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Ambient energy harvesting has attracted significant attention over the last years for

applications such as wireless sensors, implantable devices, health monitoring systems, and

wearable devices. The methods of vibration-to-electric energy conversion can be included

in the following categories: electromagnetic, electrostatic, and piezoelectric. Among var-

ious techniques of vibration-based energy harvesting, piezoelectric transduction method

has received the most attention due to the large power density of the piezoelectric mate-

rial and its simple architectures. In contrast to electromagnetic energy harvesting, the

output voltage of a piezoelectric energy harvester is high, which can charge a storage

component such as a battery. Compared to electrostatic energy harvester, the piezoelec-

tric energy harvester does not require an external voltage supply. Also, piezoelectric har-

vesters can be manufactured in micro-scale, where they show better performance com-

pared to other energy harvesters, owing to the well-established thick-film and thin-film

fabrication techniques. The main drawback of the linear piezoelectric harvesters is that

they only retrieve energy efficiently when they are excited at their resonance frequen-

cies, which are usually high, while they are less efficient when the excitation frequency is

distributed over a broad spectrum or is dominant at low frequencies. High-frequency vi-

brations can be found in machinery and vehicles could be used as the energy source but,

most of the vibration energy harvesters are targeting at low-frequency vibration sources

which are more achievable in the natural environment. One way to overcome this limi-
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tation is by using the frequency-up-conversion technology via impacts, where the source

of the impacts can be one or two stoppers or more massive beams. The impact makes

the piezoelectric beam oscillate in its resonance frequency and brings nonlinear behav-

ior into the system. The goal of this research is to enhance the piezoelectric harvester’s

energy retrieving performance from ambient vibrations with low or varying frequencies.

In this work, impact-based piezoelectric energy harvesters were studied by discontinuous

mapping dynamics. Discontinuous dynamics has been extensively applied in mechani-

cal dynamics and physics field. Since the nature of the most environmental vibrations

is periodic, periodic motions of the impact-based piezoelectric harvester were studied.

Four different possible motion phases have been identified and categorized based on the

performance of the output energy of the system. Many periodic motions are possible de-

pending on the physical properties of the energy harvester setup. So far, we studied three

different periodic motions of two beams interacting with each others, where period-1 and

period-2 motions of the system are predicted. The stability of the system were analyzed

and bifurcation graphs for each periodic motions were presented.
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CHAPTER 1

INTRODUCTION

1.1 ENERGY HARVESTING

Recent advances in wireless and wearable technologies and low-power electronics

such as MEMS devices have demanded a surge of research in self-powered wireless sen-

sors and self-powered data transformations. A wireless sensor network is more practical

than a wired sensor due to the large-scale infrastructure and harsh environment of data

transmission. Such conditions might include obtaining structure information from high

pressure, high temperature, and high impact environments. Advances in manufacturing

low-powered digital signal processors (DSP) has made them require power in the range

of ten to hundreds of µW for variety of applications. The energy scavenged from smart

materials can be used in several engineering and scientific applications, such as structural

health monitoring [1, 2, 3, 4], wireless sensor networks [5, 6, 7], buoys for oceanic obser-

vations [8, 9], and, possibly, tagged global positioning system sensors for animals [10, 11].

The idea of the conversion of vibration into electricity first begun in an article from

Williams and Yates [12] in 1996. They described the basic transduction mechanisms that

can be used for this purpose and provided a basic excitation model of concentrated pa-

rameters to simulate the electrical output power to capture electromagnetic energy. As

stated by Williams and Yates [12], the three basic mechanisms of conversion of energy

from vibration to electrical energy are electromagnetic [12, 13, 14], electrostatic [15, 16]

and piezoelectric [17, 18] transductions. During the last decade, several articles have

appeared on the use of these transduction mechanisms for the generation of low power

from environmental vibrations. Two of the review articles that cover mainly experimen-

tal research on all transduction mechanisms are provided by Beeby et al. [19] and Cook-

Chennault et al. [20].

Piezoelectricity is a form of coupling between the mechanical and electrical behavior
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of certain materials. Materials that exhibit the piezoelectric effect are called piezoelectric

materials. The piezoelectric effect is generally divided into two parts as direct and inverse

piezoelectric effects. In the simplest terms, when a piezoelectric material is compressed,

an electrical charge builds up on the electrodes located on its surface. This is called a di-

rect piezoelectric effect and was first demonstrated by the Currie brothers in 1880. If the

same material is subjected to a voltage change, it will mechanically be deformed. This

is called the inverse piezoelectric effect and was mathematically deduced (after the dis-

covery of the direct piezoelectric effect) of the fundamental principles of thermodynamics

by Gabriel Lippmann in 1881 and then experimentally confirmed by the Curie brothers.

It is crucial to keep in mind that these two effects usually coexist in a piezoelectric ma-

terial. Therefore, in an application where the direct piezoelectric effect is of particular

interest (which is the case in the collection of energy) ignoring the presence of the inverse

piezoelectric effect would be thermodynamically inconsistent.

It has been observed that several natural crystals exhibit the piezoelectric effect in

the first half of the last century, such as Rochelle salt and quartz. However, for use in en-

gineering applications, the electromechanical coupling between the mechanical and elec-

trical behavior of the material must be strong enough. As a result, piezoelectric ceramics

made by man have developed in the second half of the last century. The most popular

engineering ceramics, PZT (lead zirconate titanate) was developed at the Tokyo Insti-

tute of Technology in the 1950s, and several versions (especially PZT-5A and PZT5H)

are nowadays the most widely used engineering piezoceramics. With regard to energy

harvesting research, PZT-5A and PZT-5H are the piezoceramics more commonly imple-

mented according to the literature [20].

The high energy density and various existing forms of piezoelectric materials

make the successful fabrication of a micro-size high-efficiency piezoelectric generator

very promising. Over the past several years, piezoelectric energy harvesting has led

to a remarkable rise in the area of self-powered structural health monitoring systems
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[21, 22, 10]. Elvin and Choi [23] tested how to use a piezoelectric device to power embed-

ded damage-detecting sensors and transmit data wirelessly to a remote receiver. Claude

et al. [24] showed actuators and sensors can be powered by piezoelectric micro-generators

to provide a stand-alone power source from the environmental mechanical stress in Struc-

tural Health Monitoring (SHM). Despite the great amount of attention received by self-

powered wireless sensor networks over the last decade, few reports are available on the

commercialization of self-powered wireless sensor networks. It should be emphasized that

the self-powered sensor and data transmission remains in its infancy. In order to transmit

the current practice of self-powered sensor and data transmission networks from state-

of-the-art to full-scale deployment, a tremendous research effort is required to convert,

optimize, and accumulate the necessary amount of energy to power such electronics.

Different ambient energy scavenging sources have been investigated, such as solar

energy, thermoelectric, acoustic, and mechanical vibrations. Mechanical vibration en-

ergy harvesters can be divided into two categories: non-resonant devices, and resonant

devices. Resonant mechanical vibration energy harvesters can be categorized into three

groups: electrostatic, electromagnetic, and piezoelectric. The major disadvantage of elec-

trostatic energy harvesting is that an external voltage or charge is required in order to

make the relative motion of the capacitor elements produce an alternating electrical out-

put. On the other hand, in comparison to piezoelectric harvester, the main drawback of

electromagnetic harvesters is the low energy density of the electromagnetic device. As

the harvester’s size reduced to micro-scale, electromagnetic harvesters energy retriev-

ing efficiency becomes less than the corresponding piezoelectric ones. The high energy

density and various existing forms of piezoelectric materials make the fabrication of a

small-size high-efficiency piezoelectric generators very promising, especially in the area of

self-powered MEMS devices. Dutoit et al. have collected a table comparing the different

types of energy harvesters, which demonstrates that when the harvester’s size is small,

the piezoelectric energy harvesting from vibration sources shows better performance com-

3



FIGURE A1: Impact-driven beam setup.

pared to scavenging energy from other energy resources or utilizing other types of mate-

rial [25].

A single degree of freedom (SDF) piezoelectric energy harvester model was pre-

sented by Dutoit et al. [25], where they introduced the relationship between electrical ef-

fects of the SDF system with harmonic base excitation. Stephan used the SDF Piezoelec-

tric energy harvester to investigate the effect of damping on the maximum power of sys-

tem [26]. Erturk et al. investigated the accuracy of the SDF model and they presented

a correction factor for the velocity of the tip point of the piezoelectric bar to reduce the

error of SDF system [21].

The strong stiffness of most PZT plates causes their high natural frequency, usu-

ally more than 100 Hz. This brings challenges of designing a high-efficiency piezoelectric

harvester due to the fact that the maximum power of a harvester can only be achieved

at the resonance frequency [27, 28, 29, 30]. Currently, most piezoelectric energy har-

vesters are resonant-type devices, where the resonant frequency is related to the nat-

ural frequency of the piezoelectric ceramic which is not a practical frequency in nor-

mal vibration. Therefore, frequency tuning is a good solution, in which the resonant

frequency is tuned to match the excitation frequency [31], but such devices are either

at macro-scale [11], or difficult to tune from a high resonant frequency because of geo-

metrical or dynamical constraints [32]. As a result, to improve the output power of the

energy harvesters for low-frequency applications, researchers have presented frequency
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up-conversion technologies, which may be divided into two categories: impact and non-

impact types. Umeda et al. analyzed the power generated by the impact of a steel ball

on a piezoelectric membrane [33]. Renaud et al. and Manla et al. presented non-resonant

energy harvesters model which were excited by the repeated impact of a free ball on two

piezoelectric plates. This non-resonant approach offers an advantage of power genera-

tion by impact motions, but they do not benefit the power enhancement of resonant har-

vesters [34, 35].

One effective method to achieve frequency up-conversion is to let the beam consec-

utively subject to an initial deflection to obtain repeated free vibrations. PEHs based

on this method can use different plucking approaches to deflect the piezoelectric beam,

such as magnetic repulsion forces to achieve non-contact frequency up-conversion [36, 37].

Pillatsch developed a generator to scavenge energy from human motions, which used

magnetic forces to convert the low-frequency human motions to the resonant oscilla-

tions of a piezoelectric cantilever bimorph beam [38]. Many studies employed impact-

driven contact frequency up-conversion techniques to improve the energy harvesting

performance of PEHs. One design is shaking a cantilever PEH beam to let it repeat-

edly strike with one or two stoppers, and researchers obtained higher energy harvesting

performance in a broader frequency bandwidth compared to the non-impact energy har-

vesters [39, 40, 41, 42]. Pozzi developed a rotary knee-joint piezoelectric energy harvester,

which can produce an average power of 2 milliwatts [43]. Impact-driven PEH beams are

more effective and contain complicated dynamics arising from the impact-induced dis-

continuous vibrations. However, most studies associated with impact-driven PEHs are

focused on the experimental studies or finite element analysis [38, 39]. To obtain maxi-

mum power from impact-driven PEHs, one needs to find optimum values among different

types of system parameters: 1) the optimum relation between the source vibration fre-

quency and the gap between PEHs and stoppers; 2) the pluck load and free vibration

periods. Therefore, deep understanding of the complicated dynamics induced by impact
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FIGURE A2: Bimorph beam schematic.

are essential.

To obtain the maximum power a piezoelectric harvester should only be excited at

its resonance frequency, which is typically over 100 Hz. Most times the ambiance vibra-

tion frequency is lower than 100 Hz, therefore a normal piezoelectric harvesting device

is known to underperform since the resonance frequency will not match the low excita-

tion frequency. Besides the nonlinear broaden frequency bandwidth technologies, such

as, mono-stable [44] and bi-stable [45] piezoelectric energy harvesters, frequency up-

conversion is an effective method to obtain high-energy output from piezoelectric har-

vesters. The frequency up-conversion technique frequently applies initial deflections to

the piezoelectric structure to let it vibrate freely at its mechanical resonant frequency.

Different methods can be used to deflect the piezoelectric structure includes mechanical

impact induced frequency-up conversion as well as magnetic repulsion non-contact fre-

quency up-conversion [37, 36].

1.2 VIBRO-IMPACT

Vibro-impact systems are extensively researched in both the engineering and the

physics fields. Such systems possess continuous characteristics as continuous dynamic

systems and carry the discrete characteristics introduced by the impacts at the same

time. So, discrete mapping structures developed for such vibro-impact systems are re-

quired to be able to investigate the complexity of movements. In this dissertation, some

vibro-oscillators will be researched to understand the dynamics of vibro-impact systems.

Before discussing the phenomena and nonlinear dynamic behavior of these vibration
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impact oscillators, the theory of non-linear discrete systems will be applied to a two-

dimensional discrete system (Henon map), and the full dynamics of such non-linear dis-

crete dynamic systems will be presented. Then, the theory of discontinuous dynamic sys-

tems will be adopted to investigate the vibro-impact dynamics in several vibro-impact

systems. Non-linear discrete systems are usually obtained from the non-linear difference

equations of dynamic systems. These systems provide a convenient way to easily describe

the behavior of a complex dynamic system by observing only the initial and final states.

The complex dynamic responses in such systems can be observed through the cascade of

stable solutions.

In 1976, a one-dimensional discrete map was used to describe the dynamical pro-

cesses in biological, economic, and social science [46]. In the same period, a discrete-

time dynamic system was introduced to simplify the 3-dimensional Lorenz equations as

a Poincare map [47], from which, one can observe chaos numerically. This discrete sys-

tem was later on well known as Henon map. The existence of chaotic behavior in Henon

map was later mathematically proved [48] for certain parameters. At the same time, the

chaotic behavior of Henon map was measured using Lyapunov characteristic exponent

and frequency spectrum [49]. In 1988, the topologic properties and multifractality of

Henon map were investigated [50]. In 1992, a geometric approach for the period doubling

bifurcation was presented by Luo and Han [51] ,and they investigated the multifractality

of a general one-dimensional iterative map. In 1993, numerical investigation of parameter

maps was also performed [52] for Henon map. Later in 2000, Zhusubaliyev et al. numeri-

cally conducted the bifurcation analysis of Henon map and presented a more detailed pa-

rameter map [53]. Shaw [54] studied a single degree of freedom system with dry friction.

Feeny [55] studied the chaotic dynamics of a forced dry-friction springmass system both

experimentally and numerically. Luo et al also [56, 57, 58, 59] applied the theory of non-

linear discontinuities to a fermi accelerator, horizontal impact pair, and train suspension

system.
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CHAPTER 2

METHODOLOGY

2.1 THE BIMORPH PZT BEAM CONSTITUTIVE LAW

In general, poled monolithic piezoceramics are transversely isotropic materials. To

be in agreement with the IEEE Standard on Piezoelectricity [60], the plane of isotropy

is defined here as the xy-plane. The piezoelectric material therefore exhibits symmetry

about the z-direction, which is the poling direction of the material. The field variables

are the stress components (Tij ), strain components (Sij ), electric field components (

Ek ) and the electric displacement components (Dk). The standard form of piezoelec-

tric constitutive equations can be given in four different ways by taking any of two of the

four field variables as independent variables. Consider the tensor representation of the

deformation-form of electric displacement [60] where the independent variables are the

voltage components and the components of the electric field:

Sij = SEijklTkl + dkijEk (2.1a)

Di = dEiklTkl + εTikEk (2.1b)

which is the preferred form of constituent piezoelectric relationships for limited means

(to eliminate some of the voltage components as a function of the geometry and some

of the components of the electric field as a function of the placement of the electrodes).

Equations 2.1 can be given in matrix form as:
T

D

 =

cE −e′

e εεεs




S

E

 , (2.2)

where T, D, S, E, c, e and ε are stress, electric displacement, strain, electric field, elastic

modulus, piezoelectric constant and permittivity constant , respectively. The prime sign

stands for transpose and, superscript E and S represent that the quantity is evaluated
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at constant electric field strength and constant strain, respectively. As defined with the

IEEE standard on piezoelectricity the 3-direction (or the z-direction) is the poling direc-

tion of the material [60].



S1

S2

S3

S4

S5

S6

D1

D2

D3



=



SE11 SE12 SE13 0 0 0 0 0 d31

SE12 SE11 SE13 0 0 0 0 0 d31

SE13 SE13 SE33 0 0 0 0 0 d33

0 0 0 sE55 0 0 0 d15 0

0 0 0 0 sE55 0 d15 0 0

0 0 0 0 0 sE66 0 0 0

0 0 0 0 d15 0 εT11 0 0

0 0 0 d150 0 0 εT11 0 0

d31 d31 d33 0 0 0 0 0 εT33





T1

T2

T3

T4

T5

T6

E1

E2

E3



, (2.3)

where Using Voigt’s notation leads us to:
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S1

S2

S3

S4

S5

S6



=



S11

S22

S33

2S23

2S13

2S12



, (2.4a)



T1

T2

T3

T4

T5

T6



=



T11

T22

T33

T23

T13

T12



, (2.4b)

Therefore the shear strain components in the contracted notation are the engineering

shear strains. It should be noted from the elastic, piezoelectric and dielectric constants in

Equ.2.3 that the poled piezoceramic considered here is a monolithic piezoceramic so that

the symmetries of transversely isotropic material behavior are applied.

2.2 REDUCED CONSTITUTIVE EQUATIONS OF AN EULER-

BERNOULLI BEAM

If the piezoelastic behavior of the thin monolithic structure is to be modeled as a

thin beam based on the Euler-Bernoulli beam theory or Rayleigh beam theory, the only

non-zero stress component is T1 and we will have:
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T2 = T3 = T4 = T5 = T6 = 0 (2.5)

Therefore based on Euler-Bernoulli beam assumption, the piezoelectric driven beam’s

non-zero stress component is only along the x-direction, and Equ.(2.2) is reduced to
S1

D3

 =

sE11 d31

d31 εE33



T1

E3

 . (2.6)

or:

 SE11 0

−d31 1



T1

D3

 =

1 −d31

0 εT33



S1

E3

 . (2.7)

Therefore the stress – electric displacement form of the reduced constitutive equations for

a thin beam is 
T1

D3

 =

c̄E11 −ē31

ē31 ε̄T33



S1

E3

 . (2.8)

where the reduced matrix of elastic, piezoelectric and dielectric constants is

C̄ =

c̄E11 −ē31

ē31 ε̄T33

 =

 sE11 0

−d31 0


−1 1 −d31

0 εT33

 (2.9)

where over-bar denotes that the respective constant is reduced from the three-

dimensional form to the plane-stress condition.

c̄E11 =
1

SE11

, (2.10a)

ē31 =
d31

SE11

, (2.10b)

ε̄S33 = εT33 −
d2

31

SE11

(2.10c)
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CHAPTER 3

LUMPED PARAMETER MODEL

3.1 LUMPED PARAMETER MODEL

The energy harvesting system consists of two cantilever beams as shown in figure A1

: 1) a soft beam as the driving beam, which is excited by base sinusoidal movement, 2)

the piezoelectric driven beam shown in figure A2. In this work, both beams are expressed

as lumped parameter models. For the piezoelectric driven beam, one DOF describes the

dynamics and the other DOF defines the generated electricity. Both beams’ equivalent

masses are obtained by expressing the total kinetic energy of the beam in term of the

velocity at the tip via Rayleight’s quotient [61]. The transverse deflections of the neutral

line of the driving beam and the piezoelectric driven beam can be written as,

wi(x, t) = φi(x)ui(t), i = d, p, (3.1)

where φd(x) and φp(x) are the transverse deflection function of the driving beam and the

piezoelectric driven beam, respectively. ud(t) and up(t) are the generalized coordinates of

the driving beam and the driven beam. The x-axis is coincident with the centroidal axis

of the undeformed beam, the y-axis is taken into the plane of the paper, and the z-axis is

the transverse coordinate. For both beams, the normal strain of an arbitrary point across

the thickness can be written as,

Si1(x, z) = −z∂
2wi(x, t)

∂x2
, i = d, p. (3.2)

the potential energy of the piezoelectric beam includes the material strain energy,

electric-mechanical coupling energy, and electric energy. Using the linear mechanical-

electrical constitutive law, the electric field generated by the elastic strain on the top and

bottom piezoelectric layers can be written as,
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E3(z, t) =



−vA
tp
ejωpt, ts

2
< z < ts

2
+ tp

0, − ts
2
< z < ts

2

vA
tp
ejωpt, − ts

2
− tp < z < − ts

2

(3.3)

where vA is the amplitude of the generated AC voltage and tp and ts are the thickness of

the piezoelectric and substrate layers. Hence the total potential energy of the piezoelec-

tric beam is,

Up =
1

2

∫
Vs

csS
2
p1dVs +

1

2

∫
Vp

cE11S
2
p1dVp −

∫
Vp

e31E3Sp1dVp −
1

2

∫
Vp

εS33E
2
3dVp, (3.4)

where Vs and Vp are the volume of the piezoelectric material and the volume of the sub-

strate, respectively. The equivalent stiffness of the driving and driven beam can be ob-

tained via two ways: 1) using the static deflection relation of a cantilevered beam due

to a concentrated transverse load at the tip, or 2) expressing the total strain energy of

a whole beam in terms of the tip point deflection. In this work we use the second ap-

proach, based on the strain definition of Equ.(4), the equivalent stiffness can be obtained,

1

2

∫
Vd

YdS
2
d1dVd =

1

2
keqdz

2
d(t), (3.5a)

1

2

∫
VS

YSS
2
P1dVS +

1

2

∫
Vp

YdS
2
P1dVp =

1

2
keqpz

2
p(t), (3.5b)

zi(t) = Φi(x)ui(t), i = d, p. (3.5c)

where zd(t) and zp(t) denote of the tip points displacements of the driving beam and the

piezoelectric driven beam, respectively. Yd and Vd are the elastic Young’s modulus and

the volume of the driving beam, respectively. If the static deflection function subjected

to a tip force is employed as the mode shape function for both driving beam and driven

beam, the equivalent masses of the driving beam and the driven beam can be solved as,
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keqd =
3YdId
L3
d

, (3.6a)

keqp =
bp(YSt

3
s + 8t3p + 12t2pts + 6t2stp)

4L3
p

, (3.6b)

Similarly, the equivalent masses of the driving beam and the driven beam are obtained

by expressing the total kinetic energy of each beam in terms of the tip point velocity of

each beam, that is,

1

2

∫
Vd

ρdẇd(x, t)
2dVd =

1

2
meqd ż

2
d(t), (3.7a)

1

2
(

∫
Vp

ρpẇp(x, t)
2dVp +

∫
VS

ρSẇp(x, t)
2dVS) =

1

2
meqp ż

2
p(t). (3.7b)

If the static deflection function subjected to a tip force is employed as the mode

shape function for both driving beam and driven beam, the equivalent masses of the

driving beam and the driven beam can be solved as [61],

meqd =
33

140
ρdAdLd, (3.8a)

meqp =
33

140
(ρpAp + ρSAS)Lp, (3.8b)

where Ld, Ad and ρd are the length, area and density of the driving beam and ρS, ρp are

substrate’s density and piezoelectric material’s density, respectively. Similarly, AS and

Ap are the cross section area of the substrate layer and the cross section area of both

piezoelectric layers. Lp is the length of the piezoelectric bimorph. With the strain energy

Equ.(7a) and the kinetic energy Equ.(9) of the driving beam, as well as the base exci-

tation, apply the Hamilton principle and add viscous damping, the lumped parameter

model of the driving beam is obtained,

meqd z̈d + cdżd + keqdzd = keqdzb + cdżb, (3.9)

where cd is damping coefficient of the driving beam and zb and żb are the displacement

and velocity functions of the base excitation. The equivalent mechanical electrical cou-

14



pling coefficient of the piezoelectric beam can be calculated by describing the mechanical

electrical coupling potential energy in Equ.(6) with the following form,

−
∫
Vp

e31E3SP1dVp = −θv(t)
zp(t)

Φ(Lp)
, (3.10)

with a static deflection mode shape function the electric-mechanical coupling coefficient

is solved as

θ = 3bp(ts + tp)L
2
pe31 (3.11)

The equivalent capacity of the piezoelectric beam is pull out from the electric energy

term in the potential energy Equ.(6),

−1

2

∫
Vp

εS33E
2
3dVp = −1

2
Cpv

2(t), (3.12)

Considering the series connection between the bimorph, the equivalent capacitance of the

bimorph is written as:

Cp =
bpLpε

S
33

2tp
. (3.13)

The generated electric energy due to strain will be retrieved from the piezoelectric beam,

the work caused by retrieving energy is written as,

W = vq, (3.14)

where q is the electric charge. Apply Hamilton principle to the strain energy Equ.(7),

kinetic energy Equ.(9), electric-mechanical coupling energy Equ.(11), electric potential

energy Equ.(14), and the generated electric energy retrieved from the piezoelectric beam

Equ. (16), and then add the viscous damping, the lumped parameter model of the piezo-

electric driven beam is obtained,

meqpz̈p(t) + cżp(t) + keqpzp(t) +
Θ

φp(Lp)
v(t) = 0, (3.15a)

− Θ

φp(Lp)
zp(t) + Cpv(t) = q. (3.15b)
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In this work, the resistive element will provide a means of removing energy from the sys-

tem,

v = −Rq̇. (3.16)

A pure resistive load is considered, which is directly connected to the piezoelectric ele-

ment. The electrical-mechanical coupling Equ.(3.15) can be written as:

meqpz̈p(t) + cżp(t) + keqpzp(t) +
Θ

φp(Lp)
v(t) = 0 (3.17a)

− Θ

φp(Lp)
żp(t) + Cpv̇(t) =

−v(t)

R
, (3.17b)

Following the same analysis method, if we denote the tip displacement of the plastic

beam as,

wd(Ld, t) = zd(t). (3.18)

We can write the lumped parameter model of the plastic driving beam as,

meqdz̈d(t) + ceqdżd(t) + keqdzd(t) = 0, (3.19)

where ceqd is the viscous damping coefficient of the plastic driving beam.

3.2 PERIODIC BOUNCING

3.2.1 Modeling of Two Beams Impact via Mapping Function

Considering the state vector variables z = (zp, zd)
T , the impact variables of kth im-

pact zdk , żdk and tk are defined as the impact position, after impact velocity and impact

time of the driving beam, respectively. Similarly, the impact variables of the piezoelectric

driven beam tk, zpk and żpk are defined as the impact time, position and after impact ve-

locity, respectively. For the time interval t ∈ [tk−1, tk], (k = 1, 2, ...), the implicit map Pk

is written as:

Pk : (zpk−1
, zdk−1

)→ (zpk , zdk)⇒ (zpk , zdk , żpk−1
, żdk−1

) = Pk(zpk−1
, zdk−1

, żpk , żdk). (3.20)
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In this study, the elapsed time during the impact of the beams has been neglected and a

constant coefficient of restitution is assumed. The velocity relations of the implicit map

can be presented as:

ż+
dk

=
meqd ż

−
dk

+meqp ż
−
pk

+ emeqp(ż−dk − ż
−
pk

)

meqd −meqp

(3.21a)

ż+
pk

=
−meqd ż

−
dk
−meqp ż

−
pk
− emeqd(ż−dk − ż

−
pk

)

meqd −meqp

(3.21b)

where ż+
dk

and ż−dk are the after impact and before impact velocities of the driving beam,

respectively. Similarly, ż+
pk

and ż−pk are the after impact and before impact velocities of

the driven beam and e is the coefficient of restitution.

The corresponding mechanical implicit relations of displacements and velocities of

the implicit map are:

f d1 (tk, tk−1, zdk−1
, ż+
dk−1

, ż+
pk−1

) = zdk =

e−ζdωnd
(tk−tk−1)

[
Csd sin(ωdd(tk − tk−1)) + Ccd cos(ωdd(tk − tk−1))

]
(3.22a)

+ A sin(Ωtk) +B cos(Ωtk)

f p1 (tk, tk−1, zdk−1
, ż+
dk−1

, ż+
pk−1

) = zpk =

e−ζpωnp (tk−tk−1)

[
Csp sin(ωdp(tk − tk−1)) + Ccp cos(ωdp(tk − tk−1))

]
(3.22b)
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FIGURE A1: A simple piezoelectric beam energy harvester with base excitation, (a) out-

put voltage, (b) harvested power
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f̂ d2 (tk, tk−1, zdk−1
, ż+
dk−1

, ż+
pk−1

) = żdk =

e−ζdωnd
(tk−tk−1)

[
(Csdωdd − Ccdζdωnd

) cos(ωdd(tk − tk−1))

− (Csdωnd
+ Ccdωdd) sin(ωdd(tk − tk−1))

]
+ AΩ cos(Ωtk) (3.23a)

−BΩ sin(Ωtk)

f̂ p2 (tk, tk−1, zdk−1
, ż+
dk−1

, ż+
pk−1

) = żpk =

e−ζpωnp (tk−tk−1)

[
(Cspωdp − Ccpζpωnp) cos(ωdp(tk − tk−1))

− (Cspωnp + Ccpωdp) sin(ωdp(tk − tk−1))

]
, (3.23b)

where

ωni
=

√
keqi
meqi

, i = d, p, (3.24a)

ζi =
ceqi

2
√
keqimeqi

, i = d, p, (3.24b)

ωdi =
√

1− ζ2
i ωni

, i = d, p, (3.24c)

where Csd , Ccd are the sine and cosine coefficient extracted from initial conditions and

A, B are the particular solution coefficients of the driving beam, respectively. Similarly,

Csp , Ccp are the initial condition constants of the driven beam. The above coefficients are

provided in appendix. In the above equations, f̂ p2 and f̂ d2 are the before impact velocity

equations of the driven and driving beams, respectively. By using Equ.(3.21) and (3.23),

we can get the after impact velocities of both beams as below:
f d2

f p2

 =


(meqd − emeqp)f̂ d2 +meqp(1 + e)f̂ p2

meqd(1 + e)f̂ d2 + (meqp − emeqd)f̂ p2

 . (3.25)
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FIGURE A2: Voltage a output from system with arbitrary initial condition, (a) voltage

versus time, (b) Voltage from the chattering phase versus time.
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FIGURE A3: Voltage a output from system with arbitrary initial condition, (a) voltage

versus time, (b) Voltage from the chattering phase versus time.
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According to Equ.(3.23) and Equ.(3.25), the discrete impact mapping functions can be

defined as:

F 1
k (tk, zdk , tk−1, zdk−1

, ż+
dk−1

, ż+
pk−1

) = fd1 − zdk−1
= 0, (3.26a)

F 2
k (tk, zdk , ż

+
dk
, ż+
pk
, tk−1, zdk−1

, ż+
dk−1

, ż+
pk−1

) = fd2 − ż+
dk−1

= 0, (3.26b)

F 3
k (tk, zdk , tk−1, zdk−1

, ż+
dk−1

, ż+
pk−1

) = fp1 − zpk−1
= 0 (3.26c)

F 4
k (tk, zdk , ż

+
dk
, ż+
pk
, tk−1, zdk−1

, ż+
dk−1

, ż+
pk−1

) = fp2 − ż+
pk−1

= 0, (3.26d)

zdk = zpk , (3.26e)

zdk−1
= zpk−1

. (3.26f)

Once the switching points for a specific periodic motion is obtained, the local stability

and bifurcation analysis can be achieved through the corresponding stability Jacobian

matrix:

DP = DP−1
1 ·DP0 =

[
∂Fk

∂Zk+1

]−1[
∂Fk

∂Zk

]
, (3.27)

where

Fk = [F 1
k , F

2
k , F

3
k , F

4
k ]T , (3.28a)

Zk = [tk, zdk , żdk , żpk ]T , (3.28b)

DPi =

[
∂Fk+i

∂Zk+i−1

]
. (3.28c)

Considering the eigenvalues of DP, the following statements hold:

If all |λi| < 1 for (i = 1, 2, 3, 4), the periodic motion is stable.

If |λi| > 1 for (i ∈ {1, 2, 3, 4}), the periodic motion is unstable.

If λi = −1 and |λj| < 1 for (i, j ∈ {1, 2, 3, 4} and i 6= j), the period-doubling

bifurcation of periodic motion occurs.

If λi = 1 and |λj| < 1 for (i, j ∈ {1, 2, 3, 4} and i 6= j), the saddle-node bifurcation of

the periodic motion occurs.
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FIGURE A4: Power output from system with arbitrary initial condition, (a) power ver-

sus time, (b) power from the chattering phase.
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If |λi,j| = 1 is a pair of complex eigenvalues, the Neimark bifurcation of the periodic

motion occurs.

3.2.2 NUMERICAL PREDICTIONS

In this section, different types of motions of the proposed piezoelectric energy har-

vester system are studied and the bifurcation diagrams of periodic solution with impact-

driven motions are obtained. The numerical predictions of the output voltage and power

of period-1 to period-2 motions are also examined.

3.2.3 Motion with arbitrary initial condition

The goal of this research is to enhance the piezoelectric harvester’s energy retriev-

ing performance from ambient vibrations with low or varying frequencies. Therefore,

the frequency region in our study is less than the natural frequency of the piezoelectric

beam. As a reference point, let’s first test the voltage and power output of the piezo-

electric beam without impact, when the ambient vibration frequency and magnitude

are set to be Ω = 1.6 Hz,Q = 0.02m. Using the provided model, the output voltage

and power from a piezoelectric beam without impact are presented in the figure A1. It is

shown that the output voltage and power are less than one mili-volt and one nano-watt

via shaking a single piezoelectric beam with low excitation frequency.

In order to improve the energy harvesting efficiency, an impact-driven piezoelectric

harvester is introduced. The output voltage and power of the piezoelectric beam excited

by impact from the driving beam with arbitrary initial condition are predicted as shown

in figures A3 and A4 and, the displacement of the piezoelectric beam is presented in fig-

ure A2. Comparing figures A1(b) and A4(b), one can see that the impact-driven piezo-

electric harvester has great potential to provide much more energy when the excitation

frequency is low.

Four different types of motions are defined for the impact-driven piezoelectric beam:
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FIGURE A5: Period-1 motion displacement of the driving beam (red) and driven beam

(blue) and phase-diagram for the piezoelectric driven beam at Ω = 86 Hz, (a) Displace-

ment versus time, (b) Velocity versus Position.
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FIGURE A6: Period-1 motion displacement of the driving beam (red) and driven beam

(blue) and phase-diagram for the piezoelectric driven beam at Ω = 133 Hz, (a) Displace-

ment versus time (b) Velocity versus Position.
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FIGURE A7: Period-1 motion displacement of the driving beam (red) and driven beam

(blue) and phase-diagram for the piezoelectric driven beam at Ω = 178 Hz, (a) Displace-

ment versus time, (b) Velocity versus Position.
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FIGURE A8: Impact time of the beams versus excitation frequency Ω ∈ [85, 318] Hz.

FIGURE A9: Impact position of the beams versus excitation frequency Ω ∈ [85, 318] Hz.
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stick motion, free vibration, chattering and rapid-impact. Stick motion happens when

the beams move along with each other after the impact. Free vibration motion phase is

defined as the piezoelectric beam performs at least three complete cycles of its periodic

motion after the impact. The chattering motion happens when two beams hit each other

rapidly with a small amplitude which usually ends up to stick motion phase, in other

words, chattering motion is a pre-stick motion phase of motion (figure A2(b)). Rapid-

impact motion is defined when the piezoelectric beam does not have enough time to let

three cycles of motion to finish before the next impact. The rapid-impact phase is simi-

lar to chattering motion phase but it does not followed by stick motion phase and has a

larger amplitude. The output voltage and power for three different types of motion with

arbitrary initial conditions are studied, where figure A2(a) shows the displacements of

the driving beam and the driven beam of chattering motion followed by stick motion and

free vibration phase. In figure A2(b) the red and blue lines stand for the tip point dis-

placement of the driven and driving beams in the chattering motion phase, respectively.

According to figures A3 and A4, one can observe that a lot of voltage and naturally

power is retrieved in chattering motion phase, while the generated power in the other two

phases are not significant. The high performance of the chattering motion phase leads us

to study periodic motion with rapid-impact phase in order to get the best possible power

output. The pure rapid-impact motion would not occur naturally with arbitrary initial

conditions, which can be achieved in periodic motions via properly calculating the initial

conditions. Non-periodic rapid-impact motions end up to a stick motion phase and will

not improve the power generation efficiency.

Therefore, to increase the energy harvesting efficiency via impact-induced frequency

up-conversion, one needs to carefully investigate the impact dynamics of the system.

These studies can help us to: 1) identify domains of low energy generation stick motions;

2) obtain optimum system parameters correlations, such the gap between beams or exci-

tation frequencies; 3) find proper initial conditions to start consecutive chattering phase
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of the piezoelectric beam with high-efficiency power output.

3.2.4 Periodic Motion

For an impact-driven system, periodic motions are the simplest ones. To deeply un-

derstand the impact-driven frequency up-converter system, periodic motions of the en-

ergy harvesting system are studied. Based on figures A2, A3 and A4, in order to have op-

timum motion, the system has to avoid stick motion and contain more rapid-impact mo-

tion. Figures A5(a), A6(a) and A7(a) show multiple period-1 a period-1 motion, where

the red and blue lines represent the tip point displacements of the driven and the driving

beams in two cycles, respectively. Figures A5(b), A6(b) and A7(b) are the velocity versus

displacement or the phase portrait of period-1 motion of the piezoelectric beam.

In this section, the bifurcation diagrams of periodic motions are presented via study-

ing the analytic solutions of period-1 to period-2 motions. Without losing generality, a

set of system parameters are considered as :Q = 0.05m, e = 0.7, as the base exci-

tation amplitude and the coefficient of restitution. The bifurcation diagram as well as

the numerical solutions of period-1 to period-2 motions of this coupled beam oscillators

are obtained via studying the implicit mapping dynamics of the system. As the excita-

tion frequency varies, the bifurcation diagram of impact time, switching displacements

and switching velocities of the periodic solutions are shown in figures A8, A9 and A10,

where the solid blue and red dashed lines represent the stable and unstable motions,

respectively. The acronyms NB, SN and PD, represent the Neimark, saddle-node and

period-doubling bifurcation points, respectively. The period-4 motions can be gener-

ated from the period-doubling bifurcation points of period-2 motions. Similarly, period-8

motions appear from the period-doubling bifurcation points of period-4 motions. figure

A16(a) shows the average harvested power from P-1 and P-2 motions. According to fig-

ure A16(a) the proposed system generates more power in lower frequencies compared to

the higher frequencies. A small stable P-2 branch exists for this kind of motion, which is
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FIGURE A10: Impact velocity of the beams versus excitation frequency Ω ∈

[85, 318] Hz, (a) Impact velocity of driven beam versus excitation frequency, (b) Impact

velocity of driving beam versus excitation frequency.
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better visible in the zoom in part of figure A9. Since the output power of the stable P-2

motion is not visible in on figure A16(a) a sample P-2 stable motion output voltage and

power is provided in figure A15. These graphs demonstrate that the power generated in

the P-1 motion is about four times larger than the P-2 motion. The reason for this be-

havior can be explained using figures A7(b) and A11(b), where one can observe that the

second impact in P-2 motion generates about 5 m/s velocity jump, while the first impact

generated about 40 m/s velocity jump. On the other hand, the P-1 motion benefits the

20 m/s jump for all of its impacts. Based on the above observation, the period-4, period-

8, and other higher-order periodic motions are not studied in this research, because they

should have even lower output power and smaller bandwidth.

The tip point displacement of two beams and the phase diagram of the driven beam

for period-2 stable motion are shown in figure A11 over one period at Ω = 178 Hz. Fig-

ure A15 shows the generated voltage and power from the above motion with the opti-

mum resistor. Based on figure A16, three different stable P-1 regions are achieved, and

figures A5, A6 and A7 show one tip point displacement for both beams and velocities

for the driven beam from each region. Figures A12, A13 and A14, shows the output

power and voltage from these motions. Using figures A5, A6, A7, A12, A13 and A14,

one can observe that the output power is closely associated with the velocity jump and

the elapsed time between the impacts. For example, the motion in A5(b) has the largest

velocity jump and also has the largest generated power(A12(b)), however, comparing fig-

ures A6(b) and A7(b), the velocity jumps are 40 m/s and 20 m/s, respectively, while the

output power in the A14(b) is slightly greater than A13(b). That is because the higher

excitation frequency produces faster impacts or more kinetic energy transfer. Excitation

frequency of the motion of figures A7(b) and A14(b) is much higher than the motion of

figures A6(b) and A13(b). When velocity jump is bigger in each impact, more kinetic en-

ergy will be transferred from driving beam to the driven beam, while when the excitation

frequency is higher, faster impacts and energy transfer will be obtained.
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FIGURE A11: Period-2 motion at Ωx = 178 Hz, (a) Position of the driving beam (red)

and driven beam (blue) versus time, (b) Velocity versus Position of the driven beam.
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FIGURE A12: Output voltage and harvested power versus time in period one motion

within ten periods at Ω = 86 Hz, (a) Voltage versus time (b) Harvested power versus

time.
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FIGURE A13: Output voltage and harvested power versus time in period one motion

within ten periods at Ω = 133 Hz, (a) Voltage versus time, (b) Harvested power versus

time.
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FIGURE A14: Output voltage and harvested power versus time in period one motion

within ten periods at Ω = 178 Hz, (a) Voltage versus time, (b) Harvested power versus

time.
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FIGURE A15: Output voltage and harvested power versus time in period two within ten

periods at Ω = 178 Hz, (a) Voltage versus time, (b) Harvested power versus time.
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FIGURE A16: Output power comparison between impact-driven PEH and directly ex-

cited PEH in the frequency domain of 0 Hz to half of the natural frequency of the PEH:

a) Average harvested power versus excitation frequency of the impact-driven system, (b)

Average harvested power versus excitation frequency of the directly excited PEH.
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FIGURE A17: Impact-driven piezoelectric energy harvester with controlled impact

Comparing figure A16(a) and figure A16(b), one can see that at low-frequency ex-

citation region, generated power from the impact model is much higher than that from

the non-impact model. This shows the efficacy of the proposed impact-driven frequency-

up-conversion system. In the future, we will look for other periodic motions in the low-

frequency domain to find out the maximum generated power from different periodic mo-

tions and, discovering effective factors on the power level of various periodic motions.

3.3 CONTROLLED IMPACT

In previous work, the periodic motion of an impact-driven piezoelectric energy har-

vester was introduced and investigated via discontinuous dynamics, in that work the im-

pact only occurs on one side of the piezoelectric beam and impacts are determined by

initial conditions of vibrations. With these constraints, we found during one excitation

period; no single impact periodic solutions are achieved when excitation frequency is less
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than 500 (Rad/s). To optimize the energy retrieving from the vibration resource, each

impact should be an energy pump in action for the piezoelectric beam. In this work, as

shown in Fig.A17 a new system is proposed by adding a pair of rack and pinion gears

and a slider crank to control the impact occurring time between the driving beam and

the driven beam. In this way, the undesirable stick motion could be removed and guar-

antee during each impact maximum energy was pumped into the piezoelectric beam from

the excitation base. To optimize the energy output from the piezoelectric beam, opti-

mum resistance was calculated and connected to the piezoelectric bimorph. The soft

beam is subjected to a base excitation in vertical plane and rack, and pinion and slider

crank mechanism are designed to convert the vertical vibration to a horizontal motion

with smaller amplitude for the piezoelectric bimorph. This horizontal motion of the

piezoelectric beam controls the impact instant between the piezoelectric beam and the

plastic driving beam. By properly setting the crank and connecting rod length ratio, af-

ter the first impact, the piezoelectric beam will move back a small amount along its lon-

gitudinal direction and wait for the soft beam to finish its cycle before the next impact.

This assures during each impact the piezoelectric beam is hit by the plastic driving beam

at its largest velocity. Hence, the obtained period one motions can maximally pump out

of the kinetic energy from the excitation resource. With the new design, the stability of

the periodic solutions and bifurcation diagram of periodic solutions’ impact time, veloci-

ties, displacement are obtained. Harvested power versus the frequency of the base excita-

tion is also calculated.

Discontinuous Mapping

In this study, an impact-driven system, including a driving and a driven beam, has

been investigated. Considering an arbitrary motion, tk is the impact time of the kth im-

pact. Similarly, impact position and after impact velocity of the driven beam are ex-

pressed as zpk, ż
+
pk, respectively. In this study, we have two assumptions, the electric ef-
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fects on the dynamic responses of the piezoelectric beam is small and can be neglected,

in other words, only the forward mechanical-electric coupling effect is considered in the

lumped parameter model of the piezoelectric beam, which is also widely presumed in

most studies of piezoelectric energy harvesters. The second assumption we make is the

elapsed time during the impacts is neglectable. At the impact instant, the impact time

and position of the driving beam equal those of the driven beam. But the after impact

velocity of the driving beam will change and is denoted as ż+
pk. A constant coefficient of

restitution is assumed, and the velocity relations of this implicit map can be presented

as: 
ż+
dk

ż+
pk

 =
1

meqd +meqp

1 meqp

1 −meqd



meqd ż

−
dk

+meqp ż
−
pk

e(ż−pk − ż
−
dk

)

 , (3.29)

where e, ż−p and ż−p coefficient of restitution, before impact velocities of the driving and

driven beams, respectively.

Considering a base excitation with a constant frequency, once the system is excited,

the impact vibrations of both beams will settle to a periodic motion with dynamic prop-

erties determined by the physical nature of the system. The periodic motions can be

defined based on the number of impacts in each cycle of the excitation. The number of

impacts per excitation cycle is determined by the excitation frequency, amplitude, the

beams natural frequencies, as well as the gap between beams. However, if the tip overlap

of two beams is controlled by the small longitudinal shift of the driven beam, the number

of the impacts per cycle will not only be altered but also be synchronized so that each

impact guarantees there is maximum kinetic energy pumped into the piezoelectric beam

from the driving beam. As shown in Fig.A18, the inline crank sliders system shows the

90-degree phase shift between the longitudinal based displacement of the piezoelectric

beam and the transverse direction base displacement of the plastic driving beam. Via ad-

justing the connecting rod length and the offset of the crank slider, we can control the

impact occurring instant between the driving beam and the piezoelectric beam during
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FIGURE A18: The longitudinal direction of the piezoelectric beam and the transverse

motion of the driving beam, and small circles represent impacts occur.

one excitation cycle. With crank and connecting rod length ratio 1:1 and motion ampli-

fier levers, Fig.A18 shows the relations of the transverse base excitation of the driving

beam and the longitudinal base motion of the piezoelectric beam. One can observe that

the mechanism controls the impact instants during one cycle of excitation so that the un-

favorable stick motion could be removed. The transient simulations of Figs.A19, A20

and A21 illustrate the advantage of impact controlling. We fix the base excitation am-

plitude, frequency, and initial conditions, Fig.A19 (a), A20 (a), and A21 (a) are the tip

points displacements, output voltage, and output power of an impact driven piezoelec-

tric bimorph without impact controlling mechanism. While Fig.A19 (b), A20 (b), and

A21 (b) are the displacement, voltage, and power output of the same impact-driven bi-

morph but adding the impact controller. Let’s first look at the none impact-controlled

case, from the driving beam and the driven beam displacements of Fig. A19(a), we see

in one period, there are impacts, chattering, and stick motions. Fig.A20(a) shows that
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FIGURE A19: Motion comparison between cases with and without impact controller. (a)

Tip points displacements of none impact-controlled case; (b) Tip points displacements of

impact-controlled case;
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FIGURE A20: harvested power comparison between cases with and without impact con-

troller. (a) output voltage of none impact-controlled case; (b) output voltage of impact-

controlled case;
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FIGURE A21: Generated voltage comparison between cases with and without impact

controller. (e) output power of none impact-controlled case; (f) output power of impact-

controlled case.
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in one period, only the first impact generates large voltage and output power. Hence it

transfers the kinetic energy of the driving beam to the piezoelectric bimorph. The fol-

lowing impact causes voltage drop because of the kinetic energy of the piezoelectric bi-

morph bumped back to the driving beam. The following chattering and stick motion fur-

ther reduce the output voltage. Now let us look at the case with impact controller, from

Fig.A19 (b), we can see that after the first impact that the kinetic energy of the driving

beam is retrieved into the piezoelectric bimorph, the controller moves the piezoelectric

beam back to avoid the second impact with the driving beam. Hence, the piezoelectric

beam can experience a short time of free vibrations and transfer its kinetic energy into

electric energy instead of pumping back to the driving beam. As the sticking motions

removed from the periodic solutions in the impact- controlled case, the output voltage in-

creased about three times via comparing Fig.A20 (a) and A20 (b). The output power of

the impact-controlled case is augmented almost ten times based on the comparison be-

tween Fig.A21 (a) and A21 (b).

In the following analysis, discontinuous mapping will be applied to obtain the peri-

odic solution. A general periodic motion with k impacts in each cycle can be defined as:

Pn : (tn, zdn , zpn , żdn , żpn)⇒ (tn+k, zdn+k
, zpn+k

, żdn+k
, żpn+k

). (3.30)

In this study, period-1 motion refers to a periodic motion with one impact in each ex-

citation cycle. Period-2 motion is defined as a motion that repeats itself in every two

impacts during two excitation cycles and it is bifurcated from a period-1 solution. The

expression of the above motions can be shown in below equations:

(tn, zdn , zpn , żdn , żpn)⇒ P1(tn+1, zdn+1 , zpn+1 , żdn+1 , żpn+1). (3.31a) (tn, zdn , zpn , żdn , żpn)

(tn+1, zdn+1 , zpn+1 , żdn+1 , żpn+1)

 = P2

 (tn−2, zdn−2 , zpn−2 , żdn−2 , żpn−2)

(tn−1, zdn−1 , zpn−1 , żdn−1 , żpn−1).

 (3.31b)

Using the Equ. (3.31a) and Equ. (3.31b), the implicit relations of displacement and ve-

locity of the system can be represented as:
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zpk = zdk = zk

zk = e−ζdωnd
(tk−tk−1)

[
Csd sin(ωdd(tk − tk−1)) + Ccd cos(ωdd(tk − tk−1))

]
+ A sin(Ωtk) +B cos(Ωtk)

zk = e−ζpωnp (tk−tk−1)

[
Csp sin(ωdp(tk − tk−1)) + Ccp cos(ωdp(tk − tk−1))

]
ż−dk = e−ζdωnd

(tk−tk−1)

[
(Csdωdd − Ccdζdωnd

) cos(ωdd(tk − tk−1))

− (Csdωnd
+ Ccdωdd) sin(ωdd(tk − tk−1))

]
+ AΩ cos(Ωtk)

−BΩ sin(Ωtk)

ż−pk = e−ζpωnp (tk−tk−1)

[
(Cspωdp − Ccpζpωnp) cos(ωdp(tk − tk−1))

− (Cspωnp + Ccpωdp) sin(ωdp(tk − tk−1))

]
,

(3.32)

where;

ωni =

√
keqp
meq p

, i = p, d

ζi =
ceqi

2
√
keqimeqi

, i = p, d

ωdi =
√

1− ζ2
i ωni

, i = p, d

(3.33)

and Csd ,Ccd are the sine and cosine coefficient extracted from initial conditions and A, B

are the particular solution constants of the driving beam, respectively. Similarly, Csp , Ccp

are the initial condition constants for the driven beam. According to Equ. (3.31a) and

Equ. (3.32), the discrete impact mapping functions for period-1 motion can be defined
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as:

F 1
k (tk, zk, tk−1, zk−1, ż

+
dk−1

, ż+
pk−1

) = zk − zk−1 = 0

F 2
k (tk, zk, ż

+
dk
, ż+
pk
, tk−1, zk−1, ż

+
dk−1

, ż+
pk−1

) = ż+
dk
− ż+

dk−1
= 0

F 3
k (tk, zk, tk−1, zk−1, ż

+
dk−1

, ż+
pk−1

) = zk−1 − zk−1 = 0

F 4
k (tk, zk, ż

+
dk
, ż+
pk
, tk−1, zk−1, ż

+
dk−1

, ż+
pk−1

) = żp
+
k−1 − żp

+
k−1 = 0,

(3.34)

Solving the above equations simultaneously will lead to the bifurcation graph of the

period-1 motion. The local stability of period-1 can be analyzed through the correspond-

ing stability Jacobian matrix:

DP = DP−1
1 ·DP0 =

[
∂Fk+1

∂Xk

]−1[
∂Fk

∂Xk−1

]
, (3.35)

where X = [tk, zk, żdk , żpk ]T and Fk = [F 1
k , F

2
k , F

3
k , F

4
k ]T For eigenvalue analysis:

If all |λi| < 1 for (i = 1, 2, 3, 4), the periodic motion is stable.

If one of |λi| > 1 for (i ∈ {1, 2, 3, 4}), the periodic motion is unstable.

If one of λi = −1 and |λj| < 1 for (i, j ∈ {1, 2, 3, 4} and i 6= j), the period-doubling

bifurcation of periodic motion occurs.

If one of λi = 1 and |λj| < 1 for (i, j ∈ {1, 2, 3, 4} and i 6= j), the saddle-node

bifurcation of the periodic motion occurs.

If |λi,j| = 1 is a pair of complex Eigenvalues, the Neimark bifurcation of the periodic

motion occurs.

3.4 NUMERICAL SIMULATION

In this section, different types of motions of the proposed piezoelectric energy har-

vester system are studied, and the bifurcation diagrams of the periodic solution of the

impact-driven motions are obtained. The numerical predictions of the output voltage and

power of period-1 to period-2 motions are also examined. The slider crank mechanism

generates a horizontal movement for the piezoelectric beam so the driving beam and the
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driven beam can pass each other without impact. The benet of such a design is that the

soft beam hits the piezoelectric beam with maximum energy transforming into the har-

vester.

The base excitation amplitude is 5(cm) and frequency Ω = 15.12 Hz. Figs. A22(a)

and A23(a) are the voltage and power output of the non-impact case, in which the piezo-

electric bimorph is directly subjected the same base excitation as the impact case. For an

impact-driven system, periodic motions are the simplest ones to study. Figs.A22 (b) and

A23(b) are the output voltage and output power of a period-1 solution of our designed

impact controlled piezoelectric harvester. The impact driven system produces more volt-

age and power than a non-impact piezoelectric beam with the same base excitation con-

ditions. This conclusion is observed by comparing Figs.A22 (a) and A22(b) with Figs.

A23(a) and A23(b). As we can see that, the output voltage amplitude of the impact

driven bimorph is about 15 times larger than that of the non-impact case. Hence, the

output power amplitude of the impact case is more than 200 times bigger than that of

the non-impact case. Figs.A26 and Figs.A27 Show the output voltage and output power

of the stable period-2 motion and the stable period-1 motion with the same base excita-

tion frequency and amplitude. Comparing Fig.A24 (a) and Fig.A24 (b) with Fig.A25 (a)

and Fig.A25 (b), with the same based excitation amplitude, although the impact num-

bers of the period-2 solution is almost doubled during the same time period, the period-2

vibration does not produce more power. The reason for the period-1 motion transfers

more energy to the piezoelectric beam compared to period-2 motion is that the period-1

solution happens when the driving beam hits the piezoelectric beam with a larger veloc-

ity. On the other hand, for the case of a period-2 solution we found, when the driving

beam encounters with the piezoelectric beam, the driving beam’s velocity is low which is

close to the zero velocity point. With the base excitation amplitude fixed, as the base

excitation frequency increases, the vibration amplitude of the driving beam decreases

due to the base excitation frequency is further away from the natural frequency of the
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FIGURE A22: output voltage comparison between the non-impact piezoelectric energy

harvester and impact piezoelectric energy harvester. Excitation frequency Ω= 15.12 Hz

and excitation amplitude 5cm, (a) output voltage of the non-impact harvester; (b) out-

put voltage of the impact harvester;
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FIGURE A23: output voltage comparison between the non-impact piezoelectric energy

harvester and impact piezoelectric energy harvester. Excitation frequency Ω= 15.12 Hz

and excitation amplitude 5cm, (a) output power from the non-impact harvester; (b) out-

put power from the impact harvester.
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driving beam. If the gap between the driving beam and the piezoelectric driven bimorph

does not change, the impact velocity of the driving beam will become smaller. In this

section, the bifurcation diagrams of periodic motions are presented via studying the an-

alytic solutions of period-1 to period-2 motions. Without losing generality, a set of sys-

tem parameters are considered as Q=1 mm and e = 0.9, as the base excitation amplitude

and the coefcient of restitution. As the excitation frequency varies, the bifurcation di-

agram of impact time, switching displacements and switching velocities of the periodic

solutions are shown in Figs. A28 and A29, where the solid blue and red dashed lines rep-

resent the stable and unstable motions for period-1, and solid green and dashed dark red

lines stand for stable and unstable period-2 motion, respectively. The generated power

and voltage of the proposed system are compared to a conventional energy harvesting

beam, which is directly subjected to the same base excitation. From the comparison be-

tween Figs. A30 (a) and A30 (b), we can see that in the low-frequency region, that is the

base excitation frequency is much smaller than the natural frequency of the piezoelectric

bimorph, the energy harvesting performance of the impact system is much better than

that of the non-impact system. From Fig.A30 (b), we can see as the based excitation fre-

quency equals 4 Hz, the impact system can generate 60 (W) power, while the non-impact

system case produces almost zero power. Even in the frequency domain between 8 Hz to

40 Hz, the average power generated from the impact system is much higher than those

obtained from the non-impact system. However, as the excitation frequency continu-

ously approaches to the natural frequency of the piezoelectric bimorph, the non-impact

piezoelectric bimorph generates power will more approach to the power output of the

impact system. That is because as the excitation frequency becomes closer to the nat-

ural frequency of the bimorph, resonance vibrations stimulate considerable stress of the

piezoelectric bimorph in the non-impact system. When the vibration source only contains

low-frequency vibrations, the frequency-up converse phenomena induce by impacts will

improve the energy harvesting efficiency for obvious.
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FIGURE A24: Period-1 at Ω=15.12 Hz, (a) tip points displacement of both beams of the

period-1 solution; (b) Phase diagram of the Period-1 motion,
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FIGURE A25: Period-2 at Ω=15.12 Hz, (a) tip points displacement of both beams of the

period-2 solution; (b) Phase diagram of the period-2 motion.
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FIGURE A26: Comparison between the proposed system at period-1 motion and period-

2 motion at Ω = 15.12 Hz, (a) output voltage of period-1 solutions; (a) output voltage of

period-2 solutions; (c) Output power of period-1 solutions; (d) Output power of period-2

solutions
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FIGURE A27: Comparison between the proposed system at period-1 motion and period-

2 motion at Ω = 15.12 Hz, (a) Output power of period-1 solutions; (b) Output power of

period-2 solutions.

56



FIGURE A28: Bifurcation diagrams of the proposed system (a) Impact time vs excita-

tion frequency, (b) Impact positions of the impact-driven system vs excitation frequency,
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FIGURE A29: Bifurcation diagrams of the proposed system (a) After impact velocity

of the piezoelectric beam vs excitation frequency, (b) After impact velocity of the soft

driving beam vs excitation frequency.
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FIGURE A30: (a) Average harvested power from the impact driven system vs excitation

frequency, (b) Average harvested power from a simple piezoelectric beam with base exci-

tation vs excitation frequency.
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CHAPTER 4

EULER-BERNOULLI BEAM MODEL

4.1 EULER-BERNOULLI BEAM EQUATION

For a piezoelectric beam in Fig.A1, the total kinetic energy T and the total poten-

tial energy U are written as,

T =
1

2

∫
Vs

ρs(Ȧ(t) + ẇ(x, t))2dVs +
1

2

∫
Vp

ρp(Ȧ(t) + ẇ(x, t))2dVp (4.1a)

U =
1

2

∫
Vs

YsS
2
1dVs +

1

2

∫
Vp

c11S
2
1dVp −

1

2

∫
Vp

e31S1E3dVp −
1

2

∫
Vp

ε33E
2
3dVp. (4.1b)

where Vp and Vs are the volume of the piezoelectric material and the volume of the sub-

strate, respectively. w(x, t) represents the deformed bending direction displacements of a

point on the neutral surface relative to the unreformed position. S1 is the normal strain

of an arbitrary point across the thickness of the bimorph. With the linear mechanical-

electrical constitutive law, the electric field generated by the elastic strain on the top and

bottom piezoelectric lays can be written as,

E(z, t) = φ(z)V (t) =


− |z|vA

zhp
, hs

2
≤ |z| ≤ hs

2
+ hp

0, 0 ≤ |z| < hs
2
,

(4.2)

with V (t) as the generated AC voltage, hp and hs are the thickness of each piezoelectric

layer and the thickness of the substrate layer as shown in Fig. A1. With Euler-Bernoulli

beam assumption, the normal strain of an arbitrary point across the thickness of the bi-

morph S1 can be written as,

S1(x, z) = −z∂
2w(x, t)

∂x2
. (4.3)

The work W acting on the PZT bimorph including the impulse caused by the impact at

the tip of the beam and the external load resistance can be written as,

W =

∫ L

0

W (x, t)F0δ(t− t∗)δ(x− L)dx−
nq∑
j=1

V (t)qj, (4.4)
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where q is the charge, F0δ(t − t∗)δ(x − L) is the impulse caused by the impact at the

tip of the beam, and t∗ is the time instant that impact occurs. R is the load resistance

connected on the piezoelectric beam. Later on, further analysis will be performed to de-

termine the unknown magnitude of the impulse(F0). Substituting Equations 4.2 and 4.16

into equation 4.1, then further apply the Hamilton’s principle,∫ t2

t1

(δT − δU + δW ) = 0. (4.5)

the partial deferential equation will be obtained:

Y I
∂4(w(x, t))

∂4x
+m

∂2(w(x, t))

∂2t
= 0. (4.6)

To obtain the discretized equation of motion with one mode on the dynamics part, we

write the displacements of the bimorph in terms of the free vibration cantilever modal

function Φ1(x),

w(x, t) = Φ1(x)η1(t) (4.7a)

Φ1(x) = C1

[
cosh

β1x

L
− cos

β1x

L
− λ1(sinh

β1x

L
− sin

β1x

L
)

]
, (4.7b)

where β1 = 1.8751 , λ1 = .7341 , and C1 is the mass normalization coefficient, that is∫ L

0

(ρsAs + ρpAp)Φ
2
1(x)dx = 1. (4.8)

After add viscous damping, the following coupled equations discretized equations

obtained,

η̈1(t) + 2ξ1ω1η1(t) + ω2
1 η̇1(t) + θV (t) = −I1Ä(t) + Φ1(L)F0δ(t− t0), (4.9a)

− θη1(t) + CpV (t) = q(t), (4.9b)

where xi1 is the damping ratio corresponding to the first mode, I1 =
∫ L

0
(ρsAs +

ρpAp)Φ1(x)dx, θ = −
∫
Vp
zΦ′′1(x)e31φ(z)dVp , ω1 = β2

1

√
b[(6h2shp+12hsh2p+8h3p)Yp+h3sYs]

12(ρsAs+ρpAp)L4 . For

a series connected bimorph, the total capacitance of the piezoelectric beam is written as
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Cp = 1
2

∫ L
0

∫ tp+ts/2

ts/2
bεS33φ

2(z)dzdx. with a resistance load the voltage and the charge rela-

tion can be written as,

V (t) = −Rq(t). (4.10)

Therefore the final mechanical-electrical coupling equation can be rewritten as,

η̈1(t) + 2ξ1ω1η̇1(t) + ω2
1η1(t) + θV (t) = I1Ω2A0 sin Ωt+ Φ1(L)F0δ(t− t0), (4.11a)

− θη̇1(t) + CpV̇ (t) = −V (t)

R
, (4.11b)

As we mentioned before, the impact amplitude will be determined based on the later on

impact analysis.

4.1.1 The piezoelectric beam impacts with another plastic beam

Piezoelectric Beam

If we only consider forward coupling and neglect the backward coupling, based on

reference [10] (L. Meirovitch, 1997, Principles and Techniques of Vibrations), the solution

of equation (10a) can be written as, Before impact,

η−1 (t) =
1

ω1d

I1Ω2A0

∫ t

0

sin (Ωτ)e−ξ1ω1(t−τ) sinω1d(t− τ)dτ

+ e−ξ1ω1t

(
cos(ω1dt) +

ξ1√
1− ξ2

1

sin(ω1dt)

)
η1(0) +

1

ω1d

e−ξ1ω1t sin(ω1dt)η̇1(0),

(4.12)

Or

η−1 (t) = eζ1ω1t

(
cos(ω1dt) +

ξ1√
1− ξ2

1

)
η1(0) +

1

ω1d

e−ξ1ω1t sin(ω1dt)η̇1(0)

+ I1Ω2A0

Ω
ω1d
e−ξ1ω1t((Ω2 − ω2

1 + 2ξ2
1ω

2
1) sin(ω1dt)) + (ω2

1 − Ω2) sin(Ωt)

Ω4 + 4ξ2
1Ω2ω2

1 − 2Ω2ω2
1 + ω4

1

+
2ξ1ω1ω1d cos(ω1dt)− 2ξ1ω1Ω cos(Ωt)

Ω4 + 4ξ2
1Ω2ω2

1 − 2Ω2ω2
1 + ω4

1

,

(4.13)
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After impact,

η+
1 (t) =

1

ω1d

I1Ω2A0

∫ t

0

sin (Ωτ)e−ξ1ω1(t−τ) sinω1d(t− τ)dτ

+ e−ξ1ω1t

(
cos(ω1dt) +

ξ1√
1− ξ2

1

sin(ω1dt)

)
η1(0) +

1

ω1d

e−ξ1ω1t sin(ω1dt)η̇1(0)

+
Φ1(L)F0

ω1d

e−ξ1ω1(t−t∗) sinω1d(t− t∗),

(4.14)

Or expand the integral

η+
1 (t) = eζ1ω1t

(
cos(ω1dt) +

ξ1√
1− ξ2

1

)
η1(0) +

1

ω1d

e−ξ1ω1t sin(ω1dt)η̇1(0)

+ I1Ω2A0

Ω
ω1d
e−ξ1ω1t((Ω2 − ω2

1 + 2ξ2
1ω

2
1) sin(ω1dt)) + (ω2

1 − Ω2) sin(Ωt)

Ω4 + 4ξ2
1Ω2ω2

1 − 2Ω2ω2
1 + ω4

1

+
2ξ1ω1ω1d cos(ω1dt)− 2ξ1ω1Ω cos(Ωt)

Ω4 + 4ξ2
1Ω2ω2

1 − 2Ω2ω2
1 + ω4

1

+
Φ1(L)F0

ω1d

e−ξ1ω1(t−t∗) sinω1d(t− t∗),

(4.15)

where ω1d = ω1

√
1− ζ2

1 . Based on the mass orthonormal conditions of the mode shape

functions,

η1(0) =

∫ L

0

(ρsAs + ρpAp)Φ1(x)w(x, 0)dx (4.16a)

η̇1(0) =

∫ L

0

(ρsAs + ρpAp)Φ1(x)ẇ(x, 0)dx, (4.16b)

From Equation 4.14, the before impact the tip point velocity can also be rewritten as,

ẇ(L, t−∗ ) = Φ1(L)
dη1(t−∗ )

dt
= Φ1(L)

[
− ω1√

1− ξ2
1

e−ξ1ω1t∗ sin(ω1dt∗)η1(0)

+ I1Ω2A0

∫ t∗

0

sin (Ωτ)e−ξ1ω1(t∗−τ) cosω1d(t∗ − τ)dτ

−ξ1ω1

ω1d

I1Ω2A0

∫ t∗

0

sin (Ωτ)e−ξ1ω1(t∗−τ) sinω1d(t∗ − τ)dτ

+
1

ω1d

e−ξ1ω1t∗
[
− ξ1ω1 sin(ω1dt∗) + ω1d cos(ω1dt∗)

]
η̇1(0)

]
,

(4.17)

Or expand the integration
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ẇ(L, t−∗ ) = Φ1(L)
dη1(t−∗ )

dt
= Φ1(L)

{
− ω1√

1− ξ2
1

e−ξ1ω1t∗ sin(ω1dt∗)η1(0)

+ I1Ω2A0

Ω
ω1d
e−ξ1ω1t∗(Ω2 − ω2

1)ω1d cos(ω1dt∗)

Ω4 + 4ξ2
1Ω2ω2

1 − 2Ω2ω2
1 + ω4

1

−
Ω
ω1d
e−ξ1ω1t∗(Ω2 + ω2

1)ξ1ω1 sin(ω1dt∗) + Ω(ω2 − Ω2
1) cos(Ωt∗) + 2ξ1ω1Ω2 sin(Ωt∗)

Ω4 + 4ξ2
1Ω2ω2

1 − 2Ω2ω2
1 + ω4

1

+
1

ω1d

e−ξ1ω1t∗
[
− ξ1ω1 sin(ω1dt∗) + ω1d cos(ω1dt∗)

]
η̇1(0)

}
,

(4.18)

Similarly,

ẇ(L, t+∗ ) = Φ1(L)
dη1(t+∗ )

dt
= Φ1(L)

[
− ω1√

1− ξ2
1

e−ξ1ω1t∗ sin(ω1dt∗)η1(0)

+ I1Ω2A0

∫ t∗

0

sin (Ωτ)e−ξ1ω1(t∗−τ) cosω1d(t∗ − τ)dτ + Φ1(L)F0

−ξ1ω1

ω1d

I1Ω2A0

∫ t∗

0

sin (Ωτ)e−ξ1ω1(t∗−τ) sinω1d(t∗ − τ)dτ

+
1

ω1d

e−ξ1ω1t∗
[
− ξ1ω1 sin(ω1dt∗) + ω1d cos(ω1dt∗)

]
η̇1(0)

]
,

(4.19)

Or expand integral

ẇ(L, t+∗ ) = Φ1(L)
dη1(t+∗ )

dt
= Φ1(L)

{
− ω1√

1− ξ2
1

e−ξ1ω1t∗ sin(ω1dt∗)η1(0)

+ I1Ω2A0

Ω
ω1d
e−ξ1ω1t∗(Ω2 − ω2

1)ω1d cos(ω1dt∗)

Ω4 + 4ξ2
1Ω2ω2

1 − 2Ω2ω2
1 + ω4

1

+ Φ1(L)F0

−
Ω
ω1d
e−ξ1ω1t∗(Ω2 + ω2

1)ξ1ω1 sin(ω1dt∗) + Ω(ω2 − Ω2
1) cos(Ωt∗) + 2ξ1ω1Ω2 sin(Ωt∗)

Ω4 + 4ξ2
1Ω2ω2

1 − 2Ω2ω2
1 + ω4

1

+
1

ω1d

e−ξ1ω1t∗
[
− ξ1ω1 sin(ω1dt∗) + ω1d cos(ω1dt∗)

]
η̇1(0)

}
,

(4.20)

Plastic Beam

Neglect the backward electric effect on the dynamics of the piezoelectric beam. As-

sume the bending deformation of the plastic beam is denoted by wb(xb, t) = Ψ1(xb)ξ1(t),

where Ψ1(xb) is the first bending mode normalized with the mass of the plastic beam.

According to Equation 4.11, the discretized one mode plastic beam equation can be writ-
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ten as,

ζ̈1(t) + 2ξ1bω1bζ̇1(t) + ω2
1bζ1(t) = I1bΩ

2
bB0 sin Ωbt−Ψ1(Lb)F0δ(t− t0), (4.21)

where Lb is the length of the plastic beam, Ωb is the base excitation frequency of the

beam, ω1b is the first natural frequency of the plastic beam, ξ1b is the damping ratio.

Similarly, I1b =
∫ Lb

0
ρbAbΨ1(xb)dxb . Note that comparing equation 4.11 and 4.21, one

can find the impulse due to impact are action and reaction forces for the two beams, i.e.

they are the same magnitude opposite directions. with the restitution coefficient is be-

tween the tips of two beams, we have,

e =
ẇ(L, t+∗ )− ẇb(Lb, t+∗ )

ẇb(Lb, t
−
∗ )− ẇ(L, t−∗ )

(4.22)

which leads us to:

ẇb(Lb, t
−
∗ ) = Ψ1(Lb)

[
−ξ1bω1b

ω1d

I1bΩ
2
bB0

∫ t∗

0

sin (Ωbτ)e−ξ1bω1b(t∗−τ) sinω1bd(t∗ − τ)dτ

+ I1bΩ
2
bB0

∫ t∗

0

sin (Ωbτ)e−ξ1bω1b(t∗−τ) cosω1bd(t∗ − τ)dτ − ω1b√
1− ξ2

1b

e−ξ1ω1bt∗ sin(ω1bdt∗)ζ1(0)

− 1

ω1bd

e−ξ1bω1bt∗
[
− ξ1bω1b sin(ω1bdt∗) + ω1bd cos(ω1bdt∗)

]
ζ̇1(0)

]
,

(4.23)

Or expand the integral,

ẇb(Lb, t
−
∗ ) = Ψ1(Lb)

{
I1bΩ

2
bB0

Ωe−ξ1bω1bt∗((Ω2 − ω2
1b) cos(ω1bdt∗)

Ω4 + 4ξ2
1bΩ

2ω2
1b − 2Ω2ω2

1b + ω4
1b

−
Ω
ω1bd

e−ξ1bω1bt∗(Ω2 − ω2
1b)ω1bξ1b sin(ω1bdt∗)

Ω4 + 4ξ2
1bΩ

2ω2
1b − 2Ω2ω2

1b + ω4
1b

− ω1b√
1− ξ2

1b

e−ξ1ω1bt∗ sin(ω1bdt∗)ζ1(0)

+
1

ω1bd

e−ξ1bω1bt∗
[
− ξ1bω1b sin(ω1bdt∗) + ω1bd cos(ω1bdt∗)

]
ζ̇1(0)

}
,

(4.24)

Similarly,
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ẇb(Lb, t
+
∗ ) = Ψ1(Lb)

[
−ξ1bω1b

ω1d

I1bΩ
2
bB0

∫ t∗

0

sin (Ωbτ)e−ξ1bω1b(t∗−τ) sinω1bd(t∗ − τ)dτ

+ I1bΩ
2
bB0

∫ t∗

0

sin (Ωbτ)e−ξ1bω1b(t∗−τ) cosω1bd(t∗ − τ)dτ − ω1b√
1− ξ2

1b

e−ξ1ω1bt∗ sin(ω1bdt∗)ζ1(0)

−Ψ1(Lb)F0 −
1

ω1bd

e−ξ1ω1bt∗
[
− ξ1bω1b sin(ω1bdt∗) + ω1bd cos(ω1bdt∗)

]
ζ̇1(0)

]
,

(4.25)

Or expand the integral,

ẇb(Lb, t
+
∗ ) = Ψ1(Lb)

{
I1bΩ

2
bB0

Ωe−ξ1bω1bt∗((Ω2 − ω2
1b) cos(ω1bdt∗)

Ω4 + 4ξ2
1bΩ

2ω2
1b − 2Ω2ω2

1b + ω4
1b

−
Ω
ω1bd

e−ξ1bω1bt∗(Ω2 − ω2
1b)ω1bξ1b sin(ω1bdt∗)

Ω4 + 4ξ2
1bΩ

2ω2
1b − 2Ω2ω2

1b + ω4
1b

− ω1b√
1− ξ2

1b

e−ξ1ω1bt∗ sin(ω1bdt∗)ζ1(0)

−Ψ1(Lb)F0 +
1

ω1bd

e−ξ1bω1bt∗
[
− ξ1bω1b sin(ω1bdt∗) + ω1bd cos(ω1bdt∗)

]
ζ̇1(0)

}
,

(4.26)

Substitute equation (14) and (15) into equation (11), the amplitude of the impulse due to

impact is solved,

F0 =
ẇb(Lb, t

−
k )− ẇb(Lb, t+k )

Ψ2
1(Lb)

=
ẇ(L, t+k )− ẇ(L, t−k )

Ψ2
1(L)

, (4.27)

Combine equation 4.22 and 4.25 and make further simplify, the magnitude of the impulse

is determined by the following equation,
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F0 =
(1 + e)(ẇb(Lb, t

−
k )− ẇ(L, t−k ))

Φ2
1(L) + Ψ2

1(Lb)
=

1 + e

Φ2
1(L) + Ψ2

1(Lb)

{
Ψ1(Lb)

{
I1bΩ

2
bB0

[ Ω
ω1bd

e−ξ1bω1bt∗((Ω2 − ω2
1b)ω1bd cos(ω1bdt∗)

Ω4 + 4ξ2
1bΩ

2ω2
1b − 2Ω2ω2

1b + ω4
1b

−(Ω2 + ω2
1b)ξ1bω1b sin(ω1bdt∗)) + Ω(ω2

1b − Ω2) cos(Ωt∗) + 2ξ1bω1bΩ
2 sin(Ωt∗)

Ω4 + 4ξ2
1bΩ

2ω2
1b − 2Ω2ω2

1b + ω4
1b

− ω1b√
1− ξ2

1b

e−ξ1ω1bt∗ sin(ω1bdt∗)ζ1(0)

+
e−ξ1ω1bt∗

ω1bd

[
− ξ1bω1b sin(ω1bdt∗) + ω1bd cos(ω1bdt∗)

]
ζ̇1(0)

}
− Φ1(L)

{
I1Ω2A0

[ Ω
ω1d
e−ξ1ω1t∗((Ω2 − ω2

1)ω1d cos(ω1dt∗)

Ω4 + 4ξ2
1Ω2ω2

1 − 2Ω2ω2
1 + ω4

1

−(Ω2 + ω2
1)ξ1ω1 sin(ω1dt∗)) + Ω(ω2

1 − Ω2) cos(Ωt∗) + 2ξ1ω1Ω2 sin(Ωt∗)

Ω4 + 4ξ2
1Ω2ω2

1 − 2Ω2ω2
1 + ω4

1

− ω1√
1− ξ2

1

e−ξ1ω1t∗ sin(ω1dt∗)η1(0)

+
e−ξ1ω1t∗

ω1d

[
− ξ1ω1 sin(ω1dt∗) + ω1d cos(ω1dt∗)

]
η̇1(0)

}
,

(4.28)

4.2 PERIODIC PLUCKING

The motion is called plucking if the beams are allowed to pass each other when they

hit each other. This motion is possible because of the flexibility of the driving beam and

relatively larger gap between the beams.

The main drawback of the periodic bouncing is its frequency bandwidth, where

based on the design parameters there is no possible periodic motion below a certain fre-

quency. Since we are looking for a possible periodic motion in lowest frequency to gener-

ate the maximum power and voltage, the proposed motion is possible in lower frequency

spectrum.
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4.2.1 Modeling of Two Beams Impact via Mapping Function

Considering the state vector variables z = (w,wb)
T , the impact variables of kth im-

pact wbk and ẇk and tk are defined as the impact position, after impact velocity and im-

pact time of the driving beam, respectively. Similarly, the impact variables of the piezo-

electric driven beam tk, wk and ẇk are defined as the impact time, position and after im-

pact velocity, respectively. For the time interval t ∈ [tk−1−tk+1], (k = 1, 2, ...), the implicit

map Pk is written as:

Pk : (wk−1, wbk−1
)→ (wk+1, wbk+1

)⇒

(wk+1, wbk+1
, ẇk+1, ẇbk+1

) = Pk(wk−1, wbk−1
, ẇk−1, ẇbk−1

). (4.29a)

The corresponding mechanical implicit relations of displacements and velocities of

the implicit map are:
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f bk (tk, tk−1, wbk−1
, ẇ+

bk−1
, ẇ+

k−1) = wbk =

Ψ1(Lb)

[
1

ω1bd

I1bΩ
2
bB0

∫ tk

tk−1

sin (Ωτ)e−ξ1bω1b(tk−τ) sinω1bd(tk − τ)dτ

+ e−ξ1bω1b(tk−tk−1)

(
cos(ω1bd(tk − tk−1)) +

ξ1b√
1− ξ2

1b

sin(ω1bd(tk − tk−1))

)
ζ1(tk−1)

+
1

ω1bd

e−ξ1bω1b(tk−tk−1) sin(ω1bd(tk − tk−1))ζ̇1(t+k−1)

]
, (4.30a)

ḟ bk (tk, tk−1, wbk−1
, ẇ+

bk−1
, ẇ+

k−1) = ẇ+
bk =

Ψ1(Lb)

[
−ξ1bω1b

ω1d

I1bΩ
2
bB0

∫ tk

tk−1

sin (Ωbτ)e−ξ1bω1b(tk−τ) sinω1bd(tk − τ)dτ

+ I1bΩ
2
bB0

∫ tk

tk−1

sin (Ωbτ)e−ξ1bω1b(tk−τ) cosω1bd(tk − τ)dτ

− ω1b√
1− ξ2

1b

e−ξ1ω1b(tk−tk−1) sin(ω1bd(tk − tk−1))ζ1(tk−1)

−Ψ1(Lb)F0 −
1

ω1bd

e−ξ1ω1b(tk−tk−1)
[
− ξ1bω1b sin(ω1bd(tk − tk−1))

+ ω1bd cos(ω1bd(tk − tk−1))
]
ζ̇1(t+k−1)

]
, (4.30b)
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fk(tk, tk−1, wbk−1
, ẇ+

bk−1
, ẇ+

k−1) = wk =

Φ1(Lb)

[
1

ω1d

I1Ω2A0

∫ tk

tk−1

sin (Ωτ)e−ξ1ω1(tk−τ) sinω1d(tk − τ)dτ

+ e−ξ1ω1(tk−tk−1)

(
cos(ω1d(tk − tk−1)) +

ξ1√
1− ξ2

1

sin(ω1d(tk − tk−1))

)
η1(tk−1)

+
1

ω1d

e−ξ1ω1(tk−tk−1) sin(ω1d(tk − tk−1))η̇1(t+k−1)

]
, (4.31a)

ḟk(tk, tk−1, wbk−1
, ẇ+

bk−1
, ẇ+

k−1) = ẇ+
k =

Φ1(L)

[
− ω1√

1− ξ2
1

e−ξ1ω1(tk−tk−1) sin(ω1d(tk − tk−1))η1(tk−1)

+ I1Ω2A0

∫ tk

tk−1

sin (Ωτ)e−ξ1ω1(tk−τ) cosω1d(tk − τ)dτ + Φ1(L)F0

−ξ1ω1

ω1d

I1Ω2A0

∫ tk

tk−1

sin (Ωτ)e−ξ1ω1(tk−τ) sinω1d(tk − τ)dτ

+
1

ω1d

e−ξ1ω1(tk−tk−1)
[
− ξ1ω1 sin(ω1d(tk − tk−1)) + ω1d cos(ω1d(tk − tk−1))

]
η̇1(t+k−1)

]
,

(4.31b)

According to Equ.(4.31) and Equ.(4.29), the discrete impact mapping functions can

be defined as:
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F 1
k (tk, wbk , tk−1, wbk−1

, ẇ+
bk−1

, ẇ+
k−1) = f bk+1 − wbk−1

= 0, (4.32a)

F 2
k (tk, wbk , ẇ

+
bk
, ẇ+

k , tk−1, wbk−1
, ẇ+

bk−1
, ẇ+

k−1) = ḟ bk+1 − ẇ+
bk−1

= 0, (4.32b)

F 3
k (tk, wbk , tk−1, wbk−1

, ẇ+
bk−1

, ẇ+
k−1) = fk+1 − wk−1 = 0 (4.32c)

F 4
k (tk, wbk , ẇ

+
bk
, ẇ+

k , tk−1, wbk−1
, ẇ+

bk−1
, ẇ+

k−1) = ḟk+1 − ẇ+
k−1 = 0, (4.32d)

F 1
k+1(tk+1, zbk+1

, tk, wbk , ẇ
+
bk
, ẇ+

k ) = f bk+2 − wbk = 0, (4.32e)

F 2
k+1(tk+1, wbk+1

, ẇ+
bk+1

, ẇ+
k+1, tk, wbk , ẇ

+
bk
, ẇ+

k ) = ḟ bk+2 − ẇ+
bk

= 0, (4.32f)

F 3
k+1(tk+1, wbk+1

, tk, wbk , ẇ
+
bk
, ẇ+

k ) = fk+2 − wk = 0 (4.32g)

F 4
k+1(tk+1, wbk+1

, ẇ+
bk+1

, ẇ+
k+1, tk, wbk , ẇ

+
bk
, ẇ+

k ) = ḟk+2 − ẇ+
k = 0, (4.32h)

wbk = wk, (4.32i)

wbk+1
= wk+1, (4.32j)

wbk−1
= wk−1. (4.32k)

Let Xk = [tk, wk, ẇk, ẇbk ]T and Pk = [F 1
k , F

2
k , F

3
k , F

4
k ]T Once the switching points for

a specific periodic motion is obtained, the local stability and bifurcation analysis can be

achieved through the corresponding stability Jacobian matrix:

S =

[
∂Pk+1

∂Xk+1

]−1[
∂Pk+1

∂Xk

][
∂Pk

∂Xk

]−1[
∂Pk

∂Xk−1

]
, (4.33)

Where n is the number of periodic motion. Considering the eigenvalues of S, the follow-

ing statements hold:

If all |λi| < 1 for (i = 1, 2, 3, 4), the periodic motion is stable.

If |λi| > 1 for (i ∈ {1, 2, 3, 4}), the periodic motion is unstable.

If λi = −1 and |λj| < 1 for (i, j ∈ {1, 2, 3, 4} and i 6= j), the period-doubling

bifurcation of periodic motion occurs.
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FIGURE A1: Displacement versus time for driving(blue) and driven(red) beams with

arbitrary initial condition

If λi = 1 and |λj| < 1 for (i, j ∈ {1, 2, 3, 4} and i 6= j), the saddle-node bifurcation of

the periodic motion occurs.

If |λi,j| = 1 is a pair of complex eigenvalues, the Neimark bifurcation of the periodic

motion occurs.

In this section, the impact driven system is compared to a simple piezoelectric beam

and the output power and voltage are predicted. Different types of motions of the pro-

posed piezoelectric energy harvester system are studied and the best phase of the motion

of the impact-driven system is chosen. The bifurcation diagrams of periodic solution of

the impact-driven system are obtained. The numerical predictions of the output voltage

and power of period-1 motion are also examined.
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FIGURE A2: System with arbitrary initial condition and the different possible mo-

tions:chattering, stick and free vibration(a) Output voltage of the system, (b) Output

power of the system,
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FIGURE A3: Impact driven system displacement at Ω ≈ 3.3Hz, (a) Displacement versus

time for driving(blue) and driven(red) beams half period, (b) Displacement versus time

for driven beam,
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FIGURE A4: Output voltage an power at Ω ≈ 3.3Hz for the proposed system, (a)

Output voltage from impact driven system versus time, (b) Output power from impact

driven system versus time,
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FIGURE A5: (a) Displacement versus time at Ω ≈ 13Hz, (b) Phase portrait of the

driven beam at Ω ≈ 13Hz,
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FIGURE A6: (a) Displacement versus time at Ω ≈ 23Hz, (b) Phase portrait of the

driven beam at Ω ≈ 23Hz,
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FIGURE A7: (a) Displacement versus time at Ω ≈ 30Hz, (b) Phase portrait of the

driven beam at Ω ≈ 30Hz.
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FIGURE A8: (a) Output voltage versus time at Ω ≈ 13Hz, (b) Output power versus

time at Ω ≈ 13Hz,
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FIGURE A9: (a) Output voltage versus time at Ω ≈ 23Hz, (b) Output power versus

Time at Ω ≈ 23Hz,
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FIGURE A10: (a) Output voltage versus time at Ω ≈ 30Hz, (b) Output power versus

time at Ω ≈ 30Hz.
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FIGURE A11: Period-1 motion bifurcation graphs of the first impact piezoelectric driven

beam, (a) Impact time vs frequency, (b) Impact position vs frequency,
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FIGURE A12: Period-1 motion bifurcation graphs of the first impact piezoelectric driven

beam, (a) Impact velocity of the driving beam vs frequency, (b) Impact velocity of the

driven beam vs frequency,
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FIGURE A13: Period-1 motion bifurcation graphs of the second impact piezoelectric

driven beam, (a) Impact time vs frequency, (b) Impact position vs frequency,
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FIGURE A14: Period-1 motion bifurcation graphs of the second impact piezoelectric

driven beam, (a) Impact velocity of the driving beam vs frequency, (b) Impact velocity

of the driven beam vs frequency

85



FIGURE A15: (a) Average output power vs frequency for the impact driven system with

base excitation for Ω ∈(1,200) Rad/s

4.2.2 Impact Driven System

The goal of this research is to enhance the piezoelectric harvester’s energy retriev-

ing performance from ambient vibrations with low or varying frequencies. Therefore, the

frequency region in our study is less than the natural frequency of the piezoelectric beam.

The output voltage and power of the piezoelectric beam excited by impact from the

driving beam with arbitrary initial conditions at Ω ≈ 3.3Hz are predicted as shown in

figures A2(a) and A2(b) and, the displacement of the impact-driven system components

are presented in figure A2(a). Comparing figures A2(a) and A2(b) and A1, one can see

that the impact-driven piezoelectric harvester has great potential to provide much more

energy when the excitation frequency is low.

The same four different types of motions which were defined in previous chapter are

applicable in this chapter as well and are shown in figures A2 where they are obtained

from Euler-Bernouli equations.
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4.2.3 Periodic Motion

For an impact-driven system, periodic motions are the simplest ones. To deeply un-

derstand the impact-driven frequency up-converter system, periodic motions of the en-

ergy harvesting system are studied. Based on figure A2, in order to have optimum mo-

tion, the system has to avoid stick motion and contain more rapid-impact motion. Each

cycle includes two impacts which is shown in figure A3(a) and a better graph for the

driven piezoelectric beam is presented in A3(b). This motion will generate two discon-

tinuous motion, voltage and power in each cycle of the the driving beam which are shown

in A4(a) and (b).

In this study half cycle impact with plucking is selected and investigated. Figures

A5(a), A6(a) and A7(a) show multiple period-1 motion, where the red and blue lines rep-

resent the tip point displacements of the driven and the driving beams in one cycle, re-

spectively. Figures A5(b), A6(b) and A7(b) are the velocity versus displacement or the

phase portrait of period-1 motion of the piezoelectric beam where the blue line represents

the motion between the first impact and the second impact and the green line represents

the motion between the second and third impact.

In this section, the bifurcation diagrams of periodic motions are presented via study-

ing the analytic solutions of period-1 motion. Without losing generality, a set of system

parameters are considered as :Q = 0.002m, as the base excitation amplitude and the

coefficient of restitution. The bifurcation diagram as well as the numerical solutions of

period-1 motions of this coupled beam oscillators are obtained via studying the implicit

mapping dynamics of the system. As the excitation frequency varies, the bifurcation di-

agram of impact time, switching displacements and switching velocities of the periodic

solutions for the first impact are shown in figures A11(a) A11(b), A12(a) and A12(b)

where the solid blue and red dashed lines represent the stable and unstable motions,

respectively. Similarly, the bifurcation diagrams for the second impact are presented at

figures A13 and A14. Figure A15 shows the average harvested power from P-1 motions
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from the impact driven system. According to figure A15 the proposed system generates

more power in lower frequencies compared to the higher frequencies.

Based on figures A11 and A12, four different stable P-1 regions are achieved, and

figure A5 shows one tip point displacement for both beams and velocities for the driven

beam from each region. Figure A8 shows the output power and voltage from the above

motions.

Comparing figure A15(a) and figure A15(b), one can see that at low-frequency ex-

citation region, generated power from the impact model is much higher than that from

the non-impact model. This shows the higher efficacy of the proposed impact-driven

frequency-up-conversion system. In the future, we will look for other periodic motions

in the low-frequency domain to find out the maximum generated power from different

periodic motions and, discovering effective factors on the power level of various periodic

motions.
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CHAPTER 5

SUMMARY, CONCLUSION, RECOMMENDATION

In this work, impact induced frequency-up-conversion technology was used to design

piezoelectric energy harvesters, which are vibo-impact systems. The piezoelectric energy

harvesters mainly contains two beams, a soft driving beam and a piezoelectric driven

beam. Three models were designed for this soft driving beam and a piezoelectric driven

beam harvester: 1) when two beam impact, both beams bounce back, that is don’t allow

the tip of two beams to pass through each other during impacts. 2) Designing an impact

controlled mechanism, which can move the piezoelectric beam away right after impacts

and allow it to finish the free vibration. 3) impact becoming a plucking motion, that is

allow the tips of two beams to pass through each other.

In this work, linear constitution law was used to build the model of the driving

beam and the piezoelectric beam. For the first two models, lumped parameter models

were created for both the driving beam and the piezoelectric beam, while for the third

model parametric beam model was used to model both the driving beam and the piezo-

electric bimorph. For the second impact controlled model, the impact control mechanism

is composed of a pair of rack and pinion and a slider crank mechanism. The slider crank

converts the vertical vibrations to small horizontal motions as well as provide a 90-degree

phase shift between the vertical vibration and the horizontal motion. This design can

synchronize the impact between the piezoelectric bimorph and the soft driving beam,

when the proper initial condition is applied.

Discontinuous dynamics theory was applied to all three models to reveal the gen-

eral trends of frequency response with a varying system parameter and to provide in-

sight into the dynamic characteristics of such systems. Analytical study has been car-

ried out to understand the relations between dynamic behaviors and the power output

efficiency of these vibro-impacting energy regeneration systems. We compare the power
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output for systems with impact frequency-up-conversion and without impact frequency-

up-conversion. All three models showed that with impact frequency-up-conversion the

output power is much larger under the same base excitation conditions. We also com-

pared the power efficiency between the impact controlled piezoelectric energy harvester

(model II) and none impacted-controlled energy harvester (model I). The results showed

that the impact-controlled harvester could significantly improve the energy harvesting

efficiency.

For the all three models, the periodic motions and bifurcations were generated with

excitation frequency varying. The generated power and voltage from a specic periodic

motion have been calculated. Different motions will generate different power. The gen-

erated average power was studied for dierent types of periodic motions and also with the

non-periodic motion. The bifurcation diagram of the period-1 and period-2 solutions was

obtained. The impact displacements, impact velocities, output voltage, and output power

of the piezoelectric bimorph were presented as a function of base excitation frequencies.

With the current rapid development of the Internet of Things (IoTs), energy har-

vesting offers a critical and promising solution for the application of self-powered sensors

and terminal modes. The self-powered technology allow these devices operate lone time

with a battery charges, this not lonely induces cost savings but also solves environment

pollution issues. The sustainability and environmental friendliness of self-powered devices

are essential for the development of smart cities, smart homes, smart health, smart agri-

culture, intelligent transportation, industry, security, marine, and so on.
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APPENDIX A

LUMPED PARAMETERS

Sine and cosine coefficients

The coefficients of particular solution for the driving beam in Equ.4.31 is presented

as: 
A

B

 =

ω2
nd
− Ω2 −2ζdωnd

Ω

2ζdωnd
Ω ω2

nd
− Ω2


−1

ω2
nQ

2ζdQωnd
Ω

 . (5.1)

Using the above equation, the sine and cosine coefficients of the Equ.4.31 can be

exp[ressed as:

Ccd = zd(tk−1)− A sin Ωtk−1 −B cos Ωtk−1 (5.2a)

Csd =
żd(tk−1) + ζdωnd

zd(tk−1) + (BΩ− Aζωnd
) sin Ωtk−1 − (AΩ +Bζωnd

) cos Ωtk−1

ωdd
.

(5.2b)

Similarly, the equations below hold for the driven beam:

Ccp = zp(tk−1) (5.3a)

Csp =
żp(tk−1) + ζpωnpzp(tk−1)

ωdp
. (5.3b)
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APPENDIX B

EULER-BERNOULLI

v̇(t) +
1

CpR
v(t) =

θi
Cp
η̇i(t) (5.4)

V (S) =
1

S + 1
CpR

(
θi
Cp
η̇i(S)− v(0)) (5.5)

v(t) =
θi
Cp

∫ t

0

η̇i(τ)e
−1
CpR

(t−τ)
dτ − v(0)e

t
CpR

=
θi
Cp
e

t
CpR

∫ t

0

η̇i(τ)e
−1
CpR

τ
dτ − v(0)e

−1
CpR

(5.6)

∫ t

0

η̇i(τ)e
1

CpR
τ
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