# EXISTENCE RESULTS FOR SOLUTIONS OF BOUNDARY VALUE PROBLEMS ON INFINITE INTERVALS 

Ismail Yaslan<br>Department of Mathematics, Pamukkale University 20070 Denizli, Turkey<br>E-mail : iyaslan@pamukkale.edu.tr


#### Abstract

In this paper, we consider boundary value problems for nonlinear differential equations in the Hilbert space $L^{2}(0, \infty)$ and $L^{2}(-\infty, \infty)$. Using the Schauder fixed point theorem, the existence results for solutions of the considered boundary value problems are established.


AMS Subj. Classification:34B15, 34B40.
Key Words: Boundary value problems; compact operator; infinite interval; Schauder fixed point theorem; Weyl limit circle case.

## 1 Introduction

We consider the second order nonlinear differential equation

$$
\begin{equation*}
-y^{\prime \prime}+q(x) y=f(x, y), \quad 0 \leq x<\infty \tag{1.1}
\end{equation*}
$$

where $y=y(x)$ is a desired solution.
For convenience, let us list some conditions.
(H1) $q(x)$ is real-valued measurable functions on $[0, \infty)$ such that

$$
\int_{0}^{b}|q(x)| d x<\infty
$$

for each finite positive number $b$. Moreover, the function $q(x)$ is such that all solutions of the second order linear differential equation

$$
\begin{equation*}
-y^{\prime \prime}+q(x) y=0, \quad 0 \leq x<\infty \tag{1.2}
\end{equation*}
$$

belong to $L^{2}(0, \infty)$, that is Weyl limit circle case holds for the differential expression $L y=-y^{\prime \prime}+q(x) y$ (see Coddington et al [1], Titchmarsh [9]).
(H2) The function $f(x, y)$ is real-valued and continuous in $(x, y) \in[0, \infty) \times$ $\mathbf{R}$ and there exists a function $g_{K} \in L^{2}(0, \infty)$ such that

$$
\begin{equation*}
|f(x, \tau)| \leq g_{K}(x) \tag{1.3}
\end{equation*}
$$

where $|\tau| \leq K$.

Let $D$ be the linear manifold of all elements $y \in L^{2}(0, \infty)$ such that $L y$ is defined and $L y \in L^{2}(0, \infty)$.

Assume $u=u(x)$ and $v=v(x)$ are solutions of (1.2) satisfying the initial conditions

$$
\begin{equation*}
u(0)=\beta, u^{\prime}(0)=\alpha ; v(0)=-\alpha, v^{\prime}(0)=\beta \tag{1.4}
\end{equation*}
$$

where $\alpha, \beta$ are arbitrary given real numbers.
We have the following notation

$$
[y, z]_{x}=y(x) z^{\prime}(x)-z(x) y^{\prime}(x)
$$

Using the Green's formula

$$
\begin{equation*}
\int_{0}^{b}[(L y) z-y(L z)](x) d x=[y, z]_{b}-[y, z]_{0} \tag{1.5}
\end{equation*}
$$

for all $y, z \in D$, we have the limit

$$
[y, z]_{\infty}=\lim _{b \rightarrow \infty}[y, z]_{b}
$$

exists and is finite.
We deal with the equation (1.1) whose boundary conditions are

$$
\begin{equation*}
\alpha y(0)-\beta y^{\prime}(0)=0, \quad \gamma[y, u]_{\infty}+\delta[y, v]_{\infty}=0 \tag{1.6}
\end{equation*}
$$

where $\alpha, \beta, \gamma$, and $\delta$ are given real numbers satisfying the condition
$(\mathbf{H} 3) ~ g:=\delta\left(\alpha^{2}+\beta^{2}\right) \neq 0$.
The way giving boundary condition at infinity is used in Fulton [2], Gasymov et al [3], Guseinov [4], Guseinov et al [5], Guseinov et al [6] and Krein [8].

From $(H 3)$ and the constancy of the Wronskian it follows that $W_{x}(u, v) \neq 0$. Hence, $u$ and $v$ are linearly independent and they form a fundamental system of solutions of (1.2). It follows from the condition $(H 1)$ that $u, v \in L^{2}(0, \infty)$; what is more $u, v \in D$. Consequently for each $y \in D$, the values $[y, u]_{\infty}$ and $[y, v]_{\infty}$ exist and are finite.

Now, we define the functions $\varphi_{1}(x)=u(x)$ and $\varphi_{2}(x)=\gamma u(x)+\delta v(x)$. $\varphi_{1}$ and $\varphi_{2}$ are linear independent solutions of (1.2), since $W_{x}\left(\varphi_{1}, \varphi_{2}\right)=g \neq$ 0 . From (1.4) and (1.5), $\varphi_{1}$ satisfies the boundary condition at zero, and $\varphi_{2}$ satisfies the boundary condition at infinity.

By a variation of constants formula, the general solution of the nonhomogeneous equation

$$
\begin{equation*}
-y^{\prime \prime}+q(x) y=h(x), \quad 0 \leq x<\infty \tag{1.7}
\end{equation*}
$$

is $y(x)=c_{1} \varphi_{1}(x)+c_{2} \varphi_{2}(x)-\frac{1}{g} \int_{0}^{x}\left[\varphi_{1}(s) \varphi_{2}(x)-\varphi_{2}(s) \varphi_{1}(x)\right] h(s) d s$, where $c_{1}, c_{2}$ are arbitrary given real numbers. Then the nonhomogeneous boundary value problem $(1.7),(1.6)$ has a solution $y \in L^{2}(0, \infty)$ given by the formula

$$
y(x)=\int_{0}^{\infty} G(x, s) h(s) d s, \quad 0 \leq x<\infty
$$

where

$$
G(x, s)=-\frac{1}{g} \begin{cases}\varphi_{1}(x) \varphi_{2}(s) & 0 \leq x \leq s<\infty \\ \varphi_{1}(s) \varphi_{2}(x) & 0 \leq s \leq x<\infty\end{cases}
$$

Since $\varphi_{1}, \varphi_{2} \in L^{2}(0, \infty)$, we obtain

$$
\begin{equation*}
\int_{0}^{\infty} \int_{0}^{\infty}|G(x, s)|^{2} d x d s<\infty \tag{1.8}
\end{equation*}
$$

Hence, the nonlinear boundary value problem (1.1), (1.6) is equivalent to the nonlinear integral equation

$$
y(x)=\int_{0}^{\infty} G(x, s) f(s, y(s)) d s, \quad 0 \leq x<\infty .
$$

Then investigating the existence of solutions of the nonlinear BVP (1.1), (1.6) is equivalent to investigating fixed points of the operator $A: L^{2}(0, \infty) \rightarrow L^{2}(0, \infty)$ by the formula

$$
\begin{equation*}
A y(x)=\int_{0}^{\infty} G(x, s) f(s, y(s)) d s, \quad 0 \leq x<\infty \tag{1.9}
\end{equation*}
$$

where $y \in L^{2}(0, \infty)$.

## 2 Existence of solutions on half-line

In this section we will use the Schauder Fixed Point Theorem to show the existence of solutions of the BVP (1.1), (1.6).

Theorem 1. (Schauder Fixed Point Theorem) Let $\mathcal{B}$ be a Banach space and $\mathcal{S}$ a nonempty bounded, convex, and closed subset of $\mathcal{B}$. Assume $A: \mathcal{B} \rightarrow \mathcal{B}$ is a completely continuous operator. If the operator $A$ leaves the set $\mathcal{S}$ invariant then $A$ has at least one fixed point in $\mathcal{S}$.

Let's state the theorem used in Lemma 3.
Theorem 2. (Yosida [10], Fréchet-Kolmogorov) Let $\mathcal{S}$ be the real line, $\mathcal{B}$ the $\sigma$-ring of Baire subsets $B$ of $\mathcal{S}$ and $m(B)=\int_{B} d x$ the ordinary Lebesgue measure of $B$. Then a subset $K$ of $L^{p}(\mathcal{S}, \mathcal{B}, m), 1 \leq p<\infty$, is strongly pre-compact iff it satisfies the conditions:
i) $\sup _{x \in K}\|x\|=\sup _{x \in K}\left(\int_{\mathcal{S}}|x(s)|^{p} d s\right)^{1 / p}<\infty$,
ii) $\lim _{t \rightarrow 0} \int_{\mathcal{S}}|x(t+s)-x(s)|^{2} d s=0$ uniformly in $x \in K$,
iii) $\lim _{\alpha \rightarrow \infty} \int_{s>\alpha}|x(s)|^{p} d s=0$ uniformly in $x \in K$.

Lemma 3. Under the conditions (H1), (H2), and (H3) the operator $A$ defined in (1.9) is completely continuous.

Proof. We must show that the operator $A$ is continuous and compact operator. Firstly, we want to show that when $\varepsilon>0$ and $y_{0} \in L^{2}(0, \infty)$, there exists $\delta>0$ such that

$$
\begin{equation*}
y \in L^{2}(0, \infty) \text { and }\left\|y-y_{0}\right\|<\delta \text { implies }\left\|A y-A y_{0}\right\|<\varepsilon \tag{2.1}
\end{equation*}
$$

It can be easily seen that the inequality

$$
\left|A y(x)-A y_{0}(x)\right|^{2} \leq M \int_{0}^{\infty} \mid f(s, y(s))-f\left(s,\left.y_{0}(s)\right|^{2} d s\right.
$$

where

$$
M=\int_{0}^{\infty} \int_{0}^{\infty}|G(x, s)|^{2} d x d s
$$

It is known (see Krasnosel'skii [7]) that the operator $F$ defined by $F y(x)=$ $f(x, y(x))$ is continuous in $L^{2}(0, \infty)$. Therefore for the given $\varepsilon$, we can find a $\delta>0$ such that

$$
\left\|y-y_{0}\right\|<\delta \text { implies } \int_{0}^{\infty} \left\lvert\, f(s, y(s))-f\left(s,\left.y_{0}(s)\right|^{2} d s<\frac{\varepsilon^{2}}{M}\right.\right.
$$

Hence, we obtain desired result (2.1), that is, the operator $A$ is continuous.
Now, we must show that $A(Y)$ is a pre-compact set in $L^{2}(0, \infty)$ where $\|y\| \leq c$ for all $y \in Y$. For this purpose, we will use Theorem 2.

For all $y \in Y$, from (1.8) and (1.3) we have

$$
\begin{equation*}
\|A y\|^{2} \leq M \int_{0}^{\infty} g_{c}^{2}(s) d s<\infty \tag{2.2}
\end{equation*}
$$

Further, for all $y \in Y$, we get

$$
\begin{aligned}
\int_{0}^{\infty}|A y(t+x)-A y(x)|^{2} d x & \leq \int_{0}^{\infty} \int_{0}^{\infty}|G(t+x, s)-G(x, s)|^{2} d x d s \int_{0}^{\infty} \mid f\left(s,\left.y(s)\right|^{2} d s\right. \\
& \leq \int_{0}^{\infty} \int_{0}^{\infty}|G(t+x, s)-G(x, s)|^{2} d x d s \int_{0}^{\infty} g_{c}^{2}(s) d s
\end{aligned}
$$

From (1.8), $\int_{0}^{\infty}|A y(t+x)-A y(x)|^{2} d x$ converges uniformly to zero as $t \rightarrow 0$.
We also have, for all $y \in Y$,

$$
\int_{\alpha}^{\infty}|A y(x)|^{2} d x \leq \int_{\alpha}^{\infty} \int_{0}^{\infty}|G(x, s)|^{2} d x d s \int_{0}^{\infty} \mid f\left(s,\left.y(s)\right|^{2} d s \leq M \int_{0}^{\infty} g_{c}^{2}(s) d s\right.
$$

Again by (1.8), $\int_{\alpha}^{\infty}|A y(x)|^{2} d x$ converges uniformly to zero as $\alpha \rightarrow \infty$.
Thus, $A(Y)$ is a strongly pre-compact set in $L^{2}(0, \infty)$. This completes the proof of Lemma 3.

Theorem 4. Assume conditions (H1), (H2), and (H3) are satisfied. In addition, let there exist a number $R>0$ such that

$$
\begin{equation*}
M\left\{\sup _{y \in \mathcal{S}} \int_{0}^{\infty}\left|g_{R}(s)\right|^{2} d s\right\} \leq R^{2} \tag{2.3}
\end{equation*}
$$

where $M=\int_{0}^{\infty} \int_{0}^{\infty}|G(x, s)|^{2} d x d s$ and $\mathcal{S}=\left\{y \in L^{2}(0, \infty):\|y\| \leq R\right\}$. Then the $B V P(1.1)$, (1.6) has at least one solution $y \in L^{2}(0, \infty)$ with

$$
\int_{0}^{\infty}|y(x)|^{2} d x \leq R^{2}
$$

Proof. By Lemma 3, the operator $A$ is completely continuous. Further, it is obvious that the set $\mathcal{S}$ is bounded, convex, and closed. By (2.2) and (2.3), $A$ maps the set $\mathcal{S}$ into itself, and thus the proof is completed.

## 3 Boundary value problems on the whole axis

Consider the equation

$$
\begin{equation*}
-y^{\prime \prime}+q(x) y=f(x, y), \quad-\infty<x<\infty \tag{3.1}
\end{equation*}
$$

For convenience, let us list some conditions.
(C1) $q(x)$ is real-valued measurable functions on $(-\infty, \infty)$ such that

$$
\int_{a}^{b}|q(x)| d x<\infty
$$

for each finite real numbers $a$ and $b$ with $a<b$. Moreover, the function $q(x)$ is such that all solutions of the second order linear differential equation

$$
\begin{equation*}
-y^{\prime \prime}+q(x) y=0, \quad-\infty<x<\infty \tag{3.2}
\end{equation*}
$$

belong to $L^{2}(-\infty, \infty)$.
(C2) The function $f(x, y)$ is real-valued and continuous in $(x, y) \in \mathbf{R} \times \mathbf{R}$ and there exists a function $g_{K} \in L^{2}(-\infty, \infty)$ such that

$$
|f(x, \tau)| \leq g_{K}(x)
$$

where $|\tau| \leq K$.

Let $D$ be the linear manifold of all elements $y \in L^{2}(-\infty, \infty)$ such that $L y$ is defined and $L y \in L^{2}(-\infty, \infty)$.

Assume $u=u(x)$ and $v=v(x)$ are solutions of (3.2) satisfying the initial conditions

$$
\begin{equation*}
u(0)=\beta, u^{\prime}(0)=\alpha ; v(0)=-\alpha, v^{\prime}(0)=\beta \tag{3.3}
\end{equation*}
$$

where $\alpha, \beta$ are arbitrary given real numbers.
Using the Green's formula

$$
\begin{equation*}
\int_{a}^{b}[(L y) z-y(L z)](x) d x=[y, z]_{b}-[y, z]_{a} \tag{3.4}
\end{equation*}
$$

for all $y, z \in D$, we have the limit

$$
[y, z]_{-\infty}=\lim _{a \rightarrow-\infty}[y, z]_{a}, \quad[y, z]_{\infty}=\lim _{b \rightarrow \infty}[y, z]_{b}
$$

exist and are finite.
We deal with the equation (3.1) whose boundary conditions are

$$
\begin{equation*}
\alpha[y, u]_{-\infty}+\beta[y, v]_{-\infty}=0, \quad \gamma[y, u]_{\infty}+\delta[y, v]_{\infty}=0 \tag{3.5}
\end{equation*}
$$

where $\alpha, \beta, \gamma$, and $\delta$ are given real numbers satisfying the condition
(C3) $g:=\delta\left(\alpha^{2}+\beta^{2}\right) \neq 0$.
It follows from the condition $(C 1)$ that $u, v \in L^{2}(-\infty, \infty)$; moreover, $u, v \in$ $D$. Hence for each $y \in D$, the values $[y, u]_{ \pm \infty}$ and $[y, v]_{ \pm \infty}$ exist and are finite.

Now, we define the functions $\varphi_{1}(x)=u(x)$ and $\varphi_{2}(x)=\gamma u(x)+\delta v(x)$. From (3.3) and (3.4), $\varphi_{1}$ satisfies the boundary condition at $-\infty$, and $\varphi_{2}$ satisfies the boundary condition at $\infty$.

The general solution of the nonhomogeneous equation

$$
\begin{equation*}
-y^{\prime \prime}+q(x) y=h(x), \quad-\infty<x<\infty \tag{3.6}
\end{equation*}
$$

is $y(x)=c_{1} \varphi_{1}(x)+c_{2} \varphi_{2}(x)-\frac{1}{g} \int_{-\infty}^{x}\left[\varphi_{1}(s) \varphi_{2}(x)-\varphi_{2}(s) \varphi_{1}(x)\right] h(s) d s$, where $c_{1}, c_{2}$ are arbitrary given real numbers. Then the nonhomogeneous boundary value problem $(3.6),(3.5)$ has a solution $y \in L^{2}(-\infty, \infty)$ given by the formula

$$
y(x)=\int_{-\infty}^{\infty} G(x, s) h(s) d s, \quad-\infty<x<\infty
$$

where

$$
G(x, s)=-\frac{1}{g} \begin{cases}\varphi_{1}(x) \varphi_{2}(s) & -\infty<x \leq s<\infty \\ \varphi_{1}(s) \varphi_{2}(x) & -\infty<s \leq x<\infty\end{cases}
$$

Since $\varphi_{1}, \varphi_{2} \in L^{2}(-\infty, \infty)$, we obtain

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|G(x, s)|^{2} d x d s<\infty
$$

Hence, the nonlinear boundary value problem (3.1), (3.5) is equivalent to the nonlinear integral equation

$$
y(x)=\int_{-\infty}^{\infty} G(x, s) f(s, y(s)) d s, \quad-\infty<x<\infty
$$

Then investigating the existence of solutions of the nonlinear BVP (3.1), (3.5) is equivalent to investigating fixed points of the operator $A: L^{2}(-\infty, \infty) \rightarrow$ $L^{2}(-\infty, \infty)$ by the formula

$$
A y(x)=\int_{-\infty}^{\infty} G(x, s) f(s, y(s)) d s, \quad-\infty<x<\infty
$$

where $y \in L^{2}(-\infty, \infty)$.
Next reasoning as in the previous section we can prove the following theorem.

Theorem 5. Assume conditions (C1), (C2), and (C3) are satisfied. In addition, let there exist a number $R>0$ such that

$$
M\left\{\sup _{y \in \mathcal{S}} \int_{-\infty}^{\infty}\left|g_{R}(s)\right|^{2} d s\right\} \leq R^{2}
$$

where $M=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|G(x, s)|^{2} d x d s$ and $\mathcal{S}=\left\{y \in L^{2}(-\infty, \infty):\|y\| \leq R\right\}$. Then the BVP (3.1), (3.5) has at least one solution $y \in L^{2}(-\infty, \infty)$ with $\|y\| \leq R$.

## References

[1] E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw Hill, New York, 1955.
[2] C. T. Fulton, Parametrization of Titchmarsh's $m(\lambda)$ functions in the limit circle case, Trans. Amer. Math. Soc. 229( 1977), 51-63.
[3] M. G. Gasymov and G. Sh. Guseinov, Uniqueness theorems for inverse spectral-analysis problems for Sturm-Liouville operators in the Weyl limit circle case, Differentsialnye Uravneniya, 25(1989), 588-599; English transl. in Differential Equations 25 ( 1989), 394-402.
[4] G. Sh. Guseinov, Completeness theorem for the dissipative Sturm-Liouville operator, Turkish J. Math., 17 (1993), 48-53.
[5] G. Sh. Guseinov and H. Tuncay, The determinants of perturbations connected with a dissipative Sturm-Liouville operator, J. Math. Anal. Appl., 194( 1995), 39-49.
[6] G. Sh. Guseinov and I. Yaslan, Boundary value problems for second order nonlinear differential equations on infinite intervals, J. Math. Anal. Appl., 290(2004),620-638.
[7] M. A. Krasnosel'skii, "Topological Methods in the Theory of Nonlinear Integral Equations", Gostekhteoretizdat, Moskow, 1956, English trasl. Pergamon Press, New York, 1964.
[8] M. G. Krein, On the indeterminate case of the Sturm-Liouville boundary value problem in the interval $(0, \infty)$, Izv. Akad. Nauk SSSR Ser. Mat., 16(1952), 293-324.
[9] E. C. Titchmarsh, "Eigenfunction Expansions Associated with SecondOrder Differential Equations", Vol. 1, 2nd ed., Oxford Univ. Press, Oxford, 1962.
[10] K. Yosida, Functional Analysis, 6 th edition, Springer, Berlin, 1980.

