha and is located on the east side of the Mississippi River approximately 4 km East-South-East of 

Cape Girardeau, Missouri (37° 17’ 2.08” N; 89° 28’ 6.37” W). The area consists of various managed 

natural wetlands within the Cape Bend State Fish and Wildlife Area and the Shawnee National Forest 

(Figure 1, Figure 3). A primary difference between the conditions at MMRWFS and Burning Star 5 is that 

MMRWFS experiences periodic inundation due to occasional flooding of the Mississippi River and 

proximity of the water table to the surface. Water depths in wetlands at BS5 vary with season and 

precipitation, but the area does not become totally inundated. 

     In addition to the above 2 sites, a small number of rice rats used in the phylogeography study were 

collected from a site approximately 5 km west of Harrisburg, Illinois in Saline County (37° 44’ 31.00" N; 

88° 36’ 24.10" W). This site is another reclaimed mining site and is surrounded by residential areas, 

cropland, and abandoned cropland (Hofmann and Gardner 1992). Due to a very small number of 

samples from this site, it was not included in the population genetic analyses. 
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SAMPLE ACQUISITION 

     Rice rat tissue samples used in the current studies were obtained by Dr. Jorista van der Merwe during 

2011-2013 (van der Merwe 2014, van der Merwe et al. 2016).  Rice rats were captured using Sherman 

live traps (8 cm x 9 cm x 23 cm, H.B. Sherman Traps Inc., Tallahassee, Florida, USA).  Traps were 

deployed in transects of 30-100 traps adjacent to 9 wetland patches at MMRWFS and 14 wetland 

patches at BS5. Each trap was baited with birdseed. Trapping sessions took place 4 times per year 

between March 2011 and November 2013: spring (mid-March to mid-May), early summer (mid-May to 

mid-July), late summer (mid-July to mid-September), and fall (mid-September to mid-November). During 

each session, traps were deployed for 3-4 consecutive nights at each site.  

     In total, 785 and 193 individual rice rats were captured at MMRWFS and BS5, respectively. One toe 

on either of the forepaws of each rat was clipped at the first joint to mark the animal and provide a 

tissue sample for DNA extraction. Samples were collected in accordance with guidelines approved by the 

SIUC Institutional Animal Care and Use Committee (IACUC Protocol 10-009; Sikes et al. 2007). Toe clips 

were preserved in 95% ethanol and frozen until shortly before DNA extraction.   
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CHAPTER 3:  

 

THE PHYLOGEOGRAPHIC ORIGINS OF RICE RATS IN SOUTHERN ILLINOIS 

INTRODUCTION 

     Recent studies of molecular divergence among Oryzomys palustris populations recommend dividing 

them into two separate species: an eastern clade called Oryzomys palustris and a western clade called of 

Oryzomys texensis (Hanson et al. 2010; Indorf 2010). The phylogeographic history and distribution of 

rice rats in the southeastern United States was examined by Indorf (2010) using two mitochondrial 

regions (cytochrome b and the control region). Indorf’s study indicates that the divergence between O. 

palustris and O. texensis occurred during the early Pleistocene, likely as a result of isolation in separate 

glacial refugia prior to northward range expansion as ice sheets receded and suitable habitat became 

available. However, this study did not include rice rats from Southern Illinois, leaving the origin of these 

populations uncertain. 

     In the absence of genetic data, current knowledge of the history of rice rats in Southern Illinois relies 

on fossils, species records, and morphological comparisons. Fossil remains indicate that rice rats were 

present in the southern US during the Pleistocene (Wolfe 1982). Rice rat remains from most 

archeological sites at the northern extent of their range date to ~1000 A.D. and suggest that the rats 

may have been a commensal pest of native American maize crops in the Midwest (Richards 1979). Living 

rice rats were first recorded in freshwater swamps of the eastern US in 1837 (Harlan 1837) and first 

recorded in Southern Illinois by Howell (1910). These and other records  were incorporated into a range 

map by Goldman (1918), who assigned rice rats in Southern Illinois to O. palustris palustris (and also, 

notably, recognized O. palustris texensis as a western subspecies on the same map). Goldman’s 

classification was used in a dichotomous key for mammals in Illinois Necker and Hatfield (1951) and is 

referenced in Humphrey and Setzer’s (1989) attempt to classify rice rats into subspecies based on 

morphological characteristics (Necker and Hatfield 1951; Humphrey and Setzer 1989). 



11 
 

     The species level differences recognized by Indorf (2010) stand in stark contrast to Humphrey and 

Setzer’s (1989) study based on morphology alone, which suggested O. palustris and O. texensis be 

classified as a single subspecies: O. palustris palustris. This incongruence between molecular and 

morphological results calls into question the taxonomic status of rice rats in Southern Illinois.  

     In this study, I use new DNA sequence data from two mitochondrial regions (cytochrome-b and the 

control region), along with existing sequence data from GenBank, to investigate the phylogeography of 

rice rats in Jackson, Alexander, and Saline counties of Southern Illinois. I find that these populationas 

represent a northward expansion of O. texensis, not O. palustris palustris as indicated by current range 

maps and previous morphological assessments (Mclaughlin and Robertson 1951; Hanson et al. 2010; 

Indorf 2010; Indorf and Gaines 2013). 

METHODS 

     DNA extraction, amplification, and sequencing: I extracted DNA from 16 rice rat toe clips (6 from BS5, 

5 from MMRWFS, and 5 from the Harrisburg site; see Chapter 2 for site descriptions) using Qiagen 

DNeasy tissue kits (Qiagen Inc.) following the manufacturer’s instructions for tissue. I then amplified two 

mitochondrial regions, cytochrome-b (Cytb) and the control region (CR), following procedures modified 

from Indorf (2010). Polymerase chain reaction (PCR) primers for CR were 2340-5 (Mendez-Harclerode et 

al. 2005) and Ory5’ (Indorf and Gaines 2013). For Cytb, I initially used MVZ05 (Smith and Patton 1993) 

and CB40 (Hanson and Bradley 2008). These initial attempts failed. However, by using MVZ05 and the 

reverse complement of CB40, I was able to obtain the expected PCR product. PCR primer sequences are 

shown in Table 1. For both loci, PCR reactions totaled 10 microliters and consisted of 1.4 μl of each 

primer (final concentration 1.4 μM), 0.5 μl bovine serum albumin (BSA; 20mg/ml), 0.7 μl water, 1 μl DNA 

extract, and 5 μl Dreamtaq Master Mix (2X; Thermo Scientific). For CR, the thermocyler program 

consisted of the following: a 5-minute initial denaturing at 95°C, 35 cycles of 95°C denaturing (1 minute), 

49°C annealing (45 seconds), and 72°C extension (90 seconds), and an 8-minute final extension. A similar 
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program was used for Cytb: a 5-minute initial denaturing at 95°C, 35 loops of 95°C denaturing (1 

minute), 54°C annealing (45 seconds), and 72°C extension (90 seconds), and an 8-minute final extension.  

     I visualized the PCR products on agarose gel stained with ethidium bromide prior to enzymatic 

cleanup of successful reactions with ExoSAP-IT (Affymetrix). I used the BigDye Terminator v3.1 Cycle 

Sequencing Kit (Applied Biosystems) for cycle sequencing reactions. Cycle sequencing products were 

purified using Illustra Sephadex spin columns (GE Healthcare) and dried for 30 minutes in a vacuum 

centrifuge before being resuspended in 10 μl Hi-Di formamide (Applied Biosystems) and resolved on an 

ABI 3130XL genetic analyzer (Applied Biosystems). For both PCR products, I ran separate cycle 

sequencing reactions for both forward and reverse primers, thus obtaining overlapping, reverse 

complementary sequences for each locus that were later trimmed and assembled in Geneious 10.1.3 

(Kearse et al. 2012). 

     Data Analysis: In addition to my 16 Cytb and CR sequences, I downloaded 3 sets of data from 

GenBank’s PopSet database (PopSet IDS: 403390915, 403390649, and 288223063). These PopSets 

contained rice rat Cytb and CR sequences from multiple sites in the southeastern United States and 

Mexico that were used in phylogenetic and phylogeographic studies by Hanson et al. (2010), Indorf 

(2010), and Indorf and Gaines (2013). From these sets, I filtered out sequences from species other than 

O. palustris and O. texensis (retaining some sequences from O. couesi as an outgroup for later analysis). 

Individuals, that did not have sequences for both loci were identified by voucher number and excluded. 

After this initial filtering step, I retained 235 sequences for each locus from the PopSets in addition to 

my 16 sequences for each locus. I aligned my sequences and the sequences derived from the PopSets 

for each region separately using the MUSCLE plugin in Geneious 10.1.3 (Edger R 2004; Kearse et al. 

2012). I then concatenated the two alignments based on voucher number and my own sample IDs. 

Finally, I eliminated duplicate haplotypes from the concatenated matrix leaving 116 concatenated Cytb 

and CR sequences. This alignment was used for all subsequent analyses. 
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     Selecting appropriate models of molecular evolution is important to obtaining accurate estimates of 

phylogenetic relationships. I ran the above alignment through PartitionFinder 2.1.1, a program that aids 

in selecting the best-fitting partitioning scheme and models of molecular evolution for a given alignment 

(Guindon et al. 2010; Lanfear et al. 2016). I limited the models tested to include only models that could 

be implemented in MrBayes and allowed four putative partitions: the control region and each codon 

position of Cytb. I used BIC as the model selection criterion. The best partitioning scheme used all four 

putative partitions. The best partitioning scheme was used in both the MrBayes and RAxML analyses 

while the best models of molecular evolution for each partition were only used in the MrBayes analysis.   

     I used two tree inference methods to construct phylogenetic trees from the above alignment. For 

maximum likelihood analysis, I used the rapid bootstrapping method implemented in RAxML 8.2.9 

(Stamatakis et al. 2008; Stamatakis 2014) on CIPRES science gateway v.3.3 (Miller et al. 2010). For this 

analysis, I partitioned the dataset into the control region and each codon position of Cytb and used 

RAxML’s GAMMACAT model of molecular evolution for all partitions under default settings. I performed 

1000 bootstrap replicates to obtain support values for each node.  

 

     For the Bayesian analysis, I used MrBayes v3.2.6 (Huelsenbeck and Ronquist 2001; Ronquist and 

Huelsenbeck 2003; Altekar et al. 2004) on CIPRES. I used both the partitioning scheme and models of 

molecular evolution selected by PartitionFinder. Settings for the Markov Chain Monte Carlo (MCMC) 

were as follows: 2 independent runs, 4 chains, 1 million generations with trees sampled every 1000 

generations. I used the potential scale reduction factor (PSRF) reported by MrBayes to assess chain 

convergence (Gelman and Rubin 1992). This statistic is expected to approach 1 as chains converge. The 

first 25% of sampled trees were discarded as burn-in. The remaining sampled trees (a total of 3002, 

1501 from each independent run) were summarized as a 50% majority rule consensus with clade 

credibility values included for the bipartitions using the “sumt” command. 
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     My analysis uncovered an unexpected tree topology given our current understanding of the 

distribution of Oryzomys in the United States. One way to test whether the topologies I recovered are 

better explanations for my data than the topology suggested by current range maps (Humphrey and 

Setzer 1989; Hanson et al. 2010) is to compare the results of my unconstrained analysis to those of an 

analysis constraining rice rats from Illinois to form a clade with Oryzomys palustris. The SOWH test is a 

likelihood-based parametric bootstrapping method that allows comparison of specific alternative 

topologies. I used SOWHAT (Church et al. 2015), a program that implements the SOWH test, to test for 

the monophyly of a clade consisting of rice rats from Illinois and Oryzomys palustris. I provided SOWHAT 

with a constraint tree assigning all samples from Illinois and Oryzomys palustris to one clade and all 

samples from Oryzomys texensis to a sister clade along with the alignment used in all other analyses 

(described above). I also provided SOWHAT with the same alignment partitions described in the above 

RAxML analysis. SOWHAT uses Seq-Gen v1.3.3 (Rambaut and Grass 1997) to simulate 1000 alignments 

and RAxML v8.1.20 (Stamatakis et al. 2008; Stamatakis 2014) to infer topologies for each of those data 

sets under both constrained and unconstrained maximum likelihood analysis. The differences in 

likelihood between the constrained and unconstrained trees inferred from simulated data form a null 

distribution that is used to test the significance of the difference in likelihoods between constrained and 

unconstrained analyses from my alignment. 

RESULTS 

     The 16 newly obtained Cytb sequences were all 1,123 bp (Appendix A). The control region from 15 of 

the newly-sequenced individuals ranged 938 bp to 960 bp (Appendix B). The reverse sequencing 

reaction for a single individual (HAR1) failed. The control region sequence for this individual was 

truncated at 887 bp due to low confidence low confidence in base calls at the 3’-end of the forward 

sequence. I found three different combined Cytb and CR haplotypes in Southern Illinois. A haplotype 
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shared by 11 of individuals was indistinguishable from the haplotype of an individual sampled from 

Shelby County in Tennessee. The other two haplotypes are unique to Southern Illinois. 

     PartitionFinder showed the best partitioning scheme was placing the control region and each codon 

position of Cytb into separate partitions (4 total partitions). The best model for the control region was 

GTR+I+G. HKY was the best model for the first codon position of Cytb, GTR+G for the second, and K80+I 

for the third.  

     The maximum likelihood analysis in RAxML and the Bayesian analysis in MrBayes both produced 

phylogenetic trees with strong support for 2 major clades: one consisting entirely of O. palustris (O. 

palustris palustris, Oryzomys palustris argentatus, and Oryzomys palustris sanibel) and the second 

consisting of O. texensis and my samples from southern Illinois (Figures 4, 5). The difference in likelihood 

between the unconstrained analysis and one constraining rice rats in Southern Illinois to O. palustris was 

95.0357; the SOWH test rejected the hypothesis of Illinois rice rats forming a clade with Oryzomys 

palustris (p < 0.001, 95% confidence interval: 0 - 0.00368). 

DISCUSSION 

     The two major clades recovered in both phylogenetic analyses correspond to clades A and B in 

Hanson et al. (2010), one of the studies from which many of the GenBank sequences I used were 

derived. All Southern Illinois samples were assigned with high support to a clade with Oryzomys texensis 

(Hanson et al.’s clade B) and not to O. palustris palustris as current range maps and previous 

morphological assessments predicted (Mclaughlin and Robertson 1951; Hanson et al. 2010; Indorf 2010; 

Indorf and Gaines 2013). The earliest study of rice rat distribution in Southern Illinois (Cory 1912), as 

well as  Necker and Hatfield's (1951) account, refers to rice rats in Southern Illinois as O. palustris 

palustris; these appear to be the origin of the current subspecies designations on range maps. 
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     All sequences included in this study are mitochondrial. This raises the possibility that the results are 

due to mitochondrial introgression, implying that the Southern Illinois rice rats are actually O. palustris 

palustris but harbor mitochondrial DNA introgressed from O. texensis. Introgression at secondary 

contact zones between recently diverged lineages is common (Harrison and Larson 2014). Other small 

rodent species have shown asymmetric mitochondrial introgression within and even beyond contact 

zones between divergent lineages (Jaarola et al. 2011; Mathias et al. 2012). However, based on the data 

that I have gathered, I cannot conclude this has occurred. I only found haplotypes assignable to O. 

texensis in the 16 individuals from which I obtained new Cytochrome-b and Control Region sequences. 

Hanson et al. (2010) found a ~6% sequence divergence in Cytb between Oryzomys texensis and 

Oryzomys palustris which is comparable to interspecific variation between other mammal species and at 

least suggests a reproductive barrier between those two lineages (Bradley and Baker 2001; Hanson et al. 

2010). Therefore, my best assumption is that rice rats in Southern Illinois belong to O. texensis. 

     Another consideration to bear in mind is that the sampling locations in this study were limited to sites 

previously used in the 2013 meta-population dynamics study by van der Merwe (2014). Broader 

sampling could have revealed additional sequence variability that impacted the phylogenetic analyses. 

This highlights the need for broader sampling within the region and combined mitochondrial and 

nuclear loci to determine conclusively the origins of rice rats in Southern Illinois. 
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CHAPTER 4:  

 

POPULATION GENETICS OF RICE RATS IN SOUTHERN ILLINOIS 

INTRODUCTION 

     Marsh rice rats (Oryzomys sp.) are present in several wetland complexes across Southern Illinois. The 

most recent survey of the distribution of rice rats in Southern Illinois, based on sampling at 49 sites, 

found that the presence of rice rats in wetlands was associated with upland grass cover, percent 

herbaceous cover, percent visual obstruction 0-0.5m from the ground (Eubanks 2009). The patchy 

nature of wetlands in Southern Illinois combined with the high vagility of rice rats (Cooney 2013) suggest 

that the rats may exist as metapopulations. 

     The demographics and colonization/extinction dynamics of rice rat metapopulations at two wetland 

sites were studied in depth by van der Merwe (2014). The Middle Mississippi River Wetland Field Station 

(MMRWFS) in Alexander County, Illinois experiences periodic inundation due to occasional flooding of 

the Mississippi River and a shallow water table. In contrast, the Illinois Department of Natural Resources 

CONSOL Energy - Burning Star 5 Wildlife area (BS5) in Jackson County has a more stable hydrological 

regime and is never completely inundated (see chapter 2 for full site descriptions). Van der Merwe 

(2014) predicted that tice rat metapopulations at these sites would differ in patterns of patch 

colonization and extinction depending on the hydrology of the habitats. However, this pattern failed to 

materialize, perhaps due to extremes of drought and flooding. Instead, rainfall was the best predictor of 

colonization rate. From 2011-2013, colonization rates and relative abundance were generally lower at 

BS5 than MMRWFS (Van der Merwe 2014). In 2011, severe flooding caused the extinction of many 

populations at MMRWFS with subsequent recolonization from refuges within the site, perhaps 

indicating a population bottleneck. Patch occupancy was more dependent on patch size than on the 

land cover type of the surrounding matrix habitat. Overall, MMRWFS appeared to exhibit a classic 

metapopulation dynamic while BS5 showed a habitat-tracking dynamic, in which suitable patches are 
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colonized as they become available and go extinct due to environmental changes (e.g. flooding or 

drought). 

     The same processes that drive differences in demographics and patch colonization between rice rat 

metapopulations at these sites might cause differences in genetic structure. For example, the rice rat 

populations at BS5 might be more homogenous than those at MMRWFS because a true metapopulation 

should theoretically harbor greater genetic diversity than the habitat-tracking dynamic at BS5. 

Understanding these effects could have implications for assessing what wetland sites within Illinois are 

better for conserving rice rat genetic diversity. To that end, I genotyped rice rats from multiple 

hypothesized populations within each wetland site at 7 polymorphic microsatellite loci. Using this 

dataset, I examined possible population bottleneck effects and genetic structure within and between 

sites. 

METHODS 

     Study Sites, Sampling, and DNA extraction – The actual boundaries of rat populations at each site are 

unknown.  Therefore, I subdivided the sites into hypothetical populations based on proximity of trap line 

locations (see chapter 2 for site descriptions and trapping procedures) and the number of samples that 

were available at each site (figure 4). I extracted DNA from 20-32 rice rat toe clips from each population 

using Quiagen DNeasy tissue kits (Quiagen Inc.) following the manufacturer’s instructions for tissue, with 

the exception of reducing elution from 200 microliters to 100 microliters to increase DNA concentration 

and compensate for the small size of my tissue samples (Table 2). In total, I extracted DNA from 148 toe 

clips spanning a 3-year sampling period from 2011-2013.  

     Microsatellite Genotyping – I attempted to amplify 9 polymorphic microsatellite loci developed 

specifically for O. palustris (Wang et al. 2000).  I was able to successfully amplify 7 of these from my 

samples after multiple rounds of optimization. The 5’ end of the forward primer for each locus was 
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modified with a fluorescent label as indicated in table 3. The PCR program I used only differed among 

loci in annealing temperature (listed in table 3) and was as follows: 5 minutes 95 °C; 42 cycles of 45 

seconds at 95 °C, 60 seconds annealing, and 45 seconds at 70 °C; 7 minutes at 70 °C. Loci with similar 

annealing temperatures were multiplexed. After amplification, PCR products were analyzed on an ABI 

3130xl Genetic Analyzer (Applied Biosystems). Alleles were scored in the Geneious 11.1.5 microsatellite 

plugin version 1.4.4 (Biomatters Ltd.) using automated allele binning and checked by hand for incorrect 

peak calls. For each sample, any locus that failed initial amplification was attempted 3-4 more times in 

singleplex. Any locus still failing at that point was regarded as missing data in subsequent analyses. 

     Analysis – I used Arlequin 3.5.2.2 (Excoffier et al. 2005) to examine genetic variation within and 

among the putative populations. For each putative population, I used Arlequin to calculate expected and 

observed heterozygosity, F statistics including pairwise FST (Wright 1931), and allelic richness.  Arlequin 

was also used to perform analysis of molecular variance (AMOVA) (Weir and Cockerham 1984; Excoffier 

et al. 1992; Weir 1996). AMOVA examines the genetic distance between individuals and assigns 

variation in this distance to different levels of hierarchical population structure. In this case, MMRWFS 

and BS5 represent two groups with 3 putative populations within each (see Table 2). 

     Initial analysis revealed a significant excess of homozygosity at many loci within each putative 

population. Therefore, I used Micro-Checker (Van Oosterhout et al. 2006) to test for the presence of null  

(non-amplifying) alleles, large allele dropout, and stuttering (in vitro mutation during PCR) that can 

cause deviations from Hardy-Weinberg equilibrium (HWE). While Micro-checker can give estimates for 

adjusted allele frequencies and adjusted genotypes, I chose not to use these  in subsequent analyses. 

Micro-checker bases its estimated allele frequencies on the assumption that the population is in HWE 

(Van Oosterhout et al. 2004). Since I cannot say with certainty that the populations in this study meet 

that assumption, it would be unsound to use the estimated frequencies. The results analyses using the 

original, unadjusted dataset are discussed in the context of results from Micro-Checker. 
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     I used the program STRUCTURE 2.3.4 (Pritchard et al. 2000; Hubisz et al. 2009), a Bayesian clustering 

method, to perform assignment testing. Under its admixture model, STRUCTURE assigns individuals’ 

ancestry to K populations or clusters while attempting to minimize deviations from HWE and linkage 

disequilibrium. I ran STRUCTURE with a burn-in of 10,000 iterations followed by 100,000 iterations of 

Markov Chain Monte Carlo (MCMC) for K = 1 to K = 8. Five independent replicates were performed for 

each K. I then used the program Structure Harvester (Earl and VonHoldt 2012) to calculate Evanno et 

al.’s ΔK (Evanno et al. 2005), a method for selecting the best estimate of the number of populations 

present in the dataset. I used CLUMPP to summarize independent runs at the K selected by the Evanno 

method and used DISTRUCT to visualize individual ancestry assignment (Rosenberg 2004; Jakobsson and 

Rosenberg 2007). 

     The results of the initial run of STRUCTURE recovered two distinct clusters at K = 2 that did not 

correspond to geographic distribution. To further explore the data, I then repeated the above procedure 

separately for both clusters using samples with greater than 90% of their ancestry assigned to a given 

cluster (110 individuals in the “Red” group from figure 6; 27 individuals in the “Green” group from figure 

6). Further, I repeated the original procedure 7 more times, each time removing 1 of the 7 microsatellite 

loci to assess the influence of each locus on population assignment. In these analyses, I used the full-

search algorithm in CLUMPP for K < 5. For K ≥ 5, I used the greedy search option with 10,000 

independent starts. Finally, I ran one more STRUCTURE analysis on a ‘strict’ dataset consisting only of 

individuals with no missing data and with locus OryAAT21 removed. For this run using the ‘strict’ 

dataset, I ran STRUCTURE with a burn-in period 100,000 iterations followed by 1,000,000 iterations of 

MCMC for K = 1 to K = 8. Eight independent replicates were performed for each K to ensure 

convergence. I again used Structure Harvester, CLUMPP and DISTRUCT to summarize and visualize these 

runs as described for the first STRUCTURE analysis above. 
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     To test for population bottlenecks at MMRWFS and BS5, I used the program BOTTLENECK (Piry et al. 

1999). BOTTLENECK examines the relationship between reduction in heterozygosity and reduction in 

allelic richness at microsatellite loci. Theoretically, when a population bottleneck occurs, allelic richness 

is reduced faster than heterozygosity. This would result in heterozygosity excess in populations 

experienced recent bottlenecks. I ran the program separately for BS5 and MMRWFS and used the 

Wilcoxon’s test statistic for assessing significance (this is the most appropriate test for datasets with 

fewer than 20 loci; Piry et al. 1999). 

RESULTS 

     I successfully extracted DNA from 148 individual rice rats and genotyped them at 7 microsatellite loci. 

The 7 loci were all polymorphic in each of the 6 putative populations. The average number of alleles per 

locus across all populations ranged from 7.83 alleles for OryAAT26 to 13.50 alleles for OryAAT40 (Table 

4). Across all loci, 117 different alleles were detected. Multiple loci in each population showed 

significant heterozygosity deficits (Table 5). 

     The Micro-Checker analysis detected between 3 and 4 loci with null alleles present in each 

population, but did not detect errors due to stuttering or large allele dropout. The estimated 

frequencies of null alleles using the Brookfield (1996) method ranged from 0.078 for OryAAT40 in 

population M3 to 0.314 for OryAAT10 in population B3 (Table 6). OryAAT03 was detected as having null 

alleles present in all 6 populations. These results indicate that it is likely that the heterozygosity deficit 

seen in all populations is due to technical error, specifically null alleles. While it is possible, under certain 

assumptions, to estimate new genotype frequencies from Micro-Checker’s adjusted allele frequencies, I 

chose to analyze the original dataset as is and discuss those analyses in the context of Micro-Checker’s 

results. 
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     Pairwise FST values, measures of genetic differentiation, between pairs of populations ranged from -0. 

016 to 0.031 (Table 7). The highest FST was between populations M3 and B3, and the lowest was 

between B1 and B2, but FST between all populations at BS5 (B1, B2, and B3) was effectively 0. Most FST 

estimates were significant under a permutation test performed in Arlequin, with the exception of all 

pairs including population B1. FST estimates within MMRWFS were significant between M2 and M3, and 

between M2 and M5. FST estimates were used to calculate the number of migrants per generation 

between each pair of populations (Table 8) (Slatkin 1991). This calculation implicitly assumes equivalent 

population sizes and bidirectional exchange of migrants, which might not be correct because these 

populations likely differ in size (Van der Merwe 2014). 

     AMOVA (Table 9) indicated that 98.02% of genetic variation is attributable to variance within 

populations (FST = 0.020, p < 0.000). Only 1.71% of genetic variation was attributed to differentiation 

between BS5 and MMRWFS (FCT = 0.017, p 0.112 ± 0.009) and only 0.27% of the variation was attributed 

to differentiation among populations within sites (FSC = 0.003, p = 0.463 ± 0.015). This indicates that 

there is little genetic differentiation between BS5 and MMRWFS. 

     The STRUCTURE analysis yielded mixed results. Under the Evanno et al. (2005) criterion (Table 10), 

K=2 was the best choice for the number of populations in the dataset. . However, the distribution of 

ancestry assignment to these clusters (Figure 6) reveals no pattern corresponding to differentiation 

specifically between MMRWFS and BS5. 

     I repeated the STRUCTURE analysis separately for individuals with >90% of their ancestry assigned to 

“red” and individuals with >90% of their ancestry assigned to “green”. For the “red” group (n=110), the 

best number of clusters was K = 6 (Figure 7, A); for the “green” group (n=27), the best number of 

clusters was K = 7 (Figure 7, B). “Green” individuals appear to have been separated out in the original 

analysis due to a large amount of missing data. To that end, ancestry assignment is ambiguous for these 
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individuals under both K = 7 and K = 2. The “red” group shows a pattern that is better adheres to 

sampling location than the original analysis under both K = 6 and, especially, K = 2. Most individuals from 

MMRWFS are assigned mostly “orange” ancestry and most individuals from BS5 are assigned mostly 

“blue” ancestry. Mitochondrial haplotype does not reflect whether an individual was assigned “orange” 

or “blue” ancestry (table 11). 

     In order to examine whether results in the original analysis (Figure 6) were due to a specific locus, I 

reran the STRUCTURE analysis iteratively removing 1 of the 7 loci for each run (Figure 8). These reduced 

analyses gave similar results that resembled the unreduced analysis, with the exception of removing 

OryAAT21. Here, the best number of clusters was K =5. Under K=5, most individuals in BS5 were 

assigned ‘green’ ancestry while individuals at MMRWFS were assigned mostly ‘blue’ ancestry. 

Individuals assigned mostly ‘yellow’ ancestry have high amounts of missing data. 

     Because these analyses indicate the STRUCTURE results were sensitive missing data and removal of 

the OryAAT21 locus, I performed an analysis in which both OryAAT21 and any individuals with missing 

data were removed. These strict criteria reduced the data set to 84 individuals (44 from MMRWFS and 

40 from BS5). In this analysis, the optimal K was K = 2.  Most rice rats from MMRWFS were assigned 

‘orange’ ancestry while most rice rats at BS5 were assigned ‘blue’ ancestry (Figure 9). These results are 

similar to the OryAAT21 removed dataset and do not correspond to mitochondrial haplotype (Table 12).  

     To examine how individual loci affected STRUCTURE assignment in this ‘strict’ dataset, I assigned rice 

rats with >50% ‘blue’ ancestry to one population (n = 39) and rice rats with >50% ‘orange’ ancestry to a 

second population (n = 45), and then examined allele frequencies for each locus using the Excel-

Microsatellite-Toolkit version 3.1 (Park 2001). The assignment appears to be driven in part by two alleles 

of OryAAT03. Individuals homozygous for allele 124 were assigned to have mostly ‘blue’ ancestry, while 

individuals homozygous for allele 130 were all assigned orange ancestry, irrespective of which site the 
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individuals belonged to. This pattern could result from STRUCTURE trying to minimize deviations from 

HWE in the ‘orange’ and ‘blue’ groups by forcing all of the homozygotes for a given allele into the group 

where that allele is more common. For example, In the original ‘strict’ dataset, individuals that are 

homozygous for allele 124 appear at both MMRWFS and BS5 and there is an excess of homozygotes at 

both sites. STRUCTURE tries to minimize this deviation from HWE by assigning all of the 124 

homozygotes to ‘blue’ thus raising frequency of allele 124 and the expected frequency of homozygotes. 

This results in less deviation from HWE in the ‘orange’ and ‘blue’ groups than in the ‘strict’ dataset.    

     BOTTLENECK gave mixed results depending on the mutation model assumed and further on the 

parameterization of the model. Microsatellite loci are best modeled by either the stepwise mutation 

model (SMM) or the two-phase model (TPM) (Piry et al. 1999). The only difference between these is 

that the SMM assumes mutations are always strictly one repeat unit while the TPM allows mutations of 

more than one repeat unit to occur at lower frequencies. TPM has been shown to be more appropriate 

for microsatellite data than the SMM (Piry et al. 1999). Under the SMM, BOTTLENECK failed to detect 

significant heterozygosity excess at neither MMRWFS (one-tailed Wilcoxon test: p = 0.945) or BS5 (p = 

0.988). Under the TPM, BOTTLENECK gave different results depending on parameterization of the 

model. Under BOTTLENECK’s default settings for the TPM (Probability of SMM in TPM = 70%, Variance 

for TPM = 30), the Wilcoxon test detected a heterozygosity excess at MMRWFS (p = 0.003) but not at 

BS5 (p = 0.188). This could indicate a past population bottleneck occurred at MMRWFS. However, under 

the parameterization recommended by Piry et al. (1999) (Probability of SMM in TPM = 95%, Variance for 

TPM = 12), the test was not significant for MMRWFS (p = 0.234) or BS5 (p = 0.813). 

DISCUSSION 

     Overall, I detected no significant genetic differentiation between MMRWFS and BS5 (AMOVA FCT = 

0.017, p = 0.112 ± 0.009). Nor is there genetic differentiation between putative populations within sites 

(AMOVA FSC = 0.003, p = 0.463 ± 0.015, and low pairwise FST estimates). This might seem surprising given 
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the distance between MMRWFS and BS5, but it is comparable to estimates of genetic differentiation 

found in other studies of rice rats (Indorf 2010). Further, connectivity between the sites could be 

explained by intermediate populations, such as those occupying roadside ditches (Eubanks et al. 2011). 

The putative populations I assumed within each site are  not sufficiently differentiated to warrant 

considering them separate genetic populations, though they may behave as a metapopulation in a 

demographic sense (Van der Merwe 2014; Van der Merwe et al. 2016). MMRWFS might exhibit some 

genetic structure among populations as evidenced by significant pairwise FST estimates, but the 

estimates themselves are mostly very low. This could be an effect of patch colonization / extinction 

dynamics as  shown by Slatkin (1977). Specifically, MMRWFS might fit what Slatkin called the propagule 

pool model, in which patches are colonized by a small group of individuals from a single patch. If 

flooding in 2011 nearly wiped out the rice rat population at MMRWFS, then it is possible that patches 

were recolonized from a small refuge population on the Mississippi River levee. This scenario is 

supported by rice rat captures only occurring near the levee in 2011, with captures at other MMRWFS 

localities subsequently occurring in 2012 and 2013 (Van der Merwe 2014). 

     The potential detection of a population bottleneck at MMRWFS corroborates the prediction of van 

der Merwe (2014). It is quite likely that the 2011 flood at MMRWFS severely reduced the rice rat 

population and that the population was recovering during the sampling period in 2011-2013. No 

bottleneck was detected at BS5,  again consistent with demographic studies  (Van der Merwe 2014). 

However, the effect of null alleles on this assessment is not clear. The effect of null alleles on expected 

heterozygosity as estimated by Bottleneck (i.e. 1-Σpi
2; 1 minus the sum of the squared allele frequencies) 

depends on the frequencies of null alleles relative to other alleles in the population, as well as whether a 

null allele never amplified or amplified only in homozygotes (i.e. a partial null). Given that the signal for 

the population bottleneck at MMRWFS is weak and that detection of that signal is highly dependent on 

model choice and parameterization, the result may be unreliable in presence of null alleles. 
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     The significant excess homozygosity across all populations in the study, but not for each locus within 

any given population, suggests the presence of unamplified alleles in many samples. This could be due 

to mutations in primer binding sequences flanking the microsatellite loci or to degradation of template 

DNA. Other studies using these microsatellite markers  have also detected null alleles in many 

populations (Wang et al. 2005; Indorf 2010). Further, while I accounted for spatial structure when 

selecting samples, I did not account for temporal structure. If rice rat populations undergo patch 

colonization / extinction as has been hypothesized, samples from the same site at two different points in 

time are not necessarily drawn from the same population. This would introduce a Wahlund effect that 

could explain excess homozygosity. This, however, should affect all loci within a population; it is unlikely 

to be the case in this study because no populations showed deviations from HWE at all loci. Excess 

homozygosity may be partially attributable to inbreeding. However, given the aforementioned effects of 

null alleles and my sampling scheme, I cannot confirm whether or not either of these populations are 

actually inbreed. 

     The results of the initial STRUCTURE analysis were inconclusive. The Evanno et al. (2005) method for 

selecting the number of genetic clusters or populations present in the dataset yielded K=2 as the best fit. 

This seems reasonable given that there are two major sites within the study (MMRWFS and BS5), but 

the plot of ancestry assignment revealed that there is no pattern attributable to division between sites. 

Further analysis revealed that this partitioning was primarily between samples with large amounts of 

missing data and the rest of the dataset. Another set of STRUCTURE analyses revealed that results were 

sensitive to a particular locus (OryAAT21) being removed from the dataset. A strict analysis in which I 

removed OryAAT21 and all individuals with missing data for any locus yielded K=2, and these clusters 

showed rough correspondence to MMRWFS and BS5 in a plot of individual ancestry assignments. 

However, a large portion of some individual’s ancestry was still assigned to the cluster more common at 

the other wetland complex (e.g. an individual sampled from MMRWFS having their ancestry assigned to 
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the cluster more common at BS5 instead of the cluster more common at MMRWFS). Since these clusters 

do not perfectly correspond to geographic location, it is not clear what biologically meaningful 

phenomenon they might represent. One possibility is recent admixture of two distinct populations, 

perhaps interbreeding between O. palustris and O. texensis in Illinois. However, if this were the case, I 

would not expect STRUCTURE to assign large amounts of an individual’s ancestry to either cluster but 

instead assign portions of each individual’s ancestry to both clusters. Based on examining allele 

frequencies of the two groups, it appears that STRUCTURE is attempting to correct the homozygote 

excess at both sites by assigning individuals with homozygous genotypes to clusters where that allele is 

more common, particular for OryAAT03. That suggests the assignment is in part due to excess 

homozygosity in the original dataset and, ultimately, to null alleles. Determining the actual cause of the 

apparent genetic structure would require further data gathering, preferably with new molecular 

markers. 

     Rice rats in Southern Illinois, previously classified as a state-threatened species, exist in isolated 

wetland habitats but share enough migrants to establish adequate levels of gene flow between them. 

My sample size is relatively small, particularly in terms of the number of sites, but my results provide 

some evidence that these rats are not in danger of extirpation at the northern edge of their range. 

Nevertheless, there are many landscape features, such as roads, ditches, and agricultural fields, that 

could affect connectivity among rice rate populations.  Future research should focus on establishing 

what facilitates gene flow between populations and how these features can be managed to ensure 

genetic connectivity is maintained.  
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CHAPTER 5:  

 

CONCLUSIONS AND POTENTIAL FUTURE RESEARCH 

     Rice rats appear to have been present in southern Illinois since at latest 1000 A. D. (Richards 1979) 

and likely arrived earlier following a warming climate in the early Holocene (~8500 years ago, Hofman et 

al. 1990). This northward range expansion was preceded by rice rats diverging into two distinct clades 

during the Pleistocene (Hanson et al. 2010). Recognition of Illinois rice rats as Oryzomys texensis rather 

than O. palustris adds to a developing line of evidence that the division between the two species at the 

northern extent of their ranges lies further east than previously suspected. This is consistent with 

Indorf’s (2010) finding that samples from western Tennessee and eastern Mississippi falling out within 

O. texensis. Rice rats have been recorded in central Tennessee and Kentucky (Goldman 1918; Humphrey 

and Setzer 1989), but these have not been included in any phylogenetic analysis using molecular data. 

Samples from these regions are crucial to locating the geographic boundary between these two species. 

Study of the contact zone (if one exists) between the species would allow for a more fine-scaled 

examination of their ecological relationship. 

     The population genetic analyses presented in chapter 4, though weakened by null alleles and 

consequently inflated homozygosity, mostly support hypotheses suggested by recent studies.  Cooney 

(2013) showed that rice rats in southern Illinois are highly vagile with large average home ranges (3.01 

ha) and 32.9 m average daily movement. He also showed that, on average, >40% of rice rat home ranges 

extend outside of emergent wetland habitats. While it is important not to assume that daily movements 

necessarily reflect the dispersal capabilities of a species, this might suggest an ability to disperse 

between patches of habitat even in a fragmented landscape. Indeed, that dispersal ability is reflected in 

the low genetic differentiation between the two wetland complexes I studied. The relatively low genetic 

differentiation between MMRWFS and BS5 suggests the presence of unsampled populations that act as 

stepping stones connecting the two sites.  The equivalent of a single migrant per generation between 
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populations that are otherwise isolated results in an FST of 0.2 (Wade and McCauley 1988; Mills and 

Allendorf 1996). Further, the ability of rice rats to use roadside ditches (Eubanks 2009; Eubanks et al. 

2011) might  provide corridors for dispersal. 

     The strict STRUCTURE analysis with the OryAAT21 locus and individuals with missing data excluded 

recovers most individuals at MMRWFS as belonging to one genealogical group and most individuals at 

BS5 as belonging to another. However, the ancestry assignment of some individuals was not attributable 

to their source population. The population assignment also does not correspond to the mitochondrial 

haplotype of the sampled individuals. This apparent genetic structure may be due to two distinct 

populations of rats converging in Southern Illinois, but the identity of those populations cannot be 

discerned with my data. The pattern might be explained by interbreeding between O. palustris and O. 

texensis, but, for this to be true, the O. texensis mitochondrial haplotypes would have to have displaced 

any O. palustris haplotypes from my study sites. That would result in populations in Southern Illinois 

having O. texensis mitochondrial ancestry and mixed nuclear ancestry. Further work to determine, using 

nuclear markers, whether the two species are interbreeding would greatly benefit our understanding of 

the phylogeographic history of rice rats in the United States. 

     Van Der Merwe (2014) found that many rice rat populations in wetland patches at MMRWFS went 

extinct during a large, sustained flooding event in 2011, and that those sites were subsequently 

recolonized with increasing colonization rates through 2013. This may be reflected in my data, especially 

if populations were founded by colonists from the refuge population near the levee and then expanded. 

This would explain the higher level of genetic differentiation between patches at MMRWFS relative to 

BS5 over shorter geographic distances.   

     Future work on rice rats at these sites might focus on overwinter survival and reproduction. Southern 

Illinois is the northernmost extent of the range of O. texensis and overwinter survival is likely to be a key 
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limiting factor for rice rats at this latitude (Eubanks 2009). Further, rice rats reproduce year-round in the 

southern parts of their  range, and lab-reared rice rats from wild populations in Tennessee have also 

been shown to reproduce year-round (Conaway 1954). It would be interesting to examine how survival 

and recruitment during winter affect population sizes during spring and summer, and thus understand 

how rice rats will respond to coming climate changes in Southern Illinois.  



31 
 

EXHIBITS 

TABLES 

Table 1: Primer sequences for cytochrome-b and the control region 

Region  Primer Sequence (5’ → 3’) Sources 

Cytochrome-b MVZ05 CGAAGCTTGATATGAAAAACCATCGTTG Smith and Patton 1993 

 CB40RC GCTTTGGGTGCTGRTAGTGG Adapted from Hanson and 
Bradley 2008 

Control Region 2340-5 GCATTTTCAGTGCTTTGC Mendez-Harclerode et al. 
2005 

 Ory5’ TACCATGAYCTTGTAAGTC Indorf and Gaines 2013 

 

Table 2 Site and number of samples per hypothetical population. Hypothetical populations M2, M3, and 
M5 are nested within MMRWFS. Hypothetical populations B1, B2, and B3 are nested within BS5. 

Site / Population Number of samples 

MMRWFS 79 
M2 20 
M3 32 
M5 27 

BS5 69 
B1 20 
B2 29 
B3 20 

 

Table 3 Microsatellite loci used in this study including primers, annealing temperature used in PCR, and 
the fluorescent labels used in fragment analysis. 

Locus Primers 5’ → 3’ Annealing Temp. 
(°C) 

Fluorescent Label 

OryAAT03 TGGCTTCAGTGGGTATTTATTAT 54 HEX 
 TGCGCACATGTATATTAAAGAA   
OryAAT10 TTGGGTTGGCTCTAATAGAA 52 6-FAM 
 TTTGCTATTGTTCACTTTCTAA   
OryAAT21 GCCTCCTACTGTTGTTTTGTTA 54 6-FAM 
 GCATTATCTGTTCTCTATCCACTAC   
OryAAT28 TCGGGAATATAGAAAGAAGTA 52 HEX 
 TGCCACTCAAAAATGATTTAAC   
OryAAT40 GGGTGTTCCAGAGAATGAATCTA 54 NED 
 TCCCAACATCCTCACAAATTTAT   
OryAAT26 CAATTGCTATTTTTCTGTAAA 50 6-FAM 
 CCAGCTGTTTTTTATTGTACT   
OryAAT60 AAGGCAGCTAAAAAAATCTT 50 NED 
 ATCGTCTCTGTTTTTATATCAG   
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Table 4: Number of alleles per locus for each of the 6 putative populations. M3, M2, and M5 are located 
at MMRWFS. B1, B3, and B2 are located at BS5. 

Locus M3 M2 M5 B1 B3 B2 Mean s.d. Total 

OryAAT03 8 11 9 11 8 11 9.667 1.506 15 

OryAAT10 15 11 16 10 11 14 12.83
3 

2.483 26 

OryAAT21 11 8 10 11 11 11 10.33
3 

1.211 15 

OryAAT28 8 9 9 10 8 11 9.167 1.169 14 

OryAAT40 11 16 17 11 11 15 13.5 2.811 22 

OryATT26 8 7 9 8 7 8 7.833 0.753 10 

OryATT60 9 13 11 13 12 12 11.66
7 

1.506 15 

 

 

Table 5: Observed and expected heterozygosity (HO / HE) for each locus within each putative population. 
Significant deviations from Hardy-Weinberg Equilibrium (p < 0.05) are indicated with an asterisk (*). 
 

M3 M2 M5 B1 B3 B2 

OryAAT03 0.59375 / 
0.83681* 

0.52632 / 
0.84495* 

0.36000 / 
0.84735* 

0.60000 / 
0.86795* 

0.42105 / 
0.81935* 

0.64286 / 
0.87403* 

OryAAT10 0.82143 / 
0.90844* 

0.64706 / 
0.88057* 

0.91304 / 
0.93140* 

0.90000 / 
0.91579 

0.25000 / 
0.81250* 

0.57143 / 
0.88312* 

OryAAT21 0.906 / 
0.850 

0.684 / 
0.839* 

0.593 / 
0.843* 

0.579 / 
0.831* 

0.750 / 
0.867* 

0.862 / 
0.877* 

OryAAT28 0.700 / 
0.836 

0.687 / 
0.817 

0.579 / 
0.873* 

0.692 / 
0.886* 

0.786 / 
0.878 

0.750 / 
0.883* 

OryAAT40 0.710 / 
0.868 

0.842 / 
0.939 

0.815 / 
0.932* 

0.611 / 
0.835* 

0.737 / 
0.852* 

0.929 / 
0.910 

OryATT26 0.250 / 
0.832* 

0.400 / 
0.800* 

0.467 / 
0.892* 

0.714 / 
0.823 

0.438 / 
0.823* 

0.500 / 
0.818* 

OryATT60 0.969 / 
0.826 

0.700 / 
0.931* 

0.870 / 
0.904 

0.944 / 
0.925 

0.895 / 
0.899 

0.862 / 
0.909* 
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Table 6: Estimates of null allele frequency for each locus within each population using the Brookfield 
method (Brookfield 1996)  in Micro-Checker are shown. Micro-Checker did not detect null alleles for loci 
marked with a dash (-). 

 M3 M2 M5 B1 B3 B2 

OryAAT03 0.126 0.152 0.263 0.144 0.192 0.125 

OryAAT10 - 0.127 - - 0.314 0.164 

OryAAT21 - - 0.136 0.114 - - 

OryAAT28 - - 0.133 0.115 - - 

OryAAT40 0.078 - - 0.104 - - 

OryATT26 0.311 0.211 0.212 - 0.186 0.173 

OryATT60 - 0.127 - - - - 

 

Table 7: Pairwise Fst values for each pair of putative populations based on 7 microsatellite loci. 
Significant Fst values (p < 0.05) are marked with an asterisk (*). 

Population M3 M2 M5 B1 B3 B2 

M3 0 
     

M2 0.025* 0 
    

M5 0.012* 0.000 0 
   

B1 0.002 0.008 0.008 0 
  

B3 0.031* 0.027* 0.028* -0.004 0 
 

B2 0.026* 0.025* 0.011* -0.016 -0.007 0 

 

Table 8: Absolute number of migrants (M) between each pair of populations as estimated from FST given 
mutation-drift equilibrium (Slatkin 1991). M = 2nm where n is the effective population size and m is the 
migration rate. Populations at BS5 (B1, B2, and B2) effectively have infinite migration rates between 
them due to lack of meaningful genetic differentiation between them. 
 

M3 M2 M5 B1 B3 

M2 19.29485 
    

M5 40.49037 1283.105 
   

B1 269.423 58.95807 58.97173 
  

B3 15.5969 18.16252 17.684 inf 
 

B2 18.37973 19.82968 44.48462 inf inf 
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Table 9: Analysis of molecular variance (AMOVA) results. In this analysis, MMRWFS and BS5 are treated 
as groups with populations M3, M2, and M5 nested within MMRWFS and populations B1, B3, and B2 
nested within BS5. Most of the genetic variation is explained by variation within individuals indicating 
very weak genetic structure. Significant fixation indices are marked with an asterisk (*). 

Source of Variation df Variance 
components 

Percent of 
variation 

Fixation 
Index 

P-value 

Among wetlands 1 0.042 1.71 FCT = 0.017 0.112 ± 0.009 

Among populations 
within wetlands 

4 0.007 0.27 FSC = 0.003 0.463 ± 0.015 

Within populations 290 2.437 98.02 FST = 0.020 0.000 ± 0.000* 

Total 295 2.486 
 

  

 

 

Table 10: Evanno table generated by STRUCTURE Harvester (Earl and VonHoldt 2012). Mean LnP(K) is 
the mean log-likelihood across repetitions at a given K clusters. The Evanno method for selecting the 
number of real clusters across repeated STRUCTURE runs at different K uses ΔK, the second order rate of 
change of the likelihood function with respect to K. For the microsatellite dataset used in this study, K=2 
was determined to be the best choice for number of clusters present in the dataset (underlined).  

K 
Reps 

Mean 
LnP(K) 

Stdev 
LnP(K) Ln'(K) |Ln''(K)| ΔK 

1 5 -4401 0.58052 NA NA NA 

2 5 -4069.6 1.24218 331.34 234.48 188.766 

3 5 -3972.8 3.79368 96.86 27.5 7.2489 

4 5 -3903.4 4.13243 69.36 44.42 10.7491 

5 5 -3878.5 4.91599 24.94 34.28 6.97316 

6 5 -3887.8 27.2802 -9.34 55.32 2.02784 

7 5 -3952.5 37.2725 -64.66 33.18 0.8902 

8 5 -3984 74.4354 -31.48 NA NA 
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Table 11: Table showing ancestry assignment under K = 2 in the “red” group for individuals that were 
also included in the phylogeny in Chapter 3. Site represents where the geographic location the sample 
was taken from. “Orange” and “Blue” represent the portion of an individual’s ancestry assigned to the 
“Orange” and “Blue” clusters in figure 7, A. “RAxML Relative” is the most closely related GenBank 
sequence in the RAxML majority rule consensus tree or one of the closest relatives when the closest 
relative is ambiguous (Figure 4). Sample names highlighted in orange have a higher portion of their 
ancestry assigned to the “orange” cluster. Sample names highlighted in blue have a higher portion of 
their ancestry assigned to the “blue” cluster.  

Sample Site Orange Blue RAxML Relative 

3A MMRWFS 0.759 0.241 O. texensis TTU79152 Tennessee Shelby County 2 

38 MMRWFS 0.255 0.745 O. texensis TTU79152 Tennessee Shelby County 2 

37 MMRWFS 0.935 0.065 O. texensis TTU79152 Tennessee Shelby County 2 

3Z MMRWFS 0.662 0.338 O. texensis TTU79152 Tennessee Shelby County 2 

3U MMRWFS 0.07 0.93 O. texensis TTU79152 Tennessee Shelby County 2 

3H BS5 0.172 0.828 O. texensis TTU82963 Arkansas Crittenden County 

3G BS5 0.074 0.926 O. texensis TTU82963 Arkansas Crittenden County 

3F BS5 0.068 0.932 O. texensis TTU82963 Arkansas Crittenden County 

3C BS5 0.921 0.079 O. texensis TTU79152 Tennessee Shelby County 2 

3B BS5 0.877 0.123 O. texensis TTU79152 Tennessee Shelby County 2 

 

Table 12: Ancestry assignment under K = 2 in the ‘strict’ analysis for individuals that were also included 
in the phylogeny in Chapter 3. Site represents where the geographic location the sample was taken 
from. “Orange” and “Blue” represent the portion of an individual’s ancestry assigned to the “Orange” 
and “Blue” clusters in figure 7, A. “RAxML Relative” is the most closely related GenBank sequence in the 
RAxML majority rule consensus tree or one of the closest relatives when the closest relative is 
ambiguous (Figure 3). Sample names highlighted in orange have a higher portion of their ancestry 
assigned to the “orange” cluster. Sample names highlighted in blue have a higher portion of their 
ancestry assigned to the “blue” cluster.  

Sample Site Orange Blue RAxML Relative 

3A MMRWFS 0.615 0.385 O. texensis TTU79152 Tennessee Shelby County 2 

38 MMRWFS 0.329 0.671 O. texensis TTU79152 Tennessee Shelby County 2 

37 MMRWFS 0.914 0.086 O. texensis TTU79152 Tennessee Shelby County 2 

3Z MMRWFS 0.806 0.194 O. texensis TTU79152 Tennessee Shelby County 2 

3U MMRWFS 0.097 0.903 O. texensis TTU79152 Tennessee Shelby County 2 

3H BS5 0.290 0.710 O. texensis TTU82963 Arkansas Crittenden County 

3G BS5 0.170 0.830 O. texensis TTU82963 Arkansas Crittenden County 

3F BS5 0.101 0.899 O. texensis TTU82963 Arkansas Crittenden County 

3C BS5 0.914 0.086 O. texensis TTU79152 Tennessee Shelby County 2 

3B BS5 0.868 0.132 O. texensis TTU79152 Tennessee Shelby County 2 
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FIGURES 

 

Figure 1: Map showing approximate locations of study sites (black rectangles) from which rice rats were 
sampled relative to counties in Southern Illinois. Rice rats from Burning Star 5 (BS5) and the Middle 
Mississippi River Wetland Field Station (MMRWFS) were used in the population genetics study (Chapter 
4). Rice rats from BS5, MMRWFS, and the Harrisburg, Illinois site (HAR) were used in the phylogeography 
study (Chapter 3). 
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Figure 2: Land cover map of BS5 showing the locations of each trap line included in each putative 
population.  Landcover data based on the National Land Cover Database 2006. Major roadways are 
shown in dark green. The inset in the upper right shows the location of this field site (red dot) relative to 
a map of Southern Illinois counties. 
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Figure 3: Land cover map of MMRWFS showing the locations of each trap line included in each putative 
population.  Landcover data based on the National Land Cover Database 2006. Major roadways are 
shown in dark green. The inset in the upper right shows the location of this field site (red dot) relative to 
a map of Southern Illinois counties. 
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Figure 4.1: First half of the majority rule consensus tree from MrBayes analysis of concatenated 

cytochrome-b and control region dataset. Sequences from Illinois are highlighted in red. Support values 

below nodes represent Bayesian posterior probabilities (in %). Branches here are rendered relative to 

lengths expressed in substitutions per site. For samples from GenBank (in black), each sample ID shows 

the species, voucher number, and sample location in that order. The numbers after sample IDs indicate 

the number of duplicate haplotypes in the original GenBank PopSets. The dotted branch at the bottom 

of figure 4.2. 
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Figure 4.2: Bottom half of the majority rule consensus tree from MrBayes analysis of concatenated 

cytochrome-b and control region dataset. Continued from figure 4.1. The dotted branch at the top of 

the figure corresponds connects to the dotted band at the bottom of figure 4.1. 
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Figure 5.1: Top Half of the majority rule consensus tree from RAxML rapid bootstrapping analysis of 

combined cytochrome-b and control region dataset. Sequences from Illinois are highlighted in red. 

Support values below nodes represent the percentage of bootstrap trees recovering a clade. For 

samples from GenBank (in black), each sample ID shows the species, voucher number, and sample 

location in that order. The numbers after sample IDs indicate the number of duplicate haplotypes in the 

original GenBank PopSets. The branch extending off the bottom of the figure connects to the dotted 

branch at the top of figure 5.2.



42 
 

 

 

Figure 5.2: Bottom half of the majority rule consensus tree from RAxML rapid bootstrapping analysis of 

combined cytochrome-b and control region dataset. Continued from Figure 4.1. The dotted branch at 

the top of the figure connects to the bottom of figure 5.1. 
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Figure 6: STRUCTURE analysis for K=2 clusters under the admixture ancestry model. The first 79 
individuals were sampled from MMRWFS while the remaining 69 individuals came from BS5. Each 
individual is represented by one column divided into colors representing the portion of that individual’s 
ancestry assigned to each cluster. The colors represent STRUCTURE’s ancestry assignment and do not 
reflect geography.  Visualization was created using DISTRUCT (Rosenberg 2004) 

 

 

Figure 7: Separate STRUCTURE analyses for individuals with > 90% of their ancestry assigned to the 

“Red” cluster (A, n=110) and the “Green” cluster (B, n=27) in Figure 6. Under the Evanno method, the 

best number of clusters for the “Red” group was K = 6 and the best number of clusters for the “Green” 

group was K = 7. Visualizations of ancestry assignment at K = 2 are also included for comparison to the 

two sampling sites. Each individual is represented by one column divided 
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Figure 8: Separate STRUCTURE analyses for reduced data sets in which one microsatellite locus was 
removed. Each analysis is visualized assuming the optimal number of clusters under the Evanno method. 
K = 2 for the unreduced dataset is included at the top for comparison. For the OryAAT21 removed 
dataset, K = 2 is also included for comparison. For each analysis, each individual is represented by one 
column divided into colors representing the portion of that individual’s ancestry assigned to each 
cluster.  
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Figure 9: STRUCTURE analysis for K =2 clusters using a reduced dataset with no missing data and the 
OryAAT21 locus removed. Each individual is represented by one column divided into colors representing 
the portion of that individual’s ancestry assigned to each cluster. 
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APPENDIX A 

NEWLY OBTAINED RICE RAT CYTB SEQUENCES IN FASTA FORMAT. 

>3A_USA:_Illinois,_Alexander_County 
ACACCCACTACTAAAAATTATCAACCACTCATTTATTGACCTACCAACCCCATCTAACATCTCATCATGATGAAACTTCGGATCACTACTAGGAATCTGCCTCATAG
TACAAATCATCACAGGACTATTCCTAGCAATACATTACACATCAGATACAACCACAGCATTCTCTTCAGTTACCCATATTTGCCGAGACGTAAATTACGGTTGACT
TATTCGATATGCCCACGCTAACGGAGCCTCAATATTCTTTATCTGCCTCTTCATCCACGTCGGACGAGGTATATACTATGGATCATTTATACTCAACGAAACCTGA
AACATCGGAATCATTCTACTACTTACAACTATAGCAACAGCATTCGTAGGTTATGTCCTACCATGAGGACAAATATCATTCTGAGGAGCTACAGTAATCACCAAC
CTACTCTCAGCAATCCCATACATCGGAACTACCCTAGTTGAATGAATCTGAGGAGGCTTCTCAGTAGACAAAGCCACCCTAACACGATTCTTCGCATTCCACTTTA
TCCTTCCATTTATTATTACAGCCTTAGTTCTAGTACACCTTCTATTTCTTCATGAAACAGGATCAAACAACCCCTCAGGACTAAACTCAAACTCAGACAAAATTCCA
TTCCACCCATACTACACAATAAAAGACCTATTAGGAATTCTACTCCTATTAATGGTTCTCATATTTATGGTTTTATTTTTCCCAGATGTTCTCGGAGACCCAGATAA
TTATACACCAGCAAATCCACTCAACACCCCAGCACACATTAAGCCAGAATGATACTTCCTCTTCGCATACGCCATTCTACGATCTATCCCAAACAAATTAGGAGGG
GTATTAGCCCTCCTACTCTCAATTCTTATCCTAGCTACATTACCACTTCTCAACTTCTCCAAACAACAAGGATTAACCTACCGCCCAATCACTCAATTCCTATACTGA
ATTTTCGTAGCCAACCTTCTCATCTTAACATGAATTGGAGGTCAACCAGTAGAATACCCATTCACAATAATCGGACAAATCTCATCAATCCTATATTTTACTATTAT
TGTTATTCTTATACCAATTGCTAGCATAATTGAAAACAATATCCTAAAACTACACGTA 
 
>3B_USA:_Illinois,_Jackson_County 
ACACCCACTACTAAAAATTATCAACCACTCATTTATTGACCTACCAACCCCATCTAACATCTCATCATGATGAAACTTCGGATCACTACTAGGAATCTGCCTCATAG
TACAAATCATCACAGGACTATTCCTAGCAATACATTACACATCAGATACAACCACAGCATTCTCTTCAGTTACCCATATTTGCCGAGACGTAAATTACGGTTGACT
TATTCGATATGCCCACGCTAACGGAGCCTCAATATTCTTTATCTGCCTCTTCATCCACGTCGGACGAGGTATATACTATGGATCATTTATACTCAACGAAACCTGA
AACATCGGAATCATTCTACTACTTACAACTATAGCAACAGCATTCGTAGGTTATGTCCTACCATGAGGACAAATATCATTCTGAGGAGCTACAGTAATCACCAAC
CTACTCTCAGCAATCCCATACATCGGAACTACCCTAGTTGAATGAATCTGAGGAGGCTTCTCAGTAGACAAAGCCACCCTAACACGATTCTTCGCATTCCACTTTA
TCCTTCCATTTATTATTACAGCCTTAGTTCTAGTACACCTTCTATTTCTTCATGAAACAGGATCAAACAACCCCTCAGGACTAAACTCAAACTCAGACAAAATTCCA
TTCCACCCATACTACACAATAAAAGACCTATTAGGAATTCTACTCCTATTAATGGTTCTCATATTTATGGTTTTATTTTTCCCAGATGTTCTCGGAGACCCAGATAA
TTATACACCAGCAAATCCACTCAACACCCCAGCACACATTAAGCCAGAATGATACTTCCTCTTCGCATACGCCATTCTACGATCTATCCCAAACAAATTAGGAGGG
GTATTAGCCCTCCTACTCTCAATTCTTATCCTAGCTACATTACCACTTCTCAACTTCTCCAAACAACAAGGATTAACCTACCGCCCAATCACTCAATTCCTATACTGA
ATTTTCGTAGCCAACCTTCTCATCTTAACATGAATTGGAGGTCAACCAGTAGAATACCCATTCACAATAATCGGACAAATCTCATCAATCCTATATTTTACTATTAT
TGTTATTCTTATACCAATTGCTAGCATAATTGAAAACAATATCCTAAAACTACACGTA 
 
>3C_USA:_Illinois,_Jackson_County 
ACACCCACTACTAAAAATTATCAACCACTCATTTATTGACCTACCAACCCCATCTAACATCTCATCATGATGAAACTTCGGATCACTACTAGGAATCTGCCTCATAG
TACAAATCATCACAGGACTATTCCTAGCAATACATTACACATCAGATACAACCACAGCATTCTCTTCAGTTACCCATATTTGCCGAGACGTAAATTACGGTTGACT
TATTCGATATGCCCACGCTAACGGAGCCTCAATATTCTTTATCTGCCTCTTCATCCACGTCGGACGAGGTATATACTATGGATCATTTATACTCAACGAAACCTGA
AACATCGGAATCATTCTACTACTTACAACTATAGCAACAGCATTCGTAGGTTATGTCCTACCATGAGGACAAATATCATTCTGAGGAGCTACAGTAATCACCAAC
CTACTCTCAGCAATCCCATACATCGGAACTACCCTAGTTGAATGAATCTGAGGAGGCTTCTCAGTAGACAAAGCCACCCTAACACGATTCTTCGCATTCCACTTTA
TCCTTCCATTTATTATTACAGCCTTAGTTCTAGTACACCTTCTATTTCTTCATGAAACAGGATCAAACAACCCCTCAGGACTAAACTCAAACTCAGACAAAATTCCA
TTCCACCCATACTACACAATAAAAGACCTATTAGGAATTCTACTCCTATTAATGGTTCTCATATTTATGGTTTTATTTTTCCCAGATGTTCTCGGAGACCCAGATAA
TTATACACCAGCAAATCCACTCAACACCCCAGCACACATTAAGCCAGAATGATACTTCCTCTTCGCATACGCCATTCTACGATCTATCCCAAACAAATTAGGAGGG
GTATTAGCCCTCCTACTCTCAATTCTTATCCTAGCTACATTACCACTTCTCAACTTCTCCAAACAACAAGGATTAACCTACCGCCCAATCACTCAATTCCTATACTGA
ATTTTCGTAGCCAACCTTCTCATCTTAACATGAATTGGAGGTCAACCAGTAGAATACCCATTCACAATAATCGGACAAATCTCATCAATCCTATATTTTACTATTAT
TGTTATTCTTATACCAATTGCTAGCATAATTGAAAACAATATCCTAAAACTACACGTA 
 
>3D_USA:_Illinois,_Jackson_County 
ACACCCACTACTAAAAATTATCAACCACTCATTTATTGACCTACCAACCCCATCTAACATCTCATCATGATGAAACTTCGGATCACTACTAGGAATTTGCCTCATAG
TACAAATCATCACAGGACTATTCCTAGCAATACATTACACATCAGATACAACCACAGCATTCTCTTCAGTTACACATATTTGCCGAGACGTAAACTACGGTTGACT
TATTCGATATGCCCACGCTAACGGAGCCTCAATATTCTTTATCTGCCTCTTCATCCACGTCGGACGAGGTATATACTATGGATCATTTATACTCAACGAAACCTGA
AACATCGGAATCATTCTACTACTTACGACTATAGCAACAGCATTCGTAGGTTATGTCCTACCATGAGGACAAATATCATTCTGAGGAGCTACAGTAATCACCAAC
CTACTCTCAGCAATCCCATACATCGGAACTACCCTAGTTGAATGAATCTGAGGAGGCTTCTCAGTAGACAAAGCCACCCTAACACGATTCTTCGCATTCCACTTTA
TCCTTCCATTTATTATCACAGCCTTAGTTCTAGTACACCTTCTATTTCTTCATGAAACAGGATCAAACAACCCCTCAGGACTAAACTCAGACTCAGACAAAATTCCA
TTCCACCCATACTACACAATAAAAGACCTATTAGGAATTCTACTCCTATTAATGGTTCTCATATTTATGGTTTTATTTTTCCCAGATGTTCTCGGAGACCCAGATAA
TTATACACCAGCAAATCCACTCAACACCCCAGCACACATTAAGCCAGAATGATATTTCCTCTTCGCATACGCCATTCTACGATCTATCCCAAACAAATTAGGAGGG
GTATTAGCCCTCCTACTCTCAATTCTTATCCTAGCTACATTACCACTTCTCAACTTCTCCAAACAACAAGGATTAACCTACCGCCCAATCACTCAACTCCTATACTGA
ATTTTCGTAGCCAACCTTCTCATCTTAACATGAATTGGAGGTCAACCAGTAGAATACCCATTCACAATAATCGGACAAATCTCATCAATCCTATATTTTACTATTAT
TGTTATTCTTATACCAATTGCTAGCATAATTGAAAACAATATCCTAAAACTACACGTA 
 
>3F_USA:_Illinois,_Jackson_County 
ACACCCACTACTAAAAATTATCAACCACTCATTTATTGACCTACCAACCCCATCTAACATCTCATCATGATGAAACTTCGGATCACTACTAGGAATTTGCCTCATAG
TACAAATCATCACAGGACTATTCCTAGCAATACATTACACATCAGATACAACCACAGCATTCTCTTCAGTTACACATATTTGCCGAGACGTAAACTACGGTTGACT
TATTCGATATGCCCACGCTAACGGAGCCTCAATATTCTTTATCTGCCTCTTCATCCACGTCGGACGAGGTATATACTATGGATCATTTATACTCAACGAAACCTGA
AACATCGGAATCATTCTACTACTTACGACTATAGCAACAGCATTCGTAGGTTATGTCCTACCATGAGGACAAATATCATTCTGAGGAGCTACAGTAATCACCAAC
CTACTCTCAGCAATCCCATACATCGGAACTACCCTAGTTGAATGAATCTGAGGAGGCTTCTCAGTAGACAAAGCCACCCTAACACGATTCTTCGCATTCCACTTTA
TCCTTCCATTTATTATCACAGCCTTAGTTCTAGTACACCTTCTATTTCTTCATGAAACAGGATCAAACAACCCCTCAGGACTAAACTCAGACTCAGACAAAATTCCA
TTCCACCCATACTACACAATAAAAGACCTATTAGGAATTCTACTCCTATTAATGGTTCTCATATTTATGGTTTTATTTTTCCCAGATGTTCTCGGAGACCCAGATAA
TTATACACCAGCAAATCCACTCAACACCCCAGCACACATTAAGCCAGAATGATATTTCCTCTTCGCATACGCCATTCTACGATCTATCCCAAACAAATTAGGAGGG
GTATTAGCCCTCCTACTCTCAATTCTTATCCTAGCTACATTACCACTTCTCAACTTCTCCAAACAACAAGGATTAACCTACCGCCCAATCACTCAACTCCTATACTGA
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ATTTTCGTAGCCAACCTTCTCATCTTAACATGAATTGGAGGTCAACCAGTAGAATACCCATTCACAATAATCGGACAAATCTCATCAATCCTATATTTTACTATTAT
TGTTATTCTTATACCAATTGCTAGCATAATTGAAAACAATATCCTAAAACTACACGTA 
>3G_USA:_Illinois,_Jackson_County 
ACACCCACTACTAAAAATTATCAACCACTCATTTATTGACCTACCAACCCCATCTAACATCTCATCATGATGAAACTTCGGATCACTACTAGGAATTTGCCTCATAG
TACAAATCATCACAGGACTATTCCTAGCAATACATTACACATCAGATACAACCACAGCATTCTCTTCAGTTACACATATTTGCCGAGACGTAAACTACGGTTGACT
TATTCGATATGCCCACGCTAACGGAGCCTCAATATTCTTTATCTGCCTCTTCATCCACGTCGGACGAGGTATATACTATGGATCATTTATACTCAACGAAACCTGA
AACATCGGAATCATTCTACTACTTACGACTATAGCAACAGCATTCGTAGGTTATGTCCTACCATGAGGACAAATATCATTCTGAGGAGCTACAGTAATCACCAAC
CTACTCTCAGCAATCCCATACATCGGAACTACCCTAGTTGAATGAATCTGAGGAGGCTTCTCAGTAGACAAAGCCACCCTAACACGATTCTTCGCATTCCACTTTA
TCCTTCCATTTATTATCACAGCCTTAGTTCTAGTACACCTTCTATTTCTTCATGAAACAGGATCAAACAACCCCTCAGGACTAAACTCAGACTCAGACAAAATTCCA
TTCCACCCATACTACACAATAAAAGACCTATTAGGAATTCTACTCCTATTAATGGTTCTCATATTTATGGTTTTATTTTTCCCAGATGTTCTCGGAGACCCAGATAA
TTATACACCAGCAAATCCACTCAACACCCCAGCACACATTAAGCCAGAATGATATTTCCTCTTCGCATACGCCATTCTACGATCTATCCCAAACAAATTAGGAGGG
GTATTAGCCCTCCTACTCTCAATTCTTATCCTAGCTACATTACCACTTCTCAACTTCTCCAAACAACAAGGATTAACCTACCGCCCAATCACTCAACTCCTATACTGA
ATTTTCGTAGCCAACCTTCTCATCTTAACATGAATTGGAGGTCAACCAGTAGAATACCCATTCACAATAATCGGACAAATCTCATCAATCCTATATTTTACTATTAT
TGTTATTCTTATACCAATTGCTAGCATAATTGAAAACAATATCCTAAAACTACACGTA 
 
>3H_USA:_Illinois,_Jackson_County 
ACACCCACTACTAAAAATTATCAACCACTCATTTATTGACCTACCAACCCCATCTAACATCTCATCATGATGAAACTTCGGATCACTACTAGGAATTTGCCTCATAG
TACAAATCATCACAGGACTATTCCTAGCAATACATTACACATCAGATACAACCACAGCATTCTCTTCAGTTACACATATTTGCCGAGACGTAAACTACGGTTGACT
TATTCGATATGCCCACGCTAACGGAGCCTCAATATTCTTTATCTGCCTCTTCATCCACGTCGGACGAGGTATATACTATGGATCATTTATACTCAACGAAACCTGA
AACATCGGAATCATTCTACTACTTACGACTATAGCAACAGCATTCGTAGGTTATGTCCTACCATGAGGACAAATATCATTCTGAGGAGCTACAGTAATCACCAAC
CTACTCTCAGCAATCCCATACATCGGAACTACCCTAGTTGAATGAATCTGAGGAGGCTTCTCAGTAGACAAAGCCACCCTAACACGATTCTTCGCATTCCACTTTA
TCCTTCCATTTATTATCACAGCCTTAGTTCTAGTACACCTTCTATTTCTTCATGAAACAGGATCAAACAACCCCTCAGGACTAAACTCAGACTCAGACAAAATTCCA
TTCCACCCATACTACACAATAAAAGACCTATTAGGAATTCTACTCCTATTAATGGTTCTCATATTTATGGTTTTATTTTTCCCAGATGTTCTCGGAGACCCAGATAA
TTATACACCAGCAAATCCACTCAACACCCCAGCACACATTAAGCCAGAATGATATTTCCTCTTCGCATACGCCATTCTACGATCTATCCCAAACAAATTAGGAGGG
GTATTAGCCCTCCTACTCTCAATTCTTATCCTAGCTACATTACCACTTCTCAACTTCTCCAAACAACAAGGATTAACCTACCGCCCAATCACTCAACTCCTATACTGA
ATTTTCGTAGCCAACCTTCTCATCTTAACATGAATTGGAGGTCAACCAGTAGAATACCCATTCACAATAATCGGACAAATCTCATCAATCCTATATTTTACTATTAT
TGTTATTCTTATACCAATTGCTAGCATAATTGAAAACAATATCCTAAAACTACACGTA 
 
>3U_USA:_Illinois,_Alexander_County 
ACACCCACTACTAAAAATTATCAACCACTCATTTATTGACCTACCAACCCCATCTAACATCTCATCATGATGAAACTTCGGATCACTACTAGGAATCTGCCTCATAG
TACAAATCATCACAGGACTATTCCTAGCAATACATTACACATCAGATACAACCACAGCATTCTCTTCAGTTACCCATATTTGCCGAGACGTAAATTACGGTTGACT
TATTCGATATGCCCACGCTAACGGAGCCTCAATATTCTTTATCTGCCTCTTCATCCACGTCGGACGAGGTATATACTATGGATCATTTATACTCAACGAAACCTGA
AACATCGGAATCATTCTACTACTTACAACTATAGCAACAGCATTCGTAGGTTATGTCCTACCATGAGGACAAATATCATTCTGAGGAGCTACAGTAATCACCAAC
CTACTCTCAGCAATCCCATACATCGGAACTACCCTAGTTGAATGAATCTGAGGAGGCTTCTCAGTAGACAAAGCCACCCTAACACGATTCTTCGCATTCCACTTTA
TCCTTCCATTTATTATTACAGCCTTAGTTCTAGTACACCTTCTATTTCTTCATGAAACAGGATCAAACAACCCCTCAGGACTAAACTCAAACTCAGACAAAATTCCA
TTCCACCCATACTACACAATAAAAGACCTATTAGGAATTCTACTCCTATTAATGGTTCTCATATTTATGGTTTTATTTTTCCCAGATGTTCTCGGAGACCCAGATAA
TTATACACCAGCAAATCCACTCAACACCCCAGCACACATTAAGCCAGAATGATACTTCCTCTTCGCATACGCCATTCTACGATCTATCCCAAACAAATTAGGAGGG
GTATTAGCCCTCCTACTCTCAATTCTTATCCTAGCTACATTACCACTTCTCAACTTCTCCAAACAACAAGGATTAACCTACCGCCCAATCACTCAATTCCTATACTGA
ATTTTCGTAGCCAACCTTCTCATCTTAACATGAATTGGAGGTCAACCAGTAGAATACCCATTCACAATAATCGGACAAATCTCATCAATCCTATATTTTACTATTAT
TGTTATTCTTATACCAATTGCTAGCATAATTGAAAACAATATCCTAAAACTACACGTA 
 
>3Z_USA:_Illinois,_Alexander_County 
ACACCCACTACTAAAAATTATCAACCACTCATTTATTGACCTACCAACCCCATCTAACATCTCATCATGATGAAACTTCGGATCACTACTAGGAATCTGCCTCATAG
TACAAATCATCACAGGACTATTCCTAGCAATACATTACACATCAGATACAACCACAGCATTCTCTTCAGTTACCCATATTTGCCGAGACGTAAATTACGGTTGACT
TATTCGATATGCCCACGCTAACGGAGCCTCAATATTCTTTATCTGCCTCTTCATCCACGTCGGACGAGGTATATACTATGGATCATTTATACTCAACGAAACCTGA
AACATCGGAATCATTCTACTACTTACAACTATAGCAACAGCATTCGTAGGTTATGTCCTACCATGAGGACAAATATCATTCTGAGGAGCTACAGTAATCACCAAC
CTACTCTCAGCAATCCCATACATCGGAACTACCCTAGTTGAATGAATCTGAGGAGGCTTCTCAGTAGACAAAGCCACCCTAACACGATTCTTCGCATTCCACTTTA
TCCTTCCATTTATTATTACAGCCTTAGTTCTAGTACACCTTCTATTTCTTCATGAAACAGGATCAAACAACCCCTCAGGACTAAACTCAAACTCAGACAAAATTCCA
TTCCACCCATACTACACAATAAAAGACCTATTAGGAATTCTACTCCTATTAATGGTTCTCATATTTATGGTTTTATTTTTCCCAGATGTTCTCGGAGACCCAGATAA
TTATACACCAGCAAATCCACTCAACACCCCAGCACACATTAAGCCAGAATGATACTTCCTCTTCGCATACGCCATTCTACGATCTATCCCAAACAAATTAGGAGGG
GTATTAGCCCTCCTACTCTCAATTCTTATCCTAGCTACATTACCACTTCTCAACTTCTCCAAACAACAAGGATTAACCTACCGCCCAATCACTCAATTCCTATACTGA
ATTTTCGTAGCCAACCTTCTCATCTTAACATGAATTGGAGGTCAACCAGTAGAATACCCATTCACAATAATCGGACAAATCTCATCAATCCTATATTTTACTATTAT
TGTTATTCTTATACCAATTGCTAGCATAATTGAAAACAATATCCTAAAACTACACGTA 
 
>37_USA:_Illinois,_Alexander_County 
ACACCCACTACTAAAAATTATCAACCACTCATTTATTGACCTACCAACCCCATCTAACATCTCATCATGATGAAACTTCGGATCACTACTAGGAATCTGCCTCATAG
TACAAATCATCACAGGACTATTCCTAGCAATACATTACACATCAGATACAACCACAGCATTCTCTTCAGTTACCCATATTTGCCGAGACGTAAATTACGGTTGACT
TATTCGATATGCCCACGCTAACGGAGCCTCAATATTCTTTATCTGCCTCTTCATCCACGTCGGACGAGGTATATACTATGGATCATTTATACTCAACGAAACCTGA
AACATCGGAATCATTCTACTACTTACAACTATAGCAACAGCATTCGTAGGTTATGTCCTACCATGAGGACAAATATCATTCTGAGGAGCTACAGTAATCACCAAC
CTACTCTCAGCAATCCCATACATCGGAACTACCCTAGTTGAATGAATCTGAGGAGGCTTCTCAGTAGACAAAGCCACCCTAACACGATTCTTCGCATTCCACTTTA
TCCTTCCATTTATTATTACAGCCTTAGTTCTAGTACACCTTCTATTTCTTCATGAAACAGGATCAAACAACCCCTCAGGACTAAACTCAAACTCAGACAAAATTCCA
TTCCACCCATACTACACAATAAAAGACCTATTAGGAATTCTACTCCTATTAATGGTTCTCATATTTATGGTTTTATTTTTCCCAGATGTTCTCGGAGACCCAGATAA
TTATACACCAGCAAATCCACTCAACACCCCAGCACACATTAAGCCAGAATGATACTTCCTCTTCGCATACGCCATTCTACGATCTATCCCAAACAAATTAGGAGGG
GTATTAGCCCTCCTACTCTCAATTCTTATCCTAGCTACATTACCACTTCTCAACTTCTCCAAACAACAAGGATTAACCTACCGCCCAATCACTCAATTCCTATACTGA
ATTTTCGTAGCCAACCTTCTCATCTTAACATGAATTGGAGGTCAACCAGTAGAATACCCATTCACAATAATCGGACAAATCTCATCAATCCTATATTTTACTATTAT
TGTTATTCTTATACCAATTGCTAGCATAATTGAAAACAATACCCTAAAACTACACGTA 
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>38_USA:_Illinois,_Alexander_County 
ACACCCACTACTAAAAATTATCAACCACTCATTTATTGACCTACCAACCCCATCTAACATCTCATCATGATGAAACTTCGGATCACTACTAGGAATCTGCCTCATAG
TACAAATCATCACAGGACTATTCCTAGCAATACATTACACATCAGATACAACCACAGCATTCTCTTCAGTTACCCATATTTGCCGAGACGTAAATTACGGTTGACT
TATTCGATATGCCCACGCTAACGGAGCCTCAATATTCTTTATCTGCCTCTTCATCCACGTCGGACGAGGTATATACTATGGATCATTTATACTCAACGAAACCTGA
AACATCGGAATCATTCTACTACTTACAACTATAGCAACAGCATTCGTAGGTTATGTCCTACCATGAGGACAAATATCATTCTGAGGAGCTACAGTAATCACCAAC
CTACTCTCAGCAATCCCATACATCGGAACTACCCTAGTTGAATGAATCTGAGGAGGCTTCTCAGTAGACAAAGCCACCCTAACACGATTCTTCGCATTCCACTTTA
TCCTTCCATTTATTATTACAGCCTTAGTTCTAGTACACCTTCTATTTCTTCATGAAACAGGATCAAACAACCCCTCAGGACTAAACTCAAACTCAGACAAAATTCCA
TTCCACCCATACTACACAATAAAAGACCTATTAGGAATTCTACTCCTATTAATGGTTCTCATATTTATGGTTTTATTTTTCCCAGATGTTCTCGGAGACCCAGATAA
TTATACACCAGCAAATCCACTCAACACCCCAGCACACATTAAGCCAGAATGATACTTCCTCTTCGCATACGCCATTCTACGATCTATCCCAAACAAATTAGGAGGG
GTATTAGCCCTCCTACTCTCAATTCTTATCCTAGCTACATTACCACTTCTCAACTTCTCCAAACAACAAGGATTAACCTACCGCCCAATCACTCAATTCCTATACTGA
ATTTTCGTAGCCAACCTTCTCATCTTAACATGAATTGGAGGTCAACCAGTAGAATACCCATTCACAATAATCGGACAAATCTCATCAATCCTATATTTTACTATTAT
TGTTATTCTTATACCAATTGCTAGCATAATTGAAAACAATATCCTAAAACTACACGTA 
 
>HAR1_USA:_Illinois,_Saline_County 
ACACCCACTACTAAAAATTATCAACCACTCATTTATTGACCTACCAACCCCATCTAACATCTCATCATGATGAAACTTCGGATCACTACTAGGAATCTGCCTCATAG
TACAAATCATCACAGGACTATTCCTAGCAATACATTACACATCAGATACAACCACAGCATTCTCTTCAGTTACCCATATTTGCCGAGACGTAAATTACGGTTGACT
TATTCGATATGCCCACGCTAACGGAGCCTCAATATTCTTTATCTGCCTCTTCATCCACGTCGGACGAGGTATATACTATGGATCATTTATACTCAACGAAACCTGA
AACATCGGAATCATTCTACTACTTACAACTATAGCAACAGCATTCGTAGGTTATGTCCTACCATGAGGACAAATATCATTCTGAGGAGCTACAGTAATCACCAAC
CTACTCTCAGCAATCCCATACATCGGAACTACCCTAGTTGAATGAATCTGAGGAGGCTTCTCAGTAGACAAAGCCACCCTAACACGATTCTTCGCATTCCACTTTA
TCCTTCCATTTATTATTACAGCCTTAGTTCTAGTACACCTTCTATTTCTTCATGAAACAGGATCAAACAACCCCTCAGGACTAAACTCAAACTCAGACAAAATTCCA
TTCCACCCATACTACACAATAAAAGACCTATTAGGAATTCTACTCCTATTAATGGTTCTCATATTTATGGTTTTATTTTTCCCAGATGTTCTCGGAGACCCAGATAA
TTATACACCAGCAAATCCACTCAACACCCCAGCACACATTAAGCCAGAATGATACTTCCTCTTCGCATACGCCATTCTACGATCTATCCCAAACAAATTAGGAGGG
GTATTAGCCCTCCTACTCTCAATTCTTATCCTAGCTACATTACCACTTCTCAACTTCTCCAAACAACAAGGATTAACCTACCGCCCAATCACTCAATTCCTATACTGA
ATTTTCGTAGCCAACCTTCTCATCTTAACATGAATTGGAGGTCAACCAGTAGAATACCCATTCACAATAATCGGACAAATCTCATCAATCCTATATTTTACTATTAT
TGTTATTCTTATACCAATTGCTAGCATAATTGAAAACAATATCCTAAAACTACACGTA 
 
>HAR2_USA:_Illinois,_Saline_County 
ACACCCACTACTAAAAATTATCAACCACTCATTTATTGACCTACCAACCCCATCTAACATCTCATCATGATGAAACTTCGGATCACTACTAGGAATCTGCCTCATAG
TACAAATCATCACAGGACTATTCCTAGCAATACATTACACATCAGATACAACCACAGCATTCTCTTCAGTTACCCATATTTGCCGAGACGTAAATTACGGTTGACT
TATTCGATATGCCCACGCTAACGGAGCCTCAATATTCTTTATCTGCCTCTTCATCCACGTCGGACGAGGTATATACTATGGATCATTTATACTCAACGAAACCTGA
AACATCGGAATCATTCTACTACTTACAACTATAGCAACAGCATTCGTAGGTTATGTCCTACCATGAGGACAAATATCATTCTGAGGAGCTACAGTAATCACCAAC
CTACTCTCAGCAATCCCATACATCGGAACTACCCTAGTTGAATGAATCTGAGGAGGCTTCTCAGTAGACAAAGCCACCCTAACACGATTCTTCGCATTCCACTTTA
TCCTTCCATTTATTATTACAGCCTTAGTTCTAGTACACCTTCTATTTCTTCATGAAACAGGATCAAACAACCCCTCAGGACTAAACTCAAACTCAGACAAAATTCCA
TTCCACCCATACTACACAATAAAAGACCTATTAGGAATTCTACTCCTATTAATGGTTCTCATATTTATGGTTTTATTTTTCCCAGATGTTCTCGGAGACCCAGATAA
TTATACACCAGCAAATCCACTCAACACCCCAGCACACATTAAGCCAGAATGATACTTCCTCTTCGCATACGCCATTCTACGATCTATCCCAAACAAATTAGGAGGG
GTATTAGCCCTCCTACTCTCAATTCTTATCCTAGCTACATTACCACTTCTCAACTTCTCCAAACAACAAGGATTAACCTACCGCCCAATCACTCAATTCCTATACTGA
ATTTTCGTAGCCAACCTTCTCATCTTAACATGAATTGGAGGTCAACCAGTAGAATACCCATTCACAATAATCGGACAAATCTCATCAATCCTATATTTTACTATTAT
TGTTATTCTTATACCAATTGCTAGCATAATTGAAAACAATATCCTAAAACTACACGTA 
 
>HAR3_USA:_Illinois,_Saline_County 
ACACCCACTACTAAAAATTATCAACCACTCATTTATTGACCTACCAACCCCATCTAACATCTCATCATGATGAAACTTCGGATCACTACTAGGAATCTGCCTCATAG
TACAAATCATCACAGGACTATTCCTAGCAATACATTACACATCAGATACAACCACAGCATTCTCTTCAGTTACCCATATTTGCCGAGACGTAAATTACGGTTGACT
TATTCGATATGCCCACGCTAACGGAGCCTCAATATTCTTTATCTGCCTCTTCATCCACGTCGGACGAGGTATATACTATGGATCATTTATACTCAACGAAACCTGA
AACATCGGAATCATTCTACTACTTACAACTATAGCAACAGCATTCGTAGGTTATGTCCTACCATGAGGACAAATATCATTCTGAGGAGCTACAGTAATCACCAAC
CTACTCTCAGCAATCCCATACATCGGAACTACCCTAGTTGAATGAATCTGAGGAGGCTTCTCAGTAGACAAAGCCACCCTAACACGATTCTTCGCATTCCACTTTA
TCCTTCCATTTATTATTACAGCCTTAGTTCTAGTACACCTTCTATTTCTTCATGAAACAGGATCAAACAACCCCTCAGGACTAAACTCAAACTCAGACAAAATTCCA
TTCCACCCATACTACACAATAAAAGACCTATTAGGAATTCTACTCCTATTAATGGTTCTCATATTTATGGTTTTATTTTTCCCAGATGTTCTCGGAGACCCAGATAA
TTATACACCAGCAAATCCACTCAACACCCCAGCACACATTAAGCCAGAATGATACTTCCTCTTCGCATACGCCATTCTACGATCTATCCCAAACAAATTAGGAGGG
GTATTAGCCCTCCTACTCTCAATTCTTATCCTAGCTACATTACCACTTCTCAACTTCTCCAAACAACAAGGATTAACCTACCGCCCAATCACTCAATTCCTATACTGA
ATTTTCGTAGCCAACCTTCTCATCTTAACATGAATTGGAGGTCAACCAGTAGAATACCCATTCACAATAATCGGACAAATCTCATCAATCCTATATTTTACTATTAT
TGTTATTCTTATACCAATTGCTAGCATAATTGAAAACAATATCCTAAAACTACACGTA 
 
>HAR5_USA:_Illinois,_Saline_County 
ACACCCACTACTAAAAATTATCAACCACTCATTTATTGACCTACCAACCCCATCTAACATCTCATCATGATGAAACTTCGGATCACTACTAGGAATCTGCCTCATAG
TACAAATCATCACAGGACTATTCCTAGCAATACATTACACATCAGATACAACCACAGCATTCTCTTCAGTTACCCATATTTGCCGAGACGTAAATTACGGTTGACT
TATTCGATATGCCCACGCTAACGGAGCCTCAATATTCTTTATCTGCCTCTTCATCCACGTCGGACGAGGTATATACTATGGATCATTTATACTCAACGAAACCTGA
AACATCGGAATCATTCTACTACTTACAACTATAGCAACAGCATTCGTAGGTTATGTCCTACCATGAGGACAAATATCATTCTGAGGAGCTACAGTAATCACCAAC
CTACTCTCAGCAATCCCATACATCGGAACTACCCTAGTTGAATGAATCTGAGGAGGCTTCTCAGTAGACAAAGCCACCCTAACACGATTCTTCGCATTCCACTTTA
TCCTTCCATTTATTATTACAGCCTTAGTTCTAGTACACCTTCTATTTCTTCATGAAACAGGATCAAACAACCCCTCAGGACTAAACTCAAACTCAGACAAAATTCCA
TTCCACCCATACTACACAATAAAAGACCTATTAGGAATTCTACTCCTATTAATGGTTCTCATATTTATGGTTTTATTTTTCCCAGATGTTCTCGGAGACCCAGATAA
TTATACACCAGCAAATCCACTCAACACCCCAGCACACATTAAGCCAGAATGATACTTCCTCTTCGCATACGCCATTCTACGATCTATCCCAAACAAATTAGGAGGG
GTATTAGCCCTCCTACTCTCAATTCTTATCCTAGCTACATTACCACTTCTCAACTTCTCCAAACAACAAGGATTAACCTACCGCCCAATCACTCAATTCCTATACTGA
ATTTTCGTAGCCAACCTTCTCATCTTAACATGAATTGGAGGTCAACCAGTAGAATACCCATTCACAATAATCGGACAAATCTCATCAATCCTATATTTTACTATTAT
TGTTATTCTTATACCAATTGCTAGCATAATTGAAAACAATATCCTAAAACTACACGTA 
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>HAR6_USA:_Illinois,_Saline_County 
ACACCCACTACTAAAAATTATCAACCACTCATTTATTGACCTACCAACCCCATCTAACATCTCATCATGATGAAACTTCGGATCACTACTAGGAATCTGCCTCATAG
TACAAATCATCACAGGACTATTCCTAGCAATACATTACACATCAGATACAACCACAGCATTCTCTTCAGTTACCCATATTTGCCGAGACGTAAATTACGGTTGACT
TATTCGATATGCCCACGCTAACGGAGCCTCAATATTCTTTATCTGCCTCTTCATCCACGTCGGACGAGGTATATACTATGGATCATTTATACTCAACGAAACCTGA
AACATCGGAATCATTCTACTACTTACAACTATAGCAACAGCATTCGTAGGTTATGTCCTACCATGAGGACAAATATCATTCTGAGGAGCTACAGTAATCACCAAC
CTACTCTCAGCAATCCCATACATCGGAACTACCCTAGTTGAATGAATCTGAGGAGGCTTCTCAGTAGACAAAGCCACCCTAACACGATTCTTCGCATTCCACTTTA
TCCTTCCATTTATTATTACAGCCTTAGTTCTAGTACACCTTCTATTTCTTCATGAAACAGGATCAAACAACCCCTCAGGACTAAACTCAAACTCAGACAAAATTCCA
TTCCACCCATACTACACAATAAAAGACCTATTAGGAATTCTACTCCTATTAATGGTTCTCATATTTATGGTTTTATTTTTCCCAGATGTTCTCGGAGACCCAGATAA
TTATACACCAGCAAATCCACTCAACACCCCAGCACACATTAAGCCAGAATGATACTTCCTCTTCGCATACGCCATTCTACGATCTATCCCAAACAAATTAGGAGGG
GTATTAGCCCTCCTACTCTCAATTCTTATCCTAGCTACATTACCACTTCTCAACTTCTCCAAACAACAAGGATTAACCTACCGCCCAATCACTCAATTCCTATACTGA
ATTTTCGTAGCCAACCTTCTCATCTTAACATGAATTGGAGGTCAACCAGTAGAATACCCATTCACAATAATCGGACAAATCTCATCAATCCTATATTTTACTATTAT
TGTTATTCTTATACCAATTGCTAGCATAATTGAAAACAATATCCTAAAACTACACGTA 
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APPENDIX B 

NEWLY OBTAINED RICE RAT CONTROL REGION SEQUENCES IN FASTA FORMAT. 

>3A_USA:_Illinois,_Alexander_County 
GAGAGGAAACCCCCCACTACCAGCACCCAAAGCTGACATTCTTCCAATTAAATTACTTCTTGTACATAATTTTATATAGTACATCATACATAACTATGTACATTTTA
CATTAAATTATTCCCCATTATCATATAAGCTAGCAATATAATTCAATTATTATCCACCCAAAATGTTTAATCAACATTAAACTATATCAAACATGCATATCCCCACAC
CATAAAATCTATGACTACAAGACATCTATATGTTTAATCAACATTATACACTTACCCACATAACTATTATCCTATACTAATTATTAAACCATAACCTATACTAACCTC
AACCATACATAAAACATAACAGTCACGATCAATCCCAGTCCAAATGACTATCCCCTACTACATGTGGTCCCTTAATCTACCATCCTCCGTGAAATCAGCAACCCGC
CCACCTAGACGGCTCTTCTTGCTCTGAGCCCATAAAATCAGGGGGTGACTAACCTGAAACTTTATCAGGCATCTGGTTCTTACTTCAGGGCCATCAAATGATTTAT
CGTCCATACGTTCCCCTTAAATAAGACATCACGATGGTGTAGGTCTAACCTCTCGTTACCCAACATCCATTGGTTCCTTACATTTAGTAGTTTTTATTTTTGGGGTG
TATTACTCAACACAGCCGTCAAGGCATGAAGGTCAGCTTTACGTCAAGCCAGTCATCAAGTTAAGGATCATTTATCAACACAACCAAATCATCTTAAGCTCTCAGT
CAATGGTCCAGCGGACAATCATTTAATGTTAATAAGACATAATAATTTTATACCATCATCCTTTTCACCCATTACCCCTCCAATCACACTCACTCTCATCCATTCAAG
TGGTTCAAAAATTATGACTTAAATTTTAGTATTGGGAAAAAAATCCAATATCCAACCAACCATACATCATTTTATTAATATTCTTCTACTGTTCAACACA 
 
>3B_USA:_Illinois,_Jackson_County 
GAGGAAACCCCCCACTACCAGCACCCAAAGCTGACATTCTTCCAATTAAATTACTTCTTGTACATAATTTTATATAGTACATCATACATAACTATGTACATTTTACA
TTAAATTATTCCCCATTATCATATAAGCTAGCAATATAATTCAATTATTATCCACCCAAAATGTTTAATCAACATTAAACTATATCAAACATGCATATCCCCACACCA
TAAAATCTATGACTACAAGACATCTATATGTTTAATCAACATTATACACTTACCCACATAACTATTATCCTATACTAATTATTAAACCATAACCTATACTAACCTCAA
CCATACATAAAACATAACAGTCACGATCAATCCCAGTCCAAATGACTATCCCCTACTACATGTGGTCCCTTAATCTACCATCCTCCGTGAAATCAGCAACCCGCCC
ACCTAGACGGCTCTTCTTGCTCTGAGCCCATAAAATCAGGGGGTGACTAACCTGAAACTTTATCAGGCATCTGGTTCTTACTTCAGGGCCATCAAATGATTTATCG
TCCATACGTTCCCCTTAAATAAGACATCACGATGGTGTAGGTCTAACCTCTCGTTACCCAACATCCATTGGTTCCTTACATTTAGTAGTTTTTATTTTTGGGGTGTA
TTACTCAACACAGCCGTCAAGGCATGAAGGTCAGCTTTACGTCAAGCCAGTCATCAAGTTAAGGATCATTTATCAACACAACCAAATCATCTTAAGCTCTCAGTC
AATGGTCCAGCGGACAATCATTTAATGTTAATAAGACATAATAATTTTATACCATCATCCTTTTCACCCATTACCCCTCCAATCACACTCACTCTCATCCATTCAAGT
GGTTCAAAAATTATGACTTAAATTTTAGTATTGGGAAAAAAATCCAATATCCAACCAACCATACATCATTTTATTAATATTCTTCTACTGTTCAACAC 
 
>3C_USA:_Illinois,_Jackson_County 
GAGAGGAAACCCCCCACTACCAGCACCCAAAGCTGACATTCTTCCAATTAAATTACTTCTTGTACATAATTTTATATAGTACATCATACATAACTATGTACATTTTA
CATTAAATTATTCCCCATTATCATATAAGCTAGCAATATAATTCAATTATTATCCACCCAAAATGTTTAATCAACATTAAACTATATCAAACATGCATATCCCCACAC
CATAAAATCTATGACTACAAGACATCTATATGTTTAATCAACATTATACACTTACCCACATAACTATTATCCTATACTAATTATTAAACCATAACCTATACTAACCTC
AACCATACATAAAACATAACAGTCACGATCAATCCCAGTCCAAATGACTATCCCCTACTACATGTGGTCCCTTAATCTACCATCCTCCGTGAAATCAGCAACCCGC
CCACCTAGACGGCTCTTCTTGCTCTGAGCCCATAAAATCAGGGGGTGACTAACCTGAAACTTTATCAGGCATCTGGTTCTTACTTCAGGGCCATCAAATGATTTAT
CGTCCATACGTTCCCCTTAAATAAGACATCACGATGGTGTAGGTCTAACCTCTCGTTACCCAACATCCATTGGTTCCTTACATTTAGTAGTTTTTATTTTTGGGGTG
TATTACTCAACACAGCCGTCAAGGCATGAAGGTCAGCTTTACGTCAAGCCAGTCATCAAGTTAAGGATCATTTATCAACACAACCAAATCATCTTAAGCTCTCAGT
CAATGGTCCAGCGGACAATCATTTAATGTTAATAAGACATAATAATTTTATACCATCATCCTTTTCACCCATTACCCCTCCAATCACACTCACTCTCATCCATTCAAG
TGGTTCAAAAATTATGACTTAAATTTTAGTATTGGGAAAAAAATCCAATATCCAACCAACCATACATCATTTTATTAATATTCTTCTACTGTTCAACACA 
 
>3D_USA:_Illinois,_Jackson_County 
GGAGAGGAAACCCCCCACTACCAGCACCCAAAGCTGACATTCTTCCAATTAAATTACTTCTTGTACATAATTTTACATAGTACATCATACATAACTATGTACATTTT
ACATTAAATTATTCCCCATTATCATATAAGCTAGCAATACAATTCAATTATTATCCACCCAAAATGTTTAATCAACATTCAACTATACCAAACATGCATATCCCCAC
ACCATAAAATCTATGACTATAAGACATCCTTATGTTTAATCAACATTATACACTTACCCACATAACTATTATCCTATACTAATTATTAAACCATAACCTACACTAACC
TCAACCATACATAAAACATATCAGTCACGATCAATCCCAGTCCAAATGACTATCCCCTACTACATGTGGTCCCTTAATCTACCATCCTCCGTGAAATCAGCAACCC
GCCCACCTAGACGGCTCTTCTTGCTCTGAGCCCATAAAATCAGGGGGTGACTAACCTGAAACTTTATCAGGCATCTGGTTCTTACTTCAGGGCCATCAAATGATTT
ATCGTCCATACGTTCCCCTTAAATAAGACATCACGATGGTGTAGGTCTAACCTCTCGTTACCCAACATCCATTGGTTCCTTACATTTAGTAGTTTTTATTTTTGGGG
TGTATTACTCAACACAGCCGTCAAGGCATGAAGGTCAGCTTTACGTCAAGCCAGTCATCAAGTTAAGGATCATTTATCAACACAACCAAATCATCTTAAGCTCTCA
ATCAATGGTCCAGCGGACAATCATTTAATGTTAGTAAGACATAATAATTTTATACCATCATCCTTTTCACCCATTACCCCTCCAATCACACTCACTCTCATCCATTCA
AGTGGTTCAAAAATTATGACTTAAATTTTAGTATTGGGAAAAAAATCCAATATCCAACCAACCATACATCATTTTATTAATATTCTTCTACTGTTCAACACA 
 
>3F_USA:_Illinois,_Jackson_County 
GAGAGGAAACCCCCCACTACCAGCACCCAAAGCTGACATTCTTCCAATTAAATTACTTCTTGTACATAATTTTACATAGTACATCATACATAACTATGTACATTTTA
CATTAAATTATTCCCCATTATCATATAAGCTAGCAATACAATTCAATTATTATCCACCCAAAATGTTTAATCAACATTCAACTATACCAAACATGCATATCCCCACAC
CATAAAATCTATGACTATAAGACATCCTTATGTTTAATCAACATTATACACTTACCCACATAACTATTATCCTATACTAATTATTAAACCATAACCTACACTAACCTC
AACCATACATAAAACATATCAGTCACGATCAATCCCAGTCCAAATGACTATCCCCTACTACATGTGGTCCCTTAATCTACCATCCTCCGTGAAATCAGCAACCCGC
CCACCTAGACGGCTCTTCTTGCTCTGAGCCCATAAAATCAGGGGGTGACTAACCTGAAACTTTATCAGGCATCTGGTTCTTACTTCAGGGCCATCAAATGATTTAT
CGTCCATACGTTCCCCTTAAATAAGACATCACGATGGTGTAGGTCTAACCTCTCGTTACCCAACATCCATTGGTTCCTTACATTTAGTAGTTTTTATTTTTGGGGTG
TATTACTCAACACAGCCGTCAAGGCATGAAGGTCAGCTTTACGTCAAGCCAGTCATCAAGTTAAGGATCATTTATCAACACAACCAAATCATCTTAAGCTCTCAAT
CAATGGTCCAGCGGACAATCATTTAATGTTAGTAAGACATAATAATTTTATACCATCATCCTTTTCACCCATTACCCCTCCAATCACACTCACTCTCATCCATTCAAG
TGGTTCAAAAATTATGACTTAAATTTTAGTATTGGGAAAAAAATCCAATATCCAACCAACCATACATCATTTTATTAATATTCTTCTACTGTT 
 
>3G_USA:_Illinois,_Jackson_County 
GAGAGGAAACCCCCCACTACCAGCACCCAAAGCTGACATTCTTCCAATTAAATTACTTCTTGTACATAATTTTACATAGTACATCATACATAACTATGTACATTTTA
CATTAAATTATTCCCCATTATCATATAAGCTAGCAATACAATTCAATTATTATCCACCCAAAATGTTTAATCAACATTCAACTATACCAAACATGCATATCCCCACAC
CATAAAATCTATGACTATAAGACATCCTTATGTTTAATCAACATTATACACTTACCCACATAACTATTATCCTATACTAATTATTAAACCATAACCTACACTAACCTC
AACCATACATAAAACATATCAGTCACGATCAATCCCAGTCCAAATGACTATCCCCTACTACATGTGGTCCCTTAATCTACCATCCTCCGTGAAATCAGCAACCCGC
CCACCTAGACGGCTCTTCTTGCTCTGAGCCCATAAAATCAGGGGGTGACTAACCTGAAACTTTATCAGGCATCTGGTTCTTACTTCAGGGCCATCAAATGATTTAT
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CGTCCATACGTTCCCCTTAAATAAGACATCACGATGGTGTAGGTCTAACCTCTCGTTACCCAACATCCATTGGTTCCTTACATTTAGTAGTTTTTATTTTTGGGGTG
TATTACTCAACACAGCCGTCAAGGCATGAAGGTCAGCTTTACGTCAAGCCAGTCATCAAGTTAAGGATCATTTATCAACACAACCAAATCATCTTAAGCTCTCAAT
CAATGGTCCAGCGGACAATCATTTAATGTTAGTAAGACATAATAATTTTATACCATCATCCTTTTCACCCATTACCCCTCCAATCACACTCACTCTCATCCATTCAAG
TGGTTCAAAAATTATGACTTAAATTTTAGTATTGGGAAAAAAATCCAATATCCAACCAACCATACATCATTTTATTAATATTCTTCTACTGTTCAACACA 
 
>3H_USA:_Illinois,_Jackson_County 
AGAGGAAACCCCCCACTACCAGCACCCAAAGCTGACATTCTTCCAATTAAATTACTTCTTGTACATAATTTTACATAGTACATCATACATAACTATGTACATTTTAC
ATTAAATTATTCCCCATTATCATATAAGCTAGCAATACAATTCAATTATTATCCACCCAAAATGTTTAATCAACATTCAACTATACCAAACATGCATATCCCCACACC
ATAAAATCTATGACTATAAGACATCCTTATGTTTAATCAACATTATACACTTACCCACATAACTATTATCCTATACTAATTATTAAACCATAACCTACACTAACCTCA
ACCATACATAAAACATATCAGTCACGATCAATCCCAGTCCAAATGACTATCCCCTACTACATGTGGTCCCTTAATCTACCATCCTCCGTGAAATCAGCAACCCGCC
CACCTAGACGGCTCTTCTTGCTCTGAGCCCATAAAATCAGGGGGTGACTAACCTGAAACTTTATCAGGCATCTGGTTCTTACTTCAGGGCCATCAAATGATTTATC
GTCCATACGTTCCCCTTAAATAAGACATCACGATGGTGTAGGTCTAACCTCTCGTTACCCAACATCCATTGGTTCCTTACATTTAGTAGTTTTTATTTTTGGGGTGT
ATTACTCAACACAGCCGTCAAGGCATGAAGGTCAGCTTTACGTCAAGCCAGTCATCAAGTTAAGGATCATTTATCAACACAACCAAATCATCTTAAGCTCTCAATC
AATGGTCCAGCGGACAATCATTTAATGTTAGTAAGACATAATAATTTTATACCATCATCCTTTTCACCCATTACCCCTCCAATCACACTCACTCTCATCCATTCAAGT
GGTTCAAAAATTATGACTTAAATTTTAGTATTGGGAAAAAAATCCAATATCCAACCAACCATACATCATTTTATTAATATTCTTCTACTGTTCAACACA 
 
>3U_USA:_Illinois,_Alexander_County 
GAAGGAGAGGAAACCCCCCACTACCAGCACCCAAAGCTGACATTCTTCCAATTAAATTACTTCTTGTACATAATTTTATATAGTACATCATACATAACTATGTACA
TTTTACATTAAATTATTCCCCATTATCATATAAGCTAGCAATATAATTCAATTATTATCCACCCAAAATGTTTAATCAACATTAAACTATATCAAACATGCATATCCC
CACACCATAAAATCTATGACTACAAGACATCTATATGTTTAATCAACATTATACACTTACCCACATAACTATTATCCTATACTAATTATTAAACCATAACCTATACTA
ACCTCAACCATACATAAAACATAACAGTCACGATCAATCCCAGTCCAAATGACTATCCCCTACTACATGTGGTCCCTTAATCTACCATCCTCCGTGAAATCAGCAA
CCCGCCCACCTAGACGGCTCTTCTTGCTCTGAGCCCATAAAATCAGGGGGTGACTAACCTGAAACTTTATCAGGCATCTGGTTCTTACTTCAGGGCCATCAAATG
ATTTATCGTCCATACGTTCCCCTTAAATAAGACATCACGATGGTGTAGGTCTAACCTCTCGTTACCCAACATCCATTGGTTCCTTACATTTAGTAGTTTTTATTTTTG
GGGTGTATTACTCAACACAGCCGTCAAGGCATGAAGGTCAGCTTTACGTCAAGCCAGTCATCAAGTTAAGGATCATTTATCAACACAACCAAATCATCTTAAGCT
CTCAGTCAATGGTCCAGCGGACAATCATTTAATGTTAATAAGACATAATAATTTTATACCATCATCCTTTTCACCCATTACCCCTCCAATCACACTCACTCTCATCCA
TTCAAGTGGTTCAAAAATTATGACTTAAATTTTAGTATTGGGAAAAAAATCCAATATCCAACCAACCATACATCATTTTATTAATATTCTTCTACTGTTCAACACA 
 
>3Z_USA:_Illinois,_Alexander_County 
AGGAGAGGAAACCCCCCACTACCAGCACCCAAAGCTGACATTCTTCCAATTAAATTACTTCTTGTACATAATTTTATATAGTACATCATACATAACTATGTACATTT
TACATTAAATTATTCCCCATTATCATATAAGCTAGCAATATAATTCAATTATTATCCACCCAAAATGTTTAATCAACATTAAACTATATCAAACATGCATATCCCCAC
ACCATAAAATCTATGACTACAAGACATCTATATGTTTAATCAACATTATACACTTACCCACATAACTATTATCCTATACTAATTATTAAACCATAACCTATACTAACC
TCAACCATACATAAAACATAACAGTCACGATCAATCCCAGTCCAAATGACTATCCCCTACTACATGTGGTCCCTTAATCTACCATCCTCCGTGAAATCAGCAACCC
GCCCACCTAGACGGCTCTTCTTGCTCTGAGCCCATAAAATCAGGGGGTGACTAACCTGAAACTTTATCAGGCATCTGGTTCTTACTTCAGGGCCATCAAATGATTT
ATCGTCCATACGTTCCCCTTAAATAAGACATCACGATGGTGTAGGTCTAACCTCTCGTTACCCAACATCCATTGGTTCCTTACATTTAGTAGTTTTTATTTTTGGGG
TGTATTACTCAACACAGCCGTCAAGGCATGAAGGTCAGCTTTACGTCAAGCCAGTCATCAAGTTAAGGATCATTTATCAACACAACCAAATCATCTTAAGCTCTCA
GTCAATGGTCCAGCGGACAATCATTTAATGTTAATAAGACATAATAATTTTATACCATCATCCTTTTCACCCATTACCCCTCCAATCACACTCACTCTCATCCATTCA
AGTGGTTCAAAAATTATGACTTAAATTTTAGTATTGGGAAAAAAATCCAATATCCAACCAACCATACATCATTTTATTAATATTCTTCTACTGTTCAACACA 
 
>37_USA:_Illinois,_Alexander_County 
GAGAGGAAACCCCCCACTACCAGCACCCAAAGCTGACATTCTTCCAATTAAATTACTTCTTGTACATAATTTTATATAGTACATCATACATAACTATGTACATTTTA
CATTAAATTATTCCCCATTATCATATAAGCTAGCAATATAATTCAATTATTATCCACCCAAAATGTTTAATCAACATTAAACTATATCAAACATGCATATCCCCACAC
CATAAAATCTATGACTACAAGACATCTATATGTTTAATCAACATTATACACTTACCCACATAACTATTATCCTATACTAATTATTAAACCATAACCTATACTAACCTC
AACCATACATAAAACATAACAGTCACGATCAATCCCAGTCCAAATGACTATCCCCTACTACATGTGGTCCCTTAATCTACCATCCTCCGTGAAATCAGCAACCCGC
CCACCTAGACGGCTCTTCTTGCTCTGAGCCCATAAAATCAGGGGGTGACTAACCTGAAACTTTATCAGGCATCTGGTTCTTACTTCAGGGCCATCAAATGATTTAT
CGTCCATACGTTCCCCTTAAATAAGACATCACGATGGTGTAGGTCTAACCTCTCGTTACCCAACATCCATTGGTTCCTTACATTTAGTAGTTTTTATTTTTGGGGTG
TATTACTCAACACAGCCGTCAAGGCATGAAGGTCAGCTTTACGTCAAGCCAGTCATCAAGTTAAGGATCATTTATCAACACAACCAAATCATCTTAAGCTCTCAGT
CAATGGTCCAGCGGACAATCATTTAATGTTAATAAGACATAATAATTTTATACCATCATCCTTTTCACCCATTACCCCTCCAATCACACTCACTCTCATCCATTCAAG
TGGTTCAAAAATTATGACTTAAATTTTAGTATTGGGAAAAAAATCCAATATCCAACCAACCATACATCATTTTATTAATATT 
 
>38_USA:_Illinois,_Alexander_County 
GAGAGGAAACCCCCCACTACCAGCACCCAAAGCTGACATTCTTCCAATTAAATTACTTCTTGTACATAATTTTATATAGTACATCATACATAACTATGTACATTTTA
CATTAAATTATTCCCCATTATCATATAAGCTAGCAATATAATTCAATTATTATCCACCCAAAATGTTTAATCAACATTAAACTATATCAAACATGCATATCCCCACAC
CATAAAATCTATGACTACAAGACATCTATATGTTTAATCAACATTATACACTTACCCACATAACTATTATCCTATACTAATTATTAAACCATAACCTATACTAACCTC
AACCATACATAAAACATAACAGTCACGATCAATCCCAGTCCAAATGACTATCCCCTACTACATGTGGTCCCTTAATCTACCATCCTCCGTGAAATCAGCAACCCGC
CCACCTAGACGGCTCTTCTTGCTCTGAGCCCATAAAATCAGGGGGTGACTAACCTGAAACTTTATCAGGCATCTGGTTCTTACTTCAGGGCCATCAAATGATTTAT
CGTCCATACGTTCCCCTTAAATAAGACATCACGATGGTGTAGGTCTAACCTCTCGTTACCCAACATCCATTGGTTCCTTACATTTAGTAGTTTTTATTTTTGGGGTG
TATTACTCAACACAGCCGTCAAGGCATGAAGGTCAGCTTTACGTCAAGCCAGTCATCAAGTTAAGGATCATTTATCAACACAACCAAATCATCTTAAGCTCTCAGT
CAATGGTCCAGCGGACAATCATTTAATGTTAATAAGACATAATAATTTTATACCATCATCCTTTTCACCCATTACCCCTCCAATCACACTCACTCTCATCCATTCAAG
TGGTTCAAAAATTATGACTTAAATTTTAGTATTGGGAAAAAAATCCAATATCCAACCAACCATACATCATTTTATTAATATTCTTCTACTGTTCAACACA 
 
>HAR1_USA:_Illinois,_Saline_County 
AGGAGAGGAAACCCCCCACTACCAGCACCCAAAGCTGACATTCTTCCAATTAAATTACTTCTTGTACATAATTTTATATAGTACATCATACATAACTATGTACATTT
TACATTAAATTATTCCCCATTATCATATAAGCTAGCAATATAATTCAATTATTATCCACCCAAAATGTTTAATCAACATTAAACTATATCAAACATGCATATCCCCAC
ACCATAAAATCTATGACTACAAGACATCTATATGTTTAATCAACATTATACACTTACCCACATAACTATTATCCTATACTAATTATTAAACCATAACCTATACTAACC
TCAACCATACATAAAACATAACAGTCACGATCAATCCCAGTCCAAATGACTATCCCCTACTACATGTGGTCCCTTAATCTACCATCCTCCGTGAAATCAGCAACCC
GCCCACCTAGACGGCTCTTCTTGCTCTGAGCCCATAAAATCAGGGGGTGACTAACCTGAAACTTTATCAGGCATCTGGTTCTTACTTCAGGGCCATCAAATGATTT
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ATCGTCCATACGTTCCCCTTAAATAAGACATCACGATGGTGTAGGTCTAACCTCTCGTTACCCAACATCCATTGGTTCCTTACATTTAGTAGTTTTTATTTTTGGGG
TGTATTACTCAACACAGCCGTCAAGGCATGAAGGTCAGCTTTACGTCAAGCCAGTCATCAAGTTAAGGATCATTTATCAACACAACCAAATCATCTTAAGCTCTCA
GTCAATGGTCCAGCGGACAATCATTTAATGTTAATAAGACATAATAATTTTATACCATCATCCTTTTCACCCATTACCCCTCCAATCACACTCACTCTCATCCATTCA
AGTGGTTCAAAAATTATGACTTAAATTTTAG 
 
>HAR2_USA:_Illinois,_Saline_County 
AGAGGAAACCCCCCACTACCAGCACCCAAAGCTGACATTCTTCCAATTAAATTACTTCTTGTACATAATTTTATATAGTACATCATACATAACTATGTACATTTTAC
ATTAAATTATTCCCCATTATCATATAAGCTAGCAATATAATTCAATTATTATCCACCCAAAATGTTTAATCAACATTAAACTATATCAAACATGCATATCCCCACACC
ATAAAATCTATGACTACAAGACATCTATATGTTTAATCAACATTATACACTTACCCACATAACTATTATCCTATACTAATTATTAAACCATAACCTATACTAACCTCA
ACCATACATAAAACATAACAGTCACGATCAATCCCAGTCCAAATGACTATCCCCTACTACATGTGGTCCCTTAATCTACCATCCTCCGTGAAATCAGCAACCCGCC
CACCTAGACGGCTCTTCTTGCTCTGAGCCCATAAAATCAGGGGGTGACTAACCTGAAACTTTATCAGGCATCTGGTTCTTACTTCAGGGCCATCAAATGATTTATC
GTCCATACGTTCCCCTTAAATAAGACATCACGATGGTGTAGGTCTAACCTCTCGTTACCCAACATCCATTGGTTCCTTACATTTAGTAGTTTTTATTTTTGGGGTGT
ATTACTCAACACAGCCGTCAAGGCATGAAGGTCAGCTTTACGTCAAGCCAGTCATCAAGTTAAGGATCATTTATCAACACAACCAAATCATCTTAAGCTCTCAGT
CAATGGTCCAGCGGACAATCATTTAATGTTAATAAGACATAATAATTTTATACCATCATCCTTTTCACCCATTACCCCTCCAATCACACTCACTCTCATCCATTCAAG
TGGTTCAAAAATTATGACTTAAATTTTAGTATTGGGAAAAAAATCCAATATCCAACCAACCATACATCATTTTATTAATATTCTTCTACTGTTCAACACA 
 
>HAR3_USA:_Illinois,_Saline_County 
GAAGGAGAGGAAACCCCCCACTACCAGCACCCAAAGCTGACATTCTTCCAATTAAATTACTTCTTGTACATAATTTTATATAGTACATCATACATAACTATGTACA
TTTTACATTAAATTATTCCCCATTATCATATAAGCTAGCAATATAATTCAATTATTATCCACCCAAAATGTTTAATCAACATTAAACTATATCAAACATGCATATCCC
CACACCATAAAATCTATGACTACAAGACATCTATATGTTTAATCAACATTATACACTTACCCACATAACTATTATCCTATACTAATTATTAAACCATAACCTATACTA
ACCTCAACCATACATAAAACATAACAGTCACGATCAATCCCAGTCCAAATGACTATCCCCTACTACATGTGGTCCCTTAATCTACCATCCTCCGTGAAATCAGCAA
CCCGCCCACCTAGACGGCTCTTCTTGCTCTGAGCCCATAAAATCAGGGGGTGACTAACCTGAAACTTTATCAGGCATCTGGTTCTTACTTCAGGGCCATCAAATG
ATTTATCGTCCATACGTTCCCCTTAAATAAGACATCACGATGGTGTAGGTCTAACCTCTCGTTACCCAACATCCATTGGTTCCTTACATTTAGTAGTTTTTATTTTTG
GGGTGTATTACTCAACACAGCCGTCAAGGCATGAAGGTCAGCTTTACGTCAAGCCAGTCATCAAGTTAAGGATCATTTATCAACACAACCAAATCATCTTAAGCT
CTCAGTCAATGGTCCAGCGGACAATCATTTAATGTTAATAAGACATAATAATTTTATACCATCATCCTTTTCACCCATTACCCCTCCAATCACACTCACTCTCATCCA
TTCAAGTGGTTCAAAAATTATGACTTAAATTTTAGTATTGGGAAAAAAATCCAATATCCAACCAACCATACATCATTTTATTAATATTCTTCTACTGTTCAACACA 
 
>HAR5_USA:_Illinois,_Saline_County 
GAAGGAGAGGAAACCCCCCACTACCAGCACCCAAAGCTGACATTCTTCCAATTAAATTACTTCTTGTACATAATTTTATATAGTACATCATACATAACTATGTACA
TTTTACATTAAATTATTCCCCATTATCATATAAGCTAGCAATATAATTCAATTATTATCCACCCAAAATGTTTAATCAACATTAAACTATATCAAACATGCATATCCC
CACACCATAAAATCTATGACTACAAGACATCTATATGTTTAATCAACATTATACACTTACCCACATAACTATTATCCTATACTAATTATTAAACCATAACCTATACTA
ACCTCAACCATACATAAAACATAACAGTCACGATCAATCCCAGTCCAAATGACTATCCCCTACTACATGTGGTCCCTTAATCTACCATCCTCCGTGAAATCAGCAA
CCCGCCCACCTAGACGGCTCTTCTTGCTCTGAGCCCATAAAATCAGGGGGTGACTAACCTGAAACTTTATCAGGCATCTGGTTCTTACTTCAGGGCCATCAAATG
ATTTATCGTCCATACGTTCCCCTTAAATAAGACATCACGATGGTGTAGGTCTAACCTCTCGTTACCCAACATCCATTGGTTCCTTACATTTAGTAGTTTTTATTTTTG
GGGTGTATTACTCAACACAGCCGTCAAGGCATGAAGGTCAGCTTTACGTCAAGCCAGTCATCAAGTTAAGGATCATTTATCAACACAACCAAATCATCTTAAGCT
CTCAGTCAATGGTCCAGCGGACAATCATTTAATGTTAATAAGACATAATAATTTTATACCATCATCCTTTTCACCCATTACCCCTCCAATCACACTCACTCTCATCCA
TTCAAGTGGTTCAAAAATTATGACTTAAATTTTAGTATTGGGAAAAAAATCCAATATCCAACCAACCATACATCATTTTATTAATATTCTTCTACTGTTCAACACA 
 
>HAR6_USA:_Illinois,_Saline_County 
GAAGGAGAGGAAACCCCCCACTACCAGCACCCAAAGCTGACATTCTTCCAATTAAATTACTTCTTGTACATAATTTTATATAGTACATCATACATAACTATGTACA
TTTTACATTAAATTATTCCCCATTATCATATAAGCTAGCAATATAATTCAATTATTATCCACCCAAAATGTTTAATCAACATTAAACTATATCAAACATGCATATCCC
CACACCATAAAATCTATGACTACAAGACATCTATATGTTTAATCAACATTATACACTTACCCACATAACTATTATCCTATACTAATTATTAAACCATAACCTATACTA
ACCTCAACCATACATAAAACATAACAGTCACGATCAATCCCAGTCCAAATGACTATCCCCTACTACATGTGGTCCCTTAATCTACCATCCTCCGTGAAATCAGCAA
CCCGCCCACCTAGACGGCTCTTCTTGCTCTGAGCCCATAAAATCAGGGGGTGACTAACCTGAAACTTTATCAGGCATCTGGTTCTTACTTCAGGGCCATCAAATG
ATTTATCGTCCATACGTTCCCCTTAAATAAGACATCACGATGGTGTAGGTCTAACCTCTCGTTACCCAACATCCATTGGTTCCTTACATTTAGTAGTTTTTATTTTTG
GGGTGTATTACTCAACACAGCCGTCAAGGCATGAAGGTCAGCTTTACGTCAAGCCAGTCATCAAGTTAAGGATCATTTATCAACACAACCAAATCATCTTAAGCT
CTCAGTCAATGGTCCAGCGGACAATCATTTAATGTTAATAAGACATAATAATTTTATACCATCATCCTTTTCACCCATTACCCCTCCAATCACACTCACTCTCATCCA
TTCAAGTGGTTCAAAAATTATGACTTAAATTTTAGTATTGGGAAAAAAATCCAATATCCAACCAACCATACATCATTTTATTAATATTCTTCTACTGTTCAACACA 
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