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ABSTRACT

Developing efficient feature descriptors is very important in many computer vision

applications including biomedical image analysis. In the past two decades and before

the popularity of deep learning approaches in image classification, texture features

proved to be very effective to capture the gradient variation in the image. Following

the success of the Local Binary Pattern (LBP) descriptor, many variations of this

descriptor were introduced to further improve the ability of obtaining good classifi-

cation results. However, the problem of image classification gets more complicated

when the number of images increases as well as the number of classes. In this case,

more robust approaches must be used to address this problem.

In this thesis, we address the problem of analyzing biomedical images by using a

combination of local and deep features. First, we propose a novel descriptor that is

based on the motif Peano scan concept called Joint Motif Labels (JML). After that, we

combine the features extracted from the JML descriptor with two other descriptors

called Rotation Invariant Co-occurrence among Local Binary Patterns (RIC-LBP)

and Joint Adaptive Medina Binary Patterns (JAMBP). In addition, we construct

another descriptor called Motif Patterns encoded by RIC-LBP and use it in our

classification framework. We enrich the performance of our framework by combining

these local descriptors with features extracted from a pre-trained deep network called

VGG-19. Hence, the 4096 features of the Fully Connected ’fc7’ layer are extracted and

combined with the proposed local descriptors. Finally, we show that Random Forests

(RF) classifier can be used to obtain superior performance in the field of biomedical

image analysis. Testing was performed on two standard biomedical datasets and

another three standard texture datasets. Results show that our framework can beat

state-of-the-art accuracy on the biomedical image analysis and the combination of

local features produce promising results on the standard texture datasets.

xv



Chapter 1

Introduction

1.1 Texture definition and properties

Texture can be defined as a measure of the variation of a surface, shape, shadows,

absorption, and illumination of something. The visual appearance of an object may

consist of elements like sand or marble which give a robust definition to texture.

Another important factor that defines texture is the distance human beings use to

view texture regions. Different interpretations for texture regions can be obtained

at different distance degrees when perceived by our visual system. For example, if

we fix all the parameters mentioned previously that define texture like shape and

illumination and change the camera position to capture that texture region, we will

obtain different resultant image. This variability in image appearance of a texture

region makes it difficult in computer vision related problems like image classification.

It has been difficult to give a formal mathematical representation for texture

analysis problem. However, two approaches were used to tackle this issue in computer

vision: structured approach and statistical approach. Haralick et al. [5] divided the

input image into blocks and considered the statistical nature of texture by calculating

1



Figure 1.1: Properties of Texture in Image Analysis: fineness, smoothness, roughness,
granulation, randomness, periodic, lineation, mottled, irregular, hummocky. [Haralick
1992]

2



the probability distribution of a given block to extract 14 textural features. These

features represent texture characteristics like contrast and homogeneity as shown if

Figure 1.1. Tamura et al. [6] extracted six textural features similar to those visually

perceived by human visual system including coarseness, line-likeness, and regularity.

On the other hand, Rao et al. [7] extracted three high level texture features using

orthogonal dimensions as follows: repetitive vs. non-repetitive, non-directional with

high contrast vs. directional with low contrast, and simple granular textures vs.

fine-grained complex textures. Recently, Cimpoi et al. [8] introduced 47 selected

attributes that capture a wide range of visual properties of texture and introduced a

new describable texture dataset. They used a combination of global and deep features

in benchmarking texture challenging texture datasets. The techniques used in this

work represent a new state-of-the-art due to the powerful representation of texture

features using deep and global features.

In general, the texture classification problem involves two stages: feature extrac-

tion and classification. The majority of research is conducted on the first stage where

designing robust, efficient, and discriminative features is very important to ensure

a better classification accuracy. As a result, thorough research has been made to

extract such features with surveys include the work of Zhang et al. [9], Pietikainen et

al. [10], and more recently the work of Liu et al. [11] which evaluated the performance

of state-of-the-art LBP descriptors and deep learning based descriptors on different

texture benchmarks. For the classification stage, most local descriptors use the k-NN

classifier. However, for deep learning based descriptors, SVM classifier also proved to

be very robust and generated high results.

3



1.2 Motivation

Analyzing images based on texture features can benefit many applications related

to computer vision field including remote sensing, inspecting material and industrial

surface, texture synthesis, content-based image retrieval and biomedical image clas-

sification and segmentation. Other features, like color, might not be applicable to

the desired application. Moreover, color features are more sensitive to illumination

changes. On the other hand, texture features can be designed to overcome this issue

and other issues related to rotation and translation invariance. For decades, texture

analysis has been an active area of research. Many descriptors have been proposed,

however, improvements have always been slow as the problem gets more complicated

with large scale images that contain different types of texture patterns. In addition,

Many factors in the design of texture descriptors should be considered in order to

be useful and efficient to suit the desired application. These factors include the size

of the feature vector resulted from applying the descriptor in order to facilitate the

classification process and the speed of feature extraction which should be fast enough

to cope with the increase number of images in the given database. Given that many

local descriptors have been designed to extract texture features, new researches are

working to perform texture analysis using a combination of these descriptors.

Local Binary Pattern (LBP) is considered as one robust and efficient texture

descriptors that has been used widely in many applications in the past two decades.

The descriptor was first introduced in 1996 by Ojala et al. [12] following the work of

Harwood et al. [13] that is considered the base stone of LBP operator. LBP works

on gray-scale images and its strength comes from its ability to handle the rotation

element that can occur to texture patterns. Moreover, LBP is scalable and can be

extended using multi-scale analysis or to be joined by additional information from

the given image. Another local descriptor that was used successfully in content based

image retrieval is called Motif Cooccurrence Matrix (MCM) by Jhanwar et al. [1].
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This descriptor is based on space filling curves work [14, 15] and it is very efficient in

terms of computation speed and storage.

It is worth to mention that in 1990s statistical distribution of texture features in

the image region dominated the research in texture classification field. Representing

texture areas using statistic properties of the local textures led to the emergence of

”textons” with models such as Bag-of-Words (BoW) and Fisher Vector (FV) domi-

nating this area of research [16, 17, 18]. Other texture representation methods include

Gabor wavelets [19], Leung and Malik (LM) filters [20], MR8 filters [18], SIFT de-

scriptor [9], and Patch descriptors [21]. However, using these statistical methods is

not as easy as using raw pixel features descriptor like LBP. Creating the vocabulary

”textons” for these methods leads to consume more time that can be avoided by

using LBP. Moreover, LBP has other characteristics like its simplicity in terms of

implementation and use, flexibility, and its ability to handle rotation invariance in

the image efficiently.

Recently, deep learning methods showed superior performance in representing

texture for image classification and segmentation [22]. A key factor to the success of

CNN is the ability to handle large labeled datasets. The use of GPU made it easy for

CNN methods to generate and store millions of parameters (weights) that require a

very large memory in a considerable amount of time. In addition, researches showed

that CNN features extracted from pre-trained networks are able to transfer to other

different problems, including texture classification [23, 24, 25, 26, 27]. In general, pre-

trained and finetuned CNN models are the techniques used in texture classification

since they had a great influence in image understanding.
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1.3 Contributions

Following the success of LBP descriptor two decades ago, new robust extensions of the

basic LBP have been designed by exploiting many information from the image and

the relationship of the surrounding pixels. As a result, it is possible to exploit these

variations of LBP and combine them with other local descriptors like extensions of

MCM descriptor to create a robust framework for texture classification. In addition,

the new trend for image classification is to use deep learning techniques. Several

architectures were proposed recently and showed superior performance. However, for

the texture recognition problem, the successful approaches used transfer learning by

extracting the features from a pre-trained network like VGG-19 and use a classifier

like SVM to classify images and produce the final accuracy.

In this thesis, we propose to perform image classification using a combination

of multiple local descriptors and CNN features. First, a new descriptor is developed

based on the motif Peano scan concept. We extract twelve motif patterns from each 2

x 2 neighborhood of the original image. After that, three motif-labels are found based

on these motifs (Min, Med, and Max). Then each matrix is joined with additional

information extracted from the input image which are mean and variance to produce

a new 3D joint moment. Finally, all three moments are combined together to form the

final descriptor. The motif patterns generated from this process was further exploited

to create a second descriptor by encoding these patterns with one of the robust LBP

variations. Second, two robust extensions of LBP descriptor are used in a late fusion

mechanism along with the newly designed descriptors. Finally, a classifier is used

based on these local descriptors to perform classification and produce the result.

The framework of local descriptors proposed in this thesis was tested extensively

on five different datasets. Images from these databases represent bimodical and nature

images, the latter are used specifically to test the robustness of texture descriptors.

Biomedical image analysis was performed on two databases called Human Epithelial
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Type-2 (HEp-2) cell and specimen classification. The other three texture databases

are: KTH-TIPS-2a,b and DTD. The recently introduced DTD dataset represents a

big challenge with many classes and many images in each class which makes the use

of a single texture operator not sufficient to produce high classification accuracy. The

additional CNN features to the framework was only tested on both biomedical image

analysis and standard texture databases, however, we obtained superior peformance

with biomedical images while the performance is still developing on texture datasets.

In the classification stage, we have used three classifiers: SVM, k-NN, and Random

Forests (RF). We performed experiments with different kernels using SVM classifier

and with different number of trees using RF classifier. Our results indicated that

using a combination of local descriptors, we can generate better accuracy than using

a single local descriptor. In addition, combining our proposed features with deep

features extracted from the Fully Connected layer can produce superior result espe-

cially on HEp-2 specimen dataset. We demonstrate a comparison between our results

and previously obtained results using different techniques for feature extraction and

classification.

In addition to the main contribution in the machine learning field, I also par-

ticipated in two projects related to visual cloud computing and networking. These

projects where administrated by Professor Prasad Calyam and Dr. Dmitrii Chemodanov

and where published in top journals. Here is a description of these projects:

Edge Routing and IoT [28] (supported by NSF, Coulter Foundation, RFBR,

Army Research Lab) Applications that cater to the needs of disaster incident response

generate large amount of data and demand large computational resource access. Such

datasets are usually collected in real-time at the incident scenes using different In-

ternet of Things (IoT) devices. Hierarchical clouds, i.e., core and edge clouds, can

help these applications’ real-time data orchestration challenges as well as with their

IoT operations scalability, reliability and stability by overcoming infrastructure limi-
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tations at the ad-hoc wireless network edge. Edge routing is a crucial infrastructure

management orchestration mechanism for such systems. However, current Edge geo-

graphic routing (or greedy forwarding) approaches designed for early wireless ad-hoc

networks lack efficient solutions for disaster incident-supporting applications, given

the high-speed and low-latency data delivery that edge cloud gateways impose. In this

set of activities, we propose a novel Artificial Intelligent (AI)-augmented geographic

routing approach (AGRA), that relies on an area knowledge obtained from the satel-

lite imagery (available at the edge cloud) by applying deep learning. In particular,

we propose a stateless greedy forwarding algorithm that uses such an environment

learning to proactively avoid the local minimum problem by diverting traffic with

an algorithm that emulates electrostatic repulsive forces. We have shown that our

Greedy Forwarding achieves in the worst case a 3.291 path stretch approximation

bound with respect to the shortest path (without assuming presence of symmetrical

links or unit disk graphs), and thus, improves the application level throughput un-

der severe node failures and high mobility challenges of disaster response scenarios.

Initial results from this study was published in Elsevier FGCS and have been further

extended by the master student (who I mentored) by proposing a policy-based version

of AGRA that trade-offs energy and throughput for making offloading decisions (i.e.,

to an edge cloud or a core cloud) of the actual face recognition application.

Visual Cloud Computing for Incident-Supporting Situation Awareness [29]:

In the event of natural or man-made disasters, geospatial video analytics is valuable

to provide situational awareness that can be extremely helpful for first responders.

However, geospatial video analytics demands massive imagery/video data ‘collection’

from Internetof-Things (IoT) and their seamless ‘computation/consumption’ within

a geo-distributed (edge/core) cloud infrastructure in order to cater to user Quality

of Experience (QoE) expectations. Thus, the edge computing needs to be designed

with a reliable performance while interfacing with the core cloud to run computer
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vision algorithms. This is because infrastructure edges near locations generating

imagery/video content are rarely equipped with high-performance computation ca-

pabilities

In this area of research, we address challenges of interfacing edge and core cloud

computing within the geo-distributed infrastructure as a novel ‘function-centric com-

puting’ paradigm that brings new insights to computer vision, edge routing and

network virtualization areas. Specifically, we propose our new/improved solution

approaches based on function-centric computing for the two problems of: (i) high-

throughput data collection from IoT devices at the wireless edge, and (ii) seamless

data computation/consumption within the geo-distributed (edge/core) cloud infras-

tructure. To address (i), we present a novel deep learning-augmented geographic edge

routing that relies on physical area knowledge obtained from satellite imagery.
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Chapter 2

Literature Review

2.1 Local Binary Pattern Descriptor

The LBP descriptor is considered as one of the most powerful local descriptors. The

descriptor was first mentioned in [30]. Later on, the developed LBP descriptor in-

troduced in 2002 by Ojala et al. [31] focuses on image classification using gray-scale

images. The strength of LBP comes from its ability to encode a unique local binary

texture patterns called uniform patterns and the ability of designing rotation invariant

local features. These uniform patterns are essential since they represent the majority

of texture features in a specific neighborhood. In addition, this descriptor has the

ability to detect texture features at any resolution. Hence, it is also possible to en-

hance the classification performance using different image resolutions to extract LBP

features. The idea of extracting features using multi-resolution analysis assumes that

the features extracted from each resolution are independent. Then, we can combine

these descriptors in order to get higher classification accuracy. Another advantage

of using LBP is the simplicity of this descriptor which makes it computationally

inexpensive.
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Figure 2.1: Mechanism of LBP using a 3 x 3 image neighborhood. The original image
must be a gray-scale. Each center pixel of the 3 × 3 neighborhood is compared to
the surrounding pixels. Then, if the value of the neighborhood is greater than the
center pixel, it will be replaced by 1, otherwise, it will be replaced by 0. After that,
all neighborhood values after comparison are multiplied by the corresponding weight
values. Finally, the LBP value of the center pixel will be the summation of all weights.

The LBP operator works on a small neighborhood of the image, ex. 3 x 3. Two

steps are involved in the computation of LBP descriptor. The first step is to extract

the binary patterns from the circular neighborhood. The second step is to compute

the histogram distribution of these patterns. In the first step, the center pixel is used

to threshold the surrounding pixels in a small image patch as shown in Figure 2.1. To

put this in equations, assume Nc is the center pixel of an image, Np is the surrounding

pixels, then:

LBPp,r(Nc) =

p−1∑
p=0

g(Np −Nc)2
p (2.1)

g(x) =


0, if x < 0

1, if x ≥ 0
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where, p is the sampling points and r is the radius from the center pixel. g(x) is

the binary thresholding function.

After obtaining the signs of each LBP pattern from this thresholding process,

weights are given to each pattern as illustrated in Figure 2.1. The final LBP for the

given center pixel is the summation of all weights. In the implementation, LBPP,R

descriptor requires interpolation to obtain the diagonal values.

After computing the LBP for each circular neighborhood, rotation invariance is

necessary to ensure that any rotation to the input image will not affect the final binary

patterns. Early attempts on introducing rotation invariant features include general-

ized cooccurrence matrices by Davis et al. [32] and texture anisotropy by Chetverikov

et al. [33]. Many early methods relied on transforming a well defined noninvariant

approach to a successful invariant approach. For example, the Circular Simultaneous

Autoregressive (CSAR) technique introduced by Kashyap and Khotanzad [34], the

Multiresolution Simultaneous Autoregressive (MRSAR) model by Mao and Jain [35],

and the works of Wu and Wei [36] and Cohen et al. [37]. For filtering based ap-

proaches like Gabor wavelets, two approaches were used in this case: either the input

image is filtered first and invariant features are calculated or the variant features are

converted into rotation invariant features [38, 39, 40, 41, 42, 43]. Other methods

joined invariance by making use of both spatial scale and rotation [44, 37, 42, 45, 46].

In [47] Wang and Healey were the first to introduce rotation invariance with respect

to three main image properties: spatial scale, rotation, and grey scale.

The LBP operator introduced in 2002 by Ojala et al. [31] focuses on grey-scale

and rotation invariant texture classification. A computationally simple approach was

introduced which is robust to grey-scale variations and can handle a wide range of

rotated textures efficiently. This approach is based on the local binary patterns. Since

LBPP,R produces 2P output values, when the image is rotated at any angle, the grey

values will move along the perimeter of the circle around the given LBP. In this case,
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rotating a LBP will result in different LBP values. The only patterns that will not

be affected by rotation are the ones that are either have all 0s or 1s binary patterns.

To eliminate this effect, a unique identifier is assigned to each rotation invariant

LBP in order to perform a circular right shift depending on the P-bit a specific

number of times. In the case of P = 8, that is, LBP ri
8,R can have 36 different values.

During experience, it was shown that achieving only rotation invariance is not enough

to discriminate texture features in the given image. However, certain local binary

patterns are able to provide such discrimination and they represent the majority of

features in a given 3 x 3 neighborhood patch. These patterns are called ”uniform”

and contain only very few spatial transition (between 0/1). LBP riu2
8,R operator means

that the rotation invariant used is of type ”uniform” with at most 2 transitions among

the circular patterns. Finally, the histogram of the pattern labels is calculated and

used in texture analysis.

2.1.1 Variations of LBP Descriptor

Following the success of the LBP descriptor in recognizing texture features. Many

variations of the original operator were introduced to further improve the classifica-

tion performance of the original descriptor. Since the basic form of LBP includes

only calculating the difference between the center pixel and the surrounding pixels

and then computing the histogram of the resultant patterns, additional information

can be used and joined or combined with the LBP descriptor to generate a more ro-

bust operator especially for difficult texture recognition problems. In addition, many

researches found it easy to build on the basic LBP descriptor considering its simplicity

in terms of implementation, its ability to handle illumination and rotation changes

of the given images, and the advantage it has over other methods like Bag of Visual

Words (BoVW) where no dictionary is required to use the LBP model. We will dis-

cuss the most important and well known variations since our framework of texture
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classification uses some of these state-of-the-art variations.

Completed Local Binary Pattern (CLBP): CLBP descriptor is considered

one of the powerful variations of the original LBP operator. It was introduced by Guo

et al. [48] in 2010 and many other local operators that followed, used the mechanism

introduced by CLBP. The CLBP descriptor starts by creating three local descriptors:

CLBP Sign (CLBP S), CLBP Magnitude (CLBP M), and CLBP Center (CLBP C).

CLBP S and CLBP M simply are derived by calculating the absolute difference be-

tween the center pixel and the surrounding pixels in a given neighborhood like 3 x 3.

This descriptor is more efficient and robust to illumination changes since the original

LBP uses only the sign vector not incorporating the magnitude. CLBP C uses a

global thresholding for all the grey pixels of the original input image by comparing

them to the mean pixel values of the entire image. A CLBP framework is then cre-

ated by combining these three local descriptors to form the final feature map. Two

mechanisms were used to perform this combination: joint combination or concate-

nation. The first method is similar to 2-D joint histogram, instead, we can create a

3-D joint histogram of the three descriptors and the final framework will be denoted

by ”CLBP S/M/C”. The second way is by combining two forms of these descrip-

tors, like ”CLBP S/C” or ”CLBP M/C” and the final histogram is concatenated

with ”CLBP M” or ”CLBP S” to generate ”CLBP M S/C” or ”CLBP S M/C”. Af-

ter generating the final histogram, a classifier is used like nearest neighbor (NN) to

perform image classification based on the CLBP extracted features.

Completed Local Binary Count (CLBC): CLBC descriptor was proposed

in 2012 by Zhao et al. [49]. The idea behind composing CLBP descriptor is similar

to CLBP framework descriptor. However, CLBP depends on LBP basic descriptor

while CLBC depends on a novel descriptor called Local Binary Count (LBC). In

LBC, instead of converting each image pixel into a binary pattern, LBC only counts

the number of 1’s in the binary neighborhood after thresholding the center pixel
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and the surrounding pixels of the given image patch. Finally, similar to CLBP, a

CLBC framework is formulated using the three proposed descriptors as in CLBP:

CLBC-Sign, CLBC-Magnitude, CLBC-Center and join them using the two methods

proposed in CLBP descriptor. The advantage of CLBC is that it is computationally

less expensive in the classification process. In addition, CLBC classification perfor-

mance is shown to be slightly better than CLPB descriptor.

discriminative Completed Local Binary Pattern (disCLBP): In 2012, Guo

et al. proposed a new learning descriptor composed of three-layered model [50]. This

model is general and can be incorporated with other variations of LBP like CLBP

and be used to recognize texture features. The basic idea behind this descriptor is to

use an efficient feature selection model depending on the given texture classes. The

three layered model convey feature robustness, discriminative power, and represen-

tation capability. The first property is achieved by learning a model with subset of

features that are frequently appeared in the image. The second property is achieved

by selecting the dominant patterns in each texture class in order to remove outlier

patterns in each image. The third property is achieved by constructing a histogram

of the union of all dominant patterns and this histogram will serve as vector repre-

senting the given image. The NN classifier is used after extracting the features to

perform image classification.

Completed Local Binary Pattern Histogram Fourier Features (CLBPHF):

LBP-HF descriptor was introduced in 2009 by Ahonen et al. [51]. In LBP-HF, the

rotation invariant property of the extracted features is defined for the whole region

to be described. Moreover, LBP-HF is a highly discriminative descriptor. Discrete

Fourier Transform is used to construct such features which are computed along the

input histogram rows. The NN classifier was used to perform texture and material

classification along with applying this descriptor on a face recognition database.

Local Binary Pattern Variance (LBPV): In 2010, Guo et al. proposed a new
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rotation invariant descriptor called LBPV [52]. Since LBP is a local operator, it has

a disadvantage of losing global spatial information. In LBPV, the global variance

for each local region is found after finding the LBP code of that region. Then,

LBP patterns are joined with variance by finding the summation for each pattern’s

corresponding variance value as shown in Figure 2.2.

Figure 2.2: Our Illustration of the Mechanism of LBPV Descriptor. After finding
the LBP patterns in the gray-scale image and the global variance for each local
region, LBP patterns and the variance are joined by computing the summation of the
corresponding variance for each LBP.

The advantage of this descriptor is that it assigns weights for each binary pattern.

Since high frequency texture regions have higher variances, this will give LBPV higher

discrimination ability over texture regions.

Local Ternary Pattern (LTP): LTP was proposed by Tan and Triggs in

2010 [53]. The main difference between LBP and LTP is that the latter is less sen-

sitive to noise and provides more discrimination for the texture recognition problem.

LTP uses a threshold to generate three values for the pixel difference in the given

image. The threshold value is a choice of the user in LTP which makes it resistant to

noise. LTP was used successfully along with other descriptors to solve face recognition

16



problem under varying lightning conditions.

Novel Extended Local Binary Pattern (NELBP): NELBP descriptor was

introduced by Zhou et al. in 2008 [54]. The main advantage of NELBP over the

original LBP is that it makes use of the nonuniform patterns of texture features based

on their occurrence probability. Based on a similarity measure, NELBP assigns each

nonuniform pattern to the corresponding uniform pattern. Rotation invariance of

the new descriptor was also considered and the descriptor proved to be efficient and

robust against noisy pixels in the image. However, NELBP has a shortcoming of

not providing a good classification accuracy when applied to a smaller neighborhood

compared to LBP. Authors of NELBP justifies this disadvantage by stating that

nonuniform texture patterns have small frequency of occurrences in the image.

Pairwise Rotation Invariant Cooccurrence Local Binary Pattern (PRI-

CoLBP): PRICoLBP descriptor was introduced by Qi et al. in 2014 [55]. The

new descriptor is based on the cooccurrence features concept but with better robust-

ness and less sensitivity to geometric variations. The design of the new features also

involves the rotation invairance, multi-scale, and multi-channel information. PRI-

CoLBP was evaluated extensively on nine different benchmarks and applied to six

different applications including: texture, flower, material, food, leaf, and scene clas-

sification. The new features proved to be effective and powerful and provide a good

discrimination and robustness tradeoff. One important property of PRICoLBP de-

scriptor which allows this superior classification performance is the size of the feature

vector. PRICoLBP has a feature vector of size 3540 bins. When color is added to

further improve the performance, the total dimension of the descriptor is 10620. In

the design of our features, we created two descriptors and considered all the possi-

bilities to extract and make use of all the texture features in the image in order to

improve the classification accuracy.

Joint-scale LBP (JLBP): JLBP descriptor was introducd by Wu et al. in
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2017 [56]. A new method of encoding texture patterns is introduced where not only

micro-texture regions are described, but also, the macro-textures of a larger region

making use of the joint multiple scales property for extracting the texture features. To

further enhance the power of JLBP, a Completed modeling CJLBP of the descriptor

was also used the same way as in CLBP [48] descriptor. Evaluation of JLBP descriptor

on benchmark texture databases using the NN classifier proved that the new method

of joining multi-scale LBP patterns are very efficient and can improve the classification

accuracy.

Binary Rotation Invariant and Noise Tolerant Texture descriptor (BRINT):

In 2014, Liu et al. proposed a very robust, combact, and fast to built descriptor

called BRINT [57]. BRINT uses a combination of three different operators: BRINT

S, BRINT M and BRINT C. In addition, BRINT not only uses rotation invariant

”uniform” patterns as in CLBP, but, it uses all of the rotation invariant patterns.

The pixels in BRINT are sampled in a circular neighborhood in a way that keeps the

number of bins in a single-scale LBP histogram constant and small. BRINT does not

require any dictionary building or tuning parameters such as the methods that rely on

clustering. Extensive experiments on standard databases show that the performance

of BRINT is both superior and robust in the presence of noise.

Dominant Rotated Local Binary Patterns (DRLBP): DRLBP was intro-

duced by Mehta et al. in 2016 [58]. The descriptor overcomes the problem of fixed

weights arrangements in the original LBP descriptor. The rotation invariance in

DRLBP is achieved by calculating the operator with respect to a fast computed ref-

erence in a local neighborhood. DRLBP not just preserves the complete structural

information, but also makes use of the magnitude information neglected by LBP.

However, the calculation of the descriptor involves learning a dictionary of the most

frequently occurring patterns from the given training images. Experimental results

show that the descriptor performs better than most of the state-of-the-art LBP vari-
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ations using NN classifier on standard texture databases.

Rotation Invariant co-occurrence among Local Binary Patterns (RIC-

LBP): In 2014, Nosaka et al. proposed a new variation of LBP descriptor called

RIC-LBP [2]. RIC-LBP was introduced to classify HEp-2 cell images. It makes

use of the relationships among the binary patterns by finding the co-occurrences

patterns among the histogram features. RIC-LBP will be discussed in details when

we introduce our framework since we benefit from these features in both texture

classification databases and HEp-2 cell and specimen classification.

Joint adaptive median binary patterns (JAMBP): JAMBP descriptor was

proposed for texture classification in 2015 by Hafiane et al. [3]. The descriptor is based

on the adaptive median filter, where the center pixel in a specific image neighborhood

is replaced with the median value of that region. Hence, a new descriptor is created

called Adaptive Medina Binary Pattern (AMBP) which is robust against noise by

definition. Moreover, in order to enhance the feature extraction power of AMBP,

additional information are jointly combined with AMBP features. These information

represent the mean of the image and the window size used around each pixel to

compute the median value. More details on how this descriptor operates will be

discussed in details when we introduce our framework for texture classification.

Extended Local Binary Pattern (ELBP) ELBP descriptor was proposed

in 2012 by Liu et al. [59]. ELBP descriptor is inspired by LBP descriptor where

four different descriptors are used to perform texture classification. The features

of these descriptors are both pixel intensities and differences extracted from local

neighborhoods. Two of these four descriptors represent the intensity-based features

of the central pixel and the neighbor pixels. While the other two descriptors represent

difference-based features which are the radial-difference and the angular-difference.

ELBP descriptor is easy to implement and requires no learning step or the use of

texton dictionary. The descriptor proved to be efficient for texture classification task
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using standard texture databases.

Dominant Local Binary Pattern (DLBP): DLBP descriptor was introduced

in 2009 by liao et al. [60]. The features of DLBP descriptor involve two sets: the

dominant LBP features in the texture images and additional features which repre-

sent the responses of the circularly symmetric Gabor filter. The first set of features

can be understood as the most frequent features in the image to describe textu-

ral information. While the Gabor filter responses features represent global textural

information extracted from the image. Thorough experiments on standard texture

databases demonstrate that DLBP descriptor achieves high accuracy compared to

state-of-the-art descriptors.

2.2 Texture Features Extraction using Motif Cooc-

currence Matrix

2.2.1 Space Filling Curve Concept

In mathematics, space filling curve concept can be defined as a path of a continuously

moving point in 2 (or higher) dimensions as illustrated in Figure 2.3. Hence, the

range of this curve contains the entire 2-dimension square unit (or more in higher

dimensions). Since Giuseppe Peano was the first to discover such continuous curve,

space filling curves now are referred to as Peano curves or Peano scans [61].

The purpose of Peano when he first introduced this space filling concept was to

create a continuous mapping from the unit interval (in mathematics, unit interval is

the closed interval [0,1]) onto the unit square (in mathematics, unit square is a square

with sides have the value of 1). Peano wanted to prove such a mapping does really ex-

ist and it is continuous. Peano’s curve was further extended to higher dimensions and

to continuous curves without endpoints. The Peano scans are computed recursively
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using spatially motifs defined over 2 x 2 grid. Seetharaman et al. [62] constructed

a Z-tree to represent 2-D images which is also computed recursively. They showed

that Peano scanning is a good alternative to rasterization in transforming the image

into a 1-D vector since it is less computationally expensive and leads to a better

performance.

Figure 2.3: Three iterations of the Peano scan construction.

In order to find the optimal or the best effective Peano scan that can traverse the

image, Jhanwar et al. searched for that scan and used a specific modulation system

called Differential Pulse Code Modulation (DPCM) [1]. The DPCM system is used

to transmit a rasterized image (In computer graphics, a rater image is a specific data

structure called dot matrix and it is used to represent a grid of pixels or point of color).

Hence, Jhanwar et al. found that the compression system would be very effective if

the image is made of large number of constant valued streaks or runs. However, there

are some limitations in case the image is rotated by a degree in a direction normal to

the image plane leading the overall compression to be dropped sharply. The reason

is because the rasterizer is unable to scan the data in all directions.

Scanning image pixels locally should be performed such that it minimizes the

variation of intensities along the whole line of scan. As a results Jhanwar et al. used

one of the six primitive scans as shown in Figure 2.4 to scan the entire image based

on a 2 x 2 neighborhood patches. The impact of using a 2 x 2 optimal scan is to
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reduce the abrupt variation in intensities along the scan. In this case, the image is to

be transformed into a newer form in which the spectral content is concentrated on a

narrawer zone.

Figure 2.4: The six distinctive motif scans used to traverse a 2×2 image neighborhood.

2.2.2 Motif Cooccurrence Matrix (MCM) [1]

Jhanwar et al. benefited from the space filling curve concept and derived a new texture

features that traverses the input image in a specific order through a cooccurrence

measure using a set of six Peano scans at a specific distance. The choice of a particular

motif over any 2 × 2 grid depends on the local texture occupying the grid. Then, a

statistical feature such as the cooccurrence matrix provides a rich description of the

low level semantics. Hence, the motif cooccurrence matrix (MCM) can be assumed

to have captured the local statistics in a compact way so that the images can be

compared based on their respective MCMs.

Moreover, translational invariance was also achieved to make sure the extracted

features are invariant to any rotation or pixel shifting. Instead of calculating a single

MCM feature vector, four feature vectors are extracted for each image. They corre-

spond to the MCMs corresponding to the original image, and the images shifted by

one pixel horizontally, vertically and diagonally. In this case the spatial relationship

of the motif images is preserved in one of the four feature vectors.
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2.2.3 Variations of MCM

Modified Color Motif Co-occurrence Matrix MCMCM: MCMCM descriptor

was proposed by Subrahamanyam et al. in 2013 for image indexing and retrieval [63].

The proposed method collects the inter-correlation between the red, green, and blue

color planes which is absent in color motif co-occurrence matrix. Hence, nine color

motifs from the available three color motifs (RGB) are found by considering inter-

correlation between RGB color planes. In addition, the proposed method integrates

the MCMCM and difference between the pixels of a scan pattern (DBPSP) features

with equal weights in contrast to the system which integrates motif co-occurrence ma-

trix, DBPSP, and color histogram with k-mean features with optimized weights. The

performance of the proposed method was tested and showed high accuracy compared

to other methods.

Adaptive Motifs Co-occurrence Matrix (AMCOM): AMCOM descriptor

was proposed in 2011 by Lin et al [64] for image retrieval application. Moreover,

another descriptor was also proposed which is based on the motif Peano scan concept

called: Gradient Histogram for Adaptive Motifs (GHAM). The AMCOM calculates

the distribution within the 2D motifs of scan pattern matrix for Adaptive Motifs

of Pattern Block (AMPB). Then, the probability of the co-occurrence of the motif

pattern block is used as an image feature. After GHAM is computed, the histogram

of the mean gradient of the motifs of pattern block is adopted as an image feature.

GHAM estimates the mean gradient of a pattern block to describe the texture of the

pattern block.

Lin et al. proposed a framework of four image features for efficient content-

based image retrieval [65]. The first and second image features are based on color

and texture features, respectively called Color Co-occurrence Matrix (CCM) and

Difference Between Pixels of Scan Pattern (DBPSP) in their work. The third image

feature is based on color distribution, called color histogram for K-mean (CHKM). A
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CCM can be obtained by presenting each image as four matrices of motif patterns,

then, the attribute of the original image will be calculated with these motif patterns.

CCM could be thought as a representation of the direction of features but not the

complexity. On the other hand, DBPSP can determine the complexity by calculating

the difference among all pixels within the six motif patterns derived from the image.

Directional Local Motif XoR Patterns (DLMXoRPs): DLMXoRPs de-

scriptor was proposed by Vipparthi et al. in 2014 for image retrieval [66]. The

DLMXoRP presents a novel technique for the calculation of motif using 1× 3 grids.

The proposed motif 1×3 representation is having a flexible structure; hence it is able

to extract all directional information. This flexibility is not present in the existing

2 × 2 motif. Furthermore, the XoR operation is performed on the transformed new

motif images which are not present in the literature (local binary patterns (LBP) and

motif co-occurrence matrix (MCM)).

Color Based Multi-directional Local Motif XoR Patterns (CMDLMX-

oRP): CMDLMXoRP was introduced by Rao et al. in 2015 for image retrieval [67].

Here, the joint correlation between directional smart grid is proposed. First, the

required directional information is calculated. In the next stage, smart grid XOR

patterns are applied to generate transformed smartgrid images in four directions.

This entire operation is implemented on ‘V’ color space of HSV color plane.

Vipparthi et al. presented a novel method for image retrieval based on the motif

Peano scan concept called: Multi-Joint Histogram based Modelling (MJHM) [68].

Here, the joint correlation histograms are constructed between the motif and texton

maps. Firstly, the quantized image is divided into non-overlapping 2× 2 grids. Then

each grid is replaced by a scan motif and texton values to construct the transformed

motif and texton maps (images) respectively. The motif transformed map minimizes

the local gradient and texton transformed map identifies the equality of gray-scales

while traversing the 2 × 2 grid. Finally, the correlation histograms are constructed
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between the transformed motif and texton maps.

Dual Ddirectional Multi-Motif XoR Pattern (DDMMXoRP): DDMMX-

oRP was proposed by Vipparthi et al. in 2015 for image indexing and retrieval [69].

First, a new 2×2 standard grid is introduced at distance two and four 1×3 smart grids

along dual directions which are not present in existing motif representation. This en-

tire operation is implemented on ‘V’ color space of HSV color plane. Furthermore,

the XOR operation is performed on the transformed new motif images.

2.3 Statistical Methods

The previous two sections focused on both LBP and MCM descriptors since our

framework for image classification is based on these descriptors. However, there are

also other powerful descriptors which proved to be robust to extract and classify

texture features.

Scale Invariant Feature Transform (SIFT): SIFT was proposed by Lowe et

al. in 1999 and was used successfully for object recognition [70]. SIFT descriptor

transforms an image into a large collection of local feature vectors, each of which is

invariant to image translation, scaling, and rotation. Moreover, illumination changes

are also handled efficiently. SIFT uses a staged filtering approach where key points

are identified at the first stage by looking for locations that are maxima or minima of

a difference of Gaussian function. Each point is used to generate a feature vector that

describes the local image region sampled relative to its scale-space coordinate frame.

SIFT proved to be very powerful to classify images based on texture features where

eight orientation planes are computed first from the image. Then, the gradient image

is sampled over a 4 × 4 grid of locations resulting in a 4 × 4 × 8 = 128 dimensional

feature vector for each region.

Bag of Visual Words (BoVW): In the bag of visual words image classification
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model, the feature vectors generated by the keypoint descriptor are grouped into

a set of given number of clusters using a vector quantization algorithm such as K-

Means [71]. This process forms a codebook which represents the visual features

extracted from the training set. The next step consists of representing each image

into a histogram of codewords, by first applying the keypoint detector and descriptor

to every training image, and then matching every keypoint with those in the codebook.

The result is a histogram where the bins correspond to the quantized keypoints in

the codebook, also known as codewords, and the count of every bin corresponds to

the number of times the corresponding codeword matches a keypoint in the given

image. In this way, an image can be represented by a histogram of codewords. The

histograms of the training images can then be used to learn a classification model.

Fisher Vector (FV): FV representation of an image is considered as an alterna-

tive to the popular Bag-of-Visual words (BoV) encoding technique commonly adopted

for the image classification task [17]. Within the Fisher Vector framework, images

are characterized by first extracting a set of low-level patch descriptors and then

computing their deviations from a “universal” generative model, i.e. a probabilistic

visual vocabulary learned offline from a large set of samples. This characterization

is given as a gradient vector w.r.t. the parameters of the model, which we choose to

be a Gaussian Mixture with diagonal covariances. Compared to the BoV, the Fisher

Vector offers a more complete representation of the sample set, as it encodes not only

the (probabilistic) count of occurrences but also higher order statistics related to its

distribution w.r.t. the words in the vocabulary. The better use of the information

provided by the model translates also into a more efficient representation, since much

smaller vocabularies are required in order to achieve a given performance.

Leung and Malik Filters (LM): LM filters are a statistical approach that is

based on texton concept and were introduced by Varma and Zisserman in 2005 [18].

The LM set consists of 48 filters, partitioned as follows: first and second derivatives of
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Gaussians at 6 orientations and 3 scales making a total of 36; 8 Laplacian of Gaussian

filters; and 4 Gaussians. The scale of the filters range between σ = 1 and σ = 10

pixels. The classification stage of texton methods involves two stages: learning and

classification stages. In the learning stage, training images are convolved with a filter

bank to generate filter responses. Exemplar filter responses are chosen as textons

via K-Means clustering and are used to label each filter response, and thereby every

pixel, in the training images. The histogram of texton frequencies is then used to

form models corresponding to the training images. In the classification stage, the

same procedure is followed to build the histogram corresponding to the novel image.

The histogram is then compared with the models learned during training and is

classified on the basis of the comparison.

MR8 Filters [21]: The MR8 filter bank consists of 38 filters, however, only

8 filter responses are considered. These bank of filters include filters at multiple

orientations and their outputs are collapsed by recording only the maximum filter

response among all orientations. As a result, these filters are able to achieve rotation

invariance. The components of these filters include both Gaussian and Laplacian of

Gaussian filters with different orientations and scales. MR8 filters can help to reduce

the effect of rotation invariance filters which do not respond efficiently to oriented

image patches that leads to providing poor features. In order to do this, MR8 provide

both isotropic and anisotropic filters. Moreover, MR8 filters are capable of recording

the angle of the maximum response which leads to compute higher order co-occurrence

statistics orientation and provide better texture discrimination.

Gray-Level Co-occurrence Matrix (GLCM): GLCM was proposed by Haral-

ick et al in 1973 [5] and is considered as one of the earliest methods for texture feature

extraction. The GLCM functions characterize the texture of an image by calculating

how often pairs of pixel with specific values and in a specified spatial relationship oc-

cur in an image. GLCM descriptor considers different directions to analyze the image
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including: horizontal, vertical, and diagonal direction. For example, in order to build

a traditional Co-occurrence matrix, we can assume I to be a given grey scale image.

Let M be the total number of grey levels in the image. The Grey Level Co-occurrence

Matrix defined by Haralick is a square matrix G of order M, where the (k,m)th entry

of G represents the number of occasions a pixel with intensity k is adjacent to a pixel

with intensity m. The normalized co-occurrence matrix is obtained by dividing each

element of G by the number of co-occurrence pairs in G.

2.4 Deep Learning Methods for Texture Represen-

tation

Deep learning is a division of machine learning methods based on learning data rep-

resentations in which learning can be supervised or unsupervised [72, 73]. Many

applications benefited from deep learning including speech recognition, biomedical

image analysis, natural language processing, social network filtering, audio recogni-

tion, machine translation, bioinformatics. The popularity of deep learning in recent

years came from its ability to generate accurate results and sometimes outperform

human experts in certain fields. In general, neural networks are composed of several

layers which are made of nodes. Inside nodes, many computations happen where it

accepts input from the data along with some parameters like weights which can be

thought as assigning significance to these inputs for the task under learning. After

that, these input-weight data are summed and the sum is passed through an ac-

tivation function, to determine whether and to what extent that signal progresses

further through the network to affect the ultimate outcome, for example, an act of

classification.

The main property that distinguishes deep learning networks from other neural

networks with signle layers is the depth. In other words, the number of node layers
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Figure 2.5: A node layer is a row of switches that turn on or off as the input is fed
through the net. Starting from an initial input layer that receives your data, each
layer’s output is simultaneously the subsequent layer’s input.

through which multi-step process of pattern recognition operations will be conducted

on data. At the beginning, neural networks such as the first perceptrons were com-

posed of one input and one output layer, and at most one hidden layer in between [74].

If the network was composed of more than three layers (including input and output),

it is qualified as ”deep” learning.

During training of each layer of nodes in deep learning, a distinct set of features

is used based on the output of the previous layer as shown in Figure 2.5. In addition,

neural network recombine and aggregate features from previous layers, as a result,

more complex features can be recognized as we go further in the network. This prop-

erty of deep learning makes it capable of handling high dimensional and very large

datasets with billions of parameters that pass through the network layers. A simple

example can be seen in clustering a million images according to their similarities us-

ing the deep learning technique [75]. Moreover, deep learning can be used in other

unsupervised learning tasks like clustering emails or news articles. Voice messages

can also be clustered in a similar manner. Hence, data might cluster around anoma-

lous/dangerous behavior and normal/healthy behavior which will provide insight into
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users’ health and habits [76].

The steps involved in training a neural network are [77]:

� Initialize weights and biases: The weights and biases can be initialized to

zeros, in this case, the model will be linear. Hence, the derivative with respect

to loss function will be the same for every weight. In addition, hidden unites

will be symmetric for all iterations during training. In general, setting biases to

zeros will not cause any issue. Another way to initialize weights is by considering

random values following a standard normal distribution. In this case, weights

can be initialized close to zero which will help in breaking symmetry at every

neuron.

� Forward propagation: In deep neural network, the input data progresses in

the forward direction through the network. Using the input X, weights W and

biases b, for every layer we compute y. At the final layer, we compute a special

function f(y(L−1)) which could be a sigmoid, softmax or linear function of A(L−1)

and this gives the prediction ŷ.

� Compute the loss function (error function or cost function): This is a

function of the actual label y and predicted label ŷ. It is used to indicate how

far off our predictions are from the actual target. Finally, our objective is to

minimize this loss function in order to get better prediction accuracy.

LossFunction = 1/2(ŷ − y)2 (2.2)

� Backward Propagation: In this step, the gradients of the loss function f(y, ŷ)

will be calculated with respect to A, W , and b and will be called dA, dW and

db. These gradients will be used to update the values of the parameters from

the last layer to the first layer. Steps 2 –4 are repeated for n iterations/epochs
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until we feel the loss function is minimized enough without overfitting the train

data.

2.4.1 Components of Convolutional Neural Networks

In order to understand the components of modern CNNs, we selected a well known

architecture called AlexNet [22] which was introduced in 2012 and achieved high

performance on ILSVRC-2012 competition compared to other techniques. Authors

managed to train AlexNet to classify 1.2 million high-resolution images provided by

the competition into 1000 different classes. In addition, their network consists of 60

million parameters and 650,000 neurons with five convolutional layers and five fully-

connected layer with a final softmax layer. This work is considered the benchmark

for deep learning and many of the architectures that followed AlexNet used the same

concepts but with deeper networks.

We can summarize the important components of current CNNs as follows:

� Pooling:

Pooling is considered the backbone of the current success of deep learning ar-

chitectures. It works by converting a vector of data into a scalar which operates

on each region of the image. In pooling, there are no filters and no dot products

computations with respect to local regions, instead, pooling compute the aver-

age of the pixels in the region (Average Pooling). Another way of pooling is by

picking the pixel with the highest intensity and discards the rest (Max Pooling).

That means, the size of the feature map will be reduced. Although the idea

seems to lead to information loss, it proved to be very effective in practice since

it reduces the effect of background noise and makes the network invariant to

variations in the presence of an image.

On the other hand, Max Pooling proved to work very well in recent years. As
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mentioned above, it is based on the idea that the maximum pixel in a region

represents the most important feature in that region. In general, when we want

to classify image of a specific object, there could be other objects in that image.

For example, a classifier could classify a car image to be a cat image if there

exist a cat along with the car at that same image. As a result, the overall

classification accuracy could be degraded. Pooling helps to alleviate this kind

of effects, and makes ConvNets generalize better. For AlexNet architecture,

overlapping pooling is used to reduce the effect of overfitting and to reduce the

overall error.

� Dropouts:

Overfitting can easily causes a CNN to work well in training set of images

while performing poorly on the testing data. To reduce the effect of overfitting

Dropout technique can be used during CNN training phase. Dropout works by

randomly setting some activations to 0, basically eliminating them. By doing

this, the network is forced to explore more ways of classifying the images instead

of depending largely on some specific features. For example, AlexNet used the

dropout technique which was introduced in 2012 by Hinton et al. [78]. Hence,

The neurons, which are dropped out, do not contribute to the forward pass and

in backpropagation. As a resulot, every time an input is presented, a different

architecture is sampled by the network. However, all these architectures share

weights. In this case, the network is forced to learn more robust features that

could be more useful.

� Batch Normalization:

Another major problem with CNN is called vanishing gradients. When it hap-

pens, gradients will be too small which will lead to a big issue in the training

process. Researchers from Google [79] discovered that internal covariate shift
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in data is to blame for this issue. This problem can be solved by introducing

a technique known as batch normalization which works by having every image

batch to have zero mean and unit variance. Batch normalization usually occurs

before non-linearity (ReLU) in CNNs. The accuracy can be greatly improved

and it also helps in speeding up the training process.

� Data Augmentation

In modern CNNs, one of the most important ingredient is data augmentation.

This is because it is difficult for machines to adapt to image rotations, trans-

lations, and other distortions. To solve this problem, images are randomly dis-

torted and rotated before the training stage. In this case, CNNs will learn how

to handle these distortions, hence, they would be able to work well in the real

world. In AlexNet, authors employed two different forms of data augmentation.

The first form of data augmentation is to generate image translations and hori-

zontal reflections. This was done by extracting random 224× 224 patches from

the given images and the network was trained using these extracted patches.

This augmentation caused the size of the training set to be increased by a factor

of 2048 in the case of AlexNet.

The second form of data augmentation consists of altering the intensities of the

RGB channels in training images. Specifically, PCA was performed on the set of

RGB pixel values throughout the ImageNet training set. In this case, for each

image in the training set, principle components were added with magnitudes

proportional to the corresponding eigenvalues times a random variable drawn

from a Gaussian with mean zero and standard deviation 0.1.
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2.4.2 CNNs for Texture Representation

After the success of AlexNet [22], large number of CNN-based texture representation

methods have been developed in the recent years. As we detailed the components of

CNN section, the main advantage of these networks is their ability to handle large

labeled datasets and learn high quality features. In addition, it was found that CNN

features pretrained on very large datasets can transfer well to many other problems,

including texture analysis [23, 24, 26, 27]. In general, CNN for texture representation

can be divided into the following categories:

� Pretrained CNN models.

� Finetuned CNN models.

� Handcrafted deep convolutional networks.

Pretrained CNN Models

Feature extraction and encoding steps of generic pretrained CNN laid the way to the

success of these models in texture representation. Successful networks for pretraining

and feature extraction include the following models:

� Popular CNN Models: These models can be exploited in extracting features

like AlexNet [22], VGGNnet [4], GoogleNet [80], ResNet [81], and DenseNet [82].

Evaluations of feature transfer effect of CNNs have been studied for the texture

classification task [83, 24, 84], and the following insights were found. features

extracted from convolutional layers or fully connected layers have shown varying

classification performance during model transfer. Experiments proved that the

fully-connected layers of the CNN tend to generate worse generalization ability

and transferability, and therefore would need retraining or finetuning on the

transfer target. The convolutional layers on the other hand usually transfer
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well. As a result, the source training set is relevant to classification accuracy on

different datasets. Moreover, it was also found that deeper models like VGGNet

and ResNet transfer better.

� Feature Extraction: It was found that the useful approach to CNN-based

texture classification is to extract features from the fully connected layer e.g.,

’fc6’ or ’fc7 [83, 24]. The features of fully connected layers have a global re-

ceptive and can be considered as global features suitable for classification with

any machine learning classifier like SVM, RF, or kNN. On the other hand, the

features of the convolutional layers of CNN can be used as filter banks to ex-

tract local features. Compared with the global fully-connected features, lower

level convolutional features are more robust to image transformations such as

translation and occlusion.

� Feature Encoding and Pooling: Features extracted from either convolu-

tional or fully connected layers can be encoded using any technique like FV

[85], VLAD [86], LLC [87], BoW [20] as done by Cimpoi et al. [24]. After

that, Song et al. [88] proposed a network to transform FVCNN descriptors to

lower dimensional representation. Recently, Gatys et al. [89] showed that the

Gram matrix representations extracted from various layers of VGGNet can be

inverted for texture synthesis. In addition, the bilinear feature pooling, which

is an orderless pooling representation of the input image, is suitable for tex-

ture modeling. The Bilinear CNN (BCNN) features are obtained by computing

the outer product of each feature with itself and reordered into feature vec-

tors. After that, pooling can be used by summing to obtain the final global

representation [90].
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Finetuned CNN Models

Pretrained CNN models have achieved superior performance in recognizing texture.

The only disadvantage is that the the training stage using these models requires many

steps: feature extraction, codebook generation, feature encoding, and classifier train-

ing. Generally finetuning CNN models on task-specific training datasets (or learning

from scratch if large-scale datasets are available) is expected to improve on already

strong performance achieved by pretrained CNN models [25]. When finetuning a

CNN, the last fully connected layer is modified to have N nodes corresponding to

the number of classes in the target dataset. It is worth to mention that Andrea-

rczyk and Whelan [91] observed that finetuning a network that was pretrained on

a texture-centric dataset achieves better results on other texture datasets compared

to a network pretrained on an object-centric dataset of the same size. Gao et al.

[92] proposed compact bilinear pooling, which utilizes Random Maclaurin Projection

or Tensor Sketch Projection to reduce the dimensionality of bilinear representations

while maintaining similar performance to the full BCNN feature [93] with a 90%

reduction in the number of learned parameters.

Handcrafted Deep convolutional Networks

There are some handcrafted deep learning networks that deserve attention including

the Scattering convlultion Network (ScaNet) proposed by Bruna and Mallat [94]. The

key difference between these networks and CNN is that convolutional filters in ScaNet

are predetermined (since they are wavelet filters such as Gabor or Haar wavelets) and

no learning is required. Moreover, the ScatNet usually cannot go as deep as a CNN.

Hence, Bruna and Mallat suggested two convolutional layers, since the energy of the

third layer scattering coefficients is negligible. The average pooled feature vector

from each stage in ScaNet is concatenated to form the global feature representation

of an image, which is input into a simple PCA classifier for recognition. Somewhat
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surprisingly, such a prefixed network has demonstrated very high performance in

texture recognition [94, 95, 96]. A downside of ScatNet is that the feature extraction

stage is very time consuming, although the dimensionality of the global representation

feature is relatively low.

2.5 HEp-2 Cell and Specimen Classification Tech-

niques

Pattern recognition techniques are widely used in the field of medicine for the devel-

opment of Computer-Aided Diagnosis (CAD) systems. Such systems may support the

physician in many ways: they can be adopted as a second reader, thus augmenting

the physician’s capabilities and reducing errors; they make it possible to perform a

preselection of the cases to be examined, enabling the physician to focus the atten-

tion only on the most relevant cases and hence facilitating mass screening campaigns.

They also may aid the physician in carrying out the diagnosis; finally, they can be

used as a tool for the instruction and training of specialized medical personnel [97].

Among such applications, over the last few years there has been a certain interest

in the realization of CAD systems for the analysis of indirect immunofluorescence

(IIF) images. IIF is a diagnostic methodology based on image analysis that reveals

the presence of autoimmune diseases by searching for antibodies in the patient serum.

As a result of its effectiveness, we have witnessed a growing demand of diagnostic

tests for systemic autoimmune diseases. Unfortunately, however, IIF as yet remains

a subjective method that depends too heavily on the experience and expertise of the

physician.

In order to classify the fluorescence intensity, the guidelines established by the

Center for Disease Control and Prevention(CDC), Atlanta, GA, USA [98] suggest

scoring it semi-quantitatively and independently by two physicians who are experts
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in IIF. The score ranges from 0 up to 4 with 0 considered negative and 4 considered

brilliant green. Since technical problems can affect test sensitivity and specificity,

the same guidelines suggest comparing the sample with a positive and a negative

control. The former allows the physician to check the correctness of the preparation

process, whereas the latter represents the auto-fluorescence level of the slide under

examination.

The variability between a set of physician’s fluorescence intensity classifications

were statistically analyzed by Rigon et al. [99]. After that, Rigon proposed to classify

fluorescence intensity into three classes: negative, intermediate, and positive. Theses

classes maintain the clinical significance of IIF testing and establish a more robust

ground truth. Finally, the staining pattern recognition is important to be achieved.

This is a very challenging task as many patterns, corresponding to different autoim-

mune diseases, may be observed. The most frequent patterns are:

� Centromere: defined by many discrete speckles (40−60) distributed through-

out the interphase nuclei and characteristically found in the condensed nuclear

chromatin during mitosis as a bar of closely associated speckles.

� Nucleolar: defined by large granules in the nucleoli of interphase cells which

tend towards homogeneity, with less than six granules per cell.

� Homogeneous: characterized by a diffuse staining of the interphase nuclei and

staining of the chromatin of mitotic cells.

� Fine Speckled: characterized by a fine granular nuclear staining of the inter-

phase cell nuclei.

� Coarse Speckled: characterized by a coarse granular nuclear staining of the

interphase cell nuclei.
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In recent years, great strides have been made towards obtaining automatic pattern

recognition and image analysis of HEp-2 cell and specimen images due to the inter-

national contest conducted to tackle this problem. Many methods were introduced

in these contests with a huge focus on feature extraction and classification. In the

following, we will discuss in depth the most successful methods that were introduced

in these contests.

2.5.1 HEp-2 ICPR 2012 Competition

The first HEp-2 cell classification contest was held in 2012 in conjuction with the

International Conference on Pattern Recognition (ICPR). The contest received 22

papers with significant focus on feature extraction techniques. For this contest, HEp-

2 images were acquired by means of a fluorescence microscope (40-fold magnification)

coupled with a 50W mercury vapor lamp and with a digital camera. The camera has

a chargecoupled device with square pixels of 6.45 . The images have a resolution of

1388× 1038 pixels, a color depth of 24 bits and they are stored in an uncompressed

format.

As we mentioned earlier, most of the methods submitted for these contests relied

on feature extraction techniques. These techniques include: LBP, GLCM, Robust

Structure Tensors-Histogram of Oriented Gradients (ARST-HOG), shape index, and

filter banks [100, 101, 2, 102]. In addition, most of these methods used k-Nearest

Neighbor (k-NN) classifier and Support Vector Machine (SVM) in the classification

stage [103]. Others, like Malone et al. used neural network classifier. The top 3

recognition accuracy methods for this contest are as follows [97]:

� Co-occurrence Among Local Binary Pattern (CoALBP) proposed by Nosaka

et al. which uses the green channel [104]. Here, the image is filtered by a

Gaussian function for noise reduction. Complex texture regions are extracted
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using CoALBP descriptor which is a powerful extension of the original LBP.

The classifier used is a linear SVM trained with a learning set including the

various rotated patterns of the original images.

� Xiangfei et al. proposed a system that adopts Varmas’ MR8 method to extract

statistical intensity features. Before calculating filter responses, the local re-

gions where the filter is convolved are normalized. A global texton dictionary

is trained using K-means clustering. Then each image is represented by the

frequency histogram of the textons. The adopted classifier is a k-NN.

� Kuan et al. used four texture descriptors to recognize HEp-2 cells. These

descriptors are: a rotation invariant form of LBP with multi-scale analysis,

DCT, the mean values and standard variances of 2D Gabor wavelets, and some

global appearance based statistical features. A multiclass posterior probability

SVM is utilized on each of the four feature sets [102].

2.5.2 HEp-2 ICPR 2014 and 2016 Competitions

Two contests were held after that in 2014 and 2016 as part of the ICPR which

included two main tasks: cell classification and specimen classification. Methods

submitted for cell classification task used local feature extraction, feature encoding,

and deep learning techniques. Local descriptors adopted in this task included: LBP,

motif features, and dense scale-invariant features [105, 106]. Methods with feature

encoding adopted various local features like: SURF, SIFT, LBP, and cooccurrence

of adjacent LBPs and used bag of visual words and Vectors of Locally Aggregated

Descriptors (VLAD) to encode them [107, 108]. For deep learning methods, Jia et

al. [109] extracted CNN features from a deeper network architecture and used these

features to classify ICPR 2016 HEp-2 cell images with an accuracy of 98.26%. For the

specimen level task, both 2014 and 2016 competitions used the seven class speciment

40



cell images of I3A 2014 Task 2 competition. Voting methods and morphological

features were used by [107]. Prasath et al. [106] also used RIC-LBP descriptor and

achieved an accuracy of 73.43% using RF classifier with 500 trees. Li et al. [110]

used a fully convolutional network (FCN) adapted from VGG-16 and achieved a

classification accuracy of 90.89%.

It is easy to notice that most of the previous work to classify HEp-2 cell and

specimen level were achieved using advanced hand-crafted local features (e.g. multi-

resolution local patterns with cell pyramids as in our entries [111], dense scale-

invariant descriptors [112], and CoALBP [104]). This was the motivation for us to

try and develop new hand-crafted features to address this problem and to be used in

general texture recognition problems as a robust framework for image classification.
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Chapter 3

Local and Deep Features
Framework for Texture
Classification

In this chapter, we introduce our set of local features used to extract texture pat-

terns for general texture classification purposes and for biomedical image analysis

application. In addition, we introduce our final framework that incorporates robust

deep features extracted from the fully connected layer of a powerful deep learning

architecture as illustrated in Figure 3.1. In the previous chapter, we demonstrated

the local descriptors that have been used for image classification along with varia-

tions of the original proposed techniques like LBP and MCM descriptors. We have

also emphasized that the most important stage in image classification is the feature

extraction stage where many descriptors have been proposed and developed in the

past while the classifiers used in the classification step are almost fixed. Figure 3.2

gives an illustration of these steps. The local descriptors used in our framework for

image classification relies on a powerful variations of LBP descriptor and on a new

features that are based on the motif Peano scan concept which MCM descriptor is

based on. Two variations of LBP descriptor were used which are: RIC-LBP and
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Figure 3.1: Set of local and deep features proposed in our approach. After reading
the image, four local features are extracted: RIC-LBP, JAMP, JML, and MMPR.
Then, deep features are extracted from ’fc7’ layer of VGG-19 architecture. Finally,
all these features are fused together by concatenation and a classifier is used (like RF,
NN, or SVM) to perform the final classification step and get the accuracy.
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JAMBP descriptors. RIC-LBP proved to be efficient for classifying HEp-2 cell im-

ages by considering the co-occurrence among the binary patterns. On the other hand,

JAMBP also proved to improve the performance of the texture classification task by

considering the adaptive median value of the local patch used to compute the AMBP

descriptor and by joining these patterns with mean and window scale of the AMBP

descriptor. The other two descriptors are derived from the MCM descriptor and are

called Joint Motif Labels (JML) and Motif Patterns (MP). Both descriptors are based

on the motif Peano scan concept that traverses image pixels in a 2 x 2 neighborhood

using 12 distinctive motif patterns. JML uses only the labels of the motif patterns

with joint information representing mean and variance of the original image. MP

uses the actual motif patterns which will be encoded later with one of the LBP-based

descriptors.

For the deep learning features, we extract 4096 features from ’fc7’ layer of VGG-19

architecture. After that, we train another classifier with these features and use it to

predict the accuracy of our test data. We will show that these combination of features

can achieve high accuracy especially to classify biomedical images.

Next, we will detail each step of our frame work and demonstrate the dimensions

of our newly developed local features.
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Figure 3.2: Image classification stages: Feature extraction and classification. Re-
cently, the majority of research focus on the first stage, the feature extraction. Many
local descriptors have been proposed in the past. In addition, features from different
deep learning layers can also be extracted and used in the classification stage.
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3.1 RIC-LBP Descriptor [2]

Figure 3.3: Operations performed using RIC-LBP descriptor. The spatial relation-
ships among LBP patterns are found among three different radiuses. Finally, a con-
catenation of theses features is performed to get the final histogram.

In [2], a new texture descriptor called Rotation Invariant Co-occurrence among LBP

(RIC-LBP) was proposed and used successfully to classify HEp-2 cell images. RIC-

LBP benefits from the spatial relationships among the binary patterns by finding

the co-occurrences patterns among the histogram features which are neglected in the

original LBP descriptor. As a result, RIC-LBP histogram will be represented in the

form of many LBP pairs and each pair will be attached with a specific label to account

for rotation invariance. LBP pairs used in RIC-LBP are demonstrated in Figure 3.4.
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Figure 3.4: Set of equivalent LBP pairs used in RIC-LBP descriptor calculations.

RIC-LBP provides high descriptive ability and robustness against local rotations

of an input cell image. To further deal with global rotation, Nosaka et al. synthesize

many training images by rotating the original training images and constructing the

SVM using both the original and synthesized images. Finally, the feature vector size

of RIC-LBP is 408 bins which are extracted in a low computational cost and used in

the classification stage as shown in Figure 3.3. Since RIC-LBP is used with gray-scale

images only, the original RBG images had to be converted to gray-scale by considering

the green channel as an input for the feature extraction stage.

3.2 JAMBP Descriptor [3]

In [3], Hafiane et al. proposed a powerful descriptor that is based on the Adaptive

Median Binary Pattern filter called Joint Adaptive Median Binary Pattern (JAMBP).

JAMBP is composed of AMBP descriptor jointly combined with other information

that represent the mean of the image and the window size used around each pixel to

compute the median value. Instead of using a fixed size window to find the median

value, AMBP descriptor uses an adaptive window that changes size in order to cap-

ture texture features efficiently as shown in Figure 3.5. In this case, AMBP uses the

median values of a small patch instead of the center pixel which makes the descrip-
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tor more robust in the presence of noise in the original image. Moreover, JAMBP

uses multiscale scheme by computing AMBP descriptor using different ranges and

sampling points from the center pixel. In addition, it uses a multiresolution scheme

by downsampling the image and computing features on the original image and the

subsampled one. Finally, the feature vector size used in the classification stage is

typically 320 bins. However, JAMBP descriptor is resilient and it can be computed

over small image resolutions and increase the feature vector size to account for large

scale databases. In general, JAMBP showed a high performance for the texture clas-

sification task using standard texture databases.

Figure 3.5: Adaptive median binary pattern window. The median value can be found
in a larger window like 5×5 instead of a 3×3 window. This has an effect of capturing
more texture patterns which leads to a better classification accuracy.
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3.3 Joint Motif Labels (JML) Descriptor

3.3.1 Motif Labels (ML)

In the previous chapter, we demonstrated the importance of motif Peano scan concept

in providing good representation of image texture features. We also showed that six

scan motifs cab be extracted around a 2 × 2 neighborhood starting from the upper

left pixel and a total of 24 possible motif scans can be extracted in this case using the

four image pixels. However, only 12 of these scans are distinctive as shown in Figure

3.6. The Optimum peano scan can be found by minimizing the variation of intensity

pixels as follows:

δ = |p1− p2|+ |p2− p3|+ |p3− p4| (3.1)

where p1, p2, p3, and p4 in Eq. 3.1 correspond to the Z motif pixel as shown if

Figure 3.6 below.

Figure 3.6: The 12 motif patterns used in our approach.

In this section, we derive new features that are also based on the motif Peano

scan concept called Joint Motif Labels (JML). The First step in computing the JML

descriptor starts by traversing each intensity pixel of the input grey scale image and

extracting a 2× 2 neighborhood patch. In the Second step, the 12 distinctive motif
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Algorithm 1 Motif Labels.

Input: Grey scale image I.
Output: Motif Labels: Min ML, Med ML, and Max ML.
1: for all i,j do
2: S ← I[i : i+ 1, j : j + 1]
3: k ← 1
4: repeat
5: MPL(k)← δk(S) - According to Eq. 3.1.
6: k ← k + 1
7: until k > 12
8: Min ML(i, j)← Loc(min(MPL)))
9: Med ML(i, j)← Loc(med(MPL)))
10: Max ML(i, j)← Loc(max(MPL)))
11: end for

patterns are found from this patch using Eq. 3.1 and the corresponding values are

stored in 12 separated matrices. Now, each matrix holds the corresponding pattern

of the 12 motifs. Third, we label each extracted pattern from 1 - 12 as illustrated

in Figure 3.7. Since we stored all similar patterns in a separate matrix, this is corre-

sponding to labeling the 12 pattern matrices extracted previously. Finally, we find

the min, med, and max values of the 12 patterns extracted from each neighborhood

and the corresponding label of each pattern is stored in a separate matrix called the

Motif Labels matrix. The following equations summarize how to find these motif

labels and patterns:

1. Minimum Motif Patterns and Labels:

δmin
value = min

r
(|P (r)
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2 |+ |P
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2. Median Motif Patterns and Labels:

δmed
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r
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Figure 3.7: Illustration of motif labels spanning over 2×2 pixel neighborhood. Three
moments are found from the 12 motif patterns extracted from each patch. each of
these moments (Minumum, Median, and Maximum) is stored in a separate matrix
along with their corresponding label. In total, we will have 6 matrices.

δmed
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3. Maximum Motif Patterns and Labels:
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After creating the 3 ML matrices, we can find the histogram of each matrix and

then combine the 3 histograms to get the final feature vector and use it to perform

the classification task. Each of the 3 ML matrices will give 12 bins since we are

extracting 12 motif patterns only. As a result of combining all of them we will gain

36 bins. As we can see in ML, we are combining three statistic orders instead of just

minimizing the intensity variations among adjacent pixels. The advantage of using

min, med, and max moments is to make the final histogram more robust and capable
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of extracting complex texture features. Moreover, we will join each ML matrix with

other information like mean and variance of the image to generate a more powerful

descriptor. We can easily conclude that these motif peano scans have the same effect

as the LBP descriptor by considering them as filters and can be convolved with the

corresponding part of the small region to detect specific features as we can see in

Figure 3.8 below.

Figure 3.8: Convolutional implementation of Z pattern.
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Figure 3.9: Simple example of how to extract the three motif labels and motif patterns
from a 2 × 2 image patch. At the end of this process, we will generate six matrices,
three for motif labels and another three for the corresponding motif patterns.

Figure 3.9 gives a more illustrative example with calculations of how we obtained

these 6 matrices. We considered a small neighborhood patch of 2× 2 and we applied

algorithm 1 to find the six corresponding motif label and pattern matrices. It is

worthy to mention that this new representation and use of motif labels has never

been proposed before.

3.3.2 Joint Motif Labels (JML)

The motif labels descriptor generated using three statistc orders has the ability to

capture texture information from the input image using 2 x 2 neighborhood scanning.

However, to further enrich the descriptor and as the texture problem becomes difficult

53



especially with large scale datasets and big image sizes, more information must be

extracted from the image and jointly added to that descriptor. The idea of joining

features with the histogram distribution is not new. In [48, 3], Gue et al. and

Hafiane et al. captured global information from the image using global thresholding

and combined it with the magnitude of the local differences and the adaptive median

binary pattern descriptor respectively. In our work, we capture two information from

the original image: variance information and global thresholding.

For the variance information, we start capturing the local variance of each intensity

pixel around a 3 x 3 neighborhood. This can be done by finding the standard deviation

of each pixel around the 3 x 3 neighborhood and then square each value to get the

corresponding variance. In this case, each pixel of the original input image will have

a separate value that represent the variance around a 3 x 3 neighborhood. In order

to capture the standard deviation of a group of values, we use the following equation:

S =

√√√√ n∑
k=1

(xk − µ)2

n
(3.8)

In this case, the variance will be the square of S. Note, in the implementation,

we used Matlab built in function stdfilt to find the standard deviation of each pixel

in the image around a patch of 3 x 3 pixels. Later, we square each value to get the

final variance matrix of all image pixels. After obtaining the variance matrix, we can

threshold its values either by global variance of the image or by the mean of the values

of that variance matrix (VAR). In our previous work [106], we used the mean value

of the variance matrix instead of the global variance because thresholding against the

global variance dropped the classification performance. In our work, we also use the

same approach as before:
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γ(i, j) =


1, if (i, j) ≥ µ

0, otherwise

(3.9)

where µ is the mean of the VAR matrix. γ generates two bins from this thresh-

olding to indicate to which region each pixel belongs to.

For the global thresholding υ, thresholding was performed by comparing each

intensity value of the input image against the mean of the intensities of the entire

image. As we did with variance, global thresholding will also generate two bins

depending whether each pixel is greater or equal to the mean intensities or not.

These information now can be encoded with ML features as 3D joint histogram or

even as 2D. Note, we will use the same algorithm in [3] to perform the joint process

between the three matrices: ML, γ, and υ. Finally, the feature vector for each of the

3 ML matrices after joining both γ, and υ will be 48 bins. As a result, Joint Motif

Labels descriptor will have 48 * 3 = 144 bins in total. More information can be found

in our published paper [113].

3.4 Motif Patterns (MP) Encoded with RIC-LBP

The JML features computed before used only the labels of the 12 motif patterns

extracted from traversing each pixel in the image around a 2 x 2 neighborhood. In

addition, JML was used successfully as we mentioned to classify HEp-2 cell images and

the performance was superior when combined with a robust descriptor like RIC-LBP.

However, we did not make use of the patterns generated from this process. These

patterns are very important since they represent the variation of intensity values

of the traversed pixels. As discussed in section 3.3, when we computed the labels

for the minimum, median, and maximum matrices, we also stored the corresponding

patterns of these statistics orders. As a result, there will be three Motif Pattern (MP)
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matrices representing the min, med, and max patterns resulting from traversing the

2 x 2 neighborhood.

Now, since these patterns represent intensity differences among pixels, we can

consider them as an image transformation and use any texture descriptor to encode

them. Since RIC-LBP proved to be efficient and robust descriptor, we decided to

encode these three MP statistic orders with RIC-LBP. As we know, RIC-LBP gener-

ates 408 bins feature vector. Applying it to the three MP matrices will result in 1224

bins feature vector. In this work, we decided to use only the minimum MP matrix

in order to reduce the feature vector size especially when we combine this descriptor

with other descriptors. As a result, we get only 408 bins feature vector for the MP

descriptor as illustrated in Figure 3.10 below.

Figure 3.10: Pipeline for the new MPRIC LBP calculations. After computing the
three motif patterns (Min, Med, and Max), only the Min motif patterns is used to
be encoded with RIC-LBP descriptor. This is because the Min moment represent
the absolute difference between adjacent pixels in the 2 × 2 neighborhood and can
be encoded with any local descriptor. The result of this new descriptor is 408 bins
which will be combined with JML descriptor and used as features for the texture
classification task.

In order to account for the translational invariance for both JML and MP

descriptors, four feature vectors are extracted instead of one for each descriptor.

Since image shifting can happen at any direction in real life, we need to extract our

features from the original image, image shifted vertically, horizontally, and diagonally

by one pixel. This method was used previously by Jhanwar et al. [1] and more details

can be found in their paper. The result of applying translational invariance on both

descriptors obviously will make the dimensionality bigger now. For JML, instead of

having 144 features, now we have 144 * 4 = 576 features. For MP descriptor, we have
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now 408 * 4 = 1632 features using only the minimum patterns. The performance of

both descriptors will be evaluated in the next section along with the other texture

descriptors described previously. Figure 3.11 below illustrates the effect of shifting

one pixel on generating different motif patterns.

Figure 3.11: The effect of image shifting in motif pattern calculations. As we can
see, any small shifting, even by one pixel, can result in a different motif patterns.
To diminish this effect, we need to compute three other matrices representing the
original image shifted by one pixel horizontally, vertically, and diagonally. At the
end, we extract features from all these four images. MPT and JMLT refers to the
Motif Patterns with Translation and Joint Motif Labels with Translation respectively.
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3.5 Deep Features

We have also utilized deep learning in our work. As we detailed in the literature

review chapter, there are different ways to use deep learning. It is possible to use

end-to-end learning, in this case, we can use the softmax layer as a classifier and

get the final accuracy. Or, it is also possible to extract features from different layers

and use them with another classifier like RF. We found that the latter approach can

generate better accuracy. Hence, we used these features in our framework. Figure

3.12 illustrates the difference between classical and traditional approaches for image

classification.

3.5.1 VGG Network Features [4]

After the success of the AlexNet architecture in 2012, many attempts have been made

to further extend that work to achieve superior performance. One of the attempts

was the work of Simonyan et al. [4] in which they investigated the depth of convolu-

tional neural networks by adding more convolutional layers. The result was a robust

architecture that can significantly achieve high performance especially on large scale

datasets.

The architecture of VGG networks are as shown in Figure 3.13. The input image

size should be 224 × 224 × 3. After that, the image will pass through a stack of

convolutional layers. The convolution filters have a small receptive field of 3×3. The

convolution stride is fixed to 1 pixel and the spatial padding of conv. layer input is

1 pixel for 3 convolution layers. Five maximum pooling layers are used for spatial

pooling, however, not all the convolutioanl layers are followed by max-pooling which

is performed over a 2× 2 pixel window with stride of 2. Three Fully-Connected (FC)

layers come after a stack of convolutional layers. The first two have 4096 channels

each, the third one performs 1000-way ILSVRC classification and thus involves 1000
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Figure 3.12: Classical vs traditional approaches for image classification. Deep learn-
ing layers replaced feature encoding with average pooling (reordering). In addition,
instead of creating a final histogram of features with the traditional approaches, deep
learning uses fully connected layers. Finally, softmax layer in deep learning replaces
the classification stage of the traditional methods. Moreover, it is also possible to
combine both features and use them with a classical classifier.

channels. The final layer in VGG is the softmax layer. In addition, All hidden

layers are equipped with ReLU non-linearity. The VGG-19 network differs from the

corresponding 16 one in that it has three more convolutional layer. Authors discovered

that the classification error decreases with when the number of convolution layers

increases.

In our work, we focused on VGG-10 since it showed better performance. We were

successful to improve our texture classification pipeline that comprises of extracting

multiple local descriptors by combining additional deep features extracted from ’fc7’

layer of VGG-19 network.

3.6 Combining Local and Deep Features for Image

Classification

Our final framework for texture classification involves using a combination of different

features as we explained in the previous sections and shown in Figure 3.13. The deep
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learning features extracted from ’fc7’ layer showed excellent performance especially

when Random Forests (RF) classifier is used in the classification stage. Furthermore,

the classification performance was improved when we added our proposed set of lo-

cal descriptors to these deep features. All features where combined in a late fusion

mechanism and fed directly into RF classifier for training and testing. In the exper-

imental results chapter, we will demonstrate the performance of our framework on

the biomedical and the challenging texture datasets. The idea of combining multi-

ple features is not new. Cimpoi et al. [24] used global features (like Fisher Vector

(FV)) and deep features extracted from convolutional layers and Fully-Connected

layers to perform classification on texture datasets. However, in our work, we used

our proposed texture features along with the extracted deep features and showed

that RF classifier can achieve superior performance with these features. The 4096

’fc7’ features extracted from VGG-19 are considered as global features. We found

that extracting these features after training the network properly and use a second

step learning (using RF classifier) can improve the classification performance over the

softmax accuracy. Our

More information on how we used our framework can be found in our published

paper [114].
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Figure 3.13: Overview of the proposed late fusion approach. Three types of deep and
local features were extracted: CNN, RIC-LBP, and JML features. All features are
concatenated and a Random Forests (RF) classier is applied to achieve high accuracy.
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Chapter 4

Datasets

4.1 HEp-2 datasets

Two benchmark datasets were used for HEp-2 cell and specimen level classification.

These datasets are referred to as Task 1 and Task 2 and were collected between 2011

and 2013 at the Sullivan Nicolaides pathology laboratory, Australia. For each task,

a set of training images was provided to the contest participants. Submitted systems

were then evaluated on a separate hidden test set which was privately maintained by

the contest organizers and not released to the participants.

4.1.1 HEp-2 cell classification: Task 1

The Task 1 dataset consists of 68,429 images of individual cells extracted from 419 pa-

tient positive sera (approximately 100–200 cell images per patient serum) along with

their binary segmentation masks. 13,596 images were available during training. The

remaining 54,833 images were used for the hidden test set to evaluate performance of

systems submitted to the contest. The specimens were automatically photographed

using a monochrome high dynamic range cooled microscopy camera. Cell images are
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Class Task 1 Task 2
Homogeneous 2494 212
Speckled 2831 208
Nucleolar 2598 200
Centromere 2741 204
Nuclear membrane 2208 84
Golgi 724 40
Mitotic Spindle – 60

Table 4.1: Classes and number of images per class for both Task 1 and Task 2 training
datasets. As we can see, both datasets consist of unbalanced number of images in
each class. As a result, a class like Golgi can perform poorly compared to the other
classes because fewer number of images are available for the training stage.

approximately 70 × 70 pixels in size. The dataset has six pattern classes: homo-

geneous, speckled, nucleolar, centromere, nuclear membrane, and golgi. Number of

images per class for this dataset are shown in Table 4.1.

4.1.2 HEp-2 specimen classification: Task 2

The Task 2 dataset consists of uncompressed, monochromatic images of 1001 patient

sera with positive ANA test. Each specimen was photographed at four different

locations (four images per specimen). A total of 1008 images from 252 specimens

were made available (approximately 25% of the data) while the remaining images

were retained by the organizers for testing. Size of each image is 1388 × 1040 and

cell masks were obtained based on an automatic segmentation for each image. The

dataset has seven pattern classes: homogeneous, speckled, nucleolar, centromere,

nuclear membrane, Golgi and mitotic spindle. Table 4.1 shows the number of images

per class for this dataset. Images of Task 2 dataset are very large compared to Task

1. As a result, using multiresolution analysis to extract texture features and then

combine these features will be very useful to improve the classification accuracy.
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(a) Homogeneous (b) Speckled

(c) Nucleolar (d) Centromere

(e) Numem (f) Golgi

Figure 4.1: Sample cell images from each class. (a) Homogeneous. (b) Speckled. (c)
Nucleolar. (d) Centromere. (e) Nuclear membrane. (f) Golgi.
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(a) Homogeneous (b) Speckled

(c) Nucleolar (d) Centromere

(e) Numem (f) Golgi

(g) Mitsp

Figure 4.2: Sample Specimen images from each class. (a) Homogeneous. (b) Speckled.
(c) Nucleolar. (d) Centromere. (e) Nuclear membrane. (f) Golgi. (g) Mitsp.
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4.2 Standard texture datasets

4.2.1 KTH-TIPS-2a,b datasets

KTH-TIPS-2a and KTH-TIPS-2b were introduced in 2006 [115]. Images of both

datasets are perfrect for scientific research since they are taken under varying varia-

tion, illumination, pose, and scale. Both datasets contain 11 classes. KTH-TIPS-2a

images are captured at 9 different scales, 3 poses, and 4 different illumination condi-

tions. In the experiments, we used 3 samples from each texture category for training

and the remaining sample for testing and the mean class accuracy was found by

taking the average over 4 runs. KTH-TIPS-2b images are also captured at different

scales with 4 samples in each category with a total number of 4752 images. In the

experiments, we used 3 samples for training and the last sample was used for testing

and the mean class accuracy was also found over 4 runs. The size of images for both

datasets is 200× 200 pixels. The difficulty in both datasets also involves the possibil-

ity of having different surface coarseness or roughness in some categories which make

them look different even if they are imaged with the same resolution. Moreover, the

visual aspect of the texture also changes gradually with the resolution, which impacts

the local structures.
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(a) aluminium foil (b) brown bread (c) corduroy

(d) cork (e) cotton (f) cracker

(g) lettuce leaf (h) linen (i) white bread

(j) wood (k) wool

Figure 4.3: Sample images from 11 classes KTH dataset.
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4.2.2 DTD dataset

The Describable Texture Dataset (DTD) was introduced by Cimpoi et al. [8] in 2014.

Images of DTD were collected from the internet for the purposes of object categoriza-

tion and recognition. The goal of DTD dataset is to support real-world applications

with strong representation of texture properties in the given object. DTD uses 47

adjective English words adopted from Bhusan et al. work [116]. Instead of defining

the texture problem as associating one attribute to each class, DTD associates mul-

tiple attributes for one class. For example, marble class can be veined, stratified, and

cracked at the same time. DTD comprises of 47 classes, with 120 images per class

and a total number of 5640 images. In the experiments, two third of the dataset will

be used for training and one third for testing. Training and testing files are provided

with the dataset, so, no random selection of images is made. Ten folds cross valida-

tion is applied during testing and the average mean class accuracy is taken as the

final accuracy result.

Authors of this dataset also defined a gold standard representation that achieves

state-of-the-art recognition on it and on other standard texture and material datasets.

This involves performing thorough experiments using all types of features (local,

global, and deep learning features). Experiments showed that global features and

deep learning features are the top methods for classifying DTD classes. Moreover,

combining global features with deep learning features will create more robust frame-

work that further improves the classification accuracy.
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Banded Blotchy braided bubbly bumpy chequered cobwebbed

cracked crosshat. crystalline dotted fibrous flecked freckled

frilly gauzy grid grooved honeycombed interlaced knitted

lacelike lined marbled matted meshed paisley perforated

pitted pleated polka-d. porous potholed scaly smeared

spiralled sprinkled stained stratified striped studded swirly

veined waffled woven wrinkled zigzagged

Figure 4.4: Sample images from DTD dataset. DTD contains 5640 images divided
into 47 classes with each class has 120 image.
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Chapter 5

Experimental Results

In this chapter, we test our feature extraction framework by using the standard HEp-

2 and texture databases that were introduced in the previous chapter. The pipeline

to perform experiments is given in Figure 5.1. Each database has specific number of

classes with specific number of images in each class. According to the split procedure

associated with each database, we start splitting the database into two sets: training

and testing. Then, we extract local features for both sets using our framework. After

that, we train a model using images from the training set. These models include

Random Forests (RF), k-Nearest Neighbor (k-NN), and Support Vector Machines

(SVM). Finally, we used these trained models to perform the classification task on

the given test set of images and a final accuracy is computed. For the standard

texture dabases, an associated split file is attached with each database that tells

how many images to be used for training and for testing. Moreover, it also specifies

the type of cross-validation metric to find the final accuracy. For example, DTD

dataset is divided into 10 fold cross-validation. Which means, the pipeline for texture

classification must be executed 10 times and the final accuracy is taken as the average

of the 10 runs.

70



Figure 5.1: Image classification pipeline. First, the given pool of images of a specific
application is divided into two sets: training and testing. Then, features are extracted
for both sets using any given descriptor. After that, a model (like RFs, k-NN, or SVM)
is trained on the given training set. Finally, a prediction is made based on the trained
model and the test data and the final classification accuracy is generated.

However, for the HEp-2 databases (cells and specimen), since they are the training

datasets, no protocol is associated with them to detail how many images to be used

for the training and the testing phases. In this case, we followed the procedure that

was used by most of the state-of-the-art methods which run experiments on these

datasets. This involves dividing the datasets into 5 folds. In this case, 80% of the

images will be used for training and 20% will be used for testing.

The evaluation metric used in our experiments is called the Mean Class Accuracy

(MCA). MCA is computed as follows:

MCA =
1

N

N∑
n=1

CCRn (5.1)

where CCRn is the correct classification rate for class n. N is the total number

of classes.
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5.1 Classifiers

5.1.1 k-NN Classifier

k-Nearest Neighbors classifier is a non-parametric method used for classification or

regression to solve pattern recognition related problems. In both cases, the input

consists of the k closest training examples in the feature space. The output depends

on whether k-NN is used for classification or regression [117]. In k-NN classification,

the output is a class membership. An object is classified by a majority vote of its

neighbors, with the object being assigned to the class most common among its k

nearest neighbors (k is a positive integer, typically small). If k = 1, then the object

is simply assigned to the class of that single nearest neighbor. The best choice of k

depends upon the data, generally, larger values of k reduces effect of the noise on the

classification, but the boundaries between classes will be less distinct.

5.1.2 RF Classifier

Random Forests (RFs) are an ensemble learning method for classification and re-

gression which operate by constructing multiple decision trees at training time and

outputting the class that is the mode of the classes or mean prediction in the case

of the regression task [118]. Using the random subspace method, the first algorithm

for random decision was created by Tin Kam Ho. After that, an extension of Ho’s

algorithm was developed by Breiman et al. [119] which involves combining Breiman’s

”bagging” idea and random selection of features, introduced first by Ho et al. and

resulted in the Random Forests (RFs). The training algorithm for random forests

applies the general technique of bootstrap aggregating, or bagging, to tree learners.

The number of trees is a free parameter. Typically, a few hundred to several thousand

trees are used, depending on the size and nature of the training set.
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5.1.3 SVM Classifier

Support Vector Machines (SVMs) is considered as one of the powerful tools in machine

learning [120]. SVMs are are supervised learning models with associated learning

algorithms that analyze data used for classification and regression analysis. Given

a set of training examples, each marked as belonging to one or the other of two

categories, an SVM training algorithm builds a model that assigns new examples

to one category or the other, making it a non-probabilistic binary linear classifier.

In addition to performing linear classification, SVMs can efficiently perform a non-

linear classification using what is called the kernel trick, implicitly mapping their

inputs into high-dimensional feature spaces. Various real world problems can be

solved with SVM like text categorization, image classification and segmentation, and

hand-written recognition.

5.2 Experiments on HEp-2 Databases using Local

Descriptors

Two datasets were used in the experiments represent cell and specimen images. We

used two benchmark classifiers in these experiments: k-NN and RF. Both classifiers

showed high accuracy and promising results using our framework for feature extrac-

tion. When we started developing our framework, we combined only two features:

RIC-LBP and JML. Moreover, JML descriptor did not include the translational in-

variance property since these cell and specimen images contain no rotation or scale

changes. As a result, the combined feature vector of both descriptors equals: 552

bins since RIC-LBP generates 408 bins and JML with no translational invariance

generates only 144 bins.
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5.2.1 Experiments on HEp-2 Cell Level Classification

Task 1 dataset consists of six classes and a varying number of images per class. Golgi

class has the fewest number of images among all classes. In the experiments, we used

five-fold cross validation across the dataset and images were selected randomly in each

fold for training and testing. Final MCA was found and our results as in Table 5.1

outperforms the state-of-the-art LBP variation (RIC-LBP) by almost 2% using the

k-NN classifier.

Descriptor Size Classifier Accuracy MCA
RIC-LBP, JML 552 k-NN 94.26 93.16
RIC-LBP, JML 552 RF 93.34 91.02
RIC-LBP, MCL-Min/Med/Max 840 k-NN 92.75 91.69
RIC-LBP, MCL-Min/Med/Max 840 RF 90.70 88.32
RIC-LBP, ML(Min/Med/Max)-GVAR 552 k-NN 92.57 91.36
RIC-LBP, ML(Min/Med/Max)-GVAR 552 RF 92.56 90.38

Table 5.1: Cell level staining pattern classification (Task 1) with motif texture pattern
features. Here we show the overall accuracy and mean class accuracy (MCA) for two
different classifiers, k-nearest neighbors (k-NN), and random forest (RF).

In comparison with state-of-the-art, Mannivannan et al. [131] achieved the best

accuracy of 95.2%. However, they used more complicated set of features which in-

volved local and global features. The accuracy that we generated is still comparable

using our set of local features. Table 5.2 shows the confusion matrix of our best

result. As we can see, only Golgi class generates the lowest accuracy among the 6

classes. The reason behind that is because there are fewer number of images in this

class compared to the other classes.

5.2.2 Experiments on HEp-2 Specimen Level Classification

In Task 2, there are seven classes and a total number 1008 images distributed un-

equally among these classes. Table 5.3 shows the results of performing experiments

using both JML and RIC-LBP descriptors with two classifiers: k-NN and RF. We
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Homogeneous Speckled Nucleolar Centromere Golgi Numem.
Homogeneous 95 3 1 0 1 0
Speckled 2 92 4 1 1 0
Nucleolar 1 1 95 2 0 1
Centromere 0 1 1 97 0 0
Golgi 4 1 9 2 85 0
Numem. 3 2 1 0 0 95

Table 5.2: Confusion matrix for the cell level staining pattern classification (Task
1) with RIC-LBP, ML-LVAR texture features and k-NN classifier (with rounded per-
centages). The overall average accuracy is 94.26%. The class with the lowest accuracy
is Golgi, because it has fewer images compared to other classes.

also perform the experiments on RF with various number of trees. The performance

can be increased as demonstrated by using multiresolution analysis of the original im-

age. As illustrated in Figure 5.2, L1 means the original image is subsampled and the

framework for texture classification is applied to both the original and the subsampled

images.
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Descriptor Size Classifier Accuracy MCA
RIC-LBP, JML 552 k-NN 73.47 70.09
RIC-LBP, 408 k-NN 67.32 64.79
JML 144 k-NN 66.14 60.96
RIC-LBP, JML 552 RF-500 79.14 72.69
RIC-LBP, JML 552 RF-250 79.26 73.24
RIC-LBP, JML 552 RF-100 79.94 73.92
RIC-LBP, 408 RF-500 75.56 68.51
RIC-LBP, 408 RF-250 76.46 69.55
RIC-LBP, 408 RF-100 76.35 68.49
JML 144 RF-500 72.55 64.12
JML 144 RF-250 73.7 65.46
JML 144 RF-100 73.24 64.72
RIC-LBP/L1, JML/L1 1104 RF-500 82.44 78.33
RIC-LBP/L1, JML/L1 1104 RF-250 82.57 78.6
RIC-LBP/L1, JML/L1 1104 RF-100 81.8 77.92
RIC-LBP/L1, 816 RF-500 78.46 72.64
RIC-LBP/L1, 816 RF-250 78.36 72.08
RIC-LBP/L1, 816 RF-100 77.64 72.27
JML/L1 288 RF-500 76.5 69.54
JML/L1 288 RF-250 76.91 69.88
JML/L1 288 RF-100 76.8 69.43
RIC-LBP/L2, JML/L2 1656 RF-500 88.71 84.85
RIC-LBP/L2, JML/L2 1656 RF-250 88.33 84.84

Table 5.3: Task 2 results using RIC-LBP and JML descriptors with k-NN and RF
classifiers. L1/L2 means Level one and Level two respectively. This is because we
subsample the original image twice and extract the features of both the original image
and the subsampled ones as illustrated in Figure 5.2

In comparison with state-of-the-art, Mannivannan et al. [131] achieve an accuracy

of 89.9% on this dataset. As we mentioned above, they use more robust features.

However, we will show later how we can beat their accuracy on this dataset by

considering the deep features to our framework.
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Figure 5.2: Illustration of the subsampling technique used in Task 2 specimen dataset.
The original image is resized twice and the features are extracted from all three
images.

5.3 Experiments on HEp-2 Databases using Local

and Deep Features

The following experiments focus on classifying HEp-2 specimen cells using our pro-

posed set of local descriptors and deep learning features. For both HEp-2 databases,

RF classifier was used with 1000 trees. We extracted 4096 bins from ’fc7’ layer of

VGG-19 architecture. We have also trained our network using the Caffe toolbox [130]

on a single GPU of 6 Gigabyte of cache memory. The minimum batch size used was

set to 40 samples and the learning rate was fixed to 0.001. The total number of epochs

in each experiment was fixed to 10.
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5.3.1 Classifying HEp-2 Cell Images using Deep Learning

We applied five-fold cross validation on the HEp-2 cell images which involves six

classes. Since Golgi class contains fewer images than the rest of the classes, we

augmented images of that class by performing image rotation using three degrees

(900, 1800, 2700) in order to make images of that class in level with other classes. The

results of applying net-to-net accuracy was 95.99%, which is very high. The results

of applying our proposed features are as in the table below:

Descriptor Desc. Size Classifier MCA
VGG-19 4096 RF - 1000 97.42
RIC-LBP 408 RF - 1000 88.59
JAMBP 320 RF - 1000 77.47
JML 576 RF - 1000 84.45
MP 1632 RF - 1000 76.01
VGG-19 + RIC-LBP 4504 RF - 1000 97.4
VGG-19 + RIC-LBP + JAMBP 4824 RF - 1000 97.37
VGG-19 + RIC-LBP + JAMBP + JML 5400 RF - 1000 97.39
VGG-19 + RIC-LBP + JAMBP + JML + MP 7032 RF - 1000 97.43

Table 5.4: Results of Applying our Proposed Descriptors. As we can see, the deep
features already generated very high result. As a result, combining deep and local
features did not improve the overall performance.

From Table 5.4, we can see the performance of deep features is very good. The

92.42% could not be improved when we included our set of features. In addition,

local features also achieved good results. This is because we have enough data for

training and for testing with relatively small number of classes.

We have compared the performance of our approach with state-of-the-art methods

produced by Mannivannan et al. [131] in which a mean class accuracy of 95.2% was

achieved using Root-SIFT features and multi-resolution LBPs from HEp-2 cells with

ensembles of SVMs for the classification phase. They showed high accuracy using

two-fold cross validation.
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5.3.2 Classifying HEp-2 Specimen Images using Deep Learn-
ing

In this database, we have also used a five-fold cross validation on seven specimen

classes. Since, some of the classes also have fewer number of images compared to other

classes, we have applied image augmentation by rotating images by (900and1800)

degrees. The results of applying net-to-net accuracy was 78.85%, which was further

improved to 83.04% by sampling more batches from each image and feed the network

with more samples than just re-sizing the original image to the required VGG-19

input image size which is restricted to 224×224. The results of applying our proposed

features are as in the table below:

Table 5.5 shows the results of applying our framework with 1000 Random Forests

(RF) classifier after carrying out five-fold cross validation experiments. First, deep

learning features (4096 bins) generated a very good result of 90.81% MCA. This result

was further improved by 1.3% after combining both local descriptors: RIC-LBP and

JML with deep learning features.

Table 5.6 shows a comparison between our approach and the previously state-

of-the-art techniques. Mannivannan et al. [131] extracted a combination of Root-

SIFT features and multi-resolution LBPs from HEp-2 image cells with ensembles of

SVMs for the classification phase. They achieved high accuracy of (89.93%) and were

the winners of I3A 2014 competition. Li et al. [110] employed a fully convolutional

Descriptor Size RF
VGG-19 4096 90.81
RIC-LBP 408 70.14
JML 576 66.35
VGG-19+RIC-LBP 4504 91.32
VGG-19+RIC-LBP+JML 5080 92.11

Table 5.5: Results comparing late fusion of deep and local features with our other
approaches using RF classifier.

79



Method MCA
Liu et al. cited in [131] 86.10
Gragnaniello et al. [105] 86.77
Mannivannan et al. [131] 89.93
Li et al. [110] 90.89
Ours (early fusion) 81.90
Ours (late fusion) 92.11

Table 5.6: Comparison of our approach with state-of-the-art methods. We outper-
formed all the existing methods in the literature for classifying the 7 specimen classes
by more than 1%. The powerful performance of our approach also can be attributed
to the use of 1000 trees RF classifier which which outperformed SVM classifier used
in majority of other methods.

network and used the VGG-16 softmax layer to achieve an accuracy of 90.89%. Our

framework of combining local and deep learning features slightly outperforms these

state-of-the-art methods.

Figure 5.3: Early fusion mechanism used in our experiments. The 12 motif patterns
produced in our approach are combined with the gray-scal specimen image. Then,
we apply PCA to the 13-channel matrix and choose the first 3 Principle Components
(PCs) only and feed the resultant 3-channel image to the CNN.

In addition to late fusion mechanism, we have tried early fusion mechanism with

Principle Component Analysis (PCA) as illustrated in Figure 5.3. Since we have the

original gray-scale image and the 12 motif patterns results from using our approach,

we decided to combine all of them in one matrix and apply PCA. Then, we took
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the first three components and fed the 3 channels resultant image to the VGG-19

network. The performance we obtained from end-to-end learning was only 81.9%

which is significantly lower than using the late fusion mechanism.

5.4 Experiments on Standard Texture Databases

using Local Descriptors

In this section, we also demonstrate the performance of our approach for texture

recognition using three widely used datasets: KTH-TIPS-2a, KTH-TIPS-2b, and

DTD [115, 8]. Two classifiers were used in the experiments: k nearest neighbor (kNN)

and Support Vecotr Machine (SVM). kNN is considered as the widely used classifier

for the texture classification problem by considering subset of dataset images for the

training phase and the other subset for the testing phase. Superior classification

performance is achieved using the chi-square distance χ2 with kNN as follows:

χ2(x, y) =
1

2

∑
i

(xi − yi)2

xi + yi
(5.2)

x and y represent feature vectors. We also considered 1 and 3 kNNs for all

experiments.

For the SVM classifier, Cimpoi et al. [8] performed experiments using differ-

ent SVM kernels and showed that the performance increases with Chi-Square ker-

nel. In our work, we use SVM with two kernels: Linear K(x, y) =< x, y > and

Additive−χ2
∑d

i=1 xiyi/(xi + yi) where x and y are two feature vectors.

The experiments are divided into two main parts. The first part deals with KTH-

TIPS-2(a,b) datasets using the standard testing and evaluation. The second part deals

with the DTD dataset, with experiments performed on predefined training and testing

sets. Gray-scale images were used among all experiments. In the following, JML

represents the proposed Joint Motif Labels descriptor, while MPRIC−LBP represents
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the proposed Motif Patterns descriptor encoded with RIC-LBP descriptor. In both

descriptors, translational invariance is introduced.

5.4.1 Experiments on KTH-TIPS-2a,b

As we discussed in the previous chapter, both KTH-TIPS-2a,b databases are chal-

lenging ones because of the variations of illumination, pose, and scale. Both datasets

contain 11 classes. KTH-TIPS-2a images are captured at 9 different scales, 3 poses,

and 4 different illumination conditions. In the experiments, we used 3 samples from

each texture category for training and the remaining sample for testing and the mean

class accuracy was found by taking the average over 4 runs. KTH-TIPS-2b images are

also captured at different scales with 4 samples in each category with a total number

of 4752 images. In the experiments, we used 3 samples for testing and the last sample

was used for training and the mean class accuracy was also found over 4 runs. Results

on both datasets using our approach can be found in Tables 5.7 and 5.8. As we can

see, the best results are achieved when we combine the four descriptors together. The

highest accuracy we get for KTH-TIPS-2a is 79.2% and for KTH-TIPS-2b is 67.2%.

k-NN SVM
Desc. Size k=1 k=3 Linear additive−χ2

RIC-LBP 408 74.2 72.6 75.0 75.4
JAMBP 320 71.1 72.6 70.7 72.7
JML 576 65.9 68.0 67.1 67.3
MP 1632 65.6 67.3 69.5 68.8
RIC-LBP+JAMBP 728 76.0 75.2 75.5 76.7
RIC-LBP+JAMBP+JML 1304 76.1 74.8 76.9 77.2
RIC-LBP+JAMBP+JML+MP 2936 78.0 77.4 79.1 79.2

Table 5.7: Results on KTH-TIPS-2a dataset using our approach. As we can see
from these results, SVM classifier performs better than k-NN. In addition, combining
multiple descriptors can improve the performance. The accuracy with RIC-LBP using
SVM is 75.4%. After combining four local descriptors, the accuracy was improved by
approximately 4%.
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k-NN SVM
Desc. Size k=1 k=3 Linear additive−χ2

RIC-LBP 408 58.7 59.6 62.7 62.6
JAMBP 320 59.6 60.5 57.8 61
JML 576 53 54.9 52.7 54.9
MP 1632 53.3 54.7 58.7 58.6
RIC-LBP+JAMBP 728 63.6 63.2 62.4 64.3
RIC-LBP+JAMBP+JML 1304 64.3 63.4 63.5 66
RIC-LBP+JAMBP+JML+MP 2936 66 65.3 65.6 67.2

Table 5.8: Results on KTH-TIPS-2b dataset using our approach. The SVM classifier
beats the k-NN classifier by more than 2%. In addition, combining multiple local
descriptors proved to improve the classification performance over using a single de-
scriptor. We obtained an increase of 5% when we combined the four local descriptors.

5.4.2 Experiments on DTD Dataset

The Describable Texture Dataset (DTD) was introduced by Cimpoi et al. [8]. Images

of DTD were collected from the internet using 47 adjective English words. Instead of

defining the texture problem as associating one attribute to each class, DTD associates

multiple attributes for one class. For example, marble class can be veined, stratified

and cracked at the same time. DTD comprises of 47 classes, with 120 images per class

and a total number of 5640 images. In the experiments, two third of the dataset will

be used for training and one third for testing. Training and testing files are provided

with the dataset, so, no random selection of images is made. Using our approach as

can be seen in Table 5.9 we achieve a high result of 43.6%.

5.4.3 Experiments on KTH-TIPS-2a, b with Deep Learning

In the previous section, we showed the performance of our proposed set of local

features on the standard texture datasets. It is clear that combining multiple local

descriptors can result in a better performance compared to using only a single local

descriptor. In this section, we demonstrate the performance of using deep learning

classification and deep features in addition to our local descriptors. The mechanism
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k-NN SVM
Desc. Size k=1 k=3 Linear additive−χ2

RIC-LBP 408 22.4 33.3 37.07±0.99 35.9±1.29
JAMBP 320 18.6 27.8 22.8±0.77 24.6±2.75
JML 576 18.5 29.3 21.0±0.77 23.9±0.6
MP 1632 16.4 26.8 31.1±1.23 32±0.91
RIC-LBP+JAMBP 728 21.9 32.7 37.0±1.11 38.4±1.33
RIC-LBP+JAMBP+JML 1304 24.0 35.4 38.3±1.05 40.1±0.55
RIC-LBP+JAMBP+JML+MP 2936 23.2 34.0 40.5±1.01 43.6±0.72

Table 5.9: Results on DTD dataset using our approach. Since the complexity of
images in each class in this dataset is very high, local features can only achieve low
accuracy. Starting from RIC-LBP, we obtain 35.9% using the SVM classifier with 10
fold-cross validation. After combining our proposed set of features, we improve the
accuracy by more than 7%.

of fusing deep and local features is still the same. Hence, we can simply concatenate

all features and use the final feature vector in the classification stage.

KTH-TIPS-2b represents a big challenge in terms of acquiring high classification

accuracy. Figure 5.4 illustrates 3 challenging classes of the dataset. As we can see,

these three classes: Corduroy, Linen, and Wool have images that are very much

different in color, shape, and texture. This intra-class variation among images that

belong to the same class makes it very difficult for any classifier to distinguish the

correct class for each image under testing. Moreover, we should only use 25% of the

dataset images for training, hence, we have only fewer number of images for training

and many images for testing.
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Corduroy Linen Wool

Figure 5.4: The three challenging KTH-TIPS-2b classes. We can cleary see that
images of these classes differ in shap, color, and texture making it very difficult for
the classifier to generate high accuracy for those classes.
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The first experiment we performed on KTH-TIPS-2a was using deep learning and

extracting features from ’fc7 layer. Then, after we do transfer learning, we classify

these features with SVM classifier. The accuracy was 99.6% after performing four-fold

cross validation. The reason behind this high accuracy is because the KTH-TIPS-2a

dataset is easier in terms of image variations than the corresponding KTH-TIPS-

2b. More over, we have less images compared to KTH-TIPS-2b and the standard

protocol for splitting the dataset is different in both datasets. In KTH-TIPS-2b, we

have to use one quarter of the dataset for training and the rest for testing. While in

KTH-TIPS-2a, the opposite is applied.

For the KTH-TIPS-2b, as we mentioned above the data split puts fewer images

for training and more images for testing. In theory, we can always conclude that the

accuracy will not be as high as KTH-TIPS-2a since we do not provide the classifier

with adequate number of images in the training stage. Hence, we need to perform

augmentation to compensate for that. In the following experiments, we used different

sampling and augmentation techniques in order to increase the number of images for

the training stage.

� Experiment 1: In this experiment, we augmented the training images of KTH-

TIPS-2b dataset by resizing the original image into 16 different images. First,

the original row and column size of the image is divided by 4, then we resize the

resultant dimension to 224×224 which are the input size of VGG-19 architecture

in deep learning. Figure 5.5 illustrates this augmentation process. As a result,

we managed to obtain 19,008 images from this augmentation process. Then,

we used deep learning by training the VGG-19 network and get the end-to-

end accuracy and the accuracy of extracting the ’fc7’ features and performing

RF-1000 classifier on these features. Results of this experiment are as listed in

Table 5.10.
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Figure 5.5: Augmentation of the original KTH-TIPS-2b image (Aluminium Foil).
The original row and column size of the image is divided by 4, then we resize the
resultant dimension to 224 × 224 in order to be used for the deep learning training
and testing.

Descriptor MCA
VGG-19 62.4
RIC-LBP 48.1
JAMBP 50.1
JML 41.6
MP 44.6
VGG-19 + RIC-LBP 62.6
VGG-19 + RIC-LBP + JAMBP 63.9
VGG-19 + RIC-LBP + JAMBP + JML 64.6
VGG-19 + RIC-LBP + JAMBP + JML + MP 64.6

Table 5.10: Results of applying our framework on the augmented KTH-TIPS-2b
dataset using RF classifier with 1000 trees. As we can see using VGG-19 features alone
we can get 62.4% accuracy, but, when we combine all the deep and local features, we
can improve the accuracy to 64.6%.

During training the VGG-19 model, a MinBatchSize of 40 was used along with

a fixed learning rate of 0.001 and the total number of Epochs was 10. The

end-to-end accuracy of VGG-19 was only 51.6%. As we can see from these re-

sults, the feature extraction and classification results improved the performance

massively. Moreover, combining the deep and the local features together also
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helped improving the overall accuracy. Finally, we can see that this accuracy

is still below the accuracy obtained by using the local features alone. This is

due to the fact that the augmentation procedure used involves losing data from

the original image. As a result, the network is only provided with part of the

original object to be trained with.

� Experiment 2:

As we mentioned in the previous experiment, the augmentation technique suf-

fered from losing important image features. In this experiment, we used more

powerful augmentation technique which involves rotation, replication, and trans-

lation. First, we create a large image of 600× 600 in rows and columns. Then,

we replicate the original image inside this large image as illustrated in Figure

5.6. We select 16 center points inside the large image in order to extract 16

(224 × 224) patches to be used in our training with deep learning. Finally,

each extracted patch will be rotated by 90°, 180°, and 270°. In total, we extract

76,032 images from the original 1188 images provided for training. That means,

each image will produce 64 patches for the training stage. We also used the RF

classifier with 1000 trees after extracting the features from the ’fc7’ layer of the

VGG-19 architecture. Results of experiment 2 are as listed in Table 5.11.
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Figure 5.6: Different augmentation technique applied to the original KTH-TIPS-2b
dataset. We synthesize a 600×600 large image and align the original image in it. The
black dots represent the centers to extract 224 × 224 patches. After that we apply
rotation to each patch. At the end, we obtain 64 patches from each image. Hence,
we increase the 1188 original training set to 76,032 images.

Descriptor Exp 1 Exp 2
Training Samples for VGG-19 19008 76032
VGG-19 62.4 68.3
RIC-LBP - 48.1
JAMBP - 50.1
JML - 41.6
MP - 44.6
VGG-19 + RIC-LBP 62.6 68.3
VGG-19 + RIC-LBP + JAMBP 63.9 68.4
VGG-19 + RIC-LBP + JAMBP + JML 64.6 68.3
VGG-19 + RIC-LBP + JAMBP + JML + MP 64.6 68.5

Table 5.11: Results of applying our framework on the newly augmented KTH-TIPS-
2b using 1000 trees RF classifier. As we can see, the results in general are better than
the corresponding Exp 1 results. We have obtained 68.3% using VGG-19 ’fc7’ features
only. However, we could not improve a lot when we combined our local features with
deep features.
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The VGG-19 training parameters in this experiment are the same as the previ-

ous experiments with MinBatchSize of 40, learning rate of 0.001, and 10 Epochs.

The results of end-to-end accuracy after training the network is 68.9%. This

is higher than the figure obtained in experiment 1. One reason is because the

network is now trained well to recognize the whole object in the texture image.

However, when we extracted the ’fc7’ features and used the RF-1000 classifier,

we have only obtained 68.3%. We managed to improve that to only 68.5%.

Hence, local features did not improve over the global deep features extracted

from ’fc7’ layer.

� Experiment 3:

Experiment 2 demonstrated how powerful and important image augmentation

for deep learning. Overall accuracy for both end-to-end learning and feature

extraction and classification was improved due to the good training of VGG-19

architecture. In this experiment, we are trying to use additional augmentation

techniques in addition to translation and rotation. Hence, we add 3 scales, 16

translations, 4 rotations, and 2 flips as illustrated in Figure 5.7. As a result we

generate more images, specifically, we generate 456,192 (224× 224) patches out

of the 1188 training images. Hence, each image will contribute to 384 patches

for the training stage. As we did with the previous two experiments, we used

the RF classifier with 1000 trees after extracting the ’fc7’ layer features. Results

of this experiment are as listed in Table 5.12.
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Figure 5.7: Thorough augmentation technique applied to the original KTH-TIPS-2b
dataset. After synthesizing 600× 600 large image and align the original image inside
it, we start extracting 224 × 224 random patches (using the black dots as centers of
these patches). Then, we perform the augmentation using translation, rotation, and
rotation. As we can see 3 different scales are used to capture more texture spots of
the original image. As a result, we extract 456,192 patches to be used in the training
stage.
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Descriptor Exp 1 Exp 2 Exp 3
Training Samples for VGG-19 19 K 76 K 456 K
VGG-19 62.4 68.3 69.2
RIC-LBP 48.1 - -
JAMBP 50.1 - -
JML 41.6 - -
MP 44.6 - -
VGG-19 + RIC-LBP 62.6 68.3 69.2
VGG-19 + RIC-LBP + JAMBP 63.9 68.4 69.25
VGG-19 + RIC-LBP + JAMBP + JML 64.6 68.3 69.68
VGG-19 + RIC-LBP + JAMBP + JML + MP 64.6 68.5 69.2

Table 5.12: Results of applying our framework on the thoroughly augmented KTH-
TIPS-2b dataset. RF classifier with 1000 trees was used for the classification. As we
can see, the results are better than the previous two experiments. We have obtained
69.2% for ’fc7’ layer features, in addition, we improved to 69.68% when we combined
VGG-19 features with RIC-LBP, JAMBP, and JML features.

The training parameters for our model are still the same as the previous two ex-

periments. The result of end-to-end accuracy after training the network is 68.9%.

This is higher than the results obtained in both experiments 1 and 2. The reason

behind that is the additional augmentation techniques that we used to sample more

patches form the dataset. We can also notice that ’fc7’ features classification perfor-

mance with 1000 RFs was lower than end-to-end accuracy. Moreover, adding the local

features to the deep features could not improve the accuracy to beat the end-to-end

learning accuracy in this experiment.

After we obtained all these results using different augmentation techniques, we

wanted to investigate the confusion matrix and see why we still obtain results with

low accuracy. As we can see in Table 5.13, only three classes perform the worst with

very low accuracy. These classes are: Cotton, Cracker, and Wool. This is because,

the training and testing procedure used specifically for KTH-TIPS-2b dataset requires

using only one quarter of the dataset for training and the rest for testing. Moreover,

there are so many differences between images inside these samples in terms of shape,
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color, and texture. This is the reason that makes it difficult for the classifier or the

deep learning to recognize these different samples since we only provide fewer samples

of data during the training stage.

aluminium foil brown bread corduroy cork cotton cracker lettuce leaf linen white bread wood wool
aluminium foil 97.5 0 0 0 0 0 1.3 0 1.2 0 0

brown bread 0 90 0 8 0 1 0 0 2 0 0
corduroy 0 0 92 7 0 0 0 0 0 1 0

cork 0 0 0 87 0 10 0 0 3 0 0
cotton 0 0 22 0 11 0 0 44 1 2 20

cracker 0 42 4 2 0 32 0 4 15 0 0
lettuce leaf 0 0 0 0 2 0 98 0 1 0 0

linen 0 0 2 0 15 0 0 83 0 1 0
white bread 0 3 0 0 0 15 0 0 82 0 0

wood 0 0 0 0 3 0 0 0 2 93 2
wool 33 0 21 0 0 0 0 45 0 0 1

Table 5.13: Confusion Matrix: 11 Classes TIPS2b - MCA 69.68% using VGG-19 +
RIC-LBP + JAMBP + JML features.

5.4.4 Comparison with state-of-the-art

Finally, a comparison with state-of-the-art methods is made in Table 5.14. On KTH-

TIPS-2a dataset, Chen et al. performs 56.4% using WLD descriptor that is based on

Webber’s Law. Rahtu et al. achieves 67.7% using LPQ descriptor that is based on

quantizing the information phase of the local Fourier transform. Recent work done by

Khan et al. which is based upon combining different texture descriptors along with

color and put then in a compact representation achieves an accuracy of 82.7%. On

the other hand, our work of combining only four descriptors achieves 79.2% without

using color information.

For the KTH-TIPS-2b dataset, both VZ-MR8 and VZ-Joint presented by Varma

et al. perform 46.3 and 53.5 respectively. Binary Gabor Filter (BGP) descriptor

presented by Zhang et al. based on convolving image with Gabor filters achieves

63.3%. Our work achieves 67.2 which is comparable to the work of Khan et al. using

the five different descriptors and color that performs the best of 70.6%.

On the DTD dataset which is the most recent and challenging one. The best

reported result using a local descriptor is the work of Nguyen et al. that performs
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26.38% by applying LBP to a series of moment images. On the other hand, our work

significantly outperforms the best local descriptor using SVM with additive chi-square

kernel by achieving 43.5% which is 17% better than CSBP. However, Cimpoi et al.

used a combination of Fisher Vector (FV) and DeCAF features and achieved 66.7%.

Our result is still the best among the local descriptors and it is also worthy to mention

that using different SVM kernels can improve the accuracy.

Method TIPS-2a TIPS-2b DTD
LBP - 52 14.51
WLD [121] 56.4 - -
TFT [122] - 66.3 -
LQP [123] 64.2 - -
CSBP [124] - - 26.38
CLBP [48] 76.1 55.0 20.40
LVCBP [125] 61.7 53.6 -
VZ-MR8 [18] - 46.3 -
VZ-Joint [21] - 53.5 -
LTP [126] 60 - -
LPQ [127] 67.7 54.4 -
BSIF [128] 70.0 54.3 -
BGP [129] 76.8 63.3 -
CLBP+WLD 78.1 63.7 -
CLBP+WLD+BGP 79.2 65.1 -
CLBP+WLD+BGP+LPQ 79.9 67.6 -
CLBP+WLD+BGP+LPQ+BSIF 80.8 68.9 -
Compact[CLBP+WLD+BGP+LPQ+BSIF] 82.2 69.0 -
Compact[CLBP+WLD+BGP+LPQ+BSIF]+Color 82.7 70.6 -
Our results 79.2 67.2 43.5

Table 5.14: Comparison of our approach with other state of the art methods. All
these features are local features, in addition, some methods used a combination of
five local descriptors besides color to obtain high accuracy for both KTH-TIPS2a, b
datasets. In general, our results are comparable to the state-of-the-art local features.
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5.5 Additional Experiments on Leaf Recognition

and xVeiw Datasets

The main contribution in this thesis is to apply new texture descriptors to standard

texture dataset and biomedical datasets. In addition to these applications, we started

working on other applications including leaf recognition and classifying images from

a standard and large dataset called xView. We have to emphasize that these ex-

periments are still preliminary and we do not use our entire pipeline due to time

limitations.

Experiments on Leaf Recognition Dataset

One of my esteemed committee member, Dr. David Larsen, suggested applying some

classification techniques on a new dataset that he collected using his own professional

camera from different areas on Missouri, USA. We managed to categorize 23 different

species of leaves from different trees as shown in Figure 5.8. The problem is we only

have very few number of images to work on. Some classes had two images and at

most, some of them contain ten images. Due to time limitations, I applied only deep

learning methods, specifically VGG-19 end-to-end learning. I used augmentation

techniques by augmenting the dataset using rotation. Moreover, I split the dataset

into two splits because we have fewer number of images. The results that we obtained

using VGG-19 end-to-end learning are as listed in Table 5.15.

Method Epochs Efficiency in Mins Accuracy

VGG-19 10 37 37.8
VGG-19 30 112 40.2
VGG-19 50 - Out of Cache Memory

Table 5.15: Results of using only VGG-19 architecture on the leaf recognition dataset.
The highest accuracy we obtained was only 40.2% using image augmentation. This
is because we are only provided with fewer number of images per class.
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Figure 5.8: 23 classes of leaves captured from different regions of Missouri, USA.

Experiments on xView Dataset

In 2018, a large-scale object detection dataset was introduce by Lam et al. [132].

It contains 60 classes, and was collected from WorldView satellites at 0.3m ground

sample distance in order to provide higher resolution imagery. For our experiments,

we selected only 10 classes as in Figure 5.9. In the experiments, we extracted 7804

bounding boxes from these 10 classes and used subset of our features (RIC-LBP +

JML). Random Forests classifier was used with 1000 trees in the classification phase

along with five-fold cross-validation. The accuracy we obtained using these two set

of features was 49.7% for the 10 classes.
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Figure 5.9: 10 xView classes used in our experiments. We have selected these classes
to see if we can capture useful texture features and classify them successfully.
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Chapter 6

Summary and concluding remarks

This thesis has presented a new approach for texture classification using a combina-

tion of deep and local descriptors. The deep features used are extracted from the

Fully-Connected layer (’fc7’) of VGG-19 network. The size of these features is 4096

bins and a Random Forests (RF) classifier was applied to these features in the clas-

sification stage. For the local descriptors, we have proposed a set of four operators.

The descriptors used are derived from standard texture descriptors called Local Bi-

nary Pattern (LBP) and Motif Co-occurrence Matrix (MCM). Two powerful LBP

variations are utilized with two new motif-related descriptors and all four descriptors

were used to classify HEp-2 cell-specimen images and the standard texture datasets.

LBP variations has been used in the past two decades in different applications includ-

ing biomedical analysis and showed how powerful LBP-based descriptors in terms of

achieving high classification accuracy. However, MCM was used only for image in-

dexing and retrieval and has not been used for texture classification purposes. In this

work, we developed two descriptors called Joint Motif Labels (JML) and Motif Pat-

terns (MP) which are based on MCM descriptors and used them for HEp-2 analysis

and texture classification.

In the experiments, we have applied our framework to an important application
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in the field of pattern analysis and computer vision which is HEp-2 cell and specimen

classification. We have also considered applying our framework on challenging texture

databases where each database consists of thousands of images with varying shapes,

scale, color, and texture. We showed that our framework work very well on HEp-

2 cell and specimen images by outperforming all the state-of-the-art methods using

1000 trees RF classifier. We have also shown that the proposed local descriptors

along with the existent methods utilized in our framework achieve high performance

in comparison with other features. The performance of our framework on standard

texture databases did not achieve high accuracy in comparison to the state-of-the-art

but, it is promising.

For the future work, we intend to apply our approach on other applications like

leaf recognition and stromal and eipthelial classification tasks. We will also consider

different augmentation methods in order to improve the classification results with deep

learning. In addition, researches in the literature have shown that other features from

different deep layers can also be used. For example, we can extract convolutional

features and quantize them and apply the RF classifier especially for the texture

classification task.
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Davis. Texture classification by center-symmetric auto-correlation, using kull-

back discrimination of distributions. Pattern Recognition Letters, 16(1):1–10,

1995.

[14] Kenneth Abend, Tl Harley, and L Kanal. Classification of binary random

patterns. IEEE Transactions on Information Theory, 11(4):538–544, 1965.

101



[15] Theodore Bially. Space-filling curves: Their generation and their application to

bandwidth reduction. IEEE Transactions on Information Theory, 15(6):658–

664, 1969.

[16] Bela Julesz. Textons, the elements of texture perception, and their interactions.

Nature, 290(5802):91, 1981.

[17] Jorge Sánchez, Florent Perronnin, Thomas Mensink, and Jakob Verbeek. Image

classification with the fisher vector: Theory and practice. International journal

of computer vision, 105(3):222–245, 2013.

[18] Manik Varma and Andrew Zisserman. A statistical approach to texture clas-

sification from single images. International journal of computer vision, 62(1-

2):61–81, 2005.

[19] Bangalore S Manjunath and Wei-Ying Ma. Texture features for browsing and

retrieval of image data. IEEE Transactions on pattern analysis and machine

intelligence, 18(8):837–842, 1996.

[20] Thomas Leung and Jitendra Malik. Representing and recognizing the visual

appearance of materials using three-dimensional textons. International journal

of computer vision, 43(1):29–44, 2001.

[21] Manik Varma and Andrew Zisserman. A statistical approach to material clas-

sification using image patch exemplars. IEEE transactions on pattern analysis

and machine intelligence, 31(11):2032–2047, 2009.

[22] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. In Advances in neural information

processing systems, pages 1097–1105, 2012.

102



[23] Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Re-

turn of the devil in the details: Delving deep into convolutional nets. arXiv

preprint arXiv:1405.3531, 2014.

[24] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, and Andrea Vedaldi. Deep

filter banks for texture recognition, description, and segmentation. International

Journal of Computer Vision, 118(1):65–94, 2016.

[25] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature

hierarchies for accurate object detection and semantic segmentation. In Pro-

ceedings of the IEEE conference on computer vision and pattern recognition,

pages 580–587, 2014.

[26] Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learning and trans-

ferring mid-level image representations using convolutional neural networks. In

Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 1717–1724, 2014.

[27] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson.

Cnn features off-the-shelf: an astounding baseline for recognition. In Proceedings

of the IEEE conference on computer vision and pattern recognition workshops,

pages 806–813, 2014.

[28] Dmitrii Chemodanov, Flavio Esposito, Andrei Sukhov, Prasad Calyam, Huy

Trinh, and Zakariya Oraibi. Agra: Ai-augmented geographic routing approach

for iot-based incident-supporting applications. Future Generation Computer

Systems, 92:1051–1065, 2019.

[29] Rasha Gargees, Brittany Morago, Rengarajan Pelapur, Dmitrii Chemodanov,

Prasad Calyam, Zakariya Oraibi, Ye Duan, Guna Seetharaman, and Kannappan

103



Palaniappan. Incident-supporting visual cloud computing utilizing software-

defined networking. IEEE Transactions on Circuits and Systems for Video

Technology, 27(1):182–197, 2016.

[30] Timo Ojala, Matti Pietikainen, and David Harwood. Performance evaluation of

texture measures with classification based on kullback discrimination of distri-

butions. In Pattern Recognition, 1994. Vol. 1-Conference A: Computer Vision

& Image Processing., Proceedings of the 12th IAPR International Conference

on, volume 1, pages 582–585. IEEE, 1994.

[31] Timo Ojala, Matti Pietikainen, and Topi Maenpaa. Multiresolution gray-scale

and rotation invariant texture classification with local binary patterns. IEEE

Transactions on pattern analysis and machine intelligence, 24(7):971–987, 2002.

[32] Larry S Davis, Steven A Johns, and JK Aggarwal. Texture analysis using

generalized co-occurrence matrices. IEEE Transactions on pattern analysis and

machine intelligence, (3):251–259, 1979.

[33] Dmitry Chetverikov. Experiments in the rotation-invariant texture discrimi-

nation using anisotropy features. In Proceedings-International Conference on

Pattern Recognition. IEEE, 1982.

[34] Rangasami L Kashyap and Alireza Khotanzad. A model-based method for

rotation invariant texture classification. IEEE Transactions on Pattern Analysis

and Machine Intelligence, (4):472–481, 1986.

[35] Jianchang Mao and Anil K Jain. Texture classification and segmentation us-

ing multiresolution simultaneous autoregressive models. Pattern recognition,

25(2):173–188, 1992.

[36] Wen-Rong Wu and Shieh-Chung Wei. Rotation and gray-scale transform-

invariant texture classification using spiral resampling, subband decomposi-

104



tion, and hidden markov model. IEEE Transactions on Image Processing,

5(10):1423–1434, 1996.

[37] Fernand S. Cohen, Zhigang Fan, and Maqbool A Patel. Classification of ro-

tated and scaled textured images using gaussian markov random field models.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(2):192–

202, 1991.

[38] Stephanie R Fountain and TN Tan. Efficient rotation invariant texture features

for content-based image retrieval. Pattern Recognition, 31(11):1725–1732, 1998.

[39] H Greenspan, S Belongie, R Goodman, and P Perona. Rotation invariant

texture recognition using a steerable pyramid. In Pattern Recognition, 1994.

Vol. 2-Conference B: Computer Vision & Image Processing., Proceedings of the

12th IAPR International. Conference on, volume 2, pages 162–167. IEEE, 1994.

[40] George M Haley and BS Manjunath. Rotation-invariant texture classification

using a complete space-frequency model. IEEE transactions on Image Process-

ing, 8(2):255–269, 1999.

[41] W-K Lam and C-K Li. Rotated texture classification by improved iterative

morphological decomposition. IEE Proceedings-Vision, Image and Signal Pro-

cessing, 144(3):171–179, 1997.

[42] Michael M Leung and Allen M Peterson. Scale and rotation invariant tex-

ture classification. In Signals, Systems and Computers, 1992. 1992 Conference

Record of The Twenty-Sixth Asilomar Conference on, pages 461–465. IEEE,

1992.

[43] MOSHE Porat and Yehoshua Y Zeevi. Localized texture processing in vision:

Analysis and synthesis in the gaborian space. IEEE Transactions on Biomedical

Engineering, 36(1):115–129, 1989.

105



[44] Olivier Alata, Claude Cariou, Clarisse Ramananjarasoa, and Mohamed Najim.

Classification of rotated and scaled textures using hmhv spectrum estimation

and the fourier-mellin transform. In Image Processing, 1998. ICIP 98. Proceed-

ings. 1998 International Conference on, volume 1, pages 53–56. IEEE, 1998.

[45] Vidya Manian and Ramon Vasquez. Scaled and rotated texture classification

using a class of basis functions. Pattern Recognition, 31(12):1937–1948, 1998.

[46] Jane You and Harvey A Cohen. Classification and segmentation of rotated

and scaled textured images using texture “tuned” masks. Pattern Recognition,

26(2):245–258, 1993.

[47] Lizhi Wang and Glenn Healey. Using zernike moments for the illumination and

geometry invariant classification of multispectral texture. IEEE Transactions

on Image Processing, 7(2):196–203, 1998.

[48] Zhenhua Guo, Lei Zhang, and David Zhang. A completed modeling of local

binary pattern operator for texture classification. IEEE Transactions on Image

Processing, 19(6):1657–1663, 2010.

[49] Yang Zhao, De-Shuang Huang, and Wei Jia. Completed local binary count for

rotation invariant texture classification. IEEE transactions on image processing,

21(10):4492–4497, 2012.

[50] Yimo Guo, Guoying Zhao, and Matti PietikäInen. Discriminative features for
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