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1 Introduction

We consider the second order nonlinear differential equation
−y′′ + q(x)y = f(x, y), 0 ≤ x < ∞, (1.1)

where y = y(x) is a desired solution.
For convenience, let us list some conditions.

(H1) q(x) is real-valued measurable functions on [0,∞) such that

∫ b

0
|q(x)|dx < ∞

for each finite positive number b. Moreover, the function q(x) is such that all
solutions of the second order linear differential equation

−y′′ + q(x)y = 0, 0 ≤ x < ∞, (1.2)
belong to L2(0,∞), that is Weyl limit circle case holds for the differential
expression Ly = −y′′ + q(x)y (see Coddington et al [1], Titchmarsh [9]).

(H2) The function f(x, y) is real-valued and continuous in (x, y) ∈ [0,∞)×
R and there exists a function gK ∈ L2(0,∞) such that

|f(x, τ)| ≤ gK(x). (1.3)
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where |τ | ≤ K.

Let D be the linear manifold of all elements y ∈ L2(0,∞) such that Ly is
defined and Ly ∈ L2(0,∞).

Assume u = u(x) and v = v(x) are solutions of (1.2) satisfying the initial
conditions

u(0) = β, u′(0) = α ; v(0) = −α , v′(0) = β, (1.4)
where α, β are arbitrary given real numbers.

We have the following notation

[y, z]x = y(x)z′(x)− z(x)y′(x).

Using the Green’s formula∫ b

0
[(Ly)z − y(Lz)](x)dx = [y, z]b − [y, z]0 (1.5)

for all y, z ∈ D, we have the limit

[y, z]∞ = limb→∞ [y, z]b

exists and is finite.
We deal with the equation (1.1) whose boundary conditions are

αy(0)− βy′(0) = 0, γ [y, u]∞ + δ [y, v]∞ = 0, (1.6)
where α, β, γ, and δ are given real numbers satisfying the condition

(H3) g := δ(α2 + β2) 6= 0.

The way giving boundary condition at infinity is used in Fulton [2], Gasy-
mov et al [3], Guseinov [4], Guseinov et al [5], Guseinov et al [6] and Krein
[8].

From (H3) and the constancy of the Wronskian it follows that Wx(u, v) 6= 0.
Hence, u and v are linearly independent and they form a fundamental system
of solutions of (1.2). It follows from the condition (H1) that u, v ∈ L2(0,∞);
what is more u, v ∈ D. Consequently for each y ∈ D, the values [y, u]∞ and
[y, v]∞ exist and are finite.

Now, we define the functions ϕ1(x) = u(x) and ϕ2(x) = γu(x) + δv(x).
ϕ1 and ϕ2 are linear independent solutions of (1.2), since Wx(ϕ1, ϕ2) = g 6=
0. From (1.4) and (1.5), ϕ1 satisfies the boundary condition at zero, and ϕ2

satisfies the boundary condition at infinity.
By a variation of constants formula, the general solution of the nonhomo-

geneous equation
−y′′ + q(x)y = h(x), 0 ≤ x < ∞, (1.7)

is y(x) = c1ϕ1(x) + c2ϕ2(x) − 1
g

∫ x

0
[ϕ1(s)ϕ2(x)− ϕ2(s)ϕ1(x)] h(s)ds, where

c1, c2 are arbitrary given real numbers. Then the nonhomogeneous boundary
value problem (1.7) , (1.6) has a solution y ∈ L2(0,∞) given by the formula



y(x) =
∫∞
0

G(x, s)h(s)ds, 0 ≤ x < ∞ ,

where

G(x, s) = − 1
g

{
ϕ1(x)ϕ2(s) 0 ≤ x ≤ s < ∞,
ϕ1(s)ϕ2(x) 0 ≤ s ≤ x < ∞.

Since ϕ1, ϕ2 ∈ L2(0,∞), we obtain∫∞
0

∫∞
0
|G(x, s)|2dxds < ∞. (1.8)

Hence, the nonlinear boundary value problem (1.1), (1.6) is equivalent to
the nonlinear integral equation

y(x) =
∫∞
0

G(x, s)f(s, y(s))ds, 0 ≤ x < ∞.

Then investigating the existence of solutions of the nonlinear BVP (1.1), (1.6) is
equivalent to investigating fixed points of the operator A : L2(0,∞) → L2(0,∞)
by the formula

Ay(x) =
∫∞
0

G(x, s)f(s, y(s))ds, 0 ≤ x < ∞, (1.9)
where y ∈ L2(0,∞).

2 Existence of solutions on half-line

In this section we will use the Schauder Fixed Point Theorem to show the
existence of solutions of the BVP (1.1), (1.6).

Theorem 1. (Schauder Fixed Point Theorem) Let B be a Banach
space and S a nonempty bounded, convex, and closed subset of B. Assume
A : B → B is a completely continuous operator. If the operator A leaves the set
S invariant then A has at least one fixed point in S.

Let’s state the theorem used in Lemma 3.

Theorem 2. (Yosida [10] , Fréchet-Kolmogorov)Let S be the real
line, B the σ−ring of Baire subsets B of S and m(B) =

∫
B

dx the ordinary
Lebesgue measure of B. Then a subset K of Lp(S,B,m) , 1 ≤ p < ∞, is
strongly pre-compact iff it satisfies the conditions:

i) supx∈K ‖x‖ = supx∈K

(∫
S |x(s)|p ds

)1/p
< ∞,

ii) limt→0

∫
S |x(t + s)− x(s)|2ds = 0 uniformly in x ∈ K,

iii) limα→∞
∫

s>α
|x(s)|pds = 0 uniformly in x ∈ K.

Lemma 3. Under the conditions (H1), (H2), and (H3) the operator A
defined in (1.9) is completely continuous.



Proof. We must show that the operator A is continuous and compact operator.
Firstly, we want to show that when ε > 0 and y0 ∈ L2(0,∞), there exists δ > 0
such that

y ∈ L2(0,∞) and ‖y− y0‖ < δ implies ‖Ay−Ay0‖ < ε. (2.1)
It can be easily seen that the inequality

|Ay(x)−Ay0(x)|2 ≤ M
∫∞
0
|f(s, y(s))− f(s, y0(s)|2ds,

where

M =
∫∞
0

∫∞
0
|G(x, s)|2dxds.

It is known (see Krasnosel’skii [7]) that the operator F defined by Fy(x) =
f(x, y(x)) is continuous in L2(0,∞). Therefore for the given ε, we can find a
δ > 0 such that

‖y − y0‖ < δ implies
∫∞
0
|f(s, y(s))− f(s, y0(s)|2ds < ε2

M .

Hence, we obtain desired result (2.1), that is, the operator A is continuous.
Now, we must show that A(Y ) is a pre-compact set in L2(0,∞) where

‖y‖ ≤ c for all y ∈ Y . For this purpose, we will use Theorem 2.
For all y ∈ Y , from (1.8) and (1.3) we have

‖Ay‖2 ≤ M
∫∞
0

g2
c (s)ds < ∞. (2.2)

Further, for all y ∈ Y, we get

∫∞
0
|Ay(t+x)−Ay(x)|2dx ≤ ∫∞

0

∫∞
0
|G(t+x, s)−G(x, s)|2dxds

∫∞
0
|f(s, y(s)|2ds

≤ ∫∞
0

∫∞
0
|G(t + x, s)−G(x, s)|2dxds

∫∞
0

g2
c (s)ds.

From (1.8),
∫∞
0
|Ay(t + x)−Ay(x)|2dx converges uniformly to zero as t → 0.

We also have, for all y ∈ Y ,∫∞
α
|Ay(x)|2dx ≤ ∫∞

α

∫∞
0
|G(x, s)|2dxds

∫∞
0
|f(s, y(s)|2ds ≤ M

∫∞
0

g2
c (s)ds.

Again by (1.8),
∫∞

α
|Ay(x)|2dx converges uniformly to zero as α →∞.

Thus, A(Y ) is a strongly pre-compact set in L2(0,∞). This completes the
proof of Lemma 3.

Theorem 4. Assume conditions (H1), (H2), and (H3) are satisfied. In
addition, let there exist a number R > 0 such that

M{supy∈S
∫∞
0
|gR(s)|2ds} ≤ R2, (2.3)

where M =
∫∞
0

∫∞
0
|G(x, s)|2dxds and S = {y ∈ L2(0,∞) : ‖y‖ ≤ R}. Then

the BVP (1.1), (1.6) has at least one solution y ∈ L2(0,∞) with∫∞
0
|y(x)|2dx ≤ R2.

Proof. By Lemma 3, the operator A is completely continuous. Further, it is
obvious that the set S is bounded, convex, and closed. By (2.2) and (2.3), A
maps the set S into itself, and thus the proof is completed.



3 Boundary value problems on the whole axis

Consider the equation
−y′′ + q(x)y = f(x, y), −∞ < x < ∞. (3.1)

For convenience, let us list some conditions.

(C1) q(x) is real-valued measurable functions on (−∞,∞) such that∫ b

a
|q(x)|dx < ∞

for each finite real numbers a and b with a < b. Moreover, the function q(x) is
such that all solutions of the second order linear differential equation

−y′′ + q(x)y = 0, −∞ < x < ∞, (3.2)
belong to L2(−∞,∞).

(C2) The function f(x, y) is real-valued and continuous in (x, y) ∈ R×R
and there exists a function gK ∈ L2(−∞,∞) such that

|f(x, τ)| ≤ gK(x).

where |τ | ≤ K.

Let D be the linear manifold of all elements y ∈ L2(−∞,∞) such that Ly
is defined and Ly ∈ L2(−∞,∞).

Assume u = u(x) and v = v(x) are solutions of (3.2) satisfying the initial
conditions

u(0) = β, u′(0) = α ; v(0) = −α , v′(0) = β, (3.3)
where α, β are arbitrary given real numbers.

Using the Green’s formula∫ b

a
[(Ly)z − y(Lz)](x)dx = [y, z]b − [y, z]a (3.4)

for all y, z ∈ D, we have the limit

[y, z]−∞ = lima→−∞ [y, z]a , [y, z]∞ = limb→∞ [y, z]b

exist and are finite.
We deal with the equation (3.1) whose boundary conditions are

α [y, u]−∞ + β [y, v]−∞ = 0, γ [y, u]∞ + δ [y, v]∞ = 0, (3.5)
where α, β, γ, and δ are given real numbers satisfying the condition

(C3) g := δ(α2 + β2) 6= 0.

It follows from the condition (C1) that u, v ∈ L2(−∞,∞); moreover, u, v ∈
D. Hence for each y ∈ D, the values [y, u]±∞ and [y, v]±∞ exist and are finite.



Now, we define the functions ϕ1(x) = u(x) and ϕ2(x) = γu(x)+δv(x). From
(3.3) and (3.4), ϕ1 satisfies the boundary condition at −∞, and ϕ2 satisfies the
boundary condition at ∞.

The general solution of the nonhomogeneous equation
−y′′ + q(x)y = h(x), −∞ < x < ∞, (3.6)

is y(x) = c1ϕ1(x) + c2ϕ2(x) − 1
g

∫ x

−∞ [ϕ1(s)ϕ2(x)− ϕ2(s)ϕ1(x)] h(s)ds, where
c1, c2 are arbitrary given real numbers. Then the nonhomogeneous boundary
value problem (3.6) , (3.5) has a solution y ∈ L2(−∞,∞) given by the formula

y(x) =
∫∞
−∞G(x, s)h(s)ds, −∞ < x < ∞,

where

G (x, s) = − 1
g

{
ϕ1(x)ϕ2(s) −∞ < x ≤ s < ∞,
ϕ1(s)ϕ2(x) −∞ < s ≤ x < ∞.

Since ϕ1, ϕ2 ∈ L2(−∞,∞), we obtain
∫∞
−∞

∫∞
−∞ |G(x, s)|2dxds < ∞.

Hence, the nonlinear boundary value problem (3.1), (3.5) is equivalent to the
nonlinear integral equation

y(x) =
∫∞
−∞G(x, s)f(s, y(s))ds, −∞ < x < ∞.

Then investigating the existence of solutions of the nonlinear BVP (3.1),
(3.5) is equivalent to investigating fixed points of the operator A : L2(−∞,∞) →
L2(−∞,∞) by the formula

Ay(x) =
∫∞
−∞G(x, s)f(s, y(s))ds, −∞ < x < ∞,

where y ∈ L2(−∞,∞).
Next reasoning as in the previous section we can prove the following theo-

rem.

Theorem 5. Assume conditions (C1), (C2), and (C3) are satisfied. In
addition, let there exist a number R > 0 such that

M{supy∈S
∫∞
−∞ |gR(s)|2ds} ≤ R2,

where M =
∫∞
−∞

∫∞
−∞ |G(x, s)|2dxds and S = {y ∈ L2(−∞,∞) : ‖y‖ ≤ R}.

Then the BVP (3.1), (3.5) has at least one solution y ∈ L2(−∞,∞) with
‖y‖ ≤ R.
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