EXISTENCE RESULTS FOR SOLUTIONS OF BOUNDARY VALUE PROBLEMS ON INFINITE INTERVALS

Ismail Yaslan

Department of Mathematics, Pamukkale University 20070 Denizli, Turkey E-mail : iyaslan@pamukkale.edu.tr

Abstract: In this paper, we consider boundary value problems for nonlinear differential equations in the Hilbert space $L^2(0,\infty)$ and $L^2(-\infty,\infty)$. Using the Schauder fixed point theorem, the existence results for solutions of the considered boundary value problems are established.

AMS Subj. Classification: 34B15, 34B40.

Key Words: Boundary value problems; compact operator; infinite interval; Schauder fixed point theorem; Weyl limit circle case.

1 Introduction

We consider the second order nonlinear differential equation

$$-y'' + q(x)y = f(x, y), \quad 0 \le x < \infty,$$
where $y = y(x)$ is a desired solution. (1.1)

For convenience, let us list some conditions.

(H1) q(x) is real-valued measurable functions on $[0,\infty)$ such that

$$\int_0^b |q(x)| dx < \infty$$

for each finite positive number b. Moreover, the function q(x) is such that all solutions of the second order linear differential equation

$$-y'' + q(x)y = 0, \quad 0 \le x < \infty, \tag{1.2}$$

belong to $L^2(0,\infty)$, that is Weyl limit circle case holds for the differential expression Ly = -y'' + q(x)y (see Coddington et al [1], Titchmarsh [9]).

(H2) The function f(x, y) is real-valued and continuous in $(x, y) \in [0, \infty) \times$ **R** and there exists a function $g_K \in L^2(0, \infty)$ such that $|f(x, \tau)| \leq g_K(x).$ (1.3) where $|\tau| \leq K$.

Let D be the linear manifold of all elements $y \in L^2(0,\infty)$ such that Ly is defined and $Ly \in L^2(0,\infty)$.

Assume u = u(x) and v = v(x) are solutions of (1.2) satisfying the initial conditions

$$u(0) = \beta, \ u'(0) = \alpha \ ; \ v(0) = -\alpha \ , v'(0) = \beta, \tag{1.4}$$

where α, β are arbitrary given real numbers.

We have the following notation

$$[y, z]_x = y(x)z'(x) - z(x)y'(x)$$

Using the Green's formula

 $\int_0^b [(Ly)z - y(Lz)](x)dx = [y, z]_b - [y, z]_0$ (1.5) for all $y, z \in D$, we have the limit

$$[y,z]_{\infty} = \lim_{b \to \infty} [y,z]_b$$

exists and is finite.

We deal with the equation (1.1) whose boundary conditions are

$$\alpha y(0) - \beta y'(0) = 0, \quad \gamma \left[y, u \right]_{\infty} + \delta \left[y, v \right]_{\infty} = 0, \tag{1.6}$$

where α, β, γ , and δ are given real numbers satisfying the condition

(H3)
$$g := \delta(\alpha^2 + \beta^2) \neq 0.$$

The way giving boundary condition at infinity is used in Fulton [2], Gasymov et al [3], Guseinov [4], Guseinov et al [5], Guseinov et al [6] and Krein [8].

From (H3) and the constancy of the Wronskian it follows that $W_x(u, v) \neq 0$. Hence, u and v are linearly independent and they form a fundamental system of solutions of (1.2). It follows from the condition (H1) that $u, v \in L^2(0, \infty)$; what is more $u, v \in D$. Consequently for each $y \in D$, the values $[y, u]_{\infty}$ and $[y, v]_{\infty}$ exist and are finite.

Now, we define the functions $\varphi_1(x) = u(x)$ and $\varphi_2(x) = \gamma u(x) + \delta v(x)$. φ_1 and φ_2 are linear independent solutions of (1.2), since $W_x(\varphi_1, \varphi_2) = g \neq 0$. From (1.4) and (1.5), φ_1 satisfies the boundary condition at zero, and φ_2 satisfies the boundary condition at infinity.

By a variation of constants formula, the general solution of the nonhomogeneous equation

$$-y'' + q(x)y = h(x), \quad 0 \le x < \infty,$$
(1.7)
is $y(x) = c_1\varphi_1(x) + c_2\varphi_2(x) - \frac{1}{g}\int_0^x \left[\varphi_1(s)\varphi_2(x) - \varphi_2(s)\varphi_1(x)\right]h(s)ds$, where
 c_1, c_2 are arbitrary given real numbers. Then the nonhomogeneous boundary
value problem (1.7), (1.6) has a solution $y \in L^2(0, \infty)$ given by the formula

$$y(x) = \int_0^\infty G(x,s)h(s)ds, \quad 0 \le x < \infty$$
,

where

$$G(x,s) = -\frac{1}{g} \begin{cases} \varphi_1(x)\varphi_2(s) & 0 \le x \le s < \infty, \\ \varphi_1(s)\varphi_2(x) & 0 \le s \le x < \infty. \end{cases}$$

Since $\varphi_1, \varphi_2 \in L^2(0, \infty)$, we obtain

$$\int_{0}^{\infty} \int_{0}^{\infty} |G(x,s)|^2 dx ds < \infty.$$
(1.8)

Hence, the nonlinear boundary value problem (1.1), (1.6) is equivalent to the nonlinear integral equation

$$y(x) = \int_0^\infty G(x,s) f(s,y(s)) ds, \quad 0 \le x < \infty.$$

Then investigating the existence of solutions of the nonlinear BVP (1.1), (1.6) is equivalent to investigating fixed points of the operator $A: L^2(0,\infty) \to L^2(0,\infty)$ by the formula

$$Ay(x) = \int_0^\infty G(x,s)f(s,y(s))ds, \quad 0 \le x < \infty,$$
(1.9)
where $y \in L^2(0,\infty)$.

2 Existence of solutions on half-line

In this section we will use the Schauder Fixed Point Theorem to show the existence of solutions of the BVP (1.1), (1.6).

Theorem 1. (Schauder Fixed Point Theorem) Let \mathcal{B} be a Banach space and \mathcal{S} a nonempty bounded, convex, and closed subset of \mathcal{B} . Assume $A: \mathcal{B} \to \mathcal{B}$ is a completely continuous operator. If the operator A leaves the set \mathcal{S} invariant then A has at least one fixed point in \mathcal{S} .

Let's state the theorem used in Lemma 3.

Theorem 2. (Yosida [10], Fréchet-Kolmogorov) Let S be the real line, \mathcal{B} the σ -ring of Baire subsets B of S and $m(B) = \int_B dx$ the ordinary Lebesgue measure of B. Then a subset K of $L^p(S, \mathcal{B}, m)$, $1 \leq p < \infty$, is strongly pre-compact iff it satisfies the conditions:

 $i) \sup_{x \in K} ||x|| = \sup_{x \in K} \left(\int_{\mathcal{S}} |x(s)|^p \, ds \right)^{1/p} < \infty,$ $ii) \lim_{t \to 0} \int_{\mathcal{S}} |x(t+s) - x(s)|^2 \, ds = 0 \text{ uniformly in } x \in K,$ $iii) \lim_{\alpha \to \infty} \int_{s > \alpha} |x(s)|^p \, ds = 0 \text{ uniformly in } x \in K.$

Lemma 3. Under the conditions (H1), (H2), and (H3) the operator A defined in (1.9) is completely continuous.

Proof. We must show that the operator A is continuous and compact operator. Firstly, we want to show that when $\varepsilon > 0$ and $y_0 \in L^2(0, \infty)$, there exists $\delta > 0$ such that

 $y \in L^2(0,\infty)$ and $||y-y_0|| < \delta$ implies $||Ay - Ay_0|| < \varepsilon$. (2.1) It can be easily seen that the inequality

$$Ay(x) - Ay_0(x)|^2 \le M \int_0^\infty |f(s, y(s)) - f(s, y_0(s))|^2 ds,$$

where

$$M = \int_0^\infty \int_0^\infty |G(x,s)|^2 dx ds.$$

It is known (see Krasnosel'skii [7]) that the operator F defined by Fy(x) =f(x, y(x)) is continuous in $L^2(0, \infty)$. Therefore for the given ε , we can find a $\delta > 0$ such that

$$||y - y_0|| < \delta$$
 implies $\int_0^\infty |f(s, y(s)) - f(s, y_0(s))|^2 ds < \frac{\varepsilon^2}{M}$.

Hence, we obtain desired result (2.1), that is, the operator A is continuous.

Now, we must show that A(Y) is a pre-compact set in $L^2(0,\infty)$ where $||y|| \le c$ for all $y \in Y$. For this purpose, we will use Theorem 2.

For all $y \in Y$, from (1.8) and (1.3) we have

$$\|Ay\|^2 \le M \int_0^\infty g_c^2(s) ds < \infty.$$
(2.2)

Further, for all $y \in Y$, we get

From (1.8), $\int_0^\infty |Ay(t+x) - Ay(x)|^2 dx$ converges uniformly to zero as $t \to 0$. We also have, for all $y \in Y$,

$$\int_{\alpha}^{\infty} |Ay(x)|^2 dx \le \int_{\alpha}^{\infty} \int_{0}^{\infty} |G(x,s)|^2 dx ds \int_{0}^{\infty} |f(s,y(s))|^2 ds \le M \int_{0}^{\infty} g_c^2(s) ds.$$

Again by (1.8), $\int_{\alpha}^{\infty} |Ay(x)|^2 dx$ converges uniformly to zero as $\alpha \to \infty$. Thus, A(Y) is a strongly pre-compact set in $L^2(0, \infty)$. This completes the proof of Lemma 3.

Theorem 4. Assume conditions (H1), (H2), and (H3) are satisfied. In addition, let there exist a number R > 0 such that

$$M\{\sup_{y\in\mathcal{S}}\int_0^\infty |g_R(s)|^2 ds\} \le R^2,\tag{2.3}$$

where $M = \int_0^\infty \int_0^\infty |G(x,s)|^2 dx ds$ and $\mathcal{S} = \{y \in L^2(0,\infty) : ||y|| \le R\}$. Then the BVP (1.1), (1.6) has at least one solution $y \in L^2(0,\infty)$ with

$$\int_0^\infty |y(x)|^2 dx \le R^2.$$

Proof. By Lemma 3, the operator A is completely continuous. Further, it is obvious that the set S is bounded, convex, and closed. By (2.2) and (2.3), A maps the set \mathcal{S} into itself, and thus the proof is completed.

3 Boundary value problems on the whole axis

Consider the equation

 $-y'' + q(x)y = f(x, y), \quad -\infty < x < \infty.$ (3.1) For convenience, let us list some conditions.

(C1)
$$q(x)$$
 is real-valued measurable functions on $(-\infty, \infty)$ such that $\int_a^b |q(x)| dx < \infty$

for each finite real numbers a and b with a < b. Moreover, the function q(x) is such that all solutions of the second order linear differential equation

 $-y'' + q(x)y = 0, \quad -\infty < x < \infty,$ (3.2) belong to $L^2(-\infty, \infty)$.

(C2) The function f(x, y) is real-valued and continuous in $(x, y) \in \mathbf{R} \times \mathbf{R}$ and there exists a function $g_K \in L^2(-\infty, \infty)$ such that

$$|f(x,\tau)| \le g_K(x).$$

where $|\tau| \leq K$.

Let D be the linear manifold of all elements $y \in L^2(-\infty, \infty)$ such that Ly is defined and $Ly \in L^2(-\infty, \infty)$.

Assume u = u(x) and v = v(x) are solutions of (3.2) satisfying the initial conditions

 $u(0) = \beta, \ u'(0) = \alpha \ ; \ v(0) = -\alpha \ , v'(0) = \beta,$ (3.3) where α, β are arbitrary given real numbers.

Using the Green's formula

$$\int_a^b [(Ly)z - y(Lz)](x)dx = [y, z]_b - [y, z]_a$$
(3.4) for all $y, z \in D$, we have the limit

$$[y, z]_{-\infty} = \lim_{a \to -\infty} [y, z]_a, \quad [y, z]_{\infty} = \lim_{b \to \infty} [y, z]_b$$

exist and are finite.

We deal with the equation (3.1) whose boundary conditions are

 $\alpha \left[y, u\right]_{-\infty} + \beta \left[y, v\right]_{-\infty} = 0, \quad \gamma \left[y, u\right]_{\infty} + \delta \left[y, v\right]_{\infty} = 0, \quad (3.5)$ where α, β, γ , and δ are given real numbers satisfying the condition

(C3)
$$g := \delta(\alpha^2 + \beta^2) \neq 0.$$

It follows from the condition (C1) that $u, v \in L^2(-\infty, \infty)$; moreover, $u, v \in D$. Hence for each $y \in D$, the values $[y, u]_{\pm \infty}$ and $[y, v]_{\pm \infty}$ exist and are finite.

Now, we define the functions $\varphi_1(x) = u(x)$ and $\varphi_2(x) = \gamma u(x) + \delta v(x)$. From (3.3) and (3.4), φ_1 satisfies the boundary condition at $-\infty$, and φ_2 satisfies the boundary condition at ∞ .

The general solution of the nonhomogeneous equation

 $-y'' + q(x)y = h(x), \quad -\infty < x < \infty, \quad (3.6)$ is $y(x) = c_1\varphi_1(x) + c_2\varphi_2(x) - \frac{1}{g}\int_{-\infty}^x \left[\varphi_1(s)\varphi_2(x) - \varphi_2(s)\varphi_1(x)\right]h(s)ds$, where c_1, c_2 are arbitrary given real numbers. Then the nonhomogeneous boundary value problem (3.6), (3.5) has a solution $y \in L^2(-\infty, \infty)$ given by the formula

$$y(x) = \int_{-\infty}^{\infty} G(x,s)h(s)ds, \quad -\infty < x < \infty,$$

where

$$G(x,s) = -\frac{1}{g} \begin{cases} \varphi_1(x)\varphi_2(s) & -\infty < x \le s < \infty, \\ \varphi_1(s)\varphi_2(x) & -\infty < s \le x < \infty. \end{cases}$$

Since $\varphi_1, \varphi_2 \in L^2(-\infty, \infty)$, we obtain

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |G(x,s)|^2 dx ds < \infty.$$

Hence, the nonlinear boundary value problem (3.1), (3.5) is equivalent to the nonlinear integral equation

$$y(x) = \int_{-\infty}^{\infty} G(x,s) f(s,y(s)) ds, \quad -\infty < x < \infty.$$

Then investigating the existence of solutions of the nonlinear BVP (3.1), (3.5) is equivalent to investigating fixed points of the operator $A: L^2(-\infty, \infty) \to L^2(-\infty, \infty)$ by the formula

$$Ay(x) = \int_{-\infty}^{\infty} G(x, s) f(s, y(s)) ds, \quad -\infty < x < \infty,$$

where $y \in L^2(-\infty, \infty)$.

Next reasoning as in the previous section we can prove the following theorem.

Theorem 5. Assume conditions (C1), (C2), and (C3) are satisfied. In addition, let there exist a number R > 0 such that

$$M\{\sup_{y\in\mathcal{S}}\int_{-\infty}^{\infty}|g_R(s)|^2ds\}\leq R^2$$

where $M = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |G(x,s)|^2 dx ds$ and $S = \{y \in L^2(-\infty,\infty) : ||y|| \leq R\}$. Then the BVP (3.1), (3.5) has at least one solution $y \in L^2(-\infty,\infty)$ with $||y|| \leq R$.

References

- E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw Hill, New York, 1955.
- [2] C. T. Fulton, Parametrization of Titchmarsh's m (λ) functions in the limit circle case, Trans. Amer. Math. Soc. 229(1977), 51-63.
- [3] M. G. Gasymov and G. Sh. Guseinov, Uniqueness theorems for inverse spectral-analysis problems for Sturm-Liouville operators in the Weyl limit circle case, *Differentsialnye Uravneniya*, 25(1989), 588-599; English transl. in *Differential Equations* 25 (1989), 394-402.
- [4] G. Sh. Guseinov, Completeness theorem for the dissipative Sturm-Liouville operator, *Turkish J. Math.*, 17 (1993), 48-53.
- [5] G. Sh. Guseinov and H. Tuncay, The determinants of perturbations connected with a dissipative Sturm-Liouville operator, J. Math. Anal. Appl., 194(1995), 39-49.
- [6] G. Sh. Guseinov and I. Yaslan, Boundary value problems for second order nonlinear differential equations on infinite intervals, J. Math. Anal. Appl., 290(2004),620-638.
- [7] M. A. Krasnosel'skii, "Topological Methods in the Theory of Nonlinear Integral Equations", Gostekhteoretizdat, Moskow, 1956, English trasl. Pergamon Press, New York, 1964.
- [8] M. G. Krein, On the indeterminate case of the Sturm-Liouville boundary value problem in the interval (0,∞), Izv. Akad. Nauk SSSR Ser. Mat., 16(1952), 293-324.
- [9] E. C. Titchmarsh, "Eigenfunction Expansions Associated with Second-Order Differential Equations", Vol. 1, 2nd ed., Oxford Univ. Press, Oxford, 1962.
- [10] K. Yosida, Functional Analysis, 6 th edition, Springer, Berlin, 1980.