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Abstract. In this paper, we investigate the Fibonacci and Lucas quater-
nions. We give the generating functions and Binet formulas for these
quaternions. Moreover, we derive some sums formulas for them.
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1. Preliminaries

Quaternions were investigated by Sir William Rowan Hamilton (1805-1865)
as an extension to the complex numbers. Until the middle of the 20th cen-
tury, the practical use of quaternions was minimal in comparison with other
methods. Now, there has been an increasing interest in algebra problems
on quaternion field since many algebra problems on quaternion field were en-
countered in some applied science, such as the differential geometry, quantum
physics, geostatics, and analysis. A quaternion is a hyper-complex number
and is defined by the following equation;

q = q0 + iq1 + jq2 + kq3 = (q0, q1, q2, q3) (1.1)

where q0, q1, q2, and q3 are real numbers or scalars. Here i, j and k are the
standard orthonormal basis in R3. Then we can write

q = q0 + u = q0 + iq1 + jq2 + kq3. (1.2)

where u = iq1 + jq2 + kq3. q0 is called the scalar part of the quaternion q
and u is called the vector part of the quaternion q. The q0, q1, q2, and q3 are
called the components of the quaternion q. The quaternion multiplication is
defined by the following rules;

i2 = j2 = k2 = ijk = −1. (1.3)

Note that the rules (1.3) imply ij = k = −ji, jk = i = −kj, and ki = j =
−ik. The set of all quaternions form an associative but non commutative
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algebra. The conjugate of the quaternion q is denoted by q∗ and q∗ = q0−u.
For the quaternions p, q, it follows that

(pq)∗ = q∗p∗, (p∗q)∗ = q∗p.

The norm of the quaternion q is defined by

|q| = N(q) =
√

q∗q.

If a quaternion has a norm equal to one, then it is called as a unit quaternion,
that is, we can write

|q| = |q∗| = 1 , q∗q = N2(q) = 1
Thus, we write[8]

q∗qq−1 = N2(q)q−1 = q∗

and
q−1 =

q∗

N2 (q)
=

q∗

|q|2
.

A. F. Horadam[1] defined the nth Fibonacci and Lucas quaternions as follows;

Qn = Fn + iFn+1 + jFn+2 + kFn+3 (1.4)
and

Kn = Ln + iLn+1 + jLn+2 + kLn+3 (1.5)

respectively. Here Fn and Ln are the nth Fibonacci and Lucas numbers,
respectively. Here the basis i, j, k, are as in the above equation (1.3). Also,
Horadam established a few relations for the Fibonacci quaternions;

QnQn
∗ =

3∑
i=0

Fn+i
2 = 3F2n+3,

Q2
n = 2FnQn −QnQn

∗,

2Fn = Qn + Qn
∗, Qn 6= 0.

M. N. S. Swamy[6] defined a new quaternion Rn as follows;

Rn = Mn + iMn+1 + jMn+2 + kMn+3,

where Mn = Mn−1 + Mn−2 , M1 = r, M2 = r + s.

M. R. Iyer [5] derived relations connecting the Fibonacci and Lucas quater-
nions. Furthermore, he listed the relations existing between Fibonacci and
Lucas quaternions. A. L. Iakin [3] introduced the concept of a higher order
quaternion, and established some identities for these quaternions. In 1993,
Horadam [2] examined the quaternion recurrence relations.
Now, in this paper we give the generating functions and Binet formulas for
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Fibonacci and Lucas quaternions. Moreover, we obtain some sums formulas
for these quaternions.

2. Some Properties of Fibonacci Quaternions

We consider the quaternions defined in the equations (1.4) and (1.5). These
quaternions can be written as

Qn = Fn + u ; u = iFn+1 + jFn+2 + kFn+3 (2.1)

and

Qn
′ = Ln + v ; v = iLn+1 + jLn+2 + kLn+3. (2.2)

Note that, for n ≥ 0

Qn+2 = Qn+1 + Qn ; Q′n+2 = Q′n+1 + Q′n (2.3)

can be written. So, the Fibonacci and Lucas quaternions are the second or-
der linear recurrence sequence. Then, if we define the sets H and H ′ as follows

H = {Qn : Qn = (Fn, Fn+1, Fn+2, Fn+3) ; Fnis nth Fibonacci number}

and

H ′ =
{

Pn : Pn =
(

w −z
z̄ w̄

)
; w, z ∈ C

}
then there is a isomorphism between H and H ′ such that

Qn = (Fn, Fn+1, Fn+2, Fn+3) → Pn =
(

Fn + iFn+1 −Fn+2 − iFn+3

Fn+2 − iFn+3 Fn − iFn+1

)
.

Thus, we can write

Pn = FnE + Fn+1I + Fn+2J + Fn+3K, (2.4)

where E =
(

1 0
0 1

)
, I =

(
i 0
0 −i

)
, J =

(
0 −1
1 0

)
, K =

(
0 −i
−i 0

)
.

Since det(Pn) 6= 0, there is the inverse of matrix Pn and it is in H ′. Us-
ing the relationship, we will give some properties of the Fibonacci and Lucas
quaternions.
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3. Main Results

The Binet formula is the explicit formula to obtain the nth Fibonacci and
Lucas numbers. In any case, Binet formula can be employed to drive a myriad
of Fibonacci identities. M. Iyer[5] derived relations connecting the Fibonacci
quaternions and Lucas quaternions with the Fibonacci and Lucas numbers.
It is well known that for the Fibonacci and Lucas numbers, Binet formulas
are

Fn =
αn − βn

α− β
and Ln = αn + βn

respectively, where

α =
1 +

√
5

2
and β =

1−
√

5
2

.

Then, we can give the following theorem.

Theorem 3.1. (Binet’s Formulas) For n ≥ 0, the Binet formulas for the
Fibonacci and Lucas quaternions are follows;

Qn =
1√
5

α
−

αn − β
−

βn

 , (3.1)

and

Qn
′ =

α
−

αn + β
−

βn

 (3.2)

respectively, where α
−

= 1 + iα + jα2 + kα3 and β
−

= 1 + iβ + jβ2 + kβ3.

Proof. The characteristic equation of recurrence relation (2.3) is

t2 − t− 1 = 0. (3.3)

The roots of this equation are α = 1+
√

5
2 and β = 1−

√
5

2 . Using recurrence
relation and the initial values Q0 = (0, 1, 1, 2) , Q1 = (1, 1, 2, 3) the Binet’s
formula for Qn is obtained as follows;

Qn = Aαn + Bβn =
1√
5

α
−

αn − β
−

βn

 . (3.4)

Similarly, we can get

Qn
′ =

α
−

αn + β
−

βn

 .

Thus, the proof is completed. �



On Fibonacci Quaternions 5

The function

f (x) = a0 + a1x + a2x
2 + ... + anxn + ...

is called the generating function for the sequence {a0, a1,a2, ...}. Generating
functions provide a powerful tool for solving linear recurrence relations with
constant coefficients. It is well known that[7], the generating function of the
Fibonacci sequence {Fn}n≥o is

f (x) =
x

1− x− x2
.

Theorem 3.2. The generating function for the Fibonacci quaternion Qn is

G(x, t) =
t + i + j(t + 1) + k(t + 2)

1− t− t2
. (3.5)

Proof. If the generating function of sequence H is G(x, t) =
∞∑

n=0
Qn (x) tn,

then using the equations tG(x, t) and t2G(x, t),

G(x, t) =
Q0 + (Q1 −Q0)t

1− t− t2
. (3.6)

is obtained. So, we write

G(x, t) =
t + i + j(t + 1) + k(t + 2)

1− t− t2
.

�

Theorem 3.3. For m,n ∈ Z the generating function of the quaternion Qm+n

is
∞∑

n=0

Qm+nxn =
Qm + Qm−1x

1− x− x2
. (3.7)

Proof. Using the Binet formula of Qn, we can write the following equation;

∞∑
n=0

Qm+nxn =
∞∑

n=0

α
−

αm+n − β
−

βm+n

α− β

xn,

∞∑
n=0

Qm+nxn =
1

α− β

 α
−

αm

1− αx
−

β
−

βm

1− βx

 =
Qm + Qm−1x

1− x− x2

which is desired. �

Now, let us define the following matrix as

Q =
(

Q2 Q1

Q1 Q0

)
. (3.8)

This matrix can be called as the Fibonacci quaternion matrix. Then, we can
give the next theorem by the Fibonacci quaternion matrix.
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Theorem 3.4. (Cassini Identity) For n ≥ 1 , we have the following formula;

Qn−1Qn+1 −Q2
n = (−1)n(2Q1 − 3k) (3.9)

Proof.

Q =
(

Q2 Q1

Q1 Q0

)
, det(Q) = Q0Q2 −Q1

2 = −(2Q1 − 3k)

Q2 = Q2 =
(

Q3 Q2

Q2 Q1

)
, det(Q2) = Q1Q3 −Q2

2 = (2Q1 − 3k)

By the aid of quaternion multiplication, we can compute Qn as follows;

Qn = (Fn−1 + iFn + jFn+1 + kFn+2)(Fn+1 + iFn+2 + jFn+3 + kFn+4)

−(Fn + iFn+1 + jFn+2 + kFn+3)2

and
Qn = Qn = (−1)n(2Q1 − 3k)

which is desired. �

Corollary 1. For the Fibonacci quaternion Qn, we have

Q−n = Q−n = (−1)n(−Fn + iFn+1 − jFn+2 + kFn+3), (3.10)

Q−n + conjugate(Q−n) = 2(−1)n+1Fn (3.11)

and
1
2

(
Qn + Q−n

)
=

{
Fn + jFn+2; n odd

iFn+1 + kFn+3; n even (3.12)

Proof. The proof can be easily seen by the Fibonacci quaternion matrix. �

Now, we will give without proof the following corollary.

Corollary 2. For the Fibonacci quaternion Qn, we have

a)
n∑

i=0

Qi = Qn+2 −Q1,

b)
n∑

i=0

Q2i = Q2n+1 − (1, 0, 1, 1),

c)
n−1∑
i=0

Q2i+1 = Q2n −Q0.
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Theorem 3.5. For n ≥ 0 , we have the following sums formulas;
n∑

i=0

(
n
i

)
Qi = Q2n, (3.13)

and
n∑

i=0

(
n
i

)
Qi(−1)i = (−1)n

Q−n. (3.14)

Proof. From Binet formula

n∑
i=0

(
n
i

) α
−

αi − β
−

βi

α− β

 =
α
−

α− β

n∑
i=0

(
n
i

)
αi −

β
−

α− β

n∑
i=0

(
n
i

)
βi

=
α
−

α− β
[(1 + α)n]−

β
−

α− β
[(1 + β)n] = Q2n

can be written. Thus, the proof is completed. �
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