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ABSTRACT 

Coral reefs have declined globally due to anthropogenic stressors increasing the frequency and 

severity of bleaching and disease events. In 2014, a stony coral tissue loss disease (SCTLD) 

outbreak occurred off the coast of southeast Florida and subsequently spread throughout the 

region. Data collected by the Southeast Florida Reef Evaluation and Monitoring Project 

(SECREMP) were used to examine the regional impacts of the disease event on the Southeast 

Florida stony coral assemblage. A long-term annual monitoring project, SECREMP samples 

permanent sites along the Southeast Florida Reef Tract (SEFRT) from Miami-Dade County north 

to Martin County. Analysis of stony coral demographic data from 21 sites revealed regional 

SCTLD prevalence increased significantly, and significant region-wide declines in stony coral 

diversity and density were observed. From 2014 to 2018, species-specific susceptibility to the  

disease were evident, with Meandrina meandrites and Dichocoenia stokesi both losing > 90% of 

all live tissue by 2016. The reef building, complexity-contributing species Montastraea 

cavernosa and Orbicella spp. lost significant tissue (55% and 70% respectively) as a result of 

this disease event. Overall, up to 64% of all live tissue was lost and at least 11 of 28 total species 

were impacted by SCTLD. Of the colonies that suffered complete mortality, many were among 

the largest individuals in the dataset. Loss of large, sexually mature colonies lowers reproductive 

capabilities and thus severely inhibits the potential for recovery. Juvenile surveys showed many 

of the large, structurally complex species had little to no juveniles within the sample sites, while 

eurytopic generalist species made up more than 76% of all juveniles. This disease event resulted 

in acute mortality and altered ecosystem function to the point where recovery is uncertain. To 

facilitate recovery, local resource managers need to understand the severity of the disease 

outbreak on the coral assemblage and mitigate local anthropogenic stressors.  

 

Keywords: disease, coral mortality, long-term monitoring, density, diversity 
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INTRODUCTION 

Coral reefs are the most diverse of all marine ecosystems, housing almost one third of 

ocean species and yielding high productivity (Buddemeier et al., 2004). Coral reef systems are 

valuable in terms of coastal protection and tourism value; where the global value of goods and 

services is about $30 billion annually (Moberg and Folke, 1999; Hoegh-Guldberg, 2004). In a 

constantly changing and dynamic environment, changes in marine conditions may have a direct 

impact on the future of coral reefs as reef systems face threats from both human mediated and 

naturally occurring events. On a global scale, rising water temperatures linked to escalating carbon 

dioxide levels are increasing the frequency and severity of bleaching events (Baker et al., 2008; 

Manzello, 2015; Hughes et al., 2018). Bleaching events can cause mass mortality and changes to 

reef composition; there have been 3 mass bleaching events since the 1980s (Heron et al., 2016; 

NOAA Coral Reef Watch, 2016; Pisapia et al., 2016). In addition to climate change, ocean 

acidification from absorbed atmospheric carbon dioxide threatens coral reefs by inhibiting their 

ability to build their calcium carbonate skeletons (Anthony et al., 2008). Coral reefs also face local 

anthropogenic stressors, including reduced water quality and clarity, nutrient enrichment, and 

dredging-associated sedimentation (Bruno et al., 2003; Vega Thurber et al., 2013; Miller et al., 

2016; van Woesik and McCaffrey, 2017b).  

Coral disease outbreaks are emerging as an increasing threat to coral condition and 

ecosystem function (Harvell et al., 2002; van Woesik, 2002; Maynard et al., 2015). The intensity 

and frequency of coral disease events has increased during the past few decades (Richardson and 

Voss, 2005; Sokolow, 2009; Hoegh-Guldberg, 2010; Manzello, 2015). Although the cause of this 

increase is multifaceted, there is a proposed link between increased disease prevalence and 

increasing ocean temperatures (Harvell et al., 2002; Miller et al., 2009; Muller and van Woesik, 

2012; Precht et al., 2016). Coral disease events reduce fecundity, result in both local and regional 

population declines, and cause shifts in coral assemblages (Richardson and Voss, 2005; Croquer 

and Weil, 2009). Climate warming can increase pathogen development and persistence, disease 

transmission, and susceptibility of the host (Harvell et al. 2002). With rapidly changing climate 

and anomalously high ocean temperatures becoming a large factor affecting health and resilience 

of coral reefs, live coral cover and colony density may undergo significant declines (Jones et al. 

2004, Bruno et al. 2007). 
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The chronic disturbances and the high economic value of Southeast Florida reefs require 

long-term monitoring and comprehensive research to define and quantify change, identify threats 

to the ecosystem, and develop an effective management plan. This study uses the Southeast 

Florida Coral Reef Evaluation and Monitoring Project (SECREMP), a long-term monitoring 

project established in 2003 to monitor status and trends in the Southeast Florida (Miami-Dade, 

Broward, Palm Beach and Martin counties) reef system. I analyzed 6 years (2013-2018) of stony 

coral demographic data collected to evaluate the effects of a widespread disease outbreak in the 

northern portion of the Florida Reef Tract (FRT). The FRT is the third largest barrier reef system 

in the world and extends 577 km north from the Dry Tortugas (Gilliam et al., 2017). In Florida, 

coral reefs are important to the local economy and have intrinsic value as part of the only 

continental United States reef system. The Southeast portion of the Florida Reef Tract (SEFRT) 

is unique; it contains a linear outer reef structure that is one of the longest continuous reef 

structures in the western Atlantic and consist of three reef ridges parallel to shore of increasing 

depth (Banks et al., 2007). The SEFRT reefs span Miami-Dade, Broward, Palm Beach and 

Martin Counties, are directly adjacent to shore and exist within 3 km of a highly urbanized and 

developed mainland. Florida reefs related tourism generates $5.5 billion in sales each year 

(Gibson et al., 2008; Storlazzi et al., 2019). Broward County’s current human population alone is 

greater than The population of the four counties containing the SEFRT is > 6 million people and 

is expected to increase to 7.5 million people by 2040 (Acevedo, 2017). Large adjacent 

populations lead to increased pollution, sedimentation, and coastal development further 

increasing stressors on the reef tract. Thus, the SEFRT is directly impacted by commercial and 

recreational fishing activities, marine construction (i.e., dredging and port expansion), sewage 

outfalls, and ship groundings. These stressors are expected to have an even larger impact on the 

Southeast Florida reef system in the face of human population growth and global climate change. 

A rapidly progressing white disease was first observed in Miami-Dade and Broward 

counties in 2014 and spread to other portions of the SEFRT by fall 2015 (Precht et al., 2016; 

Walton et al., 2018). Increased ocean temperatures (Manzello, 2015) followed by coral bleaching 

were reported in late summer and fall 2014 in the FRT and continued through 2015 (Eakin et al., 

2016; van Woesik and McCaffrey, 2017a; Walton et al., 2018). By the summer of 2016, active 

disease had been reported in all four counties in the SEFRT with multiple species having 

significant losses in density (Walton et al., 2018). Previously, the majority of non-acroporid 
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white disease effecting the Caribbean was white plague, first reported in the in 1970s and again 

in the 1990s (Dustan, 1977) and is now considered to be one of the most serious of coral diseases 

(Croquer et al., 2003; Richardson and Voss, 2005; Miller et al., 2009). However, this recent 

disease outbreak has yet to be conclusively identified as the same accepted pathogen known to 

cause white plague. Due to the unknown etiology of this disease, management agencies have 

classified it as Stony Coral Tissue Loss Disease (SCTLD) (Florida Keys National Marine 

Sanctuary, 2018). SCTLD differs from white plague in that lesions may appear in the middle of 

the colony as opposed to lesions starting at tissue margins or the base of colony; where lesions 

can be surrounded by bleached tissue  (Florida Keys National Marine Sanctuary, 2018). Highly 

susceptible, intermediately susceptible and low susceptible species have been identified; where 

highly susceptible species are the first affected during an outbreak, have rapid disease 

progression and complete colony mortality (Florida Keys National Marine Sanctuary, 2018). 

Intermediately susceptible species are often affected later, affected in lower quantities, and large 

colonies can have lesions that last months to years (Florida Keys National Marine Sanctuary, 

2018). 

In this study, SECREMP data collected between 2013 and 2018 were analyzed to 

determine the impacts and extent of the disease outbreak and assess the possibility of recovery 

from this event. Recovery will depend on both growth of existing corals or new corals recruiting 

into the area. To better evaluate the status of the SEFRT, small colony and juvenile data was 

added to the SECREMP surveys in 2018. Previous studies have found that coral reproductive 

output at the colony level is highest when the cover is highest at the species level (Hartmann et 

al., 2017), and thus low cover after a disturbance event can threaten the chance of recovery. 

Additionally, reductions in colony size lead to reductions in reproductive output and thus 

reducing the likelihood of recovery (Connell, 1973; Szmant-Froelich, 1985; Tsounis et al., 

2006). Epidemics of coral disease that span anywhere from 10 -1000 km and last for multiple 

years are estimated to take centuries to recover, if recovery can even occur (Jackson, 1991).  

The objectives of this study are to (1) further evaluate the spatial and temporal extent of 

the outbreak, (2) quantify regional loss to stony coral density and live tissue area, (3) identify 

species specific effects and recovery, and (4) quantify the density and composition of the 

juvenile population.  
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METHODS 

STONY CORAL DEMOGRAPHIC SURVEYS 

To evaluate the impact of this coral disease event along the Southeast Florida Reef Tract, 

stony coral density and demographic data from 21 SECREMP sites were used. Established in 

2003, SECREMP is a long-term coral reef monitoring program which provides resource 

managers with the annual status as well as spatial and temporal trends along the SFRT. These 21 

sites are located along the SFRT from Miami-Dade County in the south to Martin County in the 

north (Table 1, Figure 1) and encompass multiple reef habitats (Walker, 2012). Sites are 

identified by county followed by a site number. Each site consists of four, 1 m x 22 m stations 

demarcated by permanently-installed stainless steel pins. Annual stony coral demographic 

surveys were conducted during the summer months (May – September) from 2013 to 2018; all 

stony corals  4 cm were identified to species. Maximum colony diameter and height (defined as 

the measurement perpendicular to the plane of growth) were recorded along with any visual 

signs of bleaching, disease or other conditions (i.e., predation, overgrowth interactions, boring 

sponges, etc.). To assess the effect of the disease outbreak, disease prevalence for SCTLD was 

assessed and all other diseases were combined to assess an overall ‘other’ disease prevalence. 

Other diseases included black band disease, yellow band disease, white band disease (for 

acroporids), and dark spot disease. Percent colony mortality also was assessed. Recent mortality 

was defined as tissue loss with clearly distinguishable corallite structure and minimal overgrowth 

by algae or other fouling organisms. Any areas of colony mortality that did not meet these 

criteria were defined as old mortality. Additionally, to better understand potential recovery after 

a disease event, smaller size classes were added to the survey. In 2018, demographic data were 

collected on any colony  2 cm maximum diameter. Any stony corals < 2 cm diameter were 

identified to the lowest taxonomic level and tallied across all sites. Although not a dedicated 

juvenile survey, lowering of minimum size was implemented to help better capture species 

richness and density of smaller colonies. 
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Table 1. Locations of 21 SECREMP sites with reef type, depth and locations. NRC = Nearshore 

Ridge Complex, MC = Martin County, PB = Palm Beach County, BC = Broward County, DC = 

Miami-Dade County 

Site Reef Type Depth (m) Latitude (N) Longitude (W) 

     MC1 NRC 4.6 27º 07.900’ 80º 08.042’ 

MC2 NRC 4.6 27º 06.722’ 80º 07.525’ 

PB1 NRC 7.6 26º 42.583’ 80º 01.714’ 

PB2 Outer 16.8 26º 40.710’ 80º 01.095’ 

PB3 Outer 16.8 26º 42.626’ 80º 00.949’ 

PB4 Outer 16.8 26º 29.268’ 80º 02.345’ 

PB5 Outer 16.8 26º 26.504’ 80º 02.854’ 

BC1 NRC 7.6 26º 08.872’ 80º 05.758’ 

BC2 Middle 12.2 26º 09.597’ 80º 04.950’ 

BC3 Outer 16.8 26º 09.518’ 80º 04.641’ 

BC4 Inner 9.1 26º 08.963’ 80º 05.364’ 

BC5 Middle 13.7 26º 18.100’ 80º 04.095’ 

BC6 Outer 16.8 26º 18.067’ 80º 03.634’ 

DC1 Inner 7.6 25º 50.530’ 80º 06.242’ 

DC2 Middle 13.7 25º 50.520’ 80º 05.704’ 

DC3 Outer 16.8 25º 50.526’ 80º 05.286’ 

DC4 Outer 12.5 25º 40.357’ 80º 05.301’ 

DC5 Inner 7.3 25º 39.112’ 80º 05.676’ 

DC6 NRC 4.6 25º 57.099’ 80º 06.534’ 

DC7 Middle 16.8 25º 57.530’ 80º 05.639’ 

DC8 NRC 4.6 25º 40.707’ 80º 07.111’ 
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Figure 1. Map of southeast Florida with 21 Southeast Florida Coral Reef Evaluation and 

Monitoring Project (SECREMP) site locations in yellow. Major cities are denoted with blue 

asterisks and county lines are outlined in black.  
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STATISTICAL ANALYSES 

 Differences in disease prevalence, coral assemblage diversity, coral density, and coral 

live tissue area (LTA) were analyzed at the regional level, where regional values were calculated 

using data from all sites. Assemblage diversity was evaluated using species richness (S), 

Shannon index (H’) and Inverse Simpson’s index (D). During the first years of the project 

Orbicella annularis, O. faveolata and O, franksii were grouped as the O. annularis complex and 

therefore grouped for the purposes of this study. 

The metric LTA was utilized to capture the loss of coral tissue that occurred without 

whole colony mortality. This metric is especially useful because disease often causes partial 

colony mortality and is thus a more sensitive method for detecting change in the stony coral 

assemblage. Colony surface areas were calculated using the below modified version of the Knud 

Thomsen approximation for the surface area of an ellipsoid (Klamkin, 1971; Klamkin, 1976): 

𝑆𝐴 = 2π (
ap (

1
2

b)
p

+ap (
1
2

b)
p

+ (
1
2

b)
p

(
1
2

b)
p

3
)

1
p

 

 

The surface area was modified to only use one radius measurement and one height measurement. 

To calculate the surface area of a coral colony, the original equation was multiplied by ½ to only 

account for the top half of an ellipsoid. Where a = maximum colony height, b = maximum 

colony diameter and p = 1.6075, a constant yielding a relative error of at most  1.6075%, 

determined by Knud Thomsen based on Klamkin (1971) work. Total colony mortality was then 

used with the surface area of the colony to calculate the LTA: 

𝐿𝑇𝐴 = 𝑆𝐴 (1 − (
% 𝑂𝑙𝑑 𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 + % 𝑅𝑒𝑐𝑒𝑛𝑡 𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦

100
)) 

 

To evaluate regional differences in disease prevalence, colony density, diversity and colony LTA 

were analyzed using linear mixed-effects models in the nlme package (Pinheiro et al., 2017) in 

RStudio (RStudio Team, 2015). Year was set as a random effect in these models with disease 
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prevalence, density or LTA the response variables. Species level disease prevalence, density and 

LTA were examined using linear mixed-effect models with year as a random effect. For all 

models if significant effects were found, a Tukey’s post hoc analysis was performed using the 

glht() (general linear hypothesis) function in the multcomp package (Hothorn et al., 2008). 

 To evaluate the relationship between all disease prevalence and SCTLD as well as all 

disease prevalence and site LTA and density, a Kendall’s rank correlation using tau-b to account 

for ties was performed. Each metric (disease prevalence, SCTLD prevalence, LTA and density) 

was calculated by site and tested by year. 

RESULTS 

INCREASED CORAL DISEASE AND CORAL ASSEMBLAGE DECLINES 

 Regional stony coral disease prevalence increased from 2013 to 2016, peaking at 3.5  

0.9 % (mean  SE) colonies affected. Regional disease prevalence then declined to less than 1% 

in 2017 and 2018 (Figure 2). Disease prevalence previously had increased every year from 2013 

to 2016, with 2016 having significantly higher disease prevalence (linear mixed-effects model, 

df=20) than all other years (Figure 2); disease prevalence in 2016 was five times greater than in 

2013. This increase in disease prevalence was driven by an increase in stony coral tissue loss 

disease (SCTLD). This disease presents as tissue loss lesions that either start on the edge of the 

colony and progress upwards or lesions begin as patches or blotches within intact tissue (Florida 

Keys National Marine Sanctuary, 2018). In 2013, only three colonies (two Dichocoenia stokesii 

and one Porites astreoides) located in Broward and Miami-Dade counties on the Nearshore 

Ridge Complex (NRC) and the Inner Reef visually presented conditions consistent with SCTLD 

(Table 2). By 2014, SCTLD prevalence had increased 8-fold (0.8  0.6 %), and was recorded on 

six species in three different counties (Table 2). Regional SCTLD prevalence continued to 

increase in 2015 and by 2016 was 2.7  0.8%, which was significantly higher than all other years 

(linear mixed-effects model). By 2016, SCTLD was recorded in all counties within the SEFRT, 

on all habitat types and on 11 of 28 different species, demonstrating the wide geographic extent 

of the disease as well as its indiscriminate effect on multiple species (Figure 3). In 2018, SCTLD 

was only recorded on 2 species: Montastrea cavernosa and the O. annularis complex.  
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Figure 2. Mean ( SE) annual coral disease prevalence for A) all diseases combined and B) all 

other diseases and SCTLD. Disease prevalence is the average prevalence per site where all 

colonies were summed across a site. Asterisks indicate years that significantly differed (linear 

mixed-effects model, linear mixed-effects model, df=20).
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Table 2. Annual stony coral abundance, stony coral tissue loss disease (SCTLD) count and prevalence, list of species recorded with 

SCTLD, abundance and the county the disease was observed in by year for all colonies  4 cm maximum diameter. (NRC = Nearshore 

Ridge Complex. Regional SCTLD prevalence is mean  SE) 

 

  

Dichocoenia stokesi 2 75 Broward, Miami-Dade NRC, Inner

Porites astreoides 1 528 Miami-Dade NRC

Agaricia agaricites 1 135 Miami-Dade Inner

Dichocoenia stokesi 2 78 Broward Middle

Meandrina meandrites 1 118 Broward Outer

Porites astreoides 1 564 Broward Outer

Siderastrea siderea 6 417 Palm Beach, Broward Middle, Outer

Stephanocoenia intersepta 1 250 Broward Outer

Dichocoenia stokesi 6 55 Palm Beach, Miami-Dade NRC, Outer

Montastraea cavernosa 3 457 Miami-Dade Inner, Outer

Montastraea (Orbicella) annularis complex 2 24 Miami-Dade Inner

Meandrina meandrites 2 85 Miami-Dade NRC

Porites astreoides 1 571 Broward Inner

Porites porites 1 115 Miami-Dade Inner

Solenastrea bournoni 1 54 Miami-Dade Inner

Siderastrea siderea 1 405 Martin NRC

Stephanocoenia intersepta 1 258 Miami-Dade Middle

Eusmilia fastigiata 1 4 Palm Beach Outer

Montastraea cavernosa 38 248 Miami-Dade, Broward, Palm Beach NRC, Inner, Middle, Outer 

Montastraea (Orbicella) annularis complex 3 24 Miami-Dade, Broward NRC, Inner

Porites astreoides 4 632 Miami-Dade Inner

Solenastrea bournoni 5 38 Miami-Dade, Broward, Palm Beach NRC, Middle

Siderastrea siderea 6 324 Miami-Dade, Broward, Palm Beach NRC, Inner, Middle, Outer

Stephanocoenia intersepta 1 229 Palm Beach Outer

Montastraea cavernosa 15 231 Miami-Dade, Broward, Palm Beach NRC, Inner, Outer

Montastraea (Orbicella) annularis complex 2 21 Broward NRC

Porites astreoides 1 789 Broward Inner

Stephanocoenia intersepta 1 267 Miami-Dade Middle

Montastraea cavernosa 11 263 Miami-Dade, Broward, Palm Beach NRC, Inner, Outer

Montastraea (Orbicella) annularis complex 2 11 Broward NRC, Inner

County

Diseased 

Colonies

Total 

colonies HabitatYear

Total 

Corals

SCTLD 

Count

SCTLD 

Regional 

Prevalence (%) Species affected

2013 2280 3 0.09 ± 0.07

2014 2382 12 0.82 ± 0.60

2015 2392 18 0.90 ± 0.35

2016 1936 58 2.72 ± 0.76

2017 2336 19 0.72 ± 0.48

2018 2394 13 0.43 ± 0.31
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Figure 3. Images of nine of the 11 total species recorded with stony coral tissue loss disease.  
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Other diseases were recorded over the course of this study, however, averaged across all sites, 

other disease prevalence stayed under 1% and there were no significant increases in prevalence 

between years (Figure 2). Other diseases recorded in this study included black band disease, 

yellow band disease, white band disease (only acroporids), dark spot disease, and rapid tissue 

loss (only acroporids). A significant positive correlation was found between overall disease 

prevalence and SCTLD prevalence in 2016 (Kendall’s rank correlation, tau = 0.38, df = 20). No 

other significant correlations were found between disease prevalence and SCTLD prevalence any 

other years (Kendall’s rank correlation, df = 20).  

 The widespread geographic extent of SCTLD and the species affected was examined by 

quantifying the coral assemblage diversity and LTA over the six year study period. Across all 

sites, all three diversity measures were significantly lower in 2017 (S: 8.4  0.6, H’: 1.5  0.1, D: 

3.5  0.2) and 2018 (S: 8.3  0.6, H’: 1.5  0.1, D: 3.6  0.3) (mean  SE) compared to 2013-

2015 (linear mixed-effects model, df=20) (Figure 4). Decreases were seen from 2015 to 2016; 

however, these reductions were not significant except for species richness. Overall species 

richness was lowest in 2016 where it was 21% lower than the previous year, while Inverse 

Simpson’s diversity reached a minimum in 2017 and Shannon diversity in 2018 (Figure 4). 

 From 2013 to 2015, overall LTA increased each year with the highest LTA per site 

occurring in 2015 with 1.68  0.31 m2 of tissue per site (Figure 5). From 2015 to 2016, there was 

a significant 37% loss of LTA across all sites combined (2016; 1.1  0.2). Further loss of LTA 

was seen in 2017, where it reached the minimum over the study period of 0.9  0.2 m2 of tissue 

per site. The overall LTA in 2017 and 2018 was significantly lower than in 2013, 2014, and 

2015. The species driving this loss include Montastrea cavernosa, Meandrina meandrites, 

Montastrea (Orbicella) annularis complex, Dichocoenia stokesi and Solenastrea bournoni 

(Figure 6, Figure 7). Live tissue area in 2018 did not significantly increase. Live tissue area was 

found to have a significant positive correlation in both 2017 and 2018 (Kendall’s rank 

correlation; 2017: tau = 0.36, df = 20; 2018: tau = 0.42, df = 20). No significant relationship was 

found between LTA and disease prevalence any other year (Kendall’s rank correlation, df = 20). 
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Figure 4. Regional stony coral diversity indices per year  for all sites combined. Letters indicate 

significant difference between years (linear mixed-effects model, df=20). 

Figure 5. Mean ( SE) annual live tissue area (LTA) for all stony coral species and sites 

combined.Letters indicate statistical difference (linear mixed-effects model, df=20). 
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SPECIES-SPECIFIC EFFECTS 

While no species affected by SCTLD were entirely lost from the sample sites, six 

species’ abundances were reduced by over 50% from 2013 to 2018 (Table 3). Dichocoenia 

stokesi peaked in abundance in 2014 with 78 colonies and was reduced to only five colonies 

across the 21 sites by 2017. Similarity Meandrina meandrites also suffered a drastic decline 

where the highest abundance was observed in 2014 with 118 colonies and by 2016 five colonies 

were observed; in 2018 M. meandrites abundance was only at 22% of what it was in 2014 (Table 

3). Solentastrea bournoni peaked in abundance in 2014 with 58 colonies, but by 2018 only 19 

colonies remained: a loss of 67%. Orbicella spp steadily declined in abundance from 2015 to 

2018 and only one-half of the colonies recorded in 2013 remained by 2018. Both species of 

Pseudodiploria declined in abundance from 2013 to 2018 with P. strigosa declining in 

abundance by 58% while P. clivosa lost 90% of colonies recorded in 2013 (Table 3). Porites 

astreoides and P. porites were among the few species that increased in abundance, increasing in 

abundance by 59% and 115% from 2013 to 2018 respectively (Table 3).  

Of the 28 species initially present, seven species had significant decreases in LTA over 

the course of the study: M. meandrites, S. siderea, Orbicella spp., P. astreoides, D.stokesi, 

S.bournoni, Montastraea cavernosa (linear mixed-effects model, df=20). Meandrina meandrites 

and D. stokesi had a significantly lower LTA in 2016, compared to 2013 and 2014 with no 

significant change through 2018 (Figure 6, Figure 7) (linear mixed-effects model, df=20). Both 

species lost over 90% of LTA from 2013 to 2018 (Figure 6, Figure 7). Orbicella spp. had the 

lowest LTA in 2018 (0.36  0.09) which was significantly lower than the LTA in 2015 (1.34  

0.37), by 2018 only 27% of tissue remained within the sample sites (linear mixed-effects model, 

df=20). Solenastrea bournoni LTA in 2017 and 2018 (0.1  0.0) were significantly lower than 

2014 (0.2  0.1; Figure 7) (linear mixed-effects model, df=20). Montastraea cavernosa LTA was 

significantly higher in 2014 (3.6  2.0) and 2015 (3.6  2.1) compared to 2017 (1.6  0.1) (linear 

mixed-effects model, df=20). Only two species, S. siderea and P. astreoides had significant 

increases in LTA. Siderastrea siderea had a significant increase from 2016 (0.3  0.1) to 2018 

(0.4  0.1), which was the highest LTA recorded for S. siderea across study years (linear mixed-

effects model, df=20) (Figure 6). Porites astreoides significantly increased in LTA from 2013 

(0.6 0.2) and 2014 (0.6  0.2) to 2018 (0.8  0.2; Figure 6).  



 

15 

 

Table 3. Regional stony coral species abundances (# of colonies) for all Southeast Coral Reef 

Evaluation and Monitoring Program (SECREMP) sites combined   

Species 2013 2014 2015 2016 2017 2018

% Change 

2013-2018

Acropora cervicornis 8 22 17 19 19 8 0

Agaricia agaricites 133 135 129 125 193 150 13

Agaricia fragilis 3 8 18 12 16 10 233

Agaricia lamarcki 5 4 6 6 3 5 0

Colpophyllia natans 9 7 10 3 2 1 -89

Dichocoenia stokesi 75 78 55 8 5 10 -87

Diploria labyrinthiformis 3 2 2 1 1 2 -33

Eusmilia fastigiata 3 6 6 4 6 5 67

Isophyllia sinuosa 1 1 3 1 8 2 100

Leptoseris cucullata 0 0 0 0 0 1 100

Madracis auretenra 28 43 73 67 67 42 50

Madracis decactis 39 43 41 33 41 46 18

Meandrina meandrites 114 118 85 5 12 14 -88

Montastraea (Orbicella) annularis complex 22 21 24 24 21 11 -50

Montastraea cavernosa 445 472 457 248 231 263 -41

Mycetophyllia aliciae 5 4 6 4 4 7 40

Mycetophyllia lamarckiana 0 0 0 1 0 0 0

Oculina diffusa 8 7 7 5 3 0 -100

Oculina robusta 0 0 0 0 0 1 100

Phyllangia americana 0 0 0 0 1 1 100

Porites astreoides 528 564 571 632 789 838 59

Porites porites 51 79 115 113 147 110 116

Pseudodiploria clivosa 30 27 30 29 30 3 -90

Pseudodiploria strigosa 12 12 10 4 5 5 -58

Scolymia cubensis 3 0 0 1 3 1 -67

Siderastrea siderea 460 421 415 324 434 540 17

Solenastrea bournoni 55 58 54 38 28 19 -65

Stephanocoenia intersepta 240 250 258 229 267 299 25

Total 2280 2382 2392 1936 2336 2394
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Figure 6. Mean (± SE) regional live tissue area (LTA) (m2) for Meandrina meandrites, 

Siderastrea siderea, Montastraea (Orbicella) complex, and Porites astreoides. LTA is summed 

across a site and averaged across all sites. Letters indicate significant difference among years 

(linear mixed-effects model, df=20).  
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Figure 7. Mean ( SE) regional live tissue area (LTA) (m2) for Dichocoenia stokesi, Solenastrea 

bournoni and Montastraea cavernosa. LTA is summed across a site and averaged across all sites. 

Letters indicate significant difference between years (linear mixed-effects model, df=20).   



 

18 

 

The six species and one complex that saw significant changes in LTA had all been recorded with 

active SCTLD infections during monitoring (Table 2). Siderastrea siderea and P. astreoides 

were the only two species affected by the disease to have increases in LTA; however, S. siderea 

had the lowest recorded LTA in 2016 during the peak of the disease outbreak, suggesting a 

possible effect of the disease on the LTA.  

Ten of the 28 species had significant changes in density from 2013 to 2018 (linear mixed-

effects model, df=20) (Table 4). Seven species had significant declines, and six of the seven were 

species that were affected by SCTLD. Densities of Orbicella spp., S. bournoni, M. meandrites, 

D. stokesi, and C. natans all dropped to or below 0.01 colonies/m2 by 2018 (Table 4). 

Dichocoenia stokesi had the highest recorded density in 2014 (0.04 ± 0.01 colonies/m2) which 

had significantly dropped to 0.00 ± 0.00 colonies/m2 by 2017. Meandrina meandrites had a 95% 

reduction in density from 2014 (0.06 ± 0.01 colonies/m2) to 2016 (0.00 ± 0.00 colonies/m2). 

Montastraea cavernosa also had the highest density in 2014 (0.26 ± 0.07 colonies/m2) that 

declined to 0.13 ± 0.03 colonies/m2 by 2017 a loss of over 50% of colonies recorded. Density 

was found to have a significant positive correlation in both 2017 and 2018 (Kendall’s rank 

correlation; 2017: tau = 0.36, df = 20; 2018: tau = 0.45, df = 20). No significant relationship was 

found between density and disease prevalence any other year (Kendall’s rank correlation, df = 

20). 

In contrast, three species had significant increases over the study period. Both species of 

Porites within the sample sites significantly increased in density. Porites porites increased 

significantly from 2013 (0.03 ± 0.01 colonies/m2) to 2017 (0.08 ± 0.03 colonies/m2) while P. 

astreoides had a significant increase from 2013 (0.29 ± 0.08 colonies/m2) to 2018 (0.45 ± 0.14 

colonies/m2), a 58% increase in density. Density of Stephanocoenia intersepta in 2018 (0.16 ± 

0.03 colonies/m2) was significantly higher than in 2013 (0.13 ± 0.02 colonies/m2) and 2016 (0.12 

± 0.02 colonies/m2; linear mixed-effects model, df=20) 
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Table 4. Regional stony coral species mean density (± SE) for all sites combined and pairwise results (colonies/m2) (linear mixed-

effects model, df=20; * p < 0.05; **p < 0.01; ***p < 0.001; ND = no significant difference) 

 

Species Pairwise Comparisons

Acropora cervicornis 0.00 ± 0.00 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.00 ± 0.00 ND

Agaricia agaricites 0.07 ± 0.05 0.07 ± 0.06 0.07 ± 0.05 0.07 ± 0.05 0.10 ± 0.08 0.08 ± 0.06 ND

Agaricia fragilis 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.00 ND

Agaricia lamarcki 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 ND

Colpophyllia natans 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 *2015 > 2018

Dichocoenia stokesi 0.04 ± 0.01 0.04 ± 0.01 0.03 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00

***2013 > 2016, 2017, 2018; ***2014 > 2016, 

2017, 2018; *2015 > 2016, 2018; **2015 > 2017

Diploria labyrinthiformis 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 ND

Eusmilia fastigiata 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 ND

Isophyllia sinuosa 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 ND

Leptoseris cucullata 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 ND

Madracis auretenra 0.02 ± 0.02 0.02 ± 0.02 0.04 ± 0.04 0.04 ± 0.04 0.04 ± 0.04 0.02 ± 0.02 ND

Madracis decactis 0.02 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 ND

Meandrina meandrites 0.06 ± 0.01 0.06 ± 0.01 0.05 ± 0.01 0.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.00

***2013 > 2016, 2017, 2018; ***2014 > 2016, 

2017, 2018; ***2015 > 2016, 2017, 2018

Montastraea (Orbicella) 

annularis complex 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 *2013 > 2018; **2015 > 2018; **2015 > 2016

Montastraea cavernosa 0.24 ± 0.06 0.26 ± 0.07 0.25 ± 0.07 0.13 ± 0.04 0.13 ± 0.03 0.14 ± 0.03

**2013 > 2016, 2018; ***2013 > 2017; ***2014 > 

2016, 2017, 2018; ***2015 > 2016, 2017; **2015 > 

2018

Mycetophyllia aliciae 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 ND

Mycetophyllia lamarckiana 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 ND

Oculina diffusa 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 ND

Oculina robusta 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 ND

Phyllangia americana 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 ND

Porites astreoides 0.29 ± 0.08 0.31 ± 0.09 0.31 ± 0.09 0.34 ± 0.10 0.43 ± 0.13 0.45 ± 0.14 *2018 > 2013

Porites porites 0.03 ± 0.01 0.04 ± 0.02 0.06 ± 0.03 0.06 ± 0.03 0.08 ± 0.03 0.06 ± 0.02 **2017 > 2013

Pseudodiploria clivosa 0.02 ± 0.01 0.01 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 0.00 ± 0.00 ND

Pseudodiploria strigosa 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 ND

Scolymia cubensis 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 ND

Siderastrea siderea 0.24 ± 0.04 0.23 ± 0.03 0.22 ± 0.03 0.18 ± 0.03 0.23 ± 0.04 0.29 ± 0.05

*2013 > 2016; *2018 > 2014; **2018 > 2015; 

***2018 > 2016; *2018 > 2017

Solenastrea bournoni 0.03 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 0.01 ± 0.00

**2013 > 2018; *2014 > 2017; **2014 > 2018; 

**2015 > 2018

Stephanocoenia intersepta 0.13 ± 0.02 0.14 ± 0.03 0.14 ± 0.03 0.12 ± 0.02 0.14 ± 0.03 0.16 ± 0.03 *2018 > 2013

20182013 2014 2015 2016 2017
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Density does not provide information on size class changes of species, so colony 

diameter was used to evaluate the size distribution of the species with significant changes in 

density. Five species lost all colonies  50 cm in maximum diameter between 2013 and 2018: S. 

intersepta, S. bournoni, M. meandrites, D. stokesi, C. natans (Figure 8-Figure 12). Orbicella spp. 

lost all colonies > 100 cm in maximum diameter from 2013 to 2018, and there were no colonies 

< 10 cm in 2018. By 2018, Colpophyllia natans lost all but one colony by 2018. Montastraea 

cavernosa had the largest loss of colonies in the 20-50 cm diameter range, and in 2018 most 

colonies were < 10 cm. From 2013 to 2018, M. meandrites lost all colonies greater than 10 cm 

diameter. Similarily,, D. stokesi lost all colonies greater than 15 cm by 2018, including several 

large colonies > 40 cm. Solenastrea bournoni lost colonies across most size classes, including 

colonies < 10 cm diameter. While P. porites and S. siderea had increases in the < 10 cm size, 

increases in colonies > 20 cm were not observed for either species. Porites astreoides and S. 

intersepta had increases in colonies < 20 cm; however, for S. intersepta all colonies > 40 cm 

were lost by 2018. 

JUVENILE SURVEYS  

 Eight species that had adult colonies in 2018 did not have any juvenile colonies (colonies 

< 4 cm in diameter) (Table 5). Dioploria labyrinthiformis, Orbicella spp., and P. clivosa were 

among these species extremely low densities in 2018 (Table 5) and are known to be affected by 

SCTLD (Florida Keys National Marine Sanctuary, 2018). D. stokesi, M. meandrites and S. 

siderea had abundances of juveniles greater than or equal to the abundance of adults (colonies ≥ 

4 cm diameter). Siderastrea siderea had 1,162 juvenile colonies contributing to 68% of total S. 

siderea abundance in 2018 (1708). Montastraea cavernosa (155) and S. intersepta (122) had 

juvenile colonies contributing to at least 25% of the total species density in 2018. Of the 27 

species recorded in 2018 only P. astreoides (2.47 ± 0.79) and S. siderea (3.70 ± 1.02) had 

densities > 1 colony/ m2 when colonies of all sizes were included. Total abundance of adult 

colonies was 2394 across all 21 sites while there were 1924 juvenile colonies.  
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Figure 8. Size frequency distribution of maximum diameter for Colpophyllia natans and 

Dichocoenia stokesi across all sites in 2013 and 2018.  
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Figure 9. Size frequency distribution of maximum diameter for Montastraea cavernosa and 

Meandrina meandrites across all sites in 2013 and 2018.  
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Figure 10. Size frequency distribution of maximum diameter for Montastraea (Orbicella) 

annularis complex and Porites astreoides across all sites in 2013 and 2018.  



 

24 

 

Figure 11. Size frequency distribution of maximum diameter for Porites porites and Solenastrea 

bournoni across all sites in 2013 and 2018.  



 

25 

 

Figure 12. Size frequency distribution of maximum diameter for Stephanocoenia intersepta and 

Siderastrea siderea across all sites in 2013 and 2018.  
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Table 5. Abundance of stony corals in 2018 of adult (colonies ≥ 4 cm) and juvenile colonies 

(colonies < 4cm) and mean density ( SE) of all colonies.  

   
Species

Acropora cervicornis 8 0 8 0.02 ± 0.01

Agaricia agaricites 150 38 188 0.41 ± 0.29

Agaricia fragilis 10 4 14 0.03 ± 0.01

Agaricia lamarcki 5 0 5 0.01 ± 0.00

Colpophyllia natans 1 1 2 0.00 ± 0.00

Dichocoenia stokesi 10 33 43 0.09 ± 0.02

Diploria labyrinthiformis 2 0 2 0.00 ± 0.00

Eusmilia fastigiata 5 3 8 0.02 ± 0.01

Isophyllia sinuosa 2 0 2 0.00 ± 0.00

Leptoseris cucullata 1 0 1 0.00 ± 0.00

Madracis auretenra 42 16 58 0.13 ± 0.12

Madracis decactis 46 7 53 0.11 ± 0.04

Meandrina meandrites 14 14 28 0.06 ± 0.02

Montastraea (Orbicella) annularis complex 11 0 11 0.02 ± 0.01

Montastraea cavernosa 263 155 418 0.90 ± 0.15

Mycetophyllia aliciae 7 0 7 0.02 ± 0.01

Mycetophyllia lamarckiana 0 1 1 0.00 ± 0.00

Oculina diffusa 0 0 0 0.00 ± 0.00

Oculina robusta 1 0 1 0.00 ± 0.00

Phyllangia americana 1 12 13 0.03 ± 0.02

Porites astreoides 838 302 1140 2.47 ± 0.79

Porites porites 110 50 160 0.35 ± 0.14

Pseudodiploria clivosa 3 0 3 0.01 ± 0.00

Pseudodiploria strigosa 5 2 7 0.02 ± 0.01

Scolymia cubensis 1 1 2 0.00 ± 0.00

Siderastrea siderea 540 1168 1708 3.70 ± 1.02

Solenastrea bournoni 19 1 20 0.04 ± 0.01

Stephanocoenia intersepta 299 122 421 0.91 ± 0.17

Total Density

Adult Abundance 

(colonies ≥ 4 cm)

Juvenile 

Abundance 

(Colonies < 4 cm)

Total 

Abundance
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DISCUSSION 

The Southeast Florida Reef Tract underwent a temporally (at least 5 years) and 

geographically (nearly 100 km between affected sites) unprecedented disease event that resulted 

in drastic changes in the stony coral assemblage including severe declines in stony coral 

diversity, LTA and density. The disease event began as early as late 2013 or early 2014 and 

peaked in 2016, with loss of colonies and live tissue continuing in 2017 and 2018. This disease 

event resulted in acute mortality and altered ecosystem function to the point where recovery is 

uncertain. Drastic loss of coral colonies, live tissue and colonies of larger size classes may 

detrimentally decrease fecundity and reproductive potential of remaining corals, thus reducing 

the potential to recover. Many of the large, structurally complex species lacked juveniles, while 

eurytopic generalist species had over 76% of all colonies found as juveniles.  

Prevalence of SCTLD was within normal population levels (Muller and van Woesik, 

2012; Ruiz-Moreno et al., 2012) in 2013 and 2014. However, disease increased 8-fold from 2013 

to 2014 and was recorded in three different counties. These data suggest an alternative timeline 

than suggested by (Precht et al., 2016) who reported elevated white disease starting near Virginia 

Key, Florida (Miami-Dade County) adjacent to major Port of Miami dredging activities in 

September 2014. By summer 2014, SCTLD was reported as far north as Palm Beach County on 

early indicator species, D. stokesi and M. meandrites (Florida Keys National Marine Sanctuary, 

2018). Disease prevalence and the number of species affected both increased in 2015 and 2016. 

In 2015, nine different species and species complexes had SCTLD including the early indicator 

species.  However in 2016, only intermediately susceptible species had active SCTLD infections. 

Lack of infections in early indicator species in 2016 was because they were the almost 

completely lost by 2016. Of the seven early indicator species, five (C. natans, D. stokesi, D. 

labyrinthiformis, M. meandrites and Pseudodiploria strigosa) lost > 60% of all colonies. 

Colonies of Pseudodiploria clivosa, another early indicator species, did not succumb to whole 

colony mortality by 2016, but by 2018 only 10% of colonies remained. By 2018, only M. 

cavernosa and Orbicella spp. had active infections. Both species often have lesions, which cause 

partial mortality lasting months to years (Florida Keys National Marine Sanctuary, 2018).  

The number of species and colonies with disease followed the same pattern as overall 

prevalence. During the peak of the disease event in 2015 and 2016, 9 and 7 species were 
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affected, respectively. Although the maximum number of species with SCTLD was in 2015, only 

18 colonies had the disease, compared to 58 in 2016. Again this was partially attributable to the 

dramatic loss of the early indicator species before sampling 2016. The number of colonies 

infected in 2016 was primarily driven by M. cavernosa, where 38 of 348 colonies had the 

disease. The disease event was indiscriminate affecting 11 of 28 species. In addition affecting 

many species, SCTLD occurred in all habitat types. In 2013, SCTLD was found on the 

Nearshore Ridge Complex (NRC) and the Inner Reef. By 2014, SCTLD was found on the Inner 

Reef, Middle Reef and Outer Reef. In 2015, SCTLD was in all four habitat types and all four 

counties. Prevalence of other diseases remained < 1% across all years and did not significantly 

change. However, yearly maxima and minima of the disease varied similarity to SCTLD. Other 

disease prevalence was significantly positively correlated with SCTLD prevalence in 2016; 

suggesting that all diseases in 2016 were elevated. Prevalence of all other diseases increased 

every year from 2013 to 2016, then decreased again in 2017 and 2018. 

Disease prevalence returned to pre-event levels in 2017, but LTA and diversity quantify 

loss after the most severe portion of this disturbance event. Live tissue area and diversity are 

indicators of reef resilience, which is the ability of the system to recover. (Maynard et al., 2017; 

van Woesik, 2017). All three diversity indices significantly change by or after 2016 (peak of the 

disease outbreak), demonstrating a trend toward homogeneity. Species richness significantly 

declined in 2016 and then had no significant change across the next two sample years. Changes 

in Shannon diversity or Inverse Simpson’s indices after 2016 were due to unequal abundance 

within the already depressed number of species at each site.  

With significant declines both in LTA and diversity, the southeast Florida reef system 

could face associated shifts in ecosystem function and stability, increased susceptibility to 

selective pressures, and reduced resilience and adaptability (van Woesik, 2002; 2017). The only 

species with significant increases in LTA or density were small, non-reef building, ‘weedy’ coral 

species such as P. astreoides, P. porites and S. intersepta with a concurrent loss of major reef-

building species such as M. cavernosa and Orbicella spp. This shift in species composition 

towards the fast growing, ‘weedy’ species can affect structure provided by the reef system as 

these species typically grow as small flat colonies and result in reduced reef complexity 

(Knowlton, 2001; Precht and Miller, 2007; Green et al., 2008). Additionally, many other ‘weedy’ 
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species of corals such as A. agricites had no significant losses in LTA or density. Loss of species 

and homogenization within sites, demonstrated by the significant change in diversity indices, 

poses to foster a significant shift in the SEFRT towards eurytopic generalist species, furthering 

the already previously recorded shift in species dominance along the FRT reported by Burman et 

al. (2012). 

Significant reductions in LTA can be considered equivalent to loss of cover, and these 

reductions have the potential to affect a systems ability to recover after a disturbance event due 

to the lower production of larvae. It has been shown that high coral cover populations produce 

more larvae per square centimeter of tissue, leading to more larvae per square meter of reef 

(Hartmann et al., 2017). Overall LTA significantly decreased, with 2017 and 2018 having 

significantly less LTA than 2013 through 2015. Prevalence of SCTLD and LTA were 

significantly positively correlated in 2017 and 2018, and thus sites that had more live tissue in 

these years also had greater disease prevalence. 

This regional decline in LTA was driven primarily by M. cavernosa and Orbicella spp., 

with smaller amount of tissue lost from also M. meandrites, S. bournoni and D. stokesi. The 

reproductive potential of species that saw significant declines in both LTA and density could be 

inhibited by both the loss of whole colonies and the loss of tissue on still living colonies, 

lowering reproductive connectivity and reproductive output. The reproductive output may be 

drastically reduced especially for D. stokesi and M. meandrites due to having less than 15 

colonies across all sites by 2018. Colony size is often directly related to fecundity and changes in 

colony size can have detrimental effects on reproductive capabilities (Connell, 1973; Szmant-

Froelich, 1985; Tsounis et al., 2006). Species that saw significant declines in density often 

suffered complete colony loss of the largest colonies recorded. Loss of all colonies in the largest 

size class of each species as seen in S. intersepta, S. bournoni, M. meandrites, D. stokesi and C. 

natans, could greatly lower population fecundity within these species, as they now exist as 

predominantly small colonies. Structural complexity has been shown to predict if a reef will 

recover or regime shift, reefs containing only smaller colonies, relative to species usual size 

distribution, decreases the amount of habitat and structural complexity provided by these species 

(Graham et al., 2015). The drastic loss of coral colonies, live tissue and colonies of larger size 
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classes has the potential to detrimentally decrease fecundity and reproductive potential of the 

remaining corals and thus reducing the systems potential for recovery. 

Juvenile surveys can provide important insight as to what species have reproduced 

successfully and had successful settlement onto the reef and provide information on the quality 

of the environment and substrate for coral reproduction. In previous recruitment and juvenile 

studies in Southeast Florida, survivorship in the juvenile stage was found to be a critical factor in 

structuring the spatial structure of adult coral communities (Harper, 2017). Although a dedicated 

recruitment survey was not performed, the quick method employed still provided a snapshot of 

the current juvenile population within the sample sties. The complete lack of juveniles found for 

D. labyrinthiformis, Orbicella spp., and P. clivosa suggest during and previous to the peak of the 

disease event, these species did not have successful reproduction and settlement on these reefs. 

As these species now exist at even lower densities in 2018, further successful reproduction seems 

unlikely. In contrast, D. stokesi, M. meandrites and S. siderea, had more juveniles than adult 

colonies, demonstrating their successful reproduction and larval settlement. Juvenile density has 

been found to be a positive predictor of whether a reef will recover or a regime shift will occur 

(Graham et al., 2015). Siderastrea siderea accounted for > 60% of all juveniles recorded in 2018. 

Although S. siderea is considered a reef-building species throughout the Florida Keys and 

greater Caribbean, in Southeast Florida these colonies rarely are > 50 cm in diameter. This study 

only recorded a maximum of 5 colonies per year > 50 cm and in 2018, 94% of S. siderea 

colonies were < 20 cm in diameter. Rapidly growing, lower relief species like P. astreoides and 

S. siderea comprised > 76% of all juveniles in 2018; these species are persisting after the 

disturbance event and may dominate these reefs in the future.  

CONCLUSIONS AND RECOMMENDATIONS 

The SCTLD outbreak on the SEFRT severely and detrimentally impacted the stony coral 

assemblage, potentially altering the system to the point where recovery is uncertain. Disease 

prevalence returned to pre-event levels for the region in 2018, and the full effect of the 

disturbance event on the stony coral assemblage can begin to be quantified: 64% of all live tissue 

was lost and 11 of 28 stony coral species were affected. The only species with significant 

increases in LTA or density were small, non-reef building, ‘weedy’ coral species, and major reef 
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building species were lost. This shift in species composition towards fast growing, ‘weedy’ 

species can affect structure provided to other organisms, potentially reducing ecosystems 

services. Species with significant density declines often suffered complete loss of their largest 

colonies, thereby reproductive capability. Drastic loss of coral colonies, live tissue and large 

colonies decreases fecundity and reproductive potential, and thus reduces the systems potential 

for recovery (Figure 13). Additionally, some species with the largest tissue losses had no juvenile 

colonies demonstrating potentially inhibited reproduction or the complete lack of successful 

reproduction occurred, which could detrimentally affect the recovery of the reef. As the SEFRT 

exists directly adjacent to the highly urbanized and developed mainland of south Florida, 

anthropogenic impacts on the reef could pose additional barriers to recovery.  

Figure 13. Panoramic image of site BC1 in 2016 (top) and 2018 (bottom). All but three colonies 

of Montastrea cavernosa visible in 2016 the panoramic have completely died by 2018.  

With global bleaching and disease events predicted to increase in the future (Maynard et 

al., 2015), providing conditions to facilitate recovery of the SEFRT is imperative. Local resource 

managers need to understand the severity of the disease outbreak on the coral assemblage and 

mitigate local anthropogenic impacts to facilitate recovery. Many of the affected species had 

juvenile colonies and thus the potential for new, small colonies to grow and contribute to the 
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assemblage shows potential for recovery. It would be beneficial if management agencies could 

expand current monitoring efforts to better document recovery. Additionally, these data could be 

used to investigate the effect of the disease event on much smaller spatial scales to look for 

patterns at the ecosystem region or site level. The Southeast Florida Coral Reef Evaluation and 

Monitoring Program was vital in documenting these changes and providing resource managers 

with reliable data. Further long-term monitoring is imperative to monitor the resource for further 

loss and to hopefully document recovery. 
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