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ABSTRACT

In this thesis, we study two mathematical problems on water waves in the setting of the incom-

pressible Euler equations with vorticity, gravity, and surface tension. We investigate the existence

of small-amplitude steady wind-driven water waves in finite depth, using the Crandall–Rabinowitz

theorem. As part of the result, elliptic equations with transmission and Wentzell boundary condi-

tions are also examined, and Schauder type estimates on classical solutions are established. The

second chapter considers the existence and instability of solitary water waves with a finite dipole

in infinite depth. We construct waves of this type using an Implicit Function Theorem argument.

Then we establish orbital instability. This is proved using a modification of the classical Grillakis–

Shatah–Strauss method.

v



Chapter 1

Introduction

When we think of fluids, waves come to our mind. They are famously difficult to study mathe-

matically, as the interior dynamics are fundamentally nonlinear and the surface of the water is a

priori unknown. There are several ways to create waves, in quiescent water, but the most common

is through the presence of wind. Since the pioneering work of Miles [1, 2, 3, 4] in the 1950s and

1960s, it has been understood that vorticity in the atmosphere is crucial to this process. Surface

tension also plays an important role in the initial stages of wind-driven water wave development.

Waves subject to the effect of gravity and surface tension are called capillary-gravity waves.

In this section, we introduce the main equations governing incompressible inviscid fluids and

discuss the effect of gravity, surface tension, and vorticity. We will postpone discussing regularity

and well-posedness of the model until the later sections.

1.1 Incompressible Euler equations

The study of water waves began with the derivation of equations for incompressible inviscid fluid

flows by Euler in 1755 [5]. Euler equations precisely capture an idealized fashion of fluid behavior

and have been commonly used in both mathematics and other fields such as weather prediction and

exploding supernova [6, 7, 8, 9].

Since these equations are derived in introductory texts of continuum mechanics (see, for example,

[10]), we only offer a brief discussion, and focus on the physical phenomena that are most important

for the mathematical work in the remainder of the thesis. For each time t ≥ 0, let Ω(t) ⊂ R2 be

the fluid domain and u = u(t, x) : Ω(t) → R2 be the fluid velocity at each point x ∈ Ω(t). We first
1



derive an equation for the incompressibility condition. Denote

ΩT := {{t} × Ω(t) : t ∈ [0, T )}, ∂ΩT := {{t} × ∂Ω(t) : t ∈ [0, T )}.

Let XXX = XXX(t, x) : ΩT → R2 be the Lagrangian flow map defined via the differential equation:


ẊXX = u(t,XXX), in Ω0,

V(∂Ωt) = u ·N, on ∂Ω0,

XXX(0, ·) = IdΩ0
,

(1.1.1)

where Id is the identity function on the initial domain Ω0 = Ω(0), V is the normal velocity of the

boundary, and N is the outward unit normal. We use ẊXX for the time derivative of XXX. The second

equation in (1.1.1) is for the particles to remain inside Ω(t).

Incompressibility refers to the fact that the flow map is measure preserving, that is:

|Ω(t)| :=
∫

Ω(t)

1dx =

∫
Ω(0)

1dx = |Ω(0)|.

On the other hand, for t sufficiently small, we have

|Ω(t)| =
∫

Ω(0)

det JXXX(t, x) dx,

where J is the Jacobian in the spatial variables. Comparing two equations, we see that the flow is

incompressible whenever

det JXXX(t, x) = 1, in Ω(0),∀t ≥ 0.

Then we compute:

0 = ∂t(det JXXX) = ∂t((∂x1
XXX1)(∂x2

XXX2)− (∂x1
XXX2)(∂x2

XXX1))

= (u1x1
(t,XXX) + u2x2

(t,XXX))((∂x1
XXX1)(∂x2

XXX2)− (∂x1
XXX2)(∂x2

XXX1))

= (∇ · u)(t,XXX)(det JXXX).

Therefore, it is equivalent to say that the flow u is incompressible if

∇ · u = 0, in ΩT . (1.1.2)

2



This is a special case of Liouville’s Theorem (see, for example, [11]).

Next, the incompressible Euler equations are derived from several conservation laws. Let Ω′0 ⊂ Ω0

and Ω′(t) be its image under the flow map. If ρ = ρ(t, x) > 0 is the density of the particles at x, the

total fluid mass on Ω′(t) is given by

m(t) :=

∫
Ω′(t)

ρ(t, x) dx.

Supposing that the mass of the total fluid is conserved, which we often anticipate when working

with liquids, we can compute

0 = m′(t) =

∫
Ω′(t)

∂tρ dx+

∫
∂Ω′(t)

ρ un dS

=

∫
Ω′(t)

∂tρ dx+

∫
∂Ω′(t)

ρu ·N dS =

∫
Ω′(t)

[∂tρ+∇ · (ρu)] dx,

where N is the outward unit normal to ∂Ω′(t) and dS is the surface measure on ∂Ω′(t). This follows

from the Divergence Theorem and the fact that the fluid particles must remain in Ωt, so the outward

normal velocity u ·N has to coincide with the normal velocity at the boundary V(∂Ω′(t)). Since the

above expression holds for any fixed time and fluid region Ω′(t) ⊂ Ω(t), we conclude that

∂tρ+∇ · (ρu) = 0, in Ω(t). (1.1.3)

Next, we derive the equation for conservative of momentum. Suppose that there are two types

of forces: body forces, which act on the fluid’s center of mass, and stress forces, which act on the

surface of the particle. We assume that the only body force is gravity, and it is given by −gρ, where

g > 0 is the gravitational constant. For an inviscid fluid, the stress force is a gradient of the pressure

force acting across the interface in the inward normal direction (see, for example, [12]). This force

strength per unit surface area is equal to the pressure p = p(t, x) : Ω(t)→ R.

Let P (t) be the total momentum on Ω′(t) defined by

P (t) =

∫
Ω′(t)

ρu dx.

By Newton’s Second Law, P ′(t) is equal to the force acting on it. Then

P ′(t) = −
∫
∂Ω′(t)

pN dS +

∫
Ω′(t)

−gρdx = −
∫

Ω′(t)

(∇p+ gρ) dx.

3



On the other hand, by Liouville’s Theorem, we can write

P ′(t) =

∫
Ω′(t)

[∂t(ρu) + (u · ∇)(ρu)] dx.

Thus, we obtain ∫
Ω′(t)

[∂t(ρu) + (u · ∇)(ρu) +∇p+ gρ] dx = 0,

which by similar arguments as above, implies

∂t(ρu) + (u · ∇)(ρu) +∇p+ gρ = 0, in Ω(t).

Combing with equations (1.1.2)–(1.1.3), we arrive at the incompressible Euler equations


ρ(∂t + u · ∇)u+∇p+ gρ = 0,

(∂t + u · ∇)ρ = 0,

∇ · u = 0,

in ΩT . (1.1.4)

Since the quadratic nonlinear term (u ·∇)u is the advection of the velocity field by itself, the analysis

of the equations is more difficult. The operator ∂t+u ·∇ is called the material derivative or advective

derivative associated with the flow.

1.2 Boundary conditions

The Euler equations in the previous section are for particles in the interior of the fluid. This section

provides conditions on ∂Ωt. Let (x1(t), x2(t)) be some point on ∂Ω(t). We assume that the interface

can be written as the graph of a function η = η(t, x1). Then

x2(t) = η(t, x1(t)) (1.2.1)

must hold for all t ≥ 0. Since (x′1(t), x′2(t)) = (u1(t, x1, x2), u2(t, x1, x2)), differentiating (1.2.1) gives

kinematic boundary condition

∂tη = −u1η
′ + u2, on ∂Ω(t). (1.2.2)

Here we denote prime for the derivative in x1.

In addition to equation (1.2.2), there must be a balance of the pressure force at the fluid surface.

4



This is expressed through the dynamic boundary condition:

p = α2κ(η), on ∂Ω(t), (1.2.3)

where α2 > 0 is the coefficient of surface tension and

κ = κ(x1) := − η′′

(1 + (η′)2)3/2

is the mean curvature of the surface. Equation (1.2.3) follows from the Young–Laplace law, which

states that the jump in the pressure across a fluid interface is proportional to its curvature. Equation

(1.2.3) is given under the assumption that the region above the fluid surface is at constant pressure 0.

The curvature is derived as following. Let f(x1, x2) := x2−η(x1), which vanishes on the surface.

The unit outward normal vector is given by

N =
∇f
|∇f |

=
(1,−η′(x1))

(1 + (η′)2)1/2
,

so the curvature is computed:

∇ ·N = − η′′

(1 + (η′)2)3/2
= κ.

Equations (1.1.4)–(1.2.3) are governing equations for gravity-capillary waves (see, for example, [13]).

1.3 Traveling water wave

A steady or traveling wave is a solution to a time-dependent problem that evolves by translating

at a fixed velocity without altering its shape. Traveling waves are found throughout nature; they

include ripples propagating along the surface of a pond, ignition fronts in combustion theory [14],

seismic waves [15], and even tsunamis [16]. They are therefore the subject of intensive studies in a

myriad of applied scientific fields, as well as a classical object of interest to mathematicians. Despite

these considerable efforts, many fundamental aspects of traveling waves remain poorly understood.

Both historically and currently, traveling waves have been especially important to fluid mechanics

and oceanography. Indeed, the concept of a steady wave originates with the observation by Russell

of the famous Great Wave of Translation moving across the Glasgow–Edinburgh canal in 1844 [17].

This inspired a tremendous amount of research into the mathematical properties of such waves. In

fact, it was not clear initially that steady waves were possible, nor that they were stable enough

5



to be observed in the field. Some of the earliest work in this direction was due to Cauchy [18],

Euler [19], Laplace [20], and Stokes [21]. Even now, traveling water wave is an extremely active and

rapidly developing field with strong interdisciplinary connections.

Mathematically, to say a two-dimensional wave is traveling means that the vector field has the

form

u(t, x) = û(x− tc)

for some profile û, wave speed c = (c1, 0) ∈ R2, and likewise for the pressure, and density. The

transformation x 7→ x− ct is called the moving frame. It follows that

∂tu = (−c · ∇)û, ∂tρ = (−c · ∇)ρ̂.

In order for these coordinates to be appropriate, we will require that the domain Ω(t) is invariant un-

der the moving frame. Abusing notation, we identify û with u and Ω(0) with Ω(t), the incompressible

Euler equations (1.1.4) now become the steady equations


ρ(u− c) · ∇u+∇p+ gρ = 0,

(u− c) · ∇ρ = 0,

∇ · u = 0,

in Ω.

As the dynamic boundary condition (1.2.3) contains no time derivatives, its expression remains

unchanged in the moving coordinates.

When the flow is steady at speed (c, 0), we have the Bernoulli condition [22, 23], which states

that

E := p+
ρ

2
((u1 − c)2 + u2

2) + gρx2 = p+
1

2
|∇ψ|2 + gρx2

is constant along the streamlines, which are the integral curves of (u1 − c, u2).

1.4 Vorticity

The vorticity ω of a two-dimensional velocity field u = (u1, u2) is the scalar-valued function:

ω := rotu = ∂x1u2 − ∂x2u1. (1.4.1)

6



It measures the rotation of the fluid particle. The vast majority of the literature on water waves is

concerned with the case of so-called irrotational flow, where the vorticity is assumed to be identically

0. The most compelling reason to work with irrotational flows is mathematical convenience. In

particular, this assumption implies that the velocity field is the gradient of a harmonic function,

called the velocity potential φ. This enables us to use many powerful results on harmonic functions

and complex analysis. Examples of such tools are the use of conformal variables to fix the domain.

Therefore, the velocity field can be determined by solving the Laplace equation given the behavior

on the boundary.

However, there are several situations where consideration of rotational waves is needed. The

classical Kelvin–Helmholtz theorem implies that the circulation around any smooth simple curve

remains zero as long as it is only affected by conservative forces such as gravity [24]. Nonetheless,

effects such as wind and temperature can induce rotation.

One of the earliest works of rotational waves is Gerstner in 1809 [25], who gave the first and

explicit formula for solutions to the Euler equations in infinite depth under the effect of gravity and

constant vorticity. Much later, in 1934 Dubreil–Jacotin [26] developed a non-conformal coordinate

transformation to construct small-amplitude periodic water waves with vorticity. Then Ter-Krikorov

[27, 28] presented a rigorous proof of small-amplitude rotational solitary waves. The transformation

by Dubreil–Jacotin was again used by Constantin and Strauss to examine large waves using global

bifurcation theory [29]. This was done under the assumption of a relation between the strength of the

vorticity and the volumetric mass flux. Recently, Wheeler showed the existence of large-amplitude

rotational solitary water waves [30, 31, 32] using a new global bifurcation technique. Moreover,

gravity-capillary waves with compactly supported vorticity on infinite depth were constructed by

Shatah, Walsh, and Zeng [33]. In this work, the vorticity comes from either a point vortex, the

simplest possible compactly supported vorticity, or a vortex patch. We will discuss about point

vortices in Section 1.5.

For a steady incompressible two-dimensional flow u, there exists a stream function ψ such that

u = ∇⊥ψ, (1.4.2)

where ∇⊥ = (−∂x2 , ∂x1). The level sets of ψ are called the streamlines and contain information

about the flow, since ∇ψ is orthogonal to the velocity field at each point. It is straightforward from

the definitions (1.4.1) and (1.4.2) that

∆ψ = ω, (1.4.3)

7



which means that ψ is determined by ω only up to a harmonic function. Taking the curl of the

incompressible Euler equations (1.1.4) and assuming constant density (which is the case in the two

projects of this thesis), we can see that

ωt +∇ · (uω) = 0. (1.4.4)

This is called the vorticity transport equation.

1.5 Point vortices and dipole

When a submerged object, such as a submarine, moves through water, it can “shed” vortices in the

sense that complicated vortical structures develop in its wake. A simple model for this phenomenon

is to imagine that the velocity of the water about the object has a dipole structure. This means

that there are two point vortices with equal but opposite strength that move in parallel. This serves

as a model for the propagation of vortices shed by the flow over a thin body. Mathematically, the

vorticity for a point vortex is represented by a δ-measure. In particular, we have

ωpoint vortex(t, x) = εδx̄(t)(x),

where ε is the vortex strength, and x̄(t) is the vortex center at time t. Note that the above expression

is not a solution to the equation (1.4.4) as it requires further weakening Euler equations as in

Kirchhoff–Helmholtz [34, 50].

The vorticity for the finite dipole consisting of two point vortices is in the form:

ωfinite dipole(t, x) = ε1δx̄(t)(x) + ε2δȳ(t)(x),

where ε1 and ε2 are the vortex strengths, and x̄(t) and ȳ(t) are the vortex centers. Another type of

highly localized vorticity is the point dipole. A point dipole occurs when the distance between two

point vortices tends to 0. That is

ωpoint dipole(t, x) = ξ(t) · ∇δx̄(t),

where ξ = ξ(t) := εξ̃, ε = ε(t), and ξ̃ = ξ̃(t) =
(
ξ̃1(t), ξ̃2(t)

)
∈ R2.

The study of point vortices and dipoles began with Helmholtz [34], who introduced the intuition
8



that vortices are like particles. Since then, there has been extensive research on this subject both in

physics and mathematics. For instance, Kelvin [35] gave the conservation of circulation in an inviscid

incompressible fluid subject to certain forces. In 1876, Kirchhoff [36] was the first to derive governing

equations for point vortices in the two-dimensional plane. Later, Thomson [37] investigated the

stability of a ring of vortices on a sphere. Love [38] also studied the stability of Kirchhoff’s elliptic

vortex. Marchioro and Pulvirenti [39] showed the relationship between the incompressible Euler

equations (1.1.4) and the Kirchhoff–Helmholtz model.

Each of the above works considers the case of water in a fixed domain. But a natural question

is: what happens in an actual water wave. A number of mathematicians have studied the problem

of how a free surface responds to the motion of submerged point vortices. Some of the earliest

works were from Ter-Krikorov and Filippov [40, 27] who gave the existence theory for steady waves

solution without surface tension. Later Tyvand investigated the short time behavior of a pair of

strong and weak vortices when they were suddenly placed near the fluid surface [41, 42]. Kuznetsov

and Ruban [43] derived exact equations of motion of point vortices when they interact with surface

waves using conformal maps and asymptotic methods. They also examined how the speed of these

moving vortices can affect surface waves. Moreover, systems with one or more vortices have been

considered by many authors. For instance, Shatah, Walsh, and Zeng [33] constructed a family

of steady capillary-gravity waves in infinite depth with both a single point vortex and a vortex

patch. Varholm [44] obtained similar results for waves in finite depth with one or more vortices.

Other authors have done numerical and experimental studies of two point vortices such as Fish [45],

Marcus and Berger [46], Telste [47], Willmarth, Tryggvason, and Hirsa [48]. Finally, many real world

applications for point vortices have also been studying. For example, the finite dipole serves as a

model for fish schoolings [49].

When a point vortex is placed in traveling waves, the vorticity transport equation (1.4.4) implies

that it is transported with the fluid flow and remains as such a vortex for all t. The splitting

ψ = ψH + εΓ,

where ψH is harmonic, represents the irrotational part of the fluid, and εΓ being the vortical contri-

bution from point vortices. From the relation (1.4.3), the Newtonian potentials for a point vortex

is given by

Γpoint vortex(t, x) =
1

2π
log |x− x̄|.

9



Another question we usually ask is: what is the motion of the vortex when it is placed inside the

traveling wave? By the Kirchhoff–Helmholtz model [50, 34], the point vortex moves with the velocity

field obtained by removing the rotational part. That means

∂tx̄point vortex =
(
v − ε∇⊥Γ

)∣∣
x=x̄

=

(
v − ε

2π

(−x2 + x̄2, x1 − x̄1)

|x− x̄|2

)∣∣∣∣
x=x̄

.

Similarly, the Newtonian potential for a finite dipole is the sum of two Newtonian potentials of

point vortex, and the motion for the finite dipole is given by two separated motion equations for

each vortex. For the point dipole, we have

Γpoint dipole(t, x) = ξ · ∇Γpoint vortex.

1.6 Plan of the thesis

After establishing the background knowledge, we give a brief discussion about the structure of the

thesis. Each of the remaining sections is a journal article.

Section 2 has been accepted for publication [51]. In this section, we present results about the

existence and uniqueness of solutions of elliptic equations with transmission and Wentzell boundary

conditions. We provide Schauder estimates and existence results in Hölder spaces. As an application,

we develop an existence theory for small-amplitude two-dimensional traveling waves in an air-water

system with surface tension. The water region is assumed to be irrotational and of finite depth, and

we permit a general distribution of vorticity in the atmosphere.

Section 3 has been submitted. This project considers the existence and stability properties of

two-dimensional solitary waves traversing an infinitely deep body of water. We assume that above

the water is vacuum, and that the waves are acted upon by gravity with surface tension effects on the

air–water interface. In particular, we consider the case where there is a finite dipole in the bulk of the

fluid, that is, the vorticity is a sum of two weighted δ-functions. Using an implicit function theorem

argument, we construct a family of solitary waves solutions for this system that is exhaustive in a

neighborhood of 0. Our main result is that this family is conditionally orbitally unstable. This is

proved using a modification of the Grillakis–Shatah–Strauss method recently introduced by Varholm,

Wahlén, and Walsh.

10



Chapter 2

Wind-waves

2.1 Introduction

2.1.1 Elliptic theory

Let Ω ⊂ Rn be a connected bounded C2,β domain for n > 1 and β ∈ (0, 1). Suppose that there

exists a C2,β hypersurface Γ that divides Ω into two connected regions such that

Ω = Ω1 ∪ Γ ∪ Ω2, Ω1 ∩ Ω2 = ∅, ∂Ω1 ∩ ∂Ω2 = Γ,

and denote by S := ∂Ω. Let ν = (ν1, . . . , νn) be the normal vector field on the interface Γ pointing

outward from Ω1. We define the co-normal derivative operator on Γ

∂N :=

n∑
i,j=1

aijνi∂xj ,

and the tangential differential operator along Γ

Ds :=

n∑
t=1

wst∂xt , 1 ≤ s ≤ n,

where w := In − ν ⊗ ν, and In is the n× n identity matrix.

Our main object of study is the following transmission problem with a Wentzell boundary con-
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dition 

Lu = f in Ω,

u = 0 on S,

JuK = 0 on Γ,

Bu = g on Γ,

(2.1.1)

where

Lu := −
n∑

i,j=1

∂xi(a
ij(x)∂xju) +

n∑
i=1

bi(x)∂xiu+ c(x)u, (2.1.2)

Bu := −
n∑

s,t=1

Ds
(
ast(x)Dtu

)
+ α J∂NuK +

n∑
s=1

bs(x)Dsu+ c(x)u, α = ±1. (2.1.3)

Here, we are using J·K := (·)|Ω1−(·)|Ω2 to denote the jump operator across Γ. We think of α = +1 as

favorable and α = −1 as unfavorable. We shall assume uniform ellipticity condition on the operators

L and B; that is, there exist constants λ, µ > 0 such that

λ|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj for all x ∈ Ω, ξ ∈ Rn, (2.1.4)

and

µ|ξ|2 ≤
n∑

s,t=1

ast(x)ξsξt for all x ∈ Γ and ξ ∈ Rn such that ξ · ν(x) = 0. (2.1.5)

The coefficients aij and ast satisfy aij = aji, ast = ats for all i, j, s, t = 1, . . . , n. We also assume

that aij , bi, c are in L∞(Ω), and ast, bs, c are in L∞(Γ).

Note that B contains second-order tangential derivatives of u. This is characteristic of so-called

Wentzell-type boundary conditions, whose study was initiated by Wentzell in [52]. They arise, for

example, in stochastic equations [53] or as an asymptotic model for roughness of the boundary

or other more complex geometrical effects [54]. They also appear in water waves and continuum

mechanics, which is our principal interest here. For instance, the Young–Laplace Law states that

at the interface between two immiscible fluids, the pressure experiences a jump proportional to the

curvature. In a free boundary problem where the interface is given as the graph of an unknown

function, this naturally leads to quasilinear versions of Wentzell-type conditions. More generally,

the curvature of a hyperplane is the first variation of its surface area. Thus, these types of conditions

are frequently encountered in free boundary problems where the shape of the interface contributes

to the energy.

Transmission conditions refers to the jump operator in B. They are commonly found in multi-
12



phase problems, where physically their purpose is to enforce continuity of the normal stress across a

material interface. Many researchers alternatively call these diffraction problems (see, for example,

[55, 56]).

We first have an a priori estimate for classical solutions in Hölder spaces.

Theorem 2.1.1 (Schauder estimate). Assume that aij ∈ C1,β(Ω1) ∩ C1,β(Ω2), bi, c ∈ C0,β(Ω1) ∩

C0,β(Ω2), and ast ∈ C1,β(Γ), bs, c ∈ C0,β(Γ); and suppose that

‖aij‖C1,β(Ωk), ‖bi‖C0,β(Ωk), ‖c‖C0,β(Ωk), ‖ast‖C1,β(Γ), ‖bs‖C0,β(Γ), ‖c‖C0,β(Γ) < Λ2

for some constant Λ2 > 0, for all i, j, s, t = 1, . . . , n, and k = 1, 2. Suppose that u ∈ C0(Ω) ∩

C2,β(Ω1) ∩ C2,β(Ω2) solves equation (2.1.1) with α = ±1. Then for any Ω′ ⊂⊂ Ω\(Γ ∩ S), if

f ∈ C0,β(Ω1) ∩ C0,β(Ω2) and g ∈ C0,β(Γ), the following estimate holds:

‖u1‖C2,β(Ω′1)+‖u2‖C2,β(Ω′2)

≤ C
(
‖u‖C0(Ω) + ‖f‖C0,β(Ω1) + ‖f‖C0,β(Ω2) + ‖g‖C0,β(Γ)

) (2.1.6)

for some constant C = C(n, β,Λ2, λ, µ,Ω
′
1,Ω

′
2) > 0, where Ω′k := Ω′ ∩ Ωk and uk := u|Ωk .

Note that the estimates in the theorem hold on subsets that are positively separated from Γ∩ S

where the boundary may not be smooth. The next theorems will assume that Ω ⊂ Tn−1×R, where

T is a torus and S ∩ Γ = ∅.

Theorem 2.1.2 (Existence and uniqueness of solutions in C2,β). Suppose the coefficients aij , bi, c,

ast, bs, c exhibit the same regularity as in Theorem 2.1.1 and assume in addition that c ≥ 0 and

c > 0. Then for all f ∈ C0,β(Ω1) ∩ C0,β(Ω2) and g ∈ C0,β(Γ), the problem (2.1.1) with α = 1 has a

unique C0,β(Ω) ∩ C2,β(Ω1) ∩ C2,β(Ω2) solution.

We emphasize that this theorem only holds if we assume c ≥ 0, c > 0, and α has a favorable

sign. However, for a general c, c, and α, we are still able to assert the Fredholm solvability of the

problem. Letting

X := C2,β(Ω1) ∩ C2,β(Ω2) ∩ {u|S = 0} ∩ C0,β(Ω), (2.1.7)

which is a Banach space with respect to the norm

‖u‖X := ‖u‖C2,β(Ω1) + ‖u‖C2,β(Ω2) + ‖u‖C0,β(Ω),
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we have the following theorem.

Theorem 2.1.3 (Fredholm solvability). Suppose the coefficients aij , bi, c, ast, bs, c exhibit the same

regularity as in Theorem 2.1.1 and α = ±1. Then either

(i) the homogeneous problem (2.1.1) with f = g = 0 has nontrivial solutions that form a finite

dimensional subspace of X, or

(ii) the homogeneous problem has only the trivial solution in which case the inhomogeneous problem

has a unique solution in X for all f ∈ C0,β(Ω1) ∩ C0,β(Ω2) and g ∈ C0,β(Γ).

A great deal of research has been devoted to studying elliptic problems with linear and nonlinear

Wentzell boundary conditions, but they remain comparatively less well-understood. One of the

earliest works to consider Wentzell conditions was Korman [57] who, like us, was interested in

their connection to a problem in water waves. Specifically, he investigated a model describing

three-dimensional periodic capillary-gravity waves where the gravity pointed upward. A Schauder

theory was later provided by Luo and Trudinger [58] for the linear case. In the quasilinear setting,

Luo [59] gave a priori estimates for uniformly elliptic Wentzell conditions, while later Luo and

Trudinger [60] studied the degenerate case. More recently, Nazarov and Paletskikh [61] derived local

Hölder estimates in the spirit of De Giorgi for divergence form elliptic equations with measurable

coefficients and a Wentzell condition imposed on a portion of the boundary. See also the survey by

Apushkinskaya and Nazarov [62] for a summary of the progress made on the nonlinear problem.

Transmission boundary conditions are of great importance to physics and other applied sciences.

They are also of interest from a purely mathematical perspective as they arise naturally in the

weak formulation of PDEs with discontinuous coefficients. The study of transmission problems

dates back to the 1950s and 1960s. Schechter [63] and S̆eftel’ [64] investigated even-order elliptic

equations on a smooth and bounded domain with smooth coefficients. Schechter obtained estimates

and provided an existence for weak solutions. His strategy involved transforming the transmission

problem into a mixed boundary value problem for a system of equations. On the other hand, S̆eftel’

found a priori Lp-estimates. Olĕınik [65] also studied transmission problems for second-order elliptic

equations with smooth coefficients; approximating equations were used to derive results for weak

solutions. One of the most foundational work was done by Ladyzhenskaya and Ural’tseva [55], who

considered second-order elliptic equations on a bounded domain and then obtained estimates for

weak and classical solutions in Sobolev and Hölder spaces, respectively. In contrast to Schechter’s

approach, Ladyzehnskaya and Ural’tseva exploited cleverly chosen test functions to deduce their a
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Air Ω1(t) %1 ω = γ

Water Ω2(t) %2 ω = 0

c−−−−→

Y = `

Y = η(X, t)

Y = −d

Figure 2.1: The air–water system

priori estimates. More recently, Borsuk [66, 67, 68] has treated linear and quasilinear transmission

problems on non-smooth domains.

Apushkinskaya and Nazarov [69] considered Sobolev and Hölder solutions of linear elliptic and

parabolic equations for two-phase systems. However, they only examined the problem with a fa-

vorable sign α = +1 of the transmission term, and did not study Fredholm property. Note that in

water wave applications, the sign is typically unfavorable. With that in mind, in this chapter we

make the effort to also include Schauder estimates and Fredholm solvability for α = −1 as well; see

also Remarks 2.2.1, 2.2.5, and 2.2.7. Our approach is to view the Wentzell boundary condition as a

non-local (n− 1)-dimensional elliptic equation, treating the jump in the co-normal derivative term

as forcing that can be controlled using techniques from the literature on transmission problems.

2.1.2 Steady wind-driven capillary-gravity water waves

Our second set of results considers an application of the above elliptic theory to a problem in water

waves. In particular, we will prove the existence of small amplitude periodic wind-driven capillary-

gravity waves in a two-phase air-water system. One of the main novelties here is that we also allow

for a general distribution of vorticity in the air region. For simplicity we take the flow in the water to

be irrotational. When discussing these results, we adopt notational conventions common in studies

of steady water waves which occasionally conflict with our notations in the elliptic theory part.

Let us now formulate the problem more precisely. Fix a Cartesian coordinate system (X,Y ) ∈ R2

so that the X-axis points in the direction of wave propagation and the Y -axis is vertical. The ocean

bed is assumed to be flat and at the depth Y = −d, while the interface between the water and the

atmosphere is a free surface given as the graph of η = η(X, t). We then normalize η so that the free

surface is oscillating around the line Y = 0. The atmospheric domain is assumed to be bounded in

Y ; that is, the air region lies below Y = ` for some fixed ` > 0. At a given time t, the fluid domain
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is

Ω(t) = Ω1(t) ∪ Ω2(t),

where Ω1 is the air region,

Ω1(t) := {(X,Y ) ∈ R2 : η(X, t) < Y < `},

and Ω2 is the water region,

Ω2(t) := {(X,Y ) ∈ R2 : −d < Y < η(X, t)}.

We also denote I(t) := ∂Ω1(t)∩∂Ω2(t). Here we think of I(t) as playing the role of Γ in the notation

of the previous subsection.

Let u = u(X,Y, t) and v = v(X,Y, t) be the horizontal and vertical fluid velocities, respectively,

and denote by P = P (X,Y, t) the pressure. We say that this is a traveling wave provided that there

exists a wave speed c > 0 such that the change of variables

(X,Y ) 7→ (x, y) := (X − ct, Y )

eliminates time dependence. The velocity field is assumed to be incompressible and, in the moving

frame, (u, v, η, P ) are taken to be 2π-periodic in x.

For water waves, the governing equations are the incompressible steady Euler system:


ux + vy = 0,

%(u− c)ux + %vuy = −Px,

%(u− c)vx + %vvy = −Py − g%,

in Ω (2.1.8)

where g > 0 is the gravitational constant, and % = %11Ω1
+ %21Ω2

with %1 and %2 assumed to be

constant densities of Ω1 and Ω2, respectively. We assume %1 < %2. The symbol 1Ωi stands for the

characteristic function on Ωi. As above, J·K denotes the jump over I, that is, J·K = (·)|Ω1
− (·)|Ω2

.

The kinematic and dynamic boundary conditions for the lidded atmosphere problem with surface
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tension σ are 

v = 0 on y = `,

v = 0 on y = −d,

v = (u− c)ηx on y = η(x),

JP K = −σ ηxx
(1+(ηx)2)3/2

on y = η(x).

(2.1.9)

Note that the last condition will give rise to nonlinear Wentzell and transmission terms. In particular,

the right hand side can be viewed as a second-order elliptic operator acting on η, while the jump in

the pressure will relate to a jump in (u− c)2 + v2 via Bernoulli’s theorem that we discuss below.

We consider waves without (horizontal) stagnation, that is, we will always assume

u− c < 0 in Ω. (2.1.10)

As (u, v) is divergence free according to (2.1.8), we can define the pseudostream function ψ = ψ(x, y)

for the flow by

ψx =
√
%v, ψy =

√
%(u− c) in Ω. (2.1.11)

The level sets of ψ are called streamlines. Without stagnation (2.1.10), we have ψy < 0, which

implies that each streamline is given as the graph of a function of x via a simple Implicit Function

Theorem argument. The boundary conditions in (2.1.9) show that the air-water interface, bed, and

lid are each level sets of ψ. We will take ψ = 0 on the upper lid so that ψ = −p0 on y = −d, where

p0 is defined by

p0 :=

∫ η(x)

−d

√
%(x, y)(u(x, y)− c) dy.

It can be shown that p0 does not depend on x (see, for example, [23]). Bernoulli’s theorem states

that

E := P +
%

2
((u− c)2 + v2) + g%y

is constant along streamlines. Evaluating the jump of E on the interface gives

q
|∇ψ|2

y
+ 2g J%K (η + d) + σκ = Q on y = η(x),

where κ is the signed curvature of the air-water interface and Q := 2 JE + g%dK.
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Recall that in two dimensions, the vorticity ω is defined to be

ω := vx − uy.

If there is no stagnation (2.1.10), there exists a function γ, called the vorticity strength function,

such that

ω(x, y) = γ(ψ(x, y)) for all (x, y) ∈ Ω.

The vorticity plays a key role in the wind generation of water waves as we will discuss below.

Mathematically, it substantially complicates the analysis.

Finally, we will use the following notational conventions. For any integer k ≥ 0, α ∈ (0, 1), and

an open region R ⊂ Rn, we define the space Ck+α
per (R) to be the set of Ck+α(R) functions that are

2π-periodic in their first argument.

Our main theorem is an existence result for traveling capillary-gravity water waves in the presence

of wind.

Theorem 2.1.4 (Existence of small amplitude wind-driven water waves). Fix d, `, c > 0, and

p0 < p1 < 0. For any vorticity function γ ∈ C0,α([p1, 0]) and σ > 0 sufficiently large, there exists a

C1 curve

C′loc := {(u(s), v(s), η(s), Q(s)) : s ∈ (−ε, ε)}

of traveling wave solutions to the capillary-gravity water wave problem (2.1.8)–(2.1.10) such that

1. Each (u, v, η,Q) ∈ C′loc is of class

(u(s), v(s), η(s), Q(s)) ∈
(
Cαper(Ω) ∩ C1+α

per (Ω(s)\I(s))
)2 × C2+α

per (R)× R =: S ,

where u(s) and v(s) are even and odd in the first coordinate, respectively, η(s) is even in x,

and Ω(s) is the domain corresponding to η(s);

2. (u(0), v(0), η(0), Q(0)) = (U∗(y), 0, 0, Q∗), where (U∗, Q∗) is laminar solution.

We prove this theorem using a local bifurcation theoretic strategy that draws on the ideas of

Constantin and Strauss [29], who studied rotational periodic gravity water waves in a single fluid.

Indeed, following the publication of [29], traveling water waves with vorticity have been an extremely

active area of research (see, for example, the surveys in [70, 71]).

Our most direct influence is the work of Bühler, Shatah, and Walsh [72] on the existence of
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steady gravity waves in the presence of wind. These authors studied exactly the system (2.1.8)–

(2.1.10) taking σ = 0. One of the main objectives of that paper was to construct waves that were

dynamically accessible from an initial state where the flow is laminar and the horizontal velocity

experiences a jump over the interface. More specifically, this meant that the circulation along each

streamline was prescribed in order to ensure that its values in the air and water regions were distinct

(see Remark 2.3.3). We also adopt this approach in the present work, though the addition of surface

tension necessitate many nontrivial adaptations.

2.1.3 History of the problem

Steady capillary and capillary-gravity waves have been the subject of extensive research. Because

we are particularly interested in the role of vorticity, we will restrict our discussion to rotational

waves. In this setting, progress is much more recent and begins with the work of Wahlén [73, 74],

who proved the existence of small-amplitude periodic capillary and capillary-gravity waves in two-

dimensions for a single fluid system. As in [29], this was done for a general vorticity function γ.

Contrary to the gravity wave case, Wahlén showed that with surface tension there can be double

bifurcation points; this is a rotational analogue of the famous Wilton ripples [75]. Later, Walsh

considered two-dimensional periodic capillary-gravity waves with density stratification [76, 77].

Recently, Martin and B-V Matioc proved the existence of steady small-amplitude capillary-

gravity water waves with piecewise constant vorticity [78]. While they consider a one-layer model,

the analysis has a similar flavor to that in the present work. A-V Matioc and B-V Matioc also

constructed weak solutions for steady capillary-gravity water waves in a single fluid [79].

The waves we construct can also be viewed as internal waves moving along the interface between

two immiscible fluid layers confined in a channel. Versions of this problem have been investigated by

many authors. For instance, Amick–Turner [80] and Sun [81, 82] considered the existence of solitary

waves in a channel where the flow is irrotational at infinity. Amick–Turner built their solitary waves

as limits of periodic waves with the period tending to infinity. Sun, on the other hand, exploited

the fact that the leading-order form of the wave is given by the Benjamin–Ono equation, and then

used singular integral operator estimates to control the remainder. The existence of continuously

stratified channel flows has also been verified in a number of regimes. Note that these are rotational,

since heterogeneity in the density produces vorticity. Specifically, Turner [83] and Kirchgässner [84]

investigated small-amplitude continuously stratified waves using a variational scheme and a center

manifold reduction method, respectively. A large-amplitude existence theory was also provided by
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Bona, Bose, and Turner [85], Lankers and Friesecke [86], and Amick [87]. We remark that, in all

of these works, the vorticity vanishes at infinity. Finally, internal waves with surface tension on the

interface were recently considered by Nilsson [88]. In that paper, each fluid layer was assumed to be

irrotational and constant density. Using spatial dynamics and a center manifold reduction, Nilsson

proved the existence of both periodic and solitary wave solutions.

As mentioned above, steady water waves in the presence of wind was studied by Bühler, Shatah,

and Walsh in [72]. Our main contribution relative to that work is to account for capillary effects

on the air-water interface. It is known that surface tension is important in the formation of wind-

driven waves. Indeed, high frequency and small-amplitude capillary-gravity waves are the first to

form when wind blows over a quiescent body of water.

One of the most successful explanations for the mechanism behind the wind generation of water

waves was given by Miles [1]. His main observation was that vorticity in the air region can create

a certain resonance phenomenon that destabilizes the system. Importantly, this so-called critical

layer instability can occur even when the horizontal velocity is continuous — or nearly continuous

— over the interface, and therefore does not require exceedingly strong wind speeds like the Kelvin–

Helmholtz model. The mathematical ideas underlying Miles’s theory were recently reexamined and

rigorously proved by Bühler, Shatah, Walsh, and Zeng [89]. In that work, the authors also allowed

surface tension. This is somewhat important as the interface Euler problem itself is ill-posed when

there is a jump in the tangential velocity and there is no surface tension (see, for example, [90]). In

a forthcoming work, the author intends to study the stability of the family of waves constructed in

Theorem 2.1.4. This will serve as a model for wind generation of water waves in the spirit of Miles,

but with an initial state that is not purely laminar.

2.1.4 Plan of the article

We now briefly discuss the strategies we use to derive these results. The elliptic theory is proved

in Section 2.2. Our approach is based on the work of Luo and Trudinger [58], who gave Schauder

estimates for elliptic equations with Wentzell boundary conditions.

In Section 2.3, we construct capillary-gravity water waves where the air region is rotational.

Following Bühler, Shatah, and Walsh [72], the first step in this procedure is to reformulate the

interface Euler system (2.1.8)–(2.1.10) as a quasilinear elliptic equation on a fixed domain. Due to

surface tension, there is now a nonlinear Wentzell condition on the image of the interface in these

new coordinates. We construct the non-laminar waves using local bifurcation theory. This entails
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studying the spectrum of the linearized equation at a laminar flow, and here we make essential use

of the elliptic theory developed in Section 2.2. One major difficulty that arises is that this linearized

problem is of Sturm–Liouville type, but associated to an indefinite inner product. Consequently, to

successfully determine the spectral behavior, we must work in Pontryagin spaces. A similar issue

was encountered by Wahlén in [73, 74]. Finally, we apply the Crandall–Rabinowitz local bifurcation

theorem to obtain Theorem 2.1.4.

2.2 Elliptic Theory

To simplify subsequent calculations, it is convenient to first change variables. Fix a point x0 ∈ Γ.

Then by the assumption on Ω, there is a neighborhood U of x0 and a C2,β diffeomorphism that maps

U to some ball B ⊂ Rn so that Γ maps to {xn = 0}, Ω1 to B∩{xn > 0}, and Ω2 to B∩{xn < 0} (see,

for example, [58]). Then it suffices to assume that Γ is the hyper-plane {xn = 0}, and consequently,

Ω1 and Ω2 lie inside the upper-half and lower-half planes respectively.

In this case, the co-normal derivative operator simplifies to

∂Nu = −
n∑
j=1

anj∂xju,

and the Wentzell and transmission condition on Γ becomes

Bu = −
n−1∑
s,t=1

∂xs
(
ast∂xtu

)
+ α J∂NuK +

n−1∑
s=1

bs∂xsu+ cu.

We also denote by ∇′ the tangential gradient on Γ in this case.

2.2.1 Classical solutions

First, we prove our theorem on Schauder estimates for solutions in Hölder spaces. This relies on the

observation that one can apply (n− 1)-dimensional elliptic estimates for B on Γ with transmission

boundary condition being lower ordered.
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Proof of Theorem 2.1.1. Using the above change of variables, we rewrite the condition on Γ

−
n−1∑
s,t=1

ast∂xs∂xtu−
n−1∑
s,t=1

(∂xsa
st)(∂xtu)− α

n∑
j=1

anj∂xju1

+ α

n∑
j=1

anj∂xju2 +

n−1∑
s=1

bs∂xsu+ cu = g.

We then cover Γ by a finite number of spheres in which the estimate in [91, Theorem 6.2] for B on

Γ can be applied. This ensures the existence of a positive constant C = C(n, β, L,B, µ) such that

‖u1‖C2,β(Γ′) ≤ C(‖u1‖C0(Γ) + ‖u2‖C1,β(Γ′) + ‖g‖C0,β(Γ)). (2.2.1)

Similarly, we have

‖u2‖C2,β(Γ′) ≤ C(‖u2‖C0(Γ) + ‖u1‖C1,β(Γ′) + ‖g‖C0,β(Γ)). (2.2.2)

Next, we use a basic elliptic estimate for the Dirichlet problem in Ω′k with boundary condition uk|Γ

(see, for example, [91, Theorem 6.6]), to obtain

‖uk‖C2,β(Ω′k) ≤ C
(
‖uk‖C0(Ωk) + ‖uk‖C2,β(Γ′) + ‖f‖C0,β(Ωk)

)
. (2.2.3)

Moreover, we have the following interpolation

‖uk‖C1,β(Γ′) ≤ Cε‖u‖C0(Γ) + ε‖uk‖C2,β(Γ′) (2.2.4)

for some ε > 0. Finally, evaluating (2.2.3) with k = 1, 2 and summing, using JuK |Γ = 0 and the

estimates (2.2.1), (2.2.2), (2.2.4) and choosing appropriate ε give

‖u1‖C2,β(Ω′1) + ‖u2‖C2,β(Ω′2)

≤ C
(
‖u‖C0(Ω) + ‖f‖C0,β(Ω1) + ‖f‖C0,β(Ω2) + ‖g‖C0,β(Γ)

)
.

Remark 2.2.1. A version of Theorem 2.1.1 was stated in [69, Theorem 2.3∗] without proof under

the assumption that α = +1 in the boundary operator (2.1.3). However, according to the above proof,

this theorem holds regardless of the sign of J∂NuK.

Next, in preparation for proving the existence and uniqueness result, we first establish a maxi-
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mum principle. Apushkinskaya and Nazarov state a similar result in [69, Theorem 3.1]. Using our

notations, we have the lemma.

Lemma 2.2.2 (Maximum Principle). Suppose the coefficients aij , bi, c, ast, bs, c exhibit the same

regularity as in Theorem 2.1.1 and assume in addition that c ≥ 0 and c > 0. Let α = 1 and suppose

that u ∈ C0(Ω) ∩ C2(Ω1) ∩ C2(Ω2) satisfies

Lu ≤ f in Ω, u = 0 on S, Bu ≤ g on Γ.

Then we have the estimate

sup
Ω
u ≤ sup

Γ

∣∣∣g
c

∣∣∣+ C sup
Ω

∣∣∣∣fλ
∣∣∣∣ (2.2.5)

for some positive constant C = C(diam Ω, λ, ‖∂xiaij‖L∞ , ‖bi‖L∞), where the L∞ norms are taken

over Ω1 and Ω2.

Proof. We will follow very closely the classical arguments when proving this maximum principle in

the interior. Rewriting L in non-divergence form gives

Lu = −
n∑

i,j=1

aij∂xi∂xju+

n∑
i=1

b̃i∂xiu+ cu,

where b̃ := bi − ∂xiaij . Setting

τ :=
‖b̃i‖L∞(Ω1) + ‖b̃i‖L∞(Ω2)

λ
,

choosing σ ≥ 1 large enough so that σ2 − τσ ≥ 1, and without loss of generality, because of the

boundedness of Ω, assuming Ω lies between {x1 = 0} and {x1 = d}, let

v := sup
∂Ωk

u+ +
(
eσd − eσx1

)
sup
Ωk

f+

λ
,

where u+ := max(u, 0) and d := diam Ω. Then

Leσx1 = (−a11σ2 + b̃1σ + c)eσx1 ≤ −λ(σ2 − τσ)eσx1 + c eσx1 ≤ −λ+ c eσx1 .
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Then since c ≥ 0,

Lv ≥ c sup
∂Ωk

u+ + c eσd sup
Ωk

f+

λ
− (−λ+ c eσx1) sup

Ωk

f+

λ

≥ c(eσd − eσx1) sup
Ωk

f+

λ
+ sup

Ωk

f+ ≥ sup
Ωk

f+,

so we have L(u − v) ≤ 0 in Ωk. On the other hand, by construction u − v ≤ 0 on ∂Ωk. There-

fore, the maximum principle implies u ≤ v in Ωk, and that there exists a positive constant C =

C(d, λ, ‖∂xiaij‖L∞ , ‖bi‖L∞) such that

sup
Ωk

u ≤ sup
∂Ωk

u+ + C sup
Ωk

f+

λ
for k = 1, 2.

Next, since u|S = 0, if u|Γ ≤ 0 for all x ∈ Γ, then

sup
∂Ωk

u+ = 0 ≤ sup
Γ

∣∣∣g
c

∣∣∣ .
If we suppose that u attains its local maximum at some point x0 ∈ Γ and u(x0) > 0, then by the

positive definiteness of the matrix (ast),

∇′u(x0) = 0 and

n−1∑
s,t=1

(ast∂xs∂xtu)(x0) ≤ 0.

By the positive-definiteness of the matrix (aij), we have

∂Nu1(x0) = −(ann∂xnu1)(x0) ≥ 0

∂Nu2(x0) = −(ann∂xnu2)(x0) ≤ 0,

and hence J∂Nu(x0)K ≥ 0. Then the condition on Γ gives

(cu)(x0) ≤ g(x0) +

n−1∑
s,t=1

(ast∂xs∂xtu)(x0)− J∂Nu(x0)K ≤ g(x0),

so since c > 0 for all x ∈ Γ, we obtain

sup
Γ
u = u(x0) ≤ g(x0)

c(x0)
≤ sup

Γ

g

c
.
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Therefore,

sup
∂Ωk

u+ = sup
Γ
u ≤ sup

Γ

∣∣∣g
c

∣∣∣ ,
and hence we obtain the desired estimate (2.2.5) by using

sup
Ω
u = max(sup

Ω1

u, sup
Ω2

u).

Remark 2.2.3. Note that if Ω is periodic in one variable, the lemma still holds by modifying the

proof to assume that Ω lies between two hyperplanes parallel to the periodic direction.

Using the notation of a Hölder seminorm, we have the following simple lemma whose proof will

be omitted:

Lemma 2.2.4. Suppose u ∈ C0(Ω) ∩ C0,β(Ω1) ∩ C0,β(Ω2). Then [u]0,β;Ω is finite, and

‖u‖C0,β(Ω) ≤ C
(
‖u1‖C0,β(Ω1) + ‖u2‖C0,β(Ω2)

)
.

Now we can derive the existence and uniqueness of solution in Hölder spaces.

Proof of Theorem 2.1.2. Consider the family of problems indexed by θ ∈ [0, 1]:



Lu = f in Ω,

u = 0 on S,

JuK = 0 on Γ,

Bθu = g on Γ,

(2.2.6)

where Bθu = θBu+ (1− θ)B′u and

B′u := −
n−1∑
s=1

∂2
xsu+ u.

We note that B1 = B, B0 = B′, and that

Bθu = −
n−1∑
s,t=1

ãst∂xs∂xtu+

n−1∑
s=1

b̃s ∂xsu+ θ J∂NuK + c̃u,

where all of the coefficients ãst, b̃s, c̃ of Bθ are bounded in C0,β(Γ) independently of θ with c̃ > 0
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and

min(1, µ)|ξ|2 =: µθ|ξ|2 ≤ ãstξsξt for all x ∈ Γ, ξ ∈ Rn−1.

Consider any solution u ∈ C0(Ω) ∩ C2,β(Ω1) ∩ C2,β(Ω2) of (2.2.6). Then by estimates (2.1.6) and

(2.2.5), the following inequality holds

‖u1‖C2,β(Ω1) + ‖u2‖C2,β(Ω2) ≤ C
(
‖f‖C0,β(Ω1) + ‖f‖C0,β(Ω2) + ‖g‖C0,β(Γ)

)
, (2.2.7)

where the constant C is independent of θ. Note that the above estimate is valid for Ωk with k = 1, 2

since S ∩ Γ = ∅.

Next, recalling the definition of X as in (2.1.7), let Y = Y1 × Y2 where

Y1 = C0,β(Ω1) ∩ C0,β(Ω2), and Y2 = C0,β(Γ).

Then Y is a Banach space with respect to the norm

‖(f, g)‖Y := ‖f‖Y1
+ ‖g‖Y2

:= ‖f‖C0,β(Ω1) + ‖f‖C0,β(Ω2) + ‖g‖C0,β(Γ).

Thus, problem (2.2.6) can be written as

Lθu := (Lu,Bθu) = (f, g),

where Lθ : X → Y , so the solvability of the problem (2.2.6) for arbitrary f ∈ C0,β(Ω1) ∩ C0,β(Ω2)

and g ∈ C0,β(Γ) is then equivalent to the invertibility of the mapping Lθ. We note that L0 and L1

are bounded operators.

On the other hand, by Lemma 2.2.4, Lemma 2.2.2, and estimate (2.2.7), we have

‖u‖C0,β(Ω) ≤ C
(
‖u‖C0,β(Ω1) + ‖u‖C0,β(Ω2)

)
≤ Cε‖u‖C0(Ω) + ε

(
‖u1‖C2,β(Ω1) + ‖u2‖C2,β(Ω2)

)
≤ C

(
‖g‖C0,β(Γ) + ‖f‖C0,β(Ω1) + ‖f‖C0,β(Ω2)

)
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for some ε > 0, and hence

‖u‖X = ‖u1‖C2,β(Ω1) + ‖u2‖C2,β(Ω2) + ‖u‖C0,β(Ω)

≤ C
(
‖f‖C0,β(Ω1) + ‖f‖C0,β(Ω2) + ‖g‖C0,β(Γ)

)
= C (‖f‖Y1

+ ‖g‖Y2
) = C‖Lθu‖Y ,

where the constant C does not depend on θ. Thus, by the method of continuity (see, for example,

[91, Theorem 5.2]), the surjectivity of L1, which we are investigating, is equivalent to that of L0

which is the problem



Lu = f in Ω,

u = 0 on S,

JuK = 0 on Γ,

B′u = g on Γ.

(2.2.8)

Finally, we recall that

B′u = −
n−1∑
s=1

∂2
xsu+ u

is invertible on Γ. If ϕ ∈ C2,β(Γ) is the unique solution to B′ϕ = g on Γ for a given g ∈ C0,β(Γ),

then by [91, Lemma 6.38] we can make an extension to have ϕ ∈ C2,β(Ω1)∩C2,β(Ω2). Now we have

a Dirichlet problem

Luk = f in Ωk, uk = 0 on S, uk = ϕ on Γ,

which has a unique solution uk ∈ C2,β(Ωk) by [91, Theorem 6.14]. Therefore, by Lemma 2.2.4, we

conclude that there is a unique solution in C0,β(Ω)∩C2,β(Ω1)∩C2,β(Ω2) to the system (2.1.1).

Remark 2.2.5. As a consequence of Theorem 2.1.2, we see that L1 = (L,B) is a Fredholm operator

of index 0 despite the sign of the transmission term. Indeed, for θ ∈ [0, 1], consider the following

linear operator

L̃θ :=
(
Lu, (1− θ)B + θB̃

)
,
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where L̃θ : X → Y and

B̃u = −
n−1∑
s,t=1

∂xs
(
ast∂xtu

)
− J∂NuK +

n−1∑
s=1

bs∂xsu+ cu

with coefficients ast, bs, and c satisfying the hypotheses of Theorem 2.1.2. Note that the sign of the

transmission term is unfavorable. It is clear that the map θ 7→ L̃θ ∈ L(X,Y ) is continuous. Then

Schauder estimate from Theorem 2.1.1 and Remark 2.2.1 give

‖u1‖C2,β(Ω1) + ‖u2‖C2,β(Ω2) + ‖u‖C0,β(Ω)

≤ C‖L̃θu‖Y + Cε‖u‖C0(Ω) + ε
(
‖u1‖C2,β(Ω1) + ‖u2‖C2,β(Ω2)

)
for some small ε > 0, so

(1− ε)
(
‖u1‖C2,β(Ω1) + ‖u2‖C2,β(Ω2)

)
+ ‖u‖C0,β(Ω) ≤ Cε‖u‖C0(Ω) + C‖L̃θu‖Y .

Choosing ε > 0 small, we have

‖u‖X ≤ C
(
‖u‖C0(Ω) + ‖L̃θu‖Y

)

for some constant C > 0 independent of θ, which implies that L̃θ has finite dimensional null space

and closed range. Thus, L̃θ is semi-Fredholm. If θ < 1
2 , the map L̃θ is invertible by Theorem 2.1.2

and hence has index 0. By the continuity of the index, it also holds for θ ≥ 1
2 , which means that we

have Fredholm index 0 regardless of the sign of the transmission term.

2.2.2 Fredholm property

In light of Remark 2.2.5, it suffices to take α = +1. To simplify our notation, we write L for L1,

which is the problem we are considering. If L and B do not satisfy the conditions c ≥ 0 and c > 0,

it is still possible to assert a Fredholm alternative, which we formulate as in Theorem 2.1.3.

Proof of Theorem 2.1.3. For all σ, τ ∈ R, notice that for u ∈ X, (f, g) ∈ Y ,

Lu = (f, g)
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is equivalent to

Lσ,τu = (f + σu, g + τu),

where Lσ,τu :=
(
(L+σ)u, (B+τ)u

)
. From Theorem 2.1.2, the mapping Lσ,τu : X → Y is invertible

for σ and τ sufficiently large. Now, applying L−1
σ,τ to both sides, we obtain

u = L−1
σ,τ (f + σu, g + τu|Γ)

which can be written as

u− L−1
σ,τ (σu, τu|Γ) = L−1

σ,τ (f, g).

Letting Ku : u ∈ X ⊂ Y1 7→ L−1
σ,τ (σu, τu|Γ) ∈ Y1, and h := L−1

σ,τ (f, g), the equation becomes

(I −K)u = h. (2.2.9)

We claim that K is a compact operator. Let {(fm, gm)} ⊂ Y be bounded, and define um :=

K(fm, gm) ∈ Y1. We want to show that {um} has a convergent subsequence in Y1. By definition of

um and K, we have 
Lum + σum = fm in Ω

Bum + τum = gm on Γ,

where um ∈ X, fm ∈ Y1, gm ∈ Y2. Thus, by Theorem 2.1.1, there exists a positive constant

C = C(n, β, L,B, λ, µ) such that

‖um‖C2,β(Ω1) + ‖um‖C2,β(Ω2) ≤ C
(
‖um‖C0(Ω) (2.2.10)

+‖fm‖C0,β(Ω1) + ‖fm‖C0,β(Ω2) + ‖gm‖C0,β(Γ)

)
.

Note that the estimate holds for Ωk since S ∩ Γ = ∅. Since C0,β(Ω) ⊂⊂ C0(Ω) and C2,β(Ωk) ⊂⊂

C0,β(Ωk), k = 1, 2, using estimates as in the proof of Theorem 2.1.2, we find that

‖um‖C0(Ω) ≤ C‖um‖C0,β(Ω) ≤ C
(
‖fm‖C0,β(Ω1) + ‖fm‖C0,β(Ω2) + ‖gm‖C0,β(Γ)

)
.

Then the inequality (2.2.10) becomes

‖um‖C2,β(Ω1) + ‖um‖C2,β(Ω2) ≤ C
(
‖fm‖C0,β(Ω1) + ‖fm‖C0,β(Ω2) + ‖gm‖C0,β(Γ)

)
,
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or we can write this to be

‖um‖C2,β(Ω1) + ‖um‖C2,β(Ω2) + ‖um‖C0,β(Ω)

≤ C
(
‖fm‖C0,β(Ω1) + ‖fm‖C0,β(Ω2) + ‖gm‖C0,β(Γ)

)
,

which is equivalent to

‖um‖X ≤ C‖(fm, gm)‖Y ,

so ‖um‖X is bounded in X. Since X ⊂⊂ Y1, we conclude that {um} contains a subsequence {umk}

such that umk → u in Y1, which proves the claim that K is a compact operator.

Applying the Fredholm Alternative, equation (2.2.9) always has a solution u ∈ X provided the

homogeneous equation (I −K)u = 0 has only the trivial solution u = 0. When this condition is not

satisfied, the kernel of I −K is a finite dimensional subspace of Y1. Since the solutions of (2.2.9) are

in one-to-one correspondence to the solutions of (2.1.1), we therefore can conclude the alternative

stated in the theorem.

Finally, the last result in this subsection gives Hölder continuity for a classical solution provided

sufficient smoothness of the data and coefficients.

Proposition 2.2.6. Suppose the coefficients aij , bi, c, ast, bs, c exhibit the same regularity as in The-

orem 2.1.1. If u ∈ C0(Ω) ∩ C2(Ω1) ∩ C2(Ω2) is a solution to equation (2.1.1) with α = ±1 for

f ∈ C0,β(Ω1) ∩ C0,β(Ω2) and g ∈ C0,β(Γ), then u ∈ C0,β(Ω) ∩ C2,β(Ω1) ∩ C2,β(Ω2).

Proof. By the hypothesis, we have uk ∈ C2(Γ), and hence, ∂Nuk ∈ C1(Γ) ⊂⊂ C0,β(Γ) for k = 1, 2.

Thus, the boundary condition Bu = g can be re-expressed as

−
n−1∑
s,t=1

∂xs
(
ast∂xtu

)
+

n−1∑
s=1

bs∂xsu+ cu = h on Γ,

where h := g − α J∂NuK ∈ C0,β(Γ). By standard elliptic regularity theory, u|Γ ∈ C2,β(Γ). Now the

Dirichlet problem

Luk = f in Ωk, uk = 0 on S, uk = u|Γ on Γ

has a unique solution u ∈ C2,β(Ω1) ∩ C2,β(Ω2). Using the fact that C2,β(Ωk) ⊂⊂ C0,β(Ωk) and

Lemma 2.2.4, we conclude that u ∈ C2,β(Ω1) ∩ C2,β(Ω2) ∩ C0,β(Ω).
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Remark 2.2.7. If we change the boundary term B to

B̂u :=

n−1∑
s,t=1

∂xs
(
ast∂xtu

)
+ α J∂NuK +

n−1∑
s=1

bs∂xsu+ cu,

where the signs of the second-order term is switched, we obtain the same results as in Theorems

2.1.1, 2.1.3, and Proposition 2.2.6. For Lemma 2.2.2 and Theorem 2.1.2 to be valid, we have to

assume in addition that α = −1 and c < 0, which means the signs of the second-order term and

zeroth-order term must be opposite.

2.3 Steady capillary-gravity waves in the presence of wind

In this section, we will apply the results found above to investigate the existence of steady wind-

driven water waves. There exists a well-known change of variables due to Dubreil-Jacotin that maps

Ω to a strip (see [26]). We change variables (x, y) ∈ Ω 7→ (x,−ψ) =: (q, p) ∈ D. We recall that

ψ is the (relative) pseudostream function for the flow defined by (2.1.11), along with the boundary

conditions ψ = 0 on the upper lid, ψ = −p0 at the bed, and ψ ∈ C0,α(Ω) ∩ C2,α(Ω1) ∩ C2,α(Ω2)

for a fixed α ∈ (0, 1). Thus, the problem is now posed in a union of rectangles D = D1 ∪D2 ⊂ R2,

where the air region is mapped to

D1 := {(q, p) ∈ D : 0 < q < 2π, p1 < p < 0},

and the water region is mapped to

D2 := {(q, p) ∈ D : 0 < q < 2π, p0 < p < p1}.

With that in mind, we have definitions for the lid, the free surface, and the ocean bed respectively

as follows

T := {p = 0}, I := {p = p1}, B := {p = p0}.
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Under this change of coordinates, the Euler problem (2.1.8)−(2.1.10) becomes the following height

equation 

(1 + h2
q)hpp + hqqh

2
p − 2hphqhpq = −γ(−p)h3

p in D1,

(1 + h2
q)hpp + hqqh

2
p − 2hphqhpq = 0 in D2,

t
1 + h2

q

h2
p

|

+ 2g JρKh−Q+ σ
hqq

(1 + h2
q)

3/2
= 0 on p = p1,

JhK = 0 on p = p1,

h = 0 on p = p0,

h = `+ d(h) on p = 0,

(2.3.1)

where h(q, p) is the height above the bed of the point (x, y), where x = q and (x, y) lies on {−ψ = p},

and the depth operator d is defined to be

d(h) :=
1

2π

∫ π

−π
h(q, p1) dq.

Note that ρ in the above equation is for (q, p)-coordinates after the transformation. The equivalence

of (2.3.1) to the original system (2.1.8)–(2.1.10) can be proved following [92, Lemma A.2].

Our objective is to find solutions (h,Q) ∈ S ′, where

S ′ :=
(
C2,α

per

(
D1

)
∩ C2,α

per

(
D2

)
∩ C0,α

per

(
D
))
× R

and hp > 0 in D because of no stagnation condition (2.1.10). Recall that the space Ck,αper (R) is the

set of Ck,α(R) functions that are 2π-periodic and even in their first coordinate. The presence of

surface tension σ is manifested as the nonlinear second-order term in the boundary condition.

We will prove the following theorem stated in the Dubreil-Jacotin variables, which implies The-

orem 2.1.4.

Theorem 2.3.1 (existence). Let p1 < 0, ` > 0, and atmospheric vorticity function γ ∈ C0,α((p1, 0))

be given. Then there exists σ0 ≥ 0 such that for each σ > σ0, there is a continuous curve Cloc ⊂ S ′

of solution to (2.3.1) with the following properties:

(i) Cloc := {(h(λ), Q(λ)) : λ ∈ (λ∗ + ε, λ∗ − ε)},

where λ ∈ (λ∗ + ε, λ∗ − ε) 7→ (h(λ), Q(λ)) ∈ S ′ is C1.

(ii) (h(λ∗), Q(λ∗)) = (H(λ∗), Q(λ∗)) is a laminar solution.

(iii) h(λ) is non-laminar for λ 6= λ∗.
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Remark 2.3.2. In fact, there is a necessary and sufficient condition that we call local bifurcation

condition (LBC), which will be given explicit in Lemma 2.3.9. In particular, (LBC) always holds for

σ sufficiently large. When σ is small, a local bifurcation argument can still be carried out, but the

eigenvalue of the linearized problem may not be simple. In this case, a more sophisticated analysis

is required (see, for example, [74, 73, 76]).

2.3.1 Laminar solutions

We first consider laminar flows which are solutions of the height equation (2.3.1) that are indepen-

dent of q. Physically, this entails a wave where all of the streamlines are parallel to the bed. These

will serve as the trivial solution curve when we apply the Crandall-Rabinowitz theorem to obtain

Theorem 2.3.1.

Let us define Γrel by

∂p(Γrel(p)
2) = 2γ(−p), ` =

∫ 0

p1

dp

Γrel(p)
. (2.3.2)

Remark 2.3.3. Γrel is called the (pseudo) relative circulation and is given by

Γrel(p) =
1

2π

∫
{ψ=−p}

|∇ψ|dH1,

where H1 denotes one-dimensional Hausdorff measure. Note that circulation around a closed loop

is conserved for the time-dependent problem by Kelvin’s circulation law. For periodic domains, this

includes the circulation along the streamlines {ψ = −p}. If the waves we construct are to be viewed

as generated dynamically by the wind, the circulation along each streamline must agree with the

initial configuration.

For laminar flows, since h does not depend on q, we can write h = H(p), where H satisfies the

following ODE: 

Hpp = −γ(−p)H3
p in p1 < p < 0,

Hpp = 0 in p0 < p < p1,

q
H−2
p

y
+ 2g JρKH −Q = 0 on p = p1,

H = 0 on p = p0,

H = `+ d(H) on p = 0.

(2.3.3)

Note that d(H) = H(p1). The above equation can be solved explicitly, but we still need some
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compatibility conditions to ensure continuity across the interface.

Lemma 2.3.4 (laminar flow). If the compatibility condition (2.3.2) is satisfied, then there exists a

one-parameter family of solutions {(H(·;λ), Q(λ)) : λ > 0} to the laminar flow equation (2.3.3) with

Hp > 0. Each member of the family has the explicit form

H(p;λ) =


∫ p

p1

ds

Γrel(s)
+
p1 − p0

λ
, p1 < p < 0,

p− p0

λ
, p0 < p < p1,

(2.3.4)

and

Q(λ) =
2g JρK (p1 − p0)

λ
+ Γrel(p1)2 − λ2. (2.3.5)

Moreover, the depth of the fluid at parameter value λ is

d(H(·;λ)) =
p1 − p0

λ
. (2.3.6)

Since the laminar flow is independent of the surface tension σ, the proof of Lemma 2.3.4 can be

obtained by similar arguments as in [72, Lemma 4.2], which we will omit. Note that differentiating

(2.3.5) with respect to λ gives

Q′(λ) = −2g JρK (p1 − p0)

λ2
− 2λ

and

Q′′(λ) =
4g JρK (p1 − p0)

λ3
− 2 < 0,

so λ 7→ Q(λ) is concave and has a unique maximum at λ0 satisfying

λ3
0 = −g JρK (p1 − p0). (2.3.7)

2.3.2 Linearized problem

Next, let us consider the linearization of the height equation (2.3.1) at one of the laminar solutions

(H(·;λ), Q(λ)) constructed in Lemma 2.3.4:
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(a3mp)p + (amq)q = 0 in D1 ∪D2,

−2
q
a3mp

y
+ 2g JρKm+ σmqq = 0 on p = p1,

m = 0 on p = p0,

m− d(m) = 0 on p = 0,

(2.3.8)

where

a := a(p;λ) = Hp(p;λ)−1 =


Γrel(p), p1 < p < 0,

λ, p0 < p < p1.

Since we seek solutions that are 2π-periodic and even in q, we first consider m of the form

m(q, p) = M(p) cos(nq), for some n ≥ 0. If n = 0, m does not depend on q and the linearized

problem (2.3.8) becomes



(a3Mp)p = 0 in p1 < p < 0,

Mpp = 0 in p0 < p < p1,

−
q
a3Mp

y
+ g JρKM = 0 on p = p1,

M = 0 on p = p0,

M − d(M) = 0 on p = 0.

This equation can be solved explicitly. Using the boundary condition at p = p0 and the continuity

of M across the interface, we find that in the water region

M (2)(p) =
p− p0

p1 − p0
M(p1), in p0 < p < p1.

For the air region, we first observe that

M(0) = d(M) =
1

2π

∫ π

−π
M(p1) dq = M(p1),

and hence, Mp must vanish at least once inside (p1, 0) by Rolle’s Theorem. We also have, from

the above ODE, that a3Mp is constant, so we conclude that Mp ≡ 0 in (p1, 0). Finally, the jump

condition gives

− λ3

p1 − p0
M(p1) = g JρKM(p1),

which implies that there can be a zero-mode solution if and only if λ = λ0, where λ0 is defined
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according to (2.3.7).

On the other hand, if n > 0, the linearized problem (2.3.8) becomes



−(a3Mp)p = −n2aM in (p0, p1) ∪ (p1, 0),

2
q
a3Mp

y
− 2g JρKM = −n2σM on p = p1,

M = 0 on p = p0,

M = 0 on p = 0.

(2.3.9)

To investigate the ODE (2.3.9), we consider the following general eigenvalue problem



−1

a
(a3u′)′ = µu in (p0, p1) ∪ (p1, 0),

2
q
a3u′

y
− 2g JρKu = µσu on p = p1,

u = 0 on p = p0,

u = 0 on p = 0.

(Pµ)

In particular, we are interested in the case µ = −n2.

The eigenvalue problem (Pµ) closely resembles a Sturm–Liouville equation, but the eigenvalue

occurs both in the interior and boundary conditions. Moreover, the associated inner product defining

the relation between eigenfunctions is indefinite. For that reason, it is natural to reformulate it in a

Pontryagin space. Here we follow the general approach of Wahlén [73, 74] and Walsh [76].

With that in mind, we introduce the complex Pontryagin space (see [93, 94])

H :=
{
ũ = (u, b) ∈ L2([p0, 0])× C

}
with the indefinite inner product

[ũ1, ũ2] := 〈au1, u2〉L2 − 1

2σ
b1b2.

We understand that the L2-inner product is taken over (p0, 0). On H, there is also an associated

Hilbert space inner product, given by 〈ũ, ṽ〉H = [Jũ, ṽ], where

J =

I 0

0 −1

 .
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Proposition 2.3.5. H is π1-space, that is H = H+ ⊕H−, where

H+ ⊂ {x ∈ H : [x, x] > 0, or x = 0},

H− ⊂ {x ∈ H : [x, x] < 0, or x = 0}

are complete subspaces with dimH+ = 1 or dimH− = 1.

We omit the proof of this proposition, as it is elementary. In fact, we have explicitly that

H = H+ ⊕H−, where

H+ := L2((p0, 0))× {0},

H− :=
{

0 ∈ L2((p0, 0)
}
× C.

Next, define the linear operator K : D(K) ⊂ H→ H by

Kũ :=

(
−1

a

(
a3u′

)′
, 2

q
a3u′

y
− 2g JρKu(p1)

)
,

where

D(K) :=
{
ũ = (u, b) ∈

(
H2((p0, p1)) ∩H2((p1, 0)) ∩ C0((p0, 0))

)
× C :

u(p0) = u(0) = 0, σu(p1) = b
}
.

Thus, there exists a nontrivial solution of (Pµ) if and only if µ is an eigenvalue of K. Moreover,

it is clear that D(K) is dense in H, and the operator K is closed. Recalling the convention JuK =

u|p+1 − u|p−1 and using integration by parts, we can show

[Kũ, ũ] =
〈
a3u′, u′

〉
L2 + g JρK |u(p1)|2 = [ũ,Kũ] ∈ R, (2.3.10)

which implies that K is symmetric, and in fact, self-adjoint. The next proposition provides a

condition under which the operator K is positive, that is, [Kũ, ũ] > 0 for all non-zero ũ ∈ D(K).

Proposition 2.3.6. K is self-adjoint with simple eigenvalues. Moreover, it has a maximal negative

semidefinite subspace invariant under K that has dimension one1. For λ > λ0, the operator K is

1We recall that the subspace M of H is said to be negative semidefinite, provided that for all u ∈ M, [u, u] ≤ 0.
Moreover,M is an invariant subspace under the operator K if K(M) ⊂M. Also,M is said to be a maximal subspace
in H if M is not contained in any other proper subspaces of H.
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positive with a unique negative eigenvalue.

Proof. It follows from the above discussion that K is self-adjoint. Since H is a π1-space, [94, Theorem

12.1’] implies that K has a maximal negative semidefinite subspace invariant under K that has

dimension one. By an argument similar to [73, Lemma 3.8] and [74, Lemma 2], we see that K has

discrete spectrum and its eigenvalues are geometrically simple.

Next, since K has a maximal invariant negative semidefinite subspace which is of dimension one,

it has at least one eigenvalue of negative-semidefinite type. By this, we mean the restriction of

[·, ·] to the eigenspace corresponding to an eigenvalue is a negative semidefinite inner product. We

caution that this does not say anything about the sign of the eigenvalue itself. Let µ be a general

eigenvalue of K with corresponding non-zero eigenvector ũ. Taking the complex conjugate of the

equation Kũ = µũ, we see that µ̄ is also an eigenvalue of K (note that the coefficients of the operator

K are real). Thus, either µ is real, or both µ and its complex conjugate are eigenvalues. For the

latter case, the corresponding eigenvector ũ must be neutral, that is, [ũ, ũ] = 0. This follows from

the observation that

µ[ũ, ũ] = [Kũ, ũ] = [ũ,Kũ] = µ̄[ũ, ũ].

On the other hand, if µ ∈ R is an eigenvalue with corresponding eigenvector ũ such that [ũ, ũ] 6= 0,

then letting

N := span ũ = ker(K − µI) and N [⊥] := {ṽ ∈ H : [ṽ,N ] = 0},

we have H = N [+̇]N [⊥] as an orthogonal direct sum. Note that we are using [⊥] and [+̇] to

emphasize that the orthogonality is with respect to the indefinite inner product [·, ·]. If w̃ is in the

range of K − µI, then w̃ = (K − µI)ṽ for some ṽ ∈ H, and hence

[w̃, ũ] = [Kṽ, ũ]− µ[ṽ, ũ] = [ṽ, Kũ]− [ṽ, µũ] = 0,

which implies that the range of K − µI is in N [⊥]. Thus, µ is algebraically simple if it is real.

Finally, suppose λ > λ0. By the Cauchy–Schwarz inequality,

|u(p1)|2 =

∣∣∣∣∫ p1

p0

u′(p) dp

∣∣∣∣2 ≤ ∫ p1

p0

a3 |u′|2 dp

∫ p1

p0

a−3 dp < − 1

g JρK

∫ p1

p0

a3 |u′|2 dp,

which gives

g JρK |u(p1)|2 +

∫ 0

p0

a3 |u′|2 dp > 0.
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Thus, [Kũ, ũ] > 0, that is, K is positive. Then [ũ, ũ] 6= 0, so ũ is non-neutral. Hence all eigenvalues

are real when λ > λ0.

If µ is a negative semidefinite eigenvalue with the corresponding eigenvector ũ, then

µ[ũ, ũ] = [Kũ, ũ] > 0,

and hence, it follows that µ < 0. This means that any real negative semidefinite eigenvalue of K

must be negative. In fact, there is only one such eigenvalue. Indeed, if ν is another eigenvalue with

corresponding eigenvector ṽ, then

[ũ, ṽ] =
1

µ
[µũ, ṽ] =

1

µ
[Kũ, ṽ] =

1

µ
[ũ,Kṽ] =

ν

µ
[ũ, ṽ],

which implies µ = ν or [ũ, ṽ] = 0. Since any maximal invariant semidefinite subspace of K is one

dimensional, we must have µ = ν. We have therefore shown K has a unique negative eigenvalue.

Define the Rayleigh quotient R corresponding to (Pµ) by

R(ϕ;λ) :=

∫ 0

p0
a3ϕ2

p dp+ g JρKϕ(p1)2∫ 0

p0
aϕ2 dp− σ

2ϕ(p1)2
, λ > λ0, ϕ ∈ A ,

where the admissible set is defined by

A :=
{
ϕ ∈ H2((p0, p1)) ∩H2((p1, 0)) ∩ C((p0, 0)) :

ϕ(p0) = ϕ(0) = 0 and

∫ 0

p0

aϕ2 dp− σ

2
ϕ(p1)2 < 0

}
.

Note that we are considering ϕ only in the negative definite subspace of K because of the condition

∫ 0

p0

aϕ2 dp− σ

2
ϕ(p1)2 < 0. (2.3.11)

Simple arguments can show that if for a fixed λ > λ0, ϕ is a critical point of R(·;λ), then ϕ

solves (Pµ) for µ = R(ϕ;λ).

Next, let us define

ν(λ) := sup
ϕ∈A
ϕ6≡0

R(ϕ;λ).

First, we want to show that −1 is in the range of ν. This is because we want our solutions to be

39



2π-periodic in q, and the null space of Fm(λ∗, 0) is spanned by ϕ1(p) cos(q) (see Lemma 2.3.12),

which is the case where n = 1 and hence µ = −n2 = −1 in (2.3.9).

Lemma 2.3.7. Let amin := min[p1,0] a (which does not depend on λ). Then for each n ≥ 1,

ν(λ) < −n2 when λ satisfies

λ2 > −a2
min −

g JρK
n

+
σn

2
.

Proof. Let ϕ ∈ A be given and fix any λ as in the hypothesis. Then

∫ 0

p1

(
a3ϕ2

p + n2aϕ2
)

dp ≥ amin

∫ 0

p1

(
a2

minϕ
2
p + n2ϕ2

)
dp

≥ −2na2
min

∫ 0

p1

ϕpϕdp

= −na2
min

∫ 0

p1

(
ϕ2
)
p

dp = na2
minϕ(p1)2.

On the other hand, since a(2) = λ,

∫ p1

p0

(
a3ϕ2

p + n2aϕ2
)

dp = λ

∫ p1

p0

(
a2ϕ2

p + n2ϕ2
)

dp

≥ 2nλ2

∫ p1

p0

ϕpϕdp = nλ2ϕ(p1)2.

Summing these together and using the hypothesis for λ, we find

∫ 0

p0

(
a3ϕ2

p + n2aϕ2
)

dp ≥
(
nλ2 + na2

min

)
ϕ(p1)2

>

(
−g JρK +

σn2

2

)
ϕ(p1)2,

which implies ∫ 0

p0

a3ϕ2
p dp+ g JρKϕ(p1)2 > −n2

(∫ 0

p0

aϕ2 dp− σ

2
ϕ(p1)2

)
,

so R(ϕ;λ) < −n2. Thus, ν(λ) < −n2.

Next, we need to verify that ν(λ) > −1 for some λ > λ0. Since this is not true in general, we

will have it as one of our hypotheses.

Definition 2.3.8. We say that the local bifurcation condition is satisfied provided that

sup
λ>λ0

ν(λ) > −1. (LBC)
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This is necessary and sufficient for our main result Theorem 2.3.1 to hold. An explicit but not

sharp condition is the following:

Lemma 2.3.9 (size condition). For

σ >
2λ0(p1 − p0)

3
+

2

p2
1

∫ 0

p1

(
Γ3

rel + p2Γrel

)
dp, (2.3.12)

where λ0 is defined as in (2.3.7), (LBC) holds.

Proof. Let

ϕ(p) :=


p

p1
, p1 < p < 0,

p− p0

p1 − p0
, p0 < p < p1.

We first check if ϕ is in the admissible set A . We see that

∫ 0

p0

aϕ2 dp− σ

2
ϕ(p1)2 =

∫ p1

p0

λ

(
p− p0

p1 − p0

)2

dp+

∫ 0

p1

Γrel

(
p

p1

)2

dp− σ

2

=
λ(p1 − p0)

3
+

1

p2
1

∫ 0

p1

p2Γrel dp− σ

2
,

but from the hypothesis (2.3.12),

λ0(p1 − p0)

3
+

1

p2
1

∫ 0

p1

p2Γrel dp− σ

2
< 0.

Thus, for |λ− λ0| small, ϕ ∈ A . With this particular ϕ, we then compute

R(ϕ;λ) =

∫ p1
p0

λ3

(p1−p0)2 dp+
∫ 0

p1

Γ3
rel

p21
dp+ g JρK∫ p1

p0
λ
(
p−p0
p1−p0

)2

dp+
∫ 0

p1
Γrel

(
p
p1

)2

dp− σ
2

=

λ3

p1−p0 + 1
p21

∫ 0

p1
Γ3

rel dp+ g JρK
λ(p1−p0)

3 + 1
p21

∫ 0

p1
p2Γrel dp− σ

2

.

Rewriting the hypothesis (2.3.12) gives

σ

2
>

λ3
0

p1 − p0
+
λ0(p1 − p0)

3
+

1

p2
1

∫ 0

p1

(
Γ3

rel + p2Γrel

)
dp+ g JρK .

Then for |λ− λ0| small, we have

σ

2
>

λ3

p1 − p0
+
λ(p1 − p0)

3
+

1

p2
1

∫ 0

p1

(
Γ3

rel + p2Γrel

)
dp+ g JρK .
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Recalling that ϕ satisfies inequality (2.3.11), the above estimate implies that R(ϕ;λ) > −1, so

(LBC) holds.

We note that the above proof can be further refined following arguments of [95, Theorem 4] to

find a smaller lower bound on σ guaranteeing (LBC) than that in (2.3.12).

Lemma 2.3.10 (monotonicity of ν). If ν(λ) < 0, then ν(λ) is decreasing in λ.

Proof. Denoting derivatives with respect to λ by a dot, differentiating the eigenvalue problem (Pµ)

with u = ϕ ∈ A gives



−(3a2ȧϕp)p − (a3ϕ̇p)p = ν̇aϕ+ νȧϕ+ νaϕ̇ in (p0, p1) ∪ (p1, 0),

2
q
3a2ȧϕp + a3ϕ̇p

y
− 2g JρK ϕ̇ = σν̇ϕ+ σνϕ̇ on p = p1,

ϕ̇ = 0 on p = p0,

ϕ̇ = 0 on p = 0.

(Ṗµ)

Multiplying (Pµ) by ϕ̇ and integrating yields

∫ 0

p0

a3ϕpϕ̇p dp+ g JρKϕ(p1)ϕ̇(p1) +
σ

2
νϕ(p1)ϕ̇(p1) =

∫ 0

p0

νaϕϕ̇dp. (2.3.13)

On the other hand, multiplying (Ṗµ) by ϕ and integrating gives

∫ 0

p0

3a2ȧϕ2
p dp+ g JρK ϕ̇(p1)ϕ(p1) +

σ

2
ν̇ϕ(p1)2 +

σ

2
νϕ̇(p1)ϕ(p1)

+

∫ 0

p0

a3ϕ̇pϕp dp =

∫ 0

p0

(
ν̇aϕ2 + νȧϕ2 + νaϕ̇ϕ

)
dp.

(2.3.14)

Subtracting (2.3.13) from (2.3.14), we have the following Green’s identity

∫ 0

p0

3a2ȧϕ2
p dp+

σ

2
ν̇ϕ(p1)2 =

∫ 0

p0

(
ν̇aϕ2 + νȧϕ2

)
dp.

Since ȧ = 1(p0,p1), we can simplify this to find

∫ p1

p0

3a2ϕ2
p dp−

∫ p1

p0

νϕ2 dp =

(∫ 0

p0

aϕ2 dp− σ

2
ϕ(p1)2

)
ν̇.

Therefore, since ν < 0 by assumption and the quantity in parenthesis is negative, we must have

ν̇ < 0.
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Lemma 2.3.11. Suppose that the (LBC) holds. Then there exists a unique value λ∗ > 0 such that

ν(λ∗) = −1. Equivalently, there exists a unique value of λ for which there is a nontrivial solution to

the linearized problem (2.3.8) with the ansatz m(q, p) = M(p) cos(q). Moreover, Q is an invertible

function of λ in a neighborhood of λ∗.

Proof. From Lemma 2.3.7, we have ν(λ) < −1 for λ sufficiently large, and ν(λ) > −1 for some λ by

(LBC). By continuity, there exists λ∗ such that ν(λ∗) = −1. Moreover, Lemma 2.3.10 tells us that

ν is a decreasing function when ν < 0, so λ∗ is unique.

Next, as noted at the end of Lemma 2.3.4, Q is a concave function of λ according to (2.3.5), so

we only need to show that λ∗ 6= λ0, where λ0 is defined in (2.3.7) to be the critical point of Q. But

λ∗ > λ by (LBC).

2.3.3 Proof of local bifurcation

We are now prepared to prove Theorem 2.3.1. As stated above, our approach is based on the

classical theory of Crandall–Rabinowitz on local bifurcation from simple (generalized) eigenvalues.

Specifically, we will treat the family of laminar flows as our trivial solutions. Suppose the solution to

the height equation (2.3.1) can be decomposed as h(q, p) = H(p;λ) +m(q, p) and Q = Q(λ). Then

substituting it into the equation gives

F(λ,m) = 0,

where F = (F1,F2,F3,F4) : Λ×O → Y with Λ ⊂ R to be a neighborhood of λ∗, and

O :=
{
m ∈ X : inf(mp +Hp) > 0 in D for all λ ∈ Λ

}
,

F1(λ,m) := (1 + (m(1)
q )2)(m(1)

pp +Hpp) +m(1)
qq (m(1)

p +Hp)
2

− 2m(1)
q (Hp +m(1)

p )m(1)
pq + γ(−p)(Hp +m(1)

p )3,

F2(λ,m) := (1 + (m(2)
q )2)(m(2)

pp +Hpp) +m(2)
qq (m(2)

p +Hp)
2

− 2m(2)
q (Hp +m(2)

p )m(2)
pq ,

F3(λ,m) := −

t
1 +m2

q

(Hp +mp)2

|

− 2g JρK (m+H) +Q− σmqq

(1 +m2
q)

3/2
,

F4(λ,m) :=
(
m+H − `− d(m)− d(H)

)∣∣∣
T
.

(2.3.15)
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The Banach spaces X and Y = Y1 × Y2 × Y3 × Y4 are defined by

X :=
{
h ∈ C2,α(D1) ∩ C2,α(D2) ∩ C0,α

per (D) : h(p0) = 0
}
,

Y1 := C0,α
per (D1), Y2 := C0,α

per (D2), Y3 := Cαper(I), Y4 := C2,α
per (T ).

It is clear that F(λ, 0) = 0 for all λ > 0. Let us record the Fréchet derivative of F with respect to

m at (λ∗, 0).

F1m(λ∗, 0)ϕ =
(
∂2
p +H2

p∂
2
q + 3γH2

p∂p
)
ϕ(1),

F2m(λ∗, 0)ϕ =
(
∂2
p +H2

p∂
2
q

)
ϕ(2),

F3m(λ∗, 0)ϕ = 2
q
H−3
p ϕp

y
− 2g JρKϕ− σϕqq,

F4m(λ∗, 0)ϕ =
(
ϕ− d(ϕ)

)∣∣∣
T
.

Note that in D1, from (2.3.3), we have γ = −Hpp/H
3
p , so we can write

F1m(λ∗, 0)ϕ = ϕpp + a−2ϕqq + 3Hp∂p
(
H−1
p

)
ϕp

= ϕpp + a−2ϕqq + a−33a2(∂pa)ϕp

= a−3
(
a3ϕp

)
p

+ a−2ϕqq,

which is the same quantity as in D2. Thus, the first expression can be written as

Fim(λ∗, 0)ϕ = a−3∂p

(
a3∂pϕ

(i)
)

+ a−2∂2
qϕ

(i) for i = 1, 2.

Lemma 2.3.12 (null space). The null space of Fm(λ∗, 0) is one-dimensional and spanned by

ϕ∗(q, p) := ϕ1(p) cos(q).

Proof. Let ϕ be in the null space of Fm(λ∗, 0)). Since ϕ is even and C0,α, we can express it via a

cosine series

ϕ(q, p) =

∞∑
n=0

ϕn(p) cos(nq).

Clearly, Fm(λ∗, 0) (ϕn(p) cos(nq)) = 0 for every n ≥ 0 meaning that ϕn must solve (2.3.9) for

n. Since λ∗ > λ0, we can apply Proposition 2.3.6 to conclude that the null space of Fm(λ∗, 0) is

one-dimensional. In particular, it is generated by ϕ∗(q, p) := ϕ1(p) cos(q), where ϕ1 is the unique

solution to equation (2.3.9) for n = 1.
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Our next lemma characterizes the range of Fm(λ∗, 0).

Lemma 2.3.13 (range). A = (A1,A2,A3,A4) ∈ Y is in the range of Fm(λ∗, 0) if and only if it

satisfies the following orthogonality condition:

∫∫
D1

a3A1ϕ
∗ dq dp+

∫∫
D2

a3A2ϕ
∗ dq dp+

1

2

∫
I

A3ϕ
∗ dq +

∫
T

a3A4ϕ
∗
pdq = 0, (2.3.16)

where ϕ∗ generates the null space of Fm(λ∗, 0).

Proof. Denoting by R(Fm(λ∗, 0)) the range of Fm(λ∗, 0), we first suppose that A ∈ R(Fm(λ∗, 0)).

Let ϕ be given such that Fm(λ∗, 0)ϕ = A. Using integration by parts and the PDE for ϕ and ϕ∗

(ϕ∗ satisfies equation (2.3.9) with n = 1), we can compute

〈
a3ϕ∗,A1

〉
L2(D1)

+
〈
a3ϕ∗,A2

〉
L2(D2)

=

∫∫
D1∪D2

(
(a3ϕp)p + aϕqq

)
ϕ∗ dq dp

= −
∫∫

D1∪D2

a3ϕpϕ
∗
p dq dp−

∫
I

q
a3ϕpϕ

∗y dq +

∫∫
D1∪D2

aϕϕ∗qq dq dp

=

∫∫
D1∪D2

(
a3ϕ∗pp + aϕ∗qq

)
ϕdq dp+

∫
I

(q
a3ϕ∗pϕ

y
−

q
a3ϕpϕ

∗y) dq −
∫
T

a3ϕϕ∗p dq.

Using the jump condition, the fact that ϕ and ϕ∗ are continuous across the interface, and integration

by parts, we obtain

〈
a3ϕ∗,A1

〉
L2(D1)

+
〈
a3ϕ∗,A2

〉
L2(D2)

=

∫
I

(
g JρKϕ∗ − σ

2
ϕ∗
)
ϕdq −

∫
I

(
g JρKϕ+

σ

2
ϕqq +

1

2
A3

)
ϕ∗ dq

−
∫
T

a3A4ϕ
∗
p dq − d(ϕ)

∫
T

a3ϕ∗p dq

=

∫
I

(
−σ

2
ϕ∗ϕ− σ

2
ϕ∗qqϕ−

1

2
A3ϕ

∗
)

dq −
∫
T

a3A4ϕ
∗
p dq.

Recalling that ϕ∗ = ϕ1(p) cos(q), the last equality comes from the observation that

∫
T

a3ϕ∗p dq = a3ϕ1p(0)

∫ 2π

0

cos(q) dq = 0.

Finally, we have

〈
a3ϕ∗,A1

〉
L2(D1)

+
〈
a3ϕ∗,A2

〉
L2(D2)

= −1

2

∫
I

A3ϕ
∗ dq −

∫
T

a3A4ϕ
∗
p dq,
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which can be rearranged to yield the identity (2.3.16).

Next, we prove the orthogonality condition (2.3.16) is sufficient. By similar arguments as in [73,

Lemma 3.6], we define the following inner product for each λ:

〈(U1,U2,U3,U4), (V1,V2,V3,V4)〉Y :=〈
a3U1,V1

〉
L2(D1)

+
〈
a3U2,V2

〉
L2(D2)

+
1

2
〈U3,V3〉L2(I) +

〈
a3U4,V4

〉
L2(T )

.

Note that the null space N̂ of Fm(λ∗, 0) can be identified with the subspace

Ñ :={(V1,V2,V3,V4) ∈ Y :

V1 = V|D1
, V2 = V|D2

, V3 = V|I , V4 = V|T for some V ∈ N̂}.

Then the necessary condition, which is shown above, implies that if A is in the range of Fm(λ∗, 0),

then

〈(ϕ∗|D1
, ϕ∗|D2

, ϕ∗|I , ϕ∗|T ) ,A〉Y = 0,

so R(Fm(λ∗, 0)) ⊂ Ñ⊥. By Remark 2.2.5, Fm(λ∗, 0) has Fredholm index 0, and hence

codimR(Fm(λ∗, 0)) = dim N̂ = dim Ñ = codim Ñ⊥ <∞,

which means that R(Fm(λ∗, 0)) = Ñ⊥. This concludes the proof of the lemma.

Lemma 2.3.14 (transversality). The following transversality condition holds

Fλm(λ∗, 0)ϕ∗ /∈ R(Fm(λ∗, 0)), (2.3.17)

where ϕ∗ generates the null space of Fm(λ∗, 0) solves equation (2.3.9) for n = 1.

Proof. Using Lemma 2.3.13, it suffices to show that A := Fλm(λ∗, 0)ϕ∗ does not satisfy the orthog-

onality condition (2.3.16). We must confirm that

Ξ :=

∫∫
D1

a3A1ϕ
∗ dq dp+

∫∫
D2

a3A2ϕ
∗ dq dp+

1

2

∫
I

A3ϕ
∗ dq +

∫
T

a3A4ϕ
∗
p dq 6= 0.
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Computing the derivatives gives

F1λm(λ∗, 0)ϕ∗ = 0,

F2λm(λ∗, 0)ϕ∗ = − 2

(λ∗)3
ϕ∗qq,

F3λm(λ∗, 0)ϕ∗ =
(
−6(λ∗)2

(
ϕ∗p
)(2)
)∣∣∣
I
,

F4λm(λ∗, 0)ϕ∗ = 0,

so we have ∫∫
D1

a3A1ϕ
∗ dq dp =

∫
T

a3A4ϕ
∗
p dq = 0.

Using (2.3.9) with n = 1 to have ϕ∗ = (λ∗)2ϕ∗pp , we can derive

(λ∗)
2 (
ϕ∗ϕ∗p

)
p

= (λ∗)
2 (
ϕ∗p
)2

+ (λ∗)
2
ϕ∗ϕ∗pp = (λ∗)

2 (
ϕ∗p
)2

+ (ϕ∗)
2

in D2

so that using integration by parts and the fact that ϕ∗qq = −ϕ∗ yields

∫∫
D2

a3A2ϕ
∗ dq dp =

∫∫
D2

2(ϕ∗)2 dq dp

and

1

2

∫
I

A3ϕ
∗ dq = −3 (λ∗)

2
∫
I

(
ϕ∗p
)(2)

ϕ∗ dq

= −3 (λ∗)
2
∫∫

D2

(
ϕ∗p
)2

dq dp− 3

∫∫
D2

(ϕ∗)
2

dq dp.

Finally, combining all terms gives

Ξ = −
∫∫

D2

(ϕ∗)
2

dq dp− 3 (λ∗)
2
∫∫

D2

(
ϕ∗p
)2

dq dp < 0.

Now we are ready to prove our main theorem.

Proof of Theorem 2.3.1. Suppose conditions (2.3.2) and (LBC) are satisfied. Then F(λ, 0) = 0 for

all λ > 0 and Fm, Fλ, Fλm exist and are continuous, which means parts (i) and (ii) are confirmed.

Moreover, Lemma 2.3.12 and Lemma 2.3.13 give dimension 1 for the null space of Fm(λ∗, 0) and

co-dimension 1 for the range of Fm(λ∗, 0). Thus, Fm(λ∗, 0) has Fredholm index 0, and hence part

(iii) is justified. Lastly, the transversality condition in Lemma 2.3.14 fulfills part (iv). Therefore,
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the local bifurcation result follows directly from Theorem A.1.

Finally, back to our objective, we note that the existence of a solution of class S ′ to the height

equation (2.3.1) is equivalent to the existence of a solution of class S to the Euler system (2.1.8)–

(2.1.10) (see, for example, [29, Lemma 2.1] or [23, Lemma 2.1]).
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Chapter 3

Water waves with a finite dipole

3.1 Introduction

This work is motivated by the following simple experiment. Imagine that a surface water wave

passes over a thin submerged body. Boundary layer effects may then produce so-called shed vortices

— highly localized vortical regions in the object’s wake. A natural idealization for this phenomenon

is a finite dipole, which is a weak solution of the Euler equations whose vorticity ω consists of a pair

of Dirac δ-measures (called point vortices) of nearly opposite strength that are separated by a fixed

distance.

Dipoles are used commonly in fluid dynamical models; see further discussion in subsection 3.1.3.

It is well-known that, if the problem is posed in the plane, then there are exact (stable) solutions

for which the pair of vortices translate in parallel at a fixed velocity. Here, we wish to study the far

more complicated situation where the dipole lies inside a water wave. We prove that there exists

traveling wave solutions to this system. However, our main result shows that they are conditionally

orbitally unstable. Physically, this indicates that a pair of counter-rotating shed vortices moving

with a wave will not persist over long periods of time. For instance, they may approach and then

breach the surface.
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3.1.1 Main equations

For each time t ≥ 0, let Ωt ⊂ R2 be the fluid domain:

Ωt :=
{

(x1, x2) ∈ R2 : x2 < η(t, x1)
}
,

where the a priori unknown function η = η(t, x1) describes the free surface between air and water.

The water wave with a finite dipole problem is as follows. Let v = v(t, ·) : Ωt → R2 be the fluid

velocity. The vorticity ω = ω(t, ·) : Ωt → R is the (scalar) curl of v. For a finite dipole, we must

have

ω := ∂x2
v1 − ∂x1

v2 = −εγ1δx̄ + εγ2δȳ, (3.1.1)

in the sense of distributions. Here x̄ = x̄(t) and ȳ = ȳ(t) are the vortex centers, and εγ1 and −εγ2

are the strengths, respectively. We require that v is a weak solution of the incompressible Euler

equations away from the two point vortices:


∂tv + (v · ∇)v +∇p+ ge2 = 0 in Ωt\{x̄, ȳ},

∇ · v = 0 in Ωt.

(3.1.2)

We require that there is finite excess kinetic energy, which corresponds to v(t, ·) ∈ L1
loc(Ωt) ∩

L2(Ωt\Nt) for any open set Nt ⊂ Ωt \ {x̄, ȳ}.

On the free surface St := ∂Ωt, we have the kinematic and dynamic boundary condition:

∂tη = −η′v1 + v2, p = bκ on St, (3.1.3)

where primes indicate derivatives with respect to x1, and κ = κ(t, x1) is the mean curvature of the

surface

κ(t, x1) = − η′′(t, x1)

〈η′(t, x1)〉3
.

Here we are using the Japanese bracket notation: 〈·〉 :=
(
1 + (·)2

) 1
2 . Moreover, the constant b > 0

is the coefficient of surface tension.

Finally, the motion of the vortices is governed by the Kirchhoff–Helmholtz model [34, 50]:


∂tx̄ =

(
v − γ1

2π
ε∇⊥ log |x− x̄|

)∣∣∣
x̄
,

∂tȳ =
(
v +

γ2

2π
ε∇⊥ log |x− ȳ|

)∣∣∣
ȳ
,

(3.1.4)
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with ∇⊥ := (−∂x2 , ∂x1). This system mandates that the point vortices are transported by the

irrotational part of the fluid velocity field, and also attract each other due to the opposite vortex

strengths.

3.1.2 Statement of main results

We are interested in both showing the existence of solitary waves solutions to (3.1.1)–(3.1.4) and

determining their stability. As long as the two point vortices are separated from the surface, the

fluid velocity v can be decomposed as

v = ∇Φ + ε∇Θ (3.1.5)

in a neighborhood of St, where Φ is a harmonic function and Θ represents the influence of the dipole.

Note that Θ can be written explicitly in terms of x̄ and ȳ. To determine v, it is enough to know η

and the restriction of Φ to the surface St:

ϕ = ϕ(t, x1) := Φ (t, x1, η(t, x1)) . (3.1.6)

For the steady problem, we look for solutions of the form

η = ηc(x1 − ct), ϕ = ϕc(x1 − ct), x̄ = cte1 + (−a+ ρ)e2, ȳ = cte1 + (−a− ρ)e2,

where (ηc, ϕc) are time-independent and spatially localized. Specifically, we work in the space

(η, ϕ, a, ρ) ∈ X = X1 ×X2 ×X3 ×X4 := Hk
e (R)×

(
Ḣk−1
o (R) ∩ Ḣ1/2

o (R)
)
× R× R (3.1.7)

with

Hk
e (R) := {f ∈ Hk(R) : f is even in x1}, Hk

o (R) := {f ∈ Hk(R) : f is odd in x1},

and let Ḣk
o (R) be the corresponding homogeneous space. Then our first result is the existence of

traveling capillary-gravity water waves with a finite dipole. This theorem is an analogue of the work

of Varholm on the water wave problem with point vortices in finite depth [44].
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Theorem 3.1.1 (Existence). Let

x̄(t) = cte1 + (−a0 + ρ0)e2, ȳ(t) = cte1 + (−a0 − ρ0)e2.

Then for every k > 3
2 , a0 ∈ (0,∞), ρ0 ∈ (0, a0), γ0

1 > 0, and γ0
2 > 0 subject to the compatibility

condition

γ0
2 =

a3
0 + ρ3

0

a3
0 − ρ3

0

γ0
1 , (3.1.8)

there exists ε1 > 0, c1 > 0, γ1
1 > 0, γ1

2 > 0, and C1 family of traveling water wave with a finite

dipole:

Cloc = {(ε, c, γ1, γ2, η(ε, c, γ1, γ2), ϕ(ε, c, γ1, γ2), a(ε, c, γ1, γ2), ρ(ε, c, γ1, γ2)) :

|ε| < ε1, |c− c0| < c1, |γ1 − γ0
1 | < γ1

1 , |γ2 − γ0
2 | < γ1

2}

⊂ R× R× R× R×X.

Due to the variational structure of the problem, it is most natural to fix ε, γ1, γ2, and consider

the curve in Cloc that results from varying the wave speed c. This gives rise to a one-parameter

family of solitary waves indexed by the wave speed:

Uc := (η(c), ϕ(c), x̄(c), ȳ(c)).

The compatibility condition (3.1.8) implies that the lower vortex at ȳ must have a greater strength

than the upper vortex at x̄, that is, γ2 > γ1 for 0 < ρ0 < a0. This is a consequence of the fact that

x̄ is closer to the free surface St and is therefore influenced by it more strongly. In contrast to finite

dipoles in R2, which must have a total vorticity of 0, the interaction with the wave in fact forces the

point vortices to have slightly unmatched strengths. It is worth mentioning that the compatibility

condition (3.1.8) is not artificial. Indeed, as the family Cloc is exhaustive in a neighborhood of 0

in the space X, it must hold for any sufficiently small-amplitude, slow moving waves with even

symmetry.

Returning to the time-dependent problem, we introduce two important spaces. Let

X := X1 × X2 × X3 × X4 := H1(R)× Ḣ1/2(R)× R2 × R2, (3.1.9)
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and set

W := W1 ×W2 ×W3 ×W4 := H3+(R)×
(
Ḣ5/2+(R) ∩ Ḣ1/2(R)

)
× R2 × R2, (3.1.10)

where Hk+ means Hk+s for some fixed 0 < s � 1. We think of W as the well-posedness space for

(3.1.1)–(3.1.4). A local well-posedness result for irrotational capillary-gravity water waves with this

degree of regularity was proved by Alazard, Burq, and Zuily [96]. Very recently, Su [97] obtained

local well-posedness for (3.1.1)–(3.1.4) in a somewhat smoother space than W; our results will also

hold in that setting with only minor modifications. On the other hand, X is the natural energy space.

This is discussed in more detail in subsection 3.3.1. Finally, for the problem to be well-defined, the

finite dipole must be away from the free surface, so we take

O := {u ∈ X : x̄2 < η(x̄1) < −x̄2, ȳ2 < η(ȳ1) < −ȳ2, x̄ 6= ȳ} . (3.1.11)

To state the main result, we introduce some terminology. First, observe that the entire system

is invariant under the one-parameter affine symmetry group T (s) : X→ X defined by

T (s)u := T (s)(η, ϕ, x̄, ȳ)T = (η(· − s), ϕ(· − s), x̄+ se1, ȳ + se1)T . (3.1.12)

This suggests that stability or instability should be understood modulo T (s). With that in mind,

for each ρ > 0, we define the tubular neighborhood

Uρ :=

{
u ∈ O : inf

s∈R
‖T (s)Uc − u‖W < ρ

}
.

Definition 3.1.2. We say Uc is orbitally unstable provided that there is a ν0 > 0 such that for every

0 < ν < ν0 there exists initial data in Uν whose corresponding solution exits Uν0 in finite time.

Our main theorem is as follows.

Theorem 3.1.3 (Instability). Assume that (3.1.1)–(3.1.4) is locally well-posed in W in the sense of

Assumption B.1.7. For any ε 6= 0 sufficiently small, the corresponding family of solitary capillary-

gravity water waves with a finite dipole Uc furnished by Theorem 3.1.1 is conditionally orbitally

unstable.

One physical interpretation for this is that, while we can construct steady configurations of

counter rotating vortices moving in parallel through a water wave, these will not tend to persist
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over long periods of time. Instead, we expect them to migrate to the surface of the water, fail to

keep pace with the surface wave, or otherwise destabilize. Moreover, this result covers all sufficiently

small amplitude, wave speed, and vortex strength waves with even symmetry because Cloc comprises

also such waves near 0 in X.

3.1.3 History of the problem

The study of point vortices was initiated by Helmholtz [34] and Kirchhoff [36], who independently

developed the model (3.1.4). Since then, there has been extensive research on this subject. The

majority of this work concerns vortices in fixed fluid domains. For instance, Love found a condition

under which the motion of two pairs of vortices may be periodic [98] and investigated the stability of

Kirchhoff’s elliptic vortex [38]. Aref–Pomphrev [99] and Aref–Eckhardt [100] examined the chaotic

behavior of the system of two pairs of vortices. Wan [101] proved the existence of steady concentrated

vortex patches near the system of non-degenerate steady point vortices in the plane and on a bounded

domain. Marchioro and Pulvirenti [39] later justified the connection between the incompressible

Euler equation (3.1.2) and the Kirchhoff–Helmholtz model (3.1.4). Aref and Newton gave a thorough

review of the results for N -vortex problem in the plane [102, 103] or on the surface of the sphere [103].

Recently, Smets–Van Schaftingen [104] and Cao–Liu–Wei [105] studied the existence of solutions to

the point vortex problem in a bounded domain using either a variational or Lyapunov-Schmidt

reduction approach. Kanso, Newton, and Tchieu also used the finite dipole as a model for fish

schoolings [49]. They examined the formation of multi-pole systems, discussed their stability, and

compared the model against the real world scenario. Point vortex models can also be used in studies

of atmosphere and oceans [106].

When a dipole is placed inside a water wave, which is the case in this work, investigating existence

and stability of solutions is much more involved mathematically as it requires developing an under-

standing of the interaction between the motion of the vortices and the free surface. Nonetheless,

there have been a sizable number of studies in this regime. The first rigorous existence theory for

steady solutions was given by Filippov [40] and Ter-Krikorov [27], who investigated the finite-depth

regime neglecting surface tension. Later, Shatah, Walsh, and Zeng constructed a family of travel-

ing capillary gravity waves in infinite depth water with a single point vortex [33]. Using a similar

method, Varholm obtained analogues for capillary-gravity waves with one or more vortices in finite

depth [44]. Our existence theory follows in large part from the techniques in these two papers.

Our main source of inspiration is the recent paper by Varholm, Wahlén, and Walsh [107] that
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proves the orbital stability of traveling capillary gravity waves with a single point vortex. As we

explain below, we will adopt a similar methodology. However, the dipole turns out to be significantly

more difficult to analyze at a technical level. It is also of considerable importance to applications,

as described above.

It is well-known in the physics literature that the governing equations for water waves with

submerged point vortices have a Hamiltonian structure. Rouhi and Wright gave the formulation for

the motion of vortices in the presence of a free surface in two and three dimensions [108]. A similar

formulation was later given by Zakharov [109].

There have also been a number of numerical results about vortex pairs in a fluid. The closest

to the current problem is the recent paper of Curtis, Carter, and Kalisch [110], who studied how

constant vorticity shear profile affects the motion of the particles both at and beneath waves in

infinitely deep water. Many authors have looked at the related scenario where a submerged dipole

is sent moving towards the free surface rather than moving with the wave; see, for example, [47],

[111], [41]. In all of these papers, the authors found cases where the vortices are able to breach the

upper boundary. The exact opposite scenario was considered by Su [97], who proved that if a dipole

initially moving away from the surface, the solution will persist over a long time scale. This is in

stark contrast to the present work where we ask the dipole to move with the wave.

3.1.4 Plan of the article

This chapter contains two main sections. In Section 3.2, we show the existence of traveling capillary-

gravity waves with a finite dipole. This follows from an implicit function theorem argument in the

spirit of Varholm [44] and Shatah, Walsh, and Zeng [33]. Then, in Section 3.3, we prove that these

waves are orbitally unstable.

We first establish that (3.1.1)–(3.1.4) can be formulated as an infinite-dimensional Hamiltonian

system of the form

du

dt
= J(u)DE(u)

with J being the Poisson map and E the energy functional. This is similar but distinct from the

version due to Rouhi and Wright [108]. We offer a rigorous derivation in Theorem 3.3.2.

In two seminal papers [112, 113], Grillakis, Shatah, and Strauss provided a fairly simple method

for determining the stability or instability of traveling wave solutions to systems of this form that

are invariant under a continuous symmetry group. Among the hypotheses of this theory are that

the Poisson map J is invertible, and that the initial value problem is globally well-posed in time.
55



Unfortunately, our J is state-dependent and not surjective. Moreover, we do not expect the problem

to be well-posed in the energy space.

In this work, we will use a recent variant of the GSS method developed by Varholm, Wahlén, and

Walsh [107]. Among other improvements, this machinery permits J to have merely a dense range,

and also allow for a mismatch between the space where the problem is well-posed and the natural

energy space. In the present context, the latter point relates to the fact that W " X. As one of the

hypotheses, we must compute the spectrum of the second variation of the augmented Hamiltonian

defined in subsection 3.3.2. In particular, we show that it has a Morse index of 1.

For the convenience of the reader, several appendices have been included. Appendix B.1 contains

a summary of the instability theory developed by Varholm–Wahlén–Walsh [107]. We also derive

steady and unsteady equations for the velocity potential and stream functions in Appendix B.2.

Finally, in Appendix B.3, we recorded the variations of the energy and momentum functional.

3.2 Existence theory

This section is devoted to proving the existence of traveling capillary-gravity water waves with a

finite dipole. We will adopt a methodology introduced by Varholm [44] and Shatah, Walsh, and

Zeng [33]. The first step is to reformulate (3.1.1)–(3.1.4) in the spirit of Zakharov [109], and Craig

and Sulem [114]. This entails reducing the problem to a nonlocal system involving only surface

variables.

Recalling the splitting for v in (3.1.5), we take Θ = Θ1 + Θ2 + Θ∗1 + Θ∗2 with

Θ1(x) = − γ1

2π
arctan

(
x1 − x̄1

|x− x̄|+ x2 − x̄2

)
, Θ∗1(x) =

γ1

2π
arctan

(
x1 − x̄∗1

|x− x̄∗|+ x2 − x̄∗2

)
,

Θ2(x) =
γ2

2π
arctan

(
x1 − ȳ1

|x− ȳ|+ x2 − ȳ2

)
, Θ∗2(x) = − γ2

2π
arctan

(
x1 − ȳ∗1

|x− ȳ∗|+ x2 − ȳ∗2

)
,

(3.2.1)

and x̄∗ = (x̄1,−x̄2) and ȳ∗ = (ȳ1,−ȳ2) being the reflection of the two point vortices over the x1-axis.

This corresponds to making a branch cut straight down from the vortex centers. It is easy to see

that v ∈ L2 + L2 in the complement of any neighborhood of x̄ and ȳ.

It is often convenient to work with the harmonic conjugates of these functions. In particular, let
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Γ be the harmonic conjugate of Θ, that is ∇Θ = ∇⊥Γ. Then we have Γ = Γ1 + Γ2 + Γ∗1 + Γ∗2, where

Γ1(x) =
γ1

2π
log |x− x̄|, Γ2(x) = − γ2

2π
log |x− ȳ|,

Γ∗1(x) = − γ1

2π
log |x− x̄∗|, Γ∗2(x) =

γ2

2π
log |x− ȳ∗|.

We see that −∆Γ1 = −γ1δx̄, −∆Γ2 = γ2δȳ, and −∆Γ = −γ1δx̄ + γ2δȳ, and hence

−ε∆Γ = ω.

Define

Ξ1 := Θ1 −Θ∗1, Ξ2 := Θ2 −Θ∗2, Υ1 := Θ1 + Θ∗1, Υ2 := Θ2 + Θ∗2,

so that Θ = Υ1 + Υ2. This will be convenient for computing ∂x̄Θ. Also, let Ψ be the harmonic

conjugate of Φ, so that

v = ∇⊥Ψ + ε∇⊥Γ,

and denote the restriction of Ψ to the surface St by

ψ = ψ(t, x1) := Ψ(t, x1, η(t, x1)). (3.2.2)

We represent the normal derivatives of these functions on the free surface using the Dirichlet–

Neumann operator G(η) : Ḣ1/2(R) ∩ Ḣk(R)→ Ḣk−1(R) defined by

G(η)φ := (−η′∂x1
φH + ∂x2

φH)|St , (3.2.3)

where φH ∈ Ḣk+1/2(Ω) is the harmonic extension of φ to Ωt determined uniquely by

∆φH = 0 in Ω, φH = φ on St,

and k ≥ 0. It is well known that for any η ∈ Hk0(R), k0 > 3/2, G(η) is a bounded, invertible, and

self-adjoint operator between these spaces when k ∈ [1 − k0, k0]. Moreover, the mapping η 7→ G(η)

is C∞ and G(0) = |∂x1 | (see, for example, the book by Lannes [115]).
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Next, we rewrite the water wave problem as the following system for the unknowns (η, ϕ, x̄, ȳ):



∂tη = G(η)ϕ+ ε∇⊥Θ,

∂tϕ = − 1

2〈η′〉2
(
(ϕ′)2 − 2η′ϕ′G(η)ϕ− (G(η)ϕ)2

)
− ε∂tΘ− εϕ′∂x1

Θ− ε2

2
|∇Θ|2

−η + b
η′′

〈η′〉3
,

∂tx̄ = ∇Φ(x̄) + ε∇Θ∗1(x̄) + ε∇Θ2(x̄) + ε∇Θ∗2(x̄),

∂tȳ = ∇Φ(ȳ) + ε∇Θ1(ȳ) + ε∇Θ∗1(ȳ) + ε∇Θ∗2(ȳ).

(3.2.4)

Recall that ϕ = Φ|St as in (3.1.6), and describes the irrotational part of the velocity field. Here we

have made use of the differential operators

∇⊥ := (−η′∂x1
+ ∂x2

)|St , ∇> := (∂x1
+ η′∂x2

)|St , (3.2.5)

which come naturally as we take derivatives of functions restricted to the free surface.

Note that in (3.2.4), the equation for ∂tη can be derived from the kinematic boundary condition,

but now Θ appears as a forcing term. We can see that the evolution of ϕ is determined by the

unsteady Bernoulli equation (B.2.3). Finally, the equations for ∂tx̄ and ∂tȳ come from the Kirchhoff–

Helmholtz model (3.1.4).

Now we are prepared to prove the existence theorem. As this is done in the steady frame, we

will simply write S := St and Ω := Ωt.

Proof of Theorem 3.1.1. For convenience, we prove this result using ψ, which immediately gives the

stated theorem in terms of ϕ. For traveling waves solutions of (3.2.4), we have

η = η(x1 − ct), ψ = ψ(x1 − ct), ∂tx̄ = ce1, ∂tȳ = ce1.

First we rescale:

η =: εη̃, ψ =: εψ̃, Ψ =: εΨ̃, c =: εc̃,

so that the steady point vortex motion equations (3.1.4) now become


−Ψ̃x2

(x̄)− Γ2x2
(x̄)− Γ∗1x2 (x̄)− Γ∗2x2 (x̄) = c̃,

−Ψ̃x2
(ȳ)− Γ1x2

(ȳ)− Γ∗1x2 (ȳ)− Γ∗2x2 (ȳ) = c̃.
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Then the problem can be expressed as the abstract operator equation

F(ε, c̃, γ1, γ2; η̃, ψ̃, a, ρ) = 0

with F = (F1,F2,F3,F4) : R× R× R× R×X → Y given by

F1 :=
εc̃

1 + (εη̃′)2

(
ψ̃′ + εη̃′G(εη̃)ψ̃

)
+ εc̃Γx2

|S +
ε

2(1 + (εη̃′)2)

(
(ψ̃′)2 + (G(εη̃)ψ̃)2

)
+

ε

1 + (εη̃′)2

(
G(εη̃)ψ̃∇⊥Γ + ψ̃′∇>Γ

)
+
ε

2
|(∇Γ)|S |2 + η̃ +

b

ε
κ(εη̃),

F2 := εc̃η̃′ + ψ̃′ + (1, εη̃′)T · ∇Γ, (3.2.6)

F3 := c̃+
(
∂x2

ψ̃H

)
(x̄) + Γ2x2

(x̄) + Γ∗1x2 (x̄) + Γ∗2x2 (x̄),

F4 := c̃+
(
∂x2 ψ̃H

)
(ȳ) + Γ1x2

(ȳ) + Γ∗1x2 (ȳ) + Γ∗2x2 (ȳ),

where ∇Γ is evaluated at x2 = εη̃(x1) and X is defined by (3.1.7). We take

Y = Y1 × Y2 × Y3 × Y4 := Hk−2
e (R)×

(
Ḣk−2
o (R) ∩ Ḣ−1/2

o (R)
)
× R× R

for k > 3
2 fixed.

It is clear that F(ε0, c̃0, γ
0
1 , γ

0
2 ; η̃0, ψ̃0, a0, ρ0) = 0 with

ε0 = 0,

c̃0 = −Γ2x2
(0,−a0 + ρ0)− Γ∗1x2 (0,−a0 + ρ0)− Γ∗2x2 (0,−a0 + ρ0)

= − γ1

4π(a0 − ρ0)
+
γ2

4π

(
1

a0
+

1

ρ0

)
,

(3.2.7a)

and

η̃0 = 0, ψ̃0 = −Γ(x1, 0) = 0, (3.2.7b)

and γ0
1 , γ

0
2 , a0, ρ0 ∈ R if and only if the compatibility condition (3.1.8) holds. A simple computation
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shows that

L :=
(
Dη̃, Dψ̃, ∂a, ∂ρ

)
F
(

0, c̃0, γ
0
1 , γ

0
2 ; 0, ψ̃0, a0, ρ0

)

=



g − α2∂2
x1

0 0 0

0 ∂x1
0 0

0 (∂x2
〈H(0), ·〉) |(0,−a0+ρ0) − γ0

1

4π(a0−ρ0)2 +
γ0
2

4πa20

γ0
1

4π(a0−ρ0)2 +
γ0
2

4πρ20

0 (∂x2〈H(0), ·〉) |(0,−a0−ρ0) − γ0
1

4πa20
+

γ0
2

4π(a0+ρ0)2
γ0
2

4π(a0+ρ0)2 +
γ0
1

4πρ20


∈ L(X,Y ).

(3.2.8)

The invertibility of L is equivalent to the invertibility of the 2× 2 real sub-matrix:

T :=

−
γ0

1

4π(a0 − ρ0)2
+

γ0
2

4πa2
0

γ0
1

4π(a0 − ρ0)2
+

γ0
2

4πρ2
0

− γ0
1

4πa2
0

+
γ0

2

4π(a0 + ρ0)2

γ0
2

4π(a0 + ρ0)2
+

γ0
1

4πρ2
0

 . (3.2.9)

By the compatibility condition (3.1.8), we have

det T = − γ2
1

16π2

6(a4
0 − a2

0ρ
2
0 + ρ4

0)

(a0 + ρ0)(a0 − ρ0)3(a2
0 + a0ρ0 + ρ2

0)2
< 0.

Thus, L is an isomorphism. The Implicit Function Theorem then tells us that there exists a family

Cloc of solutions of the form

F(ε, c̃, γ1, γ2; η̃(ε, c̃, γ1, γ2), ψ̃(ε, c̃, γ1, γ2), a(ε, c̃, γ1, γ2), ρ(ε, c̃, γ1, γ2)) = 0

for all |ε| � 1, |c̃ − c̃0| � 1, |γ1 − γ0
1 | � 1, and |γ2 − γ0

2 | � 1. Theorem 3.1.1 has, therefore, been

proved. Again, the Implicit Function Theorem allows us to infer that Cloc comprises all traveling

wave solutions in a neighborhood of 0 in X.

For the stability analysis, we rely on asymptotic information about the traveling waves con-

structed above. Using implicit differentiation, one can readily compute that

η(ε, c̃, γ1, γ2) = −ε2(g − b∂2
x1

)−1 [c̃0Γx2
(x1, 0)]

+O(|ε|3 + |ε||c− c0|2 + |ε||γ1 − γ0
1 |2 + |ε||γ2 − γ0

2 |2) in C1(U ;X1),

ψ(ε, c̃, γ1, γ2) = O(|ε|3 + |ε||c− c0|2 + |ε||γ1 − γ0
1 |2 + |ε||γ2 − γ0

2 |2) in C1(U ;X2),

(3.2.10a)
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and

a(ε, c̃, γ1, γ2) = a0 + εa0100(c− c0) + a0010(γ1 − γ0
1) + a0001(γ2 − γ0

2)

+O(|ε|2 + |c− c0|2 + |γ1 − γ0
1 |2 + |γ2 − γ0

2 |2) in C1(U ;R),

ρ(ε, c̃, γ1, γ2) = ρ0 + ερ0100(c− c0) + ρ0010(γ1 − γ0
1) + ρ0001(γ2 − γ0

2)

+O(|ε|2 + |c− c0|2 + |γ1 − γ0
1 |2 + |γ2 − γ0

2 |2) in C1(U ;R),

(3.2.10b)

where c̃0, T are given by (3.2.7)–(3.2.9), and U = Bε1(0) × Bc1(c0) × Bγ1
1
(γ0

1) × Bγ1
2
(γ0

2). The

indices 0100, 0010, and 0001 are variations at the point (0, c̃0, γ
0
1 , γ

0
2) with respect to c̃, γ1, and γ2,

respectively. In particular,

a0100 =
1

det T

(
− γ0

2

4π(a0 + ρ0)2
− γ0

1

4πρ2
0

+
γ0

1

4π(a0 − ρ0)2
+

γ0
2

4πρ2
0

)
,

ρ0100 =
1

det T

(
γ0

2

4π(a0 + ρ0)2
− γ0

1

4πa2
0

+
γ0

1

4π(a0 − ρ0)2
− γ0

2

4πa2
0

)
.

(3.2.11)

3.3 Instability theory

In this section, we show that the traveling waves constructed in Theorem 3.1.1 are orbitally unstable.

To do so, we follow the general strategy of Varholm–Wahlén–Walsh [107] which is an adaptation

of the classical Grillakis–Shatah–Strauss method [112, 113]. In subsection 3.3.1, we rewrite the

equations of capillary-gravity waves with a finite dipole (3.1.1)–(3.1.4) as a Hamiltonian system and

give an explicit form for its energy and momentum. Next, in subsections 3.3.2 we prove that the

spectrum of the second variation of the augmented Hamiltonian has the required configuration. This

is done in the spirit of Mielke [116]. Finally, in subsection 3.3.3, we complete the proof of our main

result by computing the second derivative of the moment of instability for small waves in this family.

3.3.1 Hamiltonian formulation

We first show that the system of equations (3.2.4) has a Hamiltonian structure in terms of the state

variable u = (η, ϕ, x̄, ȳ)T . Define the energy E = E(u) to be

E(u) := K(u) + V (u), (3.3.1)
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where K is the (excess) kinetic energy and V is the (excess) potential energy. The submerged dipole

does not affect the latter, and so it we may take

V (u) :=

∫
R

(
1

2
gη2 + b(〈η′〉 − 1)

)
dx1. (3.3.2)

However, some care is needed in the deriving the correct expression for K. Formally, we take the

classical kinetic energy 1
2

∫
Ω
|v|2 dx, split v according to (3.1.5), and then integrate by parts. The

Newtonian potentials in Γ will naturally lead to singular terms; these we discard. What results is

the following:

K(u) := K0(u) + εK1(u) + ε2K2(u)

=
1

2

∫
R
ϕG(η)ϕdx1 + ε

∫
R
ϕ∇⊥Θ dx1 + ε2

(
1

2

∫
R

Θ|St∇⊥Θ dx1 + Γ∗
)
,

Γ∗ :=
γ1

2

(
Γ∗1(x̄) + Γ2(x̄) + Γ∗2(x̄)

)
− γ2

2

(
Γ1(ȳ) + Γ∗1(ȳ) + Γ∗2(ȳ)

)
.

Note that K0 = 1
2

∫
Ω
|∇Φ|2 dx, and hence represents the kinetic energy contributed by the purely

irrotational part of the velocity. K1 is the interaction between the irrotational and rotational parts,

and K2 is the kinetic energy attributed to the rotational part.

Recall the energy space X was defined by (3.1.9) and the well-posedness space W was defined by

(3.1.10). As X is a Hilbert space, it is isomorphic to its continuous dual X∗, and the isomorphism

I : X→ X∗ takes the form

I = (1− ∂2
x1
, |∂x1

|, IdR2 , IdR2),

where IdR2 is the 2×2 identity matrix. For the Dirichlet-Neumann operator in E to be well-defined,

we want a smoother space than X. For that, we choose

V := V1 × V2 × V3 × V4 := H3/2+(R)×
(
Ḣ1+(R) ∩ Ḣ1/2(R)

)
× R2 × R2. (3.3.3)

From the definition of the energy in (3.3.1), we see that E ∈ C∞(O ∩ V;R). Using the Gagliardo–

Nirenberg interpolation inequality, we can confirm that the spaces X, V, and W satisfy Assumption

B.1.1. In particular, there are constants C > 0 and θ ∈ (0, 1/4) such that

‖u‖3V ≤ C‖u‖2+θ
X ‖u‖1−θW .
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Next, consider the closed operator Ĵ : D(Ĵ) ⊂ X∗ → X defined by

Ĵ :=



0 1 0 0

−1 0 0 0

0 0 (εγ1)−1J 0

0 0 0 −(εγ2)−1J


, (3.3.4)

where J is a 2× 2 real matrix

J =

0 −1

1 0


and

D(Ĵ) = (H−1(R) ∩ Ḣ1/2(R))× (H1(R) ∩ Ḣ−1/2(R))× R2 × R2.

Let B ∈ C1(O; Lin(X)) ∩ C1(O ∩W; Lin(W)) be defined by

B(u) := IdX + Z(u), (3.3.5)

where

Z(u)ẇ :=



0 0 0 0

−ε(γ1)−1(J ξ|St)T ε(γ2)−1(J ζ|St)T εξT |St εζT |St

γ−1
1 J 0 0 0

0 −(γ2)−1J 0 0





〈ξ|St , η̇〉

〈ζ|St , η̇〉

˙̄x

˙̄y


for all ẇ = (η̇, ϕ̇, ˙̄x, ˙̄y)T ∈ O with

ξ := −∇x̄Θ = (Υ1x1
,Ξ1x2

)T , ζ := −∇ȳΘ = (Υ2x1
,Ξ2x2

)T .

The next lemma constructs the Poisson map J in the Hamiltonian formulation and verifies that it

satisfies Assumption B.1.2.
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Lemma 3.3.1 (Properties of J). For each u ∈ O, let J(u) : D(Ĵ) ⊂ X∗ → X be defined by

J(u) := B(u)Ĵ =



0 1 0 0

−1 J22 J23 J24

0 J32 (εγ1)−1J 0

0 J42 0 −(εγ2)−1J


, (3.3.6)

where

J22 := εΥ1x1
|St 〈·,−γ−1

1 Ξ1x2
|St〉+ εΞ1x2

|St 〈·, γ−1
1 Υ1x1

|St〉

+ εΥ2x1
|St 〈·, γ−1

2 Ξ2x2
|St〉+ εΞ2x2

|St 〈·,−γ−1
2 Υ2x1

|St〉,

J23 :=

(
γ−1

1 Ξ1x2
|St , −γ−1

1 Υ1x1
|St

)
, J24 :=

(
−γ−1

2 Ξ2x2
|St , γ−1

2 Υ2x1
|St

)
,

J32 :=

(
〈·,−γ−1

1 Ξ1x2
|St〉, 〈·, γ−1

1 Υ1x1
|St〉
)T

, J42 :=

(
〈·, γ−1

2 Ξ2x2
|St〉, 〈·,−γ−1

2 Υ2x1
|St〉
)T

.

Then J(u) satisfies Assumption B.1.2.

Proof. We see from its definition in (3.3.4) that Ĵ is injective and its domain D(Ĵ) is dense in

X∗ = IX, which proves that part (i) and (ii) of Assumption B.1.2 are satisfied. Moreover, since

B(u) defined by (3.3.5) is both Fredholm index 0 and injective, it is an isomorphism on X and W

giving part (iii). Parts (iv) and (v) of Assumption B.1.2 follow directly from the definitions (3.3.5)

and (3.3.6).

In order to apply the instability theory in Appendix B.1, we must show that DE can be realized

as an element of X∗. With that in mind, we define the extension ∇E ∈ C0(O ∩ V;X∗) by

〈∇E(u), v〉X∗×X := 〈E′η(u), v1〉H−1×H1 + 〈E′ϕ(u), v2〉Ḣ−1/2×Ḣ1/2

+ (E′x̄(u), v3)R2 + (E′ȳ(u), v4)R2 , (3.3.7)

where

E′ϕ(u) := G(η)ϕ+ ε∇⊥Θ,
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E′η(u) :=
1

2

∫
R
ϕ〈DηG(η)·, ϕ〉dx1 + εϕ′Θx1

|St +
ε2

2
|(∇Θ)|St |2 + gη − b

(
η′

〈η′〉

)′
,

E′x̄(u) := −ε
∫
R
ϕ∇⊥ξ dx1 −

ε2

2

∫
R

(
ξ∇⊥Θ + Θ|St∇⊥ξ

)
dx1 +∇x̄Γ∗,

E′ȳ(u) := −ε
∫
R
ϕ∇⊥ζ dx1 −

ε2

2

∫
R

(
ζ∇⊥Θ + Θ|St∇⊥ζ

)
dx1 +∇ȳΓ∗.

Here we use subscripts x1 and x2 to denote partial derivatives. See Appendix B.3 for details.

Theorem 3.3.2 (Hamiltonian formulation). The capillary-gravity water wave with a finite dipole

problem (3.2.4) has a solution u := (η, ϕ, x̄, ȳ)T ∈ C1 ([0, t0);O ∩W) if and only if it is a solution

to the abstract Hamiltonian system

du

dt
= J(u)DE(u), (3.3.8)

where E is the energy functional defined in (3.3.1) and J is the skew-symmetric operator defined by

(3.3.6).

Proof. Throughout the proof, we make repeated use of the identities

∇⊥ψx1
= ∇>ψx2

=
(
ψx2
|St
)′
, ∇⊥ψx2

= −∇>ψx1
= −

(
ψx1
|St
)′
, (3.3.9)

where ψ is any function harmonic in a neighborhood of St, and recall ∇⊥ and ∇> are defined in

(3.2.5).

Suppose we have a solution u of (3.3.8). From the expressions for J in (3.3.6) and the differential

equation (3.3.8), we see that

∂tη = DϕE(u) = G(η)ϕ+ ε∇⊥Θ,

which is the kinematic condition (3.1.3).

Next, we verify that

∂tx̄ = J32ϕ+ (εγ1)−1J∇x̄E(u)

is equivalent to the ODE for x̄ in (3.1.4). Explicitly, the first component of the equation is

∂tx̄1 = −(εγ1)−1∂x̄2
E(u) +

〈
DϕE(u),−γ−1

1 Ξ1x2
|St
〉
. (3.3.10)

Using the fact that

∇>f = ∂x1

(
f |S
)
, ∇⊥Φ = ∇>Ψ, ∇>Φ = −∇⊥Ψ, ∇⊥Θ = ∇>Γ, ∇>Θ = −∇⊥Γ,
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and the identities (3.3.9), (3.3.10) becomes

∂tx̄ =
1

γ1

∫
R

(
−Ξ1x1

|St∇⊥Ψ + Ψ|St∇⊥Ξ1x1

)
dx1

+
ε

2γ1

∫
R

(
−Ξ1x1

|St∇⊥Γ− Ξ1x2
|St∇⊥Θ

)
dx1 − εΓ∗1x2 (x̄)− εΓ2x2

(x̄)− εΓ∗2x2 (x̄)

=:
1

γ1
A +

ε

2γ1
B − εΓ∗1x2 (x̄)− εΓ2x2

(x̄)− εΓ∗2x2 (x̄).

Since Ψ and Θ∗1 are harmonic in Ωt, for any 0 < r � 1 we have

A = −
∫
∂Br(x̄)

(
−Θ1x1

N · ∇Ψ + ΨN · ∇Θ1x1

)
dSt

= −
∫
∂Br(x̄)

( γ1

2π

x2 − x̄2

|x− x̄|2
N · ∇Ψ + Ψ

γ1

2π

x2 − x̄2

|x− x̄|3
)

dSt

= − γ1

2π

∫ 2π

0

(r sin θ

r2
∂r(Ψ) + Ψ

r sin θ

r3

)
r dθ.

Expanding Ψ around r = 0 gives

A = − γ1

2π

∫ 2π

0

[
sin θ(Ψx1

cos θ + Ψx2
sin θ) +

sin θ

r
(Ψ(x̄) + Ψx1

(x̄)r cos θ

+ Ψx2
(x̄)r sin θ)

]
dθ + o(r) = −γ1Ψx2

(x̄) + o(r)

as r → 0. A direct computation along the same lines shows B = 0. Thus, (3.3.10) is equivalent to

∂tx̄1 = −Ψx2
(x̄)− εΓ∗1x2 (x̄)− εΓ2x2

(x̄)− εΓ∗2x2 (x̄),

which agrees the Kirchhoff–Helmholtz model (3.1.4). By nearly identical arguments, we likewise

confirm that the same holds for ∂tx̄2 and then ∂tȳ.

Finally, we claim that

∂tϕ = −DηE(u) + ξ|St · (γ−1
1 J )∇x̄E(u) + ζ|St · (γ−1

2 J )∇ȳE(u)

+ εξ|St
〈
DϕE(u), (−γ−1

1 J )ξ
〉

+ εζ|St
〈
DϕE(u), (−γ−1

2 J )ζ
〉 (3.3.11)

is equivalent to the unsteady Bernoulli condition in (3.2.4). By a well-known formula for the deriva-

tive G(η) (see, for example, [116, Proposition 2.1]), we know that

∫
R
ϕ〈DηG(η)η̇, ϕ〉dx1 =

∫
R

1

〈η′〉2
(

(ϕ′)2 − (G(η)ϕ)2 − 2η′ϕ′G(η)ϕ
)
η̇ dx1.
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Then

∂tϕ = − 1

〈η′〉2
(

(ϕ′)2 − (G(η)ϕ)2 − 2η′ϕ′G(η)ϕ
)

+ εϕ′Γx2 |St −
ε2

2
|(∇Θ)|St |2 − V ′η(u)

+ εΘ1x1
|St ∂tx̄1 + εΘ1x2

|St ∂tx̄2 + εΘ2x1
|St ∂tȳ1 + εΘ2x2

|St ∂tȳ2.

Here we have used the fact that for Θ = (Θ1 + Θ∗1 + Θ2 + Θ∗2)(x1, x2, x̄, ȳ),

(∂tΘ)|S = (−Θ1x1
−Θ∗1x1 )|St ∂tx̄1 + (−Θ1x2

+ Θ∗1x2 )|St ∂tx̄2 + (−Θ2x1
−Θ∗2x1 )|St ∂tȳ1

+ (−Θ2x2
+ Θ∗2x2 )|St ∂tȳ2

= −Υ1x1
|St ∂tx̄1 − Ξ1x2

|St ∂tx̄2 −Υ2x1
|St ∂tȳ1 − Ξ2x2

|St ∂tȳ2.

Thus, comparing this to the equations for ϕ in (3.2.4), the claim has been proved.

The momentum associated to a solution of the system (3.3.8) is given by

P = P (u) = −εγ1x̄2 + εγ2ȳ2 −
∫
R
η′(ϕ+ εΘ|St) dx1. (3.3.12)

It is clear that P ∈ C∞(O ∩ V;R). Similarly to the Fréchet derivatives of the energy, DP can be

extended to ∇P ∈ C0(O ∩ V;X∗):

〈∇P (u), v〉X∗×X := 〈P ′η(u), v1〉H−1×H1 + 〈P ′ϕ(u), v2〉Ḣ−1/2×Ḣ1/2

+ (P ′x̄(u), v3)R2 + (P ′ȳ(u), v4)R2 (3.3.13)

with

P ′η(u) = ϕ′ + εΘx1
|St , P ′ϕ(u) = −η′,

P ′x̄(u) := −εγ1e2 + ε

∫
R
η′ξ|St dx1, P ′ȳ(u) := εγ2e2 + ε

∫
R
η′ζ|St dx1.

It is immediate from their definitions in (3.3.7) and (3.3.13) that ∇E and ∇P satisfy Assumption

B.1.3. Observe also that ∇P is in D(Ĵ) and

J(u)∇P (u) = (−η′,−ϕ′, 1, 0, 1, 0)
T
. (3.3.14)

The next lemma records the fact that the momentum and the energy are conserved.
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Lemma 3.3.3 (Conservation). Suppose that u ∈ C0 ([0, t0);O ∩W) is a distributional solution to

the Cauchy problem (3.3.8) with initial data u0 ∈ O ∩W. Then

E(u(t)) = E(u0) and P (u(t)) = P (u0) for all t ∈ [0, t0).

The proof follows directly from computation and the regularity of the well-posedness space W;

see, [107, Theorem 5.3].

Next, we verify that the symmetry group T defined by (3.1.12) indeed satisfies Assumption B.1.4.

The linear part of T is

dT (s)u = (η(· − s), ϕ(· − s), x̄, ȳ)T for all s ∈ R, u ∈ X, (3.3.15)

and the infinitesimal generator of T is the unbounded affine operator

T ′(0)u := (−η′,−ϕ′, e1, e1)T for all u ∈ D(T ′(0)) (3.3.16)

with D(T ′(0)) = H2(R)×
(
Ḣ3/2(R) ∩ Ḣ1/2(R)

)
× R2 × R2.

Lemma 3.3.4. The group T (s) satisfies Assumption B.1.4.

The proof of this lemma is done by nearly identical arguments to that of [107, Lemma 5.4], as

the symmetry groups are essentially the same. We therefore omit the details.

Finally, recall that

{Uc = (η(c), ϕ(c), x̄(c), ȳ(c)) : c ∈ I} (3.3.17)

is a one-parameter family of solitary capillary-gravity water waves with a finite dipole constructed

in Theorem 3.1.1, where we fix γ1, γ2, ε, and vary the wave speed c. Here I is an open interval

containing

c0 = − εγ1

4π(a0 − ρ0)
+
εγ2

4π

(
1

a0
+

1

ρ0

)
.

The next lemma confirms that this family satisfies Assumption B.1.5 of the general stability

theory.

Lemma 3.3.5. Fix any choice of 0 < ρ0 < a0, and consider the corresponding surface of solutions

Cloc furnished by Theorem 3.1.1. Then the corresponding one-parameter family of bound states

{Uc}c∈I satisfies Assumption B.1.5.
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Proof. From the proof of Theorem 3.1.1 in Section 3.2, it is clear that Cloc is in fact C∞, thus c 7→ Uc

is likewise smooth, and part (i) of the assumption holds. The asymptotic form of the solutions given

in (3.2.10) immediately shows that part (ii) holds. Part (iii) follows from the fact that the existence

theory can be carried out in Hk spaces for any k > 3
2 . Finally, as these are solitary waves, it is

obvious that the second alternative of part (iv) is satisfied.

3.3.2 Spectrum of the augmented potential

We define the augmented Hamiltonian to be

Ec(u) := E(u)− cP (u).

The moment of instability is the scalar-valued function that results from evaluating Ec along the

family {Uc}:

d(c) := Ec(Uc) = E(Uc)− cP (Uc). (3.3.18)

By (3.3.8) and (3.3.14), we have JDE(Uc)− cJDP (Uc) = 0, and hence

DEc(Uc) = DE(Uc)− cDP (Uc) = 0. (3.3.19)

Thus, each traveling wave Uc is a critical point of the augmented Hamiltonian. Then differentiating

d gives the identity

d′(c) =

〈
DE(Uc)− cDP (Uc),

dUc
dc

〉
− P (Uc) = −P (Uc).

If we differentiate (3.3.19) with respect to c, we also obtain

〈
D2Ec(Uc)

dUc
dc

, ·
〉

= 〈DP (Uc), · 〉 .

As in the work of Grillakis, Shatah, and Strauss [112, 113], we must show that the linearized

Hamiltonian has Morse index 1. That is, D2Ec(Uc) can be associated to a bounded self-adjoint

operator on X whose spectrum takes the form {−µ2
c} ∪ {0} ∪ Σc, where Σc ⊂ R+ is uniformly

bounded away from 0 and −µ2
c < 0. This corresponds to Assumption B.1.6.

We first note that 0 is in the spectrum. Indeed, for all s ∈ R, T (s)Uc is also a traveling wave
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solution. Therefore,

DEc(T (s)Uc) = 0

for all s. Differentiating with respect to s gives

〈
D2Ec(T (s)Uc), T

′(0)Uc
〉

= 0,

and hence, T ′(0)Uc is an eigenfunction for eigenvalue 0.

Following Mielke’s approach [116], we will determine the remaining spectrum by first considering

the augmented potential

Vc = Vc(η, x̄, ȳ) := min
ϕ∈V2

Ec(η, ϕ, x̄, ȳ) =: Ec(η, ϕm, x̄, ȳ) (3.3.20)

for (η, x̄, ȳ) ∈ V1 × V3 × V4, which corresponds to fixing (η, x̄, ȳ) and minimizing Ec over ϕ. Thus,

DϕEc(η, ϕm, x̄, ȳ) = 0. (3.3.21)

Because ϕ occurs quadratically in the energy, it is easy to see that this minimum is attained exactly

when

ϕm(η, x̄, ȳ) = G(η)−1[−cη′ − ε∇⊥Θ]. (3.3.22)

Since we will be doing many calculations where ϕ is fixed, we adopt the notational convention

that for u = (u1, u2, u3, u4),

v := (u1, u3, u4)

and write a variation in the direction v as v̇. We also use the short hand V1,3,4 := V1 × V3 × V4,

and for convenience, define

um(v) := (η, ϕm, x̄, ȳ) ∈ V.

Also, when we evaluate derivatives of the Dirichlet–Neumann operator, we will encounter the quan-

tities

a := (∇(Hϕm))|S , b := a + ε(∇Θ)|S − ce1.

See Appendix B.2 for an explicit formula giving a in terms of ϕ and η. Physically, b is the restriction

of the full relative velocity to the interface. Therefore, by the kinematic condition, b2 = η′b1; this
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also follows directly from (3.3.22).

While it is not completely obvious, we will see that the spectral properties of D2Ec(Uc) can be

inferred from those of D2Vc(v). With that in mind, the first step is to derive a formula for the

second variation of the augmented potential.

Lemma 3.3.6. For all v ∈ V1,3,4 ∩ O1,3,4 and all variations v̇ ∈ V1,3,4, we have

〈
D2Vc(v)v̇, v̇

〉
V∗1,3,4×V1,3,4

= −
〈
L(v)v̇,G(η)−1L(v)v̇

〉
X∗2×X2

+
〈
D2
vEc(um(v))v̇, v̇

〉
V∗1,3,4×V1,3,4

, (3.3.23)

where L(v) ∈ Lin(X1,3,4;X∗2) defined by

L(v)v̇ := G(η)(a2η̇) + (b1η̇)′ + ε∇⊥ξ · ˙̄x+ ε∇⊥ζ · ˙̄y. (3.3.24)

The proof follows by a straightforward adaptation of [107, Lemma 6.2], and we therefore omit it.

In the next lemma, we refine expression (3.3.23) to derive a quadratic form representation of

D2Vc.

Lemma 3.3.7 (Quadratic form). For all v ∈ V1,3,4 ∩ O1,3,4, there is a self-adjoint linear operator

A(v) ∈ Lin(X1,3,4;X∗1,3,4) such that

〈
D2Vc(v)v̇, ẇ

〉
V∗1,3,4×V1,3,4

= 〈Av̇, ẇ〉X∗1,3,4×X1,3,4

for all v̇, ẇ ∈ V1,3,4. The form of A is given in (3.3.25).

Proof. From [116, Proposition 2.1], we have

∫
R
ϕ̂〈DηG(η)η̇, ϕ〉dx1 =

∫
R
η̇(a1ϕ̂

′ − a2G(η)ϕ̂) dx1

and ∫
R
ϕ〈〈D2

ηG(η)η̇, η̇〉, ϕ〉dx1 = 2

∫
R

(
η̇2a′1a2 + a2η̇G(η)(a2η̇)

)
dx1.

Letting the self-adjoint operator M defined by

Mη̇ := −b1(G(η)−1(b1η̇)′)′,
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and using the fact that G(η)−1 is a self-adjoint operator, we can compute

∫
R
L(v)v̇G(η)−1L(v)v̇ dx1 =

∫
R
a2η̇G(η)(a2η) dx1 +

∫
R
η̇Mη̇ dx1 +

∫
R

(a2b
′
1 − a′2b1)η̇2 dx1

+ 2ε ˙̄x ·
∫
R

(
a2∇⊥ξ − b1

(
G(η)−1∇⊥ξ

)′)
η̇ dx1 + ε2 ˙̄xT

(∫
R
∇⊥ξ � G(η)−1∇⊥ξ dx1

)
˙̄x

+ 2ε ˙̄y ·
∫
R

(
a2∇⊥ζ − b1

(
G(η)−1∇⊥ζ

)′)
η̇ dx1 + ε2 ˙̄yT

(∫
R
∇⊥ζ � G(η)−1∇⊥ζ dx1

)
˙̄y

+ 2ε2 ˙̄xT
(∫

R
∇⊥ξ � G(η)−1∇⊥ζ dx1

)
˙̄y,

where x� y = (x⊗ y + y ⊗ x)/2 is the symmetric outer product. Next, we have

〈
D2
ηEc(um)η̇, η̇

〉
=

∫
R
a2η̇G(η)(a2η) dx1 +

∫
R

(g + εb1∇>Θx2 + a2b
′
1) η̇2 dx1 +

∫
R

b

〈η′〉3
(η̇′)2 dx1,

∇x̄〈DηEc(um), η̇〉 = ε

∫
R

(a2∇⊥ξ − b1∇>ξ)η̇ dx1,

∇ȳ〈DηEc(um), η̇〉 = ε

∫
R

(a2∇⊥ζ − b1∇>ζ)η̇ dx1,

D2
x̄Ec(um) = 2ε2D2

x̄Γ∗ − ε
∫
R
(G(η)ϕmD

2
x̄Θ + ϕ′mD

2
x̄Γ)|S dx1 + ε2

∫
R
∇⊥ξ � ξ dx1

− ε2

2

∫
R

(∇⊥ΘD2
x̄Θ +∇>ΘD2

x̄Γ)|S dx1,

D2
ȳEc(um) = 2ε2D2

ȳΓ∗ − ε
∫
R

(G(η)ϕmD
2
ȳΘ + ϕ′mD

2
ȳΓ)|S dx1 + ε2

∫
R
∇⊥ζ � ζ dx1

− ε2

2

∫
R
(∇⊥ΘD2

ȳΘ +∇>ΘD2
ȳΓ)|S dx1,

∇x̄∇ȳEc(um) = ε2∇x̄∇ȳΓ∗ +
ε2

2

∫
R
∇⊥(ξ � ζ) dx1.
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Substituting the above results into the expression (3.3.23), we arrive at

〈D2Vc(v)v̇, v̇〉 =

∫
R

(g + b′2b1)η̇2 dx1 −
∫
R

(
b

〈η′〉3
η̇′
)′
η̇ dx1 −

∫
R
η̇Mη̇ dx1

+ 2ε ˙̄x ·
∫
R
η̇b1∇>(G(η)−1∇⊥ξ − ξ) dx1 + 2ε ˙̄y ·

∫
R
η̇b1∇>(G(η)−1∇⊥ζ − ζ) dx1

+ ˙̄xT
(
D2
x̄Ec(um)− ε2

∫
R
∇⊥ξ � G(η)−1∇⊥ξ dx1

)
˙̄x

+ ˙̄yT
(
D2
ȳEc(um)− ε2

∫
R
∇⊥ζ � G(η)−1∇⊥ζ dx1

)
˙̄y

+ ˙̄xT
(
∇x̄∇ȳEc(um)− 2ε2

∫
R
∇⊥ξ � G(η)−1∇⊥ζ dx1

)
˙̄y.

Thus, inspecting the above formula, we see that the claimed quadratic form representation holds

with the operator A defined as follows:

A11η̇ := (g + b′2b1)η̇ −
(

b

〈η′〉3
η̇′
)′
−Mη̇, (3.3.25a)

A13 ˙̄x := εb1∇>(G(η)−1∇⊥ξ − ξ) · ˙̄x, (3.3.25b)

A∗13η̇ := ε

∫
R
η̇b1∇>(G(η)−1∇⊥ξ − ξ) dx1, (3.3.25c)

A14 ˙̄y := εb1∇>(G(η)−1∇⊥ζ − ζ) · ˙̄y, (3.3.25d)

A∗14η̇ := ε

∫
R
η̇b1∇>(G(η)−1∇⊥ζ − ζ) dx1, (3.3.25e)

A33 := D2
x̄Ec(um)− ε2

∫
R
∇⊥ξ � G(η)−1∇⊥ξ dx1, (3.3.25f)

A44 := D2
ȳEc(um)− ε2

∫
R
∇⊥ζ � G(η)−1∇⊥ζ dx1, (3.3.25g)
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A34 = A43 := ∇x̄∇ȳEc(um)− ε2
∫
R
∇⊥ξ � G(η)−1∇⊥ζ dx1. (3.3.25h)

This finishes the proof of Lemma 3.3.7.

The next lemma verifies that the second variation of the augmented Hamiltonian Ec has an

extension to the energy space X.

Lemma 3.3.8 (Extension of D2Ec). For all v ∈ V1,3,4 ∩ O1,3,4, there exists a self-adjoint operator

Hc(v) ∈ Lin(X,X∗) such that

〈D2Ec(um(v))u̇, ẇ〉V∗×V = 〈Hc(v)u̇, ẇ〉X∗×X (3.3.26)

for all u̇, ẇ ∈ V with

Hc(v)u̇ =



IdX∗1 0 0 0

0 0 0 IdX∗2

0 IdR2 0 0

0 0 IdR2 0


A(v) + L(v)∗G(η)−1L(v) −L(v)∗

−L(v) G(η)


v̇
ϕ̇

 ,

where L(v) and A(v) are defined in Lemmas 3.3.6 and 3.3.7, respectively. The adjoint L(v)∗ ∈

Lin(X2;X∗1,3,4) is given by

L(v)∗ϕ̇ = (a2G(η)ϕ̇− b1ϕ̇
′, ε〈∇⊥(ξ + ζ), ϕ̇〉),

and we have

〈Hc(v)u̇, u̇〉X∗×X = 〈A(v)v̇, v̇〉X∗1,3,4×X1,3,4
+
〈
G(η)(ϕ̇− G(η)−1Lv̇), ϕ̇− G(η)−1Lv̇

〉
X∗2×X2

(3.3.27)

for all u̇ ∈ X.

Proof. It is straightforward to see that

〈DϕDvEc(um(v))v̇, ϕ̇〉V∗2×V2 = −
∫
R
v̇L(v)v̇ dx1

holds for all v̇ ∈ V1,3,4 and ϕ̇ ∈ V2. Because of symmetry, it suffices to consider only the diagonal

74



entries. For all u̇ ∈ V, Lemmas 3.3.6 and 3.3.7 give

〈D2Ec(um(v))u̇, u̇〉V∗×V = 〈D2
vEc(um(v))v̇, v̇〉+ 2〈DϕDvEc(um(v))v̇, ϕ̇〉

+ 〈D2
ϕEc(um(v))ϕ̇, ϕ̇〉

= 〈A(v)v̇, v̇〉X∗1,3,4×X1,3,4

+

∫
R

[
(L(v)v̇)G(η)−1L(v)v̇ − 2ϕ̇L(v)v̇ + ϕ̇G(η)ϕ̇

]
dx1

= 〈A(v)v̇, v̇〉X∗1,3,4×X1,3,4 −
∫
R
L(v)v̇(ϕ̇− G(η)−1L(v)v̇) dx1

+

∫
R
ϕ̇G(η)(ϕ̇− G(η)−1L(v)v̇) dx1.

(3.3.28)

Using the fact that G(η) and G(η)−1 are self-adjoint operators, the integral is equal to

∫
R

[
− L(v)v̇(ϕ̇− G(η)−1L(v)v̇) + (ϕ̇− G(η)−1L(v)v̇)G(η)ϕ̇

]
dx1

=

∫
R
G(η)(ϕ̇− G(η)−1L(v)v̇)(ϕ̇− G(η)−1L(v)v̇) dx1.

Substituting this into the equation (3.3.28) yields our desired result.

We finish this subsection by showing that Assumption B.1.6 is satisfied.

Theorem 3.3.9 (Spectrum). Fix any choice of 0 < ρ0 < a0 subject to the compatibility condition

(3.2.4), and consider the family of traveling wave solutions {Uc}c∈I as in (3.3.17). Then for all c ∈ I,

I−1Hc has one negative eigenvalue, 0 is in the spectrum, and the rest of the spectrum Σc ⊂ (0,∞)

is bounded away from 0.

Proof. From the asymptotic information furnished by the existence theorem (3.2.10), we infer that

a1 = O(ε3), a2 = O(ε3), b1 = a1 − c+ o(ε2) = O(ε), b2 = a2 + o(ε2) = O(ε).

Then from Lemmas 3.3.7 and 3.3.8, we can write

Hc =


g − b∂2

x1
0 0

0 |∂x1
| 0

0 0 A

+O(ε3) ∈ Lin(X,X∗),
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where

A :=

A33 A34

A43 A44

 =
ε2

4π



−α 0 α 0

0 δ1 + α 0 −β

α 0 −α 0

0 −β 0 δ2 + α


,

and

α :=
γ1γ2

2

(
1

ρ2
− 1

a2

)
, β :=

γ1γ2

2

(
1

ρ2
+

1

a2

)
, δ1 :=

γ2
1

(a− ρ)2
, δ2 :=

γ2
2

(a+ ρ)2
.

Setting ε = 0, it follows that Hc has a zero eigenvalue of multiplicity 4, and the remainder of the

spectrum is strictly positive. Thus, when 0 < |ε| � 1, I−1Hc will have positive spectrum Σc ⊂ (0,∞)

along with four eigenvalues bifurcating from 0.

To determine these, we look more closely at the matrix A. In particular, direct computation

confirms that it has the eigenvalues:

0, −2α,
2α+ δ1 + δ2 +

√
(δ1 − δ2)2 + 4β2

2
,

2α+ δ1 + δ2 −
√

(δ1 − δ2)2 + 4β2

2
.

We know that 0 is in the spectrum of I−1Hc due translation invariance. Clearly, −2α < 0, and the

third eigenvalue above is positive. We claim that the last eigenvalue is also positive. Indeed,

2α+ δ1 + δ2 −
√

(δ1 − δ2)2 + 4β2 > 0

is equivalent to

α2 + αδ1 + αδ2 + δ1δ2 − β2 > 0.

Using the compatibility condition (3.1.8), we compute

α2 + αδ1 + αδ2 + δ1δ2 − β2 =
γ1γ2

2

(
1

ρ2
− 1

a2

)(
γ2

1

(a− ρ)2
+

γ2
2

(a+ ρ)2

)
− γ2

1γ
2
2

a2ρ2

=
2(a+ ρ)

(a− ρ)(a2 + aρ+ ρ2)2
γ4

1 > 0.

We then conclude that, for |ε| > 0 sufficiently small, the spectrum of I−1Hc consists of precisely one

negative eigenvalue, one zero eigenvalue, and the rest is positive.

We have verified all of the assumptions B.1.1–B.1.6 of Varholm–Wahlén–Walsh instability theory.

The next subsection shows that d′′(c) < 0, which implies orbital instability.
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3.3.3 Proof of Theorem 3.1.3

Using the expressions for the momentum P , x̄2, and ȳ2, we can compute:

d′(c) = εγ1(−a+ ρ)− εγ2(−a− ρ)−
∫
R
η(ϕ′ + ε∇>Θ) dx1.

Differentiating once more yields

d′′(c) = εγ1∂c(−a+ ρ) + εγ2∂c(a+ ρ)−
∫
R

(
(∂cη)(ϕ′ + ε∇>Θ) + η ∂c(ϕ

′ + ε∇>Θ)
)

dx1.

Recalling the definition of T in (3.2.9), using the compatibility (3.1.8) and variations for a and ρ in

(3.2.11), we obtain

d′′(c) = −γ1(ac̃ − ρc̃) + γ2(ac̃ + ρc̃) +O(ε3)

= − γ1

det T

(
− γ0

2

2π(a0 + ρ0)2
+
−γ0

1 + γ0
2

4πρ2
0

+
γ0

1 + γ0
2

4πa2
0

)
+

γ2

det T

(
γ0

1

2π(a0 − ρ0)2
+
−γ0

1 + γ0
2

4πρ2
0

− γ0
1 + γ0

2

4πa2
0

)
+O(ε3)

=
γ2

1

2π det T

6a0ρ
2
0

(a0 + ρ0)(a0 − ρ0)2(a2
0 + a0ρ0 + ρ2

0)
+O(ε3).

Thus, since det T < 0, we conclude that d′′(c) < 0 for |ε| � 1 and c = O(ε). Hence, Theorem B.1.8

tells us that the corresponding water waves {Uc} constructed in Theorem 3.1.1 are orbitally unstable.
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Appendix A

Local bifurcation theory

Theorem A.1 (Crandall and Rabinowitz [117]). Let X and Y be Banach spaces and I ⊂ R be an

open interval with λ∗ ∈ I. Suppose that F : I × X → Y is a continuous map with the following

properties:

(i) F(λ, 0) = 0 for all λ ∈ I;

(ii) D1F , D2F , and D1D2F exist and are continuous, where Di denotes the Fréchet derivative

with respect to the i-th coordinate;

(iii) D2F(λ∗, 0) is a Fredholm operator of index 0. In particular, the null space is one-dimensional

and spanned by some element w∗.

(iv) D1D2F(λ∗, 0)w∗ /∈ R(D2F(λ∗, 0)).

There there exists a continuous local bifurcation curve {(λ(s), w(s)) ∈ R ×X : |s| < ε} with ε > 0

sufficiently small such that (λ(0), w(0)) = (λ∗, w∗), and

{(λ,w) ∈ U : w 6= 0,F(λ,w) = 0} = {(λ(s), w(s)) ∈ R× Y : |s| < ε}

for some neighborhood U of (λ∗, 0) in R×X. Moreover, we have

w(s) = sw∗ + o(s) in X, |s| < ε.

If D2
2 exists and is continuous, then the curve is of class C1.
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Appendix B

Water waves with a finite dipole

B.1 Abstract instability theory

This section summarizes the instability theory developed by Varholm, Wahlén, and Walsh in [107,

Sections 2, 4]. We are considering the stability property of an abstract Hamiltonian

du

dt
= J(u)DE(u), u|t=0 = u0, (B.1.1)

where J is the Poisson map and E is the energy. Let X be a Hilbert space, and V and W be reflexive

Banach spaces such that

W ↪→ V ↪→ X.

Let X∗ be the (continuous) dual space of X, which is naturally isomorphic to X via the mapping

I : X→ X∗.

Assumption B.1.1 (Spaces). There exist constants θ ∈ (0, 1] and C > 0 such that

‖u‖3V ≤ C‖u‖2+θ
X ‖u‖1−θW (B.1.2)

for all u ∈W.

Let O ⊂ X be an open set. Suppose that

J(u) := B(u)Ĵ ,
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where for each u ∈ O ∩ V, B(u) is a bounded linear operator in X, that is, B(u) ∈ Lin(X), and

Ĵ : D(J) ⊂ X∗ → X is a closed linear operator.

Assumption B.1.2 (Poisson map).

(i) The domain D(Ĵ) is dense in X∗.

(ii) Ĵ is injective.

(iii) For each u ∈ O ∩ V, the operator B(u) is bijective.

(iv) The map u 7→ B(u) is of class C1(O ∩ V; Lin(X)) ∩ C1(O ∩W; Lin(W)).

(v) For each u ∈ O ∩ V, J(u) is skew-adjoint in the sense that

〈J(u)v, w〉 = −〈v, J(u)w〉

for all v, w ∈ D(Ĵ).

We suppose that V is chosen so that E ∈ C3(O ∩ V;R). In addition, assume that there exists a

momentum functional P ∈ C3(O∩V;X), and that both it and the energy are conserved by solutions

of (B.1.1).

Assumption B.1.3 (Derivative extension). There exist mappings ∇E, ∇P ∈ C0(O ∩ V;X∗) such

that ∇E(u) and ∇P (u) are extensions of DE(u) and DP (u), respectively, for every u ∈ O ∩ V.

Suppose that there is a one-parameter family of affine maps T (s) : X→ X, with the linear part

dT (s) := T (s)u− T (s)0 having the properties:

Assumption B.1.4 (Symmetry group). The symmetry group T (·) satisfies the following.

(i) (Invariance) The neighborhood O, and the subspaces V and W, are all invariant under the

symmetry group. Moreover, I−1D(Ĵ) is invariant under the linear symmetry group, or equiv-

alently, D(Ĵ) is invariant under the adjoint dT ∗(s) : X∗ → X∗.

(ii) (Flow property) We have T (0) = dT (0) = IdX, and for all s, r ∈ R,

T (s+ r) = T (s)T (r), and hence dT (s+ r) = dT (s)dT (r).

(iii) (Unitary) The linear part dT (s) is a unitary operator on X for each s ∈ R, or equivalently,

dT ∗(s)I = I dT (−s), for all s ∈ R. (B.1.3)
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Moreover, the linear part is an isometry on the spaces V and W.

(iv) (Strong continuity) The symmetry group is strongly continuous on both X, V, and W.

(v) (Affine part) The function T (·)0 belongs to C3(R;W) and there exists an increasing function

w : [0,∞)→ [0,∞) such that

‖T (s)0‖W 6= w(‖T (s)0‖X), for all s ∈ R.

(vi) (Commutativity with J) For all s ∈ R,

ĴI dT (s) = dT (s)ĴI,

dT (s)B(u) = B(T (s)u)dT (s), for all u ∈ O ∩ V.
(B.1.4)

(vii) (Infinitesimal generator) The infinitesimal generator of T is the affine mapping

T ′(0)u = lim
s→0

(
s−1(T (s)u− u)

)
= dT ′(0) + T ′(0)0,

with dense domain D(T ′(0)) ⊂ X consisting of all u ∈ X such that the limit exists in X.

Similarly, we may speak of the dense subspaces D(T ′(0)|V) ⊂ V and D(T ′(0)|W) ⊂ W on

which the limit exists in V and W, respectively. We assume that ∇P (u) ∈ D(Ĵ) for every

u ∈ D(T ′(0)|V) ∩ O, and that

T ′(0)u = J(u)∇P (u) (B.1.5)

for all such u. Moreover, we assume that

ĴI dT ′(0) = dT ′(0)ĴI. (B.1.6)

(viii) (Density) The subspace

D(T ′(0)|W) ∩ Rng Ĵ

is dense in X.

(ix) (Conservation) For all u ∈ O ∩ V, the energy is conserved by flow of the symmetry group:

E(u) = E(T (s)u), for all s ∈ R. (B.1.7)
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We say u ∈ C1(R;O ∩W) is a bound state of the Hamiltonian system (B.1.1) if u is a solution

of the form

u(t) = T (ct)U,

for some c ∈ R and U ∈ O ∩W.

Assumption B.1.5 (Bound states). There exists a one-parameter family of bound state solutions

{Uc : c ∈ I} to the Hamiltonian system (B.1.1).

(i) The mapping c ∈ I 7→ Uc ∈ O ∩W is C1.

(ii) The non-degeneracy condition T ′(0)Uc 6= 0 holds for every c ∈ I. Equivalently, Uc is never a

critical point of the momentum.

(iii) For all c ∈ I,

Uc ∈ D(T ′′′(0)) ∩ D(ĴIT ′(0)), (B.1.8)

and

ĴIT ′(0)Uc ∈ D(T ′(0)|W). (B.1.9)

(iv) Either s 7→ T (s)Uc is periodic, or lim inf |s|→∞ ‖T (s)Uc − Uc‖X > 0.

Define Ec(u) := E(u) − cP (u) to be the augmented Hamiltonian. Then we have the following

assumption:

Assumption B.1.6 (Spectrum). The mapping

u ∈ V 7→
〈
D2Ec(Uc)u, ·

〉
V∗×V ∈ V∗

extends uniquely to a bounded linear operator Hc : X→ X∗ with the following properties

(i) I−1Hc is self-adjoint on X.

(ii) The eigenvalues of I−1Hc satisfy

spec(I−1Hc) = {−µ2
c} ∪ {0} ∪ Σ,

where −µ2
c < 0 is a simple eigenvalue corresponding to a unit eigenvector χc, 0 is a simple

eigenvalue generated by T , and Σ is a subset of the positive real axis bounded away from 0.
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Assumption B.1.7 (Local existence). There exists ν0 > 0 and t0 > 0 such that for all initial data

u0 ∈ Uν0 , there exists a unique solution to the ODE (B.1.1) on the interval [0, t0).

Let d(c) := Ec(Uc) = E(Uc)− cP (Uc) be the moment of instability, where Uc is a traveling wave.

Moreover, for each ρ > 0, the tubular neighborhood of radius ρ in X for the Uc-orbit generated by

T is

Uρ :=

{
u ∈ O : inf

s∈R
‖T (s)Uc − u‖W < ρ

}
, (B.1.10)

We have the following instability theorem; see [107, Theorem 2.6].

Theorem B.1.8 (Instability). Suppose that all assumptions B.1.1–B.1.7 are satisfied, and that there

exists a family of traveling water waves Uc. Then if d′′(c) < 0, the traveling wave Uc is orbitally

unstable. That is, there exists a ν0 > 0 such that for every 0 < ν < ν0 there exists initial data in Uν

whose corresponding solution exits Uν0 in finite time.

B.2 Steady and unsteady equations

For the convenience of the reader, in this appendix we derive the nonlocal formulations for the water

wave with a finite dipole problem (3.2.4).

Using the definitions of ϕ in (3.1.6) and G(η) in (3.2.3), we obtain

∇Φ =
1

〈η′〉2

 1 −η′

η′ 1


 ϕ′

G(η)ϕ

 =
1

〈η′〉2

ϕ′ − η′G(η)ϕ

η′ϕ′ + G(η)ϕ

 . (B.2.1)

Combining with the definitions of ψ in (3.2.2) gives

G(η)ϕ

ϕ′

 =

 ψ′

−G(η)ψ

 . (B.2.2)

Then from the incompressible Euler equation (3.1.2), we can derive the unsteady equation for velocity

potential on S

∂tϕ = − 1

2〈η′〉2
(
(ϕ′)2 − 2η′ϕ′G(η)ϕ− (G(η)ϕ)2

)
− ε∂tΘ + εϕ′∂x2

Γ− ε2

2
|∇Γ|2

− η + b
η′′

〈η′〉3
. (B.2.3)
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Using the relation (B.2.2), we also have the unsteady equation for stream function on S:

∂tϕ = − 1

2〈η′〉2
(
(G(η)ψ)2 + 2η′ψ′G(η)ψ − (ψ′)2

)
− ε∂tΘ− εG(η)ψ ∂x2Γ− ε2

2
|∇Γ|2

− η + b
η′′

〈η′〉3
. (B.2.4)

For the traveling water waves, the steady equation for velocity potential on S is

− c

〈η′〉2
(ϕ′ − η′G(η)ϕ) + cε∂x2Γ +

1

2〈η′〉2
[
(ϕ′)2 + (G(η)ϕ)2

]
+

ε

〈η′〉2
[−ϕ′∇⊥Γ + G(η)ϕ ∇>Γ] +

ε2

2
|∇Γ|2 + η − b η′′

〈η′〉3
= 0, (B.2.5)

and the steady equation for stream function on S is:

c

〈η′〉2
(ψ′ + η′G(η)ψ) + cε∂x2

Γ +
1

2〈η′〉2
[
(ψ′)2 + (G(η)ψ)2

]
+

ε

〈η′〉2
[G(η)ψ∇⊥Γ + ψ′ ∇>Γ] +

ε2

2
|∇Γ|2 + η − b η′′

〈η′〉3
= 0. (B.2.6)

B.3 Variations of the energy and momentum

Finally, in this appendix we record the first and second Fréchet derivatives of the energy and mo-

mentum.

Recall that

a = (∇(Hϕ))|St , ξ = (Υ1x1
,Ξ1x2

)T , and ζ = (Υ2x1
,Ξ2x2

)T .

Let ∇ξ := (Υ1x1x1
,Ξ1x2x2

)T , ∇ζ := (Υ2x1x1
,Ξ2x2x2

)T , and

D2
x̄Θ :=

Υ1x1x1
Ξ1x1x2

Ξ1x1x2
Υ1x2x2

 , and D2
ȳΘ :=

Υ2x1x1
Ξ2x1x2

Ξ2x1x2
Υ2x2x2

 .
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Variations of K0(u)

We compute that

DϕK0(u)ϕ̇ =

∫
R
ϕ̇G(η)ϕdx1, DηK0(u)η̇ =

1

2

∫
R
ϕ〈DηG(η)η̇, ϕ〉dx1,

and

〈D2
ϕK0(u)ϕ̇, ϕ̇〉 =

∫
R
ϕ̇G(η)ϕ̇dx1,

〈DϕDηK0(u)ϕ̇, η̇〉 =

∫
R
ϕ̇〈DηG(η)η̇, ϕ〉dx1 =

∫
R
η̇(a1ϕ̇

′ − a2G(η)ϕ̇) dx1

〈D2
ηK0(u)η̇, η̇〉 =

1

2

∫
R
ϕ〈〈D2

ηG(η)η̇, η̇〉, ϕ〉dx1 =

∫
R

(a′1a2η̇
2 + a2η̇G(η)(a2η̇)) dx1.

Variations of K1(u)

Likewise, the first variations of K1 are

DϕK1(u)ϕ̇ =

∫
R
ϕ̇∇⊥Θ dx1, DηK1(u)η̇ =

∫
R
η̇ϕ′Θx1 |S dx1,

∇x̄K1(u) = −
∫
R
ϕ∇⊥ξ dx1, ∇ȳK1(u) = −

∫
R
ϕ∇⊥ζ dx1,

and the second are given by

〈DϕDηK1(u)η̇, ϕ̇〉 =

∫
R
η̇ϕ̇′Θx1 |S dx1, 〈D2

ηK1(u)η̇, η̇〉 =

∫
R
η̇2ϕ′Θx1x2 |S dx1,

D2
x̄K1(u) =

∫
R
ϕ∇⊥D2

x̄Θ dx1, D2
ȳK1(u) =

∫
R
ϕ∇⊥D2

ȳΘ dx1,

∇x̄DηK1(u)η̇ = −
∫
R
η̇ϕ′(∇ξ)|S dx1, ∇ȳDηK1(u)η̇ = −

∫
R
η̇ϕ′(∇ζ)|S dx1,

∇x̄DϕK1(u)ϕ̇ = −
∫
R
ϕ̇∇⊥ξ dx1, ∇ȳDϕK1(u)ϕ̇ = −

∫
R
ϕ̇∇⊥ζ dx1.
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Variations of K2(u)

It is straightforward to compute that

DηK2(u)η̇ =
1

2

∫
R
η̇|(∇Θ)|S |2 dx1,

∇x̄K2(u) = ∇x̄Γ∗ − 1

2

∫
R
∇⊥(ξΘ) dx1, ∇ȳK2(u) = ∇ȳΓ∗ − 1

2

∫
R
∇⊥(ζΘ) dx1,

and

〈D2
ηK2(u)η̇, η̇〉 =

∫
R
η̇2
(

Θx1
Θx1x2

+ Θx2
Θx2x2

)∣∣∣
S

dx1,

D2
x̄K2(u) = 2D2

x̄Γ∗ +
1

2

∫
R
∇⊥(ΘD2

x̄Θ + ξξT ) dx1,

D2
ȳK2(u) = 2D2

ȳΓ∗ +
1

2

∫
R
∇⊥(ΘD2

ȳΘ + ζζT ) dx1,

∇x̄∇ȳK2(u) = ∇x̄∇ȳΓ∗ +
1

2

∫
R
∇⊥(ξ � ζ) dx1,

∇x̄DηK2(u)η̇ = −
∫
R
η̇((Dxξ)∇Θ)|S dx1, ∇ȳDηK2(u)η̇ = −

∫
R
η̇((Dxζ)∇Θ)|S dx1.

Variations of V (u)

Similarly, we find that

DηV (u)η̇ =

∫
R
η̇

(
gη − b η′′

〈η′〉3

)
dx1,

〈D2
ηV (u)η̇, η̂〉 =

∫
R

(
gη̂η̇ +

b

〈η′〉3
η̂′η̇′

)
dx1.

Variations of P (u)

Finally, the first variations of momentum P (u) are given in Section 3.3.1.

The second derivatives are as follows:

〈DηDϕP (u)ϕ̇, η̇〉 = −
∫
R
η̇′ϕ̇dx1, 〈D2

ηP (u)η̇, η̇〉 = ε

∫
R
η̇2Θx1x2 |S dx1,

D2
x̄P (u) = −ε

∫
R
η′(D2

x̄Θ)|S dx1, D2
ȳP (u) = −ε

∫
R
η′(D2

ȳΘ)|S dx1,

∇x̄DηP (u)η̇ = −ε
∫
R
η̇(∇ξ)|S dx1, ∇ȳDηP (u)η̇ = −ε

∫
R
η̇(∇ζ)|S dx1.
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