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Abstract 
 
In this paper, by using the four functionals fixed point theorem, Avery-Henderson fixed point theorem 
and the five functionals fixed point theorem, respectively, we investigate the conditions for the 
existence of at least one, two and three positive solutions to nonlinear higher order three-point 
boundary value problems on time scales. 
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1. Introduction 

 
The study of dynamic equations on time scales goes back to its founder Hilger 1  (in his Phd 
thesis in 1988) and is a rapidly expanding area of research. Time scales theory explains the 
mathematical structure underpinning the theories of discrete and continuous dynamical 
systems and allows us to connect them. A result for a dynamic equation contains 
simultaneously a corresponding result for a differential equation, one for a difference 
equation, as well as results for other dynamic equations in arbitrary time scales. The study of 
time scales has led to many important applications, e.g. in the study of insect population 
models, epidemic models, heat transfer and neural networks. Some basic definitions and 
theorems on time scales can be found in the book 2  and another excellent source on time 
scales is the book 3 . 
 
A time scale 𝕋 is a nonempty closed subset of ℝ. 𝕋 has the topology that it inherits from the 
real numbers with the standard topology.  
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Definition 1.1 [2] Let 𝕋 be a time scale. For 𝑡 ∈ 𝕋 we define the forward jump operators 
𝜎: 𝕋 → 𝕋  by 𝜎 𝑡 𝑖𝑛𝑓 𝑠 ∈ 𝕋 ∶ 𝑠 𝑡  while the backward jump operator 𝜌: 𝕋 → 𝕋  is 
defined by 𝜌 𝑡 𝑠𝑢𝑝 𝑠 ∈ 𝕋 ∶ 𝑠 𝑡 . 
 
If 𝜎 𝑡 𝑡,  𝑡 is said to be right scattered, and if If 𝜎 𝑡 𝑡, 𝑡 is said to be right dense. If 
𝜌 𝑟 𝑟, 𝑟 is said to be left scattered, and if 𝜌 𝑟 𝑟, 𝑟 is said to be left dense. The 
graininess function 𝜇 ∶ 𝕋 → 0, ∞   is defined by 𝜇 𝑡 𝜎 𝑡 𝑡. If 𝕋 has a left scattered 
maximum M, define 𝕋 𝕋 𝑀; otherwise, set 𝕋 𝕋.  
 
Definition 1.2 [2] For 𝑓 ∶  𝕋 → ℝ and 𝑡 ∈ 𝕋 , the delta derivative of 𝑓 at 𝑡, denoted by 𝑓∆ 𝑡 , 
is the number (provided it exists) with the property that given any 𝜀 0, there is a 
neighborhood 𝑈 ⊂ 𝕋 of 𝑡 such that 
 

𝑓 𝜎 𝑡 𝑓 𝑠  𝑓∆ 𝑡 𝜎 𝑡 𝑠 𝜀|𝜎 𝑡 𝑠|, 
 
for all 𝑠 ∈ 𝑈. 
 
Theorem 1.3 Assume 𝑓 ∶  𝕋 → ℝ is a function and let 𝑡 ∈ 𝕋 . Then we have the following: 
 
(i) If 𝑓 is differentiable at 𝑡, then 𝑓 is continuous at 𝑡. 
 
(ii) If 𝑓  is continuous at 𝑡 and 𝑡 is right-scattered, then 𝑓 is differentiable at 𝑡 with 
 

 𝑓∆ 𝑡
𝑓 𝜎 𝑡 𝑓 𝑡

𝜎 𝑡 𝑡
. 

 
(iii) If 𝑡 is right-dense, then 𝑓 is differentiable at 𝑡 iff the limit 
 

lim
→

𝑓 𝑡 𝑓 𝑠
𝑡 𝑠

 

 
exists as a finite number. In this case 
 

 𝑓∆ 𝑡 lim
→

𝑓 𝑡 𝑓 𝑠
𝑡 𝑠

. 

 
(iv) If 𝑓 is differentiable at 𝑡, then 
 

𝑓 𝜎 𝑡 𝑓 𝑡 𝜎 𝑡 𝑡  𝑓∆ 𝑡 . 
 
Definition 1.4 [2] A function 𝑓 ∶  𝕋 → ℝ  is called rd-continuous provided it is continuous at 
right -dense points in 𝕋 and its left-sided limits exist (finite) at left-dense points in 𝕋. 
 
Definition 1.5 [2] If 𝑓 is rd-continuous, then there is a function 𝐹 such that 𝐹∆ 𝑡 𝑓 𝑡  for 
all 𝑡 ∈ 𝕋 . In this case, we define 
 

𝑓 𝑡  ∆𝑡 𝐹 𝑏 𝐹 𝑎 ,    ∀𝑎, 𝑏 ∈  𝕋. 
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Theorem 1.6 [2] Let 𝑎, 𝑏 ∈ 𝕋 and 𝑓 ∈ 𝐶 . 
 
(i) If 𝕋 ℝ, then 
 

𝑓 𝑡  ∆𝑡 𝑓 𝑡  𝑑𝑡,    

 
where the integral on the right is the usual Riemann integral from calculus. 
 
(ii) If 𝑎, 𝑏  consists of only isolated points, then 
 

𝑓 𝑡  ∆𝑡

⎩
⎪
⎨

⎪
⎧ 𝜎 𝑡 𝑡 𝑓 𝑡 ,

∈ ,

𝑖𝑓 𝑎 𝑏,

0, 𝑖𝑓 𝑎 𝑏,

𝜎 𝑡 𝑡 𝑓 𝑡 ,
∈ ,

𝑖𝑓 𝑎 𝑏.

    

 
In this paper we are concerned with the existence of single and multiple positive solutions to 
the following nonlinear higher order three-point boundary value problem (BVP) on time 
scales: 

 

1 𝑦∆ 𝑡 𝑓 𝑡, 𝑦 𝜎 𝑡 , 𝑡 ∈ 𝑡 , 𝑡 ⊂ 𝕋, 𝑛 ∈ ℕ

𝑦∆ 𝜎 𝑡 0,   𝛼𝑦∆ 𝑡 𝛽𝑦∆ 𝑡 𝑦∆ 𝑡
                              (1) 

 
for 0 𝑖 𝑛 1, where 𝛼 0 and 𝛽 0 are given constants. We assume that 
𝑓: 𝑡 , 𝜎 𝑡 0, ∞ → 0, ∞  is continuous. Throughout this paper we suppose 𝕋 is any 
time scale and 𝑡 , 𝑡  is a subset of 𝕋 such that 𝑡 , 𝑡 𝑡 ∈ 𝕋: 𝑡 𝑡 𝑡 . 
 
The study of three-point boundary value problems was initiated by Neuberger 4  in 1966. 
The first result concerning existence of positive solutions for higher order three-point 
boundary value problems was given by Eloe and McKelwey 5  in 1997. Since then, by 
applying the cone theory techniques, more general nonlinear three point boundary value 
problems have been studied by several authors. We refer the reader to 6 8  and references 
therein. 
 
In recent years, there has been much research activity concerning the second order three-point 
boundary value problems for dynamic equations on time scales. We refer the reader to the 
recent papers 9 17  and references cited therein. We would like to mention some results of 
Anderson and Avery 18 , Anderson and Karaca 19 , Sang 20 , Yaslan 21 , Sang 22 , 
and Yaslan 23 . 
 
In 18 , Anderson and Avery were concerned with the following even-order three-point BVP: 

 
1 𝑥 ∆∇ 𝑡 𝜆ℎ 𝑡 𝑓 𝑥 𝑡 , 𝑡 ∈ 𝑎, 𝑐 ⊂ 𝕋, 𝑛 ∈ ℕ

𝑥 ∆∇ 𝑎 0,   𝑥∆∇ 𝑐 𝛽𝑥 ∆∇ 𝑏 ,   0 𝑖 𝑛 1.
                              (2) 
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They have studied the existence of at least one positive solution to the BVP (2) using the 
functional-type cone expansion-compression fixed point theorem. 
 
In 19 , Anderson and Karaca investigated the following higher-order three-point BVP: 

 

1 𝑦∆ 𝑡 𝑓 𝑡, 𝑦 𝜎 𝑡 , 𝑡 ∈ 𝑎, 𝑏 ⊂ 𝕋, 𝑛 ∈ ℕ

𝛼 𝑦∆ 𝜂 𝛽 𝑦∆ 𝑎 𝑦∆ 𝑎 ,   𝛾 𝑦∆ 𝜂 𝑦∆ 𝜎 𝑏 ,   0 𝑖 𝑛 1.  
     (3) 

 
Existence results of bounded solutions of a noneigenvalue problem are first established as a 
result of the Schauder fixed point theorem. Second, the monotone method is discussed to 
ensure the existence of solutions of the BVP (3). Third, they established criteria for the 
existence of at least one positive solution of the eigenvalue problem by using the 
Krasnosel’skii fixed point theorem. Later, they investigated the existence of at least two 
positive solutions of the BVP (3) by using the Avery-Henderson fixed point theorem. 
 
In 20 , Sang considered the BVP (3). The existence result was first obtained by using a fixed 
point theorem due to Krasnoselskii and Zabreiko. Later, under certain growth conditions 
imposed on the nonlinearity, several sufficient conditions for the existence of a nonnegative 
and nontrivial solution were obtained by using Leray-Schauder nonlinear alternative. 
 
In 21 , Yaslan studied the following even-order three-point BVP: 

 

1 𝑦∆ 𝑡 𝑓 𝑡, 𝑦 𝜎 𝑡 , 𝑡 ∈ 𝑡 , 𝑡 ⊂ 𝕋, 𝑛 ∈ ℕ

𝑦∆ 𝑡 0,   𝛼𝑦∆ 𝜎 𝑡 𝛽𝑦∆ 𝜎 𝑡 𝑦∆ 𝑡
                              (4) 

 
The criteria for the existence of at least one solution and of at least one positive solution for 
the BVP (4) were established by using Schauder fixed point theorem and Krassnoselskii’s 
fixed point theorem, respectively. Later, the existence of multiple positive solutions to the 
BVP (4) was investigated by using Avery–Henderson fixed point theorem and Legget–
Williams fixed point theorem. 
 
In 22 , Sang was concerned with the BVP (4). The existence results of at least one positive 
solution for a noneigenvalue problem and an eigenvalue problem were established by using 
fixed point theorems, which have extended and improved the famous Guo-Krasnosel’skii 
fixed point theorem at different aspects. 
 
In [23], we investigated the conditions for the existence of one or two positive solutions for 
the BVP (1) by using a result from the theory of fixed point index and establish the criteria for 
the existence of at least three positive solutions for the BVP (1) by using Leggett-Williams 
fixed point theorem. 
 
We have organized the paper as follows. In Section 2, we give some lemmas which are 
needed later. In Section 3, first, we use the four functionals fixed point theorem to show the 
existence of at least one positive solutions for the BVP (1). Second, we apply the Avery-
Henderson fixed-point theorem to prove the existence of at least two positive solutions to the 
BVP (1). Finally, we use the five functional fixed-point theorem to show that the existence of 
at least three positive solutions to the BVP (1). 
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2. Preliminaries 
 

From 23 , we know the linear boundary value problem 
 

𝑦∆ 𝑡 ℎ 𝑡 , 𝑡 ∈ 𝑡 , 𝑡
𝑦∆ 𝜎 𝑡 0,   𝛼𝑦 𝑡 𝛽𝑦∆ 𝑡 𝑦∆ 𝑡 ,

 

 
has the unique solution 
 

𝑦 𝑡 𝜎 𝑠
𝛽
𝛼

𝑡 ℎ 𝑠 ∆𝑠
1
𝛼

ℎ 𝑠 ∆𝑠 𝑡 𝜎 𝑠 ℎ 𝑠 ∆𝑠. 

 
If 𝐺 𝑡, 𝑠  is Green's function for the boundary value problem 
 

𝑦∆ 𝑡 0, 𝑡 ∈ 𝑡 , 𝑡
𝑦∆ 𝜎 𝑡 0,   𝛼𝑦 𝑡 𝛽𝑦∆ 𝑡 𝑦∆ 𝑡 ,

 

 
then we have 
 

𝐺 𝑡, 𝑠
𝐻 𝑡, 𝑠 , 𝑡 𝑠 𝑡
𝐻 𝑡, 𝑠 , 𝑡 𝑠 𝑡

                                         (5) 

 
where 
 

𝐻 𝑡, 𝑠
𝜎 𝑠 𝑡 , 𝜎 𝑠 𝑡,

𝑡 𝑡 , 𝑡 𝑠
        and       𝐻 𝑡, 𝑠

𝜎 𝑠 𝑡 , 𝜎 𝑠 𝑡,

𝑡 𝑡 , 𝑡 𝑠.
 

 
To state the main results of this paper, we will need the following lemmas. 
 
Lemma 2.1 23  If 𝛼 0 and 𝛽 0, then the Green's function 𝐺 𝑡, 𝑠  in (5) satisfies 
  

𝐺 𝑡, 𝑠
𝑡 𝑡

𝜎 𝑡 𝑡
𝐺 𝜎 𝑡 , 𝑠  

 
for 𝑡, 𝑠 ∈ 𝑡 , 𝜎 𝑡 𝑡 , 𝑡 . 
 
Lemma 2.2 23  Let 𝛼 0 and 𝛽 0. Then the Green's function 𝐺 𝑡, 𝑠  in (5) satisfies 
0  𝐺 𝑡, 𝑠 𝐺 𝜎 𝑠 , 𝑠  for 𝑡, 𝑠 ∈ 𝑡 , 𝜎 𝑡 𝑡 , 𝑡 . 
 
Lemma 2.3 23  Assume 𝛼 0, 𝛽 0 and 𝑠 ∈ 𝑡 , 𝑡 . Then the Green's function 𝐺 𝑡, 𝑠  in 
(5) satisfies min ∈ , 𝐺 𝑡, 𝑠 𝐾‖𝐺 . , 𝑠 ‖, where 
 

𝐾                                                          (6) 

 
and ‖. ‖ is defined by ‖𝑥‖ max ∈ , |𝑥 𝑡 |.   
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If we let 𝐺 𝑡, 𝑠 ≔ 𝐺 𝑡, 𝑠  for 𝐺 as in (5), then we can recursively define 𝐺 𝑡, 𝑠

𝐺 𝑡, 𝑟 𝐺 𝑟, 𝑠 ∆𝑟 for 2 𝑗 𝑛 and 𝐺 𝑡, 𝑠  is Green's function for the 

homogeneous problem 
 

1 𝑦∆ 𝑡 0, 𝑡 ∈ 𝑡 , 𝑡 ⊂ 𝕋, 𝑛 ∈ 𝑁

𝑦∆ 𝜎 𝑡 0,   𝛼𝑦∆ 𝑡 𝛽𝑦∆ 𝑡 𝑦∆ 𝑡 ,   0 𝑖 𝑛 1
 

 
Lemma 2.4 23  Let 𝛼 0 and 𝛽 0. The Green's function 𝐺 𝑡, 𝑠  satisfies the following 
inequalities 
 

0 𝐺 𝑡, 𝑠 𝐿 ‖𝐺 . , 𝑠 ‖, 𝑡, 𝑠 ∈ 𝑡 , 𝜎 𝑡 𝑡 , 𝑡  
 
and 
 

𝐺 𝑡, 𝑠 𝐾 𝑀 ‖𝐺 . , 𝑠 ‖, 𝑡, 𝑠 ∈ 𝑡 , 𝜎 𝑡 𝑡 , 𝑡  
 
where 𝐾 is given in (6), 
 

𝐿 ‖𝐺 . , 𝑠 ‖∆𝑠 0                                                (7) 

 
and 
 

𝑀 ‖𝐺 . , 𝑠 ‖∆𝑠 0.                                             (8) 

 
Let ℬ denote the Banach space 𝐶 𝑡 , 𝜎 𝑡  with the norm ‖𝑦‖ max ∈ , |𝑦 𝑡 |. 
Define the cone 𝑃 ⊂ ℬ by 
 

𝑃 𝑦 ∈ 𝐵: 𝑦 𝑡 0,  min ∈ , 𝑦 𝑡 ‖𝑦‖ .                       (9) 

 
where 𝐾, 𝐿, 𝑀 are given in (6), (7), (8), respectively. 
 
(1) is equivalent to the nonlinear integral equation 
 

𝑦 𝑡 𝐺 𝑡, 𝑠 𝑓 𝑠, 𝑦 𝜎 𝑠 ∆𝑠                               (10) 

 
We can define the operator 𝐴: 𝑃 → ℬ by 
 

𝐴𝑦 𝑡 𝐺 𝑡, 𝑠 𝑓 𝑠, 𝑦 𝜎 𝑠 ∆𝑠                              (11) 

 
where 𝑦 ∈ 𝑃. Then (10) can be written as 𝑦 𝐴𝑦. Therefore solving (10) in 𝑃 is equivalent to 
finding fixed points of the operator 𝐴 in (11). If 𝑦 ∈ 𝑃, then by Lemma 2.4 we have 
 

min
∈ ,

𝐴𝑦 𝑡
𝐾 𝑀

𝐿
max

∈ ,
|𝐺 𝑡, 𝑠 |𝑓 𝑠, 𝑦 𝜎 𝑠 ∆𝑠

𝐾 𝑀
𝐿

‖𝐴𝑦‖ 
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Thus 𝐴𝑦 ∈ 𝑃 and therefore 𝐴𝑃 ⊂ 𝑃. In addition, 𝐴: 𝑃 → 𝑃 is completely continuous by a 
standard application of the Arzela-Ascoli Theorem. 
 
In order to follow the main results of this paper easily, now we state the fixed point theorems 
which we applied to prove main theorems. 
 
We are now in a position to present the four functionals fixed point theorem. Let 𝜑 and Ψ be 
nonnegative continuous concave functionals on the cone 𝑃, and let 𝜂 and 𝜃 be nonnegative 
continuous convex functionals on the cone 𝑃. Then for positive numbers 𝑟, 𝜏, 𝜇 and 𝑅, define 
the sets 
 

𝑄 𝜑, 𝜂, 𝑟, 𝑅 𝑥 ∈ 𝑃: 𝑟 𝜑 𝑥 , 𝜂 𝑥 𝑅 , 
𝑈 Ψ, 𝜏 𝑥 ∈ 𝑄 𝜑, 𝜂, 𝑟, 𝑅 : 𝜏 Ψ 𝑥 , 
𝑉 𝜃, 𝜇 𝑥 ∈ 𝑄 𝜑, 𝜂, 𝑟, 𝑅 : 𝜃 𝑥 𝜇 . 

 
The following theorem can be found in 24 . 
 
Theorem 2.5 (Four Functionals Fixed Point Theorem) Suppose 𝑃 is a cone in a real Banach 
space 𝐸, 𝜑 and Ψ are nonnegative continuous concave functionals on 𝑃, 𝜂 and 𝜃 are 
nonnegative continuous convex functionals on 𝑃, and there exist nonnegative positive 
numbers 𝑟, 𝜏, 𝜇 and 𝑅, such that 𝐴: 𝑄 𝜑, 𝜂, 𝑟, 𝑅 → 𝑃 is a completely continuous operator, and 
𝑄 𝜑, 𝜂, 𝑟, 𝑅  is a bounded set. If 
 

(i) 𝑥 ∈ 𝑈 Ψ, 𝜏 : 𝜂 𝑥 𝑅 ∩ 𝑥 ∈ 𝑉 𝜃, 𝜇 : 𝑟 𝜑 𝑥 ∅  
(ii) 𝜑 𝐴𝑥 𝑟, for all 𝑥 ∈ 𝑄 𝜑, 𝜂, 𝑟, 𝑅 , with 𝜑 𝑥 𝑟 and 𝜇< 𝜃 𝐴𝑥 , 
(iii) 𝜑 𝐴𝑥 𝑟, for all 𝑥 ∈  𝑉 𝜃, 𝜇 , with 𝜑 𝑥 𝑟, 
(iv) 𝜂 𝐴𝑥 𝑅, for all 𝑥 ∈ 𝑄 𝜑, 𝜂, 𝑟, 𝑅 , with  𝜂 𝑥 𝑅 and Ψ 𝐴𝑥 𝜏, 
(v) 𝜂 𝐴𝑥 𝑅, for all 𝑥 ∈  𝑈 Ψ, 𝜏 , with 𝜂 𝑥 𝑅, 

 
then 𝐴 has a fixed point 𝑥 in 𝑄 𝜑, 𝜂, 𝑟, 𝑅 . 
 
Theorem 2.6 25  (Avery-Henderson Fixed Point Theorem) Let 𝑃 be a cone in a real Banach 
space 𝐸. Set 𝑃 𝜙, 𝑟 𝑢 ∈ 𝑃: 𝜙 𝑢 𝑟 . Assume there exist positive numbers 𝑟 and 𝑀, 
nonnegative increasing continuous functionals 𝜂, 𝜙 on 𝑃, and a nonnegative continuous 
functional 𝜃 on 𝑃 with 𝜃 0 0 such that 𝜙 𝑢  𝜃 𝑢  𝜂 𝑢  and ‖𝑢‖ 𝑀𝜙 𝑢  for all 
𝑢 ∈ 𝑃 𝜙, 𝑟 . Suppose that there exist positive numbers 𝑝 𝑞 𝑟 such that 𝜃 𝜆𝑢 𝜆𝜃 𝑢  
for all 0 𝜆 1 and 𝑢 ∈ 𝜕𝑃 𝜃, 𝑞 . If 𝐴: 𝑃 𝜙, 𝑟 → 𝑃 is a completely continuous operator 
satisfying 
 

(i) 𝜙 𝐴𝑢 𝑟 for all 𝑢 ∈ 𝜕𝑃 𝜙, 𝑟 , 
(ii) 𝜃 𝐴𝑢 𝑞 for all 𝑢 ∈ 𝜕𝑃 𝜃, 𝑞 , 
(iii) 𝑃 𝜂, 𝑝 ∅ and 𝜂 𝐴𝑢 𝑝 for all 𝑢 ∈ 𝜕𝑃 𝜂, 𝑝 , 

 
then 𝐴 has at least two fixed points 𝑢  and 𝑢  such that 𝑝  𝜂 𝑢  with 𝜃 𝑢 𝑞 and 
𝑞 𝜃 𝑢  with 𝜙 𝑢 𝑟. 
 
Now, we will present the five functionals fixed point theorem. Let 𝜑, 𝜂, 𝜃 be nonnegative 
continuous convex functionals on the cone 𝑃, and 𝛾, Ψ nonnegative continuous concave 
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functionals on the cone 𝑃. For nonnegative numbers ℎ, 𝑎, 𝑏, 𝑑 and 𝑐, define the following 
convex sets: 
 

⎩
⎪
⎨

⎪
⎧

𝑃 𝜑, 𝑐 𝑥 ∈ 𝑃: 𝜑 𝑥 𝑐 ,
𝑃 𝜑, 𝛾, 𝑎, 𝑐 𝑥 ∈ 𝑃: 𝑎 𝛾 𝑥 , 𝜑 𝑥 𝑐 ,
𝑄 𝜑, 𝜂, 𝑑, 𝑐 𝑥 ∈ 𝑃: 𝜂 𝑥 𝑑, 𝜑 𝑥 𝑐 ,

𝑃 𝜑, 𝜃, 𝛾, 𝑎, 𝑏, 𝑐 𝑥 ∈ 𝑃: 𝑎 𝛾 𝑥 , 𝜃 𝑥 𝑏, 𝜑 𝑥 𝑐 ,
𝑄 𝜑, 𝜂, Ψ, ℎ, 𝑑, 𝑐 𝑥 ∈ 𝑃: ℎ Ψ 𝑥 , 𝜂 𝑥 𝑑, 𝜑 𝑥 𝑐 .

              (12) 

 
The following theorem can be found in 26 . 
 
Theorem 2.7 (Five Functionals Fixed Point Theorem) Let 𝑃 be a cone in a real Banach space 
𝐸. Suppose that there exist nonnegative numbers 𝑐 and 𝑀, nonnegative continuous concave 
functionals 𝛾 and Ψ on 𝑃, and nonnegative continuous convex functionals 𝜑, 𝜂, 𝜃 on 𝑃, with 
𝛾 𝑥 𝜂 𝑥 , ‖𝑥‖ 𝑀𝜑 𝑥 , ∀𝑥 ∈ 𝑃 𝜑, 𝑐 . If 𝐴: 𝑃 𝜑, 𝑐 → 𝑃 𝜑, 𝑐   is a completely 
continuous and there exist nonnegative numbers ℎ, 𝑎, 𝑘, 𝑏 with 0 𝑎 𝑏 such that 
 

(i) 𝑥 ∈ 𝑃 𝜑, 𝜃, 𝛾, 𝑏, 𝑘, 𝑐 : 𝛾 𝑥 𝑏 ∅ and 𝛾 𝐴𝑥 𝑏 for 𝑥 ∈ 𝑃 𝜑, 𝜃, 𝛾, 𝑏, 𝑘, 𝑐 , 
(ii) { 𝑥 ∈ 𝑄 𝜑, 𝜂, 𝛹, ℎ, 𝑎, 𝑐 : 𝜂 (x) < a} ∅ and 𝜂 𝐴𝑥 𝑎 for 𝑥 ∈ 𝑄 𝜑, 𝜂, 𝛹, ℎ, 𝑎, 𝑐 ,  
(iii) 𝛾 𝐴𝑥 𝑏 for 𝑥 ∈ 𝑃 𝜑, 𝛾, 𝑏, 𝑐  with 𝜃 𝐴𝑥 𝑘, 
(iv) 𝜂 𝐴𝑥 𝑎 for 𝑥 ∈ 𝑄 𝜑, 𝜂, 𝑎, 𝑐  with Ψ 𝐴𝑥 ℎ, 

 
then 𝐴 has at least three fixed points 𝑥 , 𝑥 , 𝑥 ∈ 𝑃 𝜑, 𝑟  such that 𝜂 𝑥 𝑎, 𝛾 𝑥 𝑏,
𝜂 𝑥 𝑎 with 𝛾 𝑥 𝑏. 
 

3. Main results 
 

Now, we will give the sufficient conditions to have at least one positive solution for the BVP 
(1). Four functionals fixed point theorem will be used to prove the next theorem. 
 
Theorem 3.1 Suppose 𝛼 0 and 𝛽 0. In addition, let there exist constants  𝜇 and 𝜏 with 

0 𝜇 𝜏 𝜇  such that the function 𝑓 satisfies the following conditions: 

 

(i) 𝑓 𝑡, 𝑦  for all 𝑡, 𝑦 ∈ 𝑡 , 𝜎 𝑡 𝜇, 𝜇 , 

(ii) 𝑓 𝑡, 𝑦  for all 𝑡, 𝑦 ∈ 𝑡 , 𝜎 𝑡 0, . 

 

Then the BVP (1) has at least one positive solution 𝑦 such that 𝜇 𝑦 𝑡  for 

𝑡 ∈ 𝑡 , 𝜎 𝑡 . 
 
Proof. Define maps 𝜑 𝑦 Ψ 𝑦 min ∈ , 𝑦 𝑡 , 𝜃 𝑦 max ∈ , 𝑦 𝑡 , 
𝜂 𝑦 max ∈ , 𝑦 𝑡 . Then 𝜑 and Ψ are nonnegative continuous concave functionals 
on 𝑃, and 𝜂 and 𝜃 are nonnegative continuous convex functionals on 𝑃. Since ‖𝑦‖

max ∈ , |𝑦 𝑡 | 𝜂 𝑦  for all 𝑦 ∈ 𝑄 𝜑, 𝜂, 𝜇 , , 

𝑄 𝜑, 𝜂, 𝜇 ,  is a bounded set. The operator 𝐴: 𝑄 𝜑, 𝜂, 𝜇 , → 𝑃 

is completely continuous by a standard application of the Arzela-Ascoli theorem. 
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Now, we verify that the remaining conditions of Theorem 2.5. We obtain 
 

Ψ 𝜇 𝜇  𝜏,        𝜂 𝜇 𝜇 ,          𝜃 𝜇 𝜇,     𝜑 𝜇 𝜇 𝜇 . 
 

Then, we have 𝜇 ∈ 𝑦 ∈ 𝑈 Ψ, 𝜏 : 𝜂 𝑦 ∩ 𝑦 ∈ 𝑉 𝜃, 𝜇 : 𝜇 𝜑 𝑦 , which 

means that (i) in Theorem 2.5 is fulfilled. 
 
Now, we shall verify that the condition (ii) of Theorem 2.5 is satisfied. By Lemma 2.4, we get 
 

𝜃 𝐴𝑦 𝐺 𝜎 𝑡 , 𝑠 𝑓 𝑠, 𝑦 𝜎 𝑠 ∆𝑠  𝐿 ‖𝐺 . , 𝑠 ‖𝑓 𝑠, 𝑦 𝜎 𝑠 ∆𝑠. 

 
Since 𝜃 𝐴𝑦 𝜇, we find 
 

 ‖𝐺 . , 𝑠 ‖𝑓 𝑠, 𝑦 𝜎 𝑠 ∆𝑠 .                                (13) 

 
Then, we obtain 
 

𝜑 𝐴𝑦 𝐺 𝑡 , 𝑠 𝑓 𝑠, 𝑦 𝜎 𝑠 ∆𝑠 

                𝐾 𝑀 ‖𝐺 . , 𝑠 ‖𝑓 𝑠, 𝑦 𝜎 𝑠 ∆𝑠
𝐾 𝑀

𝐿
𝜇 

 
using Lemma 2.4 and (13). 
 

Now, we shall show that the condition (iii) of Theorem 2.5 holds. Since 𝜑 𝑦 𝜇 and 

𝑦 ∈  𝑉 𝜃, 𝜇 ,  we find 𝜇 𝑦 𝑡 𝜇 for 𝑡 ∈ 𝑡 , 𝜎 𝑡 . By Lemma 2.4 and the 

hypothesis (i), we have 
 

𝜑 𝐴𝑦 𝐺 𝑡 , 𝑠 𝑓 𝑠, 𝑦 𝜎 𝑠 ∆𝑠 

               𝐾 𝑀 ‖𝐺 . , 𝑠 ‖𝑓 𝑠, 𝑦 𝜎 𝑠 ∆𝑠
𝐾 𝑀

𝐿
𝜇. 

 
Now, we shall verify that the condition (iv) of Theorem 2.5 is fulfilled. We get 
 

Ψ 𝐴𝑦 𝐺 𝑡 , 𝑠 𝑓 𝑠, 𝑦 𝜎 𝑠 ∆𝑠  𝐾 𝑀 ‖𝐺 . , 𝑠 ‖𝑓 𝑠, 𝑦 𝜎 𝑠 ∆𝑠 

 
using Lemma 2.4. Since Ψ 𝐴𝑦 𝜏, 

‖𝐺 . , 𝑠 ‖𝑓 𝑠, 𝑦 𝜎 𝑠 ∆𝑠 .                                 (14) 
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Then, by Lemma 2.4 and (14) we obtain 
 

𝜂 𝐴𝑦   𝐺 𝜎 𝑡 , 𝑠  𝑓 𝑠, 𝑦 𝜎 𝑠 ∆𝑠

 𝐿 ‖𝐺 . , 𝑠 ‖ 𝑓 𝑠, 𝑦 𝜎 𝑠 ∆𝑠 
𝜏𝐿

𝐾 𝑀
. 

 
Finally, we shall show that the condition (v) of Theorem 2.5 is satisfied. Since 𝜂 𝑦

, we find 0 𝑦 𝑡  for 𝑡 ∈ 𝑡 , 𝜎 𝑡 . Using Lemma 2.4 and the hypothesis 

(ii), we have 
 

𝜂 𝐴𝑦 𝐺 𝜎 𝑡 , 𝑠 𝑓 𝑠, 𝑦 𝜎 𝑠 ∆𝑠

 𝐿 ‖𝐺 . , 𝑠 ‖𝑓 𝑠, 𝑦 𝜎 𝑠 ∆𝑠
𝜏𝐿

𝐾 𝑀
. 

 

Hence, by Theorem 2.5, the BVP (1) has at least one positive solution 𝑦 such that 𝜇

𝑦 𝑡  for 𝑡 ∈ 𝑡 , 𝜎 𝑡 . This completes the proof. 

 
Now we will use the Avery-Henderson fixed point theorem to prove the next theorem. 
 
Theorem 3.2 Assume 𝛼 0 and 𝛽 0. Suppose there exist numbers 0 𝑝 𝑞 𝑟 such 
that the function 𝑓 satisfies the following conditions: 
 

(i) 𝑓 𝑡, 𝑦  for all 𝑡, 𝑦 ∈ 𝑡 , 𝜎 𝑡 𝑟, , 

(ii) 𝑓 𝑡, 𝑦  for all 𝑡, 𝑦 ∈ 𝑡 , 𝜎 𝑡 0, , 

(iii) 𝑓 𝑡, 𝑦  for all 𝑡, 𝑦 ∈ 𝑡 , 𝜎 𝑡 𝑝, 𝑝 , 

 
where 𝐾, 𝐿, 𝑀, are defined in (6), (7), (8), respectively. Then the BVP (1) has at least two 
positive solutions 𝑦  and 𝑦   such that 
 

𝑝 max ∈ , 𝑦 𝑡  with max ∈ , 𝑦 𝑡 𝑞 
𝑞 max

∈ ,
𝑦 𝑡  with min ∈ , 𝑦 𝑡 𝑟. 

 
Proof. Define the cone 𝑃 as in (9). From Lemma 2.4, 𝐴𝑃 ⊂ P and 𝐴 is completely continuous. 
Let the nonnegative increasing continuous functionals 𝜙, 𝜃 and 𝜂 be defined on the cone 𝑃 
by𝜙 𝑦 : min ∈ , 𝑦 𝑡 ,  𝜃 𝑦 : max ∈ , 𝑦 𝑡 ,  𝜂 𝑦 : max ∈ , 𝑦 𝑡 . 
 
For each 𝑦 ∈ 𝑃, we have 𝜙 𝑦 𝜃 𝑦 𝜂 𝑦  and from (9) 

‖𝑦‖
𝐿

𝐾 𝑀
𝜙 𝑦 . 

 
Moreover, 𝜃 0 0 and for all 𝑦 ∈ 𝑃, 𝜆 ∈ 0,1  we get 𝜃 𝜆𝑦 𝜆𝜃 𝑦 . 
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We now verify that the remaining conditions of Theorem 2.6 hold. 
 

Claim 1: If 𝑦 ∈ 𝜕𝑃 𝜙, 𝑟 ,  then 𝜙 𝐴𝑦 𝑟:  Since 𝑦 ∈ 𝜕𝑃 𝜙, 𝑟  and ‖𝑦‖ 𝜙 𝑦 , we 

have 𝑟 𝑦 𝑡  for 𝑡 ∈ 𝑡 , 𝜎 𝑡 .   Then, by hypothesis (i) and Lemma 2.4 we find 

 

𝜙 𝐴𝑦 𝐺 𝑡 , 𝑠 𝑓 𝑠, 𝑦 𝜎 𝑠 ∆𝑠 

 𝐾 𝑀 ‖𝐺 . , 𝑠 ‖𝑓 𝑠, 𝑦 𝜎 𝑠 ∆𝑠 𝑟. 

 

Claim 2: If 𝑦 ∈ 𝜕𝑃 𝜃, 𝑞 , then 𝜃 𝐴𝑦 𝑞:   Since 𝑦 ∈ 𝜕𝑃 𝜃, 𝑞  and ‖𝑦‖ 𝜙 𝑦 , we 

have 0 𝑦 𝑡   for 𝑡 ∈ 𝑡 , 𝜎 𝑡 . Thus, using hypothesis (ii) and Lemma 2.4 we 

get 
 

𝜃 𝐴𝑦 𝐺 𝜎 𝑡 , 𝑠 𝑓 𝑠, 𝑦 𝜎 𝑠 ∆𝑠 

               𝐿 ‖𝐺 . , 𝑠 ‖𝑓 𝑠, 𝑦 𝜎 𝑠 ∆𝑠 𝑞. 

 
Claim 3: 𝑃 𝜂, 𝑝 ∅ and 𝜂 𝐴𝑦 𝑝 for all 𝑦 ∈ 𝜕𝑃 𝜂, 𝑝 :  Since ∈ 𝑃 and 𝑝 0,  ∈

 𝑃 𝜂, 𝑝 . If 𝑦 ∈ 𝜕𝑃 𝜂, 𝑝  and 𝜂 𝑦 ‖𝑦‖, we obtain 𝑝 𝑦 𝑡 ‖𝑦‖ 𝑝  for 

𝑡 ∈ 𝑡 , 𝜎 𝑡 . Hence, by hypothesis (iii) and Lemma 2.4 we have 
 

𝜂 𝐴𝑦 𝐺 𝜎 𝑡 , 𝑠 𝑓 𝑠, 𝑦 𝜎 𝑠 ∆𝑠 

              𝐾 𝑀 ‖𝐺 . , 𝑠 ‖𝑓 𝑠, 𝑦 𝜎 𝑠 ∆𝑠 𝑝. 

 
Since the conditions of Theorem 2.6 are satisfied, the BVP (1) has at least two positive 
solutions 𝑦  and 𝑦  such that 
 

𝑝 max ∈ , 𝑦 𝑡  with max ∈ , 𝑦 𝑡 𝑞 
𝑞 max

∈ ,
𝑦 𝑡  with min ∈ , 𝑦 𝑡 𝑟. 

 
Now, we will apply the five functionals fixed point theorem to investigate the existence of at 
least three positive solutions for the BVP (1). 
 
Theorem 3.3 Let 𝛼 0 and 𝛽 0. Suppose that there exist constants 𝑎, 𝑏, 𝑐 with 0 𝑎

𝑏 𝑐  such that the function 𝑓 satisfies the following conditions:  

 
(i) 𝑓 𝑡, 𝑦  for 𝑡, 𝑦 ∈ 𝑡 , 𝜎 𝑡 0, 𝑐 , 
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(ii) 𝑓 𝑡, 𝑦  for 𝑡, 𝑦 ∈ 𝑡 , 𝜎 𝑡 𝑏, , 

(iii) 𝑓 𝑡, 𝑦  for 𝑡, 𝑦 ∈ 𝑡 , 𝜎 𝑡 0, 𝑎 , 

 
where 𝐾, 𝐿, 𝑀, are defined in (6), (7), (8), respectively. Then the BVP (1) has at least three 
positive solutions 𝑦 , 𝑦   and 𝑦  such that 
 

max ∈ , 𝑦 𝑡 𝑎 max ∈ , 𝑦 𝑡 ,      min ∈ , 𝑦 𝑡 𝑏
min ∈ , 𝑦 𝑡 . 

 
Proof.  Define the cone 𝑃 as in (9) and define these maps 
 
𝛾 𝑦 Ψ 𝑦 min ∈ , 𝑦 𝑡 ,       𝜃 𝑦 : max ∈ , 𝑦 𝑡 ,           
𝜑 𝑦 𝜂 𝑦 max

∈ ,
𝑦 𝑡 . 

 
Then 𝛾 and Ψ are nonnegative continuous concave functionals on 𝑃, and 𝜑, 𝜂 and 𝜃 are 
nonnegative continuous convex functionals on 𝑃. Let 𝑃 𝜑, 𝑐 , 𝑃 𝜑, 𝛾, 𝑎, 𝑐 , 𝑄 𝜑, 𝜂, 𝑑, 𝑐 , 
𝑃 𝜑, 𝜃, 𝛾, 𝑎, 𝑏, 𝑐  and 𝑄 𝜑, 𝜂, Ψ, ℎ, 𝑑, 𝑐  be defined by (12).  It is clear that 𝛾 𝑦 𝜂 𝑦  and 
‖𝑦‖ 𝜑 𝑦 , ∀𝑦 ∈ 𝑃 𝜑, 𝑐 . 
 
If 𝑦 ∈ 𝑃 𝜑, 𝑐 , then we have 𝑦 𝑡 ∈ 0, 𝑐  for all 𝑡 ∈ 𝑡 , 𝜎 𝑡 . By Lemma 2.4 and the 
hypothesis (i), we get 
 

𝜑 𝐴𝑦 𝐺 𝜎 𝑡 , 𝑠 𝑓 𝑠, 𝑦 𝜎 𝑠 ∆𝑠 

              𝐿 ‖𝐺 . , 𝑠 ‖𝑓 𝑠, 𝑦 𝜎 𝑠 ∆𝑠 𝑐. 

 
This proves that 𝐴: 𝑃 𝜑, 𝑐 → 𝑃 𝜑, 𝑐 . 
 
Now we verify that the remaining conditions of Theorem 2.7. 
 

Let 𝑦 𝑏 𝜀   such that 0 𝜀 1 𝑏. Since 𝛾 𝑦 𝑏 𝜀 𝑏, 𝜃 𝑦

𝑏 𝜀   and 𝜑 𝑦 𝑏 𝜀 𝑐, we obtain 

𝑦 ∈ 𝑃 𝜑, 𝜃, 𝛾, 𝑏, , 𝑐 : 𝛾 𝑦 𝑏 ∅. If 𝑦 ∈ 𝑃 𝜑, 𝜃, 𝛾, 𝑏, , 𝑐 , then we have 

𝑏 𝑦 𝑡   for all  𝑡 ∈ 𝑡 , 𝜎 𝑡 . By using Lemma 2.4 and the hypothesis (ii), we 

get 
 

𝛾 𝐴𝑦 𝐺 𝑡 , 𝑠 𝑓 𝑠, 𝑦 𝜎 𝑠 ∆𝑠 

              𝐾 𝑀 ‖𝐺 . , 𝑠 ‖𝑓 𝑠, 𝑦 𝜎 𝑠 ∆𝑠 𝑏. 

 
Thus, the condition (i) of Theorem 2.7 holds. 
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Let 𝑦 𝑎 𝜀   such that 0 𝜀 1 𝑎.  Since 𝜂 𝑦 𝑎 𝜀 𝑎, Ψ 𝑦

𝑎 𝜀 𝑎 and 𝜑 𝑦 𝑎 𝜀 𝑐, we find 

𝑦 ∈ 𝑄 𝜑, 𝜂, 𝛹  , 𝑎, 𝑎, 𝑐 : 𝜂 𝑦   𝑎 ∅,. If 𝑦 ∈ 𝑄 𝜑, 𝜂, 𝛹  , 𝑎, 𝑎, 𝑐 , then we 

obtain 0 𝑦 𝑡 𝑎, for 𝑡 ∈ 𝑡 , 𝜎 𝑡 . Hence, 
 

𝜂 𝐴𝑦 𝐺 𝜎 𝑡 , 𝑠 𝑓 𝑠, 𝑦 𝜎 𝑠 ∆𝑠 

              𝐿 ‖𝐺 . , 𝑠 ‖𝑓 𝑠, 𝑦 𝜎 𝑠 ∆𝑠 𝑎 

 
by Lemma 2.4 and the hypothesis (iii). It follows that condition (ii) of Theorem 2.7 is 
fulfilled. 
Now, we shall show that the condition (iii) of Theorem 2.7 is satisfied. We have 
 

𝜃 𝐴𝑦 𝐺 𝜎 𝑡 , 𝑠 𝑓 𝑠, 𝑦 𝜎 𝑠 ∆𝑠  𝐿 ‖𝐺 . , 𝑠 ‖𝑓 𝑠, 𝑦 𝜎 𝑠 ∆𝑠 

 

using Lemma 2.4. Since 𝜃(Ay)> , we get  

 

‖𝐺 . , 𝑠 ‖𝑓 𝑠, 𝑦 𝜎 𝑠 ∆𝑠 .                                (15) 

 
Then, by Lemma 2.4 and (15) we find 
 

𝛾 𝐴𝑦 𝐺 𝑡 , 𝑠 𝑓 𝑠, 𝑦 𝜎 𝑠 ∆𝑠 

               𝐾 𝑀 ‖𝐺 . , 𝑠 ‖𝑓 𝑠, 𝑦 𝜎 𝑠 ∆𝑠 𝑏. 

 
Finally, we shall verify that the condition (iv) of Theorem 2.7 holds. By Lemma 2.4, we 
obtain 
 

𝛹 𝐴𝑦 𝐺 𝑡 , 𝑠 𝑓 𝑠, 𝑦 𝜎 𝑠 ∆𝑠  𝐾 𝑀 ‖𝐺 . , 𝑠 ‖𝑓 𝑠, 𝑦 𝜎 𝑠 ∆𝑠. 

 

Since 𝛹 𝐴𝑦 𝑎, we have 

 

‖𝐺 . , 𝑠 ‖𝑓 𝑠, 𝑦 𝜎 𝑠 ∆𝑠 .                                 (16) 

 
Then, we find 

𝜂 𝐴𝑦 𝐺 𝜎 𝑡 , 𝑠 𝑓 𝑠, 𝑦 𝜎 𝑠 ∆𝑠 
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               𝐿 ‖𝐺 . , 𝑠 ‖𝑓 𝑠, 𝑦 𝜎 𝑠 ∆𝑠 𝑎 

 
using Lemma 2.4 and (16). 
 
Since the conditions of Theorem 2.7 are satisfied, the BVP (1) has at least three positive 
solutions  𝑦 , 𝑦 , 𝑦 ∈ 𝑃 𝜑, 𝑐   such that 
 
max ∈ , 𝑦 𝑡 𝑎 max ∈ , 𝑦 𝑡 ,     
min ∈ , 𝑦 𝑡 𝑏 min ∈ , 𝑦 𝑡 . 
 
This completes the proof. 
 

Example 3.4 Let 𝕋 0 ∪ ∶  𝑛 ∈ ℕ ∪ 3,6 . Consider the following boundary value 

problem: 

⎩
⎨

⎧ 𝑦∆ 𝑡
𝑦

𝑦 1

𝑦∆ 6 0,    3𝑦
1
3

2𝑦∆ 1
3

𝑦∆ 3 .
 

 
If we take p = 0.0106, q = 0.0108 and r = 5, then all the conditions in Theorem 3.2 are 
satisfied. Thus, by Theorem 3.2, the BVP has at least two positive solutions 𝑦  and 𝑦  such 
that 
 

0.0106 max ∈ , 𝑦 𝑡  with max ∈ , 𝑦 𝑡 0.0108 

0.0108 max
∈ ,

𝑦 𝑡  with min ∈ , 𝑦 𝑡 5. 

 
If we take a = 0.1, b = 1 and  c = 12, then all the conditions in Theorem 3.3 are satisfied. 
Thus, the BVP has at least three positive solutions 𝑦 , 𝑦   and 𝑦  such that 
 

max ∈ , 𝑦 𝑡 0.1 max ∈ , 𝑦 𝑡 ,      min ∈ , 𝑦 𝑡 1 min ∈ , 𝑦 𝑡 . 
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