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Abstract: In this paper, we consider boundary value problems for nonlinear dif-
ferential equations in the Hilbert space L2 (0,00) and L? (—o0,00) . Using the
Schauder fixed point theorem, the existence results for solutions of the considered
boundary value problems are established.
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1 Introduction

We consider the second order nonlinear differential equation
—y" + @)y = f(,y), 0<w < oo, (1.1)
where y = y(z) is a desired solution.
For convenience, let us list some conditions.

(H1) ¢(z) is real-valued measurable functions on [0, c0) such that

fob lg(z)|dz < oo

for each finite positive number b. Moreover, the function g(x) is such that all
solutions of the second order linear differential equation

" +q(x)y=0, 0<z< oo, (1.2)
belong to L2(0,00), that is Weyl limit circle case holds for the differential
expression Ly = —y” + ¢(x)y (see Coddington et al [1], Titchmarsh [9]).

(H2) The function f(z,y) is real-valued and continuous in (z,y) € [0, 00) X
R and there exists a function gx € L?(0, 00) such that

[f (2, 7)| < gx (). (1.3)



where |7] < K.

Let D be the linear manifold of all elements y € L?(0,00) such that Ly is
defined and Ly € L?(0,00).
Assume v = u(x) and v = v(x) are solutions of (1.2) satisfying the initial
conditions
u(0) = 3, v (0) = a; v(0) = —a ,v'(0) = 5, (1.4)
where «, 3 are arbitrary given real numbers.
We have the following notation

y, 2], = y(2)2'(2) — 2(2)y/ (2).

Using the Green’s formula

b
Jol(Ly)z = y(L2)|(x)dz = [y, 2], — [y, 2], (1.5)
for all y, z € D, we have the limit

[yv Z]oo = hmbﬂoo [yv Z]b

exists and is finite.
We deal with the equation (1.1) whose boundary conditions are
ay(0) = By'(0) =0, [y, ul +6[y,v] =0, (1.6)
where «, 3,7, and § are given real numbers satisfying the condition

(H3) g :=06(a® + 3?) #£0.

The way giving boundary condition at infinity is used in Fulton [2], Gasy-
mov et al [3], Guseinov [4], Guseinov et al [5], Guseinov et al [6] and Krein
[8].

From (H3) and the constancy of the Wronskian it follows that W (u, v) # 0.
Hence, u and v are linearly independent and they form a fundamental system
of solutions of (1.2). It follows from the condition (H1) that u,v € L?(0, c0);
what is more u,v € D. Consequently for each y € D, the values [y, u]_ and
ly,v] ., exist and are finite.

Now, we define the functions ¢1(x) = u(z) and @a(z) = yu(x) + dv(z).
1 and @9 are linear independent solutions of (1.2), since W, (¢1,p2) = g #
0. From (1.4) and (1.5), ¢ satisfies the boundary condition at zero, and @
satisfies the boundary condition at infinity.

By a variation of constants formula, the general solution of the nonhomo-
geneous equation

=y +q(x)y="h(z), 0<xz< o, (L.7)
is y(z) = crpr(z) + capa() — ¢ [y [p1(5)p2(2) — pa(s)1 ()] h(s)ds, where
c1,co are arbitrary given real numbers. Then the nonhomogeneous boundary
value problem (1.7), (1.6) has a solution y € L?(0,00) given by the formula



y(z) = [;° G(x,s)h(s)ds, 0<z<oo,
where

_ 1) e(@)pa(s) 0<z<s<oo,
Gle.s) = 9{ 01(8)p2(z) 0<s5< < o0

Since 1,92 € L?(0,00), we obtain
17 7 G, ) |2dads < oo. (1.8)
Hence, the nonlinear boundary value problem (1.1), (1.6) is equivalent to
the nonlinear integral equation

y(x) = [;° G, ) f(s,y(s))ds, 0<az<oo.

Then investigating the existence of solutions of the nonlinear BVP (1.1), (1.6) is
equivalent to investigating fixed points of the operator A : L?(0, 00) — L?(0, 00)
by the formula

Ay(z) = [;° G(z,5)f(s,y(s))ds, 0<x < oo, (1.9)
where y € L?(0,00).

2 Existence of solutions on half-line

In this section we will use the Schauder Fixed Point Theorem to show the
existence of solutions of the BVP (1.1), (1.6).

Theorem 1. (Schauder Fixed Point Theorem) Let B be a Banach
space and S a nonempty bounded, convex, and closed subset of B. Assume
A : B — B is a completely continuous operator. If the operator A leaves the set
S invariant then A has at least one fized point in S.

Let’s state the theorem used in Lemma 3.

Theorem 2. (Yosida [10], Fréchet-Kolmogorov)Let S be the real
line, B the o—ring of Baire subsets B of S and m(B) = fB dzx the ordinary
Lebesque measure of B. Then a subset K of LP(S,B,m) , 1 < p < oo, is
strongly pre-compact iff it satisfies the conditions:

i) subgere o] = superc ([ [o(s)” ds)"" < oc,

i) limy g [ |a(t + s) — z(s)|*ds = 0 uniformly in z € K,

i0i) lima oo [, [2(s)[Pds = 0 uniformly in x € K.

Lemma 3. Under the conditions (H1), (H2), and (H3) the operator A
defined in (1.9) is completely continuous.



Proof. We must show that the operator A is continuous and compact operator.
Firstly, we want to show that when ¢ > 0 and yo € L?(0, 00), there exists § > 0
such that

y € L*(0,00) and ||y — yo|| < J implies || Ay — Ayol| < e. (2.1)
It can be easily seen that the inequality

| Ay(z) — Ayo(2)* < M [771f(s,y(s)) = f(s,50(s)*ds,

where
M = [ [77 |Gz, s)Pdxds.

It is known (see Krasnosel’skii [7]) that the operator F defined by Fy(z) =
f(z,y(x)) is continuous in L?(0,00). Therefore for the given €, we can find a
0 > 0 such that

lly = yoll < & implies [ |f(s.y(s)) = f(s.yo(s)[*ds < 5.
Hence, we obtain desired result (2.1), that is, the operator A is continuous.
Now, we must show that A(Y) is a pre-compact set in L?(0,00) where
llyl| < ¢ for all y € Y. For this purpose, we will use Theorem 2.
For all y € Y, from (1.8) and (1.3) we have
[ Ay| < M [ g2(s)ds < oo, (22)
Further, for all y € Y, we get

fooo |Ay(t+x)—Ay(x)|*dz < fooo fooo |G(t+z,s)—G(z, s)|>dxds fooo |f(s,y(s)|?ds
< ST IG(E + @, s) — G, s)Pdads [[° g2(s)ds.

From (1.8), [° [Ay(t + z) — Ay(z)|*dz converges uniformly to zero as t — 0.
We also have, for all y € Y,

I3 Ay (@) Pde < [ [T G (x, 5)Pdads [ |f (s, y(s)[Pds < M [ g2(s)ds.
Again by (1.8), [ |Ay(z)[*dz converges uniformly to zero as a — oc.

Thus, A(Y) is a strongly pre-compact set in L?(0,00). This completes the
proof of Lemma 3.

Theorem 4. Assume conditions (H1), (H2), and (H3) are satisfied. In
addition, let there exist a number R > 0 such that
M{sup,cs [ lgn(s)ds} < R, (2.3)
where M = [° 7 |G(x, s)|?dxds and S = {y € L*(0,00) : ||y|| < R}. Then
the BVP (1.1), (1.6) has at least one solution y € L*(0,00) with

S (@) Pz < R2.
Proof. By Lemma 3, the operator A is completely continuous. Further, it is

obvious that the set S is bounded, convex, and closed. By (2.2) and (2.3), A
maps the set § into itself, and thus the proof is completed.



3 Boundary value problems on the whole axis

Consider the equation
-y’ +q(@)y = f(z,y), —oo <z < o0 (3.1)
For convenience, let us list some conditions.

(C1) q(z) is real-valued measurable functions on (—oo, c0) such that
b
fa lg(z)|dz < co

for each finite real numbers a and b with a < b. Moreover, the function ¢(z) is
such that all solutions of the second order linear differential equation

—y" +q(z)y=0, —o0o<z< o0, (3.2)
belong to L2(—o00,00).

(C2) The function f(z,y) is real-valued and continuous in (z,y) € R x R
and there exists a function gx € L?(—00,c0) such that

(2, 7)| < gx ().

where |7] < K.

Let D be the linear manifold of all elements y € L?(—o0, 00) such that Ly
is defined and Ly € L?(—o0, ).
Assume u = u(z) and v = v(x) are solutions of (3.2) satisfying the initial
conditions
u(0) = B, v (0) = a; v(0) = —a ,v'(0) = 4, (3.3)
where «, § are arbitrary given real numbers.
Using the Green’s formula
L (Lw)z — y(Lo)(@)de = [y, 2], ~ v 2], (3.4)
for all y,z € D, we have the limit

[ya Z]_oo =lim,_ [y7 Z]a ; [ya Z]oo = limp. [yv Z]b

exist and are finite.
We deal with the equation (3.1) whose boundary conditions are

& [y7 u]foo + /8 [y7 v]foo = 07 Py [y7 u]oo + 5 [y> v]oo = 07 (35>
where «, 3,7, and § are given real numbers satisfying the condition

(C3) g = 3(a2 + ) # 0.

It follows from the condition (C1) that u,v € L?(—o00, c0); moreover, u,v €
D. Hence for each y € D, the values [y,u], . and [y,v],  exist and are finite.



Now, we define the functions ¢1 (z) = u(x) and ¢a(z) = yu(z)+6v(z). From
(3.3) and (3.4), ¢ satisfies the boundary condition at —oo, and ¢ satisfies the
boundary condition at co.

The general solution of the nonhomogeneous equation

-y + q( )y = h( ), —oo < x < 00, (3.6)

is y(2) = crp1(x) + ca2(2) — ¢ [T (t) — pa(s)p1 ()] h(s)ds, where
c1,co are arbitrary given real numbers Then the nonhomogeneous boundary
value problem (3.6), (3.5) has a solution y € L?(—00,00) given by the formula

= [7_ G(x,5)h(s)ds, —oo0 <z < o0,
where

_ 1) wi(@)pa(s) —oco <z <s < oo,
Glos)= 9{@1(8)@2(9&) —0<s<x< o0,

Since @1, 2 € L?(—00,00), we obtain
I [ |G, 5)[Fdads < oo

Hence, the nonlinear boundary value problem (3.1), (3.5) is equivalent to the
nonlinear integral equation

=%, f(s,y(s))ds, —oco <z < o0.

Then investigating the existence of solutions of the nonlinear BVP (3.1),
(3.5) is equivalent to investigating fixed points of the operator A : L?(—00, 00) —
L?(—00,00) by the formula

Ay(z) = [7_ G(x,s)f(s,y(s))ds, —oo <z < oo,

where y € L?(—00,00).
Next reasoning as in the previous section we can prove the following theo-
rem.

Theorem 5. Assume conditions (C1), (C2), and (C3) are satisfied. In
addition, let there exist a number R > 0 such that

M{sup,es 7, lgr(s)]*ds} < R?,

where M = [7_ [ |G(z,s)|*dzds and S = {y € L*(—o00,0) : |yl < R}.

Then the BVP ( . ), (3.5) has at least one solution y € L2(—oo7oo) with
lyll < R.
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