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DEVELOPING TOOLS 
FOR MAKING INFERENCES FROM GENOMIC DATA

Paul Petrowski

Dr. Elizabeth G. King, Thesis Supervisor

ABSTRACT

The central question that the King lab seeks to answer is, “What happens 

on the genomic level when phenotypes evolve?” To this end, the core focus of 

my work has been on developing software and analytical methods that facilitate 

the ability of other researchers working in this space to answer their questions of 

interest. 

I have long believed that writing code is like carpentry. The fundamental 

tools are simple, but extremely beautiful and practical products may emerge 

through sufficiently complex sequencing of these tools. What I hope I’ve done 

over these last two years is build products that are both useful and intuitive to 

use. In the coming pages, I’ll describe the two major projects that I’ve worked on 

during my time as a graduate student at the University of MIssouri, how they are 

useful, and what comes next.

In the first of these two chapters, we describe ohtadstats, an R 

package designed to facilitate the computation of Tomoka Ohta’s D statistics on 

large data datasets. Ohta’s D statistics measure linkage disequilibrium in 
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subdivided populations, and as she posited in her 1982 paper, they may provide 

insights into both the existence and mechanism of selection acting on the paired 

loci. Our implementation makes it straightforward to compute these statistics for 

both a single pair of loci, or massive genomic datasets that have become 

common as the difficulty and cost associated with whole genome sequencing has

plummeted over the past decade.

In the second chapter, we describe the problem of inferring ancestral 

haplotype frequencies from pooled sequence data. We discuss five approaches 

to this problem that have already been developed, and we discuss a new genetic

algorithm based approach that we designed. We perform a benchmarking test on

a method developed by Burke et al. and we compare that method to the genetic 

algorithm by evaluating the performance of each on a simulated dataset. We find 

that the the new method outperforms the existing one.
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CHAPTER ONE: OHTA’S D STATISTICS 

 

Introduction  

Pronounced signatures are left in the genomes of species undergoing 

selection. These telltale signals may reveal selected loci and details regarding 

the selection pressures that have been applied ​[1] ​. Notably, selection modifies 

the correlation of alleles at sites near the selected locus. This correlation 

between alleles is known as linkage disequilibrium (LD). As a rule of thumb, 

selection reduces genetic variability and increases LD ​[2] ​. Tomoka Ohta ​[3] 

derived a series of statistics (from here on referred to as Ohta’s D statistics) 

designed to partition LD into between and within population components in a 

manner analogous to Sewall Wright’s F statistics, a measure of inbreeding ​[4] ​. 

She posited that for a pair of loci, deviations from expected levels of LD in a 

given subpopulation may be indicative of an epistatic selection event. More 

recently, Beissinger et al (2016) demonstrated that Ohta’s D Statistics, 

particularly the ​D ​’2​IS​ ​statistic, can identify traditional hard selective sweeps ​[2] ​ in 

addition to epistatic selection, and they developed a null-distribution that enables 

the genome-wide identification of selection candidates. 

Several studies have been conducted that utilize Ohta’s D statistics to test 

for epistatic selection ​[5–7] ​, which is selection acting on a favorable combination 

of loci, rather than a single locus independently.  However, software suites for 

measuring Ohta’s D statistics are limited. Programs that evaluate the statistics on 
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a locus-by-locus basis exist ​[8–10] ​, but there is currently no framework available 

to facilitate the implementation of Ohta’s D statistics on a genome-wide basis. 

Furthermore, the web-based platform supplied by ​[9] ​ and its predecessor ​[8] 

have two significantly limiting attributes that are resolved by our implementation. 

First, they require that input data be limited to no more than 80 SNPs in 30 or 

fewer subpopulations. Second, they treat sample size as population size, an 

approach that will only occasionally reflect reality. 

Ohta’s D statistics are computed in a pairwise fashion between markers, 

so evaluating even a relatively small marker set of a few hundred or thousands of 

SNPs requires an efficient implementation. Therefore, we have developed 

ohtadstats, a freely available R package with convenient, flexible, and powerful 

tools to perform the computation of Ohta’s D statistics in a variety of use cases. 

By leveraging the R statistical software platform ​[11] ​, ohtadstats is fast, scalable, 

and most importantly adaptable to an endless array of system architectures and 

high-throughput computing systems. Here, we describe the capabilities of the 

ohtadstats package and demonstrate its applicability to datasets both small scale 

and genome wide. 

 

A Review of Ohta’s D Statistics 

Ohta’s D statistics are a set of five statistics, termed D ​2​
it​, D ​2​

is​, D ​2​
st​, D’ ​2​

is​, 

and D’​2​
st​. The specific forms of these statistics have been covered in depth by 

Ohta [3] so we will not go in depth here. Briefly, from Beissinger et al. ​[6] ​:  
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● D ​2​
it​ is the correlation of two alleles occurring on the same gamete in a 

subpopulation compared to the expectation of them occurring together in 

the total population 

● D ​2​
is​ is the expected variance of LD for subpopulations 

● D ​2​
st​ is the correlation of alleles in a subpopulation relative to their expected 

correlation in the total population 

● D’ ​2​
is​ is the correlation of the appearance of two alleles on the same 

gamete in a subpopulation relative to that of the total population 

● D’ ​2​
st​ is the variance of LD in the total population 

 

Consider a comparison between two loci, A and B. Here, x​
i,k​ and y ​

j,k​ are 

the frequencies of the i​th​ and j ​th ​
alleles at loci A and B in the k​th ​

subpopulation, g​
ij,k 

is the frequency of gametes A​
i ​B​

j ​ in the k ​th​ subpopulation. Averages of these 

values are denoted with bars. These statistics may be calculated as follows: 

 

 

{ (g x y ) }D2
IT = E ∑

 

i,j
ij,k −  ī j̄

2
 

{ (g x y ) }D2
IS = E ∑

 

i,j
ij,k −  i,k j,k

2  

{ ( x y  x y ) }D2
ST = E ∑

 

i,j
i,k j,k −  ī j̄

2
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{ (g g ) }D2
IS = E ∑

 

i,j
ij,k −  ijˉ

2  

{ (g x y ) }  D2
IT = E ∑

 

i,j
ijˉ −  ī j̄

2
 

 

Implementation and Architecture 

The ohtadtats package includes five functions: ​dstat ​, ​dwrapper ​, 

dheatmap ​, ​dparallel ​, and ​dfilter ​. Detailed descriptions and example code 

can be found at ​https://github.com/pfpetrowski/OhtaDStats​, as well as in the 

documentation of the R package. 

The first of these functions, ​dstat ​, is the workhorse of the package. This 

function computes each of Ohta’s D statistics for a given pair of loci, and returns 

these results in a vector. The ​dstat ​ function also returns the number of 

subpopulations included in the analysis. This number may be less than the total 

number of subpopulations as a result of filtering. To avoid spurious associations 

between alleles that are not truly in LD, ​dstat ​ has an initial allele frequency 

filtering step designed to remove loci that fall below a specified minor allele 

frequency threshold. During the filtering step, ​dstat ​ also removes any 

subpopulations which have a minor allele frequency below a given threshold. 

This feature prevents subpopulations which are fixed or nearly fixed at a given 

locus from appearing to be under selection when in reality the effect is due to 

small sample size. Both of these minor allele frequency thresholds are modifiable 
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arguments with can be changed by the user on demand. The ​dstat ​ function 

returns a vector containing the number of populations included in the calculation 

and each of Ohta’s five D statistics for the specified pair of markers. 

It is important to note that the ​dstat ​ function returns raw D statistic 

values. To assess statistical significance, ​dstat ​ can be used to generate an 

empirical null distribution, as was used in ​[6] ​. Null distributions will vary by 

organism and model system, but the tools provided in ohtadstats can be used for 

their creation. This is achieved by implementing the function on a large number 

of pairs of physically unlinked SNPs. 

 

Figure 1. ​The ​dstat ​ function calculates Ohta’s D statistics for two specified loci. 

 

 

The ​dwrapper ​ function computes Ohta’s D statistics for all possible pairs 

of loci in a matrix of genotypes. The result is returned as a list of matrices, with 

one matrix for each of Ohta’s D statistics along with a matrix specifying the 

number of populations used for each comparison. This output format simplifies 

the process of looking up a D statistic for a specific pair of loci. It is important to 

note that because ​dwrapper ​ evaluates all pairwise combinations of loci, it 
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scales on the order of n​2​, where n is the number of genetic markers represented 

in the dataset. This means that the number of pairwise comparisons to be made 

scales exponentially with the number of markers being evaluated. This is not a 

problem for small datasets. Indeed,  we successfully executed the ​dwrapper 

function on a dataset that included 100 SNPs from 1417 individuals using a 

1.3GHz, 8GB RAM MacBook Air in only two minutes. This dataset is a subset of 

the data used by Beissinger et al. (2016) ​[6] ​ and is included in the package as 

beissinger_data.rda. For large datasets (ie thousands of markers), we suggest 

parallelization via the ​dparallel ​ function.  

 

 

 

Figure 2.​ Given a single matrix of genotypes, ​dwrapper ​ will produce a matrix for each 

of Ohta’s D statistics with pairwise comparisons of each locus. Dheatmap will produce a 

colorized map for visualization of the values in a matrix. 

 

 

The ​dheatmap ​ function provides a convenient tool for data visualization. 

This function, which is based on the levelplot function from the lattice R package 

[12] ​ takes any of the matrix outputs provided by the ​dwrapper ​ function and 

returns a colorized heat map, making patterns of LD visible. Options are provided 

which allow the user to modify the colors used and how those colors are scaled. 

The ​dheatmap ​ function provides three modes for the scaling of the colors. The 
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first mode, “linear”, is appropriate for most use cases. In this mode, the values in 

the matrix are distributed continuously across the color spectrum. The “truncated” 

mode is provided for use on the ratio matrices, where division by small numbers 

may cause certain values to be many orders of magnitude greater than others. In 

these cases, using “linear” is not ideal because large values will drive 

mid-magnitude values towards the extreme low end of the color spectrum. The 

“truncated” mode corrects for this issue by changing values greater than one to a 

value just higher than one. Colors are then scaled across this new spectrum of 

values. The final mode, “binned”, operates similarly to “truncated”, except that 

colors are not scaled across the new spectrum of values. Instead, values are 

placed into one of five bins, and colored accordingly. 

The ​dparallel ​ function is designed to facilitate parallelization of ​dstat 

on commercial high throughput computing platforms. By pairing a simple R script 

with a scheduler such as slurm ​[13] ​, massive datasets on the scale commonly 

seen today can be analyzed in a reasonable amount of time. This function works 

by generating a virtual table of locus pairs to compare and executing ​dstat ​ on 

each. Using this method, a number of equally sized jobs limited only by time and 

computational resources can be performed. The ​dparallel ​ function is not 

meant to be used directly in the R environment. Instead it is designed to be set 

up in an R script, multiple instances of which are then spawned using a slurm 

scheduler array, or equivalent (Figure 3). Example scripts of this setup are 

available in the OhtaDStats GitHub repository 
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( ​https://github.com/pfpetrowski/OhtaDStats​). 

Lastly, the ​dfilter ​ function is provided to perform the basic data 

preprocessing step of removing any subpopulations from the dataset if that 

subpopulation is too small. The ​dfilter ​ function works by taking a dataset and 

an integer value for the minimum number of samples, and returning that dataset 

with only subpopulations that meet the threshold. Similar to the minor allele 

frequency filtering that is performed within the ​dstat ​ function, this mitigates the 

danger of small sample sizes leading to spuriously large values of D. 

 

Figure 3. ​The ​dparallel ​ workflow. Specific files associated with the general steps are 

in italics to the right of the diagram. 1) A bash script initializes a specified number of R 

processes, each of which executes the ​dparallel ​ function on the specified dataset. 2) 

Each ​dparallel ​ process infers a unique set of locus pairs for which to compute Ohta’s 

D statistics. 3) Each R process calls ​dstat ​ on each row (pair of loci) in its unique set. 4) 

Results are returned in csv files. 
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Quality Control 

To ensure that this package accurately calculates Ohta’s D statistics, We 

simulated a small dataset containing 18 individuals across 3 subpopulations and 

three loci. We evaluated this data set using an implementation of LinkDOS ​[9] 

available at Genepop on the Web ​[14] ​, and also using the ohtadstats package to 

ensure that results were equivalent. The sample dataset and code are available 

in the GitHub repository.In addition, examples included in this package are tested 

daily on the CRAN servers across Windows, MacOS, and Unix operating 

systems. 

 

Operating system 

The ohtadstats package is designed for use with R versions 3.0.0 or later. 

R is supported on Windows, MacOS, and major Linux distributions. Minimum 

operating system versions are as follows: 

Windows: Windows 7 

MacOS: MacOS 10.9 (Mavericks) 

Ubuntu: 14.04 (Trusty) 

 

List of contributors 

Paul F. Petrowski, Timothy M. Beissinger, Elizabeth G. King 
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Software location 

Archive 

Name:​ ohtadstats 

Persistent identifier:​ https://doi.org/10.5281/zenodo.1406484 

Licence: ​MIT 

Publisher: ​ Paul Petrowski 

Version published: ​ ​2.1.1 

Date published: ​20/03/19 

Code repository  

Name:​ OhtaDStats 

Identifier: ​ https://github.com/pfpetrowski/OhtaDStats 

Licence: ​MIT 

Date published: ​18/03/19 

 

Reuse potential 

Ohta’s D statistics are useful quantities for assessing linkage 

disequilibrium in genomic data sets. As such, this package may be useful to 

anyone looking to quantify linkage disequilibrium in their system of study. This 

includes any individual investigating the fields of population, quantitative, or 

evolutionary genetics. A typical use case may involve looking across a number of 

subpopulations of a species in an effort to detect evidence of selection. Other 

methods of using LD as a measurement of selection have been previously 
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described, including the integrated haplotype score (iHS)​[15] ​ and  extended 

haplotype homozygosity (EHH) ​[16] ​. These commonly-applied methods are 

designed to identify hard sweeps in a single population, while Ohta’s D statistics 

are best applied to data including multiple populations, and have the potential to 

additionally identify epistatic selection. Therefore, these approaches may be 

complementary -- researchers may find different selected loci based on Ohta’s D 

stats than by applying iHS or EHH, and vice versa.  
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CHAPTER TWO: HAPLOTYPE INFERENCE 

 

INTRODUCTION 

 Pooled sequencing data is used broadly throughout many subfields of 

genetics. When population level parameters are of more interest than individual 

level parameters, pooled sequencing provides a low cost alternative to the 

independent sequencing of multiple individuals ​[17] ​. Sometimes the sample of 

interest is inherently pooled, such as when samples are drawn from the ambient 

environment. Ley ​et al. ​[18] ​ used pooled sequencing to quantify the abundance 

of different types of microbes in the human gut. Hastings ​et al. ​[19] ​, Hastings and 

Smith ​[20] ​, and Takala ​et al. ​[21] ​ developed methods to infer strains of malaria 

present in human blood samples.​ ​Other times samples are deliberately pooled to 

save time and money ​[22–24] ​. This is commonly the case in laboratory based 

evolution experiments, where the direct sequencing of every individual involved 

is much less practical than simply pooling them ​[22] ​.  

The convenience of pooling comes with the tradeoff of losing information 

at the individual level. When samples are pooled, the resulting sequence data 

consists of allele frequencies, rather than allele calls, as indicated in figure 4. It is 

not possible to say which individual had a particular allele. This tradeoff is 

acceptable when population level parameters are of primary interest, as is the 

case in laboratory based evolution experiments. Using frameworks such as 
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Evolve and Resequence (E&R) ​[25] ​, scientists attempt to quantify how allele 

frequencies change in response to selective pressures. 

 

 

Figure 4.​ Flies from one treatment group are pooled and sequenced together. The 

resulting sequence reads represent allele frequencies rather than one individual’s base 

calls. 

 

 

In these experiments, a population of individuals are subjected to a 

particular environment or selective pressure, and bred under those conditions for 

some number of generations.   At the end, a sample of the resulting population is 

sequenced and compared to the initial population. Quantifying which allele 

frequencies have changed should give insights into which loci are responsible for 

adaptation to the selective pressure. Usually the initial population is derived from 

a population with known ancestors such as the DGRP [26] or DSPR [27] in ​D. 

melanogaster​, or MAGIC populations in plant​ ​systems [28]. For instance, all of 

the flies in the DSPR are descendents from the same set of founder flies. The 

population descends from eight founder flies whose progeny were bred randomly 

for 50 generations. These flies were inbred via a full sib mating scheme for 20 

generations to generate 800 recombinant inbred lines (RILs).This scheme results 

in each individual’s genome being a mosaic of haplotypes, each of which can be 

traced back to one of the eight original founders. By characterizing how 



15 

haplotype frequencies change over time, we can still get an idea of where 

potentially causative positions are located. 

While this is a powerful framework, accurate measurement of allele 

frequencies poses significant challenges. Read coverage must be high in order 

for the measurement to be believable. This is for the simple reason that a 25% 

allele frequency is much more trustworthy when the allele is observed in 25 out 

of 100 reads than when it is observed in 1 out of 4 reads. Frequencies obtained 

at low read coverages are inherently more vulnerable to sampling error. 

Sequencing at the necessary levels of coverage gets expensive quickly. 

Fortunately it is possible to accurately assess allele frequencies from low 

coverage pooled sequence data by taking a more circuitous approach. When the 

population used in the experiment comes from founders with known sequences, 

it is possible to use the low coverage allele frequencies from multiple markers to 

infer the founder haplotype frequencies. A haplotype is a group of alleles that are 

co-inherited from a single parent. Haplotype frequency inference works with low 

coverage sequence data because it uses data from multiple genomic positions, 

rather than relying on a single position. This “breadth” of data means that 

haplotype frequencies can be reliably inferred. Once the founder haplotype 

frequencies are known, it is a straightforward process to calculate what the allele 

frequencies should be at each position.  

A number of methods exist to infer founder haplotype frequencies from 

pooled sequence data. In one of the earliest attempts, Long ​et al. ​[26] ​ ​used a 
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regression model to address the haplotype inference problem, but it does not 

estimate rare haplotypes well. Kessner ​et al. ​[27] ​used a maximum likelihood 

approach, which makes estimates based on mapping raw reads to a reference. It 

performs at its best when the distribution of haplotype frequencies is nonuniform. 

Cao and Sun ​[28] ​used a system of linear equations to approach the problem. It 

too struggles with low frequency haplotypes. Burke ​et al. ​[29] ​ used a calculus 

based optimization approach. Franssen ​et al. ​[30] ​ developed a method that can 

reconstruct founder haplotypes from pooled sequence data even if they are not 

known in advance by measuring allele frequency trajectories, but it requires data 

from multiple time points. 

 

 

 

 
Figure 5. ​The DSPR.​ ​Genomes of descendent flies (right) are mosaics of haplotypes 

from the founder flies (left). Haplotypes will share SNPs (grey and black boxes) which 

can be derived from the haplotype frequencies once they are estimated. 
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In this chapter we perform benchmarking tests on the gradient method 

developed by Burke ​et al​., and determine the optimal number of SNPs to pass to 

the algorithm in order to estimate haplotype frequencies. We also performed 

tests to determine if the number of individuals in the pool had any impact on the 

performance of the algorithm. Next, we introduce a new approach to the 

haplotype inference problem that is based on a genetic algorithm. Genetic 

algorithms are an appealing approach to this problem because they handle 

epistatic effects well, that is, optimizations in which one parameter’s value is 

determined to some extent by the values of other parameters ​[31] ​. We compare 

this method to the gradient method by simulating pools from the known 

sequences of DSPR recombinant inbred lines. 

 

 

METHODS 

In this study we aimed to accomplish two main goals. First, to characterize 

the window size and pool size for which the gradient method achieves the best 

performance. We performed simulations to determine the ideal window size of 

genomic positions to pass into the algorithm, and also to determine if the 

algorithm performs better when more individuals are present in the pool or fewer. 

Upon establishing that the ideal window size is approximately 3200 SNPs, we 

used that as our window size in all later analyses. Next, we sought to compare 

the performance of the gradient based method to a new genetic algorithm that 

we developed. 
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The existing method is a gradient based method developed by Burke ​et al. 

[29] ​. and a genetic algorithm approach that we  developed. To evaluate the 

frequency of haplotypes in a pool for a given position, both algorithms require 

information about the sequences at neighboring sites. This is because a single 

position will usually not be enough to discern haplotypes apart, especially when 

the number of founder haplotypes are large.  

To assess the performance of the two methods, we used simulated data 

from the DSPR (figure 5). We took recombinant inbred lines with known 

sequences from the DSPR to simulate pooled sequencing datasets. We 

randomly added lines to ​in silico ​pools and computed observed reference allele 

frequencies for each position. These simulated minor allele frequencies are then 

fed to the algorithms. Because the original sequences are known, the founder 

haplotype for a given segment of the genome can be ascertained using a hidden 

markov model ​[32] ​ (see ​[33] ​ for a detailed explanation and tutorial on hidden 

markov models). To measure the accuracy of the algorithms we tested, we 

calculated the sum squared error between the estimated and known set of 

haplotype frequencies for a given position. 

 

Gradient Method 

A method developed by Burke et al. implements the 

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm ​[34, 35] ​ to optimize a 

vector of founder haplotype frequencies. We will refer to this method as the 
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gradient based method, because the algorithm makes use of gradient information 

to determine how the estimate is updated. The algorithm attempts to minimize 

the sum squared error between the sequence of observed reference allele 

frequencies, and the sequence of predicted reference allele frequencies that 

would occur given a frequency estimate.  

 

Let F be the set of founder haplotypes, M be a vector of haplotype frequencies 

(the quantity which we are aiming to optimize), and Y be the observed reference 

allele frequency that would be observed given haplotype frequencies M.  

 

 Y = F ·M  

 

Now let X be the observed reference allele frequency, and n be the number of 

founder haplotypes. When M is an exact representation of the true haplotype 

frequency in the pool, the sum squared error between the two vectors will be 

zero. 

 

rror (X )E =  ∑
n

i = 1
i − Y i

2
 

 

Additionally, a constraint term is imposed to ensure that the sum of haplotype 

frequencies does not exceed 1. 
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onstraint (100 ( ) )C =  · w · ( ∑
n

j=1
Mj − 1 2

 

 

Where w is the length of sequence of DNA being evaluated. Note that F is a 

matrix of size (n, w), and M is a vector of length n. 

 

The measure of accuracy for a given vector of haplotype frequencies is given as: 

 

core Error ConstraintS =  +   

 

The BFGS algorithm is used to minimize this quantity. It was implemented in R 

via the ​optim ​ function. 

 

Genetic Algorithm 

As a new approach to the haplotype inference problem, we designed a 

genetic algorithm that can accurately infer the founder haplotypes given a 

sequence of allele frequencies. Generally speaking, genetic algorithms work by 

iteratively making a set of guesses at the answer to a problem, evaluating those 

guesses according to some objective function, and then making a new set of 

guesses based on modifying the best guesses from the previous round. Over the 

course of many iterations of this procedure, the “best guess” is steadily refined 
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until it approximates or achieves optimality. Guesses are typically referred to as 

individuals, and each sets of individuals per iteration are the population. Each 

individual is a vector of parameters aiming to be optimized. The inspiration for 

this class of algorithms draws heavily on the Darwinian concept of natural 

selection, hence the name “genetic algorithm”. This procedure can be described 

as follows: 

 

1. Generate a population of individuals, where each individual is a vector of 

parameter values. 

2. Score each individual according to the fitness function. 

3. Generate a new population of individuals, where each new individual is a 

modification of one of the top performing individuals from the previous 

generation. 

4. Repeat until optimality is achieved or until a certain number of generations 

have been reached. 

 

For an in depth tutorial on genetic algorithms, we recommend ​[36] ​. 

 

 In our implementation of a genetic algorithm, the parameters we are 

attempting to optimize are the frequencies of each founder haplotype. To assess 

the fitness of each individual, we apply our fitness function as described below. 
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Fitness function 

Let F be the set of founder haplotypes, M be an individual member of the GA 

population, 

w be the length of sequence of DNA being evaluated, n be the number of founder 

haplotypes, and Y be the reference allele frequency that one would observe if M 

were 

correct. F is a matrix of size (n, ws), and M is a vector of length n. 

 

 Y = F ·M  

 

This is equivalent to asking, “for a given guess of haplotype frequencies, what 

would be the observed set of reference allele frequencies if it were correct?” The 

sum squared error between the “guessed” set of minor allele frequencies and the 

observed minor allele frequencies is then calculated, and assigned to be the 

fitness score for the guess.  

 

 

Now, let X be the observed reference allele frequency from the pool-seq data. If 

M is 

perfectly accurate, Y and X should be identical. We measure similarity by taking 

the sum squared error between X and Y. 
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rror (X )E =  ∑
n

i = 1
i − Y i

2
 

 

The error measurement is not the final measure of fitness. We impose additional 

constraints that penalize frequencies with negative values and sets of 

frequencies that sum to be greater than 1.  

 

Penalty 1 is the sum of the frequencies in the vector minus 1. It will be equal to 

zero if the vector sums to 1. 

 

en1 ( |) 1p =  ∑
n

i = 1
|Mi −   

 

Penalty 2 assesses if there are any frequency values that are negative. It is 

simply the absolute value of the sum of negative values in the vector. The final 

fitness assignment is given as: 

 

itness error pen1 pen2F =  +  +   

 

Note that in the biological sense high fitness is typically considered a good thing, 

but in 

this fitness is a measure of error and we are seeking to minimize it. 
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Mutation & Inversion 

Aside from the fitness evaluation, the other key aspect to GAs is the set of 

rules governing how new populations are created from the previous. It is 

essential that the new population be in some way different from the original, 

otherwise the top performing individual does not change from generation to 

generation, and no convergence to optimality can occur. To ensure that the 

populations change over time and converge on the optimal set of haplotype 

frequencies, we define a set of mutations that are applied to individuals of high 

fitness. These mutations make small changes to each individual that are passed 

on to the “offspring” in the next generation.  

For our algorithm, we applied two different types of mutation to successful 

individuals in our populations. The first is a simple function which deducts small, 

normally distributed values from one element of the vector, and adds that same 

value to a different element. The second is referred to as an “inversion”, whereby 

two elements switch positions in the vector.  

The first mutation ensures that the numerical values for each individual 

changes from generation to generation. The second, the inversion, is a 

concession to the fact that purely due to random chance, all individuals in a 

population may wind up with very similar values at a particular element. When 

this occurs, it is similar to a lack of genetic diversity in natural populations. 

Natural populations with low genetic diversity are slow to adapt; ​in silico 

populations are slow to converge, or may not produce an accurate prediction at 
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all. Inversion ensures that if this happens, a different value from a different 

element can be swapped in, thus injecting some variance into the population. 

 

 

 

Figure 6. ​Illustration of how mutation works in the genetic algorithm. Small randomly 

distributed numbers are added to one element and deducted from another. 

 

 

 

Figure 7. ​Illustration of inversion. The order of two elements in the vector are switched. 

 

 

 

RESULTS 

We first sought to determine the window size of neighboring positions that 

leads to the best performance with the gradient based method. We measured the 

performance of the gradient based method on a simulated dataset, using window 
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sizes of 50, 100, 200, 400, 800, 1600, 3200, 6400, 12800, and 25600, and pool 

sizes of 100, 400, and 800. Performance was measured as the sum squared 

error between the estimated haplotype frequencies and the haplotype 

frequencies known to be true. We found that the window size that yielded the 

lowest error was 3200 bases. For this reason we used this as our window size in 

remaining analyses. 

 

 

 

 

Figure 8.​ A)​ ​Small window sizes do not provide the algorithm with enough information, 

and predictions are poor. The optimal window size is ~3200 base pairs. As the window 

size increases beyond that, the probability of spanning multiple recombination 

breakpoints increases, and error slowly goes up again. Window sizes between 50 and 

800 are not labelled. Average error over all pool sizes are shown. B) Error declines 

linearly as the number of individuals in the pool goes up. 
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Comparison of Genetic Algorithm to Gradient Method 

To compare the performance of the genetic algorithm with the 

performance of the gradient based optimization method, we simulated a pool-seq 

dataset by adding flies with known sequences to an ​in silico ​pool and computing 

observed reference allele frequencies for each position. Each algorithm inferred 

haplotype frequencies at every 50th position, using a window of 1600 SNPs on 

either side of the position of interest.  
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Figure 9. ​Estimates of haplotype frequencies given by the genetic algorithm (in red) and 

the gradient method (in green) compared to the ground truth (in blue). Each plot is 

labeled in the upper left corner with the founder haplotype it corresponds to. 

 

 

We calculated an overall mean squared error 0.000485 for the gradient based 

method and 0.00190 for the genetic algorithm. 
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DISCUSSION 

In this chapter, we explored the uses, merits, weaknesses, and 

applications of pooled sequence data. We gave special attention to how pool-seq 

has potent implications for laboratory evolution experiments, namely that 

haplotype derived allele frequencies are more trustworthy than what comes 

directly off the machine because they make use of the breadth of sequence 

information in addition to the depth. Thus, methods that can accurately infer 

haplotype frequencies from the pooled sequence data are an important 

component of these studies. We performed benchmarking on a method that was 

previously developed to solve that problem, and show that a window size of 

approximately 3200 base pairs total is ideal in our system. We also show that in 

simulations, more individuals in a pool leads to better performance. 

Next, we introduced a new approach to the problem based on genetic 

programming, a paradigm in which a series of iteratively more accurate 

“guesses” are made at the solution to the problem. We show that this new 

approach outperforms the first on a simulated dataset. Genetic algorithms are an 

appealing approach to haplotype inference due to the “epistatic” nature of the 

problem ​[31] ​. That is, the parameters may not be solved independently of one 

another because a change to one necessitates a change to another. 

Another (though unverified) possibility is that the genetic algorithm is more 

capable of handling situations in which founder haplotypes along a given 

genomic segment have similar sequence identity. When this occurs, it can be 
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difficult or impossible for any algorithm to correctly infer the correct frequencies. 

In the worst case scenario, two or more founder sequences are identical at a 

given genomic segment. In this case, it should not be possible to tell which 

founder reads along this position actually came from. In these situations, it is 

possible that the gradient method favors one haplotype over the other as a result 

of gradient descent. In contrast, the genetic algorithm makes no use of gradient 

information, and is blind to the state of the previous iteration.This question may 

be answered more definitively by taking a closer look at the genomic positions 

where the gradient method performs poorly in comparison to the genetic 

algorithm. We also note that the genetic algorithm seems to perform well even in 

situations where founder haplotype frequencies are low (see figure 9). 

Methods that can accurately infer haplotype frequencies from pooled 

sequencing data greatly aid our ability to conduct laboratory based evolution 

experiments. It is key to note that our genetic algorithm is suitable only for 

situations in which the founder haplotypes are known in advance. It is not 

capable of inferring unknown haplotypes from the pooled data. Franssen ​et al. 

[30] ​ have proposed a method by which unknown haplotypes can be 

reconstructed. In conjunction, these two methods may be capable of inferring 

unknown haplotype frequencies from pooled sequence data. 
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FUTURE DIRECTIONS 

Although the genetic algorithm performs well, it is not without room for 

improvement. The current mutation scheme is effective but simple. One potential 

improvement would be to make it so that the mean of the normal distribution for 

from which the mutation value is drawn decays as the number of generations 

goes on. This change would allow larger mutations to take place in the early 

generations when the population is farthest from optimality, but finer adjustments 

would take place later on when the population is closer to optimality.  

Additionally, we note that all computations described in this chapter deal 

with simulated data, where certain real world variables are not considered. For 

instance, sequencing error is a factor that would certainly lead to reduced 

performance, but in simulations we assume that all reads are accurate. Future 

work in this space should consider the use of an empirical dataset.  

There are a number of other parameters whose impact on the accuracy of 

haplotype inference algorithms could be assessed via simulation. Read 

coverage, marker density, and window size based on genetic distance rather 

than the number of SNPs are all possibilities that could be explored. 
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