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Abstract 
 The ability of corals to build reefs can be attributed to their relationship with single-celled 
algae of the family Symbiodiniaceae. Through the process of photosynthesis, these algae can 
provide their coral hosts with over 90% of their daily energy requirements. Most coral species 
acquire multiple species of symbionts from the surrounding water during their larval stage or 
immediately after settling. However, over time, the coral will select a dominant symbiont species 
that can depend on the local environment. Until this study, the size or age of the coral at which 
this transition from multiple Symbiodiniaceae species to one dominant species occurs has 
remained uncertain. Likewise, it was unclear whether the selection of Symbiodiniaceae species is 
influenced by the environment. The environmental conditions and symbiont composition of one 
hundred and eighteen juvenile Siderastrea siderea were assessed across four sites in Broward 
County, Florida. Presuming newly settled corals acquire multiple symbionts and then select just 
one dominant species, it was determined that the transition from multiple symbiont species to 
one dominant species in Siderastrea siderea occurs in the single polyp stage, between the time of 
settlement and approximately 4 to 6 months of age. The results also suggest that the selection of 
these dominant symbiont species is influenced by the environment, and that juveniles commonly 
select the same species as adults inhabiting similar environmental conditions. The selection of 
symbionts homologous to adult corals combined with environmental influences may be an early 
indicator of acclimatization in Siderastrea siderea. 
 
Key Words: Symbiodiniaceae, environmental conditions, juveniles
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Introduction 
Scleractinian corals are the foundation for tropical coral reefs, one of the most diverse 

ecosystems on Earth (Odum and Odum 1955; Stoddart 1969; Hughes 1989). Coral reefs provide 

habitats and essential resources such as food and shelter to countless marine organisms (Cesar et 

al. 2003; Cole et al. 2008). Not only are reefs ecologically important, but they also contribute to 

the economies of numerous countries (Moberg and Folke 1999) in the form of fisheries and 

tourism. The high economic value of these activities often leads to over-exploitation: fish stocks 

become depleted and coral colonies become broken or damaged from boat anchors, which have 

deleterious impacts on the ecosystem (Moberg and Folke 1999; Jackson et al. 2001). In addition, 

coastal development increases chronic sedimentation and pollution through industrial runoff 

(Moberg and Folke 1999; Talbot and Wilkinson 2001). Reef structures protect coastlines from 

harsh wave action, that in turn impedes erosion and excess sedimentation (Talbot and Wilkinson 

2001). The ability of scleractinian corals to build large reefs can be attributed to their relationship 

with dinoflagellates in the family Symbiodiniaceae (Odum and Odum 1955; Muscatine and 

Porter 1977). These single-celled algae perform photosynthesis in the gastrodermal tissue of the 

coral and translocate the photosynthetic byproduct (carbon) directly to the host (Trench 1979; 

Muscatine 1990). Corals benefit from this association by using carbon to build calcium carbonate 

skeletons (Lesser et al. 1994), in addition to receiving energy needed for growth and 

reproduction (Falkowski et al. 1984; Grottoli et al. 2006).  

Corals can associate with multiple species of Symbiodiniaceae, but typically one 

dominant, and this dominance is thought to be established early in life. The family 

Symbiodiniaceae is composed of nine genera and each genus is composed of multiple species 

(LaJeunesse 2002; LaJeunesse et al. 2003; LaJeunesse et al. 2004; Pochon et al. 2006; 

LaJeunesse et al. 2018). There are six genera associated with scleractinian corals (Pochon et al. 

2014; Stat et al. 2008; Baker 2003): Symbiodinium, Breviolum, Cladocopium, Durisdinium, 

Fugacium, and Gerakladium (formerly clades A – D, F and G respectively) (LaJeunesse et al. 

2018). Adult scleractinian corals generally associate with multiple Symbiodiniaceae, but one 

species is often relatively more abundant within the coral tissue than others and thus termed as 

the dominant species (Rowan and Knowlton 1995; van Oppen 2001; LaJeunesse 2002; Goulet 

2006; Mieog et al. 2007). The dominant algal symbiont species within the adult coral is often 

established early in life (Little et al. 2004; Gomez-Cabrera et al. 2007; Abrego et al. 2009). In 
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many coral species, symbionts are transmitted horizontally, i.e. the coral’s eggs do not contain 

symbionts and the larvae or newly settled juveniles acquire symbionts from the water column 

and benthos (Babcock and Heyward 1986; Harrison and Wallace 1990; Baird et al. 2008). 

During these early life stages corals are quite promiscuous and each coral larva or juvenile will 

uptake different symbiont species (Cumbo et al. 2012) that are often reflective of the 

composition found within the local environment. Juvenile corals may maintain diverse algal 

symbiont communities (including symbionts in different genera) for many months (Little et al. 

2004; Gomez-Cabrera et al. 2007) or even years (Abrego et al. 2009). However, over time, a 

dominant species of symbiont is established in the coral (Abrego et al. 2009). This association 

with the dominant symbiont species may be homologous or heterologous to the one found adult 

colonies (Coffroth et al. 2001). This means that the juvenile coral may choose a dominant 

symbiont species that is the same as local adult colonies (homologous), or a species that is 

different from the local adult colonies (heterologous). However, it is hypothesized that this 

selection is dependent on the environmental conditions the coral experiences (Little et al. 2004; 

Gomez-Cabrera et al. 2008; Abrego et al. 2009).  

The depth, light, and temperature experienced by newly settled corals likely have an 

important role in the selection of a dominant symbiont because each species of symbiont 

provides different benefits under different environmental conditions (Rowan 2004; Berkelmans 

and van Oppen 2006). In the Caribbean, the symbiotic associations of scleractinian corals exhibit 

a depth and light distribution pattern. Some symbiont species are commonly found in corals in 

high-light/shallow water (0-6m), while others are more often found in corals inhabiting low-

light/deeper water (6-14m) (Rowan and Knowlton 1995; Rowan et al. 1997; LaJeunesse 2002; 

Baker 2001, 2003). Symbiodiniaceae produce amino acid compounds that provide protection 

from damaging light irradiance (Neale et al. 1998; Banaszak et al. 2000), suggesting that 

protection from high light irradiance is an advantage for corals living under those conditions 

(LaJeunesse 2002). In deeper environments with low irradiance, Caribbean scleractinians 

commonly associate with different symbiont species that are more beneficial (e.g. sustain higher 

calcification rates) under low light (Rowan and Knowlton 1995; Baker 2001; LaJeunesse 2002). 

While in pristine coral reefs light and depth are inversely related, meaning as depth increases, 

light will decrease. Differences in turbidity between sites of the same depth may lead to a 

difference in light irradiance at those depths. This causes symbiont species commonly found in 
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deeper waters to appear more often in shallow, turbid areas. Symbiont diversity may also differ 

within an adult colony (Rowan et al. 1997; Kemp et al. 2015), particularly in mounding corals 

where the polyps with high light exposure have a different symbiont species than those on the 

sides or bottom of the colony that experience low light exposure (Reich et al. 2017). In terms of 

temperature, it was previously thought that symbiont species in the genus Durisdinium are the 

most thermally tolerant (Glynn et al. 2001; Baker et al. 2004; van Oppen et al. 2005; Jones et al. 

2008); however, it has been recently determined that some species within other genera also 

possess an increased thermal tolerance (Cunning et al. 2015; Swain et al. 2017). This 

characterization of Durisdinium spp. was based on their abundance within coral colonies post-

bleaching (Glynn et al. 2001; Baker et al. 2004; van Oppen et al. 2005; Jones et al. 2008) and 

within corals living in lagoons exposed to higher temperatures (Fabricius et al. 2004). A study by 

Rowan (2004) found that adult corals hosting Durisdinium spp. had higher photochemical 

efficiency and higher ratios of net photosynthesis compared to adult corals hosting species in the 

genus Cladocopium. A second study by Berkelmans and van Oppen (2006) determined adult 

corals that had shuffled their symbionts from Cladocopium C2 to a Durisdinium spp. post-

bleaching also had higher photochemical efficiency in a heat-stressed environment. Durisdinium 

spp. were initially hypothesized to provide higher thermal tolerance than other genera but to 

promote less growth. However, a study by Cunning et al. (2015) found that corals hosting 

Durisdinium spp. grew slower than corals with Cladocopium spp. at 26°C and 27.5°C, but at 

29°C Durisdinium spp. did not reduce coral growth. These findings were consistent with field 

observations and further support the idea that association with at least some Durisdinium spp. 

enhances the thermal tolerance of corals (Abrego et al. 2008). Although there are some tradeoffs 

associated with hosting Durisdinium spp. (e.g. decreased carbon translocation, decreased 

photochemical efficiency, and high metabolic costs; Abrego et al. 2008; Cunning et al. 2015) it is 

hypothesized that thermal tolerance and survival is enhanced at little cost to the coral host.  

The selection of algal symbionts by juvenile scleractinian corals can also be species-

specific, with many consistently selecting the same algal symbiont species that are dominant in 

the adults, regardless of their environmental conditions (Coffroth et al. 2001; Weis et al. 2001; 

Rodriguez-Lanetty et al. 2004). Multiple species of symbiont may be acquired initially, but the 

symbiont associated with the adult population generally dominates after days or months 

(Coffroth et al. 2001; Weis et al. 2001; Rodriguez-Lanetty et al. 2004; Cumbo et al. 2012). 
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Coffroth et al. (2001) found that newly settled polyps of the gorgonian octocorals Plexaura kuna 

and Pseudoplexaura porosa associated with multiple symbiont species but did not initially 

reflect the dominant abundance of Breviolum species observed in adults. Regardless of habitat 

(4m, 6m, or 17m depth reef), newly settled polyps naturally acquired symbionts belonging to the 

genera Symbiodinium, Breviolum and Cladocopium. Yet after 3 months, 77% of the polyps 

harbored Breviolum spp. (Coffroth et al. 2001). This observation was confirmed by a field survey 

of juvenile gorgonians (10 cm or less) where all juveniles also contained Breviolum spp. at 3 

months of age (Coffroth et al. 2001). Similar studies by Weis et al. (2001) and Rodriguez-

Lanetty et al. (2004) found that coral larvae of Fungia scutaria also associated with the same 

species of symbiont as the adults. Weis et al. (2001) observed no changes in symbiont population 

densities after 4 days, regardless of the symbiont species inoculated or the light environment 

(low vs. high light) in which larvae were incubated. Rodriguez-Lanetty et al. (2004) determined 

Cladocopium C1f was dominant within the larvae 24 hours after inoculation. This symbiont 

species was also found in adult F. scutaria. These studies suggest a selection process which 

occurs some time during the early life stages of coral, but also that this selection may be in favor 

of homologous symbionts.  

In contrast, other studies found that juvenile Acropora acquire and maintain symbiont 

species different from those found in adult parent colonies. Studies of A. tenuis have shown that 

adults associate with Cladocopium C1 (Little et al. 2004), and sometimes Cladocopium C2 (van 

Oppen et al. 2001; Ulstrup and van Oppen 2003). Little et al. (2004) discovered that Durisdinium 

spp. and Cladocopium C1 were acquired by juveniles in the first month. However, by 5 months 

the relative abundance of those species changed with a 57% increase in Durisdinium spp. and a 

100% decrease in Cladocopium C1. The dominance of Durisdinium spp. in early juveniles of A. 

tenuis, in comparison to the dominance of Cladocopium C1 in adults (Ulstrup and van Oppen 

2003, van Oppen et al. 2001), suggests that the host may be actively selecting certain species to 

maximize symbiont effectiveness in accordance with the physiological demands (Little et al. 

2004). Similarly, adult colonies of A. longicyathus had Cladocopium spp. (86.7%), 

Symbiodinium spp. (5.3%), or a mixture of both Symbiodinium spp. and Cladocopium spp. 

(8.0%) (Gomez-Cabrera et al. 2008). Oddly, all 10-day-old juveniles hosted Symbiodinium spp., 

while 83-day-old juveniles contained Symbiodinium spp., Cladocopium spp. and Durisdinium 

spp. even though development occurred in the same reef location. Symbiodinium spp. were 
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dominant in both 10 and 83-day-old juveniles (99% and 97% of all recruits, respectively), but 

Durisdinium spp. were also found in 31% of 83-day-old juveniles. Gomez-Cabrera et al. (2008) 

suggested that neither adult species association nor the location within the reef influenced the 

symbiont species acquired by juvenile corals, and the dominant symbiont was simply determined 

by the exposure to one symbiont or the other. However, these differences in species composition 

between juveniles of different ages may simply be a result of varying times of acquisition of 

symbionts from different genera. For example, the 10-day-old juveniles may have just begun to 

acquire symbionts while the 83- day-old juveniles may have had time to acquire all local species.  

The aforementioned studies on symbiont acquisition and selection of algal symbionts by 

coral juveniles only monitored the symbiotic relationship up to a maximum of 7 months after 

settlement (Abrego et al. 2009). Abrego (2009) and colleagues analyzed juvenile Acropora 

tenuis and A. millepora and found that associations with Cladocopium C1 or Cladocopium C2 

(A. tenuis) and Cladocopium C2 or Durisdinium (A. millepora) may not be established until 2.5–

3.5 years in the life cycle. At first, most juvenile Acropora colonies were dominated by species 

that were heterologous to their adult populations. The proportion of A. tenuis juveniles 

dominated by Cladocopium C1 increased at 18 months, while A. millepora showed no change 

over the course of the study. They hypothesized that changing environmental conditions 

associated with vertical growth of juvenile colonies at 18 months caused A. tenuis juveniles to 

favor Cladocopium C1 over Durisdinium spp. This hypothesis further suggested that both 

species may be acquired simultaneously, and one symbiont species may remain at background 

levels (Mieog et al. 2007) until more favorable conditions enable it to out-compete the other 

symbiont. This would indicate that environmental conditions may be the driver for symbiont 

selection. 

Understanding the timing and environmental drivers of symbiont selection in coral 

juveniles is imperative to predict how these organisms may acclimatize and persist through 

environmental changes. This study characterized the diversity of symbionts in newly settled 

massive starlet coral, Siderastrea siderea, in Southeast Florida and determined the size and age 

at which juveniles select a dominant species of Symbiodiniaceae. This study also determined 

how the selection of symbiont species is driven by the environmental factors present in the field. 
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Methodology  

Study Species 

The coral species Siderastrea siderea is an abundant reef builder in the Florida Reef 

Tract (FRT) (Moyer et al. 2003; Banks et al. 2008). Single polyp recruits are identified by a 

shallow corallite approximately 2-5mm in diameter, 44-50 septa per corallite, 3-5 synapticulate 

rings, a weak corallite wall, thin columella, and high calyx elevation (Figure 1A; Foster 1980). 

Adult colonies have a light brown color, mounding or encrusting shape, and small recessed 

polyps (Figure 1B) (Ellis and Solander 1786). The species reproduces annually by broadcast 

spawning gametes between September and November (St. Gelais 2010) and acquires 

Symbiodiniaceae through horizontal transmission from environmental pools. Although colonies 

are relatively small (typically <50cm diameter) (St. Gelais et al. 2016), all colony sizes from 

recruit to adult are widely accessible in the local reefs of Broward County (Moyer et al. 2003; 

Banks et al. 2008; Walker and Gilliam 2013, Harper 2017). This species was chosen for the 

study because it acquires symbionts through horizontal transmission, and juveniles are relatively 

abundant in Broward County. Such abundance allowed for specimen collection to be carried out 

with minimal risk to wild populations.   

 

 
  

 

 

Figure 1: (A) Juvenile recruit and (B) adult colony of Siderastrea siderea 

University of Warwick (AU) 

A B 

S. Koerner 
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Study Location  

Coral colonies were collected from four reef sites located along the FRT in Broward 

County, FL (Figure 2). Sites were chosen based on the relative abundance of juvenile Siderastrea 

siderea and variations in environmental conditions such as depth, light and turbidity. Each site 

represented three different reef types: Inner Reef (IR), Middle Reef (MR) and Outer Reef (OR) 

(Gilliam et al. 2013; Jones 2018). Site 1 (IR) was located 0.5 km from shore at 26° 08.878' N, 

80° 05.772'W with maximum depth of 5.8 m. Site 2 (IR) was located 1.2 km from shore at 26° 

08.963' N, 80° 05.364' W with max depth of 9.1 m. Site 3 (MR) was located 1,6 km from shore. 

at 26° 09.597' N, 80° 04.950' W with maximum depth of 17.1 m. Site 4 (OR) was located 2.2 km 

from shore at 26° 09.500'N, 80° 04.638' W with maximum depth of 19.8 m. 

 

 
 

 

 
 
 
 

Site 1 

Site 3 

Site 2 

Site 4 

Figure 2: Study locations of four reef sites located in Broward County 
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Size at the Time of Dominant Symbiont Selection  

Stratified sampling of 118 Siderastrea siderea juveniles ranging from one to twelve 

polyps in size was conducted. Six size classes were predetermined based on the number of 

polyps in a juvenile colony: 1 polyp, 2 polyps, 3 polyps, 4 to 6 polyps, 7 to 9 polyps, and 10 to 

12 polyps. Five individuals from each size class (~30 samples total) were haphazardly selected 

on SCUBA at each of the four sites (Figure 2). Prior to sampling, the length (a) and width (b) of 

each recruit/colony was measured to the nearest millimeter using fractional calipers. Surface area 

of the recruit/colony was later calculated using the equation for the area an ellipse (A = a/2 x b/2 

x p).  

 

Environmental Conditions Affecting Dominant Symbiont Selection 

 Environmental conditions of temperature, turbidity, depth, sediment cover, algal cover, 

and coral cover were assessed for each of the 118 juvenile S. siderea sampled. Temperature was 

measured at the surface and at depth of each site using a YSIâ Pro20 temperature probe. Water 

samples were also taken at depth of each site, and turbidity was later measured using a 

LaMotteâ 2020we turbidimeter in Neplelometric Turbidity Units (NTU). For each coral sample, 

depth was measured using an Aqua Lungâ i300C computer console. Sediment, algal, and coral 

cover was assessed by laying a 38 x 50 cm quadrat around each juvenile sampled. Using an 

Olympusâ Tough TG-5, a photograph was then taken of the quadrat prior to sampling of the 

recruit or colony. These photographs were later analyzed using the Coral Point Count with Excel 

extensionsâ (CPCe) program to determine the percentage of benthos covered by sediment, 

algae, and coral. 

 

Presence of Symbiont Species in Juvenile Tissues  

The 118 coral juveniles sampled were collected for genetic analysis using a hammer and 

chisel, then placed in 0.38 L Whirl-pak® bags individually labelled with the site name and 

sample number. At the surface, the coral samples were transferred to a cooler and relocated to 

Nova Southeastern University’s Oceanographic Campus (NSU-OC). Upon arrival, each sample 

was transferred into a 1.5-mL micro centrifuge tube containing DNA Buffer with 1%SDS 

(Rowan and Powers 1991). Samples were heated for 90 minutes in a 65°C water bath to stabilize 
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lysates at room temperature. The preserved samples were then transported to the University of 

Miami, FL for DNA extraction following protocols established in the laboratory of Dr. Andrew 

Baker (Baker and Cunning 2016). Presence of different symbiont species were assessed using 

quantitative PCR (qPCR) and an actin-based assay, supplemented by DGGE of ITS-2 rDNA to 

assess species diversity. Cultures of three symbiont species typically found in S. siderea were 

used as standards: Cladocopium C1, Cladocopium C3, and Durisdinium D1a. Fifty-six unknown 

bands from the six resultant electrophoresis gels were cut out and sent for Sanger sequencing to 

determine the genomic composition. Geneious Primeã, version 2019.1.1 was then used to 

reverse-complement, align, and manually remove the forward and reverse primers. These 

cleaned up sequences were then compared against a collection of annotated ITS-2 sequences 

(Hume 2019) for known symbiont species using the National Center for Biotechnology 

Information (NCBI) nucleotide BLAST® program. Annotation for the presence of symbiont 

species within each sample was completed by comparing visible bands from each sample to the 

known symbiont marker bands (Cladocopium C1, Cladocopium C3, and Durisdinium D1a 

standards) and the previously unknown symbiont bands (Figure 3). 

 

  
Figure 3: Electrophoresis gel 3 of 6 from DGGE analysis showing samples 11 - 24 from Site 2. 
Annotations of symbiont species within each sample can be seen in italic above the sample ID.  
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Statistical Analysis 

 To determine the size at which juvenile Siderastrea siderea select a dominant symbiont 

species, a simple regression was first used to describe the relationship between the number of 

polyps and surface area of juvenile corals. The data was mildly non-normal due to outliers, and a 

M-Regression was used to complete the analysis. To determine the association between coral 

size (number of polyps and surface area) and the number of symbiont species present in the 

tissue of juvenile corals, Frequency Analysis (contingency table) and Fischer exact tests were 

used. The number of polyps were divided into the six size classes previously determined: 1 

polyp, 2 polyps, 3 polyps, 4 to 6 polyps, 7 to 9 polyps, and 10 to 12 polyps. The surface area was 

divided uniformly into four size classes: 1-35 mm2, 36-71 mm2, 72-107 mm2, and 108-143 mm2.  

 To assess the effects of environmental conditions (depth, sedimentation, and algal cover) 

on the dominant symbiont selected, simple linear regressions were used. Each condition was 

analyzed to determine if the dominant symbiont species changed as a result of depth, 

sedimentation or algal cover at each site.  The effects of temperature, turbidity and coral cover on 

symbiont selection were not further analyzed due to the limited differences observed between 

sites. As the dominant symbiont was being assessed, data for Cladocopium C3f and 

Cladocopium C1ao was too small to conduct separate analyses and these species were combined 

with Cladocopium C3 and Cladocopium C1, respectively.  

All analyses were performed in R Studioã with the R programã, version 3.5.3.   

Results 

Size at the Time of Selection of a Dominant Symbiont 

 There was a significant relationship between the number of polyps in a colony and the 

surface area of a colony (p =0.0001, R2 = 0.759) (Figure 4). There was no significant association 

between the number of symbionts present in the tissues of the juvenile corals (n = 104) and the 

number of polyps of the juvenile (p = 0.549) (Figure 5A) nor their surface area (p = 0.952) 

(Figure 5B). Most juveniles (70%), regardless of their size, contained only one symbiont species 

(Figures 5 and 6); only 17% containing two symbiont species and 2% (two individuals from site 

1) containing three symbiont species (Figure 6). Fourteen of the initial 118 sampled juveniles 

were not used in the analysis because they produced very faint bands, likely due to low symbiont 

densities in their tissues. 
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Figure 5:  Structure plots of the association between size classes (number of polyps and surface area) 
and the number of symbiont species.  
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Figure 6:  Number of symbiont species per sample as seen per location and across all sites combined.  
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Presence of Symbiodiniaceae Species in Juvenile Tissues  

 Most Siderastrea siderea juvenile samples (104 out of 118) yielded viable results 

indicating present symbiont species. Samples combined from the four sites contained symbiont 

species from three genera: Breviolum (40%), Cladocopium (42%), and Durisdinium (18%) 

(Figure 7A, C). The six symbiont species from these genera included Breviolum B5a (39%), 

Cladocopium C1 (26%), C1ao (1%), C3 (8%), and C3af (8%), and Durisdinium D1a (18%) 

(Figure 7B).   

 Siderastrea siderea samples from the shallower sites (Site 1 and 2), were dominated by 

Breviolum B5a (67% and 60% respectively, Figure 8). In the deeper sites, Site 3 and Site 4, S. 

siderea juveniles were dominated by Cladosporium C1 (36% and 46% respectively, Figure 8). 

Durisdinium D1a and Cladocopium C3af were found across all sites (Figure 8). Durisdinium 

D1a dominated 10% to 30% of the juveniles, while Cladocopium C3af dominated 4% to 11% of 

the juveniles (Figure 8). No juvenile from Site 4 was dominated by Breviolum B5a, and no 

juveniles from Site 2 were dominated by Cladocopium C1. Cladocopium C1ao was only found 

as a dominant species in some colonies at Site 4, but in a small amount, 4% (Figure 8).  

 Eighteen juveniles possessed secondary symbiont species (Figure 7C, D). Durisdinium 

was the most common secondary species (44%), followed by Cladocopium (39%) and Breviolum 

(17%, Figure 7C). Cladocopium C1ao was not present as a secondary symbiont (Figure 7D). 

While Cladocopium C1 and C3 were not present as dominant symbionts at Site 2, they were 

present as secondary species (Figure 8D and Figure 9). However, it is important to note that 

these appearances are derived from only two samples which had Breviolum B5a as a dominant 

symbiont (Figure 8). 
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Figure 7:  Diversity of dominant genera (A) and symbiont species (B), and secondary genera (C) and 
symbiont species (D) across all sites. 
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Figure 8: Diversity of dominant symbiont species for all sites. 
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Figure 9: Diversity of secondary symbiont species for all sites. 
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Environmental Conditions Affecting Dominant Symbiont Selection 

 The shallow sites, Site 1 (5.8 m depth) and Site 2 (9.1 m depth), had a similar average 

sediment cover (54% + 4.4 and 54% + 4.7, respectively) but differed in average algal cover (39% 

+ 4.2 for Site 1 and 44% + 4.5 for Site 2) (Figure 10). The deeper sites, Site 3 (17.1 m depth) and 

Site 4 (19.8 m depth), had respectively 49% + 3.1 and 34% + 5 average sediment cover and 43% 

+ 2.9 and 57% + 5.1 average algal cover (Figure 10). Although temperature, turbidity and coral 

cover were measured, they were not included in the analysis due to the small variation between 

sites. Average temperature for Sites 1 through 4 were 24.4°C + 0.065, 24.7°C + 0.064, 24.9°C + 

0.102, and 25°C + 0.018 respectively, turbidity was 0.156 NTU, 0.4 NTU, 0.184 NTU, and 

0.256 NTU, and coral cover was 5% + 1.9, 3% + 1, 4% + 1, and 7% + 1.5. 

 The dominance of Breviolum B5a decreased significantly with depth (p = 0.042, R2 = 

0.917, Figure 11A) and increased with average sediment cover (p = 0.045, R2 = 0.911, Figure 

11B), but not with average algal cover (p = 0.093). The dominance of Cladocopium C3 also 

decreased significantly with average sediment cover (p = 0.012, R2 = 0.976, Figure 11D) and 

increased significantly with average algal cover (p = 0.022, R2 = 0.957, Figure 11C), but not with 

depth (p = 0.130). Cladocopium C1 and Durisdinium D1a did not change significantly with 

depth (p = 0.142 and 0.890, respectively), average sediment cover (p = 0.148 and 0.732, 

respectively), or average algal cover (p = 0.327 and 0.955, respectively). These results should 

however be interpreted with caution as they are based on the depth from each location. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 19 

 

 
 

 

 

 

 

 
 

Figure 10: Average benthic cover across all sites.  
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Figure 11: Dominant symbiont changes of Breviolum B5a (A and B) and Cladocopium C3 (C and D) as a 
result of depth, average sediment cover and average algal cover.  

A B 

C D 

Average Sediment Cover (%) 

Average Sediment Cover (%) Average Algal Cover (%) 

Percent = 97.2132 – 4.4373*Depth, R2 = 0.917, p = 0.042 Percent = -118.7534 + 3.4087*Sed, R2 = 0.911, p = 0.045 

Percent = 74.384 – 1.272*Sed, R2 = 0.976, p = 0.012 Percent = -45.1472 + 1.3274*Alg, R2 = 0.957, p = 0.022 
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Discussion 
 This study found that Siderastrea siderea juvenile corals can simultaneously associate 

with at least three species of Symbiodiniaceae. The results also suggest that symbiont selection 

takes place within the one-polyp stage, likely within the first 4 to 6 months after settlement. The 

presence of Breviolum B5a as dominant symbiont species decreases at greater depths and 

increases with average sediment cover, while the dominance of Cladocopium C3 decreases with 

average sediment cover and increases with average algal cover. Juvenile Siderastrea siderea 

corals in Broward County exhibit a similar association with symbiont species found in adult S. 

siderea that inhabit the Caribbean.  

 The lack of association between the size of a juvenile coral and the number of symbiont 

species it hosts, aligned with the fact that one-polyp corals often have a single Symbiodiniaceae 

species, suggests that symbiont selection occurs at the one-polyp stage within the first 4 to 6 

months of recruitment. If coral larvae are promiscuous by indiscriminately acquiring multiple 

algal symbionts from the water column and benthos (Coffroth et al. 2001; Weis et al. 2001; 

Cumbo et al. 2012), then the transition towards a dominant symbiont species is occurring by the 

time a Siderastrea siderea recruit is one polyp in size. It is possible that symbiont diversity was 

more plentiful (greater than 3 species of Symbiodiniaceae) very early on in the one polyp size, 

and the selection period was missed in this study due to the timing of sampling, This could 

explain why most single polyp S. siderea already had one dominant symbiont. On the other hand, 

it could be hypothesized that single polyp Siderastrea siderea exhibit an immediate selection of a 

dominant symbiont instead of being promiscuous and indiscriminately acquiring symbionts. The 

dominant symbiont species juvenile S. siderea select may remain dominant in the coral until the 

12-polyp stage and possibly throughout adulthood. However, evidence of this hypothesis has yet 

to be reported in literature. It is also probable that the time frame of this selection is 4 to 6 

months after settlement because sampling began 4 to 6 months after the peak of annual spawning 

for this species (new moon October; St. Gelais 2010). This hypothesis is consistent with the fact 

that S. siderea are slow-growing, and only increase in diameter approximately 0.2 to 1 cm yr-1 

(Huston 1985). Field studies by Harper (2017) also indicated that year old S. siderea recruits 

were measured between 1- 8 mm in size. Single polyp juveniles from this study were 1.9 - 6.1 

mm. Therefore, selection is expected to occur early in life while the coral is of a smaller size. 

These results also agree with the age range found by Little et al. (2004) in other coral species. 
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Specifically, Acropora tenuis juveniles that were ~3 to 5 polyps in size began to adjust symbiont 

species abundance at four months old.  

 The symbiont species dominating juvenile Siderastrea siderea corals are partly 

dependent on depth, sediment, and algal cover. Siderastrea siderea sampled from Broward 

County associated with up to three symbiont species, with the most prevalent (the dominant) 

species varying between individuals and sites. As hypothesized, depth was shown to influence 

dominant symbiont selection. The probability of Breviolum B5a being the dominant symbiont 

decreased as depth increased (Figure 11A), which may be explained by the effects of climate 

change on Symbiodiniaceae during the Plio-Pleistocene. Five million years ago, Cladocopium 

C1 occurred in shallower habitats (~5 m) where they likely experienced temperature and light 

fluctuations. Thornhill et al. (2014) suggested that the success of Breviolum species in shallow 

Atlantic habitats during this time period (LaJeunesse 2002; Finney et al. 2010) may have led the 

genera to out-compete Cladocopium C1. Breviolum B6a has previously been found at depths 

ranging from 1 to 17m in the nearby Florida Keys (Thornhill et al. 2006, Correa et al. 2009; 

Bonthond et al. 2018). If Breviolum B5a is most successful in depth ranges up to 17 m, then 

Cladocopium C1 would likely be found at deeper depths in this area. This hypothesis is further 

supported in this study, as Cladocopium C1 was found to dominate at depths greater than 17 m 

(Figure 8).  

 It is unclear if the increased dominance of Breviolum B5a (Figure 11B) and decreased 

dominance of Cladocopium C3 with increasing average sediment cover (Figure 11D) is actually 

related to sediment cover, or if it is just an artifact that sediment cover changes with depth and 

distance from shore. In the Florida Reef Tract, average sediment cover is typically lower at 

deeper sites because they are located at greater distances from shore and thus less exposed to 

wave action (Banks et al. 2008). Therefore, it is possible that depth alone, not sediment cover, is 

driving the selection of Breviolum B5a and Cladocopium C3 as dominant symbionts in S. siderea 

of Broward County. However, it may be that Cladocopium C3 is not suited for environments 

with high turbidity or sediment cover, especially because it was not present as a dominant or 

background species in either of the shallow sites (Site 1 and 2) in Broward County. On the other 

hand, depth, turbidity and sediment cover are factors that are well correlated with light, which 

suggests that this selection pattern seen with depth is a reflection of the effect of light on algal 

symbiosis. The algal cover along the Florida Reef Tract is known to fluctuate seasonally and 
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across the different reef types (Banks et al. 2008, this study). The increased dominance of 

Cladocopium C3 with average algal cover found in this study is thus likely fortuitous and a result 

of low sampling.  

 While the selection of a particular symbiont as the dominant species is influenced by 

environmental factors, juvenile Siderastrea siderea are also exhibiting a selection that is in favor 

of symbionts homologous to their adult counterparts. In this study, it was found that juvenile 

Siderastrea siderea in Broward County, FL host Breviolum B5a, Cladocopium C1, C1ao, C3, 

C3af, and Durisdinium D1a (Figure 7B). The dominance of Breviolum B5a in juvenile S. siderea 

of Broward County (39%, Figure 7B) can easily be explained by the dominance of this symbiont 

in adult S. siderea in a shallow habitat of the nearby Florida Keys (Thornhill et al. 2006; Kemp et 

al. 2016). Adult colonies in the Caribbean have been documented to associate with Breviolum 

B5a, albeit less frequently (Thornhill et al. 2006; Kemp et al. 2016; Bonthond et al. 2018); while 

association with Cladocopium C3 (Thornhill et al. 2006; Thornhill et al. 2014; Kemp et al. 2016) 

and Cladocopium C1 (LaJeunesse 2002; Thornhill et al. 2014; Davies et al. 2018) are more 

frequent. In the Bahamas, Belize, Curacao, and St Croix, adult S. siderea associate with 

Cladocopium C3 and Cladocopium C1 (Thornhill et al. 2006; Thornhill et al. 2014; Davies et al. 

2018). The similarity in symbiont preference among closer regions compared to the dissimilarity 

between different regions may reflect the variation in environmental conditions between regions 

and/or local co-adaptation of corals and Symbiodiniaceae species. 

 Although these S. siderea recruits are mostly dominated by symbionts homologous to 

their parents, 18% are dominated (Figure 7B) by (or have in the background; 44%, Figure 7C) a 

symbiont that is not typically dominant in this species: Durisdinium D1a (Figure 9). The 

presence of Durisdinium D1a in juvenile S. siderea is likely due the variability of the 

environment, where salinity, turbidity, and temperature fluctuations are common. Nonetheless, 

the presence of Durisdinium D1a may be an indicator that these coral species are enhancing their 

thermal tolerance in reflection of increased ocean temperatures. Mean sea surface temperatures 

have increased on average 0.13°C per decade over the past 100 years (NOAA 2019). Small 

deviations in ocean temperature result in the breakdown of the symbiotic relationship between 

Symbiodiniaceae and corals, a process known as bleaching which often leads corals to die 

(Jokiel and Coles 1977; Hoegh-Guldberg and Smith 1989; Glynn and D'Croz 1990; Brown et al. 

1995; Glynn 1996). It is possible that S. siderea may be associating with Durisdinium D1a 
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because the thermal tolerance of Breviolum B5a, Cladocopium C3 and Cladocopium C1 are 

lower than that of Durisdinium D1a (Swain et al. 2017). Although hosting Durisdinium species 

comes with its disadvantages (e.g. decreased carbon translocation and high metabolic costs; 

Abrego et al. 2008; Cunning et al. 2015), corals hosting these species exhibit an increase in 

photochemical efficiency and net photosynthesis (Rowan 2004; Berkelmans and van Oppen 

2006). Environmental changes, particularly increased sea-surface temperatures, are threatening 

the survival and existence of coral reef communities. If corals associated with Durisdinium 

species, even if only at background levels, this could allow for an increase in the relative 

abundance prior to or during a heat event or provide easier establishment of thermally-tolerant 

symbionts post-bleaching.  An early association with a thermally-tolerant symbiont, can thus be 

a sign of acclimatization by juvenile Siderastrea siderea. If symbiont selection continues to be 

influenced by the environment, it may lead coral juveniles to increasingly establish permanent 

associations with thermally tolerant symbiont species. This could potentially prevent bleaching 

and thus provide corals with a greater resilience to extreme warming events. Further monitoring 

of symbiotic changes in reef-building corals such as Siderastrea siderea will provide insight into 

how coral populations are preparing to persist through a changing environment.  
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