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ABSTRACT

Road condition monitoring, such as surface defects and pavement cracks detection, is an

important task in road management. Automated road surface defect detection is also a chal-

lenging problem in computer vision and machine learning research due to the large variety

of pavement crack structures, variable lighting conditions, interfering objects on the road

surface such as trashes, fallen tree leaves and branches. In this work, we develop a deep

learning-based method for automated road surface defect and pavement crack detection.

We design a deep convolutional neural network based on using residual blocks to predict

the heatmaps which indicate the location and intensity of defects and cracks. To reduce

false detection rates, we couple this heatmap prediction network with a binary classifica-

tion network which is able to determine if the input image patch is normal or has defects.

We test our method on the CFD benchmark dataset. Experiment results show that the

proposed network is very effective for pavement crack detection and has more advanced

performance than other methods.
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Chapter 1

Introduction

Monitoring road conditions is important to prevent traffic accidents caused by road surface

defects. Cracking is the most common type of pavement distress. Rapid and accurate

detection of pavement cracks is helpful for evaluating the integrity of pavement, improving

the level of road maintenance, and has important significance for ensuring traffic safety.

Existing pavement crack detection relies on humans to manually extract image features to

detect and identify pavement cracks. This method is inaccurate and errors are easy to occur

because different people provide different judgments. Therefore, it is difficult to judge the

defective road objectively and scientifically. Also human visual inspection consumes a lot

of manpower and time. In order to achieve the goal of efficient, rapid and accurate detection

of pavement cracks, human visual inspection can be replaced by automatic defect detection

methods.
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Crack detection is also challenging with image data acquisition due to poor image quality,

such as poor lighting conditions, complex surface types, and background texture. With

the rapid development of research in crack detection, many open source datasets are ac-

cessible, papers are proposed and have significant performance on road defect detection.

These papers can be grouped into several categories, such as intensity threshold methods,

filter based methods, minimal path selection methods, machine learning methods, and deep

learning method. The results depend on the quality of provided datasets as well as the

accuracy of human-labeling.

Because the error of human-labeling, also known as manual marking, is unavoidable, using

a bounding box to mark the crack seems to be a preferable method. Researchers from Japan

provided a pavement crack dataset with hundreds of images collected by smart phones; that

identify the coordinates of the bounding box and identify eight different types of cracks

for each image. But its localization ability is relatively weak, and it cannot accurately

point out the location and may miss some thin cracks. Details are preserved at pixel-level

detection, which is a small scale detection. The image may be low-resolution, which has

noisy background and topology complexity. The key challenge is how to minimize the

effect of those low-resolution images.

To deal with the above challenges, deep learning methods seem to be more effective. A

deep network has more feature extraction layers, so it can learn more information. Deep

learning methods is able to reduce the influence of the image itself. However, too many

network layers can lead to the increase of error.

Deep Residual Learning for Image Recognition by Kaiming He [8] has made tremendous

improvements in many computer vision applications besides image classification tasks,
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such as object detection and recognition. The main contribution of his research is introduc-

ing the residual block, which can successfully avoid the problem caused by adding network

layers. In this thesis, we propose a method using residual blocks and my experiment shows

significant improvement on both accuracy and F1 score.

This thesis is organized as follows: Chapter 3 describes the problem we need to solve

in this paper, the details will be discussed in Chapter 4, including data preparation, the

architecture of the network and training details. Chapter 5 gives the experience process and

results, as well as a comparison with other existing methods. Conclusions and perspectives

are discussed in Chapter 6.
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Chapter 2

Literature Review

Over past few years, pavement crack detection has become a popular research field. Many

papers have worked on this and put forward usable solutions. In this part, we review their

works and highlight their contributions on this research field.

2.1 Intensity Threshold Methods

Hu and Zhao [9] improve the local binary pattern method introduced by Pietikinen and

Harwood [15], for pavement crack detection. Simple calculation, gray scale, and rotation

invariant are three key characteristics of local binary pattern (LBP). It is proved theoreti-
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cally that LBP is an efficient texture classification method. LBP operator is defined as:

LBPP,R =
P−1∑
p=1

s(gp − gc ∗ 2p), s(x) =

 1 x ≥ 0

0 x < 0,
(2.1)

where gray value g0, gp, (p = 0, ..., P − 1) corresponds to the center pixel and the ith

neighbor pixels. Based on the above definition, the LBP operator is able to describe neigh-

boring pixels by comparing them with the central pixel. If the value of the adjacent pixels

are larger or equal to the value of the center pixel, set the value of this pixel to one, oth-

erwise set it to zero. First, all local patterns were regrouped into five sub-classes to gather

meaningful local structures. Second, roughly estimate the range of variance and select

the appropriate threshold value accordingly. Then, in order to implement this algorithm

quickly, put local pattern and new sub-classes into a table for faster reference.

Tang and Gu [19] propose an advanced image processing technology used to detect cracks

in road damage analysis. Based on their analysis, they discover the defect part in the image

usually has a small gray scale value, so when the pixel value is smaller than the threshold,

it is considered as a cracked pixel and marked as one; if not, it is considered as a non-

cracked pixel and marked as zero. The selection of threshold value determines the effect

of detection; a histogram-based method is used to get the threshold. First, a histogram of

the original image is generated, and then use the Gaussian filter for smoothing. After that,

a final histogram can be used to find a good threshold value.

5



Figure 2.1: Original histogram and Gaussian smoothing histogram.

These works implement intensity histogram and dynamic threshold to segment the cracks

from the backgrounds. These methods are able to obtain acceptable results on some pave-

ment images; however, it has a high requirement for image quality. For example, the cracks

in the image are very clear and they are obviously distinguished from the background.

These methods are susceptible to disruption by noise, so the detection result may not be

that good, especially when the image is taken under poor lighting conditions and the back-

ground has a complex texture. Moreover, these methods sometimes cannot successfully

detect complete cracks and selecting a appropriate threshold value is challenging.

2.2 Filter Based Methods

Filter based methods are also widely adopted. Based on the high similarity of crack and

edge in morphology, researchers use edge detection methods such as Sobel and Canny on

pavement crack detection. Canny Edge Detection is a well-known edge detection algo-

rithm. It was developed by John F. Canny [2]. It is mainly divided into four steps. In
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order to reduce the influence of noise, first, use a 5 × 5 Gaussian filter to get a smoothed

image. Next, Sobel kernels are used to filter the image horizontally and vertically, then the

derivatives of the horizontal direction (GX) and the vertical direction (GY ) are obtained.

We can get the edge gradient and its direction of each pixel using the formula below:

EdgeGradient(G) =
√
G2
x +G2

y, (2.2)

Angel(θ) = tan−1(
Gy

Gx

). (2.3)

Then at every pixel, check if it is at local maximum by calculating its gradient. Finally,

for the edges detected, determine which ones are correct edges and which ones are wrong.

So there are two thresholds needed: a minimum threshold and a maximum threshold. Any

edges with the gradient larger than the minimum threshold should be the correct edge,

while smaller than the maximum threshold should be the wrong edge. The gradient located

between these two thresholds use their connectivity to classify edges or non-edges. If they

are connected to an edge pixel, they are treated as part of the edge. In this way, we can

finally get the edge of the image roughly.

Santhi et al. [17] use Canny operator with Butter-worth filter and achieve an acceptable

result. First convert the three dimensions RGB image into gray scale image. Now a filter

is needed to filter out the noise in the image. Butter-worth filter dynamically chooses the

threshold of the filter according to the image. The threshold varies with the intensity of

the image. The main factor determining the threshold is the intensity change between the

foreground and background of images. Once the image is filtered, a pure sample of cracks

can be obtained. Canny edge detection algorithm can be used for these samples.
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Ouyang and Wang [14] propose a beamlet-based method for pavement crack detection.

Beamlets are line segments with different locations, orientations and scales, and the beam-

let transform is a set of line integrals along all beamlets collected. f(x1, x2) is a continuous

function on two-dimensional space, where x1 and x2 are two coordinates. The beamlet

transform Tf of function f is defined as:

Tf (b) =

∫
b

f(x(l)) dl, b ∈ BE], (2.4)

where BE is the collection of all beamlets.

Figure 2.2: Beamlet transform.

In the discrete domain, the beamlet transform for all the points along the beamlets b is

defined as,

f(x1, x2) =
∑
i1,i2

fi1,i2φi1,i2(x1, x2), (2.5)

where fi1,i2 means the pixel value of i1, i2,and φi1,i2 means the weight function of each

pixel. If p(x1, x2) represents [i1/n, (i1 + 1)/n] ∗ [i2/n, (i2 + 1)/n], choose function φi1,i2

8



to fulfill the equation:

n2

∫
p(x1,x2)

φi1,i2(x1, x2) dx1dx2 = δi1,i2 , (2.6)

δi1,i2 is Kroneker symbol. Then fi1,i2 is a function that obeys:

fi1,i2 = Ave[p(x1, x2)]. (2.7)

Canny operator uses the two-dimensional Gaussian function as the filter kernel. The dis-

continuity of the edge is mainly due to the threshold of Canny edge detector with high local

gradient and amplitude caused by image noise. Comparing the results of Canny operator

and beamlet transform, beamlet transform method achieves a higher signal-noise ratio and

provides a more complete edge feature than Canny operator. The main problem of the fil-

ter based methods is that when the crack has a complex texture background, they cannot

recognize the complete crack.
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(a) Original image (b) Canny operator

(c) Beamlet transform

Figure 2.3: Edge detection of pavement crack image.

The rapid development of signal processing techniques could be used for pavement crack

detection. The Gabor filter, named by Dennis Gabor, is a linear filter for texture analysis.

It can be used to analyze whether there is a specific frequency content in a particular point

and in the surrounding area. This method is very suitable for detecting texture features of

pavement surfaces. The Gabor filter consists of a real part and an imaginary part, these two

parts can form a complex number or be used separately.

Complex number:

g(x, y;λ, θ, ψ, σ, γ) = exp(−x
′2 + γ2y′2

2σ2
)exp(i(2π

x′

λ
+ ψ)). (2.8)
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Real part:

g(x, y;λ, θ, ψ, σ, γ) = exp(−x
′2 + γ2y′2

2σ2
) cos(2π

x′

λ
+ ψ). (2.9)

Imaginary part:

g(x, y;λ, θ, ψ, σ, γ) = exp(−x
′2 + γ2y′2

2σ2
) sin(2π

x′

λ
+ ψ). (2.10)

Where

x′ = x cos θ + y sin θ, (2.11)

and

y′ = −x sin θ + y cos θ. (2.12)

In the above formulas, λ is the wavelength of sinusoidal factor, θ is the normal direction of

Gabor function of parallel stripes, ψ is the phase offset, σ is the standard deviation, and γ

is the spatial aspect ratio.

Zalama et al. [20] propose a method using Gabor filters to detect and classify both lon-

gitude and transverse crack in the pavement image. In Figure 2.4, the size of the image

is 384 × 128 pixels, while in Figure 2.5, the size of the image is 128 × 384 pixels, which

contains both defective and non-defective images. These images are segmented into three

128 × 128 pixel images. It is difficult to find these cracks with human eyes since the dark

areas of cracks usually present similar to those of normal areas. Although these images

have been pre-processed, it is hard to detect and classify the crack from pavement images.

However, these dark areas actually changes the texture of pavements, so we can detect them

on human eyes. Gabor filter is used to realize the texture information.
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Figure 2.4: Pre-processed images contain transverse cracks.

Figure 2.5: Pre-processed images contain longitudinal cracks.

The classifier based on Gabor filter for image feature extraction has achieved outstanding

performance.

Salman et al. [16] report an algorithm can detect several different types of cracks, such

as longitude cracks, transverse cracks, box cracks or crocodile cracks, even though their

directions are different. The following figures show an image that includes various types

of cracks. In Figure 2.7, the image on the right is the original image containing many red

12



bounding boxes, which represent the detected crack segments.

Figure 2.6: Mixed cracks.

Figure 2.7: Gabor filter overall response.
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(a) 0 degree orientation (b) 30 degree orientation

(c) 60 degree orientation (d) 90 degree orientation

(e) 120 degree orientation (f) 150 degree orientation

Figure 2.8: First convolution at various orientations.

As can be seen from the above figures, the filter responds to cracks in its corresponding

direction. In Figure 2.8(a) the filter has responses in only the vertical direction. In Figure

2.8(b) and Figure 2.8(c) , the filter only has responses on the left side of the crack, while

the responses of other sides are not obvious. In Figure 2.8(d) the filter only has responses

on part of horizontal direction.

Instead of using a single filter, Chaudhuri et al. [4] explore a linear patterns detection by

using matched filters. Zhang et al. [21] adopt the matched filtering algorithm for detecting

pavement cracks. Unlike the traditional edge detection method, the matched filtering algo-

rithm detects cracks by matching several pre-designed filters with the crack characteristics

14



according to shape, orientation or intensity.

The algorithm approximates the intensity profile as a Gaussian curve.

f(x, y) = A[1− kexp(−−d
2

2σ2
)], (2.13)

where f(x, y) is the gray-scale intensity at coordinates (x, y); A is the gray-scale intensity

of the background; k is the reflection of object, such as pavement cracks; d is the distance

between (x, y) and line segments passing through the center of cracks; and σ is the spread

of intensity.

A good filter must have the same shape with the intensity distribution. Use the following

equation to determine it:

hopt(d) = exp(−−d
2

2σ2
). (2.14)

For pavement crack images, parameters in the first equation, such as A, k and σ, represent

the local maximum background intensity, relative reflections and width of cracks respec-

tively.

Compared with Sobel and Canny edge detectors, matched filter algorithms present a better

performance.
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(a) Original image (b) Sobel filter

(c) Canny filter (d) Matched filtering detection

Figure 2.9: Experiment results.

However these filters are impossible to distinguish very fine cracks, so these methods can

not correctly detect pixels at the edge of the crack.

2.3 Minimal Path Selection Methods

Minimal path selection methods have attracted so many attention in past few years. In

pavement crack detection field, this method is widely used in continuous crack detection.

It judges the crack by searching for continuous pixels. Several methods based on minimal

path selection are proposed.

Nguyen et al. [12] propose a method for pavement crack detection, called Free-Form

Anisotropy. Graph theory, such as Dijkstra algorithm, provide a solution to find the minimal

path efficiently.
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(a) Transverse (b) Longitude

(c) 135 degree (d) 45 degree

Figure 2.10: Minimal paths of pixel l with four different angles.

A minimal path means that the path has the smallest sum of pixel intensities. FFA of each

pixel l can be calculated by:

FFA(l) =
maxj[h(πj, πbgd)]−minj[h(πj, πbgd)]

maxj[h(πj, πbgd)]
, (2.15)

where

h(π1, π2) = sup[min(π1, π2)], (2.16)

and j is the global orientation, h(πj, πbgd) computed the four minimal paths in Figure2.10

with pixel l.

(a) Crack pixel (b) Defect-free pixel

Figure 2.11: Computation of FFA for 2 pixels width d = 30.
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Figure 2.11 shows that FFA is able to identify cracks in various directions.

Amhaz et al. [1] develop an enhanced minimum path search algorithm which chooses

endpoints on local scale and minimum paths on global scale. There are no restrictions on

the direction or length of the path. First, select endpoints among the local minimal as the

pixel which has a pixel value lower than the threshold.

(a) Original image (b) Automatic endpoints selection

Figure 2.12: Endpoints selection example.

Next, use Dijkstra algorithm to calculate the minimum path between the selected endpoints.

Only a small part of all the calculated paths belong to cracks. To select these paths, thresh-

old method is a simple and fast solution. The whole process is shown in Figure 2.13.
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(a) Minimal path computation (b) Selection of minimal paths

(c) Elimination of artifacts (d) Width detection

Figure 2.13: Steps of the MPS method.

FFA method has good performance on detecting continuous cracks; however, this method

is greatly limited by direction and length.

MPS performs better than other methods in this case. In addition, in order to restore the

continuity of pavement crack detection, the minimum spanning tree algorithm gradually

shows its advantages.

Zou et al. [22] design a CrackTree framework, which solves the problem of shadow and

discontinuity in pavement crack images. A geodesic shadow removal algorithm is adopted

to eliminate the noise in the image and enhance the cracks at the same time. Next, a prob-

ability map is constructed using tensor voting technique. Finally, the minimum spanning

tree (MSTS) algorithm is applied to detect continuous cracks and remove useless edges

to obtain the whole crack shape. Comparison results indicate that the CrackTree method

has better performance in existing minimal path algorithms. This work showed how to
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highlight and clear images with cracks. The result is a noiseless image, and emphasis was

placed on the defective parts.

A MFCD algorithm is proposed by Li et al. [10], and this method also works on mini-

mal path algorithm. This method proposes a more effective statistical parameter setting

method, uses crack seed edge detection method mentioned above, and designs a window

path generation algorithm. Overall, the calculation time is reduced and the efficiency of

crack detection is improved.

(a) (b)

(c) (d)

(e) (f)

Figure 2.14: Steps of the MFCD method.

Figure 2.14(a) is an example of an original image. The MFCD method is described in

Figure 2.14(b)-(f). First, the authors use Gaussian blurring to extract the crack seeds, then

they cluster and filter those seeds, as shown in Figure 2.14 (b)(c). Then they find cracks by
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using a windowed minimal intensity path method, as shown in Figure 2.14(d). Finally, the

authors detect the crack and propose a statistical model to calculate the crack fusion value

at different scales, as shown in Figure 2.14(f). When the crack on the pavement surface is

very blurred, or there are disturbing components such as oil spots in the pavement image,

the performance will be reduced. Compared with the results of Canny and FFA, MFCD

algorithm outperforms all counterparts.

In order to use minimum path or a minimum spanning tree algorithm on pavement crack

detection, it is necessary to ensure that cracks are clear and continuous. However, it is

uncertain in many practical cases.

2.4 Machine Learning Methods

Machine learning methods have become popular with the development of data and GPU.

Methods focusing on feature extraction and pattern recognition have been widely used for

pavement crack detection. In machine learning methods, images are are often divided into

several sub-images for training. Furthermore, supervised training requires accurate labels.

Li et al. [11] use BP neural networks(BPNNs) on pavement crack detection. The design of

BPNN structure is a complex and difficult process, a certain number of hidden layers and

nodes need to be set. Hidden layers can be influenced by many factors, such as the choice

of activation function, the structure of network, training algorithm, and training dataset.

The structure of the BPNN is shown in Figure 2.15.
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Figure 2.15: BPNN structure.

Figure 2.16: The direction angle.

In this paper, they also divide cracks into categories, and use a direction angle to determine

whether the crack is transverse crack or longitude crack or alligator crack. The result

shows that BP neural network can classify the linear crack image and the alligator crack

image effectively. This paper also solves the crack classification and high computing cost

problem, since the BP network provided in this paper only has ten nodes in the hidden

layer, the input layer as well as the output layer both have two nodes.

Cord and Chambon [5] use a supervised learning algorithm Adaboost on pavement crack
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detection problem. AdaBoost, also known as Adaptive Boosting, is a very popular machine

learning algorithm, which was first proposed by Freund and Schapire in 1997. This algo-

rithm is used to generate arbitrary classifiers by merging lots of weak classifiers. It can be

used with other machine learning algorithms together to improve the overall performance.

The training dataset is a subset of sub-images xi, 1 ≤ i ≤ m, where m is the number of

sub-images. yi ∈ 0, 1 corresponding to the classification of xi. Select a weak classifier

with smallest error εt on Dt.

ht : X → 0, 1. (2.17)

Initialize the weight:

Dt(i) =
1

m
, 1 ≤ i ≤ m. (2.18)

Given Dt and ht:

Dt+1 =
Dt(i)

Zt
c(x), (2.19)

c(x) =

 e−αt yi = ht(xi)

eαt yi 6= ht(xi),
(2.20)

Dt+1 =
Dt(i)

Zt
e−αtyiht(xi), (2.21)

where Zt = normalization constant

αt =
1

2
ln

1− εt
εt

> 0. (2.22)

Therefore, after t+ 1 iterators, The algorithm can select a classifier and extract the missing

information better.
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Hfinal(x) = sign(
∑

αtht(x)). (2.23)

AdaBoost is applied to extract the relevant texture feature that can describe the crack on

pavement images.

In CrackIT by Oliveira and Correia [13], unsupervised learning is performed using mean

and standard deviation to distinguish cracked and non-cracked blocks. This paper presents

an image detection and characterization processing algorithm for pavement crack detec-

tion toolbox, in MATLAB environment. This toolbox includes numbers of useful tools for

performance evaluation; provides solutions for two different crack detection algorithms,

block-based crack detection and pixel-based crack detection. Different classification strate-

gies can be used here. Then by using the training method of sample paradigm and the

results of initial selection of blocks, the image dataset is divided into training and test set.

The proposed toolbox can achieve good crack detection and classification results, but as

we discussed before, it is still not able to detect very fine cracks, especially because it is

difficult to distinguish cracking from raveling distresses.

Shi et al. [18] propose a new CrackForest method, which based on random structured

forests to characterize cracks. Texture features, standard deviations, and mean parameters

contained important information to distinguish crack blocks from non-crack blocks. For a

set of images, a corresponding set of binary images represent the manually marked crack

edges in the sketch. The image patch of the marked crack at the central pixel will be used

as the defect example. As shown in Figure 2.17.
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Figure 2.17: Extracted image patches and their hand-drawn contours.

Then for structured learning step, a state-of-art framework, random structured forests, is

used to train a crack detect model. Decision tree ft(x) classifies samples x < X by follow-

ing the branches of the tree until they reach the leaf nodes. At the same time, node j in the

tree is associated with a binary splitting function:

h(x, θj) ∈ (0, 1), (2.24)

with parameter θj . If h(x, θj) equals to 0, node j send x to left sub-tree, otherwise, node j

send x to right sub-tree. As shown in Figure 2.18, each tree is trained independently. Given

a node j and a training set Sj ⊂ X×Y , we would like to find θj of h(x, θj) that maximizes

information gain, or minimizes entropy.
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Figure 2.18: Path of an image patch.

Figure 2.19 shows an intuitive example.

Figure 2.19: Assigning label to each image patch.

CrackForest has better performance than Canny, CrackIT, CrackTree, and FFA. However,

those results are much more easily influenced by the extracted features. Also in complicated

pavement conditions, finding all effective features is very difficult.
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2.5 Deep Learning Methods

Deep learning methods have attracted significant attention due to their outstanding perfor-

mance, better than traditional machine learning methods. Nowadays, deep learning meth-

ods are successfully applied on crack detection.

Cha et al. [3] use a sliding window to segment the image into blocks, and CNN is used

to predict if a block contains cracks. The deep CNN contains four convolution layers, two

pooling layers, a ReLU layer, and a softmax layer. To avoid the mis-classification when the

cracks are on the edges of image, use a sliding window technique to scan the image space

twice. This network is not influenced by the image conditions.

Figure 2.20: Original image.

Figure 2.21: Detection result.
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Although this method has shown acceptable results in the detection of pavement defects,

the problem is it can only detect the patch level crack and doesn’t solve the pixel level

detection issue.

Fan et al. [7] propose a structured prediction based pavement crack detection method with

CNN. The network can learn the crack of small patch and then find the whole crack in

pixel-level. The network contains four convolution layers, two pooling layers, and three

fully connection layers. After training, the model can predict the crack structure of each

patch from the input image, then all results are combined to gather a probability output.

Finally, a decision threshold is set to obtain the final binary result.

This method, compared with other traditional defect detection methods, has shown superior

performance in all aspects and does not need pre-processing. However, it has so many

parameters that need to be set manually, and these parameters will have a great effect on

the overall performance.
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Chapter 3

Problem Statement

Pixel-level crack detection results are represented by binary images, black pixels are posi-

tive while white pixels are negative. As shown in following figures.

(a) Original image (b) Ground truth

Figure 3.1: Crack detection.

Figure 4.7 shows the result pixels corresponding to the original pixels. Due to the difference

of color, intensity, and other features between positive and negative pixels, a deep convolu-
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tional neural network can learn these features by giving the label. After training, the model

is able to distinguish non-crack and crack pixels from an original image automatically.

Figure 3.2: Original pixels.

Figure 3.3: Labeled pixels.

My goal is to detect and mark every pixel of cracks from input pavement image by using

a deep convolutional neural network. To determine the performance of the method, the

testing image will be processed to binary image and compare each pixel with the ground

truth.
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Chapter 4

Proposed Methods

In this chapter, we will introduce a method for pixel-level pavement crack detection us-

ing deep CNN and residual blocks. The entire process is divided into three operations.

Data preparation, which includes data relabeling as well as image processing; Network de-

scription, which introduces the design of the whole network and parameter tuning; Model

training and testing, which provides a crack detection model to identify the cracks on a

open source image dataset. As mentioned in the literature review, CNN can extract fea-

tures based on the provided label, and the results are superior in pixel level.
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4.1 Methodology

In order to achieve accurate, effective pavement crack detection, in this thesis, we model the

pavement crack detection problem to image feature extraction problem. Feature extraction

refers to extracting more advanced features from the original pixels, which can capture

the differences between different categories. We label the pixels in the original image into

non-crack and crack pixels, and we use the deep convolutional neural network to train a

classification model using the features of an image and its corresponding labels.

We design the network and use it to train a model, when the depth of the network increases,

the accuracy of the network should increase at the same time. However, one of the problems

of network depth increase is that these additional layers need parameter updating, using

the gradients propagate backward and forward. So the gradients of the advanced layers

will be very small when the network depth is increased. This means that the learning

of these layers is basically stagnant, which causes gradient disappearance. Additionally,

when the network is deeper, the parameter space is larger and the optimization problem

becomes more difficult. When Kaiming He and his team [8] propose a Residual Network,

he put forward a residual block algorithm, which makes training a deeper network possible

without reducing the accuracy. We adopt this residual block algorithm to train my model

in this thesis. Details will be discussed in the following sections.
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Figure 4.1: Flowchart of the proposed method.

4.2 Construction of Deep Learning Framework MXNet

In this thesis, we choose MXNet deep learning framework to build the training network.

MXNet is a fully functional, flexible, extensible framework for deep learning, which sup-

ports the most advanced technologies in the deep learning model, including convolutional

neural network (CNN). Functions in MXNet framework are very clear and easy to under-
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stand, and the framework implements the commonly used optimization algorithm to train

the model. Also, MXNet supports CPU and GPU model training methods, so the training

speed is faster than other deep learning frameworks. It provides outer interface for Python

and C language; integrates a variety of algorithms to facilitate user modification and de-

bugging at the same time. The system architecture of MXNet is shown in the following

Figure 4.2. From top to bottom, it indicates the embedding of various main languages,

the support of interfaces (matrix operations, symbolic expressions, distributed communica-

tion), the unified system implementation of the two programming modes, and the support

of each hardware. In generaral, MXNet is very suitable for our research topic, so we choose

MXNet as the framework of model training and testing in this thesis.

Figure 4.2: System architecture of MXNet.

MXnet supports Linux, Windows, and Mac operating systems. The main operating system

used in this thesis is Ubuntu 16.04. Next thing is to install CUDA and CUDNN. They

can be downloaded directly from the official website and installed according to the instruc-

tions. Note that when installing CUDA, we need to choose GPU hardware support and

corresponding NVIDIA driver, so that we can train the model on GPU later. Then, install

Mxnet by using pip module. First install the specified version of Python language and the
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latest version of PIP module, then use pip to install MXNet, select the specified version and

the corresponding CUDA version.

4.3 Data Preparation

We use a CFD dataset [18][6] containing 118 RGB images with a resolution of 320× 480

pixels. Images in this dataset are taken manually from Beijing, China. Hand labeled ground

truth is also provided and is used to measure the results. There are a lot of time the results

of training are influenced by labels. We use a unified label while other method are also

trained using same label, so we can compare the result with ground truth directly, without

considering the error caused by self-labeling. Images in this dataset contain noisy pixels

for example, shadows, oil spots, and water stains, very close to the reality of our lives. The

label for each image is stored in a Matlab file. As can be seen from the sample figures

below, the edge of the crack pixels are marked as one while other pixels are marked as zero

in the .mat file. Before training, we relabel the cracks in the image according to the label

information, transfer them to binary images, then we can use these relabeled binary images

as our ground truth.
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(a) Original image (b) Relabeled ground truth

Figure 4.3: Sample 1.

Figure 4.4: Location of sample 1 in .mat file.
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(a) Original image (b) relabeled ground truth

Figure 4.5: Sample 2.

Figure 4.6: location of sample 2 in .mat file.
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(a) original image (b) relabeled ground truth

Figure 4.7: Sample 3.

Figure 4.8: Location of sample 3 in .mat file.

In order to train a better learning model, hundreds of images are not enough. In addition,

a small dataset can easily lead to over-fitting of the model. A simple and effective way to

solve this problem is image segmentation. We use a 256×256 sliding window with overlap

32 pixels in horizontal direction and 64 pixels in vertical direction go over the whole image.

In this way, each image can be cut into 16 sub-images.
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Figure 4.9: Original image segmentation.

Figure 4.10: Ground truth segmentation.
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As mentioned earlier, we use the MXNet framework for network building and model train-

ing. When the MXNet framework is used for image-related projects, it reads image files by

combining .lst with images. First, we generate a .lst file, which includes the corresponding

list of image paths and labels. That is to say, we can control the changes of training set

and test set by maintaining this list. The advantages are flexible and space-saving. The

disadvantages are if the image format does not meet the requirements, it is easy to make

mistakes, and if the image folder corresponding to some image paths in the list is deleted,

all of these may report errors. Image data has two categories, so there are two sub-folders

for image files belonging to each category. Then we can simply use a im2rec.py tool pro-

vided by MXNet to generate the .lst file, and use this .lst file to create .rec file. So far, the

data preparation has been completed.

4.4 Model Training

The training process is composed of two processes, those being forward propagation and

backward propagation. After every forward and backward propagation, the parameters are

updated once, then the process is repeated with new parameters.

A Forward Propagation

Forward propagation is the process of calculating parameters of each layer from the

input, getting the output, and calculating the loss according to the difference between

calculated output and the real value. The process can be expressed by the equation

below:
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a2 = f(z2) = f(a1 ∗W 2 + b2), (4.1)

where f is the activation function, a and z is the output of each layer, W is the weight,

b is bias.

B Loss Function

When training networks, the loss function always needs to be determined. There are

many choices of loss function, the most commonly used one is the mean-square error

function (MSE). The loss function is:

Loss =
1

2

n∑
k=1

(zk − yk)2, (4.2)

where n is the number of the output, and usually it is the number of classes.

C Backward Propagation

Backward propagation is the process of calculating the loss function and using a stochas-

tic gradient descent algorithm to update the parameters. We use δ to indicate the error.

To calculate the error,

δL = f
′
(zL) • (y − aL), (4.3)

δl = (W l+1)T • f ′(zl), (4.4)

L is the last layer of the network, l is the index of other layers of the network. To update

the weight:
∂Loss

∂b
=
∂Loss

∂z

∂z

∂b
=
∂Loss

∂z
= δ, (4.5)

∆W l = −η∂Loss
∂W l

, (4.6)
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∂Loss

∂W l
= xl−1(δl)T , (4.7)

where η is the learning rate.

D Weight Initialization

When training the network, the weights should be assigned randomly at the beginning.

Obviously, randomly picked parameters cannot lead to good results. In the training

process, we usually start with a bad model and repeatedly update the weights, yielding

in the end a model with high accuracy. In parameter initialization, we usually initialize

the weight to a small random number, but cannot initialize to zero. Because the zero

weight will cause the parameters of back propagation to not be updated effectively, and

this would directly cause the training of the network to fail. There are several methods

for weight initialization, such as random generation of small random numbers, standard

initialization, and Xavier initialization.

Because of the limitation of data quantity and the increase of network layers and training

parameters, CNN is often prone to over-fitting. Earlier we discussed data augmentation,

a method for improving the quality of training samples, and overcoming over-fitting. In

addition to this method, we can also apply weight decay, like the L1 and L2 regularization

methods, or the dropout method, for preventing over-fitting.
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4.5 Network Description

4.5.1 Convolutional Neural Network

The simplest structure of a neural network consists of an input layer, hidden layers, and

an output layer. Each layer of network has multiple neurons. The upper layer of neurons

maps to the next layer of neurons through an activation function. Each neuron has a corre-

sponding weight, and the output is our classification category. The network is composed of

a large number of neurons connected to each other. Each neuron receives the input of the

linear combination of the front neurons. At first, it is simply linear-weighted. Then, a non-

linear activation function is added. After the non-linear transformation, the output is sent to

the next neuron. The connection between each two neurons represents a weight. Different

weights and activation functions will lead to different outputs of the neural network. When

a problem is complex, requires a lot of data and labels, as well as a lot of parameters, a tra-

ditional neural network is prone to over-fitting. Moreover, with the exponential increase of

parameters, the operational speed will become very slow. For example, we have an image

with size (256, 256, 1) that represents an image with one channel (where one represents a

gray scale image). So, our network needs 256 × 256 = 65536 neurons. If hidden layers

use 15 neurons, and there are two outputs, then to calculate the number of parameters we

simply need 65536× 15× 2 + 15 + 2. The number is too large, as well as the computation.

Convolutional neural network provides a better method for extracting feature parameters.

A typical CNN contains convolution layers, pooling layers, and fully connected layers.

A Convolution layer
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The convolution layer is used to extract the features. Each convolution kernel is a dif-

ferent feature extractor. (Notice that the depth of the input image should be the same as

that of the convolution kernel.) Our input image is the RGB image. The depth of the in-

put image is three, and the depth of the convolution kernel should be three respectively.

xi,j represents the element on ith row and jth column of the input, wm,n represents the

weight on mth row and nth column, wb is the bias, ai,j represents the element on ith

row and jth column of the output, f is the activation function, we use ReLU function

here.

The formula for calculating convolution is

ai,j = f(
∑
m

∑
n

wm,nxi+m,j+n + wb). (4.8)

The calculation process and result of convolution are shown in the following figures.

Here we set the bias equal to zero and stride is one.

Figure 4.11: Calculation process and result of convolution.

Stride can be set to a number greater than one. For example, when the stride is two, the
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calculation process and result is as follows:

Figure 4.12: Calculation process and result of convolution, stride 2.

When the stride is two, the output size becomes 2 × 2. With the increase of stride, the

output size of convolution decreases. The image size, kernel size, stride, and output size

after convolution are related. In fact, they satisfy the following relationships:

Woutput =
(W − F + 2P )

S
+ 1, (4.9)

whereW is the image size, F is the kernel size, S is stride, and P is zero padding, which

we will discuss later.

B Pooling layer

The main purpose of the pooling layer is down-sampling, which further reduces the

number of parameters by removing the unimportant samples from the output image

without affecting the image quality. Generally, there are two methods of pooling:

a Max pooling

Take the maximum value in the sliding window.
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b Average pooling

Take the average of all values in the sliding window.

We use a max pooling with a size of 2 × 2 and stride of one. If we take the maximum

value of each window, the size of the output will change from 3× 3 to 2× 2:

Woutput = (W − F ) + S. (4.10)

From the above example, there will be the following changes:

Figure 4.13: Calculation process and result of max pooling.

So far, the image size has reduced from 5 × 5 to 3 × 3 through the convolution layer

and 2 × 2 through the pooling layer. When we add more layers, the image size will

continually reduce. At this point, we will use a zero-padding method, which can help

us to ensure that the size of the image remains as original after each convolution or

pooling layer. For example, if we add zero padding to the above example and use a

3×3 convolution kernel, stride one, the size of the output image will be the same as that

of the input image, as shown in the following figure:
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Figure 4.14: Calculation process and result of add zero padding.

We want to keep the image size after the convolution and pooling layer, so we usually

choose the convolution kennel of 3 × 3 and zero padding of one, or the convolution

kernel of 5×5 and zero padding of two, so the original size of the image can be retained

after calculation.

C Fully connected layer The fully connection layer is the last layer of deep neural network,

which transfers all the output results’ values obtained through the previous layer into a

1×n array, and then calculates the classification probability by a softmax function. The

softmax function is shown below:

Pj =
eaj∑T
k=1 e

ak
, (4.11)

where T is the number of classes.

D Batch Normalization Batch Normalization is the normalization of each batch of data.

When we train a model, the parameters will be updated in each layer. The reason is

the updating of the training parameters in the previous layer will lead to the change of
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the data distribution in the later layer. For example, the input of the second layer of

the network is calculated by the parameters of the first layer and input. The parameters

of the first layer keep changing during the whole training process, and this will change

of the distribution of input in each later layer of the network. In convolutional neural

network, BN can be used to speed up model training and improve the accuracy of the

model.

E Activation function

Without the activation function, the output of each layer is a linear function of the previ-

ous input. That means no matter how many layers the neural network has, the output is

a linear combination of inputs. The activation function introduces non-linear factors to

neurons, so the neural network can approximate any non-linear function. Additionally,

the neural network can be applied to non-linear models.

We usually use ReLU as the activation function of neurons. The ReLU function is

actually a maximum functionthe output in neurons is:

f(x) = max(0, x). (4.12)
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Figure 4.15: ReLU activation function.

Krizhevsky et al. find that deep convolution neural networks with ReLU obtain faster

training speed than their equivalents with tanh because ReLU only needs a threshold to

get the activation value, instead of calculating a lot of complex operations.

Figure 4.16: ReLU(solid line) is faster than tanh(dashed line).
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4.5.2 Residual Block

From the previous section, we have discussed the basic structure of a convolutional neural

network and how convolution layers extract features. It is easy to feel that the more layers

a network has, the better the performance it will be; however, this is not true. Tests on mul-

tiple datasets show that simply adding more convolution layers does not make the trained

model better.

One method for optimizing the loss function when we train a network, is the gradient

descent method. This method updates weights until the gradient converges to zero. So

we need to calculate the gradient using back propagation. With the increase of layers, the

gradient tends to be zero. Once the gradient equals to zero, the gradient explosion problem

appears, which is one reason why the error rate of the network increases with the increase

of layers.

To solve the gradient explosion problem, Kaiming He and his team [8] propose the archi-

tecture of Deep Residual Learning by introducing a residual block.

Figure 4.17: Plain layer.
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Figure 4.18: Residual block.

the input is x, and we want the fitting result (output) H(x). In the use of residual block,

the output is F (x) + x, where F (x) is also the fitting result of x. As the gradient continues

to decrease to zero during the training process, simply add plain layers, the output, H(x),

tends to be zero. If this occurs we probably cannot get any fitting results through the whole

network in the end. If we use the residual block, while F (x) approaches to zero, the output

still has an identity x. By adding more layers we can get the same output as the input and

this, at a minimum does not hurt the performance of the network. Our goal is higher than

not just hurting the performance, for we want the network to extract more features. We can

imagine that, if the additional layers are able to learn some more useful information, we

will get a better model and a better testing result.

yi = h(xil) + F (xi,Wi), (4.13)

xi+1 = f(yi), (4.14)

xi represents the input of the ith residual unit and yi represents the output of the ith residual
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unit. h is an identical transformation, F is a residual function, and f is a ReLU function.

The performance of these two expressions is the same, but the experimental results of a

residual network show the training error of 34-layer plain network is larger than the 18-

layer network, but the training error of 34-layer residual network is better than the 18-layer

residual network.

4.5.3 Heatmap

A heatmap is a representation of data useing color to represent values. A heatmap provides

a convenient and intuitive way to visualize information in images. In the testing result, each

pixel has a score. The score is used to determine whether a pixel is a crack pixel or not. A

pixel with a higher score is likely to be a crack pixel and vice versa.

As shown in Figure 4.19, all pixels with a higher score are marked as red. From Figure

4.19(b), it can be seen that the region of the red pixels is basically the same as that of the

crack in the original image Figure 4.19(a). By using a heatmap, the cracks in the pavement

image can be directly distinguished.

We generate a heatmap to highlight the crack pixel. After that, we transfer the output

into grey scale images, because the ground truth are all gray scale images, so that we can

compare the output with the ground truth.

52



(a)

(b)

Figure 4.19: Heatmap example.

4.5.4 Proposed Network

The proposed network structure is shown below. The figures are generated by adapting the

code from GitHub.

The main network structure and parameters of each layer refer to Figure 4.20 and Table 4.1.

Input patches are a 256 × 256 RGB images. After each convolution layer, use the batch

normalization and ReLU activation function to optimize parameters and improve training

efficiency.
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Figure 4.20: Main network structure.

convolution layer three residual blocks convolution layer
filter 16 64 256
kernel (5× 5) (5× 5) (3× 3)
stride 1 1 1
padding 2 2 1

Table 4.1: Main network parameters.

For pavement crack detection, we not only need to detect how many defect pixels there are,

but also need to know where these defect pixels are located. As shown in Figure 4.21 and

Table 4.2, after the main network, add another convolution layer with one filter, kernel one,

stride one, then flatten it as the output. Output size is 256 × 256 = 65536, each output

indicates a pixel in the input image and a score to determine whether the pixel is a crack

pixel or not.
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Figure 4.21: Network structure part 1.

convolution layer
filter 1
kernel (1× 1)
stride 1
padding 0

Table 4.2: Network part 1 parameters.

For pavement crack classification, as shown in Figure 4.22, the classifier has three more

convolution layers, two max pooling layers, two fully connection layers.
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Figure 4.22: Network structure part 2.

If the testing result produces many false predictions, these will hurt the overall perfor-

mance. In order to fix this issue, train a classifier, which contains two classes, where one

indicates the non-crack patch and the other indicates the crack patch. If a predicted patch

contains crack pixels, but the classifier predicts a non-crack patch, the classifier will remove

this false alarm automatically.
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(a)

(b)

Figure 4.23: False alarm removal.

Figure 4.23 illustrates this process. The false predictions in the black bounding box are

removed.
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Chapter 5

Experiment

We randomly select 13 images as the testing image in the dataset and the other 103 images

as the training image. In the testing process, we write a Python script to read the testing

image and the trained model, set a threshold according to the score of each pixel. The pixel

whose score is higher than the threshold is considered as a crack pixel, otherwise the pixel

is a non-crack pixel. Finally we evaluate the test result with ground truth and compare the

performance with other existing methods.

5.1 Evaluation

Once we complete a machine learning model, we want to know the performance of the

model prediction. Accuracy can tell the learning effect of the model, but only accuracy
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is not enough. For this reason, we usually calculate the precision, recall and F1-score to

present how good the model is. F1-score can be regarded as a weighted average of model

precision and recall. Its maximum value is one, minimum value is zero. The larger the

value is, the better the model is. To calculate the F1-score, there are several definitions

need to be clarified in Table 5.1.

Positive Ground Truth Negative Ground Truth
True Prediction True Positive(TP) True Negative(TN)
False Prediction False Positive(FP) False Negative(FN)

Table 5.1: Definitions.

A Error

Error is the ratio of all incorrect predictions. Error is used to measure the level of

incorrect prediction.

Error =
FalsePredictions

AllPredictions
=

FP + FN

TP + TN + FP + FN
. (5.1)

B Accuracy

Accuracy is the ratio of all correct predictions. Accuracy is used to measure how good

the model is.

Accuracy =
TruePredictions

AllPredictions
=

TP + TN

TP + TN + FP + FN
. (5.2)

C Precision

Precision refers to the proportion of samples with a predicted value of true and a ground
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truth of positive in all samples with a predicted value of true.

Precision =
TP

TP + FP
. (5.3)

D Recall

Recall, also known as recall rate, refers to the proportion of samples with a predicted

value of true and a ground truth of positive in all samples with a ground truth of positive.

Recall =
TP

TP + FN
. (5.4)

E F1-score

F1-Score, also known as Balanced Score, is defined as the weighted average value of

precision and recall.

F1− score = 2× Precision×Recall
Precision+Recall

. (5.5)

Since that the ground truth is labeled manually and relabeled by myself, in the original

image there are transitional areas between crack and non-crack pixels. Under this consid-

eration, we accept within two pixels and five pixels vicinity.

5.2 Results and Analysis

The testing result on CFD is shown in Figure 5.2. The decision threshold is set to five,

and the result is shown as binary image, white area indicates the crack. From left to right:
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original image, ground truth, binary output.
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Figure 5.1: Crack detection result by proposed method.

From the binary images in Figure 5.2, it can be seen that this method can successfully

detect the crack on the pavement surface, and avoid the influence of the image itself, such

as poor illumination condition, noise and complex texture.

Precision Recall F1-score
5-pixel 0.929 0.892 0.904
2-pixel 0.882 0.858 0.868

Table 5.2: Analysis of precision, recall and F1-score.

Table 5.2 shows with different vicinity, the different precision, recall and F-1 score. With

two or five pixels vicinity, the evaluation result is pretty good.
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5.3 Comparison with Existing Methods

We compare the proposed method with six other existing methods. They are Canny, Crack-

Tree, CrackIT, FFA, CrackForest and MFCD. It can be seen clearly that the proposed

method has the best performance among all the methods.

Method Precision Recall F1-score
Canny 0.122 0.222 0.158
CrackTree 0.732 0.765 0.708
CrackIT 0.672 0.767 0.716
FFA 0.786 0.684 0.732
CrackForest 0.823 0.894 0.857
MFCD 0.899 0.895 0.880
Proposed Method with 5-pixels 0.929 0.892 0.904

Table 5.3: Precision, recall and F1-score of different methods.

Figure 5.2: Comparison of precision.
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Figure 5.3: Comparison of recall.

Figure 5.4: Comparison of F1-score.
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Chapter 6

Conclusion and Future Works

In this thesis, we review some existing algorithms and networks on pavement crack detec-

tion research field. We propose a deep neural network, in order to gather better detection

results, we adopt the residual block and use it in the network structure design. Using resid-

ual block allows me to add more layers in the training network, extract more feature from

input, without reducing the accuracy. Before training, all training images and testing im-

ages need to be pre-processed and relabeled. We use a sliding window to segment a whole

image into 16 sub-images, so that in the training process, the network can learn more useful

images. In the Experiment chapter, we compare my proposed method with other popular

and widely-used methods. The comparison results are presented in tables and graphs. It

should be clear that the proposed method in this thesis has better results under the same

pavement crack detection dataset.
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We only focus on the Detection at this time, and the proposed network can describe the

crack exactly, without considering the Classification problem. Although the network can be

used to classify the type of cracks, it still needs more labels that contain class information of

cracks such as longitude cracks, transverse cracks, and more other crack types. In addition,

we only apply my method on CFD, since CFD is the most commonly used dataset for

pavement crack detection right now. There are actually other datasets available. Because

the pavement surface conditions are very diverse and complex, it is also necessary to verify

whether the proposed method can be applied to various situations and whether it still has

good results. There still are more works need to be done.
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