

DEVELOPING TOOLS

FOR MAKING INFERENCES FROM GENOMIC DATA

__

A Thesis

presented to the Faculty of the Graduate School

at the University of Missouri-Columbia

__

In Partial Fulfillment of the Requirements

for the Degree Master of Arts

__

by

PAUL PETROWSKI

Dr. Elizabeth G. King, Thesis Supervisor

MAY 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Missouri: MOspace

https://core.ac.uk/display/232016796?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The undersigned, appointed by the Associate Vice Chancellor of the Office of Research and

Graduate Studies, have examined the thesis entitled:

DEVELOPING TOOLS FOR MAKING INFERENCES FROM GENOMIC DATA

presented by Paul Petrowski, a candidate for the degree of Master of Biology, and hereby certify

that, in their opinion, it is worthy of acceptance.

Elizabeth G. King, PhD

Lori S. Eggert, PhD

J. Chris Pires, PhD

Jianlin J. Cheng, PhD

For Carolyn and Luke

ii

ACKNOWLEDGEMENTS

I would have failed miserably at this long ago if not for the supernatural poise and

patience of Libby King, my mentor and role model. She has gently inspired me to

think and act purposefully. I am in constant awe of her skill and character.

Libby is the latest in a long line of incredible women who have guided me down

the road of science. Brenda Parness was the first to spark a flame in me for

biology, Roslyn Crowder destroyed and then rebuilt my perception of what it

takes to be a scientist, and Alicia Slater gave me my first shot at doing research.

It’s safe to say that without her influence this document would never have come

into existence.

There are those occasions in life when the way forward is uncertain, and we look

to others to provide a belief in ourself that we cannot conjure up from within. John

Davenport, Dan Gaffney, Joe Ferreira, and Don Askew have each in turn been

that person.

I also have to give a big thanks to Joe, Taylor, Kyle, Sharjeel, Skylar, Sammi Jo,

Zack, Austin, Troy, Harly, Sarah, Alex, and Abi for being a part of my life over the

last six years. Without them, life would be much more empty.

Lastly, I thank my Mother, who for 23 years has been my unceasing champion,

and my Father, who for 23 years has been my unshakable rock.

iii

TABLE OF CONTENTS

CHAPTER ONE: OHTA’S D STATISTICS 1

Introduction 1

A Review of Ohta’s D Statistics 2

Implementation and Architecture 4

Quality Control 9

Operating system 9

List of contributors 9

Software location 10

Reuse potential 10

Acknowledgements 11

Funding statement 11

Competing interests 12

CHAPTER TWO: HAPLOTYPE INFERENCE 13

INTRODUCTION 13

METHODS 17

Gradient Method 18

Genetic Algorithm 20

Fitness function 22

Mutation & Inversion 24

RESULTS 25

Comparison of Genetic Algorithm to Gradient Method 27

DISCUSSION 29

FUTURE DIRECTIONS 31

REFERENCES 32

iv

DEVELOPING TOOLS
FOR MAKING INFERENCES FROM GENOMIC DATA

Paul Petrowski

Dr. Elizabeth G. King, Thesis Supervisor

ABSTRACT

The central question that the King lab seeks to answer is, “What happens

on the genomic level when phenotypes evolve?” To this end, the core focus of

my work has been on developing software and analytical methods that facilitate

the ability of other researchers working in this space to answer their questions of

interest.

I have long believed that writing code is like carpentry. The fundamental

tools are simple, but extremely beautiful and practical products may emerge

through sufficiently complex sequencing of these tools. What I hope I’ve done

over these last two years is build products that are both useful and intuitive to

use. In the coming pages, I’ll describe the two major projects that I’ve worked on

during my time as a graduate student at the University of MIssouri, how they are

useful, and what comes next.

In the first of these two chapters, we describe ohtadstats, an R

package designed to facilitate the computation of Tomoka Ohta’s D statistics on

large data datasets. Ohta’s D statistics measure linkage disequilibrium in

v

subdivided populations, and as she posited in her 1982 paper, they may provide

insights into both the existence and mechanism of selection acting on the paired

loci. Our implementation makes it straightforward to compute these statistics for

both a single pair of loci, or massive genomic datasets that have become

common as the difficulty and cost associated with whole genome sequencing has

plummeted over the past decade.

In the second chapter, we describe the problem of inferring ancestral

haplotype frequencies from pooled sequence data. We discuss five approaches

to this problem that have already been developed, and we discuss a new genetic

algorithm based approach that we designed. We perform a benchmarking test on

a method developed by Burke et al. and we compare that method to the genetic

algorithm by evaluating the performance of each on a simulated dataset. We find

that the the new method outperforms the existing one.

1

CHAPTER ONE: OHTA’S D STATISTICS

Introduction

Pronounced signatures are left in the genomes of species undergoing

selection. These telltale signals may reveal selected loci and details regarding

the selection pressures that have been applied [1] . Notably, selection modifies

the correlation of alleles at sites near the selected locus. This correlation

between alleles is known as linkage disequilibrium (LD). As a rule of thumb,

selection reduces genetic variability and increases LD [2] . Tomoka Ohta [3]

derived a series of statistics (from here on referred to as Ohta’s D statistics)

designed to partition LD into between and within population components in a

manner analogous to Sewall Wright’s F statistics, a measure of inbreeding [4] .

She posited that for a pair of loci, deviations from expected levels of LD in a

given subpopulation may be indicative of an epistatic selection event. More

recently, Beissinger et al (2016) demonstrated that Ohta’s D Statistics,

particularly the D ’2IS statistic, can identify traditional hard selective sweeps [2] in

addition to epistatic selection, and they developed a null-distribution that enables

the genome-wide identification of selection candidates.

Several studies have been conducted that utilize Ohta’s D statistics to test

for epistatic selection [5–7] , which is selection acting on a favorable combination

of loci, rather than a single locus independently. However, software suites for

measuring Ohta’s D statistics are limited. Programs that evaluate the statistics on

2

a locus-by-locus basis exist [8–10] , but there is currently no framework available

to facilitate the implementation of Ohta’s D statistics on a genome-wide basis.

Furthermore, the web-based platform supplied by [9] and its predecessor [8]

have two significantly limiting attributes that are resolved by our implementation.

First, they require that input data be limited to no more than 80 SNPs in 30 or

fewer subpopulations. Second, they treat sample size as population size, an

approach that will only occasionally reflect reality.

Ohta’s D statistics are computed in a pairwise fashion between markers,

so evaluating even a relatively small marker set of a few hundred or thousands of

SNPs requires an efficient implementation. Therefore, we have developed

ohtadstats, a freely available R package with convenient, flexible, and powerful

tools to perform the computation of Ohta’s D statistics in a variety of use cases.

By leveraging the R statistical software platform [11] , ohtadstats is fast, scalable,

and most importantly adaptable to an endless array of system architectures and

high-throughput computing systems. Here, we describe the capabilities of the

ohtadstats package and demonstrate its applicability to datasets both small scale

and genome wide.

A Review of Ohta’s D Statistics

Ohta’s D statistics are a set of five statistics, termed D 2
it, D 2

is, D 2
st, D’ 2

is,

and D’2
st. The specific forms of these statistics have been covered in depth by

Ohta [3] so we will not go in depth here. Briefly, from Beissinger et al. [6] :

3

● D 2
it is the correlation of two alleles occurring on the same gamete in a

subpopulation compared to the expectation of them occurring together in

the total population

● D 2
is is the expected variance of LD for subpopulations

● D 2
st is the correlation of alleles in a subpopulation relative to their expected

correlation in the total population

● D’ 2
is is the correlation of the appearance of two alleles on the same

gamete in a subpopulation relative to that of the total population

● D’ 2
st is the variance of LD in the total population

Consider a comparison between two loci, A and B. Here, x
i,k and y

j,k are

the frequencies of the ith and j th
alleles at loci A and B in the kth

subpopulation, g
ij,k

is the frequency of gametes A
i B

j in the k th subpopulation. Averages of these

values are denoted with bars. These statistics may be calculated as follows:

{ (g x y) }D2
IT = E ∑

i,j
ij,k − ī j̄

2

{ (g x y) }D2
IS = E ∑

i,j
ij,k − i,k j,k

2

{ (x y x y) }D2
ST = E ∑

i,j
i,k j,k − ī j̄

2

4

{ (g g) }D2
IS = E ∑

i,j
ij,k − ijˉ

2

{ (g x y) } D2
IT = E ∑

i,j
ijˉ − ī j̄

2

Implementation and Architecture

The ohtadtats package includes five functions: dstat , dwrapper ,

dheatmap , dparallel , and dfilter . Detailed descriptions and example code

can be found at https://github.com/pfpetrowski/OhtaDStats, as well as in the

documentation of the R package.

The first of these functions, dstat , is the workhorse of the package. This

function computes each of Ohta’s D statistics for a given pair of loci, and returns

these results in a vector. The dstat function also returns the number of

subpopulations included in the analysis. This number may be less than the total

number of subpopulations as a result of filtering. To avoid spurious associations

between alleles that are not truly in LD, dstat has an initial allele frequency

filtering step designed to remove loci that fall below a specified minor allele

frequency threshold. During the filtering step, dstat also removes any

subpopulations which have a minor allele frequency below a given threshold.

This feature prevents subpopulations which are fixed or nearly fixed at a given

locus from appearing to be under selection when in reality the effect is due to

small sample size. Both of these minor allele frequency thresholds are modifiable

5

arguments with can be changed by the user on demand. The dstat function

returns a vector containing the number of populations included in the calculation

and each of Ohta’s five D statistics for the specified pair of markers.

It is important to note that the dstat function returns raw D statistic

values. To assess statistical significance, dstat can be used to generate an

empirical null distribution, as was used in [6] . Null distributions will vary by

organism and model system, but the tools provided in ohtadstats can be used for

their creation. This is achieved by implementing the function on a large number

of pairs of physically unlinked SNPs.

Figure 1. The dstat function calculates Ohta’s D statistics for two specified loci.

The dwrapper function computes Ohta’s D statistics for all possible pairs

of loci in a matrix of genotypes. The result is returned as a list of matrices, with

one matrix for each of Ohta’s D statistics along with a matrix specifying the

number of populations used for each comparison. This output format simplifies

the process of looking up a D statistic for a specific pair of loci. It is important to

note that because dwrapper evaluates all pairwise combinations of loci, it

6

scales on the order of n2, where n is the number of genetic markers represented

in the dataset. This means that the number of pairwise comparisons to be made

scales exponentially with the number of markers being evaluated. This is not a

problem for small datasets. Indeed, we successfully executed the dwrapper

function on a dataset that included 100 SNPs from 1417 individuals using a

1.3GHz, 8GB RAM MacBook Air in only two minutes. This dataset is a subset of

the data used by Beissinger et al. (2016) [6] and is included in the package as

beissinger_data.rda. For large datasets (ie thousands of markers), we suggest

parallelization via the dparallel function.

Figure 2. Given a single matrix of genotypes, dwrapper will produce a matrix for each

of Ohta’s D statistics with pairwise comparisons of each locus. Dheatmap will produce a

colorized map for visualization of the values in a matrix.

The dheatmap function provides a convenient tool for data visualization.

This function, which is based on the levelplot function from the lattice R package

[12] takes any of the matrix outputs provided by the dwrapper function and

returns a colorized heat map, making patterns of LD visible. Options are provided

which allow the user to modify the colors used and how those colors are scaled.

The dheatmap function provides three modes for the scaling of the colors. The

7

first mode, “linear”, is appropriate for most use cases. In this mode, the values in

the matrix are distributed continuously across the color spectrum. The “truncated”

mode is provided for use on the ratio matrices, where division by small numbers

may cause certain values to be many orders of magnitude greater than others. In

these cases, using “linear” is not ideal because large values will drive

mid-magnitude values towards the extreme low end of the color spectrum. The

“truncated” mode corrects for this issue by changing values greater than one to a

value just higher than one. Colors are then scaled across this new spectrum of

values. The final mode, “binned”, operates similarly to “truncated”, except that

colors are not scaled across the new spectrum of values. Instead, values are

placed into one of five bins, and colored accordingly.

The dparallel function is designed to facilitate parallelization of dstat

on commercial high throughput computing platforms. By pairing a simple R script

with a scheduler such as slurm [13] , massive datasets on the scale commonly

seen today can be analyzed in a reasonable amount of time. This function works

by generating a virtual table of locus pairs to compare and executing dstat on

each. Using this method, a number of equally sized jobs limited only by time and

computational resources can be performed. The dparallel function is not

meant to be used directly in the R environment. Instead it is designed to be set

up in an R script, multiple instances of which are then spawned using a slurm

scheduler array, or equivalent (Figure 3). Example scripts of this setup are

available in the OhtaDStats GitHub repository

8

(https://github.com/pfpetrowski/OhtaDStats).

Lastly, the dfilter function is provided to perform the basic data

preprocessing step of removing any subpopulations from the dataset if that

subpopulation is too small. The dfilter function works by taking a dataset and

an integer value for the minimum number of samples, and returning that dataset

with only subpopulations that meet the threshold. Similar to the minor allele

frequency filtering that is performed within the dstat function, this mitigates the

danger of small sample sizes leading to spuriously large values of D.

Figure 3. The dparallel workflow. Specific files associated with the general steps are

in italics to the right of the diagram. 1) A bash script initializes a specified number of R

processes, each of which executes the dparallel function on the specified dataset. 2)

Each dparallel process infers a unique set of locus pairs for which to compute Ohta’s

D statistics. 3) Each R process calls dstat on each row (pair of loci) in its unique set. 4)

Results are returned in csv files.

9

Quality Control

To ensure that this package accurately calculates Ohta’s D statistics, We

simulated a small dataset containing 18 individuals across 3 subpopulations and

three loci. We evaluated this data set using an implementation of LinkDOS [9]

available at Genepop on the Web [14] , and also using the ohtadstats package to

ensure that results were equivalent. The sample dataset and code are available

in the GitHub repository.In addition, examples included in this package are tested

daily on the CRAN servers across Windows, MacOS, and Unix operating

systems.

Operating system

The ohtadstats package is designed for use with R versions 3.0.0 or later.

R is supported on Windows, MacOS, and major Linux distributions. Minimum

operating system versions are as follows:

Windows: Windows 7

MacOS: MacOS 10.9 (Mavericks)

Ubuntu: 14.04 (Trusty)

List of contributors

Paul F. Petrowski, Timothy M. Beissinger, Elizabeth G. King

10

Software location

Archive

Name: ohtadstats

Persistent identifier: https://doi.org/10.5281/zenodo.1406484

Licence: MIT

Publisher: Paul Petrowski

Version published: 2.1.1

Date published: 20/03/19

Code repository

Name: OhtaDStats

Identifier: https://github.com/pfpetrowski/OhtaDStats

Licence: MIT

Date published: 18/03/19

Reuse potential

Ohta’s D statistics are useful quantities for assessing linkage

disequilibrium in genomic data sets. As such, this package may be useful to

anyone looking to quantify linkage disequilibrium in their system of study. This

includes any individual investigating the fields of population, quantitative, or

evolutionary genetics. A typical use case may involve looking across a number of

subpopulations of a species in an effort to detect evidence of selection. Other

methods of using LD as a measurement of selection have been previously

11

described, including the integrated haplotype score (iHS)[15] and extended

haplotype homozygosity (EHH) [16] . These commonly-applied methods are

designed to identify hard sweeps in a single population, while Ohta’s D statistics

are best applied to data including multiple populations, and have the potential to

additionally identify epistatic selection. Therefore, these approaches may be

complementary -- researchers may find different selected loci based on Ohta’s D

stats than by applying iHS or EHH, and vice versa.

Acknowledgements

We would like to thank Jake Gotberg from the Mizzou Research

Computing Support Service for contributing his time and expertise in setting up

an efficient parallelization workflow. Computation for this work was performed on

the high performance computing infrastructure provided by Research Computing

Support Services and in part by the National Science Foundation under grant

number CNS-1429294 at the University of Missouri, Columbia MO.

Funding statement

This research was supported by funding from the USDA Agricultural Research

Service. PFP is funded by the University of Missouri Life Sciences Fellowship

and a training grant from the National Institute of Health (T32GM008396).

12

Competing interests

The authors declare that they have no competing interests.

13

CHAPTER TWO: HAPLOTYPE INFERENCE

INTRODUCTION

 Pooled sequencing data is used broadly throughout many subfields of

genetics. When population level parameters are of more interest than individual

level parameters, pooled sequencing provides a low cost alternative to the

independent sequencing of multiple individuals [17] . Sometimes the sample of

interest is inherently pooled, such as when samples are drawn from the ambient

environment. Ley et al. [18] used pooled sequencing to quantify the abundance

of different types of microbes in the human gut. Hastings et al. [19] , Hastings and

Smith [20] , and Takala et al. [21] developed methods to infer strains of malaria

present in human blood samples. Other times samples are deliberately pooled to

save time and money [22–24] . This is commonly the case in laboratory based

evolution experiments, where the direct sequencing of every individual involved

is much less practical than simply pooling them [22] .

The convenience of pooling comes with the tradeoff of losing information

at the individual level. When samples are pooled, the resulting sequence data

consists of allele frequencies, rather than allele calls, as indicated in figure 4. It is

not possible to say which individual had a particular allele. This tradeoff is

acceptable when population level parameters are of primary interest, as is the

case in laboratory based evolution experiments. Using frameworks such as

14

Evolve and Resequence (E&R) [25] , scientists attempt to quantify how allele

frequencies change in response to selective pressures.

Figure 4. Flies from one treatment group are pooled and sequenced together. The

resulting sequence reads represent allele frequencies rather than one individual’s base

calls.

In these experiments, a population of individuals are subjected to a

particular environment or selective pressure, and bred under those conditions for

some number of generations. At the end, a sample of the resulting population is

sequenced and compared to the initial population. Quantifying which allele

frequencies have changed should give insights into which loci are responsible for

adaptation to the selective pressure. Usually the initial population is derived from

a population with known ancestors such as the DGRP [26] or DSPR [27] in D.

melanogaster, or MAGIC populations in plant systems [28]. For instance, all of

the flies in the DSPR are descendents from the same set of founder flies. The

population descends from eight founder flies whose progeny were bred randomly

for 50 generations. These flies were inbred via a full sib mating scheme for 20

generations to generate 800 recombinant inbred lines (RILs).This scheme results

in each individual’s genome being a mosaic of haplotypes, each of which can be

traced back to one of the eight original founders. By characterizing how

15

haplotype frequencies change over time, we can still get an idea of where

potentially causative positions are located.

While this is a powerful framework, accurate measurement of allele

frequencies poses significant challenges. Read coverage must be high in order

for the measurement to be believable. This is for the simple reason that a 25%

allele frequency is much more trustworthy when the allele is observed in 25 out

of 100 reads than when it is observed in 1 out of 4 reads. Frequencies obtained

at low read coverages are inherently more vulnerable to sampling error.

Sequencing at the necessary levels of coverage gets expensive quickly.

Fortunately it is possible to accurately assess allele frequencies from low

coverage pooled sequence data by taking a more circuitous approach. When the

population used in the experiment comes from founders with known sequences,

it is possible to use the low coverage allele frequencies from multiple markers to

infer the founder haplotype frequencies. A haplotype is a group of alleles that are

co-inherited from a single parent. Haplotype frequency inference works with low

coverage sequence data because it uses data from multiple genomic positions,

rather than relying on a single position. This “breadth” of data means that

haplotype frequencies can be reliably inferred. Once the founder haplotype

frequencies are known, it is a straightforward process to calculate what the allele

frequencies should be at each position.

A number of methods exist to infer founder haplotype frequencies from

pooled sequence data. In one of the earliest attempts, Long et al. [26] used a

16

regression model to address the haplotype inference problem, but it does not

estimate rare haplotypes well. Kessner et al. [27] used a maximum likelihood

approach, which makes estimates based on mapping raw reads to a reference. It

performs at its best when the distribution of haplotype frequencies is nonuniform.

Cao and Sun [28] used a system of linear equations to approach the problem. It

too struggles with low frequency haplotypes. Burke et al. [29] used a calculus

based optimization approach. Franssen et al. [30] developed a method that can

reconstruct founder haplotypes from pooled sequence data even if they are not

known in advance by measuring allele frequency trajectories, but it requires data

from multiple time points.

Figure 5. The DSPR. Genomes of descendent flies (right) are mosaics of haplotypes

from the founder flies (left). Haplotypes will share SNPs (grey and black boxes) which

can be derived from the haplotype frequencies once they are estimated.

17

In this chapter we perform benchmarking tests on the gradient method

developed by Burke et al., and determine the optimal number of SNPs to pass to

the algorithm in order to estimate haplotype frequencies. We also performed

tests to determine if the number of individuals in the pool had any impact on the

performance of the algorithm. Next, we introduce a new approach to the

haplotype inference problem that is based on a genetic algorithm. Genetic

algorithms are an appealing approach to this problem because they handle

epistatic effects well, that is, optimizations in which one parameter’s value is

determined to some extent by the values of other parameters [31] . We compare

this method to the gradient method by simulating pools from the known

sequences of DSPR recombinant inbred lines.

METHODS

In this study we aimed to accomplish two main goals. First, to characterize

the window size and pool size for which the gradient method achieves the best

performance. We performed simulations to determine the ideal window size of

genomic positions to pass into the algorithm, and also to determine if the

algorithm performs better when more individuals are present in the pool or fewer.

Upon establishing that the ideal window size is approximately 3200 SNPs, we

used that as our window size in all later analyses. Next, we sought to compare

the performance of the gradient based method to a new genetic algorithm that

we developed.

18

The existing method is a gradient based method developed by Burke et al.

[29] . and a genetic algorithm approach that we developed. To evaluate the

frequency of haplotypes in a pool for a given position, both algorithms require

information about the sequences at neighboring sites. This is because a single

position will usually not be enough to discern haplotypes apart, especially when

the number of founder haplotypes are large.

To assess the performance of the two methods, we used simulated data

from the DSPR (figure 5). We took recombinant inbred lines with known

sequences from the DSPR to simulate pooled sequencing datasets. We

randomly added lines to in silico pools and computed observed reference allele

frequencies for each position. These simulated minor allele frequencies are then

fed to the algorithms. Because the original sequences are known, the founder

haplotype for a given segment of the genome can be ascertained using a hidden

markov model [32] (see [33] for a detailed explanation and tutorial on hidden

markov models). To measure the accuracy of the algorithms we tested, we

calculated the sum squared error between the estimated and known set of

haplotype frequencies for a given position.

Gradient Method

A method developed by Burke et al. implements the

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [34, 35] to optimize a

vector of founder haplotype frequencies. We will refer to this method as the

19

gradient based method, because the algorithm makes use of gradient information

to determine how the estimate is updated. The algorithm attempts to minimize

the sum squared error between the sequence of observed reference allele

frequencies, and the sequence of predicted reference allele frequencies that

would occur given a frequency estimate.

Let F be the set of founder haplotypes, M be a vector of haplotype frequencies

(the quantity which we are aiming to optimize), and Y be the observed reference

allele frequency that would be observed given haplotype frequencies M.

 Y = F ·M

Now let X be the observed reference allele frequency, and n be the number of

founder haplotypes. When M is an exact representation of the true haplotype

frequency in the pool, the sum squared error between the two vectors will be

zero.

rror (X)E = ∑
n

i = 1
i − Y i

2

Additionally, a constraint term is imposed to ensure that the sum of haplotype

frequencies does not exceed 1.

20

onstraint (100 ())C = · w · (∑
n

j=1
Mj − 1 2

Where w is the length of sequence of DNA being evaluated. Note that F is a

matrix of size (n, w), and M is a vector of length n.

The measure of accuracy for a given vector of haplotype frequencies is given as:

core Error ConstraintS = +

The BFGS algorithm is used to minimize this quantity. It was implemented in R

via the optim function.

Genetic Algorithm

As a new approach to the haplotype inference problem, we designed a

genetic algorithm that can accurately infer the founder haplotypes given a

sequence of allele frequencies. Generally speaking, genetic algorithms work by

iteratively making a set of guesses at the answer to a problem, evaluating those

guesses according to some objective function, and then making a new set of

guesses based on modifying the best guesses from the previous round. Over the

course of many iterations of this procedure, the “best guess” is steadily refined

21

until it approximates or achieves optimality. Guesses are typically referred to as

individuals, and each sets of individuals per iteration are the population. Each

individual is a vector of parameters aiming to be optimized. The inspiration for

this class of algorithms draws heavily on the Darwinian concept of natural

selection, hence the name “genetic algorithm”. This procedure can be described

as follows:

1. Generate a population of individuals, where each individual is a vector of

parameter values.

2. Score each individual according to the fitness function.

3. Generate a new population of individuals, where each new individual is a

modification of one of the top performing individuals from the previous

generation.

4. Repeat until optimality is achieved or until a certain number of generations

have been reached.

For an in depth tutorial on genetic algorithms, we recommend [36] .

 In our implementation of a genetic algorithm, the parameters we are

attempting to optimize are the frequencies of each founder haplotype. To assess

the fitness of each individual, we apply our fitness function as described below.

22

Fitness function

Let F be the set of founder haplotypes, M be an individual member of the GA

population,

w be the length of sequence of DNA being evaluated, n be the number of founder

haplotypes, and Y be the reference allele frequency that one would observe if M

were

correct. F is a matrix of size (n, ws), and M is a vector of length n.

 Y = F ·M

This is equivalent to asking, “for a given guess of haplotype frequencies, what

would be the observed set of reference allele frequencies if it were correct?” The

sum squared error between the “guessed” set of minor allele frequencies and the

observed minor allele frequencies is then calculated, and assigned to be the

fitness score for the guess.

Now, let X be the observed reference allele frequency from the pool-seq data. If

M is

perfectly accurate, Y and X should be identical. We measure similarity by taking

the sum squared error between X and Y.

23

rror (X)E = ∑
n

i = 1
i − Y i

2

The error measurement is not the final measure of fitness. We impose additional

constraints that penalize frequencies with negative values and sets of

frequencies that sum to be greater than 1.

Penalty 1 is the sum of the frequencies in the vector minus 1. It will be equal to

zero if the vector sums to 1.

en1 (|) 1p = ∑
n

i = 1
|Mi −

Penalty 2 assesses if there are any frequency values that are negative. It is

simply the absolute value of the sum of negative values in the vector. The final

fitness assignment is given as:

itness error pen1 pen2F = + +

Note that in the biological sense high fitness is typically considered a good thing,

but in

this fitness is a measure of error and we are seeking to minimize it.

24

Mutation & Inversion

Aside from the fitness evaluation, the other key aspect to GAs is the set of

rules governing how new populations are created from the previous. It is

essential that the new population be in some way different from the original,

otherwise the top performing individual does not change from generation to

generation, and no convergence to optimality can occur. To ensure that the

populations change over time and converge on the optimal set of haplotype

frequencies, we define a set of mutations that are applied to individuals of high

fitness. These mutations make small changes to each individual that are passed

on to the “offspring” in the next generation.

For our algorithm, we applied two different types of mutation to successful

individuals in our populations. The first is a simple function which deducts small,

normally distributed values from one element of the vector, and adds that same

value to a different element. The second is referred to as an “inversion”, whereby

two elements switch positions in the vector.

The first mutation ensures that the numerical values for each individual

changes from generation to generation. The second, the inversion, is a

concession to the fact that purely due to random chance, all individuals in a

population may wind up with very similar values at a particular element. When

this occurs, it is similar to a lack of genetic diversity in natural populations.

Natural populations with low genetic diversity are slow to adapt; in silico

populations are slow to converge, or may not produce an accurate prediction at

25

all. Inversion ensures that if this happens, a different value from a different

element can be swapped in, thus injecting some variance into the population.

Figure 6. Illustration of how mutation works in the genetic algorithm. Small randomly

distributed numbers are added to one element and deducted from another.

Figure 7. Illustration of inversion. The order of two elements in the vector are switched.

RESULTS

We first sought to determine the window size of neighboring positions that

leads to the best performance with the gradient based method. We measured the

performance of the gradient based method on a simulated dataset, using window

26

sizes of 50, 100, 200, 400, 800, 1600, 3200, 6400, 12800, and 25600, and pool

sizes of 100, 400, and 800. Performance was measured as the sum squared

error between the estimated haplotype frequencies and the haplotype

frequencies known to be true. We found that the window size that yielded the

lowest error was 3200 bases. For this reason we used this as our window size in

remaining analyses.

Figure 8. A) Small window sizes do not provide the algorithm with enough information,

and predictions are poor. The optimal window size is ~3200 base pairs. As the window

size increases beyond that, the probability of spanning multiple recombination

breakpoints increases, and error slowly goes up again. Window sizes between 50 and

800 are not labelled. Average error over all pool sizes are shown. B) Error declines

linearly as the number of individuals in the pool goes up.

27

Comparison of Genetic Algorithm to Gradient Method

To compare the performance of the genetic algorithm with the

performance of the gradient based optimization method, we simulated a pool-seq

dataset by adding flies with known sequences to an in silico pool and computing

observed reference allele frequencies for each position. Each algorithm inferred

haplotype frequencies at every 50th position, using a window of 1600 SNPs on

either side of the position of interest.

28

Figure 9. Estimates of haplotype frequencies given by the genetic algorithm (in red) and

the gradient method (in green) compared to the ground truth (in blue). Each plot is

labeled in the upper left corner with the founder haplotype it corresponds to.

We calculated an overall mean squared error 0.000485 for the gradient based

method and 0.00190 for the genetic algorithm.

29

DISCUSSION

In this chapter, we explored the uses, merits, weaknesses, and

applications of pooled sequence data. We gave special attention to how pool-seq

has potent implications for laboratory evolution experiments, namely that

haplotype derived allele frequencies are more trustworthy than what comes

directly off the machine because they make use of the breadth of sequence

information in addition to the depth. Thus, methods that can accurately infer

haplotype frequencies from the pooled sequence data are an important

component of these studies. We performed benchmarking on a method that was

previously developed to solve that problem, and show that a window size of

approximately 3200 base pairs total is ideal in our system. We also show that in

simulations, more individuals in a pool leads to better performance.

Next, we introduced a new approach to the problem based on genetic

programming, a paradigm in which a series of iteratively more accurate

“guesses” are made at the solution to the problem. We show that this new

approach outperforms the first on a simulated dataset. Genetic algorithms are an

appealing approach to haplotype inference due to the “epistatic” nature of the

problem [31] . That is, the parameters may not be solved independently of one

another because a change to one necessitates a change to another.

Another (though unverified) possibility is that the genetic algorithm is more

capable of handling situations in which founder haplotypes along a given

genomic segment have similar sequence identity. When this occurs, it can be

30

difficult or impossible for any algorithm to correctly infer the correct frequencies.

In the worst case scenario, two or more founder sequences are identical at a

given genomic segment. In this case, it should not be possible to tell which

founder reads along this position actually came from. In these situations, it is

possible that the gradient method favors one haplotype over the other as a result

of gradient descent. In contrast, the genetic algorithm makes no use of gradient

information, and is blind to the state of the previous iteration.This question may

be answered more definitively by taking a closer look at the genomic positions

where the gradient method performs poorly in comparison to the genetic

algorithm. We also note that the genetic algorithm seems to perform well even in

situations where founder haplotype frequencies are low (see figure 9).

Methods that can accurately infer haplotype frequencies from pooled

sequencing data greatly aid our ability to conduct laboratory based evolution

experiments. It is key to note that our genetic algorithm is suitable only for

situations in which the founder haplotypes are known in advance. It is not

capable of inferring unknown haplotypes from the pooled data. Franssen et al.

[30] have proposed a method by which unknown haplotypes can be

reconstructed. In conjunction, these two methods may be capable of inferring

unknown haplotype frequencies from pooled sequence data.

31

FUTURE DIRECTIONS

Although the genetic algorithm performs well, it is not without room for

improvement. The current mutation scheme is effective but simple. One potential

improvement would be to make it so that the mean of the normal distribution for

from which the mutation value is drawn decays as the number of generations

goes on. This change would allow larger mutations to take place in the early

generations when the population is farthest from optimality, but finer adjustments

would take place later on when the population is closer to optimality.

Additionally, we note that all computations described in this chapter deal

with simulated data, where certain real world variables are not considered. For

instance, sequencing error is a factor that would certainly lead to reduced

performance, but in simulations we assume that all reads are accurate. Future

work in this space should consider the use of an empirical dataset.

There are a number of other parameters whose impact on the accuracy of

haplotype inference algorithms could be assessed via simulation. Read

coverage, marker density, and window size based on genetic distance rather

than the number of SNPs are all possibilities that could be explored.

32

REFERENCES

[1] Vitti JJ, Grossman SR, Sabeti PC 2013 Detecting Natural Selection in

Genomic Data. Annual Review of Genetics 47(1): 97–120. doi:

10.1146/annurev-genet-111212-133526.

[2] Maynard J, Haigh J 1974 The hitch-hiking effect of a favourable gene.

Genetics Research 89(5–6): 391–403. doi: 10.1017/S0016672308009579.

[3] Ohta T 1982 Linkage disequilibrium due to random genetic drift in finite

subdivided populations. Proceedings of the National Academy of Sciences
of the United States of America 79(6): 1940–1944.

[4] Wright S 1922 Coefficients of Inbreeding and Relationship. The American
Naturalist 56(645): 330–338. doi: 10.1086/279872.

[5] Miyashita NT, Aguadé M, Langley CH 1993 Linkage disequilibrium in the

white locus region of Drosophila melanogaster. Genetical Research 62(02):

101. doi: 10.1017/S0016672300031694.

[6] Beissinger TM, Gholami M, Erbe M et al. 2016 Using the variability of

linkage disequilibrium between subpopulations to infer sweeps and epistatic

selection in a diverse panel of chickens. Heredity 116(2): 158–166. doi:

10.1038/hdy.2015.81.

[7] Song B-H, Windsor AJ, Schmid KJ et al. 2009 Multilocus Patterns of

Nucleotide Diversity, Population Structure and Linkage Disequilibrium in

Boechera stricta, a Wild Relative of Arabidopsis. Genetics 181(3):

1021–1033. doi: 10.1534/genetics.108.095364.

[8] Black WC, Krafsur ES 1985 A FORTRAN program for the calculation and

analysis of two-locus linkage disequilibrium coefficients. Theoretical and
Applied Genetics 70(5): 491–496. doi: 10.1007/BF00305981.

[9] Garnier-Gere P, Dillmann C 1992 A Computer Program for Testing Pairwise

Linkage Disequilibria in Subdivided Populations. Journal of Heredity 83(3):

239–239. doi: 10.1093/oxfordjournals.jhered.a111204.

[10] YEH F 1997 Population genetic analysis of co-dominant and dominant

marker and quantitative traits. Belgian J Bot 130129–157.

[11] R Core Team 2018 R: A language and environment for statistical

computing. Vienna, Austria, R Foundation for Statistical Computing.

[12] Sarkar D 2008 Lattice: Multivariate Data Visualization with R. New York,

Springer.

[13] Jette MA, Yoo AB, Grondona M 2002 SLURM: Simple Linux Utility for

Resource Management. In: Lect. Notes Comput. Sci. Proc. Job Sched.

Strateg. Parallel Process. JSSPP 2003. Springer-Verlag, pp 44–60.

33

[14] Raymond M, Rousset F 1995 GENEPOP (Version 1.2): Population Genetics

Software for Exact Tests and Ecumenicism. Journal of Heredity 86(3):

248–249. doi: 10.1093/oxfordjournals.jhered.a111573.

[15] Voight BF, Kudaravalli S, Wen X, Pritchard JK 2006 A Map of Recent

Positive Selection in the Human Genome. PLOS Biology 4(3): e72. doi:

10.1371/journal.pbio.0040072.

[16] Sabeti PC, Reich DE, Higgins JM et al. 2002 Detecting recent positive

selection in the human genome from haplotype structure. Nature 419(6909):

832–837. doi: 10.1038/nature01140.

[17] Schlötterer C, Tobler R, Kofler R, Nolte V 2014 Sequencing pools of

individuals - mining genome-wide polymorphism data without big funding.

Nature Reviews Genetics 15(11): 749–763. doi: 10.1038/nrg3803.

[18] Ley RE, Turnbaugh PJ, Klein S, Gordon JI 2006 Human gut microbes

associated with obesity. Nature 444(7122): 1022. doi: 10.1038/4441022a.

[19] Hastings IM, Nsanzabana C, Smith TA 2010 A Comparison of Methods to

Detect and Quantify the Markers of Antimalarial Drug Resistance. The
American Journal of Tropical Medicine and Hygiene 83(3): 489–495. doi:

10.4269/ajtmh.2010.10-0072.

[20] Hastings IM, Smith TA 2008 MalHaploFreq: A computer programme for

estimating malaria haplotype frequencies from blood samples. Malaria
Journal 7(1): 130. doi: 10.1186/1475-2875-7-130.

[21] Takala SL, Smith DL, Stine OC et al. 2006 A high-throughput method for

quantifying alleles and haplotypes of the malaria vaccine candidate

Plasmodium falciparum merozoite surface protein-1 19 kDa. Malaria Journal
5(1): 31. doi: 10.1186/1475-2875-5-31.

[22] Futschik A, Schlötterer C 2010 The Next Generation of Molecular Markers

From Massively Parallel Sequencing of Pooled DNA Samples. Genetics

186(1): 207–218. doi: 10.1534/genetics.110.114397.

[23] Huang W, Richards S, Carbone MA et al. 2012 Epistasis dominates the

genetic architecture of Drosophila quantitative traits. Proceedings of the
National Academy of Sciences 109(39): 15553–15559. doi:

10.1073/pnas.1213423109.

[24] OROZCO-terWENGEL P, Kapun M, Nolte V et al. 2012 Adaptation of

Drosophila to a novel laboratory environment reveals temporally

heterogeneous trajectories of selected alleles. Molecular Ecology 21(20):

4931–4941. doi: 10.1111/j.1365-294X.2012.05673.x.

[25] Long A, Liti G, Luptak A, Tenaillon O 2015 Elucidating the molecular

architecture of adaptation via evolve and resequence experiments. Nature

34

reviews Genetics 16(10): 567–582. doi: 10.1038/nrg3937.

[26] Long Q, Jeffares DC, Zhang Q et al. 2011 PoolHap: Inferring Haplotype

Frequencies from Pooled Samples by Next Generation Sequencing. PLOS
ONE 6(1): e15292. doi: 10.1371/journal.pone.0015292.

[27] Kessner D, Turner TL, Novembre J 2013 Maximum Likelihood Estimation of

Frequencies of Known Haplotypes from Pooled Sequence Data. Molecular
Biology and Evolution 30(5): 1145–1158. doi: 10.1093/molbev/mst016.

[28] Cao C-C, Sun X 2015 Accurate estimation of haplotype frequency from

pooled sequencing data and cost-effective identification of rare haplotype

carriers by overlapping pool sequencing. Bioinformatics 31(4): 515–522. doi:

10.1093/bioinformatics/btu670.

[29] Burke MK, King EG, Shahrestani P et al. 2014 Genome-Wide Association

Study of Extreme Longevity in Drosophila melanogaster. Genome Biology
and Evolution 6(1): 1–11. doi: 10.1093/gbe/evt180.

[30] Franssen SU, Barton NH, Schlötterer C 2017 Reconstruction of

Haplotype-Blocks Selected during Experimental Evolution. Molecular
Biology and Evolution 34(1): 174–184. doi: 10.1093/molbev/msw210.

[31] Davidor Y 1990 Epistasis Variance: Suitability of a Representation to

Genetic Algorithms. 16.

[32] King EG, Macdonald SJ, Long AD 2012 Properties and Power of the

Drosophila Synthetic Population Resource for the Routine Dissection of

Complex Traits. Genetics 191(3): 935–949. doi:

10.1534/genetics.112.138537.

[33] Rabiner LR 1989 A tutorial on hidden Markov models and selected

applications in speech recognition. Proceedings of the IEEE 77(2): 257–286.

doi: 10.1109/5.18626.

[34] Goldfarb D 1970 A family of variable-metric methods derived by variational

means. Mathematics of Computation 24(109): 23–26. doi:

10.1090/S0025-5718-1970-0258249-6.

[35] Fletcher R 1970 A new approach to variable metric algorithms. The
Computer Journal 13(3): 317–322. doi: 10.1093/comjnl/13.3.317.

[36] Whitley D 1994 A genetic algorithm tutorial. Statistics and Computing 4(2):

65–85. doi: 10.1007/BF00175354.

